R16

Code No: 135AP

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, May/June - 2019 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES (Electronics and Communication Engineering)

Time	: 3 hours Max. Mai	rks: 75
Note:	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. consists of 5 Units. Answer any one full question from each unit. Each question 10 marks and may have a, b, c as sub questions. PART - A	
	(231	viai ks)
1.a) b) c) d) e) f) g) h) i) j)	State Gauss law. Mention the differences between scalar and vector magnetic potentials. If the flux flowing through closed surface is 3 nc. What is the total charge enclothat surface? Find the input impedance of a section of a 50 Ω lossless transmission line length 0.1 λ long and is terminated in a short circuit. Define reflection coefficient and VSWR. Derive expression for electrostatic energy of a capacitor. State Maxwell's four laws in derivative form. Find skin depth at 1GHz for copper having conductivity 5.7×10 ⁷ mho/m. What are the different types of loading? What are characteristics of infinite transmission line?	[2]
	PART - B	
	(50 N)	Aarks)
2.a) b)	Derive Poisson's and Laplace's equations from fundamentals. List few applications concerned to electrostatic fields. An infinitely long uniform line charge is located at $y = 3$, $z = 5$. If $\rho_1 = 30n$	nc/m,
	find field \vec{E} intensity at (i) infinity (ii) P(3, 4, 2). OR	[5+5]
3.a) b)	State and prove coulomb's law. Distinguish between conduction and convection currents.	[5+5]
4.	Derive the boundary conditions at the interface between a) Dielectric-Dielectric b) Dielectric-conductor. OR	[5+5]
5.a)	Derive Maxwell's equations in integral form. Based on this obtain the correspondence of	onding
b)	differential equation by applying Stroke's theorem. State and prove Biot-Savart's law.	[5+5]

- 6.a) Evaluate the reflection and transmission coefficients for the case of an electromagnetic wave in air incident normally upon the copper sheet at frequency of 1 MHz. Given $\mu_1 = \mu_0 = \mu_2$, $\varepsilon_1 = \varepsilon_2 = \varepsilon_0$, $\sigma_1 = 0$, $\sigma_2 = 5.8 \times 10^7$ y/m.
 - b) Find the energy stored in a standing wave incident normally on a perfect conductor over a distance $-\lambda/4$ to 0 per unit in x, y coordinates. [5+5]

OR

- 7.a) State and prove Poynting theorem and also write its applications.
 - b) Derive the equation in conducting medium. Discuss skin effect and find the skin depth at 1 GHz for copper having conductivity 5.7×10⁷ mho/m. [5+5]
- 8.a) Discuss in brief about inductance loading of telephone cables.
 - b) A lossless transmission line of length 0.434 lambda and characteristic impedance 100Ω is terminated in an impedance $260 + j 180 \Omega$. Find
 - i) Voltage reflection co-efficient
 - ii) Standing wave ratio
 - iii) Input Impedance.

[4+6]

OR

- 9.a) The attenuation constant on a 50 ohm distortionless transmission line is 0.01 dB/m. The line has a capacitance of 0.1 nF/m. Find the resistance, inductance and conductance per meter of the line.
 - b) A loss less line of 100 ohms is terminated by a load which produces SWR=3. The first maximum is found to be occurring at 320cm. If f=300 MHz determine the load matching.

 [5+5]
- 10.a) Write a short notes on reflection losses on unmatched transmission line.
 - b) The input impedance of a s short-circuited lossy transmission line of length 2m and characteristic impedance 75 Ω is 45 + j 225 Ω .
 - i) Find α and β of the line.
 - ii) Determine the input impedance if load is $Z_L=67.5 j4.5 \Omega$

[4+6]

OR

- Determine the input impedance of the transmission lines of length $\lambda/4$, $\lambda/2$ and $\lambda/8$. Assume if any data is needed.
 - b) A line having Z_0 of 100 ohms is terminated into a load of 50 j 50 ohms. It is desired to provide matching between the time and the load by means of a short circuit sheet. Determine the length of the stub if signal frequency is 10 KHz. [5+5]