JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech I Year II Semester Examinations, August - 2019

MATHEMATICS-II

(Common to EEE, ECE, CSE, EIE, IT, ETM)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)

1.a) Find
$$L[e^{t-3}u(t-3)]$$
. [2]

b) Find
$$L^{-1} \left[\frac{s+2}{\left(s^2+4s\pm5\right)^2} \right]$$
. [3]

c) Evaluate
$$\int_{0}^{\infty} e^{-3x} x^3 dx$$
. [2]

d) Evaluate
$$\beta(\frac{1}{2}, \frac{1}{2})$$
 [3]

e) Evaluate
$$\int_{0}^{2} \int_{0}^{x} e^{x+y} dy dx.$$
 [2]

f) Evaluate
$$\int_{0}^{2\pi} \int_{a\sin\theta}^{a} r \, dr \, d\theta.$$
 [3]

g) Find div
$$\overline{r}$$
, where $\overline{r} = x^2 i + y^2 j + z^2 k$. [2]

h) Prove that
$$\bar{r}$$
 is irrotational, where $\bar{r} = xi + yj + zk$. [3]

j) If
$$\overline{F} = 3xyi - y^2j$$
, evaluate $\int_C \overline{F}.\overline{dr}$, where c is the curve in the *xy*-plane $y = x$ from (0,0) to (1,2).

PART-B

(50 Marks)

2.a) Find
$$L\left[\int_{0}^{t} e^{t} \frac{\sin t}{t} dt.\right]$$

b) Find
$$L^{-1} \left[\frac{s}{s^4 + s^2 + 1} \right]$$
.

[5+5]

Solve y'' + 2y' + y = t, given that y = -3, y' = -1 when t = 0. [10] 3. Evaluate $\int \sin^2 \theta \cos^2 \theta \ d\theta$ using β - Γ functions. [5+5]Evaluate $\int x^6 e^{-2x} dx$ using β , Γ functions. b) Evaluate $\int_{0}^{2} x \left(8 - x^{3}\right)^{1/3} dx$. Evaluate $\int x^7 e^{-2x^2} dx$ [5+5]Change the order of integration and evaluate $\iint \frac{e^{-x}}{v} dy dx$. 6.a) Find the volume of the Tetrahedron bounded by the planes x=0, y=0, z=0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. b) OR Evaluate $\iint xy(x+y) dx dy$ over the region bounded by parabolas $x^2 = y$ and $y^2 = -x$. 7.a) Evaluate $\iint \int \log z \, dz \, dx \, dy$. [5+5]Show that $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$. 8.a) If $F = x^2 y i - z y j + 2 y z^2 k$, Find Curl F and Div F at the point (1, 1, 1). [6+4]b) If ϕ is scalar point function and F is a vector point function then show that 9.a) ii) $\nabla \cdot (\nabla \times F) = 0$ If $F = \nabla(x^3 + y^3 + z^3 - 3xyz)$ then show that F is irrotational. [5+5]Verify green's theorem for $\int (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where C is the boundary of the 10.

OR

Verify the Stoke's theorem for the vector field $\vec{F} = xz\vec{i} + xy\vec{j} + 3xz\vec{k}$ over the surface

[10]

[10]

region bounded by $y = \sqrt{x}$ and $y = x^2$.

2x + y + z = 2 in the first octant.