Code No: 152AE

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year II	Semester.	Examinations,	May - 2019
, P	APPLIED	PHYSICS	error.

(Common to EEE, CSE, IT) Max. Marks: 75 Time: 3 hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

What is Photo-electric effect. Give the Einstein's equation. [2] 1.a) What are donors and acceptors? Give two examples of each. [2] b) What are direct and Indirect band gap semiconductors [2] c) Explain Population Inversion and how is it achieved? [2] d)/ [2] State the Faraday's Law. e)/ Give the Born's interpretation of wave function. [3] f) [3] Explain the concept of Hall effect. g)

Give three differences between semiconductor laser and LED. [3] h)

Explain the construction of optical fiber. [3] i) j)

Derive the relation between \overline{B} , \overline{H} and \overline{M} [3]

PART-B

(50 Marks)

(25 Marks)

Derive an expression for the wavelength λ of the matter waves. 2.a)

Describe a experiment to verify the existence of matter waves. b)

For an electron in a one-dimensional infinite potential well of width 1A⁰, calculate the c) energy separation between the two lowest energy levels and also calculate the frequency and wavelength of the photon corresponding to a transition between these two levels.

[10]

Explain Heisenberg's Uncertainty principle. 3.a)

- Using the Heisenberg's Uncertainty principle explain why electron cannot exist in the b) nucleus of radius 10⁻¹⁴m.
- Show that the particle trapped in a potential box possesses discrete energy levels. [10] c)
- What are intrinsic and extrinsic semiconductors? 4.a)

Distinguish between N-type and P-type semiconductors with an example. b)

A rectangular plate of a semiconductor has dimensions 2.0 cm along y direction, 1.0 mm c) along z-direction. Hall probes are attached on its two surfaces parallel to x z plane and a magnetic field of 1.0 tesla is applied along z-direction. A current of 3.0 mA is set up along the x direction. Calculate the hall voltage measured by the probes, if the hall coefficient of the material is 3.66 × 10⁻⁴ m³/C. Also, calculate the charge carrier [10] concentration.

8R	=	3R	88	SA	313	GR	3R
: 8R	5.a) b)	electrons in Define Fern semiconduc	Germanium is ni level. Where tor and N- type	0.39 m ² V ⁻¹ s ⁻¹ , the does a Fermi lessemiconductor	nen find the concevel exist in a I at moderate tem	$39 \Omega^{-1}$ m ⁻¹ . If the centration of the contrinsic semiconorperature?	donor atoms.
	6.a) b)	When 3×10^{-10}	0 ¹¹ photons eac × 10 ¹¹ electr	h with waveleng	th of 0.85µm ar	ection in semicon re incident on a p the quantum e	hotodiode, on
3R	c)	What is a so	lar cell? Explai	n with a neat dia	gram. Define th	e efficiency and	fill factor. [10]
	7.a)	Explain the	construction and	d working of a L	.ED		
	b)			ces between PIN		photodiode?	
: (6)	c)	A silicon ph	otodiode has qu	antum efficienc		photon energy 1.	.5×10 ⁻¹⁹ J. Its
		band gap ene	ergy is 0.67eV.	Calculate:			
38	8	i) Responsiv ii) Incident p	ity (R) ower required t	o obtain a photo	current 2.5 μA	(P _o)?.	[10]
	b)	A He-Ne gas photons are e	laser of wavele emitted each mi	nute when it is c	has an output poperated?	ower of 2.3 mW	
	c)	Explain abou	it the different	modes that are	propagated thr	ough step-index	
	(_)	index fiber?		OR			[10]
	9.a)	Elaborate the	various applica	2 10 10 10 10 10 10 10 10 10 10 10 10 10	the field of med	dicine and militar	W.
	b) 1	Discuss the	concept of Ac	ceptance angle	and Acceptanc	e cone of a fibe	er. Derive a
9 M	c) r	The numerica efractive ind	al aperture of an ex of cladding tive index of the	; ii) Calculate tl	s 0.5 and core r	efractive index 1 ore cladding refra	.54. i) Find active index
	10.a) \	What is dieled	etric polarizatio	n? Describe brie	fly types of pola	arizations.	
				tion for a cubic of		ire.	
	c) \	write notes of	n ferroelectricit	y and piezoelect	ricity.		[10]
\	11.a) [Derive a relat	ion between ele	OR ectric polarizatio	on and electric s	usceptibility of th	ne dielectric
5 K	c) [Describe the F	Hysteresis loop	ent, dielectric lo of ferromagnets		ength. used to distingu	sh between
	h	ard and soft r	nagnetic materi	als?			[10]
				00O00			
) []	()	(T)	7) [7]	\cap \cap	(A) (Th	CTT	