Manufacturing the Future
Concepts, Technologies & Visions

Manufacturing the Future
Concepts, Technologies & Visions

Edited by

Vedran Kordic
Aleksandar Lazinica

Munir Merdan

pro literatur Verlag

Published by the plV pro literatur Verlag Robert Mayer-Scholz

plV pro literatur Verlag Robert Mayer-Scholz
Mammendorf
Germany

Abstracting and non-profit use of the material is permitted with credit to the source. State-
ments and opinions expressed in the chapters are these of the individual contributors and not
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of
information contained in the published articles. Publisher assumes no responsibility liability
for any damage or injury to persons or property arising out of the use of any materials, in-
structions, methods or ideas contained inside. After this work has been published by the Ad-
vanced Robotic Systems International, authors have the right to republish it, in whole or part,
in any publication of which they are an author or editor, and the make other personal use of
the work.

© 2006 Advanced Robotic Systems International
www.ars-journal.com

Additional copies can be obtained from:
publication@ars-journal.com

First published July 2006
Typeface Palatino Linotype 10/11/12 pt

Printed in Croatia

A catalog record for this book is available from the German Library.

Manufacturing the Future: Concepts, Technologies & Visions/ Edited by Vedran Kordic, Alek-
sandar Lazinica, Munir Merdan.
p. cm.
ISBN 3-86611-198-3
1. Distributed Manufacturing. 2. Modern assembly systems. 3. Supply Chain I. Kordic,
Vedran. II. Lazinica, Aleksandar. III. Merdan, Munir

10.

1.

Contents
Preface. ... IX
Multi-Agent Based Distributed Manufacturing ... 1
J. Li, J.Y H. Fuh, Y.F. Zhang and A.Y.C. Nee
The CoBASA architecture as an answer to shop floor agility 31
Jose Barata
Development of Holonic Manufacturing Execution Systems........................ 77
Fan-Tien Cheng, Chih-Feng Chang and Shang-Lun Wu
Bio-inspired approach for autonomous routing in FMS................... 101

T. Berger, Y. Sallez and C. Tahon

Modular Machining Line Design and Reconfiguration:
Some Optimization Methods ... 125
S. Belmokhtar, A.I. Bratcu and A. Dolgui

Flexible Manufacturing System Simulation Using Petri Nets ... 153
Carlos Mireles, Alfonso Noriega and Gerardo Leyva

Applications of Petri Nets to Human-in-the-Loop
Control for Discrete Automation Systems ..., 167
Jin-Shyan Lee and Pau-Lo Hsu

Application Similarity Coefficient Method
to Cellular Manufacturing ... 195
Yong Yin

Maintenance Management and Modeling in
Modern Manufacturing Systems ... 259

Mehmet Savsar

Zadehian Paradigms for Knowledge Extraction
in Intelligent Manufacturing.....................ccoo.coooriceeceeee e 291
AM.M. Sharif Ullah and Khalifa H. Harib

PURE: A Fuzzy Model for Product Upgradability and
Reusability Evaluation for Remanufacture ... 309
Ke Xing, Kazem Abhary and Lee Luong

VI

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

Distributed Architecture for Intelligent Robotic Assembly
Part I: Design and Multimodal Learning................oconns 337

Ismael Lopez-Juarez and Reyes Rios-Cabrera

Distributed Architecture for Intelligent Robotic Assembly

Part Il: Design of the Task Planner ... 367
Jorge Corona-Castuera and Ismael Lopez-Juarez

Distributed Architecture for Intelligent Robotic Assembly
Part lll: Design of the Invariant Object Recognition System ... 401

Mario Pena-Cabrera and Ismael Lopez-Juarez

Assembly Sequence Planning using
Neural Network APProach................ccoooeeeeeeeeeee e 437

Cem Sinanoglu and Huseyin Riza Borklu

Evolutionary Optimisation of Mechanical
Structures Or SYSEEMIS ... s 469
Marecelin Jean-Luc

Improving Machining Accuracy Using Smart Materials.................................. 501
Maki K. Rashid

Concurrent Process Tolerancing Based on
Manufacturing Cost and Quality LOSS ... 521
M. F. Huang and Y. R. Zhong

Optimize Variant Product Design Based on
Component Interaction Graph ... 551
Elim Liu and Shih-Wen Hsiao

Applying a Hybrid Data Mining Approach in Machining
Operation for Surface Quality Assurance.................cccooiccioncccoi, 583
Tzu-Liang (Bill) Tseng, Yongjin Kwon and Ryan B. Wicker

Sequential Design of Optimum Sized and
GeoMELriC TOIBFANCES...............coooo s 605
M. F. Huang and Y. R. Zhong

A New Rapid ToOoliNG ProCess ... 637
Xiaoping Jiang and Chao Zhang

SCM Innovation for Business Globalization Based on
Coupling Point Inventory Planning ... 673
Koshichiro Mitsukuni, Yuichi Nakamura and Tomoyuki Aoki

Relative Control and Management Philosophy ... 695
Che-Wei Chang

Multidimensional of Manufacturing Technology,
Organizational Characteristics, and Performance....................ccccccoooovrcnnin. 729
Tritos Laosirihongthong

vl

26.

27.

28.

29.

30.

Engineering Change Management in Distruted Environment
With PDM/PLM SUPPOIL ... 751

Joze Tavcar and Joze Duhovnik

Study of Flexibility and Adaptability in
Distributed Supply ChaiNS..............c...cooooii e 781
Felix T. S. Chan and H. K. Chan

An Autonomous Decentralized Supply Chain
Planning and Scheduling System ... 801
Tatsushi Nishi

Simulation Modeling and Analysis of the Impacts of

Component Commonality and Process Flexibility on

Integrated Supply Chain Network Performance.................cccoooooorvncccerrcencenn. 829
Ming Dong and F. Frank Chen

On Direct Adaptive Control for Uncertain Dynamical Systems
Synthesis and Applications ... 857
Simon Hsu-Sheng Fu and Chi-Cheng Cheng

Corresponding AUthor List ... 903

IX

Preface

The primarily goal of this book is to cover the state-of-the-art development and future
directions in modern manufacturing systems.

This interdisciplinary and comprehensive volume, consisting of 30 chapters, covers a
survey of trends in distributed manufacturing, modern manufacturing equipment,
product design process, rapid prototyping, quality assurance, from technological and
organisational point of view and aspects of supply chain management.

The book’s coverage reflects the editor’s belief that modern industrial applications
stem from the synergy of general understanding of the big picture of technologies
with an in-depth knowledge of a targeted application area and its consequent impact
on business development.

This book is the result of inspirations and contributions from many researchers
worldwide.

We would like to thank all the researchers and especially to the authors of the chap-
ters who entrusted us with their best work. It is their work that enabled us to collect
the material for this book. We hope you will enjoy reading the book as much as we
have enjoyed bringing it together for you.

Further, the editors would like to acknowledge and express their appreciation to the
reviewers.

Their contribution is highly appreciated and it has helped to make this book of sig-
nificantly greater value to its readers.

Editors

Vedran Kordic

Automation and Control Institute
Vienna University of Technology

Aleksandar Lazinica
Institute for Production Engineering
Vienna University of Technology

Merdan Munir
Automation and Control Institute
Vienna University of Technology

1.

Introduction

Multi-Agent Based Distributed Manufacturing

J.Li, J.Y H. Fuh, Y.F. Zhang and A.Y.C. Nee

Agent theory is developed from distributed artificial intelligence, which is re-
garded as a prospective methodology suitable for solving distributed complex
problems, and it has been applied in many areas including manufacturing en-
gineering. In this chapter, some basic issues for agent theory are described and
an example of one agent-based distributed manufacturing system is presented.

1.1 Agent and multi-agent system

Jennings and Wooldridge (Jennings and Wooldridge 1998) have defined an
agent as “a computer system situated in some environment and capable of
autonomous action in this environment, in order to meet its design objectives”.
Some of the main properties of agents are autonomy, socialability, reactivity,
and proactiveness (Wooldridge and Jennings 1995):

Autonomy:

Socialability:

Reactivity:

Proactiveness:

Autonomy characterizes the ability of an agent to act on its
own behalf. Agents can operate without direct intervention
of humans or other agents, and have a some kind of control
over their actions and internal states (Castelfranchi 1995).

Agents can interact with other agents via agent communi-
cation languages (Gensereth and Ketchpel 1994)

Agents can perceive the changes of their environment,
which may be the physical world, a collection of other
agents, the Inter net, and other fields, and respond to make
the related decision accordingly in real time.

Agents do not only act in response to their environment,
but also exhibit goal-directed behavior by taking the initia-
tive

2 Manufacturing the Future: Concepts, Technologies & Visions

All of these properties are necessary for agents to act as autonomous, loosely
coupled and self coordinating entities in an open distributed system; which
forms a multi-agent based system (MAS). A MAS consists of a group of agents
that play individual roles in an organizational structure (Weiss 1999). The most
important characteristic of MAS is the agents’ capabilities of communication
and cooperation, which make them to interact with other agents to achieve
their individual objectives, as well as the common goals of the system
(Wooldridge and Jennings 1995). Other important characteristics of the agent-
based systems include scalability, modularity and re-configurability.

In an MAS model, every agent is a representative of a functional cell. For in-
stance, in order to agentify a complex system, it will be divided into some sub-
systems, each of which is further encapsulated into an agent. Each agent con-
quers its individual problem, and cooperates with other related agents to solve
the whole problem. In the distributed system modeling, an agent is the repre-
sentative of a distributed cell which solves its own problems and can cooperate
with other agents to fulfill a task if necessary. A comprehensive book on multi-
agent theory can be found in (Weiss 1999).

1.2 The architecture of MAS

The architectures of multi-agent based systems provide the frameworks within
which agents are designed and constructed (Shen 2002). Similar with the or-
ganization of the distributed manufacturing system, there are three types of
architecture for multi-agent based systems, which are hierarchical (A), heterar-
chical (B) and hybrid structures (C), as shown in the figure 1.

T T

L] 1 L) o LA 1
CIC I I I C H JC T H]
ODOOOO Sooee ODOOOO

Figure 1. Architecture of MAS

In the hierarchical architecture (A), the agents are connected with layered rela-
tionship and all of the control modules are organized into a hierarchical man-

Multi-Agent Based Distributed Manufacturing 3

ner. Each agent will have only one direct supervisor at its directly upper layer
and several subordinate agents at its directly lower layer. The agent executes
the commands and plans only from its supervisor agent and gathers the feed-
back information from its subordinate agents. The main advantage for this
structure is that global optimization can be achieved possibly as the complete
information and status of the system can be collected by the agent at the high-
est layer; while the main disadvantages resides in less adaptability and reli-
ability because the system may be malfunction once the central controller
agent breaks down.

Heterarchical architecture (B) is another different style compared with the pre-
vious one because there is no central controller in this kind of structure and the
relationship of the agents is peer to peer. Each of the agents is autonomous and
has its own decision-making mechanism. The cooperation work among agents
is to be realized by negotiation: the related agents will negotiate and make
tradeoff for a variety of factors. The advantage for this type architecture is its
high robustness because breakdown of one agent will not influence others and
the rest can still work. The main problem for this architecture lies in the diffi-
culty to achieve a global optimization as no single agent can collect the full in-
formation and status from others. Furthermore, another shortcoming is that
the execution efficiency is relative low in such framework because the negotia-
tion process may be inefficient and less effectiveness, especially for those tasks
need to be completed by several cooperative agents.

The third type (C) is the hybrid architecture, which can be regarded as a com-
promise of the above two kinds. The hierarchy of the system enhances its effi-
ciency and effectiveness on a global basis while achieving some advantages of
the heterarchical architecture to keep the good adaptability and autonomy. In
this architecture, the agents at the lower level are also intelligent and have
some degree of autonomy, which can be viewed as a heterarchical structure.
But the agents also have their upper layered supervisor agent, which can col-
lect the information and distribute tasks to some capable subordinate agents.
As the upper level supervisor agent can get a global view for its subordinate
agents, some global optimal decision can be achieved. At the same time, as the
lower level agents are autonomous, some decisions can be made locally and
will not impact other agents, which can improve the robustness and adaptabil-
ity of the whole system.

4 Manufacturing the Future: Concepts, Technologies & Visions

1.3 The coordination methodology for MAS

The methodology of negotiation and coordination is one of the bases for ef-
fective management and control in a distributed system. Presently, the well-
known Contract Net Protocol (CNP) (FIPA 1997; FIPA 2000(1)) is adopted as
the coordination and negotiation protocol in most of multi-agent systems.
CNP method was proposed by smith (Smith 1980; Davis and Smith 1983;
Smith 1988) and recommended by FIPA(The Foundation for Intelligent
Physical Agents)(FIPA 2000(1); FIPA 2000(2)), an international organization
that is dedicated to promoting the industry of intelligent agents by openly
developing specifications supporting interoperability among agents and
agent-based applications. A standard process for the CNP involves four basic
steps as shown in Figure 2:

Initiator Participant
annuuncementm cfp m
—_— reflise

| H deadline
Bidding . T
i _J=h-i propose !
CEEEE
Aarding .
accept kT
; failure
[mplementation
SUCCeSS

Figure 2. FIPA Contract Net Protocol (FIPA 2000(1))

e Task announ- The initiator agent broadcasts an announcement to the par-

cement: ticipant agents to call for proposal (cfp).

e Bidding: Those participants that receive the announcement and have
the appropriate capability to make the evaluation on the
task, and then reply their bids to the initiator agent.

¢ Awarding: The initiator agent awards the task to the most appropriate
agents according to the proposals they have submitted.

Multi-Agent Based Distributed Manufacturing 5

* Implementation: The awarded participant agent performs the task, and re-
ceives the benefits predefined.

Currently, the CNP method is widely used for negotiation and coordination
among agent systems, and has been proved to be effective to solve distributed
problems.

1.4 The development platform for agent-based systems

Most of the intelligent agent and multi-agent systems are working under dis-
tributed and heterogeneous environments, and C++ and Java are the two most-
adopted programming languages. At the early stage, some works were devel-
oped from scratch, which were rather difficult to deal with. Recently, useful
platforms and templates have been provided by some institutes, which can
provide some basic and necessary modules such as communication, interface
design, agent kernel template, etc. The adoption of these platforms facilitates
the development and let the designers focus on the functional modules pro-
gramming, thus to reduce the workload and difficulty of agent applications
development. Among these development platforms, JADE (F. Bellifemine,
Caire et al. 2006) and Jatlite (JATLite) are two typical and widely applied sys-
tems.

JADE (Java Agent DEvelopment Framework) is a software framework devel-
oped in Java language by TILAB (JADE 2005). It is composed of two parts, one
is the libraries (Java classes) required to develop the agent applications and
functions and the other is a run-time environment providing some necessary
services for the agents” execution. The platform can be executed in a distrib-
uted, multi-party application with peer-to-peer communication, which include
both wired and wireless environment. The platform supports execution with
cross operation system and the configuration can be controlled via a remote
GUL furthermore, the platform also supports hot exchange, moving agents
from one machine to another at run-time.

In JADE, middleware acts as the interface of low layer and applications. Each
agent is identified by a unique name and provides a set of services. The agent
can search for other agents to provide given services according to the middle-
ware if necessary. With the role of middleware, the agents can dynamically
discover other agents and to communicate with them by a peer-to-peer para-
digm. The structure of a message complies with the ACL language defined by

6 Manufacturing the Future: Concepts, Technologies & Visions

FIPA and includes fields, such as variables indicating the context a message re-
fers-to and timeout that can be waited before an answer is received, aiming at
supporting complex interactions and multiple parallel conversations (F.
Bellifemine, Caire et al. 2006). Furthermore, in order to support the implemen-
tation of complex conversations, JADE provides a set of skeletons of typical in-
teraction patterns to perform specific tasks, such as negotiations, auctions and
task delegation.

Compared with JADE, JATLite is a lighter and easier to use as a platform for
agent-based applications. As it provides only some basic and necessary func-
tions for agent applications, JATLite is more suitable for prototype develop-
ment in agent-based research work. JATLite is composed of some java pack-
ages which help to build agent-based applications with Java language. In the
package, four different layers: abstract, base, KQOML and router layer, covering
from the lowest layer with an operation system to the router function. The
package is developed according to TCP/IP protocols, which ensures the system
can be running in the Internet. In JATLite, the router acts as the key role in the
message communication among the agents.

Although the functions of JATLite may not be as powerful as those in JADE, it
is still widely used. The platform is simple and provides some reliable basic
services for the agent execution. Furthermore, it sill provides some templates
for agent execution; thus, the designers can implement their applications eas-

ily.
1.5 Application of MAS in manufacturing system integration

With manufacturing systems become distributed and decentralized in differ-
ent geographical sites, it is necessary to study the solution of specific problems
which arise in a distributed environment. As the MAS system shows the prom-
ising capability to solve distributed problems, a great amount of efforts have
been made to apply the multi-agent theory to the manufacturing system inte-
gration, aiming to study the problems of the distributed manufacturing sys-
tem. In this part, some typical agent-based manufacturing systems are intro-
duced.

MetaMorph

MetaMorph and MetaMorph II are two consecutive projects developed in the
University of Calgary (Shen, Maturana et al. 1998; Shen, Xue et al. 1998; Matu-
rana, Shen et al. 1999; Shen 2002). MetaMorph is an adaptive multi-agent

Multi-Agent Based Distributed Manufacturing 7

manufacturing system aimed to provide an agent-based approach for dynami-
cally creating and managing agent communities in distributed manufacturing
environments (Maturana, Shen et al. 1999). There are two main types of agents
in MetaMorph: resource agents and mediator agents. Resource agents are used to
represent manufacturing devices and operations, and mediator agents are
used to coordinate the interactions among agents (resource agents and also
mediator agents).

Mediator-centric federation architecture is one of the system characteristics, by
which the intelligent agents can link with mediator agents to find other agents
in the environment. The activity for mediators is interpreting messages, de-
composing tasks, and providing processing times for every new task. Addi-
tionally, mediators assume the role of system coordinators by promoting co-
operation among the intelligent agents. Both brokering and recruiting
communication are adopted to find the related agents for specific tasks. Once
appropriate agents have been found, these agents can be directly linked and
communicate directly without the aid of mediator.

The object of MetaMorph II project is to integrate the manufacturing enter-
prise's activities such as design, planning, scheduling, and simulation, execu-
tion, with those of its suppliers, customers and partners into a distributed in-
telligent open environment. In this Infrastructure, the manufacturing system is
primarily organized at the highest level through 'subsystem' mediators. Each
subsystem is connected (integrated) to the system through a special mediator.
Each subsystem itself can be an agent-based system (e.g., agent-based manu-
facturing scheduling system), or any other type of system like the feature-
based design system, knowledge-based material management system, and so
on. Agents in a subsystem may also be autonomous agents at the subsystem
level. Some of these agents may also be able to communicate directly with
other subsystems or the agents in other subsystems. Mediators are also agents,
called mediator agents. The main difference between a mediator and a facilita-
tor is that a facilitator provides the message services in general, but a mediator
assumes an additional role of system coordinators by promoting cooperation
among intelligent agents and learning from the agents” behavior.

CIIMPLEX

CIIMPLEX (Consortium for Intelligent Integrated Manufacturing Planning-
Execution) (Peng, Finin et al. 1998) was developed by UMBC and some other
institutes, which presents an agent-based framework of enterprise integration

8 Manufacturing the Future: Concepts, Technologies & Visions

for manufacturing planning and execution. The system is composed of name
server, facilitator agent and gateway agent and some executive agents. The dif-
ferent functions of the manufacturing process are encapsulated into individual
agents. In the system, a set of agents with specialized expertise can be quickly
assembled to gather the relevant information and knowledge, and to cooperate
with other agents to arrive at timely decisions to deal with various enterprise
scenarios.

Different executive agents are designed to perform special functions such as
data collection, analysis of plans and schedules, resolving the conflicts; fur-
thermore, some agents are created to integrate the function of the legacy sys-
tem. With this architecture, the raw transaction data of the low level, such as
shop floors activities, can be collected, aggregated, interpolated and extrapo-
lated by agents and made available for other interested agents. Manufacturing
planning and execution can thus be integrated through the collaboration of
these agents.

The AARIA project

The AARIA project (Autonomous Agents at Rock Island Arsenal) (Parunak,
Baker et al. 1998; Parunak, Savit et al. 1998) is an agent-based prototype system
based on the Internet-related technologies. In the system, Internet is used as
the platform, and distributed scheduling and controlling techniques are devel-
oped to realize the distributed manufacturing. All of the agents are tied by
Internet to form a virtual manufacturing environment for tasks. With the agent
technology, the resource can be redeployed easily to meet the fast changing
environment, which increases the agility of the system. Furthermore, the pro-
ductive resources can be adjusted according to the products’ requirement,
which make the system meet the customization requirements.

In the system, besides the functional decomposition, physical factors are also
considered during the resource agentificaiton process. The main agents of the
system include resource brokers, part brokers, and unit process brokers. Re-
source broker agents manage the constrained resources of the system (e.g.
people, machines, facilities, etc.). Part broker agents manage material handling
and inventory. Unit process broker agents utilize their knowledge of how to
combine resources and parts to make other parts. These three types of agents
negotiate among themselves and with the customer along the axes of possible
production including price, quality, delivery time, product features, and speed
of answers (Baker, Parunak et al. 1999).

Multi-Agent Based Distributed Manufacturing 9

DaimlerChrysler manufacturing line control system

One industrial application of agent-based manufacturing line control system is
implemented in DaimlerChrysler (Bussmann and Schild 2001; Bussmann and
Sieverding 2001), whose objective is to develop a flexible transportation and
control system. In this project, each work piece, machine and shifting table is
encapsulated into one specific agent. In the execution, the work piece agent
will auction off its coming operations to machine agents. Every machine
agent’s bid include information about its current state of buffer. Once a work
piece agent awards a machine agent, it will be the next goal of the work piece.
The routing of the work piece will be negotiated by the work piece agent with
the shifting tale agent.

The application of agent-based system shows two key advantages for product
manufacturing. One is the distributed responsiveness, as the decision making
can be much more localized. If unexpected events occur, agents have the
autonomy and proactiveness to try alternatives thus can be more responsive to
prevailing circumstances. The other advantage is that dynamical control
mechanism, which improves the agility of the system. Because the schedules
are built up dynamically through flexible interactions, they can be readily al-
tered in the event of delays or unexpected contingencies. The implementation
of the testing system has increased throughput and greater robustness to fail-
ure (Jennings and Bussmann 2003), which also shows a good prospect for the
agent-based manufacturing system.

2. Multi-Agent Based Distributed Product Design and Manufacturing
Planning

In this section, one agent-based distributed manufacturing system developed
in the National University of Singapore (NUS) (Sun 1999; Jia 2001; Wang 2001;
Jia, Fuh et al. 2002; Li 2002; Jia, Ong et al. 2004; Mahesh, Fuh et al. 2005) is pre-
sented, which studies a multi-agent based approach to integrate product de-
sign, manufacturability analysis, process planning and scheduling in a distrib-
uted manner. Under this framework, geographically dispersed entities are
allowed to work cooperatively towards overall manufacturing system goals.
The system model considers constraints and requirements from the different
product development cycles and manufacturing.

10 Manufacturing the Future: Concepts, Technologies & Visions

The system adopted a federator structure to model the various manufacturing
functional departments in a manufacturing process that includes design,
manufacturability evaluation, process planning, scheduling and shop floor
control. In the system, the different functional departments dispersed in differ-
ent geographical sites are encapsulated into agents. Facilitator architecture is
selected as the system architecture, which comprises a facilitator agent, a con-
sole agent and several service agents. The facilitator is responsible for the de-
composition and dispatch of tasks, and resolving conflicts of system execution.
The console agent acts as an interacting interface between designers and the
system. The service agent models the functional modules of different product
development phases, including Designing Agent, Manufacturing Resource
Agent, Manufacturability Evaluation Agent, Process Planning Agent, Schedul-
ing Agent, etc. Each functional agent represents a participant involved in a dif-
ferent product development and manufacturing phase. Facilitator plays the
central and control roles in the whole environment, and each participant can
know the status and requirements of other participants in real-time through it.

2.1 System framework design

In a multi-agent manufacturing environment, the isolated and distributed
functional sub-systems can be integrated by encapsulating them as interacting
agents. Each agent is specifically in charge of a particular design or manufac-
turing activity. The agents communicate and exchange information to solve
problems in a collaborative manner. The components interact dynamically,
addressing the different manufacturing planning issues collaboratively,
thereby avoiding costly manual iterations. The federated structure adopted as
the architecture ensures the openness of the system, which makes the func-
tional agents can join or leave without having to halt or to reinitialize the other
agents” work in progress. The different components can interact dynamically
in such platform, addressing the product design and manufacturing planning
issues efficiently, and the separate domains of expertise may reside at distrib-
uted sites on a network but collaborate with others on a common task, which
results in great time saving in terms of data transfer and interpretation. Some
legacy software tools can also be wrapped into Java-based agents having the
capability of interacting with others.

Multi-Agent Based Distributed Manufacturing 11

‘open’
Web Page Designer

‘generate’

Factory 1 Factory 2 Factory N
A Java Applet

Design
Agent

Internet

Manufacturing

Scheduling Agent
Resource Agent

\ /
Facilitator

Manufacturability
Evaluation Agent

Process Planning
Agent

Internet

Figure 3. System architecture

The system architecture, as depicted in figure 3, which is composed of six
components: Facilitator, Design Agent (D-Agent), Manufacturing Resource
Agent (MR-Agent), Manufacturability Evaluation Agent (ME-Agent), Process
Planning Agent (PP-Agent) and Scheduling Agent (S-Agent). The last four ser-
vice agents (encapsulated pre-existing legacy tools) and the D-Agent interact
with each other through the Facilitator.

2.2 Agent coordination and individual agents

The function of each agent during this framework is defined as follows:

(1) Facilitator:

It is responsible for the management of interactions and conflict resolution in
the agent community. Once any agent joins or leaves the system, it needs to
register with status and information to the Facilitator. Thus, the Facilitator
"knows" which agent is available, and any function each agent has. Each ex-
ecutive agent receives tasks from the facilitator, and feedbacks the results to it
after completing. The Facilitator also routes the requests information received
to appropriate agents based on its knowledge of capabilities of each agent,
which is known as content-based routing. In performing this task, the Facilita-

12 Manufacturing the Future: Concepts, Technologies & Visions

tor can go beyond a simple pattern matching by translating messages, decom-
posing problems into sub-problems, and scheduling the work on those sub-
problems.

(2) D-Agent:

It is the interface between the system and the designers, by which the design
information of product is submitted to other agents for manufacturability
analysis, process plan and scheduling generation. Once the designed parts
need further modifications, the information will be also sent back. It also ad-
vises the designer to make necessary modifications to the design.

(3) MR-Agent:

This agent manages manufacturing resource models from those different fac-
tories of the system, which contain information of available shop-floor re-
sources, including machines and tools, and the capability of these resources.
These models are stored in individual databases located at different local sites.
The agent is in charge of looking for a suitable capability for manufacturability
evaluation.

(4) ME-Agent:

This agent is responsible for the manufacturability evaluation of the product
design with the help of acquiring capability information from the MR-Agent. It
returns information about conflicts to the Facilitator, as well as suggestions for
product redesign or a suitable capability model.

(5) PP-Agent:
This agent is responsible for the generation of an optimal process plan based
on the design and selected resources.

(6) S-Agent:
This agent makes the manufacturing scheduling for parts, and feedback to the
facilitator.

In order to manage the product and manufacturing information, each agent
has a local database, which is used to store and manage messages received
from other agents. Furthermore, with the Internet, all of these individual data-
bases are integrated into a distributed database to improve the execution effi-
ciency of the system.

Multi-Agent Based Distributed Manufacturing 13

Under such framework, the manufacturing tasks are usually executed by the
cooperation of several different related agents. The takes are decomposed
tirstly into some sub-tasks and dispatched to the destination for process, which
needs the cooperation and coordination of the agents in the system. In the pro-
ject, the agents of the system make negotiations trying to find optimal trade-
offs among their local preferences and other agents' preferences and make
commitments based on the negotiation results. The task-completing process in
the system consists of the following steps:(1)A remote designer submits design
information of a product/part to the Facilitator via the D-Agent; (2)The Facili-
tator decomposes the task into mutually interrelated sub-tasks from a global
objective point of view; (3)The Facilitator dispatches the sub-tasks to appropri-
ate executive agents; (4)Executive agents complete their sub-tasks independ-
ently; (5)The Facilitator detects conflicts;(6)The Facilitator defines and refines
the shared space of interacting agents to remove conflicts; and (7)Conflict reso-
lution.

2.3 Agent definition

2.3.1 Manufacturability evaluation agent (MEA)

This agent is in charge of evaluating the manufacturability of a designed part
during the design phrase and sending the modifying information to the design
agent if necessary. The agent judges the manufacturability for one part and se-
lects the most preferable machining plan alternatives considering the part’s
dimensions, tolerances, and surface finishes, along with the availability and
capabilities of machine tools and tooling constraints. MEA is, firstly, to check
whether the design features are defined correctly; secondly to check if design
features can be machined or not based on the current available manufacturing
resources; and thirdly to find out all available manufacturing resources that
can fabricate the product.

Manufacturability Evaluation

After receiving the feature information from the Facilitator, the ME-Agent car-
ries out a manufacturability evaluation process for the design. It starts with a
local manufacturability evaluation on the model in terms of design flaws. Any
local conflict detected in the process is notified to the D-Agent by the Facilita-
tor for design modification. Upon the completion of local manufacturability

14 Manufacturing the Future: Concepts, Technologies & Visions

evaluations, the ME-Agent makes a global manufacturability evaluation on the
model by acquiring a factory model from the RC-Agent.

Facilitator
y
v
Internet
i i
Y v
Manufacturability Manufacturing
Evaluation Agent Resource Agent
i
/ v ‘\L
Resource Resource Resource
Agent 1 Agent 2 Agent n

o o ¢

Figure 4. Manufacturability evaluation modules

The RC-Agent checks the availability of various resources required to create
the part. Any global conflict is notified to the MR-Agent for it to search for a
suitable factory model as a substitute to the former. The two analysis processes
are repeatedly executed until no conflict is found on the part model and the
agent analyses four manufacturability issues as follows:

(1)Design flaws:

The design flaws refer to those features which are difficult or impossible to
machine. The ME-Agent identifies all possible flaws to avoid much higher rec-
tification cost at an advanced stage.

(2)Tool accessibility:

The ME-Agent checks the tool accessibility of each feature. A feature may be
inaccessible due to its location and orientation. For those flaws, the cutting tool
may not work correctly and need to be modified. (3)Availability of cutters: The
ME-Agent checks whether all the required cutting tools to machine the part
are available in the factory under consideration. If some machined features ex-

Multi-Agent Based Distributed Manufacturing 15

ceed the manufacturing capability of the cutting tools available, then, they will
need further revision on the design.

(4)Tolerance and surface finish requirements:
The ME-Agent also need to check the capability of machines contained in the
factory against the tolerance and surface finish requirements in the part model.

2.3.2 Resource coordination agent (RCA)

The RCA collects the manufacturing resource information from the work
shops and factories with the help of RA. As the system is open and heteroge-
neous, it is needed that the agent can support flexibility and extensibility in
dynamic manufacturing environments, which means that resource coordina-
tion, including interaction with users via the other agents, should be sensitive
to both the query context and the currently available information. The RCA
has the following functionality:

e For a manufacturing resource request, multiple instantiations of the search
node may be created;

e Task execution is data-driven;

e Parse the query, and decompose it if appropriate parsing involves getting
an ontological model;

e Construct KIF queries based on the SQL queries’ contents, and query the
Resource Agent using the KIF queries to find relevant resources.

2.3.3 Resource agent

The Resource Agent (RA) manages the data contained in manufacturing in-
formation source (e.g., distributed systems database) available to retrieve and
update. It acts as an interface between the local data source and other agents,
hiding details of the local data organization and representation. To accomplish
this task, an RA can announce and update its presence, location and the de-
scription of its contents to the RCA. There are two types of information that is
of potential interest to other agents:

1. value (ranges) of chosen data objects,

2. the set of operations allowed on the data. The operations range from a
single read/update to more complicated data analysis operations. The ad-
vertisement information can be sent to the RCA.

16 Manufacturing the Future: Concepts, Technologies & Visions

RA also needs to answer queries from other agents. It has to translate queries
expressing in a common query language (such as KQML) into a language un-
derstood by the underlying system. This translation is facilitated by a mapping
between the local data concepts and terms, as well as between the common
query language syntax, semantics and operators, and those of the native lan-
guage. Once the queries are translated, the RA sends them to the manufactur-
ing resource database for execution, and translates the answers back into the
format understood by the RCA. Additionally, RA and the underlying data
source may group certain operations requested by other agents into a local
transaction. In addition, RA provides limited transaction capabilities for global
resource transaction.

2.3.4 Process planning agent

Process planning agent is developed to generate the optimal or near-optimal
process plans for designed part based on the criterion chosen. Under the dis-
tributed environment, factories possessing various machines and tools are dis-
persed at different geographical locations, and usually different manufactur-
ing capabilities are selected to achieve the highest production efficiency. When
jobs requiring several operations are received, feasible process plans are pro-
duced by available factories according to the precedence relationships of the
operations. The final optimal or near-optimal process plan will emerge after
comparison of all the feasible process plans. In order to realize and optimize
the process plan for the distributed manufacturing systems, the Genetic Algo-
rithm (GA) methodology is adopted as an optimizing method. The GA method
is composed of four operations as following: encoding, population initializa-
tion, reproduction, and chromosome evaluation and selection.

Encoding

When dealing with a distributed manufacturing system, a chromosome not
only needs to represent the sequence of the operations but also indicate which
factory this process plan comes from. Therefore, the identity number of the fac-
tory will be placed as the first gene of each chromosome no matter how the
other genes are randomly arranged. Each other gene comprises the operation
ID and corresponding machine, tool and tool access direction (TAD), which
will be used to accomplish the operation. As a result, a process plan including

Multi-Agent Based Distributed Manufacturing 17

factory and operation information will be represented by a random combina-
tion of genes.

Population Initialization

The generation of the initial population in GA is usually done randomly; how-
ever, the initial population must consist of strings of valid sequences, satisfy-
ing all precedence relations. Once the number of initialized chromosomes is
prescribed, the procedures of initialization are given as follows:

(1) Randomly select one factory ID number from the available factory list.

(2) Randomly select one operation among those, which have no predecessors.

(3) Among the remaining operations, randomly select one which has no
predecessor or which either predecessor all have already been selected.

(4) Repeat step (3) until each operation has been selected for only once.

(5) Revisit the first selected operation.

(6) Randomly select machines and tools from the selected factory that can be
used for performing the operation.

(7) Randomly select one amongst all possible TADs for the operation.

(8) Repeat steps (6) and (7), until each operation has been assigned a machine,
tool and TAD.

(9) Repeat steps (1) to (8) until the number of prescribed chromosome is
reached.

Reproduction

A genetic search starts with a randomly generated initial population; further
generations are created by applying GA operators. This eventually leads to a
generation of high performing individuals. There are usually three operators
in a typical genetic algorithm, namely crossover operator, mutation operator
and inversion operator. In the proposed GA, mutation and crossover operators
are used for gene recombination, which is also called offspring generation.

Crossover

In this step, a crossover operator is adopted to ensure the local precedence of
operations is met and a feasible offspring is generated. The procedure of the
crossover operation is described as follows:

(1) Randomly choose two chromosomes as parent chromosomes.

18 Manufacturing the Future: Concepts, Technologies & Visions

(2) Based on the chromosome length, two crossover points are randomly gen
erated to select a segment in one parent. Each string is then divided into
three parts, the left side, the middle segment and the right side according to
the cutting points.

(3) Copy the left side and right side of parent 1 to form the left side and right
side of child 1. According to the order of operations in parent 2, the opera
tor constructs the middle segment of child 1 with operations of parent 2,
whose IDs are the same as operations of the middle segment in parent 1.

(4) The role of these parents will then be exchanged in order to generate an
other offspring child 2.

(5) Re-assign machines and tools to the operations in the middle segment to
legalize the offspring chromosomes according to the factory id.

Mutation

Mutation operator is used to investigate some of the unvisited points in the
search space and also to avoid pre-mature convergence of the entire feasible
space caused by some super chromosomes. A typical GA mutation makes
changes by simply exchanging the positions of some randomly selected genes.
However, for the distributed manufacturing system, mutation once is not
enough to explore all the feasible operation sequences, as well as compare the
different selected factory combination. In the proposed GA process, mutation
happens to the chromosomes twice, one is for selected factory (mutation 1) and
the other is for the operations (mutation 2).

The procedure of mutation 1 is described as follows:

(1) Randomly select a factory ID from the factory ID list, which is different
from the current one.

(2) In order to legalize the chromosome, machines and tools will be re- as
signed for all the operations according to the new factory-id.

The procedure of mutation 2 is depicted as follows:
(1) Randomly choose a chromosome.
(2) Choose several pairs of genes stochastically and permute their positions.

Chromosome Evaluation
When all the individuals (process plans) in the population have been deter-
mined to be feasible, i.e. an operation precedence is guaranteed, they can be

Multi-Agent Based Distributed Manufacturing 19

evaluated based on the objective functions. The objective of the CAPP problem
is to obtain an optimal operation sequence that results in optimizing resources
and minimizing production costs as well as processing time. In this research,
two optimization criteria, i.e. minimum processing times and minimum pro-
duction cost, are employed to calculate the fitness of each process plan and
measure the efficiency of a manufacturing system. After the completion of the
manufacturability evaluation, the PP-Agent generates an optimal process plan
for the factory supplied by the ME-Agent. The agent first constructs the solu-
tion space by identifying all the possible operation-methods (OpM's) for ma-
chining each feature and then uses a GA to search for the best plan according
to a specific criterion. The criterion can be constructed by using the following
cost factors:

Machine cost (MC)

MC =Y mcr, (1)

i=1

where 7 is the total number of OpM's and MClI: is the machine cost index for
using machine-i, a constant for a particular machine.

Tool cost (TC)

rc=¥1CI)

i=1

where TCl: is the tool cost index for using tool-i, a constant for a particular tool.

Machine change cost (MCC): a machine change is needed when two adjacent
operations are performed on different machines.

n—1
MCC = MCCIx Y Q(M,,, —M,) 3)

where MCCI is the machine change cost index, a constant and Mi is the ID of
the machine used for operation i.

Setup change cost (SCC): a setup change is needed when two adjacent OpM's
performed on the same machine have different Tool Approaching Directions
(TADs).

20 Manufacturing the Future: Concepts, Technologies & Visions

SCC = SCCIxni((l—Q(MM —M,))XQUTAD,,, —TAD))) (4)

i=1

where SCCI is the setup change cost index, a constant.

Tool change cost (TCC): a tool change is needed when two adjacent OpM's per-
formed on the same machine use different tools.

TCC=TCCIX S (1-QM,, - M)XQT,, ~T)) 5)

i=1

where TCCI is the tool change cost index, a constant.

2.3.5 Scheduling agent

In a distributed manufacturing environment, every factory has its particular
niche areas and can outperform other factories in those specific aspects; there-
fore, one batch of products are to be finished by the most suitable factory com-
bination with the considerations of low cost and short make span. To meet
such requirement, each available candidate factory will submit a feasible proc-
ess plan for a product in the batch it is capable of processing. The agent then
compares all the candidate factories, selects the final factory combination for
the products, and meanwhile arranges the manufacturing operations in an op-
timal sequence. In brief, to generate an optimal schedule in a distributed
manufacturing environment, there are two determining factors: the selected
factory (or process plan) for every product and operations’ sequencing of the
machines in the factories. Here, GA is also used as the optimization method to
achieve better scheduling results.

The scheduling agent is mainly composed of four major components: the
scheduling kernel including the GA engine, the stand-alone scheduling mod-
ule, scheduling agent module, and the e-scheduling module. Among these
four parts, the scheduling kernel can be categorized as the basic component,
while the stand-alone module, scheduling agent module and e-scheduling
module can be categorized as the application components. The basic compo-
nent could be combined with any of the three application components to form
a scheduling entity, which can carry out the scheduling tasks solely based on a
specified scheduling objective.

Multi-Agent Based Distributed Manufacturing 21

(Scheduling Agent Modulg

Main Scheduling Agent

; Agent Shel 1 (JATLite Interface) '

GA Engme <-‘='3 Databas
Interface Shell
T e e (Scheduling Keme)

Internet Shell (Java Applet'
Web Page (B2B) '

Intemet = 3 Logon

Scheduling

Stand-alone Software
Shell

Use Software locally

E scheduling Modulg (Standalone Scheduling Modulg

.....

Figure 5. Scheduling agent

Integrating with the scheduling kernel, each of the three application modules
has a particular working mode.

The scheduling agent module includes one main scheduling agent (MSA) and
many distributed sub-scheduling agents (SSAs). The scheduling agent struc-
ture consists of not only the parallel sub-scheduling agents (5SAs) but also a
main scheduling agent (MSA). Such a structure can effectively facilitate the in-
formation communication among the different production participants within
the distributed scheduling system. The MSA, used by the production man-
agement department, is responsible for regulating the job production opera-
tions, collecting the factories’ information from the SSAs and then, making
scheduling through the scheduling kernel. After the scheduling, the details
about which job is manufactured in which factory in what time and what ma-
chine is responsible for what operation can be obtained and sent to each SSA.
To finish the job production cooperatively, the SSAs are distributed in the

22 Manufacturing the Future: Concepts, Technologies & Visions

manufacturing factories, each representing a factory, collecting the factory’s
working status, detecting its dispatched jobs, and checking the manufacturing
progress. In addition, if any contingency happens in any factory, the SSA will
send the accident information to the MSA, wait and execute the re-arranged
schedule made by MSA.

Genetic Algorithm for distributed Scheduling

Chromosome representation

To handle the distributed scheduling problems, the genes in the GA must
comprise the two dominant factors in the distributed manufacturing environ-
ment, i.e., the selected factory for every job with the corresponding process
plan and the operation processing sequence. Here, a four-element string is
used as a gene to represent an operation of a job. The first element is the iden-
tification number of the selected factory that is used to process the job, and the
next three elements represent the ID of a job. Thus, a schedule can be repre-
sented by a combination of genes, which is called “chromosome” in the GA
terminology, as long as the combination comprises all the operations of the
jobs. Every operation processing sequence can be interpreted according to its
occurrence order in the chromosome. As such, for any distributed scheduling
problem, a random feasible schedule, including which job goes to which fac-
tory and what is the operation processing sequence, can be encoded using a
combination of genes.

Chromosome population initialization

To begin the search for the best chromosome and correspondingly, the factory
combination and the optimal schedule the chromosome represents, a number
of chromosomes are initialized as follows:

(1) Create the lists of ID number of the feasible factories for every job. If job
‘j03” can be processed in factories ‘1, ‘3" and ‘%, then the list for job ‘j03’
will be 1, 3, and 5.

(2) For every job, randomly select a factory ID number from the job’s feasible
factory list.

(3) According to the job’s process plan in the selected factory, produce the
job’s operation genes. For example: the genes, 1j03-1j03-1j03, mean the first,
second and third (last) operation of job ‘j03’. All the operations will be
manufactured in factory ‘1’.

(4) Repeat step (2) and step (3), until there is no job left.

Multi-Agent Based Distributed Manufacturing 23

(5) Combine and mix all the produced genes together in a stochastic way to
form a chromosome.

(6) Repeat step (5), until a prescribed number of chromosome populations is
formed.

Genetic operators

The power and potential of GA method come from the gene recombination,
including crossover, mutation and inversion, which explore all the possible
search space. In this proposed GA, two genetic operators, crossover and muta-
tion, are employed for the gene recombination, which is called offspring gen-
eration. The procedures for the crossover operation are described as follows:

(1) Choose two chromosomes as parents and exchange a random partial string
(genes) in the two parents to generate two offspring chromosomes.

(2) Regulate (delete or compensate) genes in each offspring chromosome so
that it comprises the operations of all the jobs and inherits the genetic traits
of their parents.

Because the sequence of the genes in the chromosome expresses the jobs” op-
eration processing sequence, after the crossover, the processing sequence for
every operation (gene) in the schedule (chromosome) is changed. It is impor-
tant to note that the precedence of a job’s operations will not be affected by the
crossover because every gene (operation) of a job in the chromosome is not
tixed to a specific operation of the job and it is interpreted according to the or-
der of occurrence in the sequence for a given chromosome.

The crossover is carried out under the assumption that a factory has been se-
lected for every job. Yet, in the distributed manufacturing environment, the
randomly selected factory is, by and large, not necessarily the most suitable
one for the specific job. Therefore, another genetic operator, gene mutation, is
employed twice for modifying the operation processing sequence again as well
as changing the selected candidate factory for the jobs. The mutation proce-
dures are as follows:

(1) In a chromosome, choose several pairs of genes stochastically and permute
their positions (Mutation1).

(2) Select one gene (job) from the chromosome in a random manner. In the
meantime, randomly select a factory ID number from the job’s feasible fac

24 Manufacturing the Future: Concepts, Technologies & Visions

tory list, which has been created in step (1) of chromosome population ini
tialization.

(3) In the selected chromosome, replace the first element (represents the ID of
the selected factories) of all the genes (the gene selected in step 2) with the
newly selected factory ID number (Mutation2). The aim of the step is to
change the factory selection used to manufacture the job.

(4) To keep the consistency of the chromosomes, apply the same change of fac
tory selection for the gene (job) to all the other chromosomes in their gen
eration.

In step (1), the first mutation changes the jobs’ operation sequences, while
from step (2) to step (4), the second mutation changes the factory ID, which is
used for a randomly selected job.

After gene crossover and mutation, the parent chromosomes can produce a
generation of offspring. In the same way, the offspring could reproduce the
next generation of offspring. Thus, through this iteration, numerous chromo-
somes are produced and can be compared. Correspondingly during this proc-
ess, many possible factory combinations and job operation processing se-
quences are formed and analyzed. The application of such gene crossover and
mutation in this GA ensures each product (job) to be manufactured in its most
suitable factory. In addition, the production schedule of each of the factories in
the distributed environment can be generated concurrently.

3. Prototype Implementation

In order to verify the effectiveness of the system, a prototype of the proposed
system has been developed for the integration of design, manufacturability
analysis, and process planning. The developed system includes a unique facili-
tator, and several functional agents, which are organized according to the
framework of Figure 3. JATLite is selected as the template for the agents’ de-
velopment.

Each agent is composed of the following components: network interface, local
knowledge model and domain knowledge model. All the agents in the system
use the common communication protocol, KQML, for concurrent negotiations.
KQML is conceived as both a message format and a message-handling proto-
col to support run-time knowledge sharing among agents. It is essentially a
wrapper to encode context sensitive information. The KQML language is di-

Multi-Agent Based Distributed Manufacturing

25

vided into three layers: the content layer, the message layer, and the communi-

cation layer, as shown in figure 6.

External interaction with other agents

Network Interface

Communication Interface

Requests

1
Y\

Message
Buffer

J =

Task
Manager

i

nts

Commitme | |

Local Knowledge

Classes,
Addresses,
Language,
—r Ontologies, and
Strategies ...

I

Domain
Knowledge

Expertise,

|
q_l

Figure 6. Internal structure of an agent

Solutions

Skills ...

In the system, agents are autonomous cognitive entities, with deductive, stor-

age and communication capabilities. Autonomy in this case means that an

agent can function independently from any other agent. There are three kinds

of functional agent in the system. Each has different internal structure, and can
be decomposed into the following components:

(1) A network interface: It couples the agent to the network.
(2) A communication interface: It is composed of several methods or functions

for communicating with other agents.
(3) A local function module: Resources in this model include Java classes to

perform the desired functions, other agent names, messaging types in
KQML syntax. The functional module also provides the facility of inference
and collaboration facilities. The collaboration facilities are the general plans
for coordination behaviour that balances the agent's local interests with

global (community) interests.
(4) Agent Knowledge base: The model comprises expertise that is required for
an agent to perform functional tasks, and skills that may be methods for ac

tivating actions corresponding to the received requests.

26 Manufacturing the Future: Concepts, Technologies & Visions

A snap shot on the prototype system (PPA and MSA) is shown in figure 7 be-
low.

Process Planning Agent Scheduling Agent---MPE/NUS @ Fasilitatar scheduling Jun 25 01873 1155 AM

conpose | Regster | FTP | Process Pranning | A7 Reauest | compose | egser | F1P | Scheduing |

Manufacturing information is listed as below: The Process Plan has been read and listed as below:
o1 IHORZONTAL_MILL o ACHNEICLEMENT m_aam] P Production schedule
01

Toul|DIT ool Typs| Location] ¢ IS
07 |SIDE_MILLICLEMENTI| norishap]
08|IDE_MILLICLEMENTI| 07 2 jobshop0s

Boss, milling, ~
300,30,

hachinelD[Machine Type|Lacation|
01IHORIZONTAL_MILLING_MACHINEICLEMENTI|

ToallD|T ool Type| Lo cation] Process

o ehop_para]

07|SI0E_MILLICLEMENTI] 1 .

oeisioe_miucemenny planning

MachinelD|Machine Type|Location|

AL_MILLING_MACHINE|C ac v -
| Start scrm | Information | B
Viswing Results \ S | o Aot | Show | Delete | out
ENE —
i \‘ —P Machining processes

I|JavaApp\el Windon

Figure 7. Optimal process plans and production schedules generated
from the PPA and MSA respectively

4. Conclusion and Future Work

Agent theory was developed from the distributed artificial intelligence around
20 years before. As its nature and characteristic are suitable for distribute prob-
lems solving, agent theory has been viewed as a promising theory and meth-
odology applied to a distributed environment. It has now achieved some
promising results in industrial applications. The rapid development of Internet
has also provided a good tool and suitable platform for agent’s application.
With the use of Internet and advancement of communication methods, agents
can be dispersed in different geographical places, which make it easy for col-
laboration of different partners in a manufacturing supply chain.

Except the description to some basic theories and key issues in agent-based
systems and the introduction to some typical manufacturing systems, this
chapter also introduces one agent-based distributed manufacturing system
developed in NUS. The objective of this research is to develop a distributed

Multi-Agent Based Distributed Manufacturing 27

collaborative design environment for supporting cooperation among existing
engineering tools organized as independent agents on different platforms. A
facilitator multi-agent system architecture is discussed for distributed collabo-
rative product design and manufacturing planning, and one prototype for col-
laborative design and planning on machining processes, which has been de-
veloped as a proof-of-concept system, demonstrates the capability of such a
multi-agent approach to integrate design, manufacturability evaluation, proc-
ess planning and scheduling efficiently. This approach could be extended to
include other product life cycle considerations, collaboratively, at the design
stage. Some of the advantage of the system over the traditional mode can be
achieved in several facets as follows:

1) Distributed function execution improves the efficiency and the reliability of
the system, thus to increase the responsiveness of the enterprise to the
market requirements. In the system, the major functional tasks are distrib
uted, and each one agent needs to focus on one task execution, which can
improve the efficiency of the process. Furthermore, as the functions are
executed dispersedly, once some functional agent malfunction, the rest can
still work, which also improves the reliability of the whole system.

2) Open architecture to make the system good adaptability and easy exten
sion. As the system adopts a facilitator structure, the newly added agent
can execute the system tasks if only registering with the facilitator; at the
same time the functional agent can leave the system only need to inform
the facilitator and not influence other’s progress. Moreover, the newly
functional agents can be also integrated into the system without interfering
other agents’ function. All of these can make the system good adaptability
and easy extension, thus to improve the agility of the system.

3) The agent-based system provides a platform to realize the concurrent func
tion in the product development. The different departments from design
through manufacture to customer service can join together for one product
design, thus to improve the quality and efficiency of the final product de
velopment.

Although some promising results have been achieved in the prototype and
previous research work on the agent theory, there are still difficulties to be

28 Manufacturing the Future: Concepts, Technologies & Visions

overcome for its wider application in industry. Some of the challenges faced

include:

1) Effective coordination and negotiation methods for MAS. Coordination
and negation methods are the basis and key issues for intelligent agent sys
tems. It has been under study for a long time and a variety of methods have
been proposed, but one effective and efficient method for the agent-based
system is still needed.

2) Methods to incorporate and agentify the legacy manufacturing systems
and tools. Now, there are various computer-aided software systems ap
plied in manufacturing system and industrial scenario, but there is still no
successful methodology to agentify these legacy modules in the agent sys
tems. This is one bottleneck that impedes a wider development of agent-
based methods for industrial applications.

3). Agent theory provides a decentralized solution for complex systems, de
composing and conquering make the agents easy to deal with sub-tasks.
But one problem emerges is that the local optimization can not result in a
global optimal result for the whole system. How to achieve a global opti
mal solution in the agent-based system still needs a further study.

5. References

Baker, A. D., H. V. D. Parunak, et al. (1999). Internet-based Manufacturing: A
Perspective from the AARIA Project, Enterprise Action Group.

Bussmann, S. and K. Schild (2001). An agent-based approach to the control of
flexible production systems. ETFA 2001. The 8th International Conference
on Emerging Technologies and Factory Automation. Proceedings, 15-18 Oct.
2001, Antibes-Juan les Pins, France, IEEE.

Bussmann, S. and]. Sieverding (2001). Holonic control of an engine assembly
plant: an industrial evaluation. Proceedings of IEEE International Confer-
ence on Systems, Man & Cybernetics, 7-10 Oct. 2001, Tucson, AZ,
USA, IEEE.

Castelfranchi, C. (1995). Guarantees for autonomy in cognitive agent architec-
ture. Proceedings of the workshop on agent theories, architectures, and lan-
guages on Intelligent agents, Amsterdam, the Netherlands, Springer-
Verlag New York, Inc.

Multi-Agent Based Distributed Manufacturing 29

Davis, R. and R. G. Smith (1983). "Negotiation as a metaphor for distributed
problem solving." Artificial Intelligence 20(1): 63-109.

E. Bellifemine, G. Caire, et al. (2006). JADE: A White Paper.

FIPA (1997). FIPA 97 Part 2 Version 2.0: Agent Communication Language Specifi-
cation, FIPA.

FIPA (2000(1)). FIPA Interaction Protocol Library Specification, FIPA.

FIPA (2000(2)). FIPA ACL Message Structure Specification, FIPA.

Gensereth, M. R. and S. P. Ketchpel (1994). "Software Agents." Communications
of the ACM Vol. 37(No. 7): 48-53.

JADE (2005). JADE:Java Agent DEvelopment Framework, http://jade.tilab. com/.

JATLite http://java.stanford.edu/ .

Jennings, N. R. and S. Bussmann (2003). "Agent-based control systems: Why
are they suited to engineering complex systems?" IEEE Control Systems
Magazine 23(3): 61-73.

Jennings, N. R. and M. Wooldridge (1998). Applications of intelligent agents,
Springer-Verlag New York, Inc.

Jia, H. Z.,2001, Internet-based multi-functional scheduling for distributed manufac-
turing systems, M. Eng Thesis ,National University of Singa-
pore,Singapore.

Jia, H. Z,, J. Y. H. Fuh, et al. (2002). "Web-based Multi-functional Scheduling
System for a Distributed Manufacturing Environment." Concurrent En-
gineering 10(1): 27-39.

Jia, H. Z,, S. K. Ong, et al. (2004). "An adaptive and upgradable agent-based
system for coordinated product development and manufacture.” Robot-
ics and Computer-Integrated Manufacturing 20(2): 79-90.

Li, L.,2002, Agent-based computer-aided process planning for distributed
manufacturing systems., M. Eng Thesis, National University of Singa-
pore,Singapore.

Mahesh, M.,].Y.H.Fuh, et al. (2005). "Towards A Generic Distributed and Col-
laborative Digital Manufacturing", Proceedings of the International Manu-
facturing Leaders Forum on Global Competitive Manufacturing, Adelaide,
Australia.

Maturana, F., W. Shen, et al. (1999). "MetaMorph: an adaptive agent-based ar-
chitecture for intelligent manufacturing." International Journal of Produc-
tion Research 37(10): 2159-73.

Parunak, H. V. D., A. D. Baker, et al. (1998). "The AARIA Agent Architecture:
from Manufacturing Requirements to Agent-Based System Design".

30 Manufacturing the Future: Concepts, Technologies & Visions

WorkshopProc. on Agent-Based Manufacturing, ICAA'98, Minneapolis,
MN.

Parunak, H. V. D., R. Savit, et al. (1998). Agent-Based Modeling vs. Equation-
Based Modeling: A Case Study and Users' Guide. Proceedings of the First
International Workshop on Multi-Agent Systems and Agent-Based Simula-
tion, Springer-Verlag, London, UK.

Peng, Y., T. Finin, et al. (1998). "A Multi-Agent System for Enterprise Integra-
tion." International Journal of Agile Manufacturing, vol. 1(No. 2): 201-212.

Shen, W. (2002). "Distributed manufacturing scheduling using intelligent
agents." Intelligent Systems, IEEE [see also IEEE Intelligent Systems and
Their Applications] 17(1): 88-94.

Shen, W., F. Maturana, et al. (1998). Learning in Agent-Based Manufacturing
Systems. Proceedings of Al & Manufacturing Research Planning Workshop,
IAlbuquerque, NM, The AAAI Press,.

Shen, W., D. Xue, et al. (1998). An Agent-Based Manufacturing Enterprise In-
frastructure for Distributed Integrated Intelligent Manufacturing Sys-
tems. Proceedings of the 3rd International Conference on the Practical Appli-
cations of Agents and Multi-Agent Systems, London, UK.

Smith, R. G. (1980). "The contract net protocol: high level communication and
control in a distributed problem solver." IEEE Transactions on Computers
C-29(12): 1104-1113.

Smith, R. G. (1988). The contract net protocol: high-level communication and
control in a distributed problem solver Distributed Artificial Intelligence
Morgan Kaufmann Publishers Inc.: 357-366

Sun, J.,1999, Agent-based product design and planning for distributed concur-
rent engineering, M. Eng Thesis, National University of Singa-
pore,Singapore.

Wang, G.,2001, Agent-based manufactuirng service system, M. Eng. Thesis, Na-
tional University of Singapore.

Weiss, G. (1999). Muliagent Systems: A Modern Approach to Distributed Artificial
Intelligence. Cambridge, Massachusetts, The MIT Press.

Wooldridge, M. and N. R. Jennings (1995). "Intelligent Agents: Theories and
Practices." Knowledge Engineering Review: 115-152.

2

The Cobasa Architecture as an
Answer to Shop Floor Agility

Jose Barata

1. Introduction

Shop floor agility is a central problem in current manufacturing companies. In-
ternal and external constraints, such as growing number of product variants
and volatile markets, are changing the way these companies operate by requir-
ing continuous adaptations or reconfigurations of their shop floors. This need
for continuous shop floor changes is so important that finding a solution to
this problem would offer a competitive advantage to contemporary manufac-
turing companies.

The central issue is, therefore, which techniques, methods, and tools are ap-
propriate to address shop floors whose life cycles are no more static but show
high level of dynamics. In other words, how to make the process of changing
and adapting the shop floor fast, cost effective, and easy. The long history of
industrial systems automation shows that the problem of developing and
maintaining agile shop floors cannot be solved without an integrated view,
which accommodate the different perspectives and actors involved in the vari-
ous phases of the life cycle of these systems. Moreover, supporting methods
and tools should be designed and developed to accommodate the continuous
evolution of the manufacturing systems along their life cycle phases — a prob-
lem of shop floor reengineering. The design and development of a methodol-
ogy to address shop floor reengineering is thus an important research issue
aiming to improve shop floor agility, and, therefore, increasing the global
competitiveness of contemporary manufacturing companies.

Agility is a fundamental requirement for modern manufacturing companies in
order to face challenges provoked by the globalisation, changes on environ-
ment and working conditions regulations, improved standards for quality, fast
technological mutation, and changes of the production paradigms. The turbu-
lent and continuous market changes have impacts at different levels, from
company management to shop floor. Only companies that exhibit highly

31

32 Manufacturing the Future: Concepts, Technologies & Visions

adaptable structures and processes can cope with such harsh environments.
Furthermore, the capability to rapidly change the shop floor infrastructure is a
fundamental condition to allow participation of manufacturing enterprises in
dynamic cooperative networks. Networked enterprise associations, such as
virtual enterprises, advanced supply chains, etc. are examples of cooperative
structures created to cope with the mentioned aspects. Manufacturing compa-
nies wishing to join these networked structures need to be highly adaptable in
order to cope with the requirements imposed by very dynamic and unpredict-
able changes. In such scenarios, agility means more than being flexible or lean.
Flexibility in this context means that a company can easily adapt itself to pro-
duce a range of products (mostly predetermined), while lean essentially means
producing without waste. On the other hand, agility corresponds to operating
efficiently but in a competitive environment dominated by change and uncer-
tainty (Goldman et al. 1995), which means adaptation to conditions that are
not determined or foreseen a-priori. The participation in dynamic (and tempo-
rary) organisations requires agile adaptation of the enterprise to each new
business scenario, namely in terms of its manufacturing capabilities, processes,
capacities, etc.

It is worth noting that the need of methods and tools to manage the process of
change was first felt at the company’s higher management levels. This is not
surprising because the external business conditions are initially felt at manage-
rial levels. Therefore, in past research the processes of change (reengineer-
ing/adaptation) have been addressed mostly at the level of business process
reengineering and information technology infrastructures. Little attention,
however, has been devoted to the changes needed at the manufacturing sys-
tem level and, yet, the shop floor suffers a continuous evolution along its life
cycle and it is subject to ever increasing demands on its flexibility. In fact, de-
spite the efforts put in the creation of agile organisational structures, little at-
tention has been devoted to the agility of the shop floor, even if many research
works have been focused on flexible assembly and flexible manufacturing sys-
tems (Gullander 1999; Onori 1996; Vos 2001; Zwegers 1998). There are some
research works (Huff and Edwards 1999; Koren et al. 1999; Mehrabi et al.
2000), in which shop floor agility is achieved by focusing on the reconfigurabil-
ity of the individual equipment rather than considering a global agility ap-
proach. Nevertheless the situation is that a non-agile shop floor seriously lim-
its the global agility of a manufacturing company even if its higher levels are
agile. A good indication of how great the demand for agile shops-floors is
within manufacturing companies is the increasing number of shop floor altera-

The Cobasa Architecture as an Answer to Shop Floor Agility 33

tion projects (Barata and Camarinha-Matos 2000). As long as people in the
shop floor are faced with the need to often change (adapt) their production
systems, the need to have methods and tools to cope with such challenge in-
creases significantly.

A particularly critical element in a shop floor reengineering process is the con-

trol system. Current control/supervision systems are not agile because any
shop floor change requires programming modifications, which imply the need
for qualified programmers, usually not available in manufacturing SMEs. To
worsen the situation, the changes (even small changes) might affect the global
system architecture, which inevitably increases the programming effort and
the potential for side-effect errors. It is therefore vital to develop approaches,
and new methods and tools that eliminate or reduce these problems, making
the process of change (re-engineering) faster and easier, focusing on configura-
tion instead of codification. Hence this chapter is focused on the reengineering
aspects required by the control/supervision architecture, which covers an im-
portant part of any global life cycle support methodology.

The proposed architecture to improve shop floor reengineering (CoBASA)
aims at accommodating the following requirements:

e Modularity. Manufacturing systems should be created as compositions of
modularised manufacturing components, which become basic building
blocks. The building blocks should be developed on the basis of the proces-
ses they are to cater for.

e Configuration rather than programming. The addition or removal of any
manufacturing component (basic building block) should be done smoothly,
without or with minimal programming effort. The system composition and
its behaviour are established by configuring the relationships among modu-
les, using contractual mechanisms.

e High reusability. The building blocks should be reused for as long as pos-
sible, and easily updated for further reuse.

o Legacy systems migration. Legacy and heterogeneous controllers should be
considered in the global architectures and a process should be found out to
integrate them in the new agile architecture.

Reducing the programming effort that is usually required whenever any

changes or adaptations take place in the shop floor becomes one of the most
important requirements for the proposed architecture. The main question be-
ing addressed in this chapter and which the CoBASA architecture intends to
answer is highlighted below:

34 Manufacturing the Future: Concepts, Technologies & Visions

uestion

Which methods and tools should be developed to make currentmanufactur-
ing control/supervision systems reusable and swiftly modifiable?

The hypothesis formulated as a basis for CoBASA to address the previous
question is defined below:

Hypothesis

Shop floor control/supervision reengineering agility can be achieved if
manufacturing systems are abstracted as compositions of modularised
manufacturing components (modular approach) that can be reused when-
ever necessary, and, whose interactions are specified using configuration

rather than reprogramming.

The approach followed to tackle the problem raised in the question was the
following;:

Approach
0 The life cycle of shop floor manufacturing systems should explicitly in-

clude a new phase: the reengineering phase that captures the time frame
in which the systems are being changed or adapted (reengineered).

0 Multiagent based systems are a good modelling and implementation
paradigm because of their adequacy to create cooperative environments
of heterogeneous entities.

0 Manufacturing components are agentified (transformed from physical
manufacturing components into agents) to become modules that can be
used and reused to compose complex systems.

0 The different types of manufacturing systems are represented by coali-
tions or consortia of agentified manufacturing components, which are es-
sentially societies of self-interested and heterogeneous agents whose be-
haviour is governed by contracts.

0 Contract negotiation is the configuration basis required whenever a con-
trol/supervision system needs to be changed or adapted.

The proposed architecture Coalition Based Approach for Shopfloor Agility —
CoBASA to answer the question raised above is a multiagent based architec-
ture that supports the reengineering process of shop floor control/supervision
architectures. In an innovative way, CoBASA uses contracts to govern the rela-
tionships between coalition members (manufacturing agents) and postulates a

The Cobasa Architecture as an Answer to Shop Floor Agility 35

new methodological approach in which the reengineering process is included
within the life cycle. Since the CoOBASA approach is based on the concept of
manufacturing modules that might be reused, it requires the manufacturing
community to structure and classify the process involved, thus leading to a
more systematic or structured methodological approach.

Therefore the COBASA concept considers modularity and plugability as one of
its most important foundations principles. The control system architecture be-
ing proposed considers that each basic components are modules of manufac-
turing components that can be reused and plugged or unplugged with re-
duced programming effort, supporting in this way the plug & produce
metaphor.

CoBASA assumes that there is a similarity between the proposed reengineer-
ing process and the formation of consortia regulated by contracts in networked
enterprise organisations. The problems a company faces in order to join a con-
sortium are analogous to the shop floor adaptation problem. In other words,
the formation of a coalition of enterprises to respond to a business opportunity
is analogous to the organisation of a set of manufacturing resources in order to
perform a given job. The proposed approach is therefore to use the mecha-
nisms and principles developed to support the enterprise integration into dy-
namic enterprise networks as inspiration for an agile shop floor reengineering
process.

2. CoBASA Basic foundations

Human organisations are a good source of inspiration for complex problem
solving because they are intrinsically complex and humans are used to creat-
ing highly dynamic complex structures to cope with complex problems. The
approach followed in the design of COBASA assumes that there are similarities
between the reengineering process and the formation of consortia regulated by
contracts in networked organisations. The challenges a company faces to be
agile are similar to the shop floor adaptation problem. Furthermore, the prob-
lems a company faces in order to join a consortium have some similarity to the
adaptation of a manufacturing component (resource) on a shop floor.

Individual companies have a basic set of core competencies or skills. To be able
to create/produce complex services or products, when working alone, compa-
nies must have a wide range of skills. It is assumed that a service/product is
created/produced by the application of a set of skills. However, due to the in-

36 Manufacturing the Future: Concepts, Technologies & Visions

creasing level of worldwide competition, companies need to focus only on
those skills they are best at. The drawback of this decision lies on a lesser ca-
pability to create/produce complex services/products by themselves. The solu-
tion to survival is cooperating with other companies. Consequently, one or
several cooperating partners are called upon to bring the missing skills and re-
sources required to create/produce a complex service/product. At the same
time, making cooperation work is not an easy task especially when played by
partners that do not have previous knowledge of each other. Some kind of
trust is almost mandatory for a successful cooperation.

Accordingly, cooperation can be promoted by a structure called cluster or a
VE breading environment, already identified in chapter 3. This long-term ag-
gregation of companies with similar interests or affinities, willing to cooperate,
increases the trust level and can better accommodate business disturbances.
The potential of skills resulting from the whole cluster is bigger than the sum
of the skills that were brought in by each individual company because new
skills can be composed of the basic ones. This is an interesting characteristic
that renders clusters even more attractive, because the whole community be-
ing cooperative, enables much more potential to create/produce things. Al-
though the cluster might have a potentially large set of skills, nothing is cre-
ated/produced by the cluster, which simply possesses a potential for doing
things. The cooperating structure that companies use to create/produce things
is the consortium. A cooperative consortium or Virtual Enterprise is a group of
companies that cooperate to reach a common objective. The formation of a
consortium is generally triggered by a business opportunity. Different consor-
tia can be formed with subsets of the cluster members. The capabilities of a
consortium depend not on the global skills (potential) of each member but on
the specific skills they agree to bring into the consortium. This means that the
consortium global capabilities might be either larger (because of skill composi-
tion in which new skills can be formed from the basic ones) or smaller than the
sum of the individual capabilities of its members.

Contracts are the mechanism that regulates the behavioural relationships
among consortium members or between consortium members and the “exter-
nal” client that generated the business opportunity. The same entity con-
strained by different contracts can have different behaviours. If, for some rea-
son, a company participating in a consortium reduces or increases its core
competencies, this change might have an impact on higher-level consortia,
which can see their capabilities (skills and capacities) maintained, reduced or

The Cobasa Architecture as an Answer to Shop Floor Agility 37

increased. This situation obviously implies a renegotiation of the established
contracts.

Similarly, in the manufacturing shop floor the manufacturing components,
which are controlled by a diversity of controllers and correspond to companies
in the Virtual Enterprise world, are the basic set from which everything is built
up. A shop floor can be seen as a micro-society, made up of manufacturing
components. The components have basic core capabilities or core competen-
cies (skills) and, through cooperation, can build new capabilities. A robot, for
instance, is capable of moving its tool centre point (TCP) and setting different
values for speed and acceleration. Its core competencies are represented in
Figure 1. A gripper tool, on the other hand, has as basic skills the capability to
close (grasp) or open (ungrasp) its jaws. These two components when acting

Set_Speed()

alone can only perform their core skills.
| 3\ Open()
i Close()
In() |

Out() Tool —

: Move_ptp()
EAE oY Move_ref()
' Set_Acc()

Robot

Available_pos()
Store()
Unload()

Tool Warehouse

Figure 1. Example of basic manufacturing components and core competencies

However, when they cooperate, it is possible to have a pick-and-place opera-
tion that is a composition of the move with the open and close skills. The
greater the diversity and complexity of individual capabilities, the greater are
the chances of building more complex capabilities. In the architecture being
proposed every manufacturing component e.g. robots, tools, fixing devices, is
associated to an agent that represents its behaviour (agentified manufacturing
component). When these agents interact or cooperate they can generate aggre-

38 Manufacturing the Future: Concepts, Technologies & Visions

gated functionalities that are compositions of their individual capabilities. This
is what happens when, for instance, several manufacturing components are
working together in a manufacturing cell.

Definition 1 - Manufacturing component or module

A manufacturing component is a physical piece of equipment that can per-
form a set of specific functions or basic production actions on the shop floor
such as moving, transforming, fixing or grabbing.

Definition 2 - Agentified manufacturing component

An agentified manufacturing component is composed of a manufacturing
component and the agent that represents it. The agent’s skills are those of-
fered by the manufacturing component, which is connected to the agent
through middleware.

Definition 3 — Coalition/Consortium

A coalition/consortium is an aggregated group of agentified manufacturing
components, whose cooperation is regulated by a coalition contract, inter-
acting in order to generate aggregated functionalities that, in some cases,

are more complex than the simple addition of their individual capabilities.

A coalition is usually regarded in the multiagent community as an organisa-
tional structure that gathers groups of agents cooperating to satisfy a common
goal. On the other hand, the term consortium is more usual in the business
area where it is defined as an association of companies for some definite pur-
pose. The definitions are quite similar because in both situations there is the
notion of a group of entities cooperating towards a common goal. This com-
mon definition is adapted to the context of the architecture being proposed
here. From now on the terms consortium and coalition are used with the same
meaning. Nevertheless, to emphasise that the architecture being introduced
here is composed of manufacturing components and not of companies the
term coalition will be favoured.

The coalition is the basic organisational form of cooperation in the architecture
being proposed. A coalition is able to execute complex operations that are
composed of simpler operations offered by coalition members. A new coalition

The Cobasa Architecture as an Answer to Shop Floor Agility

39

can be established with either individual members or other existing coalitions

(Figure 2).

Pick&place()
Change_Tool()

Consortium
Agreement c Cde_II t Store()
Pick&PIaceEl\ContraCt oordinator - o ract /| Unload()

5

—_—

// Coordinat Consortium /
/
Move_ptp() Agreement /
Move_ref() - # - Contract Open() // Warehouse
N == - Close() ,

~ Contract

- Coalition C1

~

Coalition C2

Figure 2. Consortia example

A robot cooperating with a gripper chosen from a tools” warehouse illustrates
a simple example of a coalition. The better the way coalitions can be changed,
the better the agility of the manufacturing systems they represent will be. If
agility is seen as the capability to easily change the shop floor as a reaction to
unforeseen changes in the environment, then an easy way to create and change
coalitions is an important supporting feature for the manufacturing system’s

agility.

When forming a group of collaborative agents there are no limitations on the
type of agents that can be involved in it but there is an important restriction

40 Manufacturing the Future: Concepts, Technologies & Visions

which limits their cooperation capability — their spatial relationship. Manufac-
turing agents that are not spatially related cannot cooperate, as it is in the case
of, for instance, a robot and a tool. If the tool is not within the reachability
space of the robot it will be impossible to create a cooperative relationship.
Another example of constraint is the technological capability. In order to be
usable by the robot, the tool has to be technologically compatible with the ro-
bot wrist. Therefore, when creating a coalition it is mandatory to know what
the available and “willing” to participate agents are that should present some
compatibility among them (for instance spatial or technological compatibility).
The manufacturing agents that can establish coalitions should be grouped to-
gether because of these aspects of compatibility. This is analogous to the long-
term collaborative alliances of enterprises. The objective of these clusters is to
facilitate the creation of temporary consortia to respond to business opportuni-
ties. Similarly, in the case of the architecture being described there is a need for
a structure (cluster) that groups the agentified manufacturing components
willing/able to cooperate.

Definition 4 - Shop floor cluster

A shop floor cluster is a group of agentified manufacturing components
which can participate in coalitions and share some relationships, like be-
longing to the same manufacturing structure and possessing some form of
technological compatibility.

A community of agents belonging to the same physical structure — a manufac-
turing cell, thus forms a cluster, and when a business opportunity (i.e. a task to
be executed by the shop-floor) arises, those agents with the required capabili-
ties (skills and capacities) and compatibility are chosen to participate in a coali-
tion. The limitation for an agentified manufacturing component to be accepted
in a shop floor cluster is that it must be compatible with the others physically
installed in the cell. For instance, an agentified robot installed far from a cell is
not a good candidate to join the cluster that represents that cell, because it can
never participate in any coalition. Since all the manufacturing components in-
stalled in a cell answer the requirements for compatibility a shop floor cluster
is associated with a physical cell. Figure 3 shows how manufacturing agents,
cluster, and coalition interrelate. Agentified components in the same “geo-
graphical” area of the shop-floor join the same cluster.

The Cobasa Architecture as an Answer to Shop Floor Agility 41

Mon Installed Manufacturing Components

Manuiaduring Taal

=
h@ﬁ

Tool Warchous:

Cluster Formation

6 Taal
Diﬂ[ﬂ
& 0

Taal
Roboi Warchausc

COMSORTIUM FORMATION

Consortia

Figure 3. Consortia formation

The different coalitions that can be created out of a cluster represent the differ-
ent ways of exploiting/operating a manufacturing system. Adding or remov-
ing a component from the physical manufacturing system also implies that the
corresponding agent must be removed from the cluster, which can also have
an impact on the established coalitions. A broker is used to help the formation
of coalitions to reduce the complexity of the individual agents in terms of coa-
lition formation. By delegating this responsibility to the broker, the individual

42 Manufacturing the Future: Concepts, Technologies & Visions

agents can be simpler because all they have to do is negotiate the terms of their
participation with the broker rather than carrying out all complex details of
coalition formation such as deciding which members are better indicated to
answer the requirements of a coalition being formed.

The interactions between the cluster and its members are regulated by a con-
tract. This contract establishes the terms under which the cooperation is estab-
lished. It includes terms such as the ontologies that must be used by the candi-
date, the duration, the consideration (a law term that describes what the
candidate should give in exchange for joining the cluster, usually the skills that
the candidate is bringing to the cluster). The behaviour of a coalition is regu-
lated by another contract that is “signed” by all its members. The important
terms of this type of contract, other than the usual ones like duration, names of
the members, penalties, etc., are the consideration and the individual skills
that each member brings to the coalition. The importance of contracts as a
mechanism to create/change flexible and agile control structures (consortia)
lays in the fact that the generic behaviours presented by generic agents are
constrained by the contracts that each agent has signed. This calls forth the
idea that different coalition behaviours can be achieved by just changing the
terms of the coalition contract, namely the skills brought to the coalition.

The expectation at this point is that coalitions of agentified manufacturing
components, if regulated by contracts, that are declarative and configurable in-
formation structures, may lead to significantly more agile manufacturing sys-
tems. It is expected that the different ways of exploiting a system depend only
on how coalitions are organised and managed. This approach solves the prob-
lem of how to create dynamic (agile) structures, but not the problem of how to
integrate heterogeneous manufacturing components” local controllers. In order
to overcome this difficulty, the process used to transform a manufacturing
component into an agent (agentification) follows a methodology to allow their
integration (Camarinha-Matos et al. 1997; Camarinha-Matos et al. 1996).

3. CoBASA architecture

The basis for the agility is provided by the way coalitions can be created,
changed, and terminated. CoBASA is a contract based multi-agent architecture
designed to support an agile shop floor evolution. It is a multiagent system be-
cause its components are agents, as defined in the Distributed Artificial Inteli-
gence (DAI) / Multiagent community (Ferber 1999; Franklin and Graesser 1997;

The Cobasa Architecture as an Answer to Shop Floor Agility 43

Weiss 1999; Wooldridge and Jennings 1995; Wooldridge 2000; Wooldridge
2002). In addition, it is contract based because the behaviour of coalitions is de-
termined by contractual arrangements. The coordination and cooperation of
the coalitions and individual agents is inspired by the works of social order in
multiagent systems (Conte and Dellarocas 2001). In the specific case of Co-
BASA its norms are the contracts that regulate the cooperation and behaviour
of the involved agents.

Since a CoBASA system is a community of interacting agents some sort of
knowledge sharing is needed to guarantee effective communication and coor-
dination. The various concepts needed by CoBASA (contracts, skills, credits,
among others) are supported by ontologies, which can be seen as global
knowledge engraved in CoBASA agents.

Finally, CoBASA, can be considered a complex adaptive system that displays
emergent behaviour (Johnson 2001) mainly because this is essentially a bottom
up system, in which complex structures (coalitions) are composed out of sim-
pler manufacturing components. This “movement” from lower level structures
to higher-level complexity is called emergence.

3.1 The components

The basic components of the CoBASA architecture are:

- Manufacturing Resource Agents,

- Coordinating Agent, Broker Agent,
Cluster Manager Agent,

and Contract.

Definition 5 - Manufacturing Resource Agent (MRA)

The MRA is an agentified manufacturing component extended with agent
like skills such as negotiation, contracting, and servicing, which makes it
able to participate in coalitions.

An agent called Manufacturing Resource Agent (MRA) models manufacturing
components. This agent represents the behaviour of a manufacturing compo-
nent. In addition it has a social ability (interaction and cooperation with the
other agents) to allow its participation in the agent community.

Several types of MRAs, one type for each manufacturing component type, can
be conceived. Therefore it is expectable to find robot MRAs, gripper MRAs,
tool warehouse MRAs, etc. From a control perspective, each MRA is individu-

44 Manufacturing the Future: Concepts, Technologies & Visions

alised by its basic skills, which represent the functionality offered by the repre-
sented manufacturing component.

Each MRA possesses the following basic abilities:

e Adhere to/ withdraw from a cluster
e Participate in coalitions
¢ Perform the manufacturing operations associated with its skills.

Each MRA that belongs to a given manufacturing cell can participate in the
cluster that represents that cell. Therefore, every agent, independently of its
skills, can join a cluster as long as it is compatible with the other cluster’s ele-
ments. Nevertheless, this adhesion is not always guaranteed because the clus-
ter, before accepting a candidate, evaluates its “values”. The candidate’s value
is given by a concept called credits, which represents a kind of curriculum vi-
tae. If the curriculum does not reach a certain level the agent is not accepted.
Further details about the credit system are given in the clustering section. A
negotiation is held between the MRA and the cluster whenever the agent
wants to join the cluster. A MRA can join or leave different clusters when the
manufacturing component it represents is installed or removed from different
manufacturing cells.

All negotiations related to the creation, changing, and termination of coalitions
are performed by the MRA. The agent does not automatically choose the skills
the MRA brings in to a coalition, which are instead chosen by a user. The MRA
participation in a coalition may terminate either because the coalition success-
fully reached its end or because of an abnormal condition. Performing the
manufacturing operations associated with the represented skills is the kernel
activity of the MRA. While the other two activities are more related to its social
activity, this one represents real manufacturing work. Whenever a robot MRA,
for instance, receives a request to execute a move command it reacts by sending
the appropriate command to the real robot controller that in turn causes the
movement of the physical robot.

Definition 6 — Coordinating Agent (CA)

A CA is a pure software agent (not directly connected to any manufacturing
component) specialised in coordinating the activities of a coalition, i.e. that
represents the coalition.

The Cobasa Architecture as an Answer to Shop Floor Agility 45

Although a coalition is not an agent, it is one of the main concepts that stand in
the background of the architecture being presented. A basic coalition, besides
being composed of MRAs, includes an agent that leads the coalition — Coordi-
nating Agent (CA). In addition it can include as members other coalitions. The
coordinator of a coalition is able to execute complex operations that are com-
posed of simpler operations offered by coalition members.

The CA is, in many aspects, very similar to the MRA. Because it must also be
able to join a cluster as well as participating in coalitions, its basic social activ-
ity is quite the same. However, there are two differences. First, a CA does not
directly support manufacturing operations (skills) but is instead able to create
complex skills based on some rules of composition of skills brought in by the
members (e.g. MRAs) of the coalition it coordinates. Second, a CA does not of-
fer manufacturing skills to a coalition except when leading a coalition partici-
pating in other coalitions.

The CA has two different statuses:

1) free to coordinate, and 2) coalition leader.

When free to coordinate it is just waiting to be a coalition leader. When the
CA is eventually chosen to coordinate a coalition its status is changed as well
as its situation in the cluster. A CA with a coalition leader status represents a

coalition in the cluster.

As members of coalitions, MRAs can only play the member role whilst CAs
can play both the coordinator and member roles. A simple manufacturing coa-
lition is composed of some MRAs and one CA. However, a coalition can be
composed of other coalitions, creating, in this way, a hierarchy of coalitions.
Therefore, a CA can simultaneously coordinate MRAs and others CAs (Figure
4). In this figure CA2 is simultaneously a member of coalition 1, and the coor-
dinator of coalition 2, composed of MRA B and MRA C. Please note that coali-
tion 1 is composed of MRA A and CA2. CA1 does not have direct access to the
members of coalition 2.

A coalition needs a CA, instead of only MRAs to reduce the complexity of a
MRA. If the coalition was only composed of MRAs, the complex task of coor-
dinating a coalition would be added to the usual tasks such as controlling the
manufacturing component, negotiating cluster adhesion and participating in
coalitions, etc. Among other things, a coalition coordinator needs to generate
new skills, and should be simultaneously member and coordinator. Please

46 Manufacturing the Future: Concepts, Technologies & Visions

note that skill generation is not the only problem since the way skills are com-
posed and represented in order to be executed properly is not a trivial task.
Separating the functionality related to coordination from the one related to
executing commands simplifies the architecture of the individual agents.

MRAs become less complex at the expense of introducing another agent type,
the CA.

-
@ = B

MRA C
MRA B Coalition 2

Figure 4. Hierarchy of coalitions/consortia

Definition 7 — Cluster Manager Agent (CMgA)

A cluster manager agent is an agent that supports the activities required by
the cluster it represents. This agent stores information about all the MRAs
that compose its cluster.

A cluster by itself is not an agent but rather an organisation of agents. How-
ever, an agent might model the activities that support cluster management,
such as joining the cluster, leaving the cluster, changing skills, etc. An agent
called Cluster Manager (CMgA) models the management activities of the clus-
ter.

The CMgA must support the following basic activities:

¢ Attend requests for cluster adhesion
e Update cluster-related information
e Provide information to the broker.

The Cobasa Architecture as an Answer to Shop Floor Agility 47

Whenever the CMgA receives a request from a MRA or CA to join the cluster
it starts the negotiation process that ends either with a refusal or acceptance.
Based on the credits of the requester the CMgA decides if the requester is ac-
cepted or not. A registry of all agents that constitute the cluster is maintained
by the CMgA and, whenever necessary, this information is updated by cluster
members. The CMgA also provides all the information needed by the broker
agent when creating coalitions.

Definition 8 — Broker Agent (BA)
A broker is an agent that is responsible for the creation of coalitions. It gath-
ers information from the cluster and, based on user preferences, super-

vises/assists the process of creating the coalition.

An agent called broker agent (BA) supports the brokering activity, which is
relevant in order to create coalitions. The notion of brokers, also known as
middle agents, match makers, facilitators, and mediators is a subject of intense
research in the multiagents field (Giampapa et al. 2000; Klusch and Sycara
2001; Payne et al. 2002; Sycara et al. 1997; Wiederhold 1992; Wong and Sycara
2000).

The broker therefore interacts with the human, the cluster, and the candidate
members to the consortium. Coalitions/consortia can be created either auto-
matically or manually. At the current stage only the manual option is consid-
ered. The main interactions between the concepts that have been referred to
are shown in Figure 5. Contracts are the next important COBASA mechanism,
which is used to regulate the MRAs and CAs interaction with a CMgA as well
as the behaviour within the coalition.

48 Manufacturing the Future: Concepts, Technologies & Visions

Get Info

| Update Info

| Coalision
Adhesion

Cluster
Adhesion

Execute |

Skill BA

CMgA

_

Update Info

Cluster
Adhesion

Coalision
| Adhesion

Figure 5. Interactions among the main components

In the CoBASA architecture two type of contracts are considered: cluster ad-
hesion contract (CAC), and multilateral consortium contract (MCC).

Definition 9 — Cluster Adhesion Contract (CAC)

This contract regulates the behaviour of the MRA when interacting with a
cluster. Since the terms imposed by the cluster cannot be negotiable by the
MRA the contract type is “adhesion”. The CMgA offers cluster services in
exchange for services (abilities or skills) from the MRA.

The CAC includes terms such as the ontologies that must be used by the can-
didate, the duration of the membership, the consideration (a law term that de-
scribes what the candidate should give in turn of joining the cluster, usually
the skills that the candidate is bringing to the cluster).

Definition 10 — Multilateral Coalition/consortium Contract (MCC)

This contract regulates the behaviour of the coalition by imposing rights and
duties to the coalition members. The contract identifies all members and
must be signed by them to be effective. The coalition leader (CA) is
identified as well as its members. The members are entitled to a kind of

award (credit) in exchange for their skills.

The Cobasa Architecture as an Answer to Shop Floor Agility 49

The important terms of this type of contract other the usual ones like duration,
names of the members, penalties, etc., are the consideration and the individual
skills that each member brings to the contract. Note that the skills involved in a
specific consortium contract may be a subset of the skills offered by the in-
volved agent when it joins the cluster. The importance of contracts as a
mechanism to create/change flexible and agile control structures (consortia)
lays on the fact that the generic behaviours exhibited by generic agents are
constrained by the contract that each agent has signed. This calls forth that dif-
ferent consortium behaviours can be achieved by just changing the terms of
the consortium contract, namely the skills brought to the consortium.

MCCs represent simultaneously a coordination mechanism and a mean to fa-
cilitate coalitions/consortia dynamics. Since a coalition/consortium is created,
changed, and terminated mainly through contract operations, the task of
grouping manufacturing components able to perform certain tasks (coalition)
is facilitated. In addition, the introduction of new components to this group
involves only contract configurations. Agility is thus achieved since moving
components from one organisational form to another involves only configura-
tion instead of programming effort.

3.2 Coalition dynamics

Since CAs are able to generate new skills from the set of skills brought in by its
members, coalitions enable the creation of completely ditferent control struc-
tures. This could not ever be achieved using a traditional control architecture
because of its rigidity. Traditional approaches need to know in advance the
logical organisation of the components as well as the complete set of skills that
need to be controlled.

Considering this agility at the coalition level and considering also that coali-
tions can be composed of other coalitions, the next question is what impact a
change on a coalition has on the whole structure. This impact might happen
because after a change on a coalition (addition or removal of members) the
skills its CA is able to perform are likely to change. They can be either in-
creased, reduced, or in some situations they are kept. The last situation occurs
when a component that brings no value to the coalition is introduced or re-
moved. If a coalition participating in another coalition looses skills, then it is
necessary to verify if any of the missed skills were offered to any other higher-
level coalition. If this happens a renegotiation process must be started with the
higher-level one, which should then verify the impact and if necessary renego-

50 Manufacturing the Future: Concepts, Technologies & Visions

tiate with its own higher-level coalition(s). This process is expanded through
the whole levels until reaching the upper one. As a conclusion it can be
claimed that the removal (or addition) of a manufacturing component (MRA)
(its skills) provokes the automatic updating of the higher-level skills that could
be directly or indirectly dependent on the ones that were removed (added).

It is important to retain that the skills offered to the coalitions at a higher-level
can be a subset of the skills possessed by the CA member agent.

The skills brought to a coalition j led by CAi are the union of the skills brought
by all MRAs that belong to the coalition j plus all the skills offered by the vari-
ous coalitions that might be participating in coalition j. This means that a com-
plex skill can be dependent on another complex one. To understand the next
steps of COBASA operation the following definitions are necessary:

Scu, The set of skills of CAiin coalition/consortium i
SMR4,, The set of skills of MRA 1in coalition/consortium j
SCamembers: The set of skills brought to the coalition/consortiumi,

led by CA1, by its members

Sc Agenerated, The set of skills generated by CA 11in coalition/consortium i

S 4o ffered | The set of skills the coalition/consortium i,

i,j

led by CA i, offers to the coalition/consortium j

SCAmembers, =151,52,56,57}

SCAgenerated, ={s8}

Sc4,= {sl,s2, 56,57, 5'8}

g SCAmembers, = 153,54, 55,56} \\\‘ “'\
SCAgenerated , = {7} ‘
Sc4,= {S3, s4,55,56, s7}

':" SMRA]J = {Sl,S2
i SCAoffered,, ={s6.57}

Rules for Skill

Generation { S (55,56} / /
ST Z#(s6.s4) { =153, 54 @ @ MRA32 = 15505 7/
s8 =fs7,s1) L ShRAs '

. s9 =1(s6,s10,s11) "~ _ L. L -
S sto=fstlsd) T coalition/consortium 2. ...~

Figure 6. Coalition in its initial situation

The Cobasa Architecture as an Answer to Shop Floor Agility 51

Figure 7 shows that the skills offered by the coalition 2 are a subset of the skills
the coalition possesses, which is perfectly valid. The skills to be offered are
chosen during the coalition creation by the broker. The generation of skills is
based on a set of rules that belong to the CoBASA knowledge base. For in-
stance in coalition/consortium 1, according to the rules illustrated in Figure 3
only the rule “s8 = f(s7,s1)” can be fired and thus s8 is the only generated high
level skill. All the other rules require input skills that are not present.

/ SCAmembers; ={s1.52,56,57,510,s11}
l SCAgenerated = {s8,59}

SCAy =151.52,56,57,58, 59,510,511}

SCAmembers, =153, 54,55,56,511}

\
{
SCAgenerated, ={s7,510} I'
SCA,=153.54,55,56,57,510,511} \

- SCAoffered , ;={56,57.510,s11} \

\ i
N
\
Cwnz) (Rns | Sy, =55.56) (AR —{Suraro =111}
7
-

<

SMRAH ={s1,52

Rules for Skill -
Generation
s7 =1f(s6,s4) /
\ s8 =f(s7.s1) /' SMRA» » = 15354
\ s9 = f(s6,510,s11) l

510 = f(s11,54) o .
S coalition/consortium 2 -

~~~~~~~~~~~~

Figure 7. Hierarchy of coalitions after introducing a new element MRA 4

The effect of coalitions dynamics in CoBASA, can be verified by analysing
what happens when a new component is added, for instance to coalition 2 (
Figure 7). The introduction of MRA 4, which brings in new skill s11 causes an
alteration on the set of skills CA2 can handle. It can be seen that the set of skills
for the coalition 1 were increased. The update is almost automatic because it
has only to do with the generation of complex skills and renegotiation between
coalition leaders.

Considering now the removal of a component (MRA 3, for instance), it causes
a reduction of skills both in coalition 1 and coalition 2 (

Figure 8).

From this discussion it is now possible to better understand why the CoBASA
architecture can be considered a complex adaptive system. In effect coalitions
are just an expression of the interaction that occur among coalition/consortium
members. The skills owned by the coalition/consortium leader represent the



52 Manufacturing the Future: Concepts, Technologies & Visions

behaviour that results from its members’ interactions. It can be identified a
“movement” of low level skills to higher level ones, which allow us to claim
that this architecture displays a kind of emergent behaviour (Johnson 2001).

A coalition member must execute all the operations promised by it in the con-
sortium contract, when requested by the coalition coordinator. On the other
hand, the coordinator (CA) can create complex operations (services) by aggre-
gation of the individual operations of the members.

Let us now have a first look at the contracts that regulate the behaviour of coa-
litions and their members.

e ——— e

SCAmembers; = 15152, 54}

SCAgenerated | ={}

SC4,= {Sl,S2,S4}

Ny

SCAmembers, = 153,54} ) \

SCAgenerated , = {1 ‘ "\‘
| Shia, b2 Sca=bs) B
i SCAoffered ;= {s4} | !
Rules for Skill / ;"'
Generation /

s; = ;536,313 /SMRAz ,= {33, s4 f

s8 =f(s7,s ? _—
89 =f(s6s10,s11) \ coalition/consortium 2 _ — — -
.. S10=1(s11,s4) ~ T T

Figure 8. Hierarchy of coalitions after removing MRA 3

Figure 9 shows a hierarchy of two coalitions/consortia in which CA2 is
simultaneously the coordinator of coalition 2 and a member of coalition 1 led by
CAl. As it could be expected there are two multilateral consortium contracts,
one for each consortium/coalition. However, each member of a
consortium/coalition must have a copy of the contract that regulates the
coalition’s operation, since the members’ behaviour is regulated by that
contract. This means that in the case of figure 6 CA2 behaviour is conditioned,
in fact, by two contracts instead of one: 1) the contract of coalition 1, where CA2
is a member, and 2) the contract of coalition 2, where CA2 is the coordinator. To
distinguish between these two types of roles, the MCC contracts each CA
might be bound to are divided into membership contracts and coordination



The Cobasa Architecture as an Answer to Shop Floor Agility 53

contracts. All contracts in which the agent plays the member role are
membership contracts while those in which it plays the coordinator role are
coordination ones. Despite this division, the structure of the contracts is the
same, since both types are multilateral consortium contract - MCC.

Skills descriptions help the creation of manufacturing coalitions. However this
is not their only role, since they are also very important when the coalition is
being operated (operational phase). This is so because skills represent also the
commands to be used among coalitions/MRAs (services). The important ques-
tion here is how the CA reacts when it receives a request to perform a certain
task according to the skills it offered.

e B T

,/"Coordinator: CA1

{ Members: S .. LT
MRA1: s1,s2 s coalition/consortium 1
CA2: s6,s7
Coalition1
Contract
"‘ SMRALI = {SL Sz ------------------------------------------

Coordinator: CA2

Members: Sy
MRA2: s3,s4 @
MRA3: s5,s6

Coalition2
Contract

SCA, =153,54,55,56,57}

SCAoﬁ"e}’e‘dl1 = {36, 37}

coalition/consortium 2 | |

Figure 9. Coalitions contracts

When the CA is requested to perform some task associated to one of its skills,
it behaves differently according to the skill type. If the skill was not generated
by this CA (simple skill) the action consists simply in redirecting the request to
the member of the coalition that has brought it. On the other hand, if the skill
is generated by this CA then the procedure is more complex. This is so because
the skill is now a composition of the skills brought to the coalition by its mem-
bers, and this composition can be complex. This means that a model is needed
to describe this composition and it should allow the modelling of complex
command structures, which are needed to represent those skills that have
complex structures. The CA must then execute the model by sending lower



54 Manufacturing the Future: Concepts, Technologies & Visions

level commands (skills) according to the model structure of the complex skill
being executed. This is to conclude that a model is required to represent the
structure of the composed skill and then an execution machine is needed as
part of the CA to execute the model properly.

If each CA embeds a generic execution machine, like a Petri Net (Zurawski
and Zhou 1994) executor, or even a workflow engine (WFMC 2002), able to
execute Petri Nets or Workflow models than the CA is transformed into a kind
of generic machine that can work with different types of skills.

3.3 Contracts

According to the law of contracts (Almeida 2000; McKendrick 2000), a contract
is made up of a promise of one entity to do a certain thing in exchange for a
promise from another entity to do another thing. Some law researchers
(Almeida 2000) claim that the contractual statements (promises) are perform-
ing acts in the sense that they have effects. This means that the existence of a
contract between two or more entities imposes constrains on their behaviour
and can produce outcomes that were not possible without a contract, mainly
due to the performing nature of the statements or promises.

There are several types of contracts, but in this work only two are considered
as introduced in previous section: generic multilateral contracts and adhesion
contracts. The main difference between them is the process of formation,
which in the case of the adhesion contracts is via standardised forms. The con-
tract offered by the cluster manager agent to the candidate member agents is a
typical contract of adhesion, in the sense that the cluster imposes its terms. The
only thing an agent can do is accepting or refusing it. Part of the terms of this
adhesion contract, namely the “consideration” of the candidate agent, is left
open to be filled in by the candidate, when accepting the offer. In terms of the
human law systems consideration was defined by an 1875 English decision as
"some right, interest, profit or benefit accruing to the one party, or some for-
bearance, detriment, loss or responsibility given, suffered or undertaken by the
other". In most of the law systems in order to create a contract at least two se-
quential statements are required: an offer followed by an acceptance. An offer
can be followed by a counter-offer, which in turn can also be followed by an-
other counter-offer and so on. The process terminates when one of the partners
sends an acceptance. The offer and the acceptance might not be the first and
second action but they will be surely the last but one, and the last. Offers may
set certain conditions on acceptance and to these, the acceptor is bound. The



The Cobasa Architecture as an Answer to Shop Floor Agility 55

acceptance validates and gives life to the contract. The contract starts at the
moment the acceptance reaches the offeror.

The cluster manager, and the candidate agents when negotiating the cluster
contract will use the offeror-acceptance protocol of real life contracts with
some adaptations.

An offer, once made, can be revoked before acceptance. An offer can also ex-
pire if a deadline for acceptance passes. If there is no specified deadline, then
the offer expires in a "reasonable time", depending on the subject matter of the
contract (Almeida 2000). In the approach being followed an offer is made
without specifying a deadline. This indicates that it must be answered in a
“reasonable time”, which is the normal time-out imposed to the global archi-
tecture for communication among the agents. An offer that was rejected cannot
be subsequently accepted.

An alternative to reach an agreement other than the offer-acceptance protocol
is using joint contractual terms, which express the agreements of the parts in
only one text. This modality is specially used for creating contracts that in-
volve more than two partners (multi-lateral contracts). In this case the parts
reach agreement on the final terms of the contract using different kind of
communicative acts in a preliminary phase. Afterwards, the final contract is
put on a written form (final agreement) and finally all the partners must sub-
scribe the contract. The contract turns effective when the last partner sub-
scribes the document.

The formation of the coalition contract used in the proposed architecture uses
this modality with some adaptations. The human user interacting with the
broker will prepare the agreement on the terms of the contract (preliminary
phase). It is this user that chooses the skills that each agent will bring to the
contract (this user is just configuring the system). The broker agent then sends
the final text to all partners to be subscribed. When the last agent finally sub-
scribes it, the contract is considered as valid.

3.3.1 Cluster Adhesion Contract - CAC

The cluster adhesion contract is defined externally to the cluster and modelled
using a knowledge representation system — Protégé 2000 (Protégé-2000 2000).
The cluster manager agent can interact with this system to have access to the
contract representation. Whenever it needs to offer an adhesion contract to an
agent it just uses the form, waiting afterwards for its acceptance or refusal.



56 Manufacturing the Future: Concepts, Technologies & Visions

The formation of the contract starts when the cluster manager sends a message
to the candidate agent containing an instance of an adhesion contract. The “ac-
cept” message from the candidate contains the complete adhesion contract,
now filled in with the terms of the candidate (its skills), and when received by
the cluster manager the contract turns to be valid. The cluster manager only
agrees to negotiate with the candidate agent if it is not on the black list of the
cluster. The cluster manager agent then checks for the credits of the candidate,
which represents a kind of curriculum vitae. A credit is, for instance, the num-
ber of hours working properly, or a number that qualifies the global perform-
ance of the agent when working on consortia. Those agents with lower level
qualification can sometimes not be accepted as members of the cluster. This is
to guarantee that consortia created out of a cluster have a certain level of quali-
fication (Barata and Camarinha-Matos 2002). When the candidate (MRA/CA)
does not have sufficient credits, the cluster manager replies with a FAILURE
command message (left part of Figure 13). If the credits are accepted, the clus-
ter manager fills in all the cluster adhesion contract (CAC) terms except the
skills that will be brought in by the candidate, which should be filled in by the
candidate. Then the cluster manager sends a REQUEST message to the candi-
date asking it to accept the contract. This corresponds to an offer in contract
law terms. The MRA/CA evaluates the contract offer and decides if it can ac-
complish all its terms. If not, the candidate sends a FAILURE message to the
CMgA stating that it does not accept the offer. Then a FAILURE message is
sent to the candidate stating that the cluster manager did not accept its
REQUEST to join the cluster. If, on the other hand the MRA/CA, after evaluat-
ing the offer decides for its acceptance, sends an INFORM message stating its
acceptance. The cluster manager sends then a final INFORM message to the
candidate stating that its initial REQUEST has been accepted (right part of
Figure 13).

The commands exchanged between the candidate and the cluster manager fol-
lows the FIPA protocols (FIPA 2002).

There is a tight connection between the CAC and credits (agent’s curriculum).
If credits are regarded as a kind of performance measure it is quite natural that
at the end of a contract credits must be updated corresponding to a sort of cur-
riculum updating. This happens independently of the termination type, either
normal or abnormal. A contract terminated by performance might be regarded
as a successful one because it means the contractee agent (MRA/CA) has ac-
complished all its promises. Therefore it is natural that this agent could add
some good points to its curriculum. On the other hand, if an abnormal termi-



The Cobasa Architecture as an Answer to Shop Floor Agility 57

nation is considered, it is normal that a kind of curriculum penalisation takes
place. This rewarding/penalisation step at the end of every contract guarantees
that the agent’s curriculum is a mirror of its performance. When the members
of the cluster adhere to a cluster by accepting the CAC they “know” exactly
what are the penalisations or rewards they get when the contract is termi-

nated.
MRA/CA CMgA
| |
REQUEST - joinCluster()

0 T
MRA/CA CMgA i e

i i QUERY - credits()

il - INFORM - credits()

REQUEST - joinCluster()

.

-
-
-

REQUEST - acceptClusterContract()
INFORM - acceptClusterContract()

QUERY - credits()
INFORM - credits()

-
-

FAILURE - joinCluster() INFORM - joinCluster()

-
-1

—]

Figure 10. Unsuccessful and successful cluster joining

3.3.2 Coalition Contract - MCC

The broker agent, with the help of a human expert, creates the coalition con-
tract (MCC). The model of this type of contract has many similarities with the
previous one but has also some slight differences because it is a multilateral
contract instead of a bilateral contract. To support various members and one
contractor the contract has one common part dedicated to the contractor (the
agent playing the co-ordination role), and another part dedicated to each of the
other members. The members part of the contract is composed of several indi-
vidualConsortia elements that in turn describe the individual contractual terms
of each member of the coalition. The promise (declaration or manifestation of
an intention in a contract) brought to the contract by each member is a set of
manufacturing skills.



58 Manufacturing the Future: Concepts, Technologies & Visions

The broker creates the contract when a coalition is created. The user configures
the different parts of the contract based on the requirements needed by the
coalition. For each member the individual part is fulfilled namely by choosing
which skills the members bring to the coalition.

The performance of the MCC includes the execution of the contract promises
(skills). This is done while the contract is still valid and the coalition is operat-
ing. Only promised skills can be asked.

At the end of the contract the CA awards each coalition member with a num-
ber that represents the quality of the handed out service. This award or penali-
sation, if added to the agent credits, can be used to improve (or even reduce)
its qualification, and is important for the future participation of the agent on
consortia. This mechanism is similar to the one mentioned when CACs have
been discussed. Similarly there are three different ways of terminating a MCC:
by performance, by frustration, and by breach.

The “good” way of terminating a contract is by performance. In this situation
the CA (coordinator) verifies if the participation of any member is within the
valid date. If not, the CA asks that member to terminate its participation.
Based on the value stored in the individual exception part of the MCC, the
award for the participation in the coalition is collected.

Terminating the MCC by a frustration reason is an abnormal way, and conse-
quently the breaking agent may incur in some penalisations. The request to
break the contract by frustration is always initialised by the coalition member
that detected the frustration. When this happens the member collects the pe-
nalisation stored in the contract. Three reasons can lead a coalition member to
request to terminate a contract for frustration reasons:

1. The user requests the agent (MRA/CA) to leave (physical move, for in-
stance)

2. A CA participating in another coalition detects their members are not
responding

3. A CA/MRA of a lower level could not renegotiate a contract change with
its higher level CA.

Terminating by breach is the worst case of termination of a contract from the
penalisations point of view. The request to breach the MCC can be started ei-
ther by the coordinator or by one of the members. A breach of the contract
started by the coordinator implies that one of the members misbehaved.



The Cobasa Architecture as an Answer to Shop Floor Agility 59

On the other hand a breach started by one of the members means coordinator
misbehaviour. A member starting a breach does not incur in penalisations.
However when it is “guilty”, i.e., the coordinator detected some misbehaviour,
it gets penalised. A member shows bad behaviour whenever it does not an-
swers a request from its coordinator to execute one of the promised skills.
Likewise if the member, in spite of replying to the request, is not able to per-
form it properly, i.e., the excuse for the failure is not included in the MCC. A
coordinator, on the other hand, shows bad behaviour whenever it does not an-
swer a request from the member, which can be, for instance, a call to renegoti-
ate the contract terms.

4. CoBASA main interactions

The most important functionalities related to CoBASA coalitions are:

1. Creating new coalitions
2. Changing coalitions

3. Coalition dissolution

4. Service execution

4.1 Creating new coalitions

The main actor in creating coalitions is the broker agent (BA). A human user
chooses the coalitions based on the logical structure he/she wants to create.
The other important actor is the cluster manager agent (CMgA) that provides
information about available members. In addition to these two agents others
are needed to create a coalition:

1. A CA not currently engaged in any consortium (available to lead a coali-
tion).

2. MRAgs, if the coalition will include manufacturing components.

3. CAs leading coalitions that might be included as members of the coalition
being created.

Fifure 11 shows the interactions that happen between the different actors in-
volved in creating a coalition.



60 Manufacturing the Future: Concepts, Technologies & Visions

BA CA MRA/CA(member) CMgA

info()
6 77777777777777777 (D
[
o l
| |
. [
REQUEST - requestMembership()
INFORM - requestMembership()
o o
[
[
|
[
[

f--1

REQUEST - requestCoord()

\
\
\
\
\
INFORM - requestCoord() }
\
\
\
\
\
\

6 ,,,,,,,,,,,,,,,,

T I

I I

L I

REQUEST - membershipSigning()
|
INFORM membershipSigning()

K — e

I

I

= |

l l

REQUEST coordSigning()

INFORM coordSigning()

\
\
\
\
\
\
\
\
\
i :
[ \
} genComplexSkills() }
] I
\
\
\
\
\
\

F--1

|
REQUEST skillsToCluster()
INFORM - skillsToCluster()
i L
\
\
|
[

T
|

Figure 11. Interactions when creating a coalition

The figure shows the BA agent, the CA agent that has been chosen to be the
coordinator, an agent to represent the members of the coalition
(MRA/CA(member)), and the cluster manager agent (CMgA). Independently of



The Cobasa Architecture as an Answer to Shop Floor Agility 61

the type of MRAs or CAs that form the coalition, the behaviour is the one indi-
cated in the figure. All information exchanged between the various actors is
shown using the FIPA REQUEST protocol (FIPA 2001).

The broker asks for information about candidate members in the cluster by
sending a REQUEST command. After getting the information from the cluster
manager (CMgA), the broker shows the available members to the user as well
as their individual information and lets him/her compose the coalition and
create the contract that regulates it. The broker then asks each member to ver-
ify if they accept the contract, what is done by sending a REQUEST to be mem-
ber command. This step is done in order to make sure each individual agent
evaluates the contract before accepting it. This corresponds to asking the agent
if it is interested in participating in the coalition under those conditions.

After all candidate members, including the coordinator, have expressed their
interest in participating in the coalition, the broker starts the process of signing
the contract by sending a REQUEST to sign command. Signing does not in-
volve a complex formalism because the objective is to indicate to coalition
members that the contract is now effective. After the broker requests that the
coordinator signs the contract, the coalition is now operating from its point of
view. After signing the contract the CA must try to generate its complex skills
(genComplexSkills) as it has just received a new set of skills from its members.
This step is crucial for the agility of the system, because the coalition is now
generating automatically its skills based on the skills brought in by the mem-
bers components are organised, i.e. changing the system’s logical control struc-
ture, making this phase directly connected to the reengineering phase of the
production system. This phase is divided into two different parts: the first one
discusses the addition of one member to an existing coalition, and the other
discusses the removal of one element. Although the description is made for
one element to simplify the diagrams, the addition/removal of several ele-
ments is straightforward.

The interactions involved when a new member is added to an existing coali-
tion are shown in Figure 15. As in the previous case, the broker and the cluster
manager are important players because it is through the broker that the coali-
tion is altered while the CMgA provides the necessary information. Further-
more, the coalition coordinator (CA) and its members (consMemb), the mem-
ber to be added (newMember), and the coordinators of the coalitions (CA+1,
CA+2), where hypothetically the coalition being changed is participating in,

are the other actors.



62 Manufacturing the Future: Concepts, Technologies & Visions

The process starts with the BA asking the CMgA to provide information about
its members that compose it. When the skills are generated the new coalition
leader can then ask the CMgA to update its skills and to change its status from
free to coordinate to coalition leader. The coalition is now registered in the
cluster manager through its leader.

4.2 Changing coalitions

Changing a coalition corresponds to changing the way the manufacturing (
Figure 15). Hence, the user, via the broker, selects the coalition to be changed
which provokes the BA to ask the coordinator of that coalition to send it its
MCC (REQUEST getContract).

This contract is needed because the user needs to configure its individual part
with data from the new member as well as possibly changing other parts. Af-
ter changing the contract, the new member is asked to accept the contract and
to sign it. These operations are similar to the ones introduced in the creation
phase. The broker now needs to renegotiate the new terms of the contract with
the other coalition members to let these members discuss it (REQUEST mem-
bershipReneg).

Under normal circumstances these agents accept the changed contract. What
happens if one or more members refuses to participate is not shown to keep
the figure simpler. In any case, when in this situation, the user through the
broker or through the member’s GUI has the authority to overcome this situa-
tion. The broker then proceeds to the renegotiation phase with the coalition
leader (CA). The goal of this phase is to get the new contract version accepted
by the CA. This is why this process is called a renegotiation (REQUEST co-
ordReneg). When the broker receives the INFORM stating that the contract
was accepted the process is finished from the broker point of view. However,
the CA has some other tasks to do before the whole process is concluded. First,
it needs to check if the addition of the new element has generated new skills,
which is done by activating genComplexSkills.

Next, the CA checks if it is currently engaged in any other coalition as well as
if it has got new skills. If yes in both cases, it renegotiates with the leader
(CA+1) of that coalition to change the skills it is bringing in (REQUEST co-
ordReneg). Finally, after the successful renegotiation, the CA updates the skills
of the coalition in the cluster manager (REQUEST updateSkills).



The Cobasa Architecture as an Answer to Shop Floor Agility 63

New Member

i
REQUEST - getContract()

INFORM - getContract()
 SURE— NS

-

REQUEST - requestMembership()
1 1

| |
REQUEST - membershipSigning()

INFORM membershipSigning()

I

|

| 1

} REQUEST membershipReneg()
)

T

|

|

INFORM membershipReneg()
|

F--|

INFORM coordReneg()

T
|
|
I
|
REQUEST coordReneg() !
I
|
|
I
|
I
|

H genComplexSkills()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\ s
REQUEST coordReneg()
| |

INFORM coordRenég()
1

| genComplexSkills()

p-- =]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S
|
|
|
|
|
|

e
|
|
|
|
|
|

Figure 12. Adding an element to an existing coalition

Figure 12 also shows that if the renegotiation between the CA and CA+1 has
impact on CA+1’s skills, and if CA+1 is also participating in another coalition
led by CA+2, then it will request CA+2 to renegotiate the terms of its participa-
tion in that coalition contract. The process is repeated until it reaches the high-
est-level coordinator in the hierarchy of coalitions. This is a very important



64 Manufacturing the Future: Concepts, Technologies & Visions

mechanism because whenever a coalition is changed, the impact of this change
is automatically propagated to all the coalitions that are directly and indirectly
related to it (transitivity).

The removal of one element is not shown because it follows a similar negotia-
tion pattern.

4.3 Coalition dissolution

A coalition can be dissolved either when the system is being dismantled or
when it is being reengineered. In the first case, all coalitions need to be termi-
nated and then all cluster contracts must also be terminated. In the second
case, the system is suffering such a radical change that it is not worth keeping
any of the existing coalitions. Therefore all coalitions are dissolved in order to
create completely new ones. Dissolving a coalition is different from changing it
(removal of elements) in the way that the coalition coordinator also terminates
its activity and changes its status in the cluster from coalition leader to free to
coordinate.

Figure 17 illustrates the whole process for a coalition composed of one coordi-
nator and one member.

Since this is a convenient way of terminating, the BA discharges the MCC by
performance. It first discharges the CA and then all coalition members
(REQUEST dischargeByPerf).

After accepting the discharge, the CA updates its credits in the cluster, which
have just been increased by the reward it has received, as well as its status,
since the CA is now free to coordinate.

Note that now the CA does not generate complex skills because it does not
have any member to give it any skill. After discharging the MCC, coalition
members collect their rewards and add them to their credits, and then update
their credits in the CMgA (REQUEST upDateCredits).




The Cobasa Architecture as an Answer to Shop Floor Agility

65

members

BA CMgA CA
| | |
] REQUEST info() 1
|
INFORM info() !
Ke——mmmmm - !
|
T I }
| | |
—— 1
REQUEST - dischargeByPerf()
|
INFORM - dischargeByPerf()
S ‘r fffffffffffffffffffffffffff
|
| REQUEST - dischargeByPerf() ‘
| |
| |
I INFORM - dischargeByPerf() !
S b it
—L |

REQUEST upDateCredits&Status()

INFORM upDateCredits&Status()

|
REQUEST - upDateCredits()

T

INFORM - upDateCredits()

Figure 13. Coalition dissolution

4.4 Service execution

This phase corresponds to the production phase of the production system life
cycle, since operating a coalition is asking its members to execute skills (or
commands) they have promised in the MCC that regulates that coalition. In
addition, asking to perform a skill involves, ultimately, executing some com-
mands in the manufacturing physical component connected to one of the
MRAs that belongs to the hierarchy of coalitions. It must be recalled that
MRAs are always the lower level participants of any hierarchy of coalitions.



66 Manufacturing the Future: Concepts, Technologies & Visions

Figure 14shows the execution of skills in the hierarchy of coalitions shown on
the left part of the figure. It is considered that CA1 requests the complex skill
s7, which is offered to coalition 1 by coalition 2. Furthermore, s7 is composed of
s4 and s6, offered to coalition 2 by MRA 2 and MRA 3 respectively. When CA1
needs to execute its skill s7, due to, for instance, a higher-level request, the
agent finds out in the coalition’s MCC that CA2 offered that skill. Then CA1
sends a REQUEST service command asking CA2 to execute skill s7, since it is
offered by coalition 2. When CA2 receives the request it validates its origin by
looking in the various contracts stored in membership contracts to whose coa-
lition or coalitions this skill had been offered to. Next, the leaders in the set of
membership contracts in which the skill is offered are checked to validate the
request. After this validation, the CA1 decomposes the requested skill into its
basic components (s4 and s6), and, then, after verifying which agents offered
them, starts sending the requests according to the complex skill structure.
When MRA 2 finishes the execution of s4 it replies to CA2 with an INFORM
service command or a FAILURE service command (not shown in the figure),
depending on, respectively, if the request was successfully accomplished, or
not. After receiving the INFORM message for the first request (s4) CA2 sends
the REQUEST service command to MRA 3 asking for s6 in a way similar to s4.
After CA2 receives the s6 INFORM message from MRA 3, it sends an INFORM
service command to CA1 informing that its request for s7 has been success-
tully achieved.

....................................................

/Coordinator: CA1

!/ Members: TE\%

{ MRA1: si1,s2 E—z
i CA2:s6,s7

SCAmembersl,l = {s1,52,56,57}

Rules for Skill
Generation
s7 =f(s6,s4)

Coalition1
Contract

AN

SCAZZZ{S3,S4,S5,S6,S7} \\\
SCAgenemtedL2 = {S7} !
SCAoffered 221 {s6,57}

\26

/" Coordinator: CA2
/. Members: =)
/ MRA2: s3,54 e

MRA3: s5,s6

Coalition2
Contract

Figure 14. Skills requests in a hierarchy of coalitions



The Cobasa Architecture as an Answer to Shop Floor Agility 67

1 1
1 1
M REQUEST skill 571) I i
1

1

1

:

1

1
1
]
1
1
1
1
1
i
[T REQUEST skill s47) :
1
1
1
]
]
1
1
1
1
1

cAl Cal ‘ TRAZ ‘ | MRAS |

INFORM skill s4()

F--I

1
REQUEST skill s5()

INFORM skill $5()
T e LT Fo----m---

1
i i
INFORM skill s7) ! !
oo : |
1 1
1 1
1 1
1 1

Figure 14. (Continued.) Skills requests in a hierarchy of coalitions

Although abnormal execution situations are not shown, it is important to
know when they happen:

1. An agent does not answer a valid request addressed to it from its coalition
leader.

2. An agent refuses to execute a valid request from its coalition leader.

3. A request command was not successfully accomplished.

In the first and second situations the agent is immediately expelled from the
coalition. The coordinator does this by asking the faulty agent to breach its
coalition contract. Although this extreme situation rarely happens, it is consid-
ered to be showing agents that the act of refusing something promised on a
contract has serious consequences. Eventually the faulty agent asks for user
attention after such a situation happens. The third abnormal situation is when
the agent who was asked to execute an offered skill replies with a FAILURE
message, which denotes that for some reason the agent could not successfully
execute the command. The reason is indicated in the message content. When-
ever the coalition leader (CA) receives such a message, it first verifies the rea-
son and then decides accordingly. If the reason is acceptable, the CA tries to



68 Manufacturing the Future: Concepts, Technologies & Visions

find an alternative solution using an error recovery strategy. If the reason is
not acceptable the error is so serious that it needs the attention of a user.

5. Practical Implementation

The CoBASA architecture was validated in the NovaFlex pilot assembly cell
(Figure 15), which is composed of two robot cells, one automatic warehouse
and various conveyors connecting the two robot cells.

Figure 15. Célula NovaFlex

5.1 Development platform and CoBASA prototype

The JADE - Java Agent Development framework (Bellifemine et al. 2001; JADE
2001) was chosen for the experimental work mainly because it is an open
source FIPA compliant platform, provides good documentation and support,
and it is also recommended by the experience of other research groups with
whom the authors have close relationship. Its use of Behaviours, and the easy
connection to JESS rule processing engine (Jess 2000) helps in reducing the
programming effort. Moreover JADE, implements the FIPA-ACL agent com-
munication language. Another interesting feature of JADE is the functionalities



The Cobasa Architecture as an Answer to Shop Floor Agility

69

provided to manage the community of agents. It includes a Remote Monitoring
Agent (RMA) tool, which is used to control the life cycle of the agent platform,
and an agent for white pages and life cycle services (Agent Management Service

- AMS).

WHMA@pcGﬂDSSNADE - JADE Remote Ag... =] B4

File Actions Tools Help

?

I.-!

& BEOEY &

@ [ Main-Caontainer
Q dfigdpc-3:10993/JADE
# ams@pc-3:1099/JADE
Q REhaAGpe-3:1099/ADE
Q dalgape-31099/0A0E
@ ] Container-1
#7 cluster@pc-3: 1099/4ADE
@ ) Container-3
m broker@pc-3:1098/JA0E

| 8.

3

X JADE
1173701 6:55 PM: THFORM recy from cluster@pc-3: 1099 /JADE
1173701 6:55 PM: THFOBM sent to clusterdpc-3: 1099 /JADE
1173701 6:54 FM: AGREE zent to cluster@pc-3: 1099/ JADE
1173701 6:54 FM: BEQUEST recy from clusteriEpc-3:1099/JADE
1173701 6:51 PM: THFORM zent to cluster@pc-3: 1099 /JADE
1173701 6:53 FM: QUERY-IF recy from clusteri@pc-3:1099 /JADE
113701 6:53 PM: RAGREE recr from cluster@pc-3:1099fJADE
6:" : cluster@pc-3: 1099 /JADE
1173701 6:49 PM: recry from cluster@pc-3:1099/JADE
1173701 6:49 PM: =zent to cluster@pc-3: 1099 /JADE
1173701 6:47 PH: sent to cluster@pc-3: 1099 /JADE
1173701 6:45 PH: recy from cluster@pc-3:1099 /JADE
1173701 6:45 PM: sent to cluster@pc-3: 1099 /JADE
1173701 6:43 PH: recy from cluster@pc-3:1099/JADE
1173701 6:43 FM: recy from clusteri@Epc-3:1099/JADE
11, B

Figure 16. JADE Monitoring tool and messages between the Cluster and the Generic

Agent

In Figure 16 (left hand side) the JADE monitoring tool shows the three exam-
ple agents of the architecture. The agent address is da0@pc-3:1099/JADE. Al-
though all agents were running in the same platform pc-3, this is not at all

mandatory. The right hand side of Figure 16 shows the sequence of messages



70 Manufacturing the Future: Concepts, Technologies & Visions

between the cluster manager (CMgA) and a CA/MRA. This specific case shows
the registering sequence in the cluster of two MRAs.

Figure 17 shows the main user interface of the agent (CA/MRA) (left part). The
right part shows the window that is opened when the user clicks the cluster
button. In this window the user verifies the cluster adhesion contract (Figure
18), asks the cluster manager to update the agent’s credits and skills, and can
terminate the agent’s participation in the cluster (dischargeByFrustration but-
ton).

The agent’s interface lets the user access other windows related to its participa-
tion in coalitions as well as its execution phase.

CBX

Agent Interface

§

Cluster Options

| Contract | | Update Credits |
‘ Update Skills | | Discharge by Frustration |

Figure 17. Agent interface and cluster options window

Figure 19 is the basic GUI of the broker. When the user chooses a candidate by
selecting it (left column of available members), the broker asks the cluster
manager for information about the selected agent. The figure shows that the
cluster has five types of manufacturing components: robots, grippers, feeders,
fixers, and coordinators (the tabs). When the user clicks on the “tabs” (options)



The Cobasa Architecture as an Answer to Shop Floor Agility 71

the members of that type existing in the cluster appear, and when the name is
clicked the skills appear in the small window. The right part of the window
shows the agents that have been chosen. In this case agents of type robot,
teeder, gripper, and a CA, were chosen. When the user clicks on one type, the
specific agent names appear in the middle column. In addition if the names in
the middle column are selected the skills that were chosen to be brought in to
the coalition are shown.

(z? Cluster Adhesion Contract
Name Terminate Contract For Breach Services
| nome | |lerminaleContractForElreachlnst| clusterCapahilitylnst -~

askFarSkillsinst
askFarConsartialnst

General Discharge By Frustration askForMembersinst -
| adhesionGenerallnst | | dischargeByFrustrationinst |
Consideration Services
atiglnst
Logistics Discharge By Performance
| achesionLogistionet | | sischargemyPerformancelnst

Figure 18. Cluster adhesion contract window

/‘ \
Create Coalition
Cluster Types Chosen Types and Skills to Coalition

Tonot [ gripper | Teeder [Tixer | freeCoord|
Tyes Agents skills
Names skils Chosen Skills
ronot ki 2000@alo;109 [changeoverinst
freeCoordAg! aripper 100
fieeCoord
Remove
Credits Remove
otherAgCreditsinst

Return to Broker Main Window

Figure 19. Create coalition/consortium in the broker



72 Manufacturing the Future: Concepts, Technologies & Visions

5.2 Agentification

Connecting the physical controller to the AMI could be an easy task if every
physical component was controlled directly by its own agent. However, out-
dated legacy controllers with closed architectures control most of existing
physical components. To integrate these legacy components in the agents’
framework it is necessary to develop a software wrapper to hide the details of
each component. The wrapper acts as an abstract machine to the agent supply-
ing primitives that represent the functionality of the physical component and
its local controller. The agent machine interface (AMI) accesses the wrapper

using a local software interface (proxy), where all services of the wrapper are
defined.

Figure 20. Physical component integration

Figure 20 shows a high level representation of an operative agent indicating
how the wrapper integrates a manufacturing component (robot).

In previous works, the wrapper used to integrate physical components during
the agentification process has been successfully implemented using two-tier
client-server architecture (Barata et al. 1996, Camarinha-Matos et al. 1997;
Camarinha-Matos et al. 1996). Recently, the wrappers for our NovaFlex
manufacturing system, which is described in (Barata and Camarinha-Matos



The Cobasa Architecture as an Answer to Shop Floor Agility 73

1994), were developed using DCOM.

The Agent Machine Interface implementation is generic, i.e. an AMI can be
connected to different distributed components (proxy) just by configuring
what are the services of that proxy and the name/address of the component.
The generic agent tied to the AMI behaves in a slightly different way from
other agents, at the initialisation phase. In this situation the GA reads from a
contract representation file an instance of a consortium contract between itself
and the AMI, and establishes a coalition. The member promise part (AMI) of
the contract contains all the services supplied by the AMI. The agents not con-
nected to an AMI, on the other hand, are configured not to read any contract
representation file at initialisation time. This approach is very flexible because
it permits to create (generate) any type of manufacturing agent just by config-
uring an AMI and the consortium contract between the agent and the AMI.
The only part of the system that is dependent of the physical component is of
course the wrapper.

6. Conclusions

The CoBASA system offers an approach to introduce agility at the shop floor
control level. The prototype proved the feasibility of the proposed approach,
which seems able to provide a solution to rapid reengineering of shop-floor
systems. Based on the concept of generic agent and its various behaviours
regulated by contracts, it is possible to change the behaviour of a complex
shop floor through the definition of new contracts (configuration) without the
need to reprogram the control system. Current developments are devoted to
assess the level of agility of the solution and to partially automate the broker-
age activities.

7. References

Almeida, C. F. (2000). Contratos I - Conceitos; Fontes; Formacdo, Almedina, Coimbra.

Barata, J., and Camarinha-Matos, L. M. (1994). "Development of a FMS/FAS Sys-
tem." Studies in Informatics and Control, 3(2-3), 231-239.

Barata, J., and Camarinha-Matos, L. M. (2000). "Shopfloor Reengineering To Sup-
port Agility in Virtual Enterprise Environments." E-Business and Virtual
Enterprises, L. M. Camarinha-Matos, H. Afsarmanesh, and R. Rabelo, eds.,
Kluwer Academic Publishers, London, 287-291.



74 Manufacturing the Future: Concepts, Technologies & Visions

Barata, J., and Camarinha-Matos, L. M. (2002). "Contract Management in Agile
Manufacturing Systems." Collaborative Business Ecosystems and Virtual
Enterprises, L. M. Camarinha-Matos, ed., Kluwer Academic Publishers,
New York, 109-122.

Barata, J., Vieira, W., and Camarinha-Matos, L. M. "Integration and MultiAgent
Supervision of Flexible Manufacturing Systems." Mechatronics'96 - The 5th
UK Mechatronics Forum International Conference, Guimaraes - Portugal, 185-190.

Bellifemine, F., Poggi, A., and Rimassa, G. (2001). "Developing Multi-Agent Sys-
tems with a FIPA-Compliant Agent Framework." Software-Practice &
Experience, 31(2), 103-128.

Camarinha-Matos, L. M., Barata, ]., and Flores, L. (1997). "Shopfloor Integration
and MultiAgent Supervision." I. Rudas, ed., 457-462.

Camarinha-Matos, L. M., Seabra Lopes, L., and Barata, J. (1996). "Integration and
Learning in Supervision of Flexible Assembly Systems." IEEE Transactions
on Robotics and Automation (Special Issue on Assembly and Task Planning),
12(2), 202-219.

Conte, R., and Dellarocas, C. (2001). "Social Order in Multiagent Systems." Multi-
agent systems, artificial societies, and simulated organizations, Kluwer
Academic Publishers, Boston, ix, 239.

Ferber, J. (1999). Multi-Agent Systems : an Introduction to Distributed Artificial Intelli-
gence, Addison-Wesley, Harlow.

FIPA. (2001). "FIPA Request Interaction Protocol Specification." XC00026F, FIPA -
Foundation for Intelligent Physical Agents, Geneve.

FIPA. (2002). "The Foundation for Intelligent Physical Agents."

Franklin, S., and Graesser, A. (1997). "Is it an Agent or Just a Program? A Taxon-
omy for Autonomous Agents." Intelligent Agents III - Agent Theories, Ar-
chitectures, and Languages, J. P. Muller, M. Wooldridge, and N. R.
Jennings, eds., Springer-Verlag, Berlin, 21-35.

Giampapa, J. A., Paolucci, M., and Sycara, K. "Agent Interoperation Across
Multagent System Boundaries." Fourth International Conference on Autono-
mous Agents (Agents 2000), Barcelona - Spain.

Goldman, S. L., Nagel, R. N., and Preiss, K. (1995). Agile competitors and virtual or-
ganizations: strategies for enriching the customer, Van Nostrand Reinhold,
New York.

Gullander, P. (1999). "On Reference Architectures for Development of Flexible Cell
Control Systems," PhD Thesis, Gotenborg University, Sweden.

Huff, B. L., and Edwards, C. R. (1999). "Layered Supervisory Control Architecture
for Reconfigurable Automation." Production Planning & Control, 10(7), 659-670.



The Cobasa Architecture as an Answer to Shop Floor Agility 75

JADE. (2001). "http://sharon.cselt.it/projects/jade/."

Jess. (2000). "http://herzberg.ca.sandia.gov/jess/."

Johnson, S. (2001). Emergence, Penguin group, London.

Klusch, M., and Sycara, K. (2001). "Brokering and Matchmaking for Coordination
of Agent Societies: A Survey." Coordination of Internet Agents: Models,
Technologies, and Applications, A. Omicini, F. Zambonelli, M. Klusch, and
R. Tolksdorf, eds., Springer-Verlag, Berlin, xxvii, 523.

Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritchow, G., Ulsoy, A. G., and Van
Brussel, H. (1999). "Reconfigurable Manufacturing Systems." CIRP Annals,
48(2).

McKendrick, E. (2000). Contract Law, PALGRAVE, New York.

Mehrabi, M. G., Ulsoy, A. G., and Koren, Y. (2000). "Reconfigurable Manufactur-
ing Systems: Key to Future Manufacturing." Journal of Intelligent Manufac-
turing, 11, 403-419.

Onori, M. (1996). "The Robot Motion Module: A Task-Oriented Robot Program-
ming System for FAA Cells," PhD thesis, The Royal Institute of Technol-
ogy, Stockholm.

Payne, T., Singh, R., and Sycara, K. "Facilitating Message Exchange through Mid-
dle Agents." The First International Joint Conference on Autonomous Agents
and Multi-Agent Systems.

Protégé-2000. (2000). "http://protege.stanford.edu.”

Sycara, K., Decker, K., and Williamson, M. "Middle-Agents for the Internet."
IJCAI-97 International Conference on Artificial Intelligence, Nagoya - Japan.

Vos, J. A. W. M. (2001). "Module and System Design in Flexible Automated As-
sembly," PhD Thesis, Delft University Press, Delft.

Weiss, G. (1999). "Multiagent Systems : a modern approach to distributed artificial
intelligence." MIT Press, Cambridge, Masschusetts, xxiii, 619.

WEFMC. (2002). "Workflow Management Coalition."

Wiederhold, G. (1992). "Mediators in the Architecture of Future Information Sys-
tems." IEEE Computer Systems, 25(3), 38-49.

Wong, H. C, and Sycara, K. "A Taxonomy of Middle-Agents for the Internet."
Fourth International Conference on MultiAgent Systems, 465-466.

Wooldridge, M., and Jennings, N. R. (1995). "Intelligent Agents - Theory and Prac-
tice." Knowledge Engineering Review, 10(2), 115-152.

Wooldridge, M. J. (2000). Reasoning about Rational Agents, MIT Press, Cambridge,
Massachusetts; London.

Wooldridge, M. J. (2002). An Introduction to Multiagent Systems, J. Wiley, New
York.



76 Manufacturing the Future: Concepts, Technologies & Visions

Zurawski, R., and Zhou, M. C. (1994). "Petri Nets and Industrial Applications - a
Tutorial." IEEE Transactions on Industrial Electronics, 41(6), 567-583.

Zwegers, A. (1998). "On Systems Architecting - a study in shop floor control to de-
termine architecting concepts and principles,” PhD Thesis, Eindhoven
Technical University, Eindhoven - The Netherlands.



3

Development of Holonic Manufacturing
Execution Systems

Fan-Tien Cheng, Chih-Feng Chang and Shang-Lun Wu

1. Introduction

Today, most semiconductor manufacturing companies utilize Manufacturing
Execution Systems (MES) (MacDonald, 1993; Samanish, 1993; Nguyen, 1996;
Scatt, 1996, MESA, 1997) to deliver information to optimize production activi-
ties from order booking through design, production, and marketing to realize
the agile manufacturing enterprise. The MES market is composed of several
vendors providing an integrated suite of application products (called an inte-
grated MES), and 200, or so, vendors offering individual point solutions (Scott,
1996). An integrated MES may have many advantages, such as a single-logic
database, rich functionality, well-integrated applications, and a single model of
factories, products, and manufacturing processes. However, integrated MES’s
are sometimes regarded as monolithic, insufficiently configurable, and difficult
to modify. Point solutions can offer best-in-class capabilities for a particular
function (such as cell controller, work-in-process (WIP) tracking, statistical
process control, scheduling, etc.); the end result is multiple databases, multiple
models, and integration nightmares plus maintenance costs (McGehee, et al.
1994; Kadar et al., 1998).

In order to solve the problem of the dichotomy between the integrated MES
and point solutions, the concept of the integratable MES has been proposed
(Scott, 1996). With the integratable MES, each application can be both a self-
sufficient point solution, and can be integrated into a larger suite of products.
Therefore, the integratable MES offers an open, modularized, configurable,
distributed, and collaborative environment such that rapid implementation,
complexity reducing, agility, cost-effective integration, easiness of use, and
ownership cost reducing may be achieved (McGehee et al., 1994; Kadar et al.,
1998).

McGehee et al. (1994) presented the Texas Instruments Microelectronics Manu-
facturing Science and Technology (MMST) CIM System Framework, which
was based on open-distributed system and object technologies. This re-

77



78 Manufacturing the Future: Concepts, Technologies & Visions

engineering effort used the OMT methodology models (Rumbaugh et al., 1991)
to express the MMST Framework. Following the MMST CIM System Frame-
work, SEMATECH developed the CIM Framework Specification version 2.0
(SEMATECH, 1998), which is an abstract model for typical semiconductor
manufacturing systems.

Several approaches to distributed manufacturing architectures were surveyed
by Kadar et al. (1998), and their fundamental features were highlighted. More-
over, an object-oriented simulation framework for development and evalua-
tion of multi-agent manufacturing architectures was introduced by Kadar et al.
(1998). Further, Cheng, et al. (1999) applied the distributed object-oriented
technologies to develop the MES Framework. This framework has the charac-
teristics of openness, modularization, distribution, reconfigurability, interop-
erability, and easy maintenance.

Common automatic manufacturing systems have fragility and security prob-
lems that also need to be seriously taken into consideration, however these two
issues are not considered in the MES frameworks mentioned above. This paper
applies the concepts of holon and holarchy to redesign a Holonic Manufactur-
ing Execution System (HMES) Holarchy that not only possesses the character-
istics of the MES Framework (Cheng et al., 1999) but also has the properties of
failure recovery and security certification.

The concepts of holon and holarchy are originated from mechanisms of social
organizations and biological organisms (Valckenaers et al., 1994; Tonshoff et
al., 1994; HMS; Van Leeuwen & Norrie, 1997). They have the characteristics of
intelligence, autonomy, coordination, reconfigurability and extensibility. Based
on these characteristics, the major weakness in the automatic manufacturing
systems, fragility, is removed so that the failure recovery feature is attained.
Security certification also can be considered.

A typical deployment diagram for HMES in the semiconductor packaging
plant is displayed in Fig. 1. HMES includes Shop-Floor Holon, Scheduling
Holon, WIP Holon, Data Warehouse, Material Handling, Equipment Holon,
Equipment, AGV, AS/RS and so on. The HMES Holarchy will be developed by
a systematic approach in this paper. For demonstration purpose, one of the
functional holons - WIP Holon - will be designed and implemented. Most of
the studies concerning holonic manufacturing systems (Markus et al., 1996;
Ramos, 1996; Hino & Moriwaki, 1999) focus on factory architecture and/or
how to assign a production task to each manufacturing holon. The purpose of
this paper is to propose a systematic approach for developing a workable



Development of Holonic Manufacturing Execution Systems 79

Holonic Manufacturing Execution System (HMES) by applying up-to-date
software and information technologies. The systematic approach is started
with system analysis by collecting domain requirements and analyzing do-
main knowledge.

Data Shop-Floor WIP Scheduling
Wa"Ehous‘l Holon Holon Holon
— - - =
=== ; pi————t AN /@%\

Equipment
olon

Material

Handling Holon

Figure 1. Deployment Diagram for Holonic Manufacturing Execution Systems

The HMES Holarchy is designed by the procedure of constructing an abstract
object model based on domain knowledge, partitioning the application do-
main into components, identifying generic parts among components to form
the Generic Holon, developing the Generic Holon, defining holarchy messages
and the holarchy framework of HMES, and finally designing functional holons
based on the Generic Holon. The technologies (Chen & Chen, 1994; Gamma et
al., 1995; Mowbray, 1995; Orfali et al., 1996; Sparks et al., 1996) of distributed
object-oriented approach, design pattern, framework, N-tier client/server ar-
chitecture, and component software are applied to develop the entire HMES
and its functional holons.

This paper is organized as follows: Section 2 introduces the characteristics of
holon and holarchy. Section 3 describes the development procedure of HMES.
This development procedure includes four stages: system analysis, holarchy
design, application construction, and system integration and testing. Among
those stages, holarchy design needs most elaboration and it is explained in de-



80 Manufacturing the Future: Concepts, Technologies & Visions

tail in Section 4. Section 5 demonstrates WIP holon design. Section 6 describes
application construction and system integration. Section 7 makes comparisons
among Legacy MES, Framework MES, and Holonic MES. Finally, this paper
ends with summary and conclusions.

2. Characteristics of Holon and Holarchy

Twenty-six years ago, the Hungarian author and philosopher Arthur oestler
proposed the word holon to describe a basic unit of organization in biological
and social systems. A holon, as Koestler devised the term, is an identifiable
part of a system that has a unique identity, yet is made up of sub-ordinate
parts and in turn is a part of a larger whole.

The strength of holonic organization, or holarchy, is that it enables the con-
struction of very complex systems that are nonetheless efficient in the use of
resources, highly resilient to disturbances (both internal and external), and
adaptable to changes in the environment in which they exist. All these charac-
teristics can be observed in biological and social systems.

The stability of holons and holarchies stems from holons being self-reliant
units, which have a degree of independence and handle circumstances and
problems on their particular level of existence without asking higher level
holons for assistance. Holons can also receive instruction from and, to a certain
extent, be controlled by higher-level holons. The self-reliant characteristic en-
sures that holons are stable and able to survive disturbances. The subordina-
tion to higher-level holons ensures the effective operation of the larger whole.
The task of the Holonic Manufacturing System (HMS) consortium is to trans-
late the concepts that Koestler developed for social organizations and living
organisms into a set of appropriate concepts for manufacturing industries. The
goal of this work is to attain in manufacturing the benefits that holonic organi-
zation provides to living organisms and societies, e.g., stability in the face of
disturbances, adaptability, and flexibility in the face of change, and efficient
use of available resources.

As an initial step, the HMS consortium developed the following list of defini-
tions (among others) to help understand and guide the translation of holonic
concepts into a manufacturing setting (Van Leeuwen & Norrie, 1997; Ulieru,
1997):

a) Holon: An autonomous and cooperative building block of a manufactu-
ring system for transforming, transporting, storing and/or validating in-



Development of Holonic Manufacturing Execution Systems 81

formation and physical objects. The holon consists of an information pro-
cessing part and often a physical processing part. A holon can be part of
another holon.

b) Autonomy: The capability of an entity to create and control the execution
of its own plans and/or strategies.

c) Cooperation: A process whereby a set of entities develops mutually ac-
ceptable plans and executes these plans.

d) Holarchy: A system of holons that can cooperate to achieve a goal or ob-
jective. The holarchy defines the basic rules for cooperation of the holons
and thereby limits their autonomy.

e) Holonic Manufacturing System (HMS): A holarchy that integrates the
entire range of manufacturing activities from order booking through de-
sign, production, and marketing to realize the agile manufacturing en-
terprise.

f) Holonic Attributes: The attributes of an entity that make it a holon. The
minimum set is autonomy and cooperatives.

Based on the above definitions, it is clear that holonic manufacturing systems
can be regarded as a unified way to approach the hierarchical control of any
manufacturing unit from the production process to the whole enterprise level.
In this work, the concepts of holon and holarchy are adopted to develop the
HMES Holarchy so that the functional holons of the HMES can possess the
properties of intelligence, autonomy, cooperation, reconfigurability, and ex-
tensibility. In addition, the functional holons of the HMES Holarchy can have
the capabilities of failure recovery and security certification.

3. Development Procedure of Holonic Manufacturing Execution Systems

As depicted in Fig. 2, the development procedure of HMES includes four
stages: (a) system analysis, (b) holarchy design, (c) application construction
and (d) system integration and testing. Note that the final step of holarchy de-
sign stage is functional holon design and implementation.

The first stage, system analysis, concentrates on collecting domain require-
ments and analyzing domain knowledge. The second stage, the most impor-
tant stage, is holarchy design, which is further divided into seven steps as
shown in Fig. 2.



82 Manufacturing the Future: Concepts, Technologies & Visions

Collect Domain Requirements )

i System Analysis

Analyze Domain Knowledge

i

C Construct Abstract Object Model

(
(
[ v
(
(
(

Modify _

Partition Application Domain into
Components

i

Identify Generic Functions among
Components

i

Develop Generic Holon

Holarchy Design

i

Define Holarchy Messages

s

Define Holarchy Framework of
HMES

i

CDesign Functional Holons Based o

Modify

Generic Holon Functional Holons' Design and Implementation

¥

Construct Applications

i

( Application Construction
( Integrate System and Test It

s it S i 1

System Integration and Testing

Figure 2. Development Procedure of Holonic Manufacturing Execution Systems

The system’s object model is constructed according to the domain knowledge
and requirements. The application domain is partitioned into components that
will eventually become various functional holons. Within these components,
their generic functions are further identified and extracted. Based on these ge-
neric functions, the so-called Generic Holon is developed. Holarchy messages
among functional holons are defined and holarchy framework of HMES (also
denoted HMES Holarchy) is developed. Finally, various functional holons can
be designed by inheriting the Generic Holon and implementing the holarchy
messages. The third stage of HMES development is application construction.
Finally, the development procedure ends with system integration and testing.

4. Holarchy Design

Seven steps are included in the holarchy design stage. They are explained be-
low.



Development of Holonic Manufacturing Execution Systems 83

4.1 Constructing an Abstract Object Model

A typical deployment diagram for HMES is shown in Fig. 1. It is well known
that MES is composed of several functional modules that handle specifics, e.g.
material, equipment, labor, and planning (MacDonald, 1993). The abstract ob-
ject model is constructed as in Fig. 3(a) (Cheng et al., 1999).

The four key elements of a factory are labor, material, equipment, and work-
in-process (WIP). Each element is managed by its specific managing holon. All
four of these managing holons are controlled by the Shop-Floor Holon. The
Shop-Floor Holon also dispatches orders to the Scheduling Holon. The Sched-
uling Holon dispatches jobs to the Labor Holon, Material Holon, Equipment
Holon, and WIP Holon.

4.2 Partitioning Application Domain into Components

To design a distributed and integratable MES, its application domain is parti-
tioned systematically as depicted in Fig. 3(b). In addition to the data ware-
house, the system is divided into six components.

Factory Data
Area Warehouse

9 IR

Support all objects to

They are labor management, material management, equipment management,
WIP management, scheduling, and shop-floor management components. The

(a) Abstract Object Model

0---5 0-- % 0.k 0-- access data
Labor Material Equipment WIP
w| 0-k w | 0k w | 0 w| 0%
S S S S Controls | Shop-Floor
© ®© ®© ©
g g g S Holon
= 0--k = 0--3k = Q- = 0.k
Labor Material Equipment wIP Dispatches
Holon Holon Holon Holon orders
0.k 0-- 0.k 0---3k
Scheduling
Dispatches jobs Holon




84 Manufacturing the Future: Concepts, Technologies & Visions

labor, material, equipment, and WIP management components handle labor,
movements of materials, process equipment, and WIP tracking, respectively.
The scheduling component takes care of scheduling and dispatching tasks of
the system. The shop-floor management component is in charge of system-
level services and management, i.e., order management, life-cycle services, col-
lection services, and query services. Each management component has a spe-
cific functional holon, which serves as the manager of that specific manage-
ment component

Factory Data
Area Warehouse
Support all objects
7 0...% AV 0...% ™ 0..% N 0..% " to
access data
Labor Material Equipment WIP 77 ShopFloor N
- H Management 3
Labor 0...% Material 0..% Equipment |0...* WIP 0..% H Component H
Management] Management Management Managemen i i
Component Component Component Component f H
Controls || Shop-Floor | |
3 3 2 3 i Holon i
o o] o o 2 /i
© @ © @ N\, 4
c c c c N e
© © © [ P S R
= 0..% s 0..% s 0..% = 0..% "
T T Dispatches
Labor Material Equipment WIP orders
Holon Holon Holon Holon e e——— -
\ [ . 0x 7 0% Or_ N
i . :
{ | Scheduling | i
H :
Dispatches jobs ‘ Holon i

$ i
\\fchedullng Componer}}-’

Lt g

(b) Partitioning Application Domain into Components

Figure 3. Object Model of an HMES

As mentioned previously, each management component needs a specific func-
tional holon to serve as the manager of that component.

4.3 Identifying Generic Functions among Components

The purpose of this paper is to apply the concepts of holon and holarchy to de-
sign the HMES Holarchy and functional holons that not only possesses the
properties of the MES Framework (Cheng et al., 1999) but also has the proper-
ties of failure recovery and security certification. Therefore, based on the prin-



Development of Holonic Manufacturing Execution Systems 85

ciple of software reuse (Chen and Chen, 1994; Cheng et al., 1999), the Generic
Holon which handles the generic functions of functional holons shall first be
devised. After judicious consideration, the authors conclude that in addition to
the communication infrastructure, the Generic Holon shall possess security
mechanisms, search mechanisms, and intelligence mechanisms to deal with
the generic functions that emphasize failure recovery and security certification.

4.4 Developing Generic Holon

The requirements for developing the Generic Holon are:

a) It can construct the communication infrastructure for communication,
collaboration, and extensibility purposes.

b) It provides the intelligence mechanism for exception diagnosis.

c) It provides the search mechanism for collaboration and reconfigurabili-
ty.

d) It provides the security mechanism for security check and encryption /
decryption.

e) It provides the ability to establish database services for information sto-
rage / retrieval.

According to these requirements and following the development procedure
for object-oriented systems (Eriksson and Penker, 1998, Huang et al., 1999;
Cheng et al., 2002), the Generic Holon’s class diagram and internal architecture
is obtained as shown in Fig. 4. For further illustration, please refer to (Lin,
2000; Chang, 2000) for the detailed designs of the Generic Holon.

Observing Fig. 4(a), the basic structure of the class diagram is HolonKernel
manages/uses HolonConfiguration that consists of CORBAlInterface, Securi-
tyMechanism, LocalDatabase, and KnowledgeBase. By inheriting HolonKer-
nel, a functional holon can possess all the characteristics of the Generic Holon.
CORBAInterface is designed for constructing a communication infrastructure
and achieves the collaboration platform. In order to establish secure communi-
cation, the SecurityMechanism is created for handling all the operations of se-
curity. KnowledgeBase constructs a search engine for searching desired ser-
vices and a reasoning mechanism for exception diagnosis. The LocalDatabase
sets the connection of database for SecurityMechanism and KnowledgeBase to
access the database. On the other hand, the internal architecture of the Generic
Holon is depicted in Fig. 4(b).



86 Manufacturing the Future: Concepts, Technologies & Visions

'.---------------------------------------------------..

.
r) . .
{ Holon Configuration
0
: CORBAInterface SecurityMechanism LocalDatabase
0
: InitialORB() Validate () retrive—| Connection()
0 CreatObject() Encrypt() RetrieveData()
: CloseObject() Decrypt() UpdateData()
1 )
)

............ ..............-.......... use

use manage/ §,

.............................'

HolonKernel :
: KnowledgeBase
g’g;tgft SetlnitialService() .
ORB SetDBConnection() use : SearchEngine()
SetRegistration() ¢ Diagnose()
SetEncrypf() : AddRulg)
SetDecrypt() 0 Match()
SetExceptionTest() " RuleFilter()
SetSearchData) [ 0
............."
(a) Class Diagram
Security <:_ Local Q_ Knowledge
Mechanism Database Base
HolonKernel
| CORBAInterface |

L
— |
(b) Internal Architecture

Figure 4. Class Diagram and Internal Architecture of Generic Holon

Observing Fig. 4(b), the Generic Holon owns HolonKernel to communicate
with other holons by CORBAlnterface. Using LocalDatabase, the Generic
Holon can maintain autonomous properties and necessary information. Securi-
tyMechanism can retrieve the related information through LocalDatabase and
then check user’s authorization for security certification. The intelligence



Development of Holonic Manufacturing Execution Systems 87

mechanism for exception diagnosis purposes of the Generic Holon is mainly
considered in knowledgeBase that also needs the support of LocalDatabase.
After completing the design of the Generic Holon, any functional holon can be
designed by inheriting Generic Holon to obtain generic properties of holon
and then adding the specific functions of that functional holon.

4.5 Defining Holarchy Messages

After partitioning the application domain into components, we need to define
holarchy messages among all the functional holons so that interoperability and
collaboration among all the functional holons are enabled. According to Fig. 1
and Fig. 3(b), the holarchy messages of HMES are defined as in Fig. 5.

Move lot to AGV g
Ll
Order done P Move lot to AS/RS
<
External User o > . :
2 AS/RS Material Handling o AGV A
§ g E ]{ o |z
8 8 g’ g, g: o|o o o
a| |3 g 33 22 44
3 s |9 %8 9 o
BE CREE-
4 % = 3|3 ¢ =
al |9 3 =l ¢°
9 glg
g9 Ea
Order done < 3 2 g 5
ispatch job 8 |S 5o
. » o 5 Q|2
Dispatch order i ole g > o 2|
SchedulingHolon | _|_, [°°* s |z =
3|3 (9P c -
® olo %@
o ~ % |3€ L
g g5 |3 irfish jop
. = - 853 .
Shop-Floor Holon i 28 Equipment Holon I
e 3%
0 5.6 o
& g5 co
38 g2
8c L
4_/ o~ e Robot
/ 3 2 <
Get item master, BOM £ &
<l 3 Q
Getitem master, w 23
equipment status, and e 3
WIP Holo! order status 5
N I
Update lot status ¢
Save order information
»
h Data Warehouse )
J

Figure 5. Defining Holarchy Messages



88 Manufacturing the Future: Concepts, Technologies & Visions

The Shop-Floor Holon receives a place an order message from an external user
and the Shop-Floor Holon will reply report order done when the order is done.
Based on the received order, the Shop-Floor Holon will send dispatch order to
the Scheduling Holon and the Scheduling Holon will reply order done if the
order is finished. The Shop-Floor Holon sends save order information to the
Data Warehouse to save all the order information. Similarly, the interfacing
holarchy messages of Scheduling Holon, WIP Holon, Equipment Holon, Data
Warehouse, and Material Handling (which includes AS/RS, AGV, and robot)
can be defined as shown in Fig. 5.

4.6 Defining Holarchy Framework of Holonic Manufacturing Execution
Systems

After the development of the Generic Holon and holarchy messages, we are
ready to define the holarchy framework of HMES (or HMES Holarchy in
short).

—_—
Application 1 e o o Aol I
pplications
I
- - o Y
A A A
| other 1| Scheduling Shop-Floor Equipment wip Material
' Holon : Holon Holon Holon Holon Holon
1
| : Functional
i : Holons
: : Holarchy
|
|
1 v
] C . = —
.EGHH:EGIﬂ =G HI ||[EG H= EGIﬂ Eelﬂ v
RS ti= = =l —lI==fr—
by
R |
A\
A
Object Request Broker
CORBA
Infrastructure
‘
Services Facilities
_ v

Figure 6. Holarchy Framework of Holonic Manufacturing Execution Systems



Development of Holonic Manufacturing Execution Systems 89

The HMES Holarchy is illustrated in Fig. 6 which utilizes CORBA infrastruc-
ture (Orfali et al., 1996; OMG, 1998) as the system’s communication backbone.
Every functional holon shall inherit the Generic Holon so as to possess the
properties of a holon as well as the capabilities of failure recovery and security
certification. Then, specific functions of each functional holon can be added
individually to become a specific functional holon. The holarchy messages of
each functional holon can be specified by CORBA IDL (Interface Definition
Language) (Orfali et al., 1996, OMG, 1998). Therefore, each functional holon
can be integrated into the HMES Holarchy in a plug-and-play fashion.

This HMES Holarchy is expandable. As illustrated on the left side of Fig. 6,
other functional holon may also be integrated into the HMES Holarchy if this
functional holon inherits the Generic Holon and defines the functional holon’s
CORBA IDL by the expanded holarchy messages. Finally, applications of the
HMES can be easily constructed by invoking the related functional holons as
depicted on top of Fig. 6.

4.7 Designing Functional Holons

The final step of holarchy design is to design various functional holons based
on the Generic Holon. As mentioned in the previous sub-section, with the
HMES Holarchy architecture, it becomes straightforward to design a func-
tional holon by simply inheriting the Generic Holon, adding the functional
holon’s specific function, and defining its IDL based on the system’s holarchy
messages. In the following section, the WIP holon is selected as the example to
elaborate the design procedure of a functional holon.

5. WIP Holon Design

The functional requirements for WIP holons are:

a) It manages the life cycle of WIP objects.

b) It performs track-in and track-out operations and updates the cor-
responding WIP information in real-time.

c) It provides WIP information to users and other holons.

d) Its interfaces are in compliance with the HMES Holarchy.

e) It possesses the capabilities of exception recovery and security certifica-
tion.



90 Manufacturing the Future: Concepts, Technologies & Visions

Requirements (a) to (c) are the specific functions of WIP holons while Re-
quirements (d) and (e) are the common requirements for the components of
HMES Holarchy. It is natural to develop the WIP Holon by inheriting the Ge-
neric Holon first to take care of Requirements (d) and (e) and then considering
the specific requirements (a) to (c). Based on the above design principle and
following the development procedure for object-oriented systems (Eriksson
and Penker, 1998; Huang et al., 1999), the class diagram of the WIP Holon is
designed and shown in Fig. 7.

The upper portion of Fig. 7 is the Generic Holon that has been designed and il-
lustrated in Fig. 4(a). WIPManager, which is the primary role of the entire WIP
Holon, inherits the Generic Holon to accomplish Requirements (d) and (e).
WIPManager uses RecoveryManager to perform specific recovery operations.
WIPManager also manages the life cycle of WIP objects and is in charge of
track-in and track-out operations of all the WIP. A new WIP object is created
when a new lot arrives. The WIP object contains its own specific attributes
such as LotID, BOM, and ItemMaster, etc. A WIP object also performs its own
Trackin() Trackout() operations and invokes NewVariables() methods of BOM
and ItemMaster to obtain the associated production information. UserInterface
provides the necessary operations for external users to interface with the WIP
Holon.

Observing Fig. 7, the + sign before an operation means the operation is public,
and the — sign stands for private. In the WIPManager, public operations stand
for the IDL of the system; while in the UserInterface, public operations indicate
the available functions for external users.

State diagrams show all possible states and transactions of a system. A change
of state caused by an event is called a transition. Figure 8(a) illustrates the
states and transitions of the WIP Holon. Please refer to Fig. 7 and Fig. 8 when
reading the following explanation.

A user initiates the WIP Holon by invoking the Login() operation of UserInte-
face. If he passes the security certification, the WIP Holon will activate CORBA
services by calling SetlnitialService()of HolonKernel. Then, the system is ready
to receive WIP object’s creating commands.

In fact, the major functions of the WIP holon are how to trace and manage
WIP. We define WIP to be temporal objects, as such they have life cycles. Fig-
ure 8(b) is the state diagram of WIP life cycle.



Development of Holonic Manufacturing Execution Systems

91

e p—

-

CORBAInterface

I
1
i
1 | InitialORB()
i
1
1
[}

SecurityMechanism

Holon Configuration

-

~

LocalDatabase |

Connection()
RetrieveData()

CreatObject() Validate()
CloseObject() Encrypt() retrieve UpdateData()
\ Decrypt() / |
\\
S e e e e e N e e e e e ————————— - & S
N T
&
% HolonKernel N 1
i KnowledgeBase
construct | setinitialService() !
CORBA SetDBConnection() ! SearchEngine()
ORB SetRegistration() ! Diagnose()
SetEncrypt() [ AddRule()
SetDecrypt() ! Match()
SetExceptionTest() ! RuleFilter()
SetSearchData() N J
\~~ —‘l
9 Generic[Holon )
Userlinterface WIPManager
RecoveryManager
+ Login() + greateNwaIP()
+ Trackin() + Dopac‘;'”(z() - ReConnectLDBY()
+ Trackout() + Dolrackou ) - TryConnection()
+ Query() L — +Query() use - AlarmAGV()
- EnableTrackout() L + SendException() - AlarmASRS()
- EnableQuery() - KillRepository() - AlarmRobot()
bert S B © Vaidatiny
- ShowCheckResult() - SavelLog()
- ShowTrackoutResult() 9
- ShowQueryResult()
. manage |
. WIP
LotID : String = initval
Barcode : String = initval
StorageX : Integer = initval
BOM StorageY : Integer = initval ltemMaster

- NewVariables()

use

Quality : Integer = initval
Type : String = initval
Station : String = initval
BOM : Object = initval
ltemMaster : Object = initval
OrderlID : type = initval

- Trackin()

- Trackout()

- DestroyMe()

- GetStructure()

- CheckBOM&PS()

Figure 7. Class Diagram of WIP Holon

- NewVariables()




92 Manufacturing the Future: Concepts, Technologies & Visions

When WIPManager gets the message CreateNewWIP() from the Scheduling
Holon, a new WIP object is generated based on the data transferred from the
Scheduling Holon. WIP object uses NewVariables() operation in BOM to get
the contents of BOM. WIP object uses the same approach to obtain [temMaster
information. Then, WIP object gets order status and saves it. Up to this point,
initialization of WIP object is completed and it enters Wait for request state.

At Wait for request state, the WIP object can take commands, such as track-in,
track-out, and query. The query request will bring the WIP object to the Pro-
vide WIP status state and the WIP status is then sent to the requester. Track-
out and track-in commands will update the WIP status and store it to data-
base. During track-in operation, the WIP object will check if this current proc-
ess sequence is the last one or not. If it is not, just jumps back to Wait for re-
quest state. If it is the last process, this WIP object will be deleted and the
memory will be released. It thus completes the life cycle of a WIP object.

Note that, the initial Generic Holon architecture shown in Fig. 4 only specifies
the generic skeleton of the intelligence mechanism that consists of Know-
ledgeBase and LocalDatabase. After inheriting the Generic Holon to become a
part of the WIP Holon, its KnowledgeBase and LocalDatabase shall be trained
to contain the specific knowledge, information, and rules for WIP holon’s ex-
ception-diagnosis usage only.

Now, observing Fig. 8(a), if an exception is occurred and detected during the
WIP management process, the system will enter the Diagnosing state that in-
vokes SetExceptionTest() of HolonKernel to diagnose the exception.

If the cause is identified by the intelligence mechanism of the Generic Holon,
the system will enter the Recovery state that invokes the associated recovery
operation implemented in RecoveryManager. If the recovery operation is suc-
cessful, the system will jump back to the last operational state where the ex-
ception was occurred, otherwise the system will raise an alarm and then stop.

After demonstrating how to design functional holons, the holarchy design
stage is completed. The following section will explain the application construc-
tion and system integration stages.



Development of Holonic Manufacturing Execution Systems

93

Start

End ?

/’.\ [if not granted] ( User Login the System
\_/ L do: Login

[if granted]

~

[ Initiate CORBA Service |
[ do: SetlnitialService

J/

Receives creating command

[ WIP Object Life Cycle ]

[An Exception is occurred]

Diagnosing )

[
L do: SetExceptionTest
[

Recovery
L do: Recovery )
[Recovery failed] [Recovery successful]

[ Raise an alarm Back to the last operation

—/

where the exception is
% occurred

End

(a) Entire WIP Holon State Diagram



94 Manufacturing the Future: Concepts, Technologies & Visions

Create WIP
do: WIP

Create BOM

| do: BOM:NewVariables |
v

Create Item Master
| do: ltemMaster:NewVariables |
|
{ Getting order status }

\
Al WIP initial information is collected Do track-out

| do: Trackout
track-out request

query
. request
Provide WIP status Wait for request
do: GetStructure
Store WIP status
track-in request to database
Do track-in
do: Trackin
[not last process] \L

Store WIP status to
Database

\L [last process]

Delete the WIP repository

do:WIP:DeleteRepository

v
[ DeetewP |

{ do:DeleteMe J

o

End

(b) WIP Object Life Cycle State Diagram

Figure 8. State Diagrams of WIP Holon



Development of Holonic Manufacturing Execution Systems 95

6. Application Construction and System Integration

As depicted in Fig. 2, the last two stages are application construction and sys-
tem integration. Observing the top of Fig. 6, with the advantage of HMES
Holarchy, it is obvious that applications can be constructed by invoking opera-
tions of associated holons. These holons will cooperate with one another by
following the holarchy messages defined in Fig. 5. This meets the characteris-
tics of holon and holarchy. In fact, the deployment diagram, holarchy mes-
sages, and a holarchy framework as shown in Figs. 1, 5, and 6, respectively,
have been successfully implemented and running at the Factory Automation
Laboratory of the Institute of Manufacturing Engineering, National Cheng
Kung University, Tainan, Taiwan, Republic of China.

7. Comparisons among Legacy MES, Framework MES, and Holonic MES

The concepts and/or technologies of OOAD, component software, framework,
holon, holarchy, security certification, and failure recovery have been taken
into account for developing HMES. In this section, characteristic comparisons
between Legacy MES, Framework MES, and Holonic MES are presented.

Legacy MES Framework MES |Holonic MES

Architecture Centralization Distributed OO  |Holarchy
Open Interfaces No Yes Yes
Modularization Low High High
Interoperability Low High High
Configurability Low High High
Maintainability Difficult Easy Easy
Security Certification  |No No Yes

Failure Recovery No No Yes

Table 1. Comparisons between Traditional MES, Framework MES, and Holonic MES

As indicated in Table 1, Legacy MES refers to the commercial products such as
Promis, WorkStream, and Poseidon. Framework MES stands for Encore,
SiView, and FACTORYWorks. Detailed comparisons are presented below.



96 Manufacturing the Future: Concepts, Technologies & Visions

7.1. Architecture

Concerning architecture, Legacy MES is a centralized system. All the computa-
tions and operations are executed in one large-scale mainframe computer.
Framework MES belongs to distributed object-oriented systems that divide all
the functions into individual various models. The computations and opera-
tions are also distributed into each model. In this way, Framework MES lowers
the loading of each mainframe and increases the reliability of the system. Also,
Framework MES avoids the malfunction of the entire system due to the break-
down of a single module. Holonic MES is designed with the concepts of holon
and holarchy. It has the advantages of distributed object-oriented systems, and
also the characteristics of intelligence, autonomy, coordination, and collabora-
tion. Thus, Holonic MES’s adaptability can meet the requirements and trends
of future manufacturing systems.

7.2. Open Interfaces

When considering interfaces, Legacy MES is a closed system while Framework
MES and Holonic MES are open systems. Systems with open interfaces have
the advantage of being easy to cooperate and link with other related modules
or systems.

7.3. Modularization

Modular design is very important to system software development. With
component software, users can apply proper modules based on needs. This is
beneficial both for design and maintenance. Both Framework MES and Holo-
nic MES utilize modular design but Legacy MES does not.

7.4. Interoperability

A distributed object-oriented system usually has many functional modules
that they need to interoperate with one another. Framework MES and Holonic
MES are distributed object-oriented systems, therefore their interoperability
with distributed modules is both essential and profuse.



Development of Holonic Manufacturing Execution Systems 97

7.5. Configurability

Configurability is important for a manufacturing system to deal with a dy-
namic, varying and rapidly changing environment. Framework MES and
Holonic MES are easier to reconfigure than Legacy MES.

7.6. Maintainability

For Legacy MES, it is not easy to repair and maintain since it is a large-scale
and centralized system. For Framework MES and Holonic MES, their mainte-
nance is easier because they are distributed systems and each component of
the systems can operate alone and be maintained separately.

7.7. Security Certification

The problem of security is becoming more and more serious. In Holonic MES,
the ability of security certification is embedded in the design of the Generic
Holon so that it is natural for all the functional holons to possess the capability
of security certification.

7.8. Failure Recovery

Reliability is always the most important issue for automatic manufacturing
systems. Once there is an exceptional condition that causes the entire produc-
tion line to shutdown, the loss is beyond evaluation. As a result, a good set of
MES needs a failure recovery mechanism so as to minimize the loss caused by
occurrences of exceptional conditions. Among those three MES types, only
Holonic MES incorporates the capability of failure recovery into the design.

8. Summary and Conclusions

Based on the characteristics of holon and holarchy and by applying distributed
object-oriented techniques, this paper proposes a systematic approach for de-
veloping Holonic Manufacturing Execution Systems (HMES) with security-
certification and failure-recovery considerations. The basic foundations re-
quired for developing HMES possessing characteristics of holon and holarchy
are summarized. The HMES development procedure that consists of system
analysis, holarchy design, application construction, and system integration



98 Manufacturing the Future: Concepts, Technologies & Visions

and testing stages are proposed. Among these stages, holarchy design is the
most important and consists of seven steps: (a) constructing an abstract object
model, (b) partitioning the application domain into components, (c) identify-
ing generic functions among the components, (d) developing the Generic
Holon, (e) defining holarchy messages, (f) defining the holarchy framework,
and (g) designing functional holons. WIP Holon, as an example of a functional
holon, is developed for demonstration purposes. Comparisons between Leg-
acy MES, Framework MES, and Holonic MES are made. It reveals that this sys-
tematic approach provides a new concept for developing next generation
manufacturing execution systems.

Acknowledgments

The authors would like to thank the National Science Council of the Republic
of China for financially supporting this research under contracts No. NSC-89-
2212-E006-094, NSC-90-2212-E006-026, and NSC-91-2212-E006-062.

9. References

Chang, C.-F. (2000). Development of scheduling holons and WIP holons, Mas-
ter Thesis of the Institute of Manufacturing Engineering, National Cheng
Kung University

Chen, D. J. & Chen, D. T. K. (1994). An experimental study of using reusable
software design frameworks to achieve software reuse, Journal of Object
Oriented Programming, pp. 56-67

Cheng, F.-T., Shen, E., Deng, J.-Y. & Nguyen, K. (1999). Development of a sys-
tem framework for the Computer-Integrated Manufacturing Execution
System: a Distributed Object-Oriented Approach, International Journal of
Computer Integrated Manufacturing, Vol. 12(5), pp. 384-402

Cheng, F.-T., Yang, H.-C. & Huang, E. (2002). Development of an educational
supply chain information system using object web technology. Journal of
the Chinese Institute of Engineers, Vol. 25(6), pp. 735-752

Eriksson, H.-E. & Penker, M. (1998). UML Toolkit. New York: John Willy &
Sons, Inc.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley, Green-
wich, CT



Development of Holonic Manufacturing Execution Systems 99

Hino, R. & Moriwaki, T. (1999). Decentralized Scheduling in Holonic Manufac-
turing Systems, Proceedings of the Second International Workshop on In-
telligent Manufacturing Systems, Leuven, Belgium, pp. 41-47

Holonic Manufacturing System. HMS Introduction and Overview,
http://hms.ifw.uni-hannover.de/

Huang, E., Cheng, F.-T. & Yang, H.-C. (1999). Development of a collaborative
and event-driven supply chain information system using mobile object
technology, in Proceedings of the 1999 IEEE International Conference on
Robotics and Automation, Detroit, Michigan, U.S.A., pp. 1776-1781

Kadar, B., Monostori, L.& Szelke, E. (1998). An object-oriented framework for
developing distributed manufacturing architectures, Journal of Intelli-
gent Manufacturing, Vol. 9, pp. 73-179

Lin J.-Y. (2000). The development of holonic information coordination systems
with security mechanism and error-recovery capability, Maste