Code No: 152AA

R18

[5+5]

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, August - 2019 **MATHEMATICS-II**

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, MMT, AE, MIE, PTM) Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Solve the D.E $(x+a)^2 y'' - 4(x+a)y' + 6y = x$.

Solve the D.E $(D^2 - 4)y = \cosh(2x - 1) + e^{2x}$.

b)

5.a)

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

tweet *	PART- A		
1.a) b)	State the Newton's law of cooling.	(2	5 Marks) [2]
U)	Solve The D.E $(D^2 + 2D + 1)y = 0$.		[2]
c)	Evaluate $\iint_{0}^{2} xydydx$.		[2]
d)	Find $\nabla \cdot \overline{r}$		[2]
e)	State stoke's theorem.	t of see	[2]
f)	Find the integral factor of the differential equation of $\frac{dy}{dx} - y \sin 2x$	$=\cot x$.	[3]
g)	Find the P.I of $(D^2 + 5D + 6)y = 1 + 2x + x^2$.		[3]
- h)	Evaluate $\int_{\theta=0}^{\pi} \int_{r=0}^{a\cos\theta} dr d\theta$	2002	[3]
i)	If $\overline{f} = x^2yi - 2xzj + 2yz\overline{k}$ then find Curl \overline{f}	. 8	[3]
j)	Find the work done in moving a particle in the force field \bar{F}	=xi-i+k	
	straight line from $(0,0,0)$ to $(2,1,3)$.	,	[3]
PART-B			
2.a)	Solve the D.E $p^2 + 2xp - 3x^2 = 0$ for p.	2.00	Marks)
b)	The temperature of the surrounding air is 20°C. The temperature from 100°C to 70°C in 1 hr. Find the temperature of the body after 2 OR	of a hot body 2 hrs.	reduces [5+5]
3.a)	Solve the D.E $xp^2 - 2yp + x = 0$ for y.		
b)	Solve the differential equation $(x^2 + 2\sin y)dx + (2x\cos y + y)dy$.		[5+ <u>5</u>]
4.a)	Solve the D.E $(D^2 - 2D + 2)y = \sin x + e^{-2x}$.		

6.a) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x+x^2}} (x^2 + y^2) dx dy$ by changing in to polar co-ordinates.

b) Find the volume of ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 [5+5]

7.a) By change of order of integration evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y^2 dy dx$

b) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dx \, dy \, dz}{\sqrt{1-x^2-y^2-z^2}}$$
 [5+5]

8.a) Find the directional derivative of $\phi = xyz$, at (1, -1, 1) along the direction which makes equal angles with the positive direction of x, y, z axes.

b) Prove that
$$\nabla^2 (r^n) = n(n+1)r^{n-2}$$
 [5+5]

OR

- 9.a) Find the constants 'a' and 'b' such that the surfaces $5x^2 2yz 9x = 0$ and $ax^2y + bz^3 = 4$ cuts orthogonally at (1,-1,2).
 - b) Prove that $\overline{F} = 2xy \sin zi + x^2 \sin zj + x^2 y \cos zk$ is irrotational and find its scalar potential.

 [5+5]
- 10.a) Evaluate $\iiint_{\nu} f(x, y, z) dx dy dz$ where $\bar{f} = 3i j 2k$ bounded by the volume (ν) by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4.
 - b) Evaluate $\iint_S x^2 dy dz + x^2 y dx dz + x^2 z dxdy$ over the surface bounded by the planes z = 0, z = b and the cylinder $x^2 + y^2 = a^2$ using Gauss divergence theorem [5+5]
- 11.a) Find the flux of vector function $\vec{F} = (x 2z)\vec{i}(x + 3y)\vec{j} + (5x + y)\vec{k}$ through the upper side of the triangle ABC with vertices (1,0,0), (0,1,0), (0,0,1).
 - b) Prove that $\oint (f \nabla g) . dr = \int (\nabla f \times \nabla f) . \overline{n} ds$ using stoke's theorem. [5+5]

---00O00---