Code No: 111AL

j)

State Green's theorem.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year Examinations, October/November - 2016 MATHEMATICAL METHODS

(Common to EEE, ECE, CSE, EIE, BME, IT, ETM)

Time: 3 hours	à sa		Max. N	1arks: 75
Time. 5 mours				and I have

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)

1.a)	If h = 1, find $\Delta^2(x^3 - 3x^2)$	[2]
b)	Find the particular solution of $(E^2 - 7E + 12)y = 2''$	[3]
c)	Find the interval in which a root of $x \log_{10} x = 1.2$ lie.	[2]
d)	If $y' = x + y$ and $y(0)=1$, find $y^{(1)}(x)$ by Picard's method.	[3]
e)	If $f(x) = x \sin x$ in $(0 \le x \le 2\pi)$, then find a_0 in the Fourier series of $f(x)$.	[2]
f)	Find the finite Fourier sine transform of $f(x) = x^2$, $0 < x < \pi$	[3]
(2)	Form the partial differential equation from $z = (x + a) (y + b)$.	[2]
h)	Find one integral solution of $(x-y)p+(y-x-z)q=z$.	[3]
i)	Find ∇xy^2z .	[2]

PART-B

(50 Marks)

[3]

2.a) Using Gauss backward interpolation formula find y(8) from the following table.

X	0	:5:	10	15	20	25
ν	7	11	14	18	24	32

b) Fit an equation of the form $y = ab^{x}$ to the following data

X	2	3	4	5	6
у	144	172.8	207.4	248.8	298.5

[5+5]

OR

3.a) Use Lagranges formula inversely to obtain the value of t when A = 85 from the following table.

t	2	5	8	14
A	94.8.	87.9	81.3	68.7.

b) Fit the curve $y = ae^{bx}$ to the following data.

					2.0	
y	0.10	0.45	2.15	9.15	40.35	180.75

[5+5]

- Tabulate the values of y(0.1), and y(0.2) using Taylor series given that $\frac{dy}{dx} = x^2 y$, y(0) = 1. Compare with the actual values. [10]

 OR

 5. Given that $y' = x^2 + y^2$, y(0) = 1. Determine y(0.1) by modified Euler's method. [10]
- 6. Find the Fourier Transform of $f(x) = \begin{cases} 1 x^2 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$, Hence evaluate $\int_{0}^{\infty} \left[\frac{x \cos x \sin x}{x^3} \right] \cos \frac{x}{2} dx$ [10]
- 7. Obtain Fourier series for $f(x) = x + x^2$ in $-\pi < x < \pi$ and deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6\pi}$ [10]
- 8.a) Form the partial differential equation by eliminating the arbitrary function from $xy + yz + zx = f\left(\frac{z}{x+y}\right)$
- Solve the partial differential equation $(x^2 yz)p + (y^2 xz)q = (z^2 xy)$. [5+5]
- 9. Solve the boundary value problem $u_n = a^2 u_{xx}$ 0 < x < l, t > 0 with u(0,t) = 0, u(l,t) = 0, u(x,0) = 0 and $u_x(x,0) = \sin^3 \frac{\pi x}{l}$ [10]
- 10. Verify Green's theorem for $\int_{c} (xy + y^{2}) dx + x^{2} dy$ where c is bounded by y = x and $y = x^{2}$. [10]
- OR

 Verify stokes theorem for $\overline{F} = (x^2 + y^2)i 2xy\overline{J}j$ taken around the rectangle bounded by the lines $x = \pm a$, y = 0, y = b. [10]