RECENT OPTICAL AND
PHOTONIC TECHNOLOGIES






RECENT OPTICAL AND
PHOTONIC TECHNOLOGIES

EDITED BY

KI YOuNG KIM

Intech



Published by Intech

Intech
Olajnica 19/2, 32000 Vukovar, Croatia

Abstracting and non-profit use of the material is permitted with credit to the source. Statements and
opinions expressed in the chapters are these of the individual contributors and not necessarily those of
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or
property arising out of the use of any materials, instructions, methods or ideas contained inside. After
this work has been published by the Intech, authors have the right to republish it, in whole or part, in
any publication of which they are an author or editor, and the make other personal use of the work.

© 2010 Intech

Free online edition of this book you can find under www.sciyo.com
Additional copies can be obtained from:

publication@sciyo.com

First published January 2010
Printed in India

Technical Editor: Teodora Smiljanic
Recent Optical and Photonic Technologies, Edited by Ki Young Kim

p. cm.
ISBN 978-953-7619-71-8



Preface

Research and development in modern optical and photonic technologies have
witnessed quite fast growing advancements in various fundamental and application areas
due to availability of novel fabrication and measurement techniques, advanced numerical
simulation tools and methods, as well as due to the increasing practical demands. The recent
advancements have also been accompanied by the appearance of various interdisciplinary
topics.

The book attempts to put together state-of-the-art research and development in optical
and photonic technologies. It consists of 21 chapters that focus on interesting four topics of
photonic crystals (first 5 chapters), THz techniques and applications (next 7 chapters),
nanoscale optical techniques and applications (next 5 chapters), and optical trapping and
manipulation (last 4 chapters), in which a fundamental theory, numerical simulation
techniques, measurement techniques and methods, and various application examples are
considered.

This book concerns itself with recent and advanced research results and comprehensive
reviews on optical and photonic technologies covering the aforementioned topics. I believe
that the advanced techniques and research described here may also be applicable to other
contemporary research areas in optical and photonic technologies. Thus, I hope the readers
will be inspired to start or to improve further their own research and technologies and to
expand potential applications.

I would like to express my sincere gratitude to all the authors for their outstanding
contributions to this book.

January 2010

Editor

Ki Young Kim

Department of Physics

National Cheng Kung University
Tainan, Taiwan

E-mail: kykim1994@gmail.com
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Dual-Periodic Photonic Crystal Structures

Alexey Yamilovand Mark Herrera?
Department of Physics, Missouri University of Science & Technology, Rolla, MO 65409,
U.S.A.

1. Introduction

In this chapter we discuss optical properties of dual-periodic photonic (super-)structures.
Conventional photonic crystal structures exhibit a periodic modulation of the dielectric
constant in one, two or three spatial dimensions (Joannopoulos, 2008). In a dual-periodic
structure, the dielectric constant is varied on two distinct scales a1 along the same
direction(s). An example of such a variation is given by the expression:

e(x)=¢, +Ax(1+ycosz—”xj><cosz—”x. 1)
i a

In Sec. 2, after motivating our study, we describe one attractive possibility for a large-scale
fabrication of the dual-periodic structures such as in Eq. (1) using the interference photo-
lithorgraphy technique.

Sec. 3 presents the theory of slow-light effect in a dual-periodic photonic crystal. Here, four
numerical and analytical techniques employed to study optical properties of the system. In
the result, we obtain a physically transparent description based on the coupled-resonator
optical waveguide (CROW) concept (Yariv et al., 1999).

Sec. 4 is devoted to discussion of a new type of optical waveguides - trench waveguide - in
photonic crystal slabs. We demonstrate that this type of waveguide leads to an appearance
of a second (super-) modulation in the slab, thus, slow-light devices / coupled-cavity micro-
resonator arrays can be straightforwardly fabricated in the photonic crystal slab geometry.
Importantly, the fabrication of such structures also does not require slow (serial) electron-
beam lithography and can be accomplished with scalable (holographic) photolithography.
The chapter concludes with a discussion and an outlook.

2. Dual-periodic structure as a photonic super-crystal

Optical pulse propagation in dielectrics is determined by the group velocity v, = de(K)/dK,
where the dispersion @(K) relates the frequency @ and the wave vector K inside the medium.
One of the appealing features of photonic crystals has become a possibility to alter the
dispersion of electromagnetic waves (Soukoulis, 1996) so that in a certain spectral region v,
becomes significantly smaller than the speed of light in vacuum. This “slowlight” effect
(Milonni, 2005) attracted a great deal of practical interest because it can lead to low-
threshold lasing (Nojima, 1998; Sakoda, 1999; Susa, 2001), pulse delay(Poon et al., 2004;

1 Currently at department of Physics, University of Maryland
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Vlasov et al., 2005), optical memories (Scheuer et al., 2005), and to enhanced nonlinear
interactions (Soljacic et al, 2002; Xu et al., 2000; Jacobsen et al., 2006). Several approaches to
obtaining low dispersion in photonic crystal structures have been exploited:

i. At frequencies close to the photonic band-edge, o(K) becomes flat and group velocity
approaches zero due to the Bragg effect at the Brillouin zone boundary. This property
has been extensively studied and used in practice to control the spontaneous emission
(Yablonovitch, 1987) and gain enhancement in lasers (Nojima, 1998; Sakoda, 1999; Susa,
2001). However, a large second order dispersion (i.e. dependence of v; on frequency) in
the vicinity of the bandedge leads to strong distortions in a pulsed signal that makes
this approach unsuitable for, e.g., information processing applications.

ii. High order bands in two- and three-dimensional photonic crystals can have small
dispersion not only at the Brillouin zone boundary but also throughout the band
(Galisteo-Lopez & Lopez, 2004; Scharrer et al., 2006) where the second order dispersion
can be significantly reduced. Nevertheless, these high-frequency photonic bands allow
little control over v, and are not spectrally isolated from other bands. These drawbacks
and the increased sensitivity to fabrication errors (Dorado et al., 2007), limit the
practical value of this approach.

iii. Based on the Coupled Resonator Optical Waveguide idea (CROW)(Stefanou &
Modinos, 1998; Yariv et al., 1999; Poon et al., 2006; Scheuer et al., 2005), a low-dispersion
photonic band can be purposefully created via hybridization of high-Q resonances
arising from periodically positioned structural defects (Bayindir et al., 2001a;b; Altug &
Vuckovic, 2005; Olivier et al., 2001; Karle et al., 2002; Happ et al., 2003; Yanik & Fan,
2004). This spectrally isolated defect-band is formed inside the photonic bandgap, with a
dispersion relation given by

o(K) = Q[1+ xcos(KL)]. (2)

Here Qis the resonance frequency for a single defect, xis the coupling constant
(assumed to be small) and L is the spacing between defects. These adjustable
parameters allow one to control the dispersion in the band, and hence v,, without
significant detrimental effects associated with the second order dispersion.
A periodic arrangement of structural defects in the photonic crystal, described in (iii),
creates a dual-periodic photonic super-crystal (PhSC) with short-range quasi-periodicity on
the scale of the lattice constant and with long-range periodicity on the defect separation
scale (Shimada et al., 2001; Kitahara et al., 2004; Shimada et al., 1998; Liu et al., 2002; Sipe et
al., 1994; Benedickson et al., 1996; Bristow et al., 2003; Janner et al., 2005; Yagasaki et al.,
2006). These structures usually need to be constructed with the layer-by-layer technique (or,
more generally, serially) which is susceptible to the fabrication errors similarly to the other
approaches (i,ii) above. We have recently proposed a PhSC with dual-harmonic modulation
of the refractive index (Yamilov & Bertino, 2007), similar to Eq. (1), that can be fabricated by
e.g. a single-step interference photolithography technique (Bertino et al., 2004; 2007). We
considered four S-polarized laser beams defined by

q:.,E ko{—sin(é}),0,cos(6,)}, E,

q:./Ep _ ko{—sin(6},),0,cos(6,)}, E,

91/ Ere ky{sin(@,),0,cos(&,)}, E,
(

qr2/Exs ko{sin(6},),0,cos(6,)}, E,
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Here q and E are the k-vector and amplitude of the beams respectively. Their interference
pattern E(x) oc axcos(kix) + feos(kzx) leads to

1 (x) = £(x) = &, + Al arcos(k,x) + fcos(kyx) | )

where k1 — k2= Ak, (k1 + k2)/2 =k and a + f=1. k and Ak are related to the short (as) and long
range modulations of the refractive index: as = 27/ Ak, ap = 7/ k. The parameters in Eqs. (3, 4)
are related as o = E1/(E1 + E2), f= E2/(E1+ E») and k1 = ko siné,, k2 = ko siné. Manipulation of
the beams allows for an easy control over the structural properties of the resultant PhC: (i)
fundamental periodicity as via ko and @; (ii) long-range modulation ar via 6 —6; and (iii)
depth of the long-range modulation via relative intensity of the beams Ei/E>. As we
demonstrate in Sec. 3, the longer range modulation accomplishes the goal of creating the
periodically positioned optical resonators. The condition of weak coupling x < 1 between
the states of the neighboring resonators requires sufficiently large barriers and therefore
as < ar, which we assume hereafter. Our approach to making dual-periodic structures has
an advantage in that all resonators are produced at once and, therefore, it minimizes
fabrication error margin and ensures the large-scale periodicity essential for hybridization of
the resonances of individual cavities in an experiment.

Dual-periodic harmonic modulation of the refractive index can also be experimentally
realized in optically-induced photorefractive crystals (Fleischer et al., 2003; Neshev et al.,
2003; Efremidis et al., 2002). Although, the index contrast obtained is several orders of
magnitude less than with QDPL (Bertino et al., 2004; 2007), the superlattices created in
photorefractive materials offer a possibility of dynamical control - a feature lacking in the
quantum dot system. While the study of dynamical and nonlinear phenomena in dual-
periodic lattices is of significant interest, it goes beyond the scope of our study and will not
be considered in this work.

3. Theory of slow-light effect in dual-periodic photonic lattices

In this section we theoretically investigate the optical properties of a one-dimensional PhSC
using a combination of analytical and numerical techniques. We consider the dielectric
function of the form given in Eq. (1) that can be produced with the interference
photolithography method:

Ai/yz [1 +ycos(27zx / L)J[l +cos(27x / a)}. )

e(x)=¢g, +

Here ¢ is the background dielectric constant. The amplitude of the short-range (on scale a)
modulation gradually changes from Ae x (1 = 7)/(1 + 7) to Ae, c.f. Fig. 1a. L = Na sets the
scale of the long-range modulation, N >>1 is an integer.

The functional form in Eq. (5) was chosen to enable an analytic treatment and differs slightly
from Eq. (4). Nonetheless, it shows the same spectral composition and modulation property.
The discrepancy between the two forms is expected to cause only small deviations from the
analytical results obtained in this section. Furthermore, the differences become insignificant
in the limit N >1.
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Fig. 1. (a) Dependence of the index of refraction in a dual-periodic photonic crystal as
defined by Eq. (5). We used &= 2.25, Ae =1, N = 80 and the modulation parameter +y is equal

to 0.25. (b) Local (position-dependent) photonic bandgap diagramfor n(x) in (a). A™

i

B™ mark the frequencies of the foremost photonic bands on the long- and short-
wavelength sides of the photonic bandgap of the corresponding single-periodic crystal.

and

3.1 Transfer matrix analysis and coupled-resonators description of PhSC

The transmission/reflection spectrum of a one-dimensional PhSC of finite length, and the
band structure of its infinite counterpart can be obtained numerically via the transfer matrix
approach. Propagation of a field with wavevector k = @/ c through an infinitesimal segment
of length dx is described by the transfer matrix (Yeh, 2005)

M(x,x +xd) = cos(kn(x)dx)  n”(x)sin(kn(x)dx)
/ | n(x)sin(kn(x)dx)  cos(kn(x)dx)

©)
where we have assumed that the refractive index n(x) does not change appreciably over that
distance. The matrix M (x, x + dx) relates the electric field and its spatial derivative {E,1/k
dE/dx} at x + dx and x. The total transfer matrix of a finite system is then given by the
product of individual matrices

—~ L —~
Mot = [ M(x,x +dx). @)
x=0
Since in our case the refractive index n(x) = €1/2(x), Fig. 1(a), is not a piece-wise constant (in
contrast to Refs. (Sipe et al., 1994; Benedickson et al., 1996)) but rather a continuous function
of coordinate, one has to resort to numerical simulations. In what follows, we apply either
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scattering or periodic boundary conditions to obtain the transmission coefficient and Bloch
number K(w) respectively.

Figure 2(a) plots the transmission coefficient through one period of the dual-periodic system
shown in Fig. 1. A series of progressively sharper resonances occur on the lower or upper
edge of the spectral gap of the underlying single-periodic structure. Whether the peaks
occur at the lower or upper band edge depends on the particular definition of the unit cell,
as shown in the inset of Fig. 2(a). One can gain an insight into this effect by examining the
modulation of the spectral position of the “local” photonic bandgap (PBG) with the position
as shown in Fig. 1(b). This analysis is meaningful on the length scale of the order a « Ax «
L = Na. This condition can be satisfied in our case of slow modulation, with large N. At
frequencies such as A" in Fig. 1(b), wave propagation is allowed in the vicinity of x = aN
X(1/2 +m), whereas at the regions x = aN x m, with m being an integer, it is locally
forbidden. When considering a segment of the lattice with 0 < x < Na, resonant tunneling via
electromagnetic states A™ of the cavity at the geometrical center leads to low-frequency
peaks in the transmission coefficient, indicated by the solid line in Fig. 2(a). On the other
hand, transmission through the segment —-Na/2 < x < Na/2 exhibits a series of sharp
resonances. These correspond to tunneling via B™ cavity states in the high-frequency

region.

@ 10° - : =
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0.29 0.3 0.31 0.32

a/\
Fig. 2. (a) Transmission coefficient through a finite segment of length L (one period) of the
periodic super-structure defined in Fig. 1. Solid and dashed lines correspond to 0 <x < Na
and —Na/2 < x < Na/2 segments (shown in the inset of panel (b)) respectively. (b) Solid and
dashed thin lines plot the corresponding phase of #(@). Bold line depicts the Bloch number
K(@)* a of the infinite crystal computed using Eq. 8.
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The transmission coefficient through a finite segment of length L (equal to one period) can
be related to the band structure of the corresponding periodic lattice (Benedickson et al.,
1996) as

1 1
cos(K(w)L) = Re|——] = ———cos(g(w)), 8
(K@) = Rel 1= 1 cos(¢o) ®)
where we have introduced the phase of the transmission coefficient ¢(w) through t =
| t|explig]. Fig. 3 shows that hybridization of the cavity resonances considered above leads
to the formation of flat photonic bands. Their low dispersion and small group velocity may
be exploited (Yamilov & Bertino, 2007) for practical applications.
In the vicinity of an isolated transmission resonance, t() is given by the Lorentzian

t(a)) - (_1)N(F / 2)
i(r'/2)-(0-w,)

where T is the full width at half maximum (FWHM) of the resonance and ay is the resonant
frequency. Substitution of Eq. 9 into Eq. 8 gives the flat band described by

©)

o(K) = a,[1+£ xcos(KL)] (10)

r 1 . . S
where « = 2o 1, and Q is the cavity Q-factor. Thus, the decrease of group velocity in
[2)

the PhSC is directly related to the increase of confinement and the decrease of coupling
between neighboring cavities. In our PhSC both these factors are described by the same
parameter - the cavity Q-factor. In a single-periodic photonic crystal of finite length, the Q-
factor of a band-edge mode depends on the system size. Comparing Fig. 1(b) and Fig. 3, one
can see that A™, B™ modes are in fact band edge modes in their intervals of free
propagation.

In our case L gives the characteristic length and as we demonstrate below, also determines
the mode frequency. As N increases, the eigenfrequencies of the modes shift towards the
bandgap. The associated decrease of the local group velocity contributes to an increase of
the Q-factor of the resonators and to a further reduction of the group velocity in A™, B
bands in the N —oo limit.

Eq. (8) suggests that the dispersion relation &(K) is independent of how the segment of
length L (the period of our structure) is chosen. However, the transmission coefficient
through the 0 < x < Na and —Na/2 < x < Na/2 segments of the crystal shows very different
spectral composition, Fig. 2(a). In order to understand how these markedly different
functions lead to the same @(K), we analyze the phase of the transmission coefficient ¢,
shown in Fig. 2(b).

In a one-dimensional periodic system such as ours, the wave number K(®) in Eq. 8 is equal
to the integrated density of electromagnetic states. It is, by definition, a monotonically
increasing function of frequency in the extended Brillouin zone scheme. In PhSC, K x L
increases by 7 every time the frequency is increased through an allowed band, c.f. bold line
in Fig. 2(b). At the frequency in the middle of the band, cos(KL) = 0 because K x L = 7z x
(m + 1/2). From Eq. (8) one can see that ¢should be equal to zx (m+1/2) at the same
frequency. In the finite system, the mode counting phase ¢ defined (Lifshitz et al., 1998) as
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033 . —aN/2 0 aN/2

0.32f

0.31f

a/\

03}

0.29¢

0.280 05

K-L/n X
Fig. 3. The left panel shows dispersion of a PhSC @(K) reduced to the first Brillouin zone.
The eigenmodes which correspond to the series of flat bands in the vicinity of the parent-

bandgap of the single periodic crystal are depicted on the right. Calculations were
performed for the structure described in Fig. 1.

tan(¢ ) = E'/E coincides with the phase of the transmission coefficient ¢= ¢ . This explains

the monotonic behavior of ¢ (). Eq. (8) leads to the fact that quasi-states of the finite system
occur at the same place as the corresponding band center of the lattice, irrespective of the
definition of the unit cell. Therefore, as can be also seen from Fig. 2(b), ¢ (w) and K(w)L
intersect at 7 x (m +1/2).

Taylor expansion of the phase around the frequency ay at the center of a pass band, where
K(o)L = zx (m+1/2) gives

cos(K(w)L) = (m—a)o)x%%. (11)

Here, the term that contained d |t a)|/dedropped out because cos(K(a)L) = 0.
Comparing Egs. (10) and (11) shows that it is |f(an) |~ d@(an)/dwthat determines Q =
1/ xand not just |f(an)|. Suppressed transmission compensates for a slow phase change
(e.g. solid line in Fig. 2(b) in the high frequency spectral region) and leads to an identical
K(w) for two different definitions of the unit cell.

We also note that if the segment is chosen such that the corresponding “cavity” is located in
the geometrical center (|t(av)| = 1), the FWHM of the resonance (') in the transmission
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coefficient is equal to the width of the pass band in the periodic lattice. This fact follows
from Egs. (8) and (9). It further emphasizes the analogy with CROW structures.

We conclude this section by reiterating that long-range refractive index modulation creates
alternating spatial regions which serve as resonators separated by the tunneling barriers.
Hybridization of the cavity resonances creates a series of photonic bands with low
dispersion. The envelope of the eigenstates in these bands A", B is a slowly varying
function of the coordinate, c.f. Fig. 3. This effect stems from states proximity to the photonic
band-edge of the underlying single-periodic lattice. The possibility of a separation into short
(a of rapid field oscillations) and long (L of the slow amplitude variation) length scales will
further inform analytical studies presented in the following sections.

In addition, the results of this section lead to somewhat counter-intuitive conclusion that the
larger or even complete modulation in Eq. (5) would negatively affect (increase) the
coupling between the resonators. This can also be seen from PBG diagram in Fig. 1b: in case
of compete modulation of the refractive index (y = 1), the local bandgap disappears at x,, =
aN % (1/2+ m). Indeed, our photonic band structure calculations demonstrate that structures
with 100% modulation are less advantageous and lead to significantly larger propagation
speeds. The optimum value of vy depends on the experimental parameters (g, Ae and N) and
should be determined with the help of PBG diagram similar to Fig. 1b. The diagram also
proves useful in explaining the advantage of Ay over By. In the latter case, the tunneling
barriers are thinner and their localization length is longer (PBG is spectrally narrower at
Xm=aN x (1/2 + m) than it is at x,, = aN x m).

3.2 Resonant approximation

Forbidden gaps in the spectra of a periodic system arise due to a resonant interaction of the
wave with its Bragg-scattered counterpart (Ashcroft & Mermin, 1976). The scattered wave
appears due to the presence of Fourier harmonics in the spectrum of the periodic
“potential”, which in the case of the Helmholtz equation

2 2

E"(x)+ ac)—zcis(x)E(x) =2 ZE(x), (12)

is represented by (&’ /c*)de(x) = (o / cz)[g(x)—‘?]. Here we have introduced the average

value of the dielectric function & =¢g(x)=¢,+Ae/[2(1+y)]. When = 0, the condition
Ag /&€ <1 is sufficient to obtain the position and width of spectral gaps. Otherwise, an
additional condition N xAg /& <1 needs to be satisfied instead. We will discuss the

physical meaning of this condition at the end of this section.
We begin by noticing that 8e(x) of our choice (Eq. 5) contains only eight nonzero Fourier
harmonics:

e(x)= Zw: £, exp [iz%mx}, (13)

m=—wn

where m = {1,(N — 1),2N, (N + 1))}. This fact allows for an exhaustive study of all resonant
interactions as follows. Expressing E(x) in terms of its Fourier components
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E(x) = exp[iK(w)x] i E, exp[i%rmx} (14)

m=—o0

leads to an infinite system of linear coupled equations

2 2 2
I:w_zg - [K(w) + ZTﬂ'mj :|Em + w_z zgm‘Emfm‘ = O’ (15)
c [

m'#0

where K is the Bloch number that varies in the first Brillouin zone [0,7/L]. For the extreme
values of K there exists a spectral range where the term in brackets in Eq. 15 can become
simultaneously small for certain values of m and —-m at K = 0, and for m and -m — 1 at
K = 7/L. If ¢(x) contains a harmonic ¢, such that it couples these two Fourier components,
the overall infinite system Eq. 15 can be reduced to two resonant equations.

0.36

0.34
<
<
0.32
03
02802 04 06 08 1
K (n/L)

Fig. 4. Dispersion relation computed with the transfer matrix formalism for gy = 2.25,

Ae =0.32, N = 9 (dashed line) and N = 10 (solid line). The modulation parameter + is equal to
0.25. For this set of parameters, the applicability condition Eq. 16 of the resonant
approximation is satisfied.

The results of such an analysis are summarized in Table 1 and the corresponding band
structure is shown in Fig. 4. Introduction of the long range modulation in the dielectric
constant results in an expansion of the unit cell from a to L = Na and, thus, to a reduction of
the Brillouin zone, accompanied by the folding of photonic bands. The cases of even N = 2s
and odd N = 2s + 1 should be distinguished. In the former, the primary photonic bandgap
(ILe) of the single-periodic lattice reappears at K = 0, whereas in the latter (Il,) it is located at
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K = z/L. Our analysis shows that the nearest frequency gaps, Io. and Ill,., also become
resonant, Fig. 4. For the refractive index modulation of Eq. (5), the normalized width
_Ne/4e
1+y
7. By definition, this parameter is less than unity.

Enay /€ of the satellite gaps is smaller than that of the central gap by a factor of

We can see that folding and the offset of the formation of flat A", B! bands is captured
in this approximation. The criterion of its applicability can be found by considering the
contributions of non resonant terms in Eq. (15). We find that for all three gaps the criteria are
qualitatively the same. Therefore, we present the detailed analysis of only one particular
resonance, Ill.. The condition that the closest non-resonant Fourier components E—;—», E—,
Es-1and Es+ be smaller than the resonant ones E-s-; and Esleads to the relation

(N+ 1)2(51 +&y)
ANz +2(N +1)’¢, 4

<1 (16)

In the limit of very large N the second term in the denominator becomes dominant and this
condition cannot be satisfied for any value of Ae. Thus, N should be finite. The condition that
the first termin the denominator be dominant, is consistent with the entire inequality Eq.
(16), and is equivalent to Ng¢, /€ <« 1. Taking the most restrictive case for ¢, we finally obtain

A—f xN <1, (17)
8¢
where we have neglected «y for simplicity.

Equation (17) has a clear physical meaning. Indeed, from Table 1, it is clear that the
frequency of bandgaps I and III approach the central gap inherited from the single periodic
system as 1/N. At some point, a bandgap of width Aw/ ey = &/ € begins to substantially
perturb the pass band of width Kyux X ¢ =~ an/N separating consecutive gaps. The resonant
approximation breaks when these two scales become comparable. This condition results in
Eq. (17). In other words, the approximation considered in this section can at most capture
the onset of the flattening trend in the A", B"™) bands and fails when N is increased to the
point where these states become abnormally flat, i.e., where Aw/Kyux < ¢/ & throughout the
band. More sophisticated approaches are considered below.

Resonant K, (even N) /L 0 /L
(odd N) 0 /L 0
Coupled components E_s,ENn_(s+1) Es-NvEs  E_(s41),EN—s
Coupling harmonics E_(N-1),EN-1 E€-N/EN  €_(N41)s EN+I
cr cm cr
Center frequency, wy (N-1) N —(N+1)

VEL VEL VEL

Normalized width, Aw/wq en-1)/¢ eEN/E e(n+1)/E

Table 1. Results of resonant approximation analysis of Eq. (15) with dielectric function given
by Eq. (5). Three columns correspond to the three resonant photonic band gaps that appear
in the spectrum of the dual-periodic PhSC. The expressions hold for both even and odd N
for the choice of parameter s: N = 2s and N = 2s + 1 respectively.
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3.3 Effective medium approximation

Gratings written in the core of photosensitive optical fibers are often analyzed with the help
of coupled-mode theory (CMT) (Marcuse, 1991). In both shallow gratings with long-range
modulation in fibers (Sipe et al., 1994; Janner et al., 2005) and in our PhSC, the forward and
backward (locally) propagating waves continuously scatter into each other. The advantage
of CMT is that it considers the amplitudes of the forward and backward waves directly. This
tremendously simplifies Maxwell equations. Ref. (de Sterke, 1998) also considered fiber
gratings with a deep piece-wise constant index modulation. In this section we employ the
CMT-based method developed by Sipe, et al. (Sipe et al., 1994) to obtain the spectral
positions of the flat photonic bands formed in a PhSC.

For shallow modulation, i.e., small Ae, our Eq. (5) can be brought to resemble the model
function considered in Ref. (Sipe et al., 1994)

n(x) / ny =1+ o(x) +2x(x) cos| 2k,x + p(x) | (18)
with the following choice of parameters
e [ 4
= 02y
o(x) Az /32 X COS T X;
&+ —1—
1+y
Ae /8
K(x)= Ly 1+ 7C052—”x ; (19)
Ae /2 L)
& +—1=
1+y

Ae /2

1/2
; ky=1m/a.
1+yj 0 /

p(x)=0; n,= [50 +
The CMT of Ref. (Sipe et al., 1994) is applicable as long as these functions have a slow
dependence on x, on the scale much larger than k,'. This condition is indeed satisfied in the
PhSC with N >1.
By introducing small detuning parameter
-,

k,c
<1, w,=-+
[2) N,

o=

we can, following Ref. (Sipe et al., 1994), obtain the governing equation for the quantity E. s
related to the envelope of the electric field

2
eff

dx?

+kongy (x,)E,, =0. (20)

Frequency and position dependent effective refractive index

= (@) + A~ K(x)*) /2 (21)

off
determines whether propagation is locally allowed (real n,sf) or forbidden (imaginary . f).

This is similar to our definition of the local PBG diagram which we studied numerically in
Section 3. Figure 5b compares CMT’s region of evanescent propagation (solid lines) to the
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numerical calculation (dashed lines). We attribute the relatively small discrepancy observed
there to the assumption of shallow modulation made in arriving at Eq. (21).

Eq. (20) is formally similar to the Schrodinger equation. Our previous analysis shows that
the single-period states associated with photonic bands A™,B™ are confined to the region
of classically allowed propagation, in the language of quantum mechanics. By analogy, the
Wentzel-Kramers-Brillouin (WKB) approximation of quantum mechanics can be applied
(Sipe et al., 1994) to determine the quantization of energies inside our optical equivalent of a
quantum well

1(@) = ko[ “1 s (x, 0)dx = (m+1/ 2)7 (22)

in which x; and xz are, respectively, the left and right turning points defined by the
condition . fr(x,r,®) = 0, m is an integer. The solid line in Fig. 5a depicts the value of the
integral in Eq. (22), as a function of @, obtained numerically. The filled circles denote the
frequencies at which quantization condition Eq. (22) is satisfied. In a system with the
parameters which we used for illustration in previous sections, the obtained solutions are in
fair agreement with numerical results obtained with the transfer matrix approach described
in Section 3. This suggests that the index variation given by Ae =1, & = 2.25 was sufficiently
small for this approach to still be qualitatively applicable.

M [
032 T \ 0.08
== == =
0'31 0.06
<
[+
10.04
0.3f \ ) \
\ \. |t do.02
0.29} y R
0 05 15 0

I(w)/m X

Fig. 5. (a) The value of the integral in Eq. (22), solid line, as a function of frequency is shown.
For easy comparison with (b), the plot is transposed so that wis plotted along the y-axis. The
circles depict frequencies that satisfy the quantization condition of Eq. (22). The dashed lines
denote the actual position of photonic states, as determined by direct numerical analysis of
Section 3. (b) Gray-scale plot of Re[n. ff (x,@)] given by Eq (21). The solid line shows the
boundary of the regionwhere Im|[n. ¢ (x, )] # 0. For comparisonwe also show the local PBG
of Fig. 1(b), dashed line. In both (a) and (b), the parameters of Fig. 1 are adopted.
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We finish the current section by noting that it would be desirable to retain the attractive
property of the CMT envelope approach without being constrained by the condition of
small refractive index modulation. The latter may not always be justified in the experimental
situation of interest (Bertino et al., 2004; 2007). In the following section we develop such an
approach.

3.4 Bogolyubov-Mitropolsky approach

In this section we will consider the standing-wave solutions of Eq. (12). In this case, the
corresponding E(x) can be chosen to be a real function by an appropriate choice of
normalization. Then, we make the Bogolyubov anzatz (Landa, 2001; Bogolyubov &
Mitropolsky, 1974):

E(x) = A(x)cos(kyx + ¢(x))

. (23)
dE(x) / dx = —k,A(x)sin (kyx + ¢(x)),

where, as in the preceding section, ko = 7/a. The above equations define the amplitude and
phase functions. Their substitution into Eq. (15) gives the so-called Bogolyubov equations in
standard form (Landa, 2001; Bogolyubov & Mitropolsky, 1974)

C_zg(x) - ké}cosz(kox +¢(x))

dx  k, 2 (24)
A0 A0 ) i e ),

No approximations have been made so far. The structure of the above equation suggests
that conditions dA/dx < koA and d¢/dx < kog can be satisfied in the vicinity of the spectral

region where (1/ ko)[a)2 / czm—kﬂ <k, . Here, the overbar denotes an average over one

period. Comparison with the analysis in the previous sections shows that this condition is
satisfied in the vicinity of the primary photonic bandgap. In the system of interest, for which N

> 1, this observation justifies the “averaging-out” of the fast spectral components, which is the

Mitropolsky technique (Bogolyubov & Mitropolsky, 1974). This averaging procedure leads to
the following system of nonlinear equations for the slow-varying amplitude and phase

2 2
) LN 22021 eos 2 ) 14 Leos2 @
dx  2k,| c ¢ 1+y L 2
2
dlog A(x) — 1 wz A8/2(1-f-;/cos2—ﬂ-x sin2¢(x). (26)
dx 2k, ¢ 1+y k L

In deriving Egs. (25) and (26) we have used the explicit form of ¢(x) given by Eq. (5).

We begin the analysis of Egs. (25) and (26) with a discussion of the appropriate boundary
conditions. In deriving these equations we have limited consideration to real-valued
solutions of the original Eq. (15), which can be found only for a discrete set of frequencies.
At these special frequencies, the corresponding amplitude function should reflect the
periodicity of the dielectric function Eq. (5). This implies that
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#(L) = $(0) + mx (27)
sin2¢(0,L /2,L)=0. (28)

The first condition is obtained by requiring sin2¢(x) in Eq. (26) to be periodic. Symmetry of
the modulation profile A(x), see Fig. 1(a), and continuity of its derivative lead to the
condition dA(x =0, L/2, L)/dx =0. This can only be satisfied by requiring Eq. (28), because
other factors on the right hand side of Eq. (26) are positive functions.

Equation (25) which determines the evolution of the phase is self-contained. Hence, its
solution together with the constraints given by Eqs. (27) and (28) is sufficient to obtain the
spectrum of the system and ¢(x). The amplitude is to be recovered in the second step by
simple integration of Eq. (26) with the found phase #(x).

Figure 6 shows the solutions of the Eqgs. (25, 26, 27, 28) obtained by a fourth order Runge-
Kutta numerical method. In accord with our expectation, for each band there exist two
solutions ¢(x), which correspond to standing-wave band-edge modes at K = 0,7/ L, as seen in
Fig. 6a,e. The corresponding solutions of the amplitude equation, Fig. 6b-d, f-g, agree with
the envelopes extracted from direct solutions of the Helmholtz equation, Fig. 3. The
eigenvalues of Eq. (25) also give the frequencies that correspond to band-edge states, and
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Fig. 6. Numerical solutions of Egs. (25, 26, 27, 28) are shown. Filled circles in panels a,e
denote the spatial position where the particular ¢(x) is equal to mz/2. At these special points

dA(x)/dx = 0 denoted by the vertical dashed lines in b-d and f-g panels. A™ and B™
denote the low-dispersion photonic bands as defined in Section 3.
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are also in excellent agreement (the observed deviation is less than 0.1%), Fig. 3. Knowledge
of the bandedge frequencies allows determination of all parameters of the tight-binding
approximation for @&(K), Eq. (2). Therefore, the entire band structure in the spectral region of
each of the flat bands can be obtained solely from solution of the amplitude-phase equation.
Filled circles in panels a,e of Fig. 6 denote the spatial position where the particular ¢(x) is
equal to mz/2. At these special points dA(x)/dx = 0, as denoted by the vertical dashed lines
in b-d and f-g panels. Thus, the overall phase accumulated by ¢(x) over one period is an
important parameter indicative of the spatial structure of the amplitude. At the band-edge
frequencies of the bands A and B{™ (see Section 3 for notations), the phase is a bounded
function | ¢x) — #0)| < z/2. Therefore, x = 0, L/2, L are the only positions where the
corresponding amplitude function takes minimum/maximum values. Thus, as seen in Fig.
6b, f A(x) has only one “hump” for A" and B{. A comparison of ¢(x) computed at the K
= 0 (solid lines) and K = 7/ L (dashed lines) edges of each photonic band shows (Fig. 6) that
the difference occurs in the spatial regions where electromagnetic waves propagate via the
“tunneling mechanism” in the language of CROWs of Section 3. In these regions A(x) is
small, which explains the small spectral width of the corresponding photonic bands.

As the eigenfrequencies of the higher order states A{M,B{")... shift further away from the
primary band-gap region, Fig. 1b, ¢(x) becomes progressively steeper function, leading to a
steady increase in the number of “humps” in A(x), Fig. 6. This progression accelerates the
spatial dependence of the amplitude and leads to an eventual breakdown of the scale
separation approximation used in the derivation of Egs. (25) and (26). Nevertheless, such a
loss of applicability occurs well outside the spectral region of interest, demonstrating the
robustness of the approach developed here.

3.5 Comparison of theoretical approaches

Although all of the methods considered above have their limitations, the results obtained
with each technique complement each other:

While numerical simulations with transfer matrices in Sec. 3.1 allow one to compute the
photonic band structure for an arbitrary refractive index modulations, this method,
however, may not provide a complete physical insight into the nature of the photonic bands.
The transfer matrix approach allowed us to compare the spectrum of the infinite (periodic)
crystal with the transmission spectrum of a finite system with a length equal to one period
of the superstructure. We also were able to identify the individual transmission resonances
with the photonic bands and found a one-to-one correspondence. Furthermore, the spatial
distribution of the fields at resonance demonstrated that in the L>>a limit the envelope
(amplitude) of the state changes slowly - on the scale of L.

With a method commonly employed in condensed matter physics, in Sec. 3.2 we
investigated the resonant interactions between Bloch waves when the second, longer-scale,
modulation is introduced. It was shown that the flattening of photonic bands is related to,
but goes beyond band folding. The reduction in the group speed (slow-light effect) arises
due to increased coupling between Bloch waves with k-vectors at the boundaries of the
Brillouin zone. The subsequent increase of the band-gap regions “squeezes” the bands
making them progressively flatter as N = L/a is increased. Although, this approach fails for
very large N, it still provides an important insight into the origin of the anomalously small
dispersion in the spectra of PhSCs.
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Diffraction gratings introduced in optical fibers are often spatially modulated. Coupled-
mode theory has been developed to reduce the problem to a study of the amplitudes of the
forward and backward propagating waves and to avoid a direct solution of Maxwell’s
equations. Although the method had been initially developed for optical fibers where the
induced refractive index contrast is small, the CMT-based approach of Sec. 3.3 provided a
clear physical picture. It showed that the electromagnetic states of our optical resonators can
be thought of as eigenstates of the photonic wells. This further reinforced the analogy with
CROWs that we developed in Sec. 3.1.

Noting a formal similarity between the Helmholtz equation with the considered dual-
periodic dielectric function Eq. (5) and the equation describing parametric resonance in
oscillation theory, we adopted an amplitude-phase formalism, accompanied by a separation
of scales (short a and long L = N x g), Sec. 3.4. In the result we were able to derive a tractable
set of equations for the envelope functions. This enabled us to study physically meaningful
mode profiles directly, without assuming small modulations of the refractive index.

4. Dual periodicity in trench waveguide in photonic crystal slab

4.1 Slow-light effect in photonic crystal slab

Photonic crystals have provided a way to control light on a sub-wavelength scale to an
unprecedented degree (Joannopoulos, 2008). Particularly, the ability of photonic crystal slab
(PhCS) waveguides (Johnson et al., 1999; 2000; Lon¢ar et al., 2000) to control the propagation
of light through photonic confinement makes them a versatile tool for use in a wide variety
of practical applications (Chutinan & Noda, 2000; Krauss, 2003). The planar geometry of the
PhCS waveguides makes it easy to incorporate them into larger scale integrated optical
devices.

By changing the size of structural units (usually a cylindrical holes in a dielectric slab) or
omitting them altogether along a row in the PhCS lattice, a spatially confined region is
created where the local effective dielectric constant differs from that in the surrounding
regions. Thus, a band-edge mode splits off from either the upper or lower photonic band
and moves into the spectral interval of the photonic bandgap. This allows for the
propagation of light at such frequencies but only within the confines of the perturbed region
(Johnson et al., 2000; Loncar et al., 2000). In order to make such a waveguide, it is required to
use electron-beam lithography to fabricate the carefully designed waveguide region of the
PhCS as well as the rest of the structure, including the photonic crystal slab itself (Loncar et
al., 2000). This technique becomes time intensive because each individual structural element
in the device must be created serially - one element at a time.

Here we consider a PhCS-based waveguide design which can be implemented with a
combination of a scalable and cost-effective laser holography (Cho et al., 2005; 2007) and
photolithography techniques. We show that efficient waveguiding can be achieved by
creating a shallow trench in the pre-patterned (e.g. holographically) PhCS blank. Making the
slab locally thinner accomplishes the same goal of perturbing the local effective dielectric
constant as in more conventional designs. Thus, the waveguiding effect along the trench in
the photonic slab is achieved without changing the radius of the holes, or making other
small-feature adjustments (such as displacements) to the holes. This observation shows that
with the proposed design, one is no longer restricted to the use of e-beam lithography. Our
study shows that this design yields robust structures, which are expected to be almost
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insensitive to misalignment of the trench. At the same time, dispersion of the mode can be
effectively tailored via adjustment of the trench width and its depth.

We note that the term “trench waveguide” was used by Yu. Vlasov and coworkers (Vlasov
et al., 2004) in the context of a different structure - a uniform rectangular waveguide
separated from PhCS'’s on both sides by small gaps (trenches).

We also make another observation, interesting from a conceptual point of view: unlike the
guiding along a ridge which is also known in uniform (not PhCS) dielectrics, the guiding
along a trench region is unique to the PhCS. In the latter system the vertical confinement
does not originate from total internal reflection, but rather is related to the modifications of
the optical dispersion due to the intrinsic periodicity in the PhCS.

Similar to other PhCS waveguides (when prepared on dielectric substrates), the trench
waveguide suffers from propagation losses due to coupling between the guided mode and
the bulk PhCS modes of the opposite parity (symmetry). In Sec. 4.2.3 we show that this
effect is quite small in e.g. structures made of silicon. Thus, the trench waveguides could be
used as an inexpensive alternative to carry optical signals over relatively short distances.

In Sec. 4.4 we demonstrate that when the trench waveguide is rofated with respect to the row
of holes in the PhCS, the structure can be viewed as coupled-resonator optical waveguide
(CROW) (Yariv et al., 1999) based on dual-periodic photonic crystal considered in Sec. 2,3. This
makes our structures suitable for such applications as delay lines, optical storage, or
coherently-coupled arrays of microlasers (Olivier et al., 2001; Karle et al., 2002; Yanik & Fan,
2004; Happ et al., 2003; Altug & Vuckovié, 2004).

Microlasers based on PhCS (Painter et al., 1999; Park et al., 2004) have attracted a great deal
of attention due to low lasing thresholds and the possibility of on-chip integration. To
increase the optical output and its efficiency, systems containing multiple coupled cavities
were considered (Happ et al., 2003; Altug & Vuckovié, 2004). Usually, the efficiency of direct
optical coupling between the microresonators is limited by the scalability of the fabrication
process, as well as the ability to reliably reproduce cavities. In Sec. 4.4 we show that because
different sections of the same (rotated) trench waveguide act as the optical cavities, the
resonator uniformity is ensured. This feature of our design is expected to promote the optical
coupling between individual resonators.

4.2 Formation of a guided mode in trench waveguide

4.2.1 Geometry

To investigate how the presence of a trench affects the optical properties of the PhCS, we
computed the band structure a)l(E ) of several systems such as those shown in Fig. 7 with a
plane-wave expansion method (Johnson & Joannopoulos, 2001). This method also provides
us with the spatial distribution of the electric and magnetic fields at the eigen-frequency
(k) found for the given wave vector k . Because we are interested in the waveguiding
properties of the structure, k will point in the direction of the trench.

In order to create a waveguiding channel, a line defect must be made in an existing photonic
crystal slab. Rather than perturbing the shape/size of the holes, we alter the height of a
linear region (stripe) of the material. Fig. 7 shows an example of one of the structures being
considered. The system is a free-standing slab of silicon with a dielectric constant &g = 12.0,
and surrounding dielectric material of &, =1.0. The dimensions of the structure are given in
terms of the hexagonal lattice unit a, with the entire cell having dimensions of
2y/3ax1ax4a,which can be varied to achieve the desired level of accuracy. The radius of the
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holes in the PhCS is r = 0.3a. A parameter A controls the width of the linear defect, with
A =15 x (v/3a/2) corresponding to the distance between two rows of holes. The height of
the slab h as well as its height in the waveguiding region, d, are the parameters the effects of
which are to be investigated.

y

N

Fig. 7. An example of the computational super-cell being modeled (repeated by a factor of
three in the y-direction for clarity). A linear defect, the trench, is created along y-axis in
freestanding (membrane) PhCS structure with the dielectric constant of egq = 12.0.

4.2.2 Symmetry considerations

In 2D or planar photonic structures such as a PhCS, the system parameters can be chosen
such that a sizable photonic bangap can exist in the spectrum of either odd, TM-like, modes
(e.g. high-index dielectric cylinders in air) or even, TE-like, modes (e.g. cylindrical air-holes
in a high-index background) but not both simultaneously. The latter geometry, currently
prevailing experimentally, is considered in this current work. Importantly, the very
existence of the photonic bandgap relies on the possibility to separate TM- and TE-like
modes into two non-interacting classes of modes. Our structure, c.f. Fig. 7, lacks the mirror-
reflection symmetry with respect to the z = 0 plane dissecting the PhCS. The rest of this
section will be devoted to the consequences of the interaction of the two classes of modes
and the resulting detrimental effects of cross-talk between them.

While the systems we consider are not vertically symmetric, as we show below it is still
possible to use an odd-like and even-like symmetry approach (with respect to the z-axis) to
these systems. The solutions, while not having full odd or even symmetry, retain a large
amount of their odd/even character, c.f. Fig. 8.

To illustrate the above point, we compare two systems schematically depicted on the inset of
Fig. 9, both with the same parameters of A= 1.5, h = 0.5a and d = 0.4a (thickness of PhCS in
the trench region). The first system is vertically symmetric, with two trench (stripe) regions -
one above and one below the PhCS - being removed. The second system is our original
geometry, c.f. Fig. 7, which is not vertically symmetric. Fig. 9 plots the odd (red) and even
(blue) modes of the symmetric system, as well as the full inseparable band structure for the
non-symmetric system (black). The agreement between the non-symmetric and symmetric
case is extremely high, except for the anti-crossing region highlighted with an arrow. This
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observation suggests that the non-symmetric modes still have a high degree of odd and
even character. Fig. 8b displays both R[H(x,y, z = 0)] of the guided mode at the Brillouin

zone boundary k = 0.5, as well as its z-profile ||| H.(x,y, z)dxdy|. The results demonstrate
that the mode is indeed highly z-symmetric and confined to the trench.

(b)

0 025
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IH, (xy,2)dxdy|

Fig. 8. (a)R[H:(x,y, z = 0)] for the waveguiding mode in the trench waveguide, see text.
(b) |I] Ha(x,y, z)dxdy | for the same mode, demonstrating its vertical confinement.
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Fig. 9. Band structure diagram for even (blue) and odd (red) modes of the system symmetric
about z = 0, and the inseparable band structure (black) of the system that is not symmetric
about z = 0. The inset schematically shows xz cross-sections of both systems. The band
structures of the symmetric and asymmetric waveguides are almost identical with exception
of small deviations in the vicinity of the anti-crossing regions.
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4.2.3 Cross talk between modes of different symmetries

The coupling between the waveguiding mode (which is, as seen in the above Sec. 4.2.2,
predominantly even) and the odd modes leads to propagation loss. This is because the
energy transfered to an odd mode is no longer spatially confined to the region of the
waveguide and is irreversibly lost. To assess the efficacy of the waveguiding in PhCS with
the trench, one needs to quantify the extent of the cross-talk.

In order to address this question, we compared magnetic field profiles of the waveguiding
mode (even-like) with the odd bulk mode for the frequencies close to the anti-crossing, Fig.

2
9. We examined the overlap between two modes ¢ = ‘ IHZ,l(r)H;Z(r)dV . Here, we assumed

the H fields to be already normalized. Fig. 10(a,b) plots the band structure for A=1.5(/3a/2),
h = 0.5a, d = 0.44, and the values of § for different branches of the dispersion curve. The
frequency scales are aligned along the y-axis so the value of the overlap is plotted along the
x-axis in Fig. 10b. The calculations indicate that the overlap between the bulk mode and the
mode from a waveguiding branch is indeed small (no greater than ~ 2%). As expected, the
degree of the overlap within the other branch gradually increases away from the anti-
crossing. We argue that making the trench deeper (smaller d) and narrowing the width of
the trench (smaller A) decreases the even- and odd- like character of the modes. The
reasoning is the following: by decreasing the depth of the waveguiding region, one is
introducing larger perturbations to the ideal, symmetric slab about z =0. Thus, the odd-like
and even-like modes interact to a greater extent, and the odd-even symmetry is lost. Further,
this should be seen in the overlap between the once even-like mode and the odd bulk mode.
If odd-even symmetry has decreased, then one expects the overlap to be greater. Indeed, the
calculations performed for a structure with A = 1.25(v/3a/2), h = 0.5a, d = 0.3a yield the
results qualitatively similar to those in Fig. 10, but with greater degree of the overlap.

(a) (b)
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Fig. 10. (a) Band structure diagram for i = 0.5a, d = 0.4a in the spectral vicinity of the region
of the strongest leakage of the guided mode (low dispersion curve). (b) plots (on the x-axis)
the overlap between the guided mode and the bulk mode of the opposite (odd) symmetry.
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4.3 Control over the properties of the mode

4.3.1 The effect of trench depth

In Sec. 4.2.3 we have found that when the trench becomes too deep, the loss of the even
symmetry of the guided mode may lead to increased propagation losses. Here, we
investigate the possibility of tuning the optical properties of the trench waveguide while
keeping it shallow (h — d) < h.

We varied the parameter d between d = 0.36a and d = 0.46a in steps of 8d = 0.024, while A =
1.5 x (v/3a/2) and h = 0.5a were kept constant for all structures. The resulting dispersion
relations are plotted in Fig. 11. One observes that for lower values of d, the frequency of the
guided mode increases. This is to be expected, as the mode propagating in structures with a
deeper trench (smaller d) should have more spatial extent in regions of air. The associated

lowering of the effective index experienced by these modes leads to the increase of their
B
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Fig. 11. Dispersion relations for the guided mode in the trench PhCS waveguide with
parameters i = 0.54, A = 1.5(1/3a/2), and different values of d. The even bulk PhCS modes
are superimposed as gray regions. A decrease in the depth of the trench (i — d) leads to the
decrease in the frequency of the guided mode in accordance with the effective index
argument, see text.

4.3.2 Trench displacement

One of the structural parameters important from the experimental point of view is the
alignment of the trench waveguide with the rows of cylindrical air-holes in the PhCS. To
demonstrate the robustness of the waveguiding effect in our design, we studied the
dependence of the band structure on the trench position. We introduce a displacement
parameter t; which measures the distance between the middle of the trench and the line
containing the centers of the air-holes. By our definition, the maximum amount of trench
displacement is tgmex = a % (v/3/4). By symmetry, any larger displacements are identical to
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one in 0 < t; £ty interval. The parameter t; was varied in this range in steps of &ts
=0.2%t max, while A = 1.5 (v/3a/2) and h = 0.5a were kept constant for all iterations. The
dispersion relation plots are presented in Fig. 12.

As t; approaches fiu., we note that the frequency of the waveguiding band shifts only
slightly to lower frequencies. Thus, fabrication errors in the alignment of the trench with the
background photonic crystal slab should have minimal effects on the frequency of the band.
The most pronounced dependence on t;appears at the edge of the Brillouin zone, k =1/2. At
ti = timax a degeneracy created between the guided mode and the next highest-frequency
even-like mode; the trench waveguide no longer operates in a single mode regime. This
degeneracy can be explained by studying the z-component of the magnetic field, H.. Fig. 12b
plots R[H.(xo0,y, z)] for the guided mode with f;= 0 (upper panel) and t; = t4m.x (lower panel).
xo corresponds to the line containing the centers of the airholes. At tguq displacement, an
additional symmetry appears due to the fact that the trench is centered at the midpoint
between two consecutive rows of air-holes. As highlighted by the structure of the mode in
Fig. 12b, the combination of translation by a/2 along the direction of the trench (y-axis) and
the y — z mirror reflection leaves the structure invariant. Thus, the effective index sampled
by two modes related by the above symmetry transformation, is identical. For the k-vectors
other than 1/2, the two modes remain spectrally separated for a large range of t;, making
the system robust against misalignment errors during fabrication.
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Fig. 12. Dispersion relations for i = 0.5a, d = 0.4a, and different values of the horizontal
position #; is shown in (a). The even bulk PhCS modes are superimposed as gray regions.
One notes that as t; approaches tg,..x the bands become degenerate at the edge of the
Brillouin zone. Panel (b) depicts the guided mode with k =1/2 for the trench centered at
(upper) or between (lower) rows of holes. Degeneracy of the lower mode for which t; = f4ux
is explained by the added symmetry of the trench for this particular value of ;. This
symmetry involves a/2 translation and mirror reflection, see text.
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4.4 Rotated trench waveguide as an array of coupled micro-cavities

As previously discussed in Sec. 4.1, a wide range of new phenomena is expected when the
direction of the trench waveguide is rotated with respect to the direction of the row of holes.
Indeed, a rotation of the trench creates modulations along the waveguide - the trench
alternates between the regions where it is centered on a hole and those between holes. We
will see that these regions play the role of optical resonators which are optically coupled (by
construction) to form a coupled resonator optical waveguide (CROW) (Yariv et al., 1999).

4.4.1 Effective index approximation analysis

In order to quantify the orientation of the trench, we use a parameter ¢, the angle between
the trench and the row of holes in the nearest neighbor direction. The investigation of such
structures can still be accomplished with the plane wave expansion method of Ref. (Johnson
& Joannopoulos, 2001). The required super-cell, however, is greatly increased (c.f. Fig. 15
below). To allow the detailed qualitative study of the rotated trench structures, we first
adopt an effective index approximation (Qiu, 2002), reducing the structures to two
dimensions. The slab is now a 2D hexagonal lattice with the background dielectric constant
e = 12.0, with holes of radius r = 0.4a and &, = 1.0. The trench is represented by a stripe
region with the reduced dielectric constant of € = 3.0. A band gap is present in the spectrum
of the TE-polarization modes propagating though this structure, with the guided mode of
the same polarization. Similar to the original 3D system, the frequency of the mode is
displaced up into the band gap due to the linear defect. An example of the super-cell of the
2D dielectric structure being modeled is depicted in the inset of Fig. 13a.
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Fig. 13. (a) Band structure for the aligned trench waveguide a = 0° (solid line) is compared to
the extended Brillouin zone band structures of the rotated trench waveguides with o= 9.8°
(squares), ¢ =7.1" (triangles), and a = 4.9° (diamonds). The slowest group velocity (flattest
band) occurs for the intermediate ¢ = 7.1°. The inset shows the 2D effective-medium
approximation of the 3D trench. (b) n(x;) as a function of trench coordinate x;. n(x;) is
modulated in a periodic fashion, allowing for the 1D photonic crystal methods to be applied.

We consider trenches with a small rotation from the M-crystallographic direction of the
hexagonal lattice. The smallness of the angle is determined in comparison to the other
nonequivalent direction, K, which is separated by an angle of 30°. We studied the rotated
trench waveguides with several values of ¢; here we report the results on ¢ = 9.8°, 7.1° and
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4.9°. In order to model the structures with such small angles, a large (along the direction of
the waveguide) computational super-cell is needed. As the result, the band structure of
trench is folded due to reduction of the Brillouin zone (BZ)(Neff et al., 2007). Even when
unfolded, the size of the BZ is reduced because a single period along the direction of the
trench contains several lines of air-holes. Thus, to compare the dispersion of the rotated
waveguide to that of the straight one, in Fig. 13a we show their band structures in the
extended form. The obtained series of bands correspond to the different guided modes of
the trench waveguide. Strikingly, we observe that the group velocity v, = da(k)/dk
associated with different bands varies markedly, c.f. bands (a,b) indicated by the arrows in
Fig. 13a. The origin of such variations is discussed below.

4.4.2 Coupled resonator optical waveguide (CROW) description

As the trench defect crosses the lines of air-holes in the PhCS, the local effective index
experienced by the propagating mode varies, cf. inset in Fig. 13a. This creates a one-
dimensional sequence of the periodically repeated segments with different modulations of
the refractive index. Indeed, Fig. 13b shows the refractive index averaged over the cross-
section of the trench and plotted along the waveguide direction. As it was shown Sec. 2, 3,
this dual-periodic (1D) photonic super-crystal acts as a periodic sequence of coupled optical
resonators. Furthermore, comparison of two modes in Fig. 14 demonstrates that at some
frequency, a segment of the trench may play the role of the cavity, whereas at another, this
particular section of the trench may serve as a tunneling barrier. This is similar to our results
in Fig. 1b.

For applications such as optical storage or coupled laser resonators, small-dispersion modes
(slow-light regime) are desired (Vlasov et al., 2005; Baba & Mori, 2007). Examining Fig. 13
we find that the band with the smallest group velocity (marked with (b) in the figure) occurs
at @ =7.1°. Comparison of the fast (a) and slow (b) modes, c.f. Figs. 13a, 14, provides a clue
as to why there might exist such a dramatic variations in the dispersion. For mode (a) the
resonator portion of the trench is long, whereas the barrier separating two subsequent
resonator regions is short. The corresponding CROW mode is extended with weak
confinement and high degree of coupling between the resonators. For mode (b) the
resonator regions appear to be well separated, thus the cavities provide good confinement
while the coupling is quite weak. This results in low dispersion of the CROW band (b).

Fig. 14. Spatial distribution of the wave-guidingmode, | H.|?2 for the fast- and the slow-
bands denoted as (a) and (b) in Fig. 13a.
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Our analysis of 1D structures in Ref. (Yamilov & Bertino, 2008) showed that increasing the
period of the super-modulation monotonously leads to flatter bands - simultaneously
enhancing confinement and weakening inter-cavity coupling. In the effective index
approximation of our trench waveguide, an increase of the super-modulation corresponds
to the decrease of the angle of rotation of the trench «. Lack of such a uniform reduction in
the group velocity of the guided modes with the decrease of ¢ (in the system considered, the
minimum in v, occurs for the intermediate value of o = 7.1%) shows that the reduction to 1D
system (such as in Fig. 13b) may not be fully justified. In other words, the position of the
trench with relation to the PhCS units is important in formation of the optical resonators,
hence, simulation of a particular structure in hand is required.

4.5 Implementation of trench-waveguide

Although the band structure computations become significantly more challenging when one
relaxes the effective index approximation employed in Sec. 4.4.1, 44.2, our CROW
description of the guided modes in the rotated trench waveguide remains valid. Fig. 15
shows a representative mode found in the full 3D simulations. In the realistic 3D systems
the CROW description is further complicated (Sanchis et al., 2005; Povinelli & Fan, 2006) due
to the need to account not only the in-plane confinement 1/Q| but also the vertical
confinement factor 1/Q, even in a single cavity (a single-period section of the trench).
Indeed, since the total cavity Q-factor contains both contributions 1/Q =1/Q| +1/Q,, the
structures optimized in the 2D-approximation simulations which contain no Q,, no longer
appear optimized in 3D.

Fig. 15. A representative example of the guided mode obtained in full 3D simulation of the
rotated trench waveguide. The system parameters are chosen as in Sec. 4.3, ¢ = 9.8".

Several designs aim at optimization of PhCS-based resonator cavities by balancing Q| and
Q, via “gentle localization” (Akahane et al., 2003), phase slip (Loncar et al., 2002; Apalkov &
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Raikh, 2003) or double heterostructure (Song et al., 2005). In Ref. (Yamilov et al., 2006) we
also demonstrated how random fluctuation of the thickness of PhCS give rise to self-
optimization of the lasing modes. The results of Sec. 4.4.1, 4.4.2 suggest that by varying such
structural parameters of the trench waveguide as its width, depth and the rotation angle, a
variety of resonator cavities is created. Thus, we believe that, given a particular
experimental realization, it would be possible to optimize the guided modes of the trench
waveguide for the desired application. We stress that the adjustment of all three structural
parameters of the considered design does not require the alteration of the structural unit of
PhCS - the air-hole - and it should be possible to fabricate a trench waveguide in a PhCS
“blank” prepared e.g. holographically. Therefore, the fabrication process of the finished
device involving the trench waveguides may be accomplished without employing (serial)
e-beam lithography opening up a possibility of parallel mass production of such devices.

5. Summary and outlook

In this contribution we presented the analytical and numerical studies of photonic super-
crystals with short- and long-range harmonic modulations of the refractive index, c.f. Eq. (1).
Such structures can be prepared experimentally with holographic photolithography, Sec. 2.
We showed that a series of bands with anomalously small dispersion is formed in the
spectral region of the photonic bandgap of the underlying single-periodic crystal. The
related slow-light effect is attributed to the long-range modulations of the index, that leads
to formation of an array of evanescently-coupled high-Q cavities, Sec. 3.1.

In Sec. 3, the band structure of the photonic super-crystal is studied with four techniques: (i)
transfer matrix approach; (ii) an analysis of resonant coupling in the process of band folding;
(iii) effective medium approach based on coupled-mode theory; and (iv) the Bogolyubov-
Mitropolsky approach. The latter method, commonly used in the studies of nonlinear
oscillators, was employed to investigate the behavior of eigenfunction envelopes and the
band structure of the dual-periodic photonic lattice. We show that reliable results can be
obtained even in the case of large refractive index modulation.

In Sec. 4 we discussed a practical implementation of a dual-periodic photonic super-crystal.
We demonstrated that a linear trench defect in a photonic crystal slab creates a periodic
array of coupled photonic crystal slab cavities.

The main message of our work is that practical slow-light devices based on the coupled-cavity
microresonator arrays can be fabricated with a combination of scalable holography and photo-
lithography methods, avoiding laborious electron-beam lithography. The intrinsic feature
uniformity, crucial from the experimental point of view, should ensure that the resonances
of the individual cavities efficiently couple to form flat photonic band and, thus, bring about
the desired slow light effect. Furthermore, the reduction in fabrication costs associated with
abandoning e-beam lithography in favor of the optical patterning, is expected to make them
even more practical.
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1. Introduction

1.1 Photonic crystals

In this chapter we will focus on two-dimensional photonic crystal devices and emphasize
their use as building blocks in photonic integrated circuits with applications in high
bandwidth optical communication systems. In particular we will discuss recent progress in
designing high quality (Q) factor resonant cavities for building efficient micro- and nano-
cavity lasers. The first section will provide a brief overview of two-dimensional photonic
crystals and motivate their use in photonic integrated circuits. This will be followed by a
first principles derivation of the role of the Q factor in estimating laser threshold. We will
then focus on the photonic crystal heterostructure cavity due to its exceptionally large Q
factor. Its spectral and modal properties will be discussed, and its use as a high output
power edge-emitting laser will be presented. We conclude with remarks on continuous
wave laser operation via heat sinking lower substrates and the issue of out-of-plane loss.
The term photonic crystal refers to any structure with a periodic variation in its refractive
index (John, 1987; Yablonovitch et al., 1991; Joannopoulos et al., 1995). The periodicity can be
in one, two or three spatial dimensions and can introduce a photonic bandgap (a range of
frequencies for which electromagnetic radiation is non-propagating) with the same
dimensionality. The bandgap arises due to Bragg reflection and occurs when the spatial
periodicity has a length scale approximately one half that of the incident electromagnetic
radiation. This same phenomenon gives rise to the electronic bandgap in semiconducting
materials. Examples of photonic crystal structures with periodicity in varying spatial
dimensions are shown in Figure 1. One dimensional photonic crystals have found many
technology applications in the form of Bragg reflectors which are part of the optical
feedback mechanism in distributed feedback lasers (Kogelnik & Shank, 1971; Nakamura et
al., 1973) and vertical cavity surface emitting lasers (Soda et al., 1979). Two and three
dimensional photonic crystals have been the subject of intense research recently in areas
related to sensing (Loncar et al, 2003; Chow et al, 2004; Smith et al, 2007),
telecommunications (Noda et al., 2000; McNab et al., 2003; Bogaerts et al., 2004; Notomi et
al., 2004; Noda et al., 2000; Jiang et al., 2005; Aoki et al., 2008), slow light (Vlasov et al., 2005;
Krauss, 2007; Baba & Mori, 2007; Baba, 2008) and quantum optics (Yoshie et al., 2004; Lodahl
et al., 2004; Englund et al., 2005).
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Fig. 1. Images depicting photonic crystals with periodicity in (a) one dimension, (b) two
dimensions and (c) three dimensions.

Figure 1(b) displays a semiconductor slab perforated with a two-dimensional triangular
array of air holes. Because of the periodic refractive index, the in-plane propagating modes
of the slab can be characterized using Bloch’s theorem. In the vertical, out-of-plane direction,
the modes are confined via index guiding, and Figure 2(a) illustrates typical guided and
radiation modes. These modes are peaked near the center of the slab and are either
evanescent (guided) or propagating (radiation) out-of-plane. Figure 2(b) is a photonic band
diagram corresponding to a photonic crystal structure similar to that shown in Figure 1(b)
and Figure 2(a). The left vertical axis is written in terms of normalized frequency where a
corresponds to the lattice constant of the photonic crystal, and c is the vacuum speed of
light. The right vertical axis is denormalized and written in terms of free space wavelength
using a lattice constant of 2 = 400nm. The photonic bandgap corresponds to the normalized
frequency range 0.25-0.32 where there are no propagating modes in this structure. Using a
lattice constant of a = 400nm places the near infrared fiber optic communication
wavelengths of 1.3ym (low-dispersion) and 1.5um (low-loss) within the bandgap making
this geometry amenable to applications in fiber optic communication systems. The shaded
regions on the left and right sides of Figure 2(b) represent the projection of the light cone
onto the various propagation directions which is a result of the vertical confinement
mechanism being due to index guiding. Photonic crystal modes that overlap the shaded
regions in Figure 2(b) correspond to the radiation modes in Figure 2(a). Figure 2(b) shows
the dispersion for the three lowest frequency bands with transverse electric polarization
(out-of-plane magnetic field has even vertical symmetry). Figure 2(c) illustrates a unit cell
corresponding to a triangular lattice photonic crystal. The band diagram in Figure 2(b) was
calculated using the three-dimensional finite-difference time-domain method (Taflove &
Hagness, 2000). The computational domain is similar to that shown in Figure 2(c) where the
in-plane boundaries are terminated using Bloch boundary conditions. More details about
this approach can be found in (Kuang et al., 2007). Photonic crystal geometries represent
complicated electromagnetic problems and almost always demand a numerical approach
for their analysis. Several numerical methods for solving Maxwell’s equations exist. Some
examples include the finite-element method (Kim 2004), transmission line method (Benson
et al.,, 2005), scatterning based methods (Peterson et al., 1998; Sadiku 2000) and plane wave
expansion methods for periodic structures (Joannopoulos et al., 1995; Sakoda 2001). In this
work, we will be using the finite-difference time-domain method due to its generality,
simplicity and linear scaling with problem size. For the band structure in Figure 2(b), the
refractive index of the slab was set to n = 3.4, the hole radius to lattice constant ratio was set



Two-Dimensional Photonic Crystal Micro-cavities for Chip-scale Laser Applications 33

to r/a = 0.29 and the slab thickness to lattice constant ratio was set to d/a = 0.6. These
photonic crystal geometry parameters will hold for the rest of the devices analyzed in this
chapter.
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Fig. 2. (a) Cross section of a two-dimensional photonic crystal defined in a dielectric slab of
finite thickness. The field distribution in the vertical direction for guided and radiation
modes is shown. (b) Photonic band diagram for a two-dimensional photonic crystal defined
in a single-mode slab. c denotes free space speed of light. a denotes the lattice cosntant. The
diagram depicts the lowest three bands for the TE-like modes of the slab. The inset shows
the region of the first Brillouin zone described by the dispersion diagram. (c) A unit cell of a
triangular photonic crystal lattice and the phase relationships between the boundaries
determined by Bloch’s theorem.

1.2 Defects in two-dimensional photonic crystals

Much of the versatility and device applications of two-dimensional photonic crystal
structures are associated with the introduction of defects into the periodic lattice. Figure 3(a)
displays the out-of-plane component of the magnetic field of a typical mode associated with
a photonic crystal waveguide formed by removing a single row of holes along the I' - K
direction. For the TE-like modes of the slab, only the E,, E, and H. fields are nonzero at the
midplane, and H. is displayed due to its scalar nature. It is clear that the mode is localized to
the defect region along the y-direction due to the photonic crystal bandgap, and
confinement along the z-direction is due to index guiding as discussed with regard to Figure
2(a). Figure 3(b) displays the unit cell used in the computation of the field shown in Figure
3(a). The finite-difference time-domain method was used with Bloch boundary conditions
along the x-direction (Kuang et al., 2006). Figures 6(b) and 7 depict photonic crystal
waveguide dispersion diagrams. The mode depicted in Figure 3(a) is associated with the
lowest frequency band in the bandgap and a propagation constant of fa = 1.9. It has been
shown that photonic crystal waveguides are capable of low loss optical guiding (McNab et
al., 2003) and have the ability to redirect light along different directions in-plane with low
loss waveguide bends (Shih et al., 2004).

Figure 3(c) displays the z-component of the magnetic field corresponding to a typical
resonant mode of an L3 cavity (Akahane et al., 2003, 2005). The L3 cavity is formed by
removing three adjacent holes along the I' — K direction in a triangular photonic crystal
lattice. The two dimensional in-plane confinement due to the photonic crystal bandgap is
apparent. In the case of photonic crystal defect cavities, a single unit cell with Bloch
boundary conditions is no longer applicable, and large three dimensional computational
domains must be analyzed. Such a cavity can be used as an optical filter, an optical buffer or
alaser.
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Fig. 3. (a) H:(x,y, z = 0) for a typical photonic crystal waveguide mode. z = 0 corresponds to
the midplane of the slab as shown in Figure 2(a). (b) The unit cell of a photonic crystal
waveguide and the phase relationship between the boundaries determined by Bloch’s
theorem. (c) H.(x,y, z = 0) for a typical L3 cavity mode.

1.3 Photonic integrated circuits

Photonic integratration is analogous to the integration of electronic devices on a silicon chip.
Typical microprocessors contain on the order of 109 transistors in an area on the order of
lecm2. Such dense device integration has resulted in microprocessors with exceptional
functionality. And because the devices share a common substrate and metal wiring network,
they can be mass produced with limited overhead costs.

Similar to electronic integrated circuits, photonic integrated circuits are useful for any
application in which a large number of devices need to be contained in a confined space.
Photonic integrated circuits have a variety of applications including telecommunications,
sensing and imaging. In telecommunication systems photonic integrated circuits have the
potential for lower cost systems due to reduced packaging costs, improved reliability due to
reduced alignment errors and improved bandwidth through all optical signal processing.
Another application of photonic integrated circuits is in optical buses in multicore computer
architectures. The inter-core communication and off-chip memory access can be a
performance bottleneck for applications with heavy memory access. Optics has the potential
to improve memory access bandwidth due in part to its ability to transmit signals at
multiple wavelengths through a single waveguide. It also has the advantage of operating at
a lower temperature due to the absence of resistive heating.

Figure 4 shows a schematic diagram of a photonic crystal based photonic integrated circuit
that includes sources, modulators, filters and detectors integrated on a single chip. This
particular structure consists of a bus waveguide passing from left to right carrying
modulated optical signals at wavelengths A; and 1. First, the signals encounter frequency
selective filters which couple the filtered signal to an optical detector. On-chip lasers
operating at A; and A, generate a new carrier beam which is modulated and rerouted to the
bus waveguide. The input and output ports could lead to other on-chip processing or to
coupled optical fibers. From this simple example, it is clear that photonic crystals offer a
versatile platform for realizing a variety of different devices by local rearrangements of the
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laser modulator

filter detector bus waveguide

Fig. 4. Schematic diagram depicting a simple photonic crystal based photonic integrated
circuit.

hole pattern. It is this flexibility along with their dispersive properties and high Q factor
cavities that make photonic crystals an interesting candidate for photonic integration.
Furthermore, devices based on photonic crystals have the potential to occupy smaller spaces
than devices based on index guiding. In the remainder of this chapter we will focus our
attention to aspects of designing photonic crystal cavities for on-chip laser sources.

2. High quality factor photonic crystal cavities

2.1 Role of the quality factor in determining laser threshold
The Q factor is a figure of merit used to quantify the radiation losses of an optical resonator.
Formally it is defined by

W
ey
dt

1)

where @ is the resonance frequency, and the angled brackets denote a time-average over an
integer number of optical periods. U represents the electromagnetic energy and is given by

I = = 1 = =
U=|[z€eE-E+—uH-H]dV. 2
I S uH H] )
where e represents the electric permittivity, £ represents the electric field, y represents the

magnetic permeability and H represents the magnetic field. Equation 1 can be considered a
first order ordinary differential equation in (U). Its solution is

U@ =UO)exp(-ayt/ Q). ®)
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Equation 3 tells us that the temporal decay of the electromagnetic energy stored in a large Q
factor cavity will be slower than that of a low Q factor cavity. From Eq. 3 a photon lifetime
can be defined as 17, = Q/wo. This quantity is related to the average length of time that a
photon spends inside a cavity. It is clear that a large Q factor results in a long photon
lifetime.

In order to illustrate the precise role that the Q factor plays in designing efficient, low-
threshold lasers, we will derive the laser threshold condition applicable to photonic crystal
resonant cavities made from semiconductor active material (Mock & O’Brien, 2009a).
Equation 4 is the Poynting theorem in its time averaged form and is a statement of

electromagnetic energy conservation. § is the Poynting vector and is given by S=ExH .
Its closed surface integral represents the power radiated through the surface. P, represents
absorbed power which in the case of a semiconductor active material would occur in regions
of the structure in which the carrier population is not inverted. Psrepresents supplied power
coming in the form of optical gain resulting from an external energy source.

§8y-di=~Cy=(ey+(2) @

If one considers a passive cavity in which P;= P,= 0 and substitutes dU/dt in Equation 1 into
Equation 4 one gets

w,)
S )-dA=w,~—2L. 5
§(S,.)- 25" ()

P

where the subscript m is used to specify that the Poynting vector and electromagnetic
energy correspond to a specific mode m whose passive Q factor is given by Q,. The basic
idea behind laser threshold is that the optical loss mechanisms should be exactly
compensated by an optical power source which comes in the form of optical gain (Schawlow
& Townes, 1958). At threshold when the loss just equals the gain, the temporal rate of
change of the energy in the cavity is zero, and we can set dU/dt = 0 in Equation 4. If we then
use Equation 5 in Equation 4, the result is

0, U

P

©)

Equation 6 is the laser threshold condition. The first term on the left side represents passive
cavity (radiative) losses. The second term represents active cavity (absorptive) losses. The
right side represents the supplied power required to offset the optical losses. From the first
term in Equation 6, it is apparent that the passive Q factor should be as large as possible so
as to reduce the radiative losses and thus the power required to reach threshold. It should be
noted, however, that a high Q factor cavity often results in reduced output power, and
tradeoffs between low threshold and sufficient output power should be considered when
designing a prospective cavity for chip-scale laser applications.

2.2 Two-dimensional photonic crystal cavities
Figure 5 displays four cavity designs as well as the evolution of their Q factors over the
passed decade. Early photonic crystal cavities were formed by removing a single hole from
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a uniform lattice (Painter et al., 1999; Ryu et al., 2002). More recently, linear defects have
been shown to have higher Q factors than single missing hole cavities (Akahane et al., 2003,
2005), and the photonic crystal double heterostructure cavity has been shown to have the
largest Q factor among two-dimensional photonic crystal cavities (Song et al., 2005; Tanaka
et al., 2008). Because of its exceptionally high Q factor and small mode volume, the photonic
crystal double heterostructure has been the subject of intense research for building efficient
chip scale optical sources and will be highlighted in what follows.
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Fig. 5. Quality factor for different two-dimensional photonic crystal cavities as a function of
time. Data points and figures come from (Painter et al., 1999; Ryu et al., 2002; Akahane et al.,
2003; Zhang & Qiu, 2004; Nozaki & Baba, 2006; Akahane et al., 2005; Song et al., 2005; Asano
et al., 2006; Tanaka et al., 2008)

3. Photonic crystal double heterostructure resonant cavities

3.1 Introduction

In 2005 Song et al. showed that a two-dimensional photonic crystal waveguide with a small,
localized perturbation can form an ultra high Q factor cavity with a Q factor greater than 105
and a mode volume on the order of one cubic wavelength (Song et al., 2005, 2007). Such a
cavity was termed a photonic crystal double heterostructure and is depicted in Figure 6. The
cavity is formed from an otherwise uniform photonic crystal waveguide by enlarging the
lattice constant along the x-direction of the light colored air holes. Below the schematic
diagram, the resulting photonic band structure is shown illustrating the formation of a
photonic well along the x-direction. Further experimental work on these cavities has
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demonstrated devices with passive Q factors as large as 10¢ (Asano et al., 2006). Since these
initial reports, several groups have reported forming high Q factor photonic crystal double
heterostructure cavities through a variety of methods including local modulation of a
photonic crystal line defect width (Kuramochi et al., 2006), local air-hole infiltration (Smith
et al., 2007), photosensitive materials (Tomljenovic-Hanic et al., 2007), effective index change
through micro-fiber coupling (Kim et al., 2007) and local modulation of the hole radii (Kwon
et al., 2008b). A numerical analysis showed that Q factors as high as 109 are possible with a
tapered perturbation (Tanaka et al., 2008). The ultra high Q factors and cubic wavelength
mode volumes along with the waveguide-like shape of the cavities have made them
attractive for a variety of applications including chemical sensing (Kwon et al., 2008a), slow
light (Tanabe et al., 2007; Takahashi et al., 2007), elements of coupled resonator optical
waveguides (O'Brien et al.,, 2007) and edge-emitting lasers (Shih, Kuang, Mock, Bagheri,
Hwang, O’'Brien & Dapkus, 2006; Shih, Mock, Hwang, Kuang, O'Brien & Dapkus, 2006;
Yang et al., 2007; Lu et al., 2007, 2008; Lu, Mock, Shih, Hwang, Bagheri, Stapleton, Farrell,
O’Brien & Dapkus, 2009).
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Fig. 6. (a) Schematic diagram of a photonic crystal double heterostructure resonant cavity
formed in a uniform single line defect waveguide by increasing the lattice constant of the
light colored holes along the x-direction. The resulting photonic well diagram is illustrated
below. (b) Photonic crystal waveguide dispersion diagram depicting the photonic crystal
waveguide bands associated with the straight (black, solid) and perturbed (red, dashed)
portions of the waveguide. The waveguide frequencies of the perturbed section that fall into
the mode gap of the straight waveguide are labeled “candidate bound state frequencies.”
The blue region denotes the photonic crystal cladding modes, and the gray region denotes
the light cone.

3.2 Spectral and modal properties

When the lattice constant is locally increased, it shifts the frequencies of the waveguide band
associated with the perturbed region to lower frequencies as shown in Figure 6(b). The
bound state will oscillate near frequencies of the perturbed waveguide section that fall into
the mode gap of the uniform waveguide sections. Candidate frequencies for bound state
resonances are labeled in Figure 6(b). Only below the minima of the dispersion relation in
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the uniform photonic crystal waveguide regions is there a possibility for a mode to exist in
the central region without the possibility of there simultaneously being a mode in the
cladding at the same frequency a small distance in wavevector away. In other words, only in
these cases is there no mode that is nearby (in the wavevector sense) in the cladding at the
same frequency (Mock et al., 2006, 2008). This mode formation is analogous to the formation
of bound states in electronic heterostructures at the extrema of the electronic dispersion
relations.

Figure 7 is a comparison between the spectral features of a photonic crystal double
heterostructure resonance spectrum and the frequency axis of the photonic crystal
waveguide dispersion diagram corresponding to the underlying straight waveguide. The
red dotted lines illustrate that the bound state resonance frequencies occur just below the
waveguide dispersion minima. The resonance spectrum was obtained by taking a discrete
Frourier transformation of a 2x105 element time sequence. The time sequence was calculated
via the three dimensional finite-difference time-domain method. The computational domain
included 20 uniform photonic crystal cladding periods on either side of the central defect
region along the x-direction and 8 photonic crystal layers above and below the central
waveguide core along the y-direction. This geometry was discretized with 950 x 340 x 200
discretization points along the x x y X z directions and parallelized using 11 x 4 x 3
processors (132 total processors) along the x x y x z directions. The geometry was discretized
using 20 points per lattice constant (a). The lattice constant of the perturbed region was
increased by 5% along the x-direction.

Photonic Crystal Waveguide Double Heterostructure
Resonance Spectrum
T L = LAl IEEIRA LU B S LR L,

Dispersion Diagram
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Fig. 7. Left: photonic crystal waveguide dispersion diagram. Black lines correspond to the
photonic crystal waveguide dispersion bands. Blue regions denote photonic crystal cladding
modes. The gray region denotes the light cone projection. Right: photonic crystal double
heterostructure resonant spectrum. Dashed lines illustrate correspondance between
heterostructure bound state frequencies and waveguide dispersion extrema.

Figure 8 depicts the z-component of the magnetic field for the bound state resonances
labeled in Figure 7. These mode profiles may be interpreted as consisting of the waveguide
mode of the underlying straight waveguide multiplied by a confining envelope function
centered at the perturbation. It is interesting to point out that mode (c) exhibits significant
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extension into the photonic crystal cladding. This can be attributed to the close proximity of
the corresponding photonic crystal waveguide band to the photonic crystal cladding modes
in Figure 7. To the right of each H.(x,y, z = 0) mode profile is the corresponding spatial
Fourier transform. Specifically, log(|FT(Ex) |2 + |FT(E,)|?) is plotted where FT stands for
Fourier transform. The two-dimensional spatial Fourier transform yields the spatial
wavevector components that make up the bound state resonance. The spatial wavevector
distributions are centered at ffx = +rr/a. This is consistent with the observation that bound
state resonance frequencies occur near the waveguide dispersion minima which coincide
with the Brillouin zone boundary at . = 71/ a for this particular waveguide.

Hy(x, y,z=0) IFT(EQ)I? + [FT(Ey)I2
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Fig. 8. Left: H.(x, y, z = 0) for the three modes summarized in Table 1. Right: spatial Fourier
transform log(| FT(E.) |2+ | FT(E,) | ?) of each mode illustrating the distribution of spatial
wavevectors making up the different resonant modes.

Table 1 summarizes the normalized resonance frequencies of the three modes shown in
Figure 8. The resonance frequencies and Q factors were obtained using the Padé
interpolation method (Mock & O’Brien, 2008). It is clear that the bound state resonance
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frequencies fall just below the photonic crystal waveguide band edge. Mode (a) has the

largest Q factor and will be featured in the remainder of this chapter.

Mode Resonance Bandedge Q factor
Frequency Frequency
(a) 0.2606 0.2629 336,700
(b) 0.2800 0.2824 10,800
(c) 0.3184 0.3227 8,250

Table 1. Summary of Q factors and resonant frequencies for the resonant modes associated
with a photonic crystal heterostructure cavity.

3.3 Higher-order bound states

The previous section discussed a photonic crystal double heterostructure cavity resulting
from a 5% lattice constant stretching along the x-direction. Figure 9 shows several
interesting features of the high Q factor mode in Table 1 as the degree of perturbation is
varied. First, the Q factor exhibits a strong dependence on the percent lattice constant
increase. For very shallow perturbations (<3%), Q factors in excess of one million are
predicted. Whereas for perturbations exceeding 20%, the Q factor dips below one thousand.
Intuitively, one would expect that by increasing the lattice constant perturbation, the
photonic well is deepened which would lead to improved confinement. It turns out that
deepening the well makes the transition between the straight waveguide and the
perturbation region more abrupt and introduces high spatial frequencies into the envelope
function of the mode along the x-direction (Akahane et al., 2003). Because these modes have
Fourier space distributions centered near f, = n/a, large spatial frequencies in the envelope
function get shifted to regions in Fourier space near f, =0. Fourier components inside the
light cone centered at the origin in Fourier space radiate out-of-plane, and this loss
mechanism dominates the overall loss properties of the mode. Researchers have
investigated designs that smoothen the transition between the straight waveguide regions
and the perturbation region and have obtained improved Q factors as a result (Akahane et
al., 2005; Song et al., 2005).
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Fig. 9. Q factor versus perturbation depth for the first, second and third order bound states.
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The second interesting feature of Figure 9 is the presence of higher order bound states. For
perturbations greater than 7.5%, the cavity supports both a first order and a second order
bound state. For perturbations greater than 20%, the cavity supports three bound states. The
Q factors of the higher order bound state resonances exhibit a similar dependence on
percent lattice constant increase as the first order bound state. It should also be pointed out
that for a given perturbation, the highest order bound state has the largest Q factor. Figure
10 displays the z-component of the magnetic field of the first three bound states associated
with a heterostructure cavity. Also shown are the envelope functions obtained by extracting
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Fig. 10. Left: H.(x, y, z = 0) field distributions for the first, second and third order bound
states. Right: field envelopes extracted from |H.(x,y=0,z=0)].
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the maxima of |H.(x,y = 0, z = 0)| (the dotted white line in the top image of Figure 10
depicts the contour along which the maxima were measured). The envelope functions show
a similar behavior to the wavefunction solutions corresponding to a quantum well problem
in quantum mechanics.

From a technology perspective, if one chooses to work with a cavity that supports multiple
bound states, then it is useful to be able to enhance one mode relative to the others. From
Equation 6, one sees that the mode with the largest Q factor will be the first to reach threshold
if the cavity is multimoded. However, from Figure 10, the various bound states have different
spatial mode distributions and thus different overlap integrals with the spatial gain
distribution. For instance, an optical pump beam directly centered on the heterostructure
cavity will preferentially pump the first order bound state, and this mode could reach
threshold first even though it has a smaller Q factor than the second order bound state. In
order to get around this issue one can introduce cavity modifications that significantly reduce
the Q factors of the unwanted modes while leaving the Q factor of the featured mode intact.
Such a mode discrimination scheme improves side mode suppression as well.

One strategy to perform mode discrimination is to place extra holes in the cavity near the
maxima of the electric field corresponding to the mode we wish to suppress. This enhances
out-of-plane radiation and lowers the Q factor (Kuang et al.,, 2005). Figure 11 displays
modified cavities that were fabricated in a 240-nm-thick suspended InGaAsP membrane
containing four compressively strained quantum wells. The semiconductor dry-etch was
done in an inductively coupled plasma etcher using BCl; chemistry at 165°C. The rest of the
fabrication processes are the same as those in (Shih, Kuang, Mock, Bagheri, Hwang, O'Brien
& Dapkus, 2006). The inset of Figure 11(a) displays a scanning electron micrograph of a
cavity with a 10% perturbation which supports both the first order and the second order
bound states. The inset of Figure 11(b) illustrates a cavity with holes placed at x = £2.4a to
suppress the second order bound state, and Figure 11(c) illustrates a cavity with a hole
placed at x = 0 to suppress the first order bound state (Mock et al., 2009).

The devices were optically pumped at room temperature by an 850 nm diode laser at
normal incidence with an 8 ns pulse width and 1% duty cycle. The size of the pump spot
was about 2 ym in diameter. The lower spectrum in Figure 11(a) is the single-mode lasing
spectrum operating in the first bound state, while the upper multimode lasing spectrum
shows the existence of the second bound state approximately 20 nm away from the first one
when the pump spot is slightly moved off the device center along the waveguide core. The
two modified structures in Figure 11(b) and (c) both operate in stable single-mode operation
with respect to pump beam location. Their lasing wavelengths line up with the first and
second bound states lasing in the unmodied structure. All four lasing spectra were taken at
the peak incident power of 1.7mW. The broad resonance peak between 1.40 and 1.45 ym
corresponds to a higher order waveguide dispersion band. Figure 11(d) depicts the light-in-
light-out (L-L) curves of the three lasers shown in (a)-(c). They have almost identical
thresholds but different slopes, indicating the same amount of total optical loss but different
portions of collected laser power. It is possible that the extra holes are causing some excess
vertical scattering that is collected by the collection setup.

3.4 Edge-emitting lasers
As mentioned earlier in this chapter, large Q factor cavities lead to reduced laser thresholds
resulting from reduced radiative losses. However, reduced radiative losses also reduce the
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Fig. 11. (a)-(c) Lasing spectra of three double-heterostructure lasers with 10% perturbation
(a,=1.10a,). Their SEM images are shown as insets. (d) Light-in-light-out curves of the
lasers in (a)-(c).

output power of a laser for a given pump level. For applications related to integrated
photonics, it is important to have sufficient output power for efficient on-chip detection with
a large signal-to-noise ratio and low bit error rate. Fortunately, high Q factor cavities give
the designer freedom to lower the Q factor intentionally by introducing losses in a
preferential radiation direction. For photonic integrated circuits, the preferential output
direction is in-plane. Because the photonic crystal double heterostructure cavity is formed
from a perturbation of a straight waveguide, the in-plane losses can be enhanced along the
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waveguide direction by reducing the number of uniform waveguide periods cladding the
perturbation region. Figure 12 displays a finite-difference time-domain simulation of a
fabricated heterostructure cavity in which several uniform photonic crystal waveguide
cladding periods on one side of the structure have been removed. The geometry was
defined in the numerical simulation from a scanning electron micrograph of a fabricated
device. For this structure, only five uniform waveguide periods remain between the etched
facet and the perturbation region. In excess of 100 microWatts of peak power was measured
from this cavity (Lu, Mock, Shih, Hwang, Bagheri, Stapleton, Farrell, O'Brien & Dapkus,
2009). One issue with this structure is that the output power is diffracting at relatively large
angles, so that our measurement setup did not collect all of the edge-emitted output power.
More recent cavity designs have improved the directionality and have demonstrated output
powers in excess of 500 microWatts (Lu, Mock, Hwang, O’'Brien & Dapkus, 2009). It should
be noted that in a real integrated photonics application, these cavities would be coupled to
in-plane waveguides. Coupling efficiencies between defect cavities and photonic crystal
waveguides as high as 90% have been reported (Nozaki & Watanabe, 2008) which suggests
that over a milliWatt of power could be coupled to an in-plane waveguide. These results
strengthen the technological viability of photonic crystal lasers as commercial on-chip

sources.
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Fig. 12. Finite-difference time-domain calculation of the lasing mode in a fabricated edge-
emitting heterostructure laser. | H;(x,y, z = 0)| is plotted.

4. Heat sinking dielectric substrates

In addition to demonstrating that photonic crystal lasers are capable of outputting sufficient
output power, showing that these lasers are capable of continuous wave (CW) operation at
room temperature and above is another important step in advancing the commercial
viability of these sources. The experimental lasing results described thus far correspond to a
pulsed optical pump. As mentioned previously, these cavities are formed in thin, suspended
membranes which makes it difficult for the material to dissipate heat buildup in the vertical
direction. Furthermore, the lattice of airholes reduces the effective thermal conductivity in-
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plane further reducing the ability of these lasers to dissipate heat. Pulsed pumping allows
sufficient carrier excitation for the laser to reach threshold, but the pump beam is on for
short enough time periods that the gain properties of the active material are not degraded
due to heating.

One approach to achieving CW operation is to grow or bond the semiconductor active
material to a thermally conductive lower substrate to aid in heat dissipation (Cao et al.,
2005). Two candidate materials include silicon dioxide whose thermal conductivity is
0.014W/cm-K and sapphire whose thermal conductivity is 0.34W/cm-K. These thermal
conductivities are significantly larger than that of air alone (0.00024W/cm-K). The trade-off
associated with introducing a thermally conductive lower substrate is that the index contrast
between the semiconductor slab and the vertical cladding structure is reduced which
increases the optical leakage into the substrate. Figure 13 depicts the total Q factor of the
heterostructure cavity as a function of the index of the lower substrate. Also depicted are the
directional Q factors characterizing radiative losses into the waveguide direction (WG),
photonic crystal cladding (PC), air and substrate. Because the directional Q factors add as
inverses to express the total Q factor, the lowest directional Q factor will represent the
dominant loss mechanism. In this case, it is confirmed that radiation into the substrate is the
dominant loss mechanism as the substrate index is increased. The refractive indices of
silicon dioxide and sapphire are 1.45 and 1.74, respectively. From Figure 13, the total Q
factor has dropped to 4600 for n=1.45 and 610 for n=1.74. Previous studies have found that
the minimum Q factor required for CW lasing in sapphire bonded cavities is 1000 (Shih et
al., 2006). One sees that the photonic crystal heterostructure cavity is predicted to have a Q
factor below 1000 when its substrate refractive index is consistent with that of sapphire
suggesting that this configuration is not capable of achieving CW threshold when bonded to
sapphire.
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Fig. 13. (a) Depiction of a photonic crystal heterostructure cavity bonded or grown on a

lower substrate. Radiation directions are indicated. (b) Q factor versus substrate refractive

index for the total Q factor as well as the directional Q factors.

In order to reduce optical radiation into the substrate, an alternative cavity design based on
introducing a glide-plane along the waveguide direction has been proposed (Kuang &
O’Brien, 2004; Mock & O’Brien, 2009b). Intuitively, the glide-plane introduces a phase shift
between the fields on either side of the waveguide core, so that when the two fields combine
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on-axis, they interfere destructively, and the out-of-plane radiation is reduced. This
configuration is known as a type B photonic crystal heterostructure. A schematic of the
cavity is shown in Figure 14(a) along with a directional loss anlaysis in Figure 14(b). It
should be noted that the cavity analysed in Figure 14(b) included a tapered perturbation in
which intermediate stretchings of 2.5% were included on either side of the 5% perturbation.
The motivation for this was to reduce the glide-plane symmetry breaking which reduced in-
plane losses. It is apparent from the directional loss analysis that for substrate refractive
indices between 1.0 and 1.5, the dominant loss mechanism is in-plane along the waveguide
direction. The total Q factor remains flat over this range of substrate refractive indicies due
to the improved susceptibility to out-of-plane radiation. For substrate refractive indicies
greater than 1.5, the substrate losses dominate. It should be pointed out that the type B
heterostructure has a total Q factor in excess of 1000 when its substrate refractive index is
consistent with that of sapphire making this geometry a promising candidate for edge-
emitting photonic crystal lasers operated under CW conditions.
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Fig. 14. (a) Schematic diagram of a type B heterostructure cavity. (b) Q factor versus
substrate refractive index for the total Q factor as well as the directional Q factors. Radiation
directions are the same as those in Figure 13(a).

5. Conclusion

In this chapter we have highlighted recent progress in the design of high Q factor two
dimensional photonic crystal cavities for on-chip lasing. The photonic crystal double
heterostructure was featured due to its ultra high Q factor and small mode volume. A first
principles derivation of the laser threshold condition was presented which motivated using
a large Q factor cavity to achieve low threshold. This was contrasted with the issue of output
power in which the cavity Q factor was intensionally lowered in order to extract higher
output power. The ability to discriminate between modes when these cavities supported
multiple bound states was demonstrated. Finally issues of heat sinking were discussed, and
the out- of-plane loss properties associated with dielectric lower substrates were quantified.
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A novel cavity based on introducing a glide-plane symmetry was shown to have reduced
out-of-plane losses.
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1. Introduction

1.1 General background

GaN-based materials have been attracted a great deal of attention due to the large direct
band gap and the promising potential for the optoelectronic devices, such as light emitting
diodes (LEDs) and laser diodes (LDs). LEDs have the advantages of small size, conserve
energy, and have a long lifespan. LEDs of solid-state lighting will be in a position to replace
conventional lighting sources within years. At present, the efficiency of LEDs is still lower
than that of fluorescence lamps in general lighting applications. Therefore, the ultimate
optimization of all aspects of LED efficiency is necessary in solid-state lighting development.
Several factors are likely to limit the light extraction efficiency of LEDs. One may think that
the main limiting factor is internal light generation as internal quantum efficiency (IQE).
Nevertheless, this is not the case in a variety of material where the conversion from carriers
to photons reaches 50% to 90% if the material’s quality is high enough. In this case, the
strongest limiting factor is that of external extraction efficiency, i.e. the ability for photons
generated inside the semiconductor material to escape into air. Unfortunately, most of the
light emitted inside the LED is trapped by total internal reflection (TIR) at the material’s
interface with air. Although many efficient light extraction strategies have already been
applied, they are mostly based on the principle of randomizing the paths followed by the
light, such as surface roughening [1-2], flip-chip [3-4], and photonic crystals (PhCs) [5-6].

1.2 Research niche

Light-emitting diodes (LEDs) have become ubiquitous in illumination and signal
applications as their efficiency and power level improve. While the improvement of the
basic characteristics will benefit the replacement of the conventional light sources, further
improvement in other characteristics can bring about unique applications. One notable
example is the polarized light emission which is highly desirable for many applications [7],
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e.g. back-lighting for liquid crystal displays and projectors. For the application of next-
generation LEDs, such in projector displays, backlight displays, and automobile headlights,
further improvements the light extraction efficiency, the polarized emission, and the
directional far-field patterns of light sources are required. Recently, PhC has attracted much
attention for the possibility to improve the extraction efficiency [8-9], polarization [10], and
directional far-field patterns [11-12] from GaN-based LEDs and GaN-based film-transferred
LEDs, respectively. In order to optimize the PhC LED performance for a specific system,
detailed knowledge of the light extraction and polarization, especially the angular
distribution, is required. The light wave propagating in the PhC LED waveguide, with its
propagation partially confined by the TIR, can interact with the reciprocal lattice vectors of
the two-dimensional (2D) PhC lattice to exhibit a variety of novel behaviors from the light
localization. On the other hand, through the Bragg diffraction with the PhC which fabricated
on LEDs can scatter the guided light into the escaping cone to circumvent the deleterious
effects due to TIR, which traps the majority of the emitted light in LED chips. In this study,
the GaN-based LEDs with PhCs were demonstrated and investigated in the light extraction,
and polarization.

In this chapter, we first introduce the theory analysis and design method of GaN-based PhC
LED structures in section 2. Then, in section 3, we exhibit the direct imaging of the
azimuthal angular distribution of the 2D PhC light extraction using a specially designed
waveguide structure. The optical images of the light extraction patterns from the guided
electroluminescence (EL) light are obtained with a current injected into the center of the
annular structure made on the GaN multilayer. With increasing lattice constant, symmetric
patterns with varying number of petals according to the symmetry of the PhC are observed.
The observed anisotropy is charted using the Ewald construction according to the lattice
constant and the numerical aperture of the observation system. The appearance and
disappearance of the petals can be explained using the Ewald construction in the reciprocal
space. In addition, several novel features of light propagations associated with the PhC can
also be directly observed including the focusing and collimating behavior. These results can
be used for the optimization of LED devices with PhC extraction. Next, in section 4,
polarization characteristics of the GaN-based PhC LEDs using an annular structure with
square PhC lattice have been studied experimentally and theoretically. The observed a
strong polarization dependence of the lattice constant and orientation of the PhC. It is found
that the PhC can be as a polarizer to improve the P/S ratio of the extracted EL emission. The
results of the P/S ratio for light propagating in different lattice orientation were found to be
consistent with the results obtained using the PhC Bloch mode coupling theory. This
polarization behavior suggests an efficient means to design and control the GaN blue PhC
LED:s for polarized light emission. Finally, conclusions are provided in section 5.

2. Fundamental and modelling of photonic crystal LEDs

2.1 Waveguide properties of LED structures

Although the IQE of GaN-based LEDs have reached up to 90%, the light emission from a
multi-quantum well (MQW) into the air is fundamentally limited by TIR. LEDs have such
low external extraction efficiency that most of the light generated in a high-index material is
trapped by TIR. Due to the GaN-based LED layer behaving as a waveguide, trapped light is
distributed in a series of so-called guided modes. The propagation properties, including
electromagnetic field distributions and wave vectors of guided modes, affect PhC light
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extraction behavior. In general, the high order guided modes interact strongly with PhC to
have high extraction efficiency. By contrast, the low order guided modes have weak light
extraction efficiency due to the poor overlap with the PhC regions. But the light of energy
distribution coupling to the low order guided modes is larger. Therefore, our discussion
begins with the guided mode properties in a waveguide structure of LED semiconductor
layers, which is helpful to optimize the design of PhC structure on LEDs with high light
extraction efficiency.

A large number of waveguide modes exist in a typical GaN-based LED structure as
asymmetric slab waveguide in geometry. For example, GaN-based blue LED structure is
grown by metal-organic chemical vapor deposition (MOCVD) on c-sapphire substrate. The
GaN blue LED structure consists of a 2 pm-thick un-GaN buffer layer, a 2-pm-thick n-GaN
layer, a 100 nm InGaN/GaN MQW region, and a 200 nm-thick p-GaN layer, as shown in
Fig. 1(a). In order to study the guided modes in the LED structures, the guided mode
distributions were calculated in the asymmetric slab waveguide with the vertical effective
refractive index profile, as shown in Fig. 1(b). Since the emitted light from the MQW is
predominantly TE polarized in the waveguide plane [13], only TE modes are analyzed. In
this case, thirty-two TE guided modes with effective refractive index distribution are
obtained by using waveguide theory [14]. The first three and the last of the thirty-two
guided modes of electric field distributions are plotted in Fig. 2, respectively. Each guided
mode has different electromagnetic field distribution and wave vector. In a planar GaN-
based LED on a sapphire substrate, 66% of the total emitted light is wave guided within the
GaN layer, while the remainder is found in the delocalized modes in the sapphire, as shown
in Fig. 3(a). Only 8.7% of the light generated can directly escape from both top and bottom
surfaces of the GaN medium into the air. Further, when the MQW emitter position was be
considered in the LED structure, that the guided modes excited a percentage of relative
intensity as shown in Fig. 3(b). In the fundamental mode (TEq), the excited percentage is
19.5%; in the other guided modes, the excited percentages are 14.1%, 9.6%, 6.6%, 5.1%, and
3.5%, respectively. The relative intensity ratio of the higher-order modes becomes weak due
to the poor field overlap with the MQW emission regions. Therefore, the guided mode
energy distribution is mainly in the lower-order modes.

(a) (b)
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W0 05 19 15 20 25 a0
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Fig. 1. (a) Schematic diagram of the MOCVD-grown GaN-based blue LED structure
(dominant A = 470 nm). (b) Vertical effective refractive index profile of the characterized

GaN-based LED.
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2.2 Ewald construction of Bragg’s diffraction theoretical analysis methods for
photonic crystals

Photonic crystals (PhCs) are artificial structures containing periodic arrangements of
dielectric materials which exhibit unique dispersion properties (e.g. such as photonic
bandgap (PBG) [15]) and that manipulate light emission behaviors. In this chapter, we will
concentrate on the extraction of waveguide light from GaN-based LED structures. There are
several schemes to obtain light extraction through PhC nanostructures [16], as shown in Fig.
4, such as (a) inhibition of guided modes emission by PBG, (b) spontaneous emission
enhanced in a small cavity by Purcell effect, and (c) emission extraction on the whole surface
by leaky mode coupling. Accordingly, the emission region can be deeply etched with a
pattern to forbid propagation of guided modes, as shown in Fig. 4(a), and thus force the
emitted light to be redirected towards the outside. Defects in PhCs behave as microcavities,
as shown in Fig. 4(b), such that the Purcell effect can be excited for spontaneous emission
enhancement. Then, light can only escape through leaky modes coupling, as shown in Fig.
4(c). In addition, PhCs can also act as 2D diffraction gratings in slabs or waveguides to
extract guided modes to the air and to redirect the emission directions.

The optimal design of PhC structures for high extraction efficiency is promising, which is
strongly dependent on various parameters such as lattice constant (a), the type of lattice
(square, triangular...), filling factor (f), and etch depth (f). Among parameters described
here, we paid special attention to the effect of the lattice constant a. In order to discuss the
effect of the lattice constant, we use the Ewald construction of Bragg’s diffraction theory. In
addition, the plane-wave expansion method (PWE) and the finite-difference time-domain
method (FDTD) are implemented to investigate the optical properties of PhC numerically.

(a) (b)
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n-GaN n-GaN

Mirror | Mirror
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p-GaN
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Mirror
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Fig. 4. Schematic the various extraction methods relying on PhCs are (a) PBG, (b) Purcell
effect, and (c) leaky mode coupling.

Figure 4(c) is a schematic of the surface grating devices that can be discussed in relation to
the light extraction of the lattice constant of PhCs by using the Ewald construction of Bragg’s
diffraction theorem. The light extraction of guided waves through diffraction by PhC is
discussed. According to Bragg’s diffraction law, kgsinf;+mG= kesint, the phase-matching
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diagrams in the wave number space are shown in the Fig. 5(a). The two circles in the Fig. 5
correspond to 1.) the waveguide mode circle with radius k; =2n71/) at the outside, where 7 is
the effective refractive index of the guided mode; 2.) the air cone with radius k,=27/A at the
inner circle. The light extraction from PhC also can be quantitatively analyzed using the
Ewald construction in the reciprocal space. The extraction of waveguide light into air can be
described by the relation |k + G| < ko, where G is the diffraction vectors. Such a relation can
be represented graphically with the Ewald construction commonly used in the X-ray
crystallography. In the present case, for reasons of simplicity, PhC is treated as a 2D in an
overall 3D structure as is commonly done. In such case, the reciprocal lattice of the 2D PhC
will be represented as the rods protruding perpendicular to the waveguide plane. Figure
5(b) depicts the Ewald spheres for a square lattice with the k vector of the incident light
pointing directly at a reciprocal lattice point. The center of the sphere is at the end of the
vector and the radius is the magnitude of k,. The intersection points of the sphere with the
protruding rods define the extraction direction of the diffracted light. For simplicity, only
the in-plane propagation needs to be treated and a consideration of the projection on the
waveguide plane is sufficient. When the in-plane component of the resultant wavevector
after the coupling to a reciprocal lattice vector falls inside the air circle, the diffracted light
can escape into air, as shown in Fig. 5(c).
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Fig. 5. (a) A schematic of the 2D PhC structure of the Bragg diffraction phase matching
diagrams. (b) The Ewald construction for square lattice PhC. (c) The projection of the Ewald
sphere construction on the waveguide plane. Thick red circle is air cone and dashed blue
circle is waveguide mode cone.

Further, an actual 2D square lattice of PhC as grating has the anisotropy of the diffraction
vector [23]. Figure 6 shows the diffraction vector for various lattices constant a, dispersion
circles for the in-plane wavevector in air, ko, and in the semiconductor material, k,. For
example, in the square lattice of PhC, Grx and Gru are 2r1/a and 2\211/a, respectively. When

Grx > kot kg [a/A<1/(n+1)], the zone-folded curve does not enter the air curve, so the
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diffraction does not occur, as shown in Fig. 6(a). When a is larger than this value, some
amount of diffraction occurs, as shown in Fig. 6(b). When a is large enough to satisfy Grm< ko
(@/A>\2), the diffraction vector is wholly included in the air curve, and this gives the
maximum light diffraction efficiency. However, the diffraction efficiency cannot be unity for
such larger 4, since light can find not only the extracted light cone but also another solid
angle not extracted by the diffraction. Even in light diffracted into the extracted light cone,
half goes downward.
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Fig. 6. Brillouin zones for 2D square lattice, dispersion curves of ko (center thick red circle)
and k, (dashed blue circle).

3. Anisotropy light extraction properties of GaN-based photonic crystal LEDs

3.1 Sample prepared and measurement results

In order to optimize the PhC LED performance for high light extraction efficiency, detailed
knowledge of light extraction is required especially the angular distribution [9, 26].
Therefore, we present the direct imaging of the azimuthal angular distribution of the
extracted light using a specially designed annual PhC structure, as shown in Fig. 7(a). The
GaN-based LED samples used in this study were grown by metal-organic chemical vapor
deposition (MOCVD) on a c-axis sapphire (0001) substrate. The LED structure (dominant
wavelength A at 470 nm) was composed of a 1-pm-thick GaN bulk buffer layer, a 2-um-thick
n-GaN layer, a 100-nm-thick InGaN/GaN MQW, and a 130-nm-thick top p-GaN layer. An
annular region of square PhC lattice with an inner/outer diameter of 100/200 pm was
patterned by holographic lithography. Two different periods of the lattice constant are used
by 260 and 410 nm. A scanning electron microscopy (SEM) image of the square-lattice PhC
structure is shown inset in Fig. 7(b). The holes were then etched into the top p-GaN layer
using inductively coupled plasmon (ICP) dry etching to a depth of £ =120 mm. The electron-
beam-evaporated Ni/Au film was used as the transparent ohmic contact layer (TCL) to p-
GaN, and a 200-nm-thick SiO» layer was used for passivation. Finally, Ti/Al/Ti/Au layer
was deposited on the n-GaN as an n-type electrode and onto TCL as a p-type electrode on
LEDs, respectively. In addition, the schematics for the experimental setup are shown in Fig.
7(b). An electroluminescence (EL) probe station system was utilized for the experiment after
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fabrication, which included a continuous wave (CW) current source and a 15x microscope
objective with numerical aperture (NA)=0.32. A 15x UV objective with NA of 0.32 was used
to collect the on-axis emission signal from the sample, which formed a high-resolution
image on a charge-coupled device (CCD); this was recorded with a digital camera. The
experiment of the observed image is shown inset in Fig. 7(b).

(a) (b)
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Fig. 7. (a) Schematic diagram of the GaN-based blue LED structure with annular PhC region.
(b) EL probe station and CCD imaging system setup, where D.H.:driver holder; M.:mirror;
T.L.: tube lens; O.: objective.

(a) a=260 nm (b) a=410 nm

Fig. 8. CCD images taken with square lattices with a = (a) 260 nm and (b) 410 nm. Inset of
the photoluminescence (PL) CCD images.

Figure 8 depicts the CCD images for the square PhC structures with lattice constant a of 260
and 410 nm corresponding to a/A of 0.553 and 0.872, respectively. The EL light was partially
guided toward the surrounding PhC region by the waveguide formed by GaN epitaxial
layers. This guided light was then coupled into the PhC region and diffracted by the PhC
lattice while propagating inside the PhC region. Depending on the lattice constant of the
PhC, some of the diffracted light left the wafer and formed the images shown in Fig. 11. It
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can be seen that a varying number of petals appears as the lattice constant increases. Under
certain conditions, some of the petals may become weaker or disappeared altogether. The
observed anisotropy, therefore, primarily arises from the diffraction of guided EL light into
the air, which is picked up by the microscope objective.

3.2 Bragg diffraction theoretical discussion

The appearance and disappearance of the petals observed in Fig. 8 can be qualitatively
analyzed using the Ewald construction in the reciprocal space. The above observation
established that the use of 2D Ewald construction explains the observed images. It can be
invoked to determine the boundaries between regions with varying numbers of petals. As
shown in Fig. 9, as a/A increases above the cutoff, the resultant wave vector will start to
couple to the shortest lattice vector Grx. The resultant wave vector falls inside the NA circle
as shown in Fig. 9(a), where the NA circle with radius NA=0.32k; at the inside corresponds
to the acceptance angle of the objective lens with NA numerical aperture. For the TM
direction, the resultant wave vector falls outside the NA circle and will not be seen by the
NA=0.32 objective lens as shown in Fig. 9(b). Therefore, a pattern with four petals pointing
in the I'X direction is observed. As a/)A increases further, the resultant wave vector after
coupling to Grx may fall short of the NA circle and therefore it will not be observed, as
shown in Fig. 9(c). Thus, there is a range of 4/ within which the resultant wave vector can
fall into the NA circle for a particular propagation direction. The boundary for when this
range with four petals pointing in the I'X direction starts to appear can be determined by the
relation k =|Grx - NA| to be a/A = 1/(n+NA). For further increase of 4/}, the resultant
wavevector will leave the NA circle as shown Fig. 9(c).
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Fig. 9. Ewald constructions for 4/ increases above the cutoff and just start to couple with the
shortest lattice vector Grx (a) in the I'X directions. (b) I'M direction with the resultant wave
vector falling outside the NA circle and will not be seen by the NA=0.32 objective. (c) a/A
increases further as nky just starts to leave the NA circle to disappear from the CCD image.
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For larger lattice constants, the escape cone and the guided mode circle become larger
relative to the reciprocal lattice. For a/A > V2/n, the coupling to Grm becomes possible and
four more petals appears representing four equivalent I'M directions. For even larger lattice
constants, coupling to the third nearest wave vectors is possible and the number of petals
increases to 16. These increased coupling possibilities are observed as the increased number
of petals in the images. The boundaries separating these regions can be readily derived
using the Ewald construction as shown in Fig. 10 along with our observations.

The above discussion considers the simple case of single mode propagation in the
waveguide plane. Since the thickness of the epitaxial layer used for the present study is 3
um, the waveguide is multimode. Every mode can couple with different reciprocal vectors
to form their own boundaries for a given number of pedals. When plotted on the map, these
boundaries will appear as a band of lines. To present these multimode extractions clearly,
only the first and the last mode with modes number “m” are shown on Fig. 10. The two
outermost lines, G*rx and Gmry, define the boundary of the possible a/A’s for all the modes
that can fall into NA circle after coupling to Grm. The a/A values shown on the right side of
Fig. 10 correspond to the boundaries for NA=1.
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Fig. 10. Map showing regions with different number of petals. The formulas on the right of
the figure are the boundary for regions for NA=1. The insets showed the observed 8-fold (a
=260 nm) and 16-fold (2 = 410nm) symmetry patterns. The regions of various petals are
shown with different colors. The directions of the petals are shown in the parenthesis. The
“+” and “-” signs indicate the lower and upper boundary for the regions. The highest mode
order number is designated as ‘m” with n,=1.7 (Sapphire) and the maximum index is n=2.5
(GaN).

In addition, we also observed that the intensity of the light propagating inside the PhC is
found to decrease with a decay length of 70-90 pm, depending on the orientation and the
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size of the holes. The decay length is determined using the data in the middle dynamic
range of the CCD camera where the intensity decay appears as a linear line on the log linear
plot. This value is in the same range of that reported in David et al.[17]. Such a parameter is
needed for the design of the PhC light extractors.

4. Polarized light emission properties of GaN-based photonic crystal LEDs

Due to valence band intermixing, the side emission of light from quantum well structure is
predominantly polarized in the TE direction (along the wafer plane). The observed
polarization ratio has been reported to be as high as 7:1 for GaN/InGaN QWs [18]. For
common GaN LED structures grown along the c axis, access to this polarized light can only
be gained by measurements taken from the edge of the sample [19-20]. Several authors have
reported polarized light emission for LED structures grown on nonpolar or semipolar GaN
substrates [21-22]. In the present study, we investigate the approach employing photonic
crystals (PhCs) which do not require the growth on different orientation of sapphire or GaN
substrates nor using specific wafer orientations. PhC has been widely studied in recent years
[9, 23-26] for the enhancement of LED efficiency, but polarized light emission using PhC has
not been investigated. In this section, we use the PhC structure to access the polarized
emission and measured their orientation dependence using a specially designed PhC
structure to extract the waveguided light. It is found that the PhC can behave as a polarizer
to improve the P/S ratio of the extracted EL emission. The results of the P/S ratio for light
propagating in different lattice orientation was found to be consistent with the results
obtained using the PhC Bloch mode coupling theory [10, 27-28].

4.1 Measurement results

The GaN-based PhC LED samples used in the present work are the same as described before
section 3. The polarization properties of the GaN blue PhC LEDs were measured at room
temperature using a scanning optical microscopic system, which included continuous wave
(CW) current source (Keithley 238), a 20x microscope objective with numerical aperture
(NA) = 0.45, a 40x microscope objective with NA = 0.6, and charge-coupled device (CCD)
spectrometer with spectral resolution of 0.1 nm. A 20x objective is used to collect the on-axis
emission signal from the sample and formed a high-resolution image with a digital camera
CCD. Figure 11(a) shows EL CCD image for the sample with square lattice constant a = 260
nm corresponding to a/A = 0.553. Inset in Fig. 11(a) are the PL CCD image and the reduced
Brillioun zone. The observed light emission is from the light propagation along the 'M and
I'X directions as reported before section 3. Further, the extraction enhancement of the PhC
LED chips was determined to be above 100% by mounting the dies on TO packages and
using an integration sphere with Si photodiode, when compared to the GaN-based LED
chips without PhC. A polarizer (Newport, 10LP-VIS-B) was placed on the GaN blue PhC
LEDs for the EL measurements. Figure 11(b) presents CCD image of room temperature EL
for samples biased at a drive current of 20 mA. The red dash line indicates the polarization
axis for the polarizer. Since the polarization direction of the light is perpendicular to its
propagation directions, the light propagated in the direction align with the axis of the
polarizer will be blocked. The luminescent signal emitted by the sample was collected by the
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Fig. 11. (a) CCD EL images for lattice constants a = 260 nm, inset of the PL CCD image, and
the reduced Brillouin zone. (b) CCD EL images show polarization properties; the red line
indicates the polarization axis of the polarizer. (c) Spectrally integrated EL intensity of the
GaN PhC LED as a function of polarizer angle 0. (d) P/S ratio of different lattice constant as a
function of orientation direction.
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40x% objective lens of the confocal microscope and was transferred to a monochromator for p-
PL measurement through an optical fiber with core diameter of 600 yum. Figure 11(c) shows
the EL intensity as a function of the orientation of the polarizing filter placed between the
GaN blue PhC LED and the spectrometer, at a drive current of 20 mA. The intensity at
various angles was determined from image taken under the same bias condition. Thus the
polarization for different propagation direction can be determined as shown in Fig. 11(c). It
can be seen that there is a periodic variation of the EL intensity with angular orientation of
the polarizer. This indicates that the light collected from the PhC LED is partially polarized,
and the P/S ratio [defined as P/S=I,ux/ Inin] were 5.5 and 2.1 for square lattice (a = 260 nm) in
I'’X and I'M direction, respectively, as shown in Fig. 11(d). Fig. 11(d) also shows the P/S ratio
measured in other samples with different period. For square-lattice PhC LEDs, P/S ratio in
I'X orientation is larger than those in other orientations despite the lattice constants. In
addition, for the same orientations, PhC LEDs with shorter lattice constant have higher P/S
ratio.

4.2 Coupled mode theoretical discussion

The experimental results described above can be explained by examining the
electromagnetic field distributions of PhC Bloch modes. Field distributions of Bloch modes
were calculated by plane wave expansion (PWE) method using the structure with PhC
sandwiched in between air and GaN materials. Figure 12(a) schematically shows the device
structure where light is generated and extracted through PhCs. Due to the valence band
mixing effects in MQW, guided light propagating in the GaN slab is nearly linear polarized
in transverse direction as shown in Fig. 12(b). For PhC a/A = 0.553, the field distribution for
propagation in I'’X and I'M directions are shown schematically in Fig. 12(c) and Fig. 12(d),
respectively, where the arrows indicate the electric field vectors in the plane, and black
circles indicate the locations of holes. The individual electric field distributions are
complicated, resulting in complicated polarization pattern. It can be seen that the field
distribution in I'X orientation has linear-like polarization behavior, and those in TM
orientation has circular-like polarization [29]. This behavior can be inferred from the
arrangement of the atoms relative to the propagation direction. For I'X direction, the
propagating wave sees the same atom arrangement in the planes perpendicular to the
propagating direction from one lattice plane to plane, while in the I'M direction, the field
distribution sees an alternately displaced atom arrangements from plane to plane. Such a
staggered atom arrangement will tend to generate the field components normal to the
polarization plane. Based on the couple mode theory, the polarization behavior of extracted
light can follow the Bloch modes in PhCs and reveal the similar polarization characteristics.
Therefore P/S ratio of light extracted through I'X orientation would be higher than through
I'M orientation. From the Bloch mode patterns in Fig. 12, the experimental polarization
results can be realized and consistent with the above discussion.

At a/A = 0.872, the field distribution in I'X orientation also has more linear-like than circular-
like behavior, and those in I'M orientation have stronger circular-like polarization as shown
in Fig. 12(e) and 12(f). The degree of the polarization appears to be much weaker than that
for a/A = 0.553. In order to discuss this observation, P/S ratio as a function of normalized
frequency was calculated. We employ the plane-wave expansion method to calculate the
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Fig. 12. (a) Schematic of the light generating, propagating, and coupling to PhC Bloch
modes. Electromagnetic field distributions for a waveguiding mode in the (b) plane slab
guide mode and PhC Bloch modes in the (c) I'’X and (d) I'M directions of the frequency a/A =
0.553 and in the (e) I'X and (f) I'M directions of the frequency a/A = 0.872, respectively.
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Fig. 13. P/S ratio of PhC Bloch leaky modes in I'X direction as a function of normalized
frequency.
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polarization properties (P/S ratio) of the leaky modes in the I'X directions as a function of
normalized frequency. In the calculation, the polarization of the generated light is assumed
to be TE polarized. The calculation was carried for each band alone the I'X direction up to
the light line where the light becomes guided and its polarization is then the same as they
were generated. As can be seen in Fig. 13, the trend of P/S ratio is decreasing with
normalized frequency although the trend within each band is not uniform depending on the
filed distribution. Details of this discussion will appear in later publication. It can also be
seen from Fig. 13 that by varying the fill factor the lattice constant, the PhC can be designed
to have higher extraction efficiency for TE polarization while discriminating the TM
polarization. In such case, very high P/S ratio (>102) can be achieved. The maximum
efficiency for the polarized emission that can be obtained in such case is equal to the TE
portion of the total emission which be as high as 88% for a 7:1 P/S ratio.

5. Conclusion

In conclusion, we have experimentally and theoretically demonstrated that surface emitted
anisotropic light extraction and polarized light from GaN-based LEDs. The EL images of the
anisotropy light extraction distribution in the azimuthal direction were obtained with
specially designed annual GaN PhC LED structures, which is dependent on the orientations
of the PhC lattice and lattice constants and shows a four-fold symmetric light extraction
patterns with varying numbers of petals in the plane of the waveguide. The regions
corresponding to the various numbers of petals are determined for increasing lattice
constant. More petals appear in the observed image with increasing lattice constant, and
some of the petals may disappear. The regions for the appearance and disappearance of the
petals are determined by the Bragg diffraction analysis using Ewald construction. In
addition the angular dependence of the light extraction for waveguided light incidents to
plane with various lattice orientations is also determined. The results show that the light
extraction for the square lattices can only occur for certain crystal directions according to the
lattice symmetry. Further, a P/S ratio of 5.5 (~85% polarization light) has been observed.
The polarization characteristics are theoretically discussed by couple mode theory. At lower
normalized frequency, PhC LED has better polarization property, and lattice orientation not
only affects the extraction efficiency but also P/S ratio of radiative light. This polarization
behavior suggests an efficient means to design and control the GaN blue PhC LEDs for
polarized light emission.
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1. Introduction

The telecommunication and computing industries are currently facing increasing challenges
to transfer data at a faster rate. Researchers believe that it might be possible to engineer a
device operate at optical frequencies. Photonic technology using photon instead of electron
as a vehicle for information transfer paves the way for a new technological revolution in this
field. Photons used for communication has several advantages over electrons which are
currently being used in electronic circuits. For example, photonic devices made of a specific
material can provide a greater bandwidth than the conventional electronic devices and can
also carry large amount of information per second without interference.

Photonic crystals are such kind of material. They are periodic structures that allow us to
control the flow of photons. (John, 1987; Yablonovitch, 1987) To some extent it is analogous
to the way in which semiconductors control the flow of electrons: Electrons transport in a
piece of silicon (periodic arrangement of Si atoms in diamond-lattice), and interact with the
nuclei through the Coulomb force. Consequently they see a periodic potential which brings
forth allowed and forbidden electronic energy bands. The careful control of this electronic
band allowed the realization of the first transistor. Now, we change our perspective from
atom scale to wavelength scale and imagine a slab of dielectric material in which periodic
arrays of air cylinders are placed. Photons propagating in this material will see a periodic
change in the index of refraction. To a photon this looks like a periodic potential analogous
to the way it did to an electron. The difference of the refractive index between the cylinders
and the background material can be adjusted such that it confines light and therefore,
allowed and forbidden regions for photon energies are formed. (Joannopoulos et al., 1995)
Nowadays, extensive theoretical and experimental studies have revealed many unique
properties of photonic crystals useful in optical communication. Intrigued by their vast
potential in photonics engineering, tremendous efforts have been invested into the
fabrication of three dimensional (3D) photonic crystal structures. However, the fabrication
of those photonic crystals with a complete photonic bandgap, i.e. can exhibit bandgaps for
the incident lights from all directions, still proves to be a challenge. Considerable efforts
have been dedicated to develop fabrication techniques to produce large area defect-free 3D
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photonic structures toward device applications. This part of research needs to develop a
CMOS-compeatible, fast and repeatable technique to produce 3D photonic crystal structures
with complete bandgaps around the visible and near infrared telecommunication windows.
(Ho et al., 1994; Blanco et al., 2000 ; Campbell et al., 2000 ; Deubel et al., 2004)

The Chapter is organized as follows: Section 2 recalls the definition of photonic crystals, its
optical properties and the laser holographic lithography fabrication technique for 3D
photonic crystal templates. After that, based on the related fundamentals of optics and the
interference principle of light beams, Section 3 introduces the novel phase mask techniques
for our laser holographic fabrication. The utilization of the phase masks simplifies the
fabrication configuration of photonic crystals and is amendable for massive production and
chip-scale integration of 3D photonic structures. In Section 4, we discuss specific cases for
3D photonic crystal template fabrication with phase masks techniques. The templates have
woodpile symmetries constructed and synthesized at sub-micron scale by pattern rotation
and superposition. Section 5 concludes the chapter.

2. Photonic crystal holographic lithography fabrication

2.1 3D photonic crystals

Photonic crystals are typically classified into three categories: 1D, 2D and 3D crystals
according to the dimensionality of the stack. Depending on the refractive index contrast,
structure geometry and the periodicity, photonic bandgaps are determined for specific
frequency ranges in the electromagnetic (EM) spectra. (Joannopoulos et al., 1995) The band
structure of a photonic crystal indicates the response of the crystal to certain wavelengths of
the EM spectra for a certain propagation direction. It defines optical properties of the crystal
such as transmission, reflection and their dependence on the direction of propagation of
light. No EM waves can propagate inside the corresponding bandgap ranges. Using this
property allows one to manipulate, guide and confine photons, which in turn makes it
possible to produce an all optical integrated circuit.

Currently, the fabrication of photonic crystals is quite a hot topic; many groups with many
different techniques have shown the formation of photonic crystals with different
dimensionalities. Among them, 3D photonic crystals have attracted enormous interest in the
last decade in both science and technology communities. Its unique capability to trap
photons offers an interesting scientific perspective and can be useful for optical
communication and sensing. It is now possible to produce 1D or 2D photonic crystal, at high
volume and low cost, through use of deep ultraviolet photolithography, which is the
standard tool of the electronics industry. But efficient micro-fabrication of 3D photonic
bandgap microstructures, especially at a large-scale has been a scientific challenge over the
past decade. So far, a number of fabrication techniques have been employed to produce sub-
micron 3D photonic crystals or templates. They include: conventional multilayer stacking of
woodpile structures by using semiconductor fabrication processes, (Ho et al., 1994) colloidal
self-assembly, (Hynninen et al., 2007) and multi-photon direct laser writing, (Deubel et al.,
2004). Each method posses some extent of success. However, we still need to find an
economic and rapid way to produce defect-free nano/mrico-scale structure over uniform
and large area. This mission has been accomplished by the application of the holographic
lithography method. (Berger et al. 1997)
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2.2 Holographic lithography method

Holographic lithography has recently been employed to fabricate 3D photonic crystals by
exposing a photoresist or polymerizable resin to interference patterns of laser beams.
(Campbell et al., 2000) This interference technique requires that multiple coherent beams
converge on the same spatial region, which is also called multi-beam interference
lithography. It is promising because it creates periodic microstructures in polymers without
extensive lithography and etching steps. The monochromaticity and spatial volume of laser
light has produced nearly defect-free structures, at submicron scale and over large substrate
areas. Photonic structures are defined in photoresist by iso-intensity surfaces of interference
patterns. In the case of negative photoresist, the underexposed material is then dissolved
away in the post-exposure processing. The overexposed region forms a periodic network
motif and acts as a 3D photonic crystal template. In the post processing step, the template
can be infiltrated at room temperature with SiO, and burned away, leaving behind a
daughter inverse template. Then, the daughter SiO; template is inverted by infiltration with
silicon and selective etching of SiO,. (Tétreault et al., 2006) The final structure has relative
higher index contrast ratio (Si/Air holes) in 3D form, corresponding to relative larger
photonic bandgap.

Holographic lithography allows complete control of the translational symmetry of the
photonic crystal and provides considerable freedom for design of the unit cell. The electrical
field of a laser beam can be described by

E,(F,t) = E, cos(k, -7 — wt + &) )

where k and o are the wave vector and angular frequency, respectively, E is the electric field
strength, and 3 is the phase. When two or more coherent laser beams are presented
simultaneously in the same region, the waves interfere with each other and generate a
periodic spatial modulation of light. The intensity distribution of the interference field I for
N laser beams can be described by a Fourier superposition,

N N
I =< Z}:Ef(r,t) > +ZEI. o E;cos[(k, —k;,) o F +(5,-5))] )
i= i<j

The structure of the interference pattern can be designed by controlling beam properties
such as electric field strength, polarization, wave vector, and phase. The photonic structure
formed through holographic lithography has the translational periodicity determined by the
difference between the wave vectors ki-kj of the interfering beams. Therefore, lattice
constants of the photonic structure are proportional to the wavelength of the interfering
laser beam. The polarization, represented by the electric field vector, determines the motif
placed within the unit cell of the photonic lattice. The initial phase difference shifts the
interference pattern and changes the motif within the unit cell. The laser intensity, exposure
time, photoresist preparation, and post-exposure development condition will also contribute
to the motif of the interference pattern. The photonic structure formed through holographic
lithography should have good connectivity in both the dielectric and the air component so
that the structure is self-supporting and the unwanted photoresist can be dissolved away.

The N coherent laser beams produce an intensity pattern with maximal (N-1) dimensional
periodicity if the difference between the wave vectors is non-coplanar. For example, two
interfering beams form a 1D fringe pattern and three crossed beams form a 2D hexagonal
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log-pile pattern. By using a 4-beam interference setup, a pattern with 3D symmetry can be
designed. (Shoji et al., 2003; Lai et al, 2005) Hence, by selecting different beam
combinations, and even performing some pattern translations, patterns with different lattice
symmetries are possible to make.

To have successful interference lithography, coherence requirements must be met. It is
preferred to use a monochromatic and coherent light source. This is readily achieved with a
laser or filtered broadband sources. The monochromatic requirement can be reached if a
diffraction element is used as a beam splitter, since different wavelengths would diffract
into different angles but eventually recombine anyway. In this case, spatial coherence and
normal incidence would still be necessary. The coherent length for our laser system requires
that the path difference not exceed 10 cm.

3. Phase mask techniques

Fabrication strategies that rely on interference of multiple independent beams can introduce
alignment complexity and inaccuracies due to differences in the optical path length and
angles among the interfering beams as well as vibration instabilities in the optical setup. In
order to improve the optical setup, diffractive optical elements or phase masks have been
introduced to create the interference pattern for the holographic fabrication of photonic
crystals. (Diviliansky et al., 2003; Lu et al., 2005; Lin et al., 2005) Other than the traditional
bulk optical reflective/refractive elements such as mirrors, beam splitters and top-cut
prisms (Campbell et al., 2000; Yang et al., 2002), a diffractive optical element is a promising
alternative CMOS-compatible choice for 3D holographic lithography. It can be incorporated
into phase/amplitude masks used in optoelectronic circuit fabrications to enable a full
integration of 3D photonic structures on-chip. A phase mask, typical a phase grating with
periodically index variation in height direction, can create multiple laser beams in various
diffraction orders that are inherently phase-locked and stable for reproducible creation of
3D interference patterns from a single laser beam. Fig. 1 shows a schematic of the
propagation of a laser beam through a 1D phase mask as a diffractive optical element. The
phase mask will create three major stable co-plane output beams. These coherent beams
then generate a pattern inside the overlap region below the phase mask, in the shape of 2D
log-pile. The pattern is recorded in a photoresist to form a periodic template.

Incident laser
beam

|—L'7Im11mj

lw Diffracted
X beams

e

Interference panem

L=)/(sinf)

Phase mask

a=L/(cos(a/2)), b=L/(sin(a’2))

Fig. 1. (left) phase mask based interference. A phase mask can replace a complex optical
setup for a generation of interference pattern; (middle) a simulated woodpile-type photonic
structure formed in the doubly-exposed photoresist; (right) a schematic illustration of
woodpile-type photonic structure with orthorhombic or tetragonal symmetry and its lattice
constants.
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Theoretically, when a single beam goes through a one-dimensional phase grating, the beam
will be diffracted into three as shown in Fig. 1 (left). Beams 1 and 2 are from first order
diffraction and beam 3 is from zero order diffraction. Beam 1 and 2 has a diffraction angle 6
relative to beam 3. Mathematically these three beams are described by:

E,(F,t) = E, cos[(kcos )z — (ksin)x — ot + 5] ©)
E,(7,t) = E, cos[(k cos )z + (ksin 0)x — at + 5,] 4)
E,(7,t) = E,cos(kz — at + &,) )

These three beams will generate a two-dimensional interference pattern. The interference
pattern is determined by the laser intensity distribution I in 3D space:

I= %Eﬁ + %Ej + %Ef +(E,E,)cos[(2ksin@)x + (5, - 6))]
+(E,E;)cos[(2k sinz(g))z + (ksin@)x + (8, — 6,)] (6)

+(E,E,)cos[(2ksin (g))z —(ksin@)x + (5, - 0,)]

Fig. 1 (left) shows the interference pattern generated behind the phase mask, assuming the
incident laser beam has polarization in y direction. The interference pattern is periodic in the
z-direction as well as in x-direction. The periodicity of the interference pattern along x
direction is A/ (sin0) (where A is the wavelength of laser beam generating the interference
pattern). The periodicity c of the interference pattern along z direction is A/ (2sin2(0/2)). (Lin
et al.,, 2006a) After the photoresist is exposed to such interference pattern, the sample is
rotated by an angle of o along the propagation axis of the incident beam and its position is
displaced along the laser propagation direction by 1/4 times A/(2sin2(8/2)). Then the
photoresist receives second exposure. The doubly-exposed photoresist is then developed to
form a 3D woodpile-type photonic crystal template. Fig. 1 (middle) shows a simulated
photonic structure formed with the rotation angle a=90° if a negative photoresist is used.
After the photoresist development, the under-exposed area is dissolved away while the area
exposed with above-threshold laser dosage is networked to form periodic structures. We
illustrate in Fig. 1 (right) how we construct crystal lattices. We set a fundamental length
scale L=A/(sinf) for such structure because the three beam interference pattern is
determined by the laser wavelength and the interference angle 6. L is actually equal to
the grating period of the phase mask. The lattice constants in xy plane depend on the angle.
They are related by a=L/(cos(a./2)) and b=L/(sin(o./2)), respectively. The photonic crystal
template has a lattice constant c=\/(2sin2(8/2))=L(cot(6/2)) along the z direction. If the
sample rotation angle is 90°, we have a=b. Thus the 3D structure has a face-centered-
tetragonal or face-centered-cubic symmetry. (Lin, 2006a) If the angle o is less than 90° a
face-centered-orthorhombic (a#b#c) or face-centered-tetragonal (a#b=c) structure is formed
in the photoresist.
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Contrary to an intensity (amplitude) mask, the laser beam travels through a phase mask and
accumulates an additional phase relative to light that travels through the air gap. However,
a phase mask has much larger diffractive efficiency than an amplitude mask. This property
enables those periodic structures have enough contrast ratio to the background in the
photoresist polymerization.

The fabrication technique of 1D phase masks has been demonstrated by H. Jiang etc in 1999,
(Jiang etc., 1999). E-beam lithography has been used to pattern fine gratings in Si substrate.
Then an inversed elastomer mask is obtained by casting a layer of silicon-based organic
Polydimethylsiloxane on the substrate. After curing and removal of the master mold, the
elastomer mold is used as a mask again in the photolithography process to reproduce a
photoresist phase grating on glass substrate. The phase grating fabricated has high quality
surface and profile but the required processes are costly, laborious and time-consuming.
Here we demonstrate our holographic approach for phase mask fabrication. (Xu et al., 2008)
The experimental setup is based on the principle of a Mach-Zehnder interferometer. As
shown in Fig. 2, two coherent beams were cleaned, collimated, separated and focused back
into the same photoresist region to produce interference patterns directly. The pattern
recorded is a series of parallel fringes with sinusoidal profile. Thus we obtain the phase
grating made of photoresist. This phase grating has refractive index difference between
photoresist (n=1.67) and air gap, which can produce three coherent beams when it is used as
a mask. This approach simplified the previous process and can be applied to more
complicated fabrication. If we do multiple exposures and rotate the receiving photoresist
between each exposure, we can get a phase mask with higher dimension. In the next section
we will describe some concrete experimental steps to fabricate holographic phase masks and
use them for the interference lithography fabrication of complex photonic crystal templates.

50:50
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Fig. 2. Experimental setup for holographic fabrication of phase masks.

Overall, the optical diffractive elements are designed to avoid the alignment complexity and
inaccuracies due to differences in the optical path length and angles among the interfering
beams as well as vibration instabilities in the optical setup. They provide improved
convenience in holographic lithography. It is useful to note that the current optical elements,
such as beam splitter, mirrors, prisms and phase masks, can be used to generate pattern
with all fourteen Bravais lattices in the space group. (Berger et al., 1997; Sharp et al., 2003)
All that remains is a need to establish a better understanding of the relationship between the
resulting symmetries and the beam parameters.
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4. 3D woodpile photonic crystal fabrication by using 1D phase mask

It is well known that a 1D phase mask can generate three beam interference patterns, which
has a 2D log-pile structure. The structure is polarization dependent of the incident EM wave
thus lacks completeness of bandgap required for photonic communication. Previous
researchers have proposed a method of building a 3D structure using two orthogonal 1D
phase masks. (Chan, et al., 2006; Chanda et al., 2006) The beams that propagate through two
phase masks will have two log-pile patterns recorded inside the photoresist. If well
controlled, a 3D woodpile structure may be piled up by the log-pile structure. However,
additional diffractions occur. The distance between two phase masks can also bring
unwanted phase delay, which is difficult to adjust in practice. Our solution consists of
multiple exposures through one 1D phase mask, which is spatially shifted between
exposures, demonstrating an new approach for controllable 3D woodpile structure fabrication.

4.1 Pattern transformation

Here we demonstrate the fabrication process of 3D woodpile photonic crystals template,
which can have orthorhombic or tetragonal structure depending on the rotational angle.
(Lin et al., 2006a; Poole et al., 2007) Furthermore, the elongation in the z-direction can be
compensated by rotating phase mask by an appropriate angle, which increases the lattice
constant in the other direction. Theory predicts that the optimized rotation angle of a phase
mask can achieve up to a 50% increase in photonic bandgap compared with those formed by
two orthogonally oriented phase masks.

Collimating lens
Objective Phase mask

E-shutter . i
Arion ~ Pin hole ;
Laser—>§ 0 Photoresist
beam

Fig. 3. Experimental setup for 3D photonic crystal template fabrication. Zoom in view is the
schematic sketch of the double exposures procedure.
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The interference pattern for a single exposure through a phase mask is in 2D log-pile
structure, which is periodic in the z direction as well as in the x (or y) direction, as shown in
Fig. 3. If we do a second exposure to record another log-pile structure on the same region,
with appropriate relative rotation and shifting, we can have a 3D woodpile structure, which
has periodic structure in all x, y and z directions, as shown in Fig. 4. It demonstrates a
simulated structure from the dual-exposure procedure. Similar to how the photoresist reacts
to illumination, the structure represents the receiving laser intensity distribution, i.e. the
interference region, in the negative photoresist. The boundary of the 3D pattern is defined
by setting a threshold value. The regions with intensity lower than the threshold value are
removed and the regions with intensity equal and greater than the threshold value are
sustained. Thus the photoresist records the interference pattern and can be visualized after
development.
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Fig. 4. Simulated 3D woodpile structure generated by double exposures. The rotational
angle of phase mask is 60°. The scale bar shows the accumulated laser energy density upon
two exposures.

Theoretically, the rotation of the interference pattern can be regarded as replacing the wave
vector k of the diffractive beams, by a coordinate transform with rotation angle o;

la = (kcos@)z —[(ksin&)cosa]x —[(ksinf)sinaly (7)
IEZ =(kcosf)z —[(ksin@)cosa]x +[(ksin@)sina]y 8)

k, = (kcos8)z 9)
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while the spatial movement of the pattern can be induced through the phase shift of
interfering beams. When a phase difference (pi-pj) is introduced between interference beams,
the interfering term Ijn in Eq.(2) becomes

3 —- - —_ —_
I, =Y E eE cos[(k—k)eF +(p,—p,)+ (5 -5,)] (10)
i<j
Such a phase difference between laser beams will translate the interference pattern by rs as
described by (Lin et al., 2006b)

1, =3 E o F cos[(F, ~ K)o (F + )+ (5, - 5,)] (11)

where the translation rs is determined by (ki-kj) - rs=(pi-pj). In general, the initial phase
difference &; -0; is a constant if the laser beams are mutually coherent. It will shift the
interference pattern relative to the one generated with (6;-8)=0. But the initial phase
difference will be the same for two exposures. The interference pattern generated by the
second exposure needs to be shifted relative to the first one to fabricate the woodpile
photonic crystal. The shifting is produced through the extra phase shift of (pi-pj).
Specifically, the initial phase difference is zero if all diffracted beams are generated through
a single diffractive optical element. Then the final 3D structure can be expressed by adding
up the interfering terms I for two exposures, normalizing and setting proper threshold
isosurface values.

Experimentally, the basic approach utilized to fabricate an interconnected periodic
polymeric structure is the double-exposure of photosensitive material to three interfering
laser beams generated by a 1D phase mask as shown in Fig. 3. A linearly polarized beam
from an argon ion laser at 514.5nm is expanded, collimated, and passed through a phase
mask to produce two 1st order and one 0th order diffracted beams (intensity ratio 1:5). A
layer of photoresist on a silicon wafer is first exposed to the interference of the three laser
beams. Thus, a spatially modulated chemical change in the photoresist is produced. A
second rotated and translated phase mask is then used to induce a second set of spatially
modulated chemical changes in the photoresist. The orientation of the second interference
pattern is controlled by the orientation angle o of the second phase mask with respect to the
first one. To form an interconnected 3D woodpile structure, the phase mask was shifted
along the z direction (c-axis) by a distance rs=(0, 0, Az) for the second exposure. This shift
has a significant impact on the size of overlap between the two interference patterns and
consequently on the size of the bandgap formed in the final structure. A translation of Az=
0.25¢ of the second interference pattern along the c-axis yields an optimized fully-
interconnected woodpile structure as shown in Fig. 4. High-precision motion stages were
used to control the movements of the phase masks with +100nm accuracy. By controlling the
rotational angle and the relative shift of the phase mask along the optic axis, both
orthorhombic and tetragonal photonic crystal structures were formed. Fig. 4 shows a
simulated face-centered orthorhombic photonic crystal structure formed by rotating the
phase mask by a=60° between two exposures. The lattice constants (a, b, c) labelled in Fig. 4
are determined by the angle of diffraction 6 of the 1st order beams in the photoresist and by
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the angular rotation of the phase mask o as (L/(cos(a/2)), L/ (sin(a/2)), and L(cot(6/2)),
(Lin et al., 2006a) respectively. Where L is the grating period given by L= 1/sinf , and A is
the laser wavelength in the photoresist material.

4.2 Band diagram of woodpile photonic crystal

The woodpile-type photonic crystal template will be converted into high refractive index
materials using the approach of CVD infiltration (Miguez et al., 2002; Tétreault et al., 2005)
in order to achieve a full bandgap photonic crystal. (Maldovan& Thomas, 2004) We
calculated the photonic bandgap for converted silicon structures where ‘logs” are in air
while the background is in silicon. The calculation has been performed for photonic
structures formed with various interference angles 0 and rotation angles a. Fig. 5 (left)
shows the first Brillouin surface of the face-centered-orthorhombic lattice. Coordinates of
high symmetric points on the Brillouin surface varies with different structures. MIT
Photonic-Bands Package (Johnson & Joannopoulos, 2005) was used to calculate the photonic
bandgap of the converted silicon structure. Fig. 5 (right) shows the photonic band structure
for the converted silicon woodpile-type structure with ¢/L=2.4 and a=51° (the dielectric
constant of 11.9 was used for silicon in the calculation). (Toader et al., 2004) We would like
to clarify that the Apnoton in the y-axis label of the Fig. 5 (right) is the wavelength of photons
in the photonic band, not the wavelength of the exposure laser. The band structure shows
that a photonic full bandgap exists between the 2nd and 3rd bands with a bandgap size of
8.7 % of the gap central frequency.
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Fig. 5. (left) First Brillouin surface of face-centered-orthorhombic lattice; (right) photonic
band structure for an orthorhombic photonic crystal. Aphoton is the wavelength of photons in
the photonic band.

4.3 Bandgap size vs shifting Az and rotation o

The significance of the overlap between the two alternating high-intensity stacks controlled
by the translation Az of the second phase mask along the optical axis is depicted in Fig. 6.
The relative bandgap size is measured from the bandgap diagram as shown in Fig. 5 (right)
and defined by the ratio of central frequency and the frequency range of the bandgap. From
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Fig. 6 we can see that a global bandgap of 4% exists in structures with a=60° and Az=0.03c.
The maximum photonic bandgap appears at Az=0.25c, where the 2nd log-pile pattern moves
to a location closest to the 1st log-pile pattern, symmetrising the whole 3D woodpile
structure. In structures where Az<0.03c, the width of the bandgap reduces rapidly and
eventually vanishes. A maximum bandgap of 17% was achieved at a shift Az=0.25c.
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Fig. 6. Photonic bandgap as function of the phase mask displacement Az between two
exposures. The phase mask rotational angle a. is 60°. Insets are the first Brillouin surface and
photonic band diagram for the face-centered-orthorhombic structure.

To study the dependence of the size of the bandgap on o, photonic bandgap calculations
were performed with various ¢/L ratios as shown in Fig. 7. Since all the laser beams come
from the same half-space, the interference pattern generated will be elongated along the c-
axis due to relatively small interference angles. This elongation, along with a rotational
angle of 90° causes the lattice constant c to be larger than a and b, yielding a face-centered
tetragonal structure. When the rotation angle of phase mask decreases from 90°, the lattice
constant b increases, while a decreases; in effect reducing the photonic crystal structure to a
lattice with orthorhombic symmetry. A small phase mask rotational angle o can transfer the
lattice back into tetragonal again when the lattice constant b is equal to c. When the value of
b approaches that of ¢, the structure becomes more symmetric and the bandgap increases.
From simulation, we found that the maximum bandgap occurs when the structure has the
highest possible symmetry. For relatively small ¢/L ratios, where ¢ approaches a and b, and
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a=90°, the widest bandgap is produced. For larger c¢/L ratios, the maximum bandgap occurs
at a rotational angle a#90°. Fig. 7 also illustrates the rotation angles a that maximize the
bandgap for structures with a large c/L values. When c is larger than 1.9L, a small rotational
angle of the phase mask is required to maximize the bandgap. For ¢/L=2.0, a 60° rotational
angle maximizes the photonic bandgap. Maximizing the bandgap for structures with c¢/L
ratios larger than 2 requires less than 60° angular displacements. For this c/L ratio, varying
the rotation angle from 90° initially results in a drop in the width of the gap followed by an
increase. This is consistent with the symmetry transformation of the photonic structure,
changing from tetragonal symmetry to orthorhombic symmetry then back to tetragonal

symmetry.
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Fig. 7. Photonic bandgap as a function of the phase mask rotational angle a.

4.4 Bandgap size vs c/L ratio

Fig. 8 shows the optimum bandgap size in face-centered-tetragonal photonic structures
which is formed with the rotation angle a=90° and in face-centered-orthorhombic structure
where a# 90°, under different beam interference geometries. When c¢/L is small (beams have
a larger interference angle), a rotation angle of 90° is preferred in order to have a larger
bandgap. However if ¢/L is larger than 2.0, then the face-centered-orthorhombic structure is
preferred for a larger bandgap. At ¢/L=2.3, the optimum bandgap size is 11.7% of the gap
central frequency for a face-centered-orthorhombic structure formed with a rotation angle
near 55°. While the face-centered-tetragonal structure formed with a=90° has a gap size of
6.7%.
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To demonstrate the feasibility of the proposed fabrication technique, both orthorhombic and
tetragonal structures were recorded into a modified SU-8 photoresist. Utilizing the phase
mask method a number of photonic structures can be generated; however there are some
practical issues in realizing a photonic structure with a full photonic bandgap. Fig. 8 shows
that a photonic bandgap exists in structures with smaller ¢/L values. Because c/L=cot(0/2),
a bigger interference angle is required in order to generate an interference pattern for a
structure with a full bandgap. When the photoresist is exposed into an interference pattern,
the interference pattern recorded inside the photoresist will be different from that in air. In
the case of ¢/L=2.5, an interference angle 0=43.6° is required, which is greater than the
critical angle of most of photoresist.
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Fig. 8. Photonic bandgap size in face-centered-tetragonal structures (= 90°) and in face-
centered-orthorhombic structures (< 90°) for various structures with a different c/L value.

4.5 Experimental results

In order to expose the photoresist to an interference pattern formed under a bigger
interference angle, a special setup is arranged for the phase mask and the photoresist as
shown in Fig. 9 (left). The photoresist is placed on the backside of the phase mask with the
contact surface wetted with an index-match mineral oil. The design of the phase mask is
modified correspondently. As a proof-of-principle, we show in Fig. 9 (right) scanning
electron microscopy (SEM) of woodpile-type structures in SU-8 photoresist formed through
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the phase mask based holographic lithography. An Ar ion laser was used for the exposure
of 10 pm thick SU-8 photoresist spin-coated on the glass slide substrate. The photoresist and
phase mask were both mounted on high-precision Newport stages. Both the phase mask
and photoresist were kept perpendicular to the propagation axis of the incident Ar laser
beam.

Laser beaml Phase mask _
/ ¥

Index-match Oill*PhOtoreSiSt :

“Substrate
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Fig. 9. (left) an arrangement of the phase mask and the photoresist. The interface between
the backside of the phase mask and the photoresist is wetted with an index-match fluid;
(right) SEM top-view of an orthogonal woodpile-type structure in SU-8 photoresist formed
through the phase mask based holographic lithography.

The photoresist solution was prepared by mixing 40 gram SU-8 with 0.5 wt % (relative to
SU-8) of 5,7-diiodo-3-butoxy-6-fluorone (H-Nu470), 2.5 wt% of iodonium salt co-initiator
(OPPI) and 10 ml Propylene Carbonate to assist the dissolution. Due to the large
background energy presented in the generated interference pattern (53% of Oth order), the
photoresist solution was further modified by the addition of 20 mol percent Triethylamine.
Subsequent exposure to light generates Lewis acids that are vital in the crosslinking process
during post exposure bake. The addition of Triethylamine, acting as an acid scavenger,
allowed the formation of an energy gap which prevented the polymerization process in
locations exposed below the energy threshold. The substrates utilized for crystal fabrication
were polished glass slides cleaned with Piranha solution and dehumidified by baking on a
hot plate at 200 °C for 20 min. Each substrate was pre-coated with 1pm layer of Omnicoat to
enhance adhesion. The SU-8 mixture was spin-coated onto the pre-treated substrate at
speeds between 700 and 1500 rpm; resulting in a range of thicknesses from 25 to 5 pm. Pre-
bake of SU-8 films was preformed at a temperature of 65 °C for about 30 min. The prepared
samples were first exposed under 500mw illumination for 0.9 s using the first phase mask. A
second phase mask, which was rotated by a about the optic axis and translated by Az with
respect to the first, was then used for an additional 0.9 s exposure. The samples were post-
baked at 65 °C for 10 min and 95 °C for 5 min and immersed in SU-8-developer for 5 min.

Fig. 10(a) shows an SEM top view picture of a woodpile orthorhombic structure recorded in
SU-8 with an a of 60°. The inset of the same figure details the predicted structure from
simulation. The 3D span of the structure visible in Fig. 10(b) was also imaged by SEM. The
layer-by-layer, woodpile nature of the structure is clearly demonstrated. The overlapping
and cross-connection of neighbouring layers ensures a stable formation of 3D structures for
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further processing. From figure 10 (a) and (b), we measured in the SEM the lattice constants
to be b=1.3 pm and c=3.4 pm. The elongation in the z-direction was thus compensated by
the 60° rotation, compared with b=1.06 pm and ¢=6.13 pm in the structure generated by two
orthogonally-oriented phase masks with similar period used in this work.
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Fig. 10. (a) A SEM top view picture; and (b) a SEM side view picture of a woodpile
orthorhombic structure recorded in SU-8 with a=60°. Simulated structures are inserted in
Fig.s.

5. Conclusion

In summary, we demonstrate the fabrication of 3D photonic crystal templates in SU-8 using
phase mask based holographic lithography technique. Both face-centered-orthorhombic and
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face-centered-tetragonal woodpile-type photonic crystals have been fabricated. The usage of
phase mask dramatically simplified the optical setup and improved the sample quality. The
structure and symmetry of the photonic crystals have been demonstrated by controlling the
rotational angle of a phase mask to compensate the structural elongation in z-direction in
order to enlarge the photonic bandgap. Photonic bandgap computations have been
preformed optimally on those woodpile structures with a between 50° to 70° as well as
traditional 90° rotation. Our simulation predicts that a full bandgap exists in both
orthorhombic and tetragonal structures. The study not only leads to a possible fabrication of
photonic crystals through holographic lithography for structures beyond intensively-
studied cubic symmetry but also provides a blueprint defining the lattice parameter for an
optimum bandgap in these orthorhombic or tetragonal structures.
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1. Introduction

Cavity quantum electrodynamics (cavity QED) describes few atoms coupling to quantized
electromagnetic fields inside an optical cavity (Mabuchi & Doherty, 2002). The core of cavity
QED is the strong coherent interaction between the single-mode electromagnetic field and
the internal states of the atom. It is one of few experimentally realizable systems in which
the intrinsic quantum mechanical coupling dominates losses that due to dissipation (Cirac et
al., 1997). Furthermore, it represents an almost ideal and the simplest quantum system
which allows quantitative studying of a dynamical open quantum system under continuous
observation. Up to the present, three representative optical microcavities have been
proposed for studying quantum optics and implementing quantum information (Vahala,
2004). The first one is the conventional Fabre-Perot (FP) type cavities consisting of two
concave dielectric mirrors facing each other at a distance of the order of a few 100 pm, where
single neutral atoms can be trapped through magneto-optical trap (MOT), optical dipole
trap or magnetic trap for a long time (up to several seconds). The second is the microcavities
supporting whispering gallery modes, including microspheres, microdisks, and
microtoroids. The third type is the nanoscale cavities in photonic crystal (Foresi et al., 1997).

With FP-type microcavities, numerous theoretical schemes have been suggested for
generating nonclassical states of cavity fields (Vogel et al., 1993; Parkins et al., 1993; Law et
al.,, 1996) and entangled states of many atoms (Cabrillo et al., 1999), and realizing two-qubit
logic gates (Pellizzari et al., 1995; Pachos and Walther, 2002) and universal gates for Fock-
state qubits (Santos, 2005), which lead to experimental realization of the Einstein-Podolsky-
Rosen (EPR) state of two atoms, Greenberger-Horne-Zeilinger (GHZ) states of three parties
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(two atoms plus one cavity mode), Schrodinger cat state (Brune et al., 1996), and single-
photon state (Brattke et al., 2001) of a cavity field. However, FP-type microcavities have their
inherent problems. For example, it is extremely difficult to realize a scalable quantum
computation in experiment by integrating many microcavities, though theoretical protocols
may be simple and elegant. Recently, whispering gallery microcavities have been studied
for cavity QED toward quantum information processing (Xiao et al., 2006) due to their
ultrahigh quality factors (Q, which is proportional to the confinement time in units of the
optical period) and high physical scalability. Strong-coupling regime has been demonstrated
when cold caesium atoms fall through the external evanescent field of a whispering gallery
mode. Nevertheless, the cold atoms are ideal stationery qubits (quantum bits), but not suited
for good flying qubits. Thus, a solid-state cavity QED (involved single quantum dot (QD),
for example) system with whispering gallery microcavities seeks further advancements.

As a new resonant configuration, nanocavities in photonic crystal with high quality factors
(Q) and ultrasmall mode volumes (V) are attracting increasing attention in the context of
optical cavity QED (Faraon et al., 2008; Fushman et al., 2008; Hennessy et al., 2007; Badolato
et al., 2006; Reithmaier et al., 2004; Yoshie et al., 2004). Combined with low loss and strong
localization, they present a unique platform for highly integrated nanophotonic circuits on a
silicon chip, which can also be regarded as quantum hardware for nanocavity-QED-based
quantum computing. Toward this goal, strong interactions between a QD and a single
photonic crystal cavity have been observed experimentally (Hennessy et al., 2007; Badolato
et al., 2006; Reithmaier et al., 2004; Yoshie et al., 2004). Moreover, single photons from a QD
coupled to a source cavity can be remarkably transferred to a target cavity via an integrated
waveguide in an InAs/GaAs solid-state system (Englund et al., 2007a), which opens the
door to construct the basic building blocks for future chip-based quantum information
processing systems. Weak coupling nanocrystal ensemble measurements are reported in
TiO2-5i02 and AlGaAs cavity systems (below 1 um wavelengths) recently (Guo et al., 2006;
Fushman et al., 2005) and also independently in silicon nanocavities with lead chalcogenide
nanocrystals (a special kind of QDs) at near 1.55 um fibre communication wavelengths
recently (Bose et al., 2007).

In this Chapter, we theoretically study the coherent interaction between single nanocrystals
and nanocavities in photonic crystal. This Chapter is organized as follows. In section 2, our
attention is focused on a single QD embedded in a single nanocavity. First, we introduce,
derive, and demonstrate the explicit conditions toward realization of a spin-photon phase
gate, and propose these interactions as a generalized quantum interface for quantum
information processing. Second, we examine single-spin-induced reflections as direct
evidence of intrinsic bare and dressed modes in our coupled nanocrystal-cavity system. In
section 3, however, our attention is switched on the N coupled cavity-QD subsystems. We
examine the spectral character and optical delay brought about by the coupled cavities
interacting with single QDs, in an optical analogue to electromagnetically induced
transparency (EIT) (Fleischhauer et al., 2005). Furthermore, we then examine the usability of
this coupled cavity-QD system for QD-QD quantum phase gate operation and our
numerical examples suggest that a two-qubit system with high fidelity and low photon loss.

2. Nanocrystals in silicon photonic crystal standing-wave cavities

In this section, we examine the single-photon pulse (or weak coherent light pulse)
interactions of a single semiconductor nanocrystal in a system comprised of standing-wave
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high-Q/V silicon photonic crystal nanocavities (Xiao et al., 2007a). In contrast to earlier
travelling-wave whispering gallery cavity studies (Xiao et al.,, 2006), we show here that a
QED system based on coupled standing-wave nanocavities can realize a spin-photon phase
gate even under the bad-cavity limit and provide a generalized quantum interface for
quantum information processing. In addition, we demonstrate numerically a solid-state
universal two-qubit phase gate operation with a single qubit rotation. This theoretical study
is focused within the parameters of near 1.55 pm wavelength operation for direct integration
with the fiber network, and in the silicon materials platform to work with the vast and
powerful silicon processing infrastructure for large-array chip-based scalability.

2.1 Theoretical model

We begin by considering a combined system consisting of coupled point-defect high-Q/V
photonic crystal cavities, a line-defect photonic crystal waveguide, and an isolated single
semiconductor nanocrystal. We offer some brief remarks on this system before building our
theoretical model. When a photon pulse is coupled into the cavity mode via a waveguide
(Fig. 1(a)), photons can couple out of the cavity along both forward and backward
propagating directions of the waveguide because the cavity supports standing-wave modes.
While each cavity can each have a Faraday isolator to block the backward propagating
photon, such implementation may not be easily scalable to a large-array of cavities. To
obtain only forward transmission, here we examine theoretically a defect cavity system with
accidental degeneracy (Fan et al., 1998; Xu et al., 2000; Min et al., 2004) as a generalized
study of cavity-dipole-cavity systems, and which also provides close to 100% forward-only
drop efficiency. This framework is also immediately applicable to non-reciprocal magneto-
optic cavities which have larger fabrication tolerances. Both systems support two degenerate
even |e) and odd |o) cavity modes (h-polarized, dominant in-plane E-field) that have
opposite parity due to the mirror symmetry, as shown in Fig. 1(a). The waveguides can
support both v-polarizations (dominant in-plane H-field) and h-polarizations for
polarization diversity (Barwicz et al., 2007).

(@) .o (@ (b)_le) Lo

/\l out | n . 4 A
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cavity ' SNV Y ¥
| Koo ) e v
Mirror plane ‘T)

Fig. 1. (a) Sketch of a waveguide side coupled to a cavity which supports two degenerate
modes c, and ¢, with opposite parity. (b) lead chalcogenide (e.g. lead sulphide) nanocrystal
energy levels and the electron-exciton transitions in the presence of a strong magnetic field
along the waveguide direction, which produces nondegenerate transitions from the electron
spin states ‘T> and | ) to the charged exciton states le,) and |e,) under the transition
selection rules.
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Fig. 1(b) shows the energy levels and electron-exciton transitions of our cavity-dipole-cavity
system. In order to produce nondegenerate transitions from the electron spin states, a
magnetic field is applied along the waveguide direction (Atatiire et al., 2006). | T) and |{) play
the rule of a stationary qubit, which have shown much longer coherence time than an exciton
(dipole or charge). The transition‘T> <>|e), with the descending operator o_ =‘T><el\ , is
especially chosen and coupled with the cavity modes with single-photon coupling strengths
g.(F) and g (7), while other transitions are decoupled with the cavity modes.

Now we construct our model by studying the interaction between the nanocrystal and the
cavity modes. The Heisenberg equations of motion for the internal cavity fields and the
nanocrystal are (Duan et al., 2003; Duan & Kimble et al., 2004; Serensen & Mglmer, 2003)

Li;" =—i[cﬁ,H]—Kecﬁ+iZ \/Kjlci‘n”, 1)
j=1,2

de, - —i[co,H]— xc, + (-1 z Jr, e, 2

dt j=1,2

do
—=—i|le H|-yo_, 3
7 [o,H]-7 ®)
where the interaction Hamiltonian
H=8,0.0 + Y [0, c,+g,(F)c,o,+hc] (4)
p=e,0

is in a rotating frame at the input field frequency o, . In contrast to earlier work [Xiao et al.,
2006; Waks & Vuckovic, 2004; Srinivasan & Painter, 2007], here we examine the case with
the two |e) and |o) modes in the standing-wave cavities in order for forward-only
propagation of the qubit. The cavity dissipation mechanism is accounted for

by &) = K0 K, where «,, is intrinsic loss and x,,, the external loss for the even

e(o)l”/ e(0)0 e(o)1
(odd) mode. The (n)anocrystal c(li)ssipation is represented 1(3})/ y=y,/2+y, where y, is the
spontaneous emission rate and y, the dephasing rate of the nanocrystal.

When the two degenerate modes have the same decay rate, ie, «,,=x,,=%,, k,, =k, =k,
and x=x,+k , two new states |+) :(\e)ii\o))/ 2 are suitable to describe this system,
which can be thought as two traveling (or rotating) modes. In this regard, the interaction
Hamiltonian is expressed as

H=6,00_+ Z [0.¢fc. +g.(F)c

s

o, +hc] ®)
where the effective single-photon coupling rates are g, () = ( g.(MFig,(7)/ V2 . In this case,
Egs. (1), (2), and (3) are rewritten into the corresponding forms with c, .

The nanocrystal-cavity system is excited by a weak monochromatic field (e.g., single-photon
pulse), so that we solve the above motion equations for the below explicit analytical
expressions

o (w)=-1) g(F),()/(i5,+7) 6)

s=+,—
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and ¢, (w) are given as

2k, (@) (i6 ,+x)e, (@) ~ig  (F)o (@) =0, )

in

iy2K,cP (@) - (i6 y+x)c (0)—ig (F)o_(w)=0. 8)
Note that orthogonality of the |e) and |o) basis modes (as shown in Fig. 1a) forces the
nanocrystal to choose only either g, (7)=ig, (), or g, (7)=-ig, (), or both (in which case
|e) and |o) are uniquely zero), but no other possibilities. Photon qubit input from only the
left waveguide forces only one of the cavity states (|e) + i|0)) to exist (Fan et al., 1998), and
we assume this cavity environment from the existing photon qubit enhances the
g.(7) =—ig,(F) probability. Of course, with only the left waveguide qubit input in a non-
reciprocal magneto-optic cavity, this condition is strictly enforced. Hence we can take
g.(F)=—ig,(F) , which implies g (¥F)=0, g, (¥) :\/Egg(?) , to further simplify Eqs. (7)-(8).
Now note that the left output ¢!} remarkably vanishes, while the right output is given by

e =cl(x -2k —i6+ 1)/ (k—i6+ 1), where A= Z‘ge(f)‘z /li(A-3)+y], and A=6, -6,
and J=-6, denote the nanocrystal-cavity and input-cavity detunings, respectively.
Importantly, this implies that our quantum phase gate provides a frue one-way transmission

through the cavity-dipole-cavity system.

2.2 Spin-photon phase gate
To examine more of the underlying physics, we consider first the case of exact resonance
(A=0,5=0). When g,(7)[ /xy>>1 (the nanocrystal occupies the spin state |1)), we

obtain ¢} ~c’. When g,(7)=0 (the nanocrystal occupies the spin state |{)), we obtain
@

V4

¢ =~ for K >>x,, which indicates that the system achieves a global phase change ¢ .

out

This distinct characteristic allows the implementation of a spin-photon phase gate. After the
photon pulse passes though the cavity system, we easily obtain a gate operation

()] T)=>15)[T),
PIT) > [T):

m[) = =[m]),

BRI )

This two-qubit phase gate combined with simple single-bit rotation is, in fact, universal for
quantum computing. More importantly, this interacting system can be regarded as a quantum
interface for quantum state sending, transferring, receiving, swapping, and processing.

To efficiently evaluate the quality of the gate operation, the gate fidelity is numerically
calculated, as shown in Fig. 2. Considering specifically a lead chalcogenide (e.g. lead
sulphide) nanocrystal and silicon photonic nanocavity system for experimental realization,
we choose the spontaneous decay as 3 ~ 2 MHz and all non-radiative dephasing y ~1 GHz
at cooled temperatures. Photonic crystal cavities have an ultrasmall mode volume V
(~0.1um’ at 1550 nm), with a resulting calculated single-photon coherent coupling rate |g,
of ~ 30 GHz. High Q of up to even ~10¢ experimentally and ~107 theoretically (Asano et al.,
2006; Kuramochi et al., 2006) has been achieved in photonic crystal cavities.

With these parameters, as shown in Fig. 2a, the gate fidelity of the cavity-dipole-cavity
system can reach 0.98 or more, even when photon loss is taken into account, and even when
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the vacuum Rabi frequency g. is lower than the cavity decay rate x (bad-cavity limit). The
gate fidelity increases initially as the cavity approaches more into the over-coupling regime
due to less photon loss and eventually decreases as the nanocrystal-cavity system moves
away from the strong coupling regime. Secondly, we note that with non-zero detuning
(A/xo=2; Case IIl and VI), the gate fidelity slightly decreases but is still adequate. With
increasing nanocrystal dissipation rate (Fig. 2b), the fidelity decreases as expected and the
system moves away from strong coupling (less nanocrystal interactions with the cavity). The
physical essence behind such high fidelities is the true one-way transmission where the
nanocrystal couples to |+) mode, with only forward propagation with no backward
scattering of the qubit. In addition, accidental degeneracy mismatch may degrade the gate
performance. To validate the feasibility of the present scheme, we perform a direct
calculation of gate fidelity for different frequency and lifetime of the opposite-parity cavity
modes. Even with degeneracy mismatch (@, - @ = du# o1 = @, - @; in Case IV and VII) with
some backward scattering of the qubit, the gate fidelity is shown to remain high. Moreover,
with different lifetimes of the cavity modes (Case VII), the fidelity remains high as long as
the | g(7)* /xy >>1 condition is satisfied.
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Fig. 2. Gate fidelity versus x, (panel a) and y (panel b) respectively for the lead sulphide
nanocrystal in degenerate cavity modes, illustrating that the fidelity mainly depends on

gf /ky and k,/k, . Case I: ky=0.1 GHz, &= s = ou=0. Case II: xy=1GHz, &= o= ou =
0. Case III: xp=1GHz, &= 61 =0, du = 5xp. Case IV: k= k0= 0.1GHz, & = -6y = 5GHz, &y =
0. Case V: 0 = k0= k0= 1GHz, &1 = k1= k1= e, S = o = ou = 0. Case VI: identical to Case
V but with o = 5xy. Case VII: x0=2x0= 0.2GHz, x;; = 1.1#%1= ge, Ou = -0 = 5GHz, & =
1GHz.

2.3 Single-spin-induced reflections

Furthermore, we show that the above cavity-dipole-cavity interaction mechanism can result
in interesting transmissions and reflections based on the presence or absence of dipole
interaction, and with different detunings. We examine the case of g,(¥F)=g and g,(¥)=0,
such as when the nanocrystal is positioned at the cavity mirror plane. Some typical
transmission and reflection spectra are shown in Fig. 3. In the absence of a dipole (i.e., the
nanocrystal occupies the spin state |{)), the cavity system has near-unity transmission,
except when on-resonance. However, when the located nanocrystal is in state |T), the
interacting system is transmission-free and remarkably reflects the cavity field strongly. We
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emphasize that this reflection is induced by a single spin state, and hence can be termed
single-spin-induced reflection. The constructive interference of the cavity field can be
considered as an optical-analog to electromagnetically induced absorption in the excited
state of a 3-level atomic system. The three reflection peaks in Fig. 3(a) can be understood by
considering the strong cavity-dipole-cavity interaction, where the input photon pulse
experiences three modes: bare odd mode (central peak) and two dressed even modes (side
peaks). When the total cavity decay increases, the three peaks overlap increasingly and form
a new peak (Figs. 3b-3d) at zero detuning input. We note the high reflectivity for the cavity-
dipole-cavity system at zero detuning, even under the bad-cavity limit. This high reflectivity
is helpful to permit arrayed controlled phase flip operation with a single circulator at the
input.
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Fig. 3. Reflection and transmission of the spin-photon phase gate with an isolated
semiconductor nanocrystal in the degenerate point-defect standing-wave cavity modes.
Other conditions for this parameter set include: » = x, /10 and «, =20, , with the nanocrystal
located at the cavity mirror plane (g (7)=g and g (#)=0). The black solid (green dashed) line
is the reflection (transmission) in the absence of a dipole in the cavity. The red dotted (blue
dashed-dot) line is the reflection (transmission) in the presence of a dipole in the cavity.

3. Coupled electrodynamics in photonic crystal cavities

Over the past few years, theoretical and experimental interests are mainly focused on a
single cavity interacting with atoms, and tremendous successes have been made ranging
from strongly trapping single atoms and deterministic generation of single-photon states, to
observation of atom-photon quantum entanglement and implementation of quantum
communication protocols. For more applications, current interest also lies in the coherent
interaction among distant cavities. The coherent interaction of cavity arrays has been
studied as an optical analogue to EIT in both theory (Smith et al., 2004; Xiao et al., 2007b)
and experiment (Xu et al., 2006; Totsuka et al., 2007). Coupled cavities can be utilized for
coherent optical information storage because they provide almost lossless guiding and
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coupling of light pulses at slow group velocities. When dopants such as atoms or QDs
interact with these cavities, the spatially separated cavities have been proposed for
implementing quantum logic and constructing quantum networks. Recent studies also show
a strong photon-blockade regime and photonic Mott insulator state (Hartmann et al., 2006;
Hartmann & Plenio, 2007), where the two-dimensional hybrid system undergoes a
characteristic Mott insulator to superfluid quantum phase transition at zero temperature
(Greentree et al., 2006; Angelakis et al., 2007). Recently, it has shown that coupled cavities
can also model an anisotropic Heisenberg spin-1/2 lattice in an external magnetic field
(Hartmann et al.,, 2007). The character of a coupled cavity configuration has also been
studied using the photon Green function (Hughes, 2007).

3.1 Model of coupled N cavity—QD subsystems

Using transmission theory, we study coherent interactions in a cavity array that includes N
cavity-QD subsystems (Xiao et al., 2008), with indirect coupling between adjacent cavities
through a waveguide (Fig. 4). First, we investigate a subsystem in which a single cavity
interacts with an isolated QD. Here for simplicity we suppose that only a single resonance
mode (h-polarized) is present in the cavity, although two-mode cavity-QD interactions have
been considered in the previous section. The cavity-QD-waveguide subsystem has mirror-
plane symmetry, so that the mode is even with respect to the mirror plane. We can easily
obtain the Heisenberg equations of motion

dé

j:-i[é,,Hj]—F,@ i (a +b2) (10)

ds_
dt

= _l|:o- /’H/ 7./‘6:-/ +\/7/6-/ (11)

where ¢, is bosonic annihilation operator of the j-th cavity mode with resonant frequency
o, ; A(J)(b(”) and a2, (b2, ) describe the input and output fields in the left (right) port

out

respectlvely, with  standard input-output relations 4%, =b? + [k, ¢,  and

b3, =a@ + [k, ¢, . 2T represents total cavity decay with T, (K'O’ +2K, )/ 2, wherex, , is

the intrinsic caV1ty decay rate and ; ; the external cavity decay rate. 6_,, ;is the descendmg

~(4).j
(ascending) operator of the interacting two-level QD with transition frequency w, ;. y,is
the total decay rate of the QD, including the spontaneous decay (at rate y, ) and dephasing
(at rate y,) in the excited state|e) ; His the subsystem Hamiltonian
H =w, ¢+, 6, 6 +[g (7)o, ¢ +hc] whereg

(F) is the coupling strength
between the cavity mode and the dipolar transition |g) <> |e). &' is the vacuum noise

operator associated with the decay rate .

In the weak excitation limit (excited by a weak monochromatic field or a single photon pulse
with frequency @), and by omitting the term which concerns the Langevin noises, the
motion equations can be solved, with the transport relation in the frequency domain

()5
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Here the transmission matrix is

1 K, a. -T.
T}_( J J JJ (13)

a,+x,-T\a,-T, +2K,; K

where a, =iA +|g,.(17)|2 /(iAm. —y,.), A ,=0-0,, (A  =o-o0,;) represents the
detuning between the input field and the cavity mode (QD transition). For convenience, we
also define the cavity-QD detuning 6, =@, ; - @, ; . The transport matrix can be regarded as
a basic cell in cascading subsystems and obtaining the whole transportation for the N -
coupled cavity-QD system. The transport properties can thus be expressed as

5o 0
[ " (“’)]—TNIL---TOTZTOT](“"’ (“’)J- (14)

H (a)) al) (a))

out
Here T, the transmission matrix via the waveguide between the two adjacent nanocavities,
can be expressed as

(15)

J-th QD-cavity J o J\MK/\?\"

Mirror plane

Fig. 4. (a) Example scanning electronic micrograph of periodic waveguide-resonator
structure containing N side-coupled nanocavities (h-polarized) at a distance L. The
nanocavities are side coupled through the integrated waveguide, with no direct coupling
between any two nanocavities. (b) The j-th quantum dot - cavity subsystem. 49 (5) and
a? (b9 describe the input and output fields in the left (right) port, respectively.

out \~out
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When studying only the spectral character of the coupled cavity-QD interaction (Section
3.2), we note that this is analogous to classical microwave circuit design, where the
transmission and reflection characteristics from Eq. (14) can also be examined with coupled-
mode theory with dipole terms inserted. Examining the spectral character first (Section 3.2)
helps to understand the coupled cavity-QD controlled quantum phase gate operation and
performance (Sections 3.3 and 3.4).

3.2 Spectral character of coupled cavity-QD arrays

To examine the physical essence, we need to first examine the spectral character of the
coupled cavity-QD system. The reflection and transmission coefficients are defined as
ra(@)=al, (0)/ a2 (w) and 1, (0)=b)(@)/a? (o). In the following, we also assume that

these cavities possess the same dissipation characteristic without loss of generality, i.e.,
Ko =Ky, K, =%, kK =50k,,and T, =T.
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Fig. 5. (a) and (b): Transmission spectra of two coupled empty cavities, where 6 =207 .
Solid, dashed, and dotted lines describe the cases of &,, =0,I'/2,I", respectively. (b)
Numerical 3D FDTD simulations of optical analogue of EIT in two coupled cavity ( =0 )
for detunings 1.14I" (red; As_, ;.;0s =0.135), 1.26I (blue; Ae,,, ;.. =0.160), and 1.49T
(green; Ag_.:.;es =0.185). The arrows denote the EIT peak transmissions. The dashed grey
lines denote the two detuned individual resonances for the case of s, = 0.05a . The black
curve is for a single cavity transmission for reference. (c) Example E, -field distribution of

coupled empty photonic crystal cavities.

Fig. 5a describes the transmission spectra of two coupled empty cavities (without QD) with
different detuning (J, =o,,-,,). When the two cavities are exactly resonant, a
transmission dip is observed; with increasing J,,, a sharp peak exists at the center position
between the two cavity modes. This is an optical analogue to the phenomenon of EIT in
atomic vapors. We examine the classical optical analogue exactly through 3D finite-
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difference time-domain (FDTD) numerical simulations. Specifically, Fig. 5b and 5c show an
example of the transmission and field distributions through the coherent interaction with
two coupled empty cavities, where the resonance of one cavity is detuned by three
cases: 0,, =1.14I", 1.26I", and1.49T". The optical transparency peak from the FDTD is
broader than in Fig. 5a due to the finite grid-size resolution, and is observed on top of a
background Fabry-Perot oscillation (due to finite reflections at the waveguide facets). The
analogy and difference between an all-optical analogue to EIT and atomic EIT are recently
discussed in Ref. (Xiao et al., 2007).
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Fig. 6. (a) Transmission spectra of two coupled subsystems with one QD (top) and two QDs
(bottom) where g=I'/2, y =y, =y, =k, . Other conditions are same as Fig. 5a. (b) Spectral
character of three coupled subsystems with &, =I'/2 and 6,,,=0.Inset: 6, =I'/2,
6,,=0, 6,=6,=0,with §,=T/2 (top) and T (bottom). (c) and (d): Photon phase shift and
delay (7., ) through two cavity-QD subsystems, where @,,, ., =@ , g=0.2I". Inset:
transmission spectrum.

In the presence of QDs, Fig. 6a (top) shows the spectral characteristics in which a single QD
resonantly interacts with the first cavity. When both cavities are resonant, there exist two
obvious sharp peaks located symmetrically around @ =0 (for convenience, we define
®,,=0). This fact can be explained by dressed-mode theory. Resonant cavity-QD
interaction results in two dressed modes, which are significantly detuned from the second
empty cavity with the detuning +|g,(7)|=+I'/ 2. Both dressed modes non-resonantly couple
with the empty mode, resulting in two transparency peaks located at frequencies w~=+I"/4.
When 6, =I'/2, one dressed cavity mode non-resonantly couples with the empty mode
with a detuning I', which leads to a transparency peak located near @ =0 ; while the other
dressed mode resonantly couples with the empty mode, which does not result in a
transparency peak. When &, continually increases, e.g.,d, =I", the vanished peak
reappears since the two dressed modes are always non-resonant with the empty mode.
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Fig. 6a (bottom) illustrates the case where both cavities resonantly interact with a single QD
each. Similar to the above analysis, we can explain the number and locations of sharp peaks
with respect to different 6, by comparing the two pairs of dressed modes. For example,
when 6,, =T, the dressed modes in the first cavity is located at +I"/2 while the second pair
is atT'/2and3I'/2, so the transparency peaks are located at[-I'/2,I'/2]and[I'/2,3I'/2],
i.e., two peaks are near 0 and I'. Fig. 6b shows the spectral character of three coupled
cavity-QD subsystems, under various cavity-cavity and cavity-QD detunings. These
transmission characteristics are helpful during experimental realization efforts to identify
the required tuning and detunings when multiple QD transitions and cavity resonances are
involved.

Phase shift and photon storage.— To further examine this coupled cavity-QD system, Fig. 6¢
shows the transmission phase shift for various detunings of the input photon central
frequency, where the cavity and QD transition are resonant for both subsystems. The phase
shift has a steep change as we expected intuitively, which corresponds to a strong reduction
of the group velocity of the photon. As shown in Fig. 6d, the delay time (7, ) in this coupled
system is almost hundreds of the cavity lifetime (7, =1/2I"). This coupled cavity-QD
system can essentially be applied to the storage of the photon. Moreover, our solid-state
implementation has an achievable bandwidth of ~50 MHz in contrast to less than 100 kHz
in atomic systems, although the delay-bandwidth product is comparable. To obtain longer
photon storage, one can consider dynamical tuning (Yanik et al., 2004; Xu et al., 2007; Yanik
& Fan, 2007) to tune the cavity resonances with respect to the QD dipolar transitions to
break the delay-bandwidth product in a solid-state cavity-QD array system.

3.3 Quantum phase gate operation

In the section above, we have shown the novel transport character of the coupled cavity-QD
system. Now we study the possibility of quantum phase gate operation of the QDs based on
this transport character. The schematic to realize this multi-QD coupled cavity-cavity system
is illustrated in Fig. 7. The QDs are represented by two ground states |g) and |r), where the
state |r) is largely detuned with the respective cavity mode. The two ground states can be
prepared via QD spin-states such as demonstrated remarkably in experiment in Ref.
(Atatuer et al., 2006) with near-unity fidelity. The input weak photon pulse is assumed h-
polarized, with an input pulse duration D (e.g. 1 ns) larger than the loaded cavity lifetime
for the steady-state approximation. To remove the distinguishability of the two output
photon spatial modes in the waveguide (transmitted and reflected), a reflecting element is
inserted in the end of waveguide (such as a heterostructure interface), as shown in Fig. 7.
This ensures that the photon always exits in the left-propagating mode |L) (from a right-
propagating input mode | R)) without any entanglement with the QD states. Alternatively, a
Sagnac interferometer scheme such as introduced in Reference (Gao et al., 2008) can also be
implemented to remove the spatial mode distinguishability and QD-photon entanglement.
In this single input single output mode scheme, |h) and |v) represent the two polarization
states of the input photon. We emphasize that in the below calculations we have considered
the complete characteristics of the full system (including the end reflecting element and the
resulting "standing wave" due to the long photon pulse width) where we examined the final
left-propagating output mode |L) from a right-propagating input mode |R) (Fig. 7). The
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reflection interference is included where we force b® =52 (Fig. 4b) from the reflection

element, when calculating the temporal pulse delays for the different QD states.
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Fig. 7. Schematic to illustrate two-qubit quantum phase gate based on the coupled cavity-
cavity multi-QD scheme. A heterostructure reflection element is introduced in the end of
waveguide to remove spatial mode distinguishability, with only a single output mode |L)
for an input photon mode |R). The QDs have a superposition of two ground states, |g) and
| r). PBS1 and PBS2 represent the polarization beam splitters, D1 and D2 the single photon
detectors, C the circulator, M the reflecting mirror. Here PBS1 and PBS2 are actually
regarded as filters since only the h-polarized photon is required in our scheme. The
response of detectors D1 and D2 provide an indication to show the gate operation success,
and can also be used for measurement-induced entanglement in future.

To facilitate the discussion but without loss of generality, we describe the all resonance case
(ie., ® = w,,, ) to describe the idea of the phase gate operation; in the subsequent numerical
calculations, we will demonstrate the gate feasibility under non-ideal detunings. As an
example, we focus on the realization of a two-qubit (two QDs) phase gate. Fig. 8 now shows
the calculated reflection field (real and imaginary components) of the complete coupled
cavity-cavity and two QD systems for the four superpositioned states
|‘I—’>in =q, |r>] |r>2 + a2|g>] |r>2 + 013|r>I |g>2 +a4|g>] |g>2 . We address the following cases for the
different QD states.

Case I: The two QDs are initially prepared in |u>]|v>2 (u,v=g,r) and at least one QD
occupies the ground state |r). From Figs. 8a and 8b and for the all resonance case, we see
that Re[r,,]=—1 and Im[r,]= 0 under the over-coupling regime ( x, < «, ) and with the large
Purcell factor (g* /Ty > 1). This fact can be understood by regarding the resonant condition
(@, ; = ). The input photon will be almost reflected by one empty cavity, in which the QD is
in |r), resulting in a final state |u>] |v>2 |L> .

Case II: The QDs initially occupy in |g) |g),. In this case, note that the photon pulse
interacts coherently with both cavities and two QDs, including the reflection element which
is placed specifically to achieveh® =52, before completely exiting the system. As
demonstrated in Figs. 8a and 8b and for the all resonance case, the final output state is
described by Re[r,]=1and Im[r,]=0. The resulting state is | g>I g>2|L>. We note that the
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photon loss is small for all four cases when the input photon pulse is on resonance with the
cavity resonances, as can be done experimentally by tuning the input photon.
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Fig. 8. Real (a) and imaginary (b) parts of the reflection coefficients for initial QD

states,|r) |r), ,|7),|€),|&),|r),, and|g) | g), . Here we assume |g,(¥)| =|g,(7)| = 2T,

0, =0, =0, =0, and the propagation phase between the second cavity and the reflection
element is adjusted as ' =n7+7/2 to compensate the phase shift induced by the mirror
reflection (ideally, 7 ). Other parameters are the same as Fig. 5a. (c) Shape function of the
photon pulse for cases when the single QD is coupled (| g)) or decoupled (| 7)) to the single
cavity, and without the cavity. (d) Real and imaginary parts of the reflection coefficient
when the reflection phase of the mirror deviates from ideal 7 with a deviation of 0.5.

Therefore, with the exit of the photon of the single input single output system, the state of
the two QDs after the interaction is now described by
W) =—a|r)|r),—a,|g)|r), —a|r),|g), + a.|g),|g), - Hence, after the above process and
recombining at PBSI, the state of the QD-QD gate described by U =¢"*"l can be
manipulated. Moreover, if a, =1/2(i=1,2,3,4) , we have |¥) =(1/ x/E)(‘r)l =), +]&),|+),)
[where ‘_>2 = ]/ﬁ(‘g>z _‘r>z) and ‘+>z = 1/\/5(

maximally entangled state in the coupled QDs. Most importantly, this idea can also be

g>2 +‘r>2)], which is the generation of the

extended to realize an N -qubit gate with only one step, which is of importance for reducing
the complexity of practical quantum computation and quantum algorithms for physical
realization. In addition, using this configuration, some special entangled QD states (for e.g.,
the cluster state) can be generated (Cho and Lee, 2005).

We provide a few more notes on this designed coupled cavity-cavity multi-QD system. First,
the temporal distinguishability is small for the single cavity-QD system, where in Fig. 8c we
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plot the shape function of the output photon pulse for cases when the QD is coupled (| g)),
decoupled (|)), or without the cavity, through numerical simulation of the dynamical
evolution of the system. The pulse shape function overlaps very well. Secondly, the
calculated temporal distinguishability in the coherently coupled cavity-cavity multi-QD
system is also small compared to the pulse duration D . Specifically, with the parameters
in Fig. 8a, the photon delays due to the coupling to the cavities are calculated as

r)|€), ), |r),, and
‘ g>1 |g) , » respectively, where the loaded cavity 7, is about 0.02 ns. The plhotcz)n dellayzof the

approximately 7,27, , 27, , and 47, in case of the s’rates‘er)2 ,

complete system is therefore sizably smaller than the pulse duration (of 1 ns, for example).
Furthermore, this cavity-induced delay will furthermore decrease with increasing the
coupling rate g , furthering reducing temporal distinguishability. Of course, the size of the
chip is also small (tens of microns) so that the propagation time (25 /v, where S denotes
the distance between the first cavity and the reflector, and v the group velocity) in the
waveguide is much smaller than the pulse duration D. Thirdly, we examine the
dependence of the overall system reflection coefficient on the phase variation from the
reflection element, when deviating from the ideal 7z phase shift. Fig. 8d shows the numerical
results, where a slight dependence is observed when there is a phase deviation of 0.5 from
7 . Moreover, the phase shift from the reflection element can be externally controlled stably,
such as with an external and focused pump beam to thermally tune the reflection region.

3.4 Gate fidelity and photon loss

To exemplify the coupled cavity system, isolated single semiconductor QDs in high- O small
modal volume (7) photonic crystal cavities are potential candidates, such as self-assembled
InAs QDs in GaAs cavities, or PbS nanocrystals in silicon cavities at near 1550 nm
wavelengths. For PbS nanocrystal and silicon cavity material system, we use the following
parameters in our calculations: y, ~2 MHz, 7, ~1GHzat cooled temperatures, V ~ 4 pm’ at
1550 nm, with resulting single-photon coherent coupling rate g ~12.4 GHz. Loaded cavity
Q in the range of 104 and 105 are achievable experimentally, with intrinsic QO up to 106
reported recently (Noda et al., 2007; Tanabe et al., 2007).

To characterize the present gate operation, Figs. 9a and 9b present the two-qubit phase gate
fidelity F and photon losses P for various g and the parameters described above, even
under non-ideal detuning conditions and the bad cavity limit. It should be noted here that,
with 6, and ¢6,,, we can know the detuning between two QDs. For example, in case of
6, =5k, and 6,, =0, we deduce the detuning between the two QDs is 5x,. Based on the
above parameters, F can reach to 0.99 or more, and P can be below 0.04. As shown in Fig. 9,
for cavity-cavity detunings in the range of the intrinsic cavity decay rate, both F and does
not degrade significantly but is strongly dependent on the cavity decay rate. Likewise, with
cavity-QD detuning that is comparable with the intrinsic cavity decay rate, both F and P
does not change significantly but is dependent on the cavity decay rate. We note that the on-
resonant photon loss P can be larger than the non-resonant case when g is small. This can be
explained by considering the decay of QDs. When the QDs resonantly interact with cavity
modes, the decay of QDs becomes distinct, resulting in an increasing of photon loss.
Moreover, we note the QD-QD detuning plays an important role in the quantum gate
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operations. Given the current large inhomogeneous distribution of QD transitions, however,
active tuning methods such as Stark shifts would probably be needed to control the
detuning within acceptable bounds to obtain strong quantum gate fidelity and low photon
loss. Furthermore, we note that, with increasing g, the photon loss P exhibits an increase
before a decrease, which can be understood by studying the photon loss when the QDs are
in the state of |g) |g), . When g =T"/2, the absorption strength (resulting from «, and y ) of
the input photon by the coupled cavities reaches the maximum.
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Fig. 9. Gate fidelity change (6F =1-F) (a) and photon loss P (b) of the two-qubit gate
versus g/I". The reflecting element has 95% reflectivity. Here the carrier frequency is
assumed as @ — 2.5k, to avoid the EIT-like peaks of two coupled empty cavities, and a
scattering loss of 1% is used for the short propagation lengths. Other parameters are same
as Fig. 6a. The shaded areas correspond to loaded cavity Q in the range of 10* to 10°.

4. Summary

In this Chapter, with the nanocavities in photonic crystal, we theoretically introduce, derive,
and demonstrate the robust implementation of a single spin-photon phase gate in a cavity-
dipole-cavity system. The conditions of accidental degeneracy are examined to enforce
complete transfer, either in the forward transmission or in reflection, of the qubit. In
addition, we observe that a photon pulse is strikingly reflected by a cavity interacting with a
single spin, even under the bad-cavity limit. This combined nanocrystal-cavity system,
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examined in a silicon materials platform with lead chalcogenide nanocrystals in the near
infrared, can serve as a QD spin-photon two-qubit quantum phase gate and, indeed, as a
general quantum interface for large-array chip-based quantum information processing. To
further utilize the high-Q and small-V nanocavities of photonic crystal, we also investigate
the operation and performance of a scalable cavity-QD array on a photonic crystal chip
towards controlled QD-QD quantum gates. The coupling among single-QD emitters and
quantized cavity modes in a coherent array results in unique transmission spectra, with an
optical analogue of EIT-like resonances providing potential photon manipulation. In the
quantum phase gate operation, we note that the gate fidelity can reach 0.99 or more and the
photon loss can be below 0.04 in a realistic semiconductor system, provided the non-ideal
detunings are kept within the cavity decay rates. Our study provides a potential for a chip-
scale quantum gate towards a potential quantum computing network with the platform of
silicon photonic crystal.

For future experimental quantum information processing in photonic crystal, we note that it
is possible to realize the initial idea in a single nanocavity-QD coupled system, as
experimentally demonstrated in the context of strong cavity-QD coupling (Hennessy et al.,
2007; Badolato et al., 2006; Reithmaier et al., 2004; Yoshie et al., 2004; Faraon et al., 2008;
Fushman et al,, 2008) and the quantum state transfer between a single QD and a target
cavity (Englund et al., 2007a). This opens the door to construct the basic building blocks for
future chip-based quantum information processing systems. However, it is still a challenge
to implement quantum information with a nanocavity array in photonic crystal. The
challenge includes several main technique difficulties. First, it is necessary to precisely place
a single two-level nanocrystal (or other QDs) with respect to the corresponding nanocavity
mode in photonic crystal, for the largest Rabi frequency, and also to position across an array.
Second, both the cavity resonances and QD transitions should spectrally overlap within
approximately the cavity or exciton linewidths, although our theoretical model is still robust
with small QD-QD, cavity-QD, and cavity-cavity detunings. The former challenge depends
on careful nanofabrication techniques, while the latter condition can be relaxed through
high-precision tunability of the cavity resonances or QD transitions. Moreover, we note that
the ultrahigh-Q and low-V regime is desired to operate well into the strong coupling regime,
suppressed chip-scale photon losses or improved collection to improve quantum state
transfer, as well as control of dephasing especially at high temperatures in order for chip-
level scalability in solid-state quantum information nanosciences.
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1. Introduction

Terahertz waves are the electromagnetic radiation whose frequency ranges from millimeter
waves to the far infrared, shown in Figure 1. While both sides of this range have had a long
history of research and development, leading to already commercially available sources,
detectors, meters, and many additional devices, the terahertz wave range is still in its
infancy, representing the last unexplored part of the electromagnetic spectrum between
radio waves and visible light. This delayed development was mainly caused by the
difficulty of producing reliable and strong terahertz wave generators, as well as the
unavailability of sensors that can detect this unusual radiation. Technology extrapolation
from both neighboring sides has been facing difficult problems: Up-conversion from the
microwaves is inefficient due to the frequency being too high; down-conversion from the
infrared is limited by the energy gaps.
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Fig. 1. A schematic showing the terahertz wave within the electromagnetic spectrum.

In recent years, terahertz wave sources have received considerable attention for use in many
applications. Especially, recent research using terahertz waves, transmission imaging and
fingerprint spectra have had an important contribution in the bioengineering and security
fields, such as in material science, solid state physics, molecular analysis, atmospheric
research, biology, chemistry, drug and food inspection, and gas tracing (Tonouchi, 2007).
There are several ways to generate terahertz waves. In the laboratory, one of the most
widespread processes is the optical rectification or photoconductive switching produced
using femtosecond laser pulses (Smith et al., 1988; Zhang et al., 1990). Applied research,
such as time domain spectroscopy (THz-TDS), makes use of the good time resolution and
the ultra broad bandwidth, up to the terahertz region. Novel tunable sources already exist in
the sub-THz (several hundred GHz) frequency region, such as the backward-wave oscillator
(BWO). However, the output power of a BWO rapidly decreases in the frequency region
above 1 THz, and its tuning capability is relatively limited.
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Only few sources bring together qualities such as room temperature operation,
compactness, and ease of use. The terahertz wave parametric generation is based on an
optical parametric process in a nonlinear crystal (Sussman, 1970; Pietrup et al., 1975). The
principles of the terahertz wave parametric generator (TPG) (Shikata et al., 2000; Sato et al.,
2001; Shikata et al., 2002) and the terahertz wave parametric oscillator (TPO) (Kawase et al.,
1996; 1997; 2001) allow building systems that are not only compact but also operate at room
temperature, making them suitable as practical sources. In principle, both a narrow
linewidth and a wide tunability are possible in injection-seeded TPG/TPO (is-TPG/TPO)
systems with single-longitudinal-mode near-infrared lasers as seeders (Kawase et al., 2001;
2002; Imai et al., 2001).

In basic research, these sources were pumped using flash lamp- or laser diode- pumped Q-
switched Nd:YAG lasers which have Gaussian beam profile and long pulse widths (15 ~ 25
ns). The output energy of terahertz wave increases with the pump energy, but eventually
the damage threshold of the crystals is reached. Recently, we demonstrated how the output
energy/power was further enhanced and how the TPG was reduced to palmtop size by
using a small pump source having a short pulse width and top-hat beam profile (Hayashi et
al., 2007). These characteristics of the pump beam enable high intensity pumping especially
close to the output surface of the terahertz wave without thermal damage of the crystal
surface. The higher intensity pumping and smaller absorption of the terahertz wave inside
the crystal enable higher output energy than previously reported. Further, we also
demonstrated a compact and tunable terahertz wave parametric source pumped by a
microchip Nd:YAG laser, seeded with the idler wave provided by an external cavity diode
laser (ECDL) (Hayashi et al., 2009). We show how the output peak power and tunability
were further enhanced and how the is-TPG was reduced to palmtop size by using a
passively Q-switched small pump source having a short pulse width. These characteristics
of the pump beam permit high intensity pumping close to the output surface of the
terahertz wave without thermal damage to the crystal surface. The higher intensity
pumping and smaller absorption of the terahertz wave inside the crystal allow a broader
tuning range than that previously reported.

2. Principles of a Terahertz-wave parametric generation

When a strong laser beam propagates through a nonlinear crystal, photon and phonon
transverse wave fields are coupled, behave as new mixed photon-phonon states, called
polaritons. The generation of the terahertz wave results from the efficient parametric
scattering of laser light via a polariton, that is, stimulated polariton scattering. The scattering
process involves both second- and third-order nonlinear processes. Thus, strong interaction
occurs among the pump beam, the idler wave, and the polariton (terahertz) wave.

One of the most suitable nonlinear crystal to generate terahertz wave is the lithium niobate
(LiNbQOs) thanks to its large nonlinear coefficient (ds3 = 25.2 pmV-1 at A = 1064 nm) (Shoji et
al.,, 1997) and its transparency over a wide wavelength range (0.4 - 5.5 um). LiNbOj3 has four
infrared- and Raman-active transverse optical (TO) phonon modes, called Ai-symmetry
modes, and the lowest mode (@ ~ 250 cm-?) is useful for efficient terahertz wave generation
because it has the largest parametric gain as well as the smallest absorption coefficient.

The principle of tunable terahertz wave generation is as follows. The polaritons exhibit
phonon-like behavior in the resonant frequency region (near the TO-phonon frequency wro).
However, they behave like photons in the non resonant low-frequency region as shown in
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Figure 2, where a signal photon at terahertz frequency (o) and a near-infrared idler photon
(@i) are created parametrically from a near-infrared pump photon (w,), according to the
energy conservation law @, = or + ®; (p: pump beam, T: terahertz wave, i: idler wave). In the
stimulated scattering process, the momentum conservation law k, = k; + kr (noncollinear
phase-matching condition, Figure 2) also holds. This leads to the angle-dispersive
characteristics of the idler and terahertz waves. Thus, broadband terahertz waves are
generated depending on the phase-matching angle. Generation of a coherent terahertz wave
can be achieved by applying an optical resonator (in the case of the TPO) or injecting a
“seed” for the idler wave (in the case of the is-TPG/TPO). Continuous and wide tunability is
accomplished simply by changing the angle between the incident pump beam and the
resonator axis or the seed beam.

o[THZ]| -1
A ;l a=(c/n)k
;

WPM Lines

a)fo=7.5 §
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Polariton \é \
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Fig. 2. Dispersion relation of the polariton. An elementary excitation is generated by the
combination of a photon and a transverse optical phonon (@to). The polariton in the low
energy region behaves like a photon at terahertz frequency. Due to the phase-matching
condition as well as the energy conservation law which hold in the stimulated parametric
process, tunable terahertz wave is obtained by the control of the wavevector k;. The right
figure shows the noncolinear phase-matching condition.

The bandwidth of the TPG is decided by the parametric gain and absorption coefficients in
the terahertz region. According to a plane-wave approach, analytical expressions of the
exponential gain for the terahertz and idler wave are given by (Shikata et al, 2000; 2002)

2
gTz% 1+16c0s¢[&J -1, 1)
aT

where ar is the absorption coefficient of the terahertz wave in the nonlinear crystal.
Parameter ¢ is the phase-matching angle between the pump beam and the terahertz wave;
Qo is the parametric gain in the low-loss limit, and takes the form

7w, w1
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where I, is the pump intensity, nr, n;, n, are the crystal refractive indices at the wavelengths
of the terahertz wave, idler wave, and pump beam, respectively, wy is the resonance
frequency of the lowest Aj-mode, and Sy is the oscillator strength. The nonlinear coefficients
dp and dg represent second- and third-order nonlinear processes, respectively. The
absorption coefficient ar in the terahertz region is given by,

oy = ZTQ)‘Im(\/z)

where eris the dielectric constant of the nonlinear crystal.
Figure 3 shows the calculated gain and the absorption coefficient at several pump
intensities. The gain curve has a broad bandwidth of around 3 THz, with a dip appearing at
around 2.6 THz. This is because the low frequency modes of doped MgO in the
MgO:LiNbO3 work as a crystal lattice defects for LiNbOs.
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Fig. 3. Calculated gain and absorption coefficient.

3. Terahertz-wave parametric generator (TPG)

Broadband terahertz waves are generated by single-pass pumping, in a TPG. The linewidth
of the terahertz wave emitted from the TPG is typically broad, about 1 THz. In addition,
several applications are better suited to a broadband source (TPG) than to a nawwor
linewidth source (TPO or is-TPG), such as tomographic imaging, interferometric
spectroscopy, and diffuse reflection spectroscopy. Tomographic imaging and
interferometric spectroscopy have to use a broadband source. The detection of scattered
terahertz radiation strongly depends on the grain size of samples made of particles; using a
broadband source reduces this effect. Also, the TPG is useful for many industrial
applications such as transmission imaging for materials or food inspection.
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A TPG uses a quite simple configuration since it needs no resonator or seeder, as shown in
Figure 4. The MgO:LiNbOj crystal used in the experiment was cut to the size 65 (x) x 5 (y) x
4 (z) mm3. The x-surfaces at both ends were mirror polished and antireflection coated. The
y-surface was also mirror polished, in order to minimize the coupling gap between the
prism base and the crystal surface, and to prevent scattering of the pump beam. The pump
beam passed through the crystal close to the y-surface, to minimize the travel distance of the
terahertz wave inside the crystal.

"'""llm"_,
4 &
&
Pump beam -
MgO:LiNbO,

Fig. 4. A terahertz wave parametric generator with a Si-prism array. The Si-prism array was
placed on the y-surface of the MgO:LiNbOs to increase the output and to reduce the
diffraction angle of the terahertz wave by increasing the coupling area.

Most of the generated terahertz wave was absorbed or totally reflected inside the crystal due
to the material's large absorption coefficient and large refractive index. Therefore, it was
rather difficult to couple out the terahertz wave efficiently to the free space. We introduced a
Si-prism coupler (n =~ 3.4) to extract the terahertz wave generated inside a nonlinear crystal,
thereby substantially improving the exit characteristics. The terahertz wave output energy,
peak power and linewidth emitted from the TPG is typically 1 pJ/pulse, 300 uW, and 1 THz
respectively.

4. Terahertz-wave parametric oscillator (TPO)

Coherent tunable terahertz waves can be generated by realizing a resonant cavity for the
idler wave. This is the basic configuration of a TPO, and it consists of a Q-switched Nd:YAG
laser, the nonlinear crystal placed inside the 15 cm long cavity, as shown in Figure 5. Both
mirrors were half-area-coated, so that only the idler wave could resonate and the pump
beam propagate through the uncoated area without scattering. The mirrors and a nonlinear
crystal were mounted on a rotating stage, and tunability was obtained by rotating the stage
slightly to vary the angle of the resonator with respect to the pump beam. The pump power
and pulsewidth were 30 mJ/pulse and 25 ns, respectively. The pump beam entered the x-
surface of the crystal and passed through the MgO:LiNbO; crystal close to the surface of the
Si-prism coupler to minimize the absorption loss of the terahertz wave. A near-infrared idler
oscillation around 1.07 pm was clearly recognized by its oscillating spot above a threshold
pump power density of about 130 MW/cm2. The idler wave is amplified in the resonator
consisting of flat mirrors with a half-area HR coating. The mirrors and crystal are installed
on a precise, computer-controlled rotating stage for precise tuning. When the incident angle
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of the pump beam into the MgO:LiNbO;3 is varied between 3.13 and 0.84 deg, the angle
between the pump wave and the idler wave in the crystal changes from 1.45 down to 0.39
deg, whereas the angle between the terahertz wave and the idler wave changes from 67.3
down to 64.4 deg. With this slight variation in the phase-matching condition, the
wavelength (frequency) of the terahertz wave could be tuned between 100 and 330 mm (3 -
0.9 THz); the corresponding idler wavelength changed from 1.075 down to 1.067 mm. The
terahertz wave radiation was monitored with a 4K Si bolometer.
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Fig. 5. TPO configuration. The TPO consists of a Q-switched Nd:YAG laser, a nonlinear
crystal, and a parametric oscillator. The idler wave is amplified in the resonator consisting of
flat mirrors with a half-area HR coating. The mirrors and crystal are installed on a precise,
computer-controlled, rotating stage for fine tuning.
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Typical input-output characteristics of a TPO are shown in Figure 6, in which the oscillation
threshold was 18 m]/pulse. With a pump power of 34 mJ/pulse, the output energy of
terahertz wave from TPO was 192 pJ/pulse (= 19 mW at the peak), calibrated using the
sensitivity of the bolometer. Since the Si-bolometer output becomes saturated at
approximately 5 pJ/pulse, we used several sheets of thick paper as an attenuator after they
were properly calibrated. The minimum sensitivity of the Si-bolometer is approximately 1
fJ/ pulse, therefore, the dynamic range of measurement using the TPO as a source is 192 pJ /
1 ], which exceeds 50 dB.
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Fig. 6. Input-output characteristics of a terahertz wave parametric oscillator.
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5. Injection-seeded Terahertz-wave parametric generator (is-TPG)

The TPG spectrum was narrowed to the Fourier Transform limit of the pulse width by
introducing an injection seeding for the idler wave. Figure 7 shows our experimental setup
of the is-TPG. An array of seven Si-prism couplers was placed on the y-surface of the
secondary MgO:LiNbO; crystal for efficient coupling of the terahertz wave. The pumping
laser was a single longitudinal mode Q-switched Nd:YAG laser (wavelength: 1.064 um;
energy: < 50 mJ/pulse; pulsewidth: 15 ns; beam profile: TEMg). The pump beam diameter
was 0.8mm. The pump beam was almost normal to the crystal surfaces as it entered the
crystals and passed through the crystal close to the y-surface. A continuous wave tunable
diode laser (wavelength: 1.066-1.074 pm; power: 50 mW) was used as an injection seeder for
the idler. Observation of the intense idler beam easily confirmed the injection-seeded
terahertz wave generation. The polarizations of the pump, seed, idler, and terahertz waves
were all parallel to the z-axis of the crystals. The terahertz wave output was measured with
a 4K Si bolometer.

é‘%
«fﬁ
Pump beam Si-prism array &
single -mode Nd:YAG _/
25 ns (pulsed)
: MgO:LiNbO.
: Seed beam g ? Seed + Idler
ECDL (CW)

1067 ~ 1074 nm

Fig. 7. Experimental setup of the is-TPG.

It was possible to tune the terahertz wavelength using an external cavity laser diode as a
tunable seeder. A wide tunability, from 125 to 430 pm (frequency: 0.7 to 2.4 THz), was
achieved as shown in Figure 8 by changing simultaneously the seed wavelength and the
seed incident angle. Open squares and closed circles indicate the tunability of the terahertz
and idler waves, respectively. Both crystals were MgO:LiNbOj3 in this experiment. The
wavelength of 430 pm (0.7 THz) was the longest ever observed during our study of TPGs
and TPOs. In the longer-wavelength region, the angle between the pump and idler becomes
less than 1°; thus it is difficult for the TPO to oscillate only the idler inside the cavity without
scattering the pump. In the shorter-wavelength region, the terahertz wave output is
comparatively smaller than the idler wave output, due to the larger absorption loss inside
the crystal.

The absorption spectrum of low-pressure (< 1 torr) water vapor was measured to
demonstrate the continuous tunability and the high resolution of the is-TPG. The absorption
gas cell used was an 87-cm-long stainless steel pipe with TPX windows at both ends. Figure
9 shows an example of measurements at around 1.92 THz, where two neighboring lines
exist. Resolution of less than 100 MHz (0.003 cm) was clearly shown. In fact, it is not easy
for FTIR spectrometers in the terahertz wave region to demonstrate a resolution better than
0.003 cm-! because of the instability of the scanning mirror for more than a meter. The
system is capable of continuous tuning at high spectral resolution in 4 GHz segments
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Fig. 8. Wide tunability of an is-TPG. Open squares and closed circles indicate the tunability
of the THz and idler waves, respectively.

frequency [THZz]
19188 1.9194 19200 1.9206 1.9212 1.9218

1.0
El
S,
S 05
B 0.0032cm’
g 97MHz
(7]
C
g 63.99379cm”
(é <) 64.02296cm™”
23 32 (3224 313)
0.0

63.96 6398 6400 6402 6404  64.06
frequency [cm]

Fig. 9. An example of the absorption spectrum measurement of low-pressure (<1 torr) water
vapor at around 1.919 THz. Resolution of less than 100 MHz (0.003 cm-1) was clearly
demonstrated.

anywhere in the region from 0.7 to 2.4 THz. Since there is no cavity to be slaved, the
continuous tuning is extendible, in principle, to the full tunability of the is-TPG by using a
mode-hop-free seeder, such as a Littman-type external cavity diode laser.

The input-output characteristic of the terahertz wave from an is-TPG is shown in Figurel0.
The maximum conversion efficiency was achieved when the pump and seed beams almost
fully overlapped at the incident surface of the first MgO:LiNbOj3 crystal. The maximum
terahertz wave output of 1.3 nJ/pulse (peak power over 300 mW) was obtained with a
single-mode pump beam of 34 m]J/pulse and a seed beam of 50 mW. To prevent saturating
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the Si bolometer, again we used several sheets of thick paper as an attenuator after
calibrating them. In our previous studies, the maximum terahertz wave output from a
conventional TPG and a TPO was 1 and 190 pJ/pulse, respectively. The Si-bolometer
became saturated at about 5 pJ/pulse, so we used several thick calibrated sheets of paper as
an attenuator. As the minimum sensitivity of the Si-bolometer is about 1 fJ/pulse, the
dynamic range of the is-TPG system was from 1.2 n] down to 1 {], that is, ~ 60 dB, which is
sufficient for most applications. The dynamic range can be significantly increased using a
lock-in amplifier.

4

1.54 ’
= ’
2 o
& K
£
S ’
2 1.0 [ ]
? ’
& ’

’
- A
’
>
2 0.5 ’
g S
£ A
=
) ’
o
0.0 T T T - T ’ T T

0 5 10 15 20 25 30 35
pump energy [mJ/pulse]

Fig. 10. Input-output characteristics of the is-TPG.

6. Recent progress

6.1 Energy-enhanced TPG

In this section, we report some recent developments of a TPG using a small pump source
with a short pulse width and top-hat beam profile. In our experimental configuration, the
output energy of the TPG is mainly limited by the damage threshold of the nonlinear
crystal. We can generate high energy, broadband terahertz waves by using a short-pulsed
pump beam with a top-hat beam profile which can provide high intensity pumping near the
crystal surface without damaging the crystal.

The experimental apparatus, shown in figure 11, consists of a flash-lamp pumped Q-
switched Nd:YAG laser, a lens, mirrors, and two nonlinear crystals. All components, except
for the detector in figure 11, can be mounted on a 12 x 22 cm breadboard. The small pump
source has a short pulse width, of around 5 ns. Its slight divergence is corrected by a lens
placed at the output of the source. It has a top-hat profile with a beam diameter of 1.3 mm
(full width at half maximum) on the first crystal. We used two 65-mm-long nonlinear
MgO:LiNbO; crystals. Both crystal ends are antireflection coated for a wavelength of 1064
nm. The gap between the two crystals is about 100 um in our experiment, which is short
enough for the phase matching condition. A Si-prism array placed on the y-surface of the
MgO:LiNbOs crystal acts as an efficient output coupler for the terahertz waves to avoid the
total internal reflection of the terahertz waves on the output side crystal surface.
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Fig. 11. Experimental setup of the energy-enhanced TPG.

For an efficient extraction of the terahertz waves, the pumped region inside the second
crystal must be as close as possible to the Si-prism array, because of the large absorption
coefficient of the MgO:LiNbO; crystal in the terahertz range. A top-hat beam profile is
suitable for this purpose, since the high intensity region of the pump beam can be brought
closer to the y-surface than in the case of a Gaussian beam. The distance between the y-
surface and the beam center was precisely adjusted to obtain a maximum terahertz wave
output, and it was approximately equal to the pump beam radius.

The terahertz wave output extracted through the Si-prism array was measured using a 4.2 K
silicon bolometer, while the idler wave energy was measured using a pyroelectric detector.
The minimum and maximum sensitivity levels of the bolometer are about 0.01 pJ and 10 pJ
without any amplifier or attenuator. Attenuators were used when the detector was
saturated; to cut diffused light from the pump and idler, a thick black polyethylene sheet
was used.

Figure 12 shows the output energy/power (peak) of the terahertz wave as a function of the
pump intensity. As the pump intensity is higher, the terahertz wave starts to be detected at a
pump intensity of around 300 MW/cm?2 (25 mJ/pulse) then increase monotonically. The
highest values obtained are 105 p]/pulse (62 mW peak power) for the terahertz wave when
the pump intensity is 830 MW /cm? (66 m]J/pulse), which corresponds to a pump energy of
66 m]J/pulse. The output of terahertz wave appears to saturate when the pump intensity
exceeds 750 MW /cm? (60 m]/pulse). Because higher intensity pumping leads to broader
bandwidth as indicated by Eq. (1), however, the absorption coefficient for the terahertz
wave rapidly increases in the high frequency range.

In previous TPG/TPO research, the crystal damage threshold was below the value of 200
MW /cm? for the pump beam intensity. With this report, by using a short-pulsewidth pump
beam, the damage threshold is increased about 4 times. Moreover, the top-hat beam profile
enables high intensity pumping especially close to the terahertz wave output surface,
without any thermal damage to the crystal surface. These combined characteristics of pump
beam yield 100 times more output energy of the terahertz wave.
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Fig. 12. The input-output characteristics of the energy-enhanced TPG.

Figure 13 shows the idler wave spectrum observed for varying pump energies. According to
the noncollinear phase-matching condition, the propagating direction of the generated idler
waves is slightly different from that of the pump beam, with an angle between them of
around 1.5° outside the crystal. As the pump energy increases, the idler wave spectrum
covers a broader spectral region, especially towards longer wavelengths. At the maximum
pump energy, the idler wave spectrum was found to cover the range 1067 - 1079 nm. This
spectrum corresponds to the terahertz wave frequency range 0.898 - 3.87 THz (77.6 -
334 pm). The measured spectrum is much broader than that observed in a previous report.
The main reason for this broader spectrum might be the fact that the parametric gain could
have broader bandwidth by higher pump energy as shown in Figure 3. The dip in the
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Fig. 13. Idler spectra at several pump energies.
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spectra around 1073 nm appears due to the MgO doping of the LiNbOs; the lattice defects
produced by the MgO leads to additional peaks of the absorption coefficient ar.

6.2 Tunability-enhanced is-TPG

We have enhanced the tunability of terahertz wave parametric generator using
MgO:LiNbO3 pumped by a sub-nanosecond, passively Q-switched, microchip Nd:YAG
laser. This pump source allows high intensity pumping without damaging of the nonlinear
crystal and generates a narrow linewidth and tunable terahertz wave with injection seeding
by an external cavity diode laser for the idler wave. The high intensity pumping causes a
gain curve broadening of the terahertz wave parametric generation, especially in the high
frequency region.

The experimental setup, shown in Figure 14, consists of a pumping source (Microchip
Nd:YAG laser), a seeding source (External Cavity Diode Laser) and the nonlinear crystal.
The pump source is a diode end-pumped single-mode microchip Nd3*:YAG laser, passively
Q-switched by a Cr#*:YAG saturable absorber. This microchip configuration enables the low
order axial and transverse mode laser oscillation, whose linewidth is below 0.009 nm. The
laser delivers 1.1 MW peak power pulses (530 uJ/pulse) with 430 ps pulse width at 100 Hz
repetition rate with a M2 factor of 1.09. This laser is free from the electric noise, unlike the
active Q-switched lasers we used before. Additionally, this kind of fixed passively Q-
switching allows us to obtain a stabilized peak power, with less than #2 % power jitter
(Pavel et al., 2001; Sakai et al., 2008 ). The pump beam diameter on the first crystal is 0.3 mm
(full width at half maximum). We used two 65-mm-long nonlinear MgO:LiNbQOs crystals. A
silicon-prism array placed on the y surface of the second crystal acts as an efficient output
coupler for the terahertz waves to avoid the total internal reflection of the terahertz waves
on the crystal output side. For an efficient terahertz wave emission, the pumped region
within the second crystal must be as close as possible to the silicon-prism array, because of the
large absorption coefficient of the MgO:LiNbOj3 crystal in the terahertz range. The distance
between the y-surface and the beam center was precisely adjusted to obtain a maximum
terahertz wave output, and it was approximately equal to the pump beam radius. The
terahertz wave output extracted through the silicon-prism array was measured using a 42K
silicon bolometer, while the idler-wave energy was measured using a pyroelectric detector.
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Fig. 14. Experimental setup of tenability-enhanced is-TPG.
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Figure 15 shows the idler wave spectrum when the pump intensity is 2.9 GW/cm2 According
to the noncollinear phase matching condition, the propagating direction of the generated
idler waves is slightly different from that of the pump beam, with an angle between them of
around 1.5° outside the crystal. The idler wave spectrum was found to cover the range 1069
- 1075 nm, corresponding to the terahertz wave frequency range 1.4 - 2.9 THz without
seeding beam. Compared with a previous report, this is a shift to higher frequency. The dip
in the spectra around 1073 nm appears due to the MgO doping of the LiNbOj3; the lattice
defects produced by the MgO leads to additional peaks of the absorption coefficient.

Corresponding THz wave frequency (THz)
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Fig. 15. Idler spectrum.

Figure 16 shows the time waveform of the terahertz wave output signals measured by the 4
K silicon bolometer. When we generate the terahertz wave without injection seeding to the
idler wave, we observe a broadband terahertz wave with the peak power of about 1 mW
(lower curve), however, after injection seeding, we observed a narrow linewidth terahertz
wave with a peak power of about 20 mW (upper curve). This is about more than 100 times
narrower and 20 times higher than when the seeding laser is cut off. In addition, the pulse
width of this microchip laser is the shortest among our parametric sources.

It is possible to tune the terahertz frequency using an ECDL as a tunable seeder. When the
pump intensity is 1.8 GW/cm? (peak, energy of 650 pJ/pulse) and the seeding power is 80
mW (CW), a wide tunability from 0.9 - 3 THz is observed, as shown in figure 6 by changing
both the seed wavelength and the seed incident angle. The maximum output peak power of
terahertz wave was about 100 mW at around 1.8 THz. The tuning curve has a broad
bandwidth, with a dip appearing at around 2.7 THz. This is because the low frequency
modes of doped MgO in the MgO:LiNbOs; work as crystal lattice defects for LiNbO3.5

Figure 18 shows an example of wavelength and linewidth measurement by a scanning
Fabry-Perot etalon consisting of two Ni metal-mesh plates with a 65 pm grid. The
displacement of one of the metal mesh plates corresponds directly to half of the wavelength.
We observed a narrow linewidth terahertz wave with a wavelength of 140 pm and peak
power of about 60 mW by the 4 K silicon bolometer. The free spectral range (FSR) of the
etalon was about 100 GHz, and the linewidth was measured to be less than 10 GHz.
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Fig. 16. Time dependent terahertz wave output signals.
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Fig. 17. Wide tunability of is-TPG with a dip at aroud 2.7 THz.

140 um

Intensity [arb. unit]

Distance between metal mesh etalons

Fig. 18. Example of the wavelength and linewidth measurement using the scanning Fabry-
Perot etalon consisting of metal mesh plates.
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7. Conclusion

We reviewed terahertz wave parametric sources based on the optical parametric process.
We have introduced several types of TPG, TPO, and is-TPG. Measurements on tunability,
coherency, and power have been accomplished, proving this method to be suitable for many
application fields. These include spectroscopy, communication, medical and biological
applications, THz imaging, and so forth.

We also demonstrated output power enhancement of the TPG, while at the same time
achieving a considerable downsizing of this terahertz source, all of which were realized by
using a small pump source with a short pulse width and a top-hat beam profile. We
measured a terahertz wave output energy of 105 p]/pulse, with a power peak at 62 mW,
and a broadband spectrum, extending from 0.9 to 3.8 THz. The new source is more than 100
times brighter and has a spectrum more than twice broader than previously reported.

In the next section, we demonstrated a compact and tunable terahertz wave source pumped
by a microchip Nd:YAG laser. This source generates a narrow linewidth and high peak
power terahertz wave by injection seeding for the idler wave. Using a microchip laser as the
pumping source allowed high intensity pumping and the broadening of the tuning range
towards the high frequency region. We could also observe a dip around 2.7 THz in the
tuning curve, as expected from the calculation.

Further improvement of our system is possible. As OPGs and OPOs have improved
tremendously in the last decade, the use of TPGs and TPOs shows great potential to move
towards a lower threshold, higher efficiency, and wider tunability. A lower threshold and a
narrower linewidth can be expected using a nonlinear optical waveguide and a longer
pump pulsewidth, respectively. Operation in other wavelength regions, through proper
crystal selection, should also be possible. Success in this will prove the practicality of a new
widely tunable THz-wave source, the IS-TPG, that will compete with free-electron lasers
and p-Ge lasers. For tunable THz-wave applications, the simplicity of the wave source is an
essential requirement since cumbersome systems do not encourage new experimental
thoughts and ideas. Compared with the available sources, the present parametric method
has significant advantages in compactness, tunability, and ease of handling.
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1. Introduction

Terahertz (THz) waves present attractive possibilities in advanced applications including
biomedical analysis and stand-off detection for hazardous materials. The development of
monochromatic and tunable coherent THz-wave sources is of great interest for use in these
applications. Recently, a parametric process based on second-order nonlinearities was used
to generate tunable monochromatic coherent THz waves using nonlinear optical crystals
(Boyd et al., 1972; Rice et al., 1994; Shi et al., 2002; Tanabe et al. 2003). In general, however,
nonlinear optical materials have high absorption coefficients in the THz-wave region, which
inhibits efficient THz-wave generation.

Avetisyan et al. proposed surface-emitting THz-wave generation using the difference
frequency generation (DFG) technique in a periodically poled lithium niobate (PPLN)
waveguide to overcome these problems (Avetisyan et al., 2002). A surface-emitted THz
wave radiates from the surface of the PPLN and propagates perpendicular to the direction
of the pump beam. The absorption loss is minimized because the THz wave is generated
from the PPLN surface. Moreover, the phase-matching condition can be designed using
PPLN with an appropriate grating period (Sasaki et al., 2002). Surface-emitted THz-wave
devices have the potential for high conversion efficiency, and continuous wave THz-wave
generation has been successfully demonstrated (Sasaki et al., 2005). Unfortunately, the
tuning range of the THz waves is limited to about 100 GHz by the nature of PPLN, and a
wide tuning range cannot be realized using the quasi-phase-matching method.

We developed a Cherenkov phase-matching method for monochromatic THz-wave
generation using the DFG process with a lithium niobate crystal, which resulted in both
high conversion efficiency and wide tunability. Although THz-wave generation by
Cherenkov phase matching has been demonstrated using femtosecond pumping pulses
(Auston et al., 1984; Kleinman et al., 1984; Hebling et al., 2002; Wahlstrand, 2003; Badrov et
al., 2009), producing very high peak power (Yeh et al., 2007), these THz-wave sources are
not monochromatic. Our method generates monochromatic and tunable THz waves using a
nanosecond pulsed laser source.

2. Cherenkov phase matching

The Cherenkov phase-matching condition is satisfied when the velocity of the polarization
wave inside the nonlinear crystal is greater than the velocity of the radiated wave outside.
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The radiation angle 6 is determined by the refractive index of the pumping wave in the
crystal, nop, and that of THz-wave in the crystal, nri, (Sutherland, 2003),

A

THz ﬂ’THz n

cos ecrysml = ZZTHZ = A Mz ~ ot (1)
c 1772

(mAy =nyAy)

Ry,

where A is a wavelength of the contributing waves in the DFG process (o1 - 02 = o1H), N1, N2
(ni=nz=nopy) and nry, are refractive index of the crystal at pump waves and THz-wave
frequencies, respectively, and L. is the coherence length of the surface-emitted process (L. =
n/Ak, where Ak=k;-k, and k is the wave number). The Cherenkov angle, Ocryswl, is
determined by the refractive indices of the pumping wave and the THz-wave in the crystal,
so the angle is strongly dependent on the choice of material. THz-frequency waves radiated
at Cherenkov angles propagate to the crystal-air interface, and if the angle is greater than a
critical angle (determined by the difference in refractive indices at the interface), the THz-
frequency wave is totally reflected at the interface. To prevent total internal reflection, a clad
material with a lower refractive index than that of the crystal in the THz range and a proper
prism shape, is coupled in at the output. Figure 1 shows a schematic of Cherenkov radiation
and output coupling of a THz-frequency wave.
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Fig. 1. Schematic of Cherenkov phase-matched monochromatic THz-wave generation.

Figure 2 shows relation of Cherenkov angle and critical angle of several clad materials. We
choose polyethylene, diamond, Si and Ge as clad materials, because these materials have
low absorbance and low dispersion character at THz frequency region. A total internal
reflection occurs below the curve. For example, lithium niobate (LiNbO3) has 2.2 and 5.2 of
refractive index at near infrared and THz-wave region, results in 65 degree of Cherenkov
angle in the crystal. On the other hands, critical angle of total internal reflection from the
crystal to air, polyethylene, diamond, Si and Ge in a 6 manner are 79, 76, 63, 49 and 40
degrees, respectively. The figure tells that diamond, Si and Ge prevent total internal
reflection of Cherenkov radiation for lithium niobate crystal.

The angle in the clad material, 8.4, is determined by Snell’s law as shown in Fig. 1, using
the refractive index of the clad material njaq.
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internal reflection occurs below the curve.
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The radiation angle 6.4, which is important for practical applications, is determined by the
refractive indices of the pumping waves in the crystal and the THz-wave in the clad layer.
Equation (2) is mathematically equivalent to a model in which the THz-wave is directly
radiated to a clad layer. The equation tells us that ng.q should be larger than that of the
nonlinear crystal in the pumping wave region. A comparison of the refractive indices of
various nonlinear crystals with that of Si (about 3.4 in the THz-region) indicates that Si is an
appropriate Cherenkov radiation output coupler for many crystals.

The radiation angle hardly changes during THz-frequency tuning because the silicon has
low refractive index dispersion in the THz-wave region and the optical wavelength requires
only slight tuning. The change in radiation angle is less than 0.01° for a fixed pumping
wavelength. The actual angle change of the THz wave is significantly better than for the
THz parametric oscillator (TPO) with a Si prism coupler (Kawase et al., 2001), which has an
angle change of about 1.5° in the 0.7-3 THz tuning range.
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3. Cherenkov phase-matched monochromatic THz-wave generation using
difference frequency generation with a bulk lithium niobate crystal

3.1 Experimental setup

We demonstrated the method described above using the experimental setup shown in Fig. 3
(Suizu et al. 2008). The frequency-doubled Nd:YAG laser, which has pulse duration of 15 ns,
a pulse energy of 12 m] when operating at 532 nm, and a repetition rate of 50 Hz, was used
as the pump source for a dual-wavelength potassium titanium oxide phosphate (KTP)
optical parametric oscillator (OPO). The KTP-OPO, which consists of two KTP crystals with
independently controlled angles, is capable of dual-wavelength operation with independent
tuning of each wavelength (Ito et al., 2007). The OPO has a tunable range of 1300 to 1600 nm.
The maximum output energy of 2 mJ was obtained for a pumping energy of less than 12 m].
The 5 mol% MgO-doped lithium niobate crystal (MgO:LiNbOs) used in the experiment was
cut from a 5 x 65 x 6 mm wafer, and the x-surfaces at both ends were mirror-polished. An
array of seven Si prism couplers was placed on the y-surface of the MgO:LiNbOs crystal.
The y-surface was also mirror-polished to minimize the coupling gap between the prism
base and the crystal surface, and to prevent scattering of the pump beam, which excites a
free carrier at the Si prism base. To increase the power density, the pump beam diameter
was reduced to 0.3 mm. The polarizations of the pump and THz waves were both parallel to
the Z-axis of the crystals. The THz-wave output was measured with a fixed 4 K Si

bolometer.
KTP-OPO 1—’

Nd:YAG Laser

£200 mm

Pumping waves 1300-1600 nm

Si-prism coupler

Turupica f 45 mm MgO:LN (5mol%) 65 mm
THz-wave .
=
( " Si-Bolometer

.

Fig. 3. Experimental setup for Cherenkov phase-matching monochromatic THz-wave
generation with a bulk lithium niobate crystal.

3.2 Results and discussions

The THz-wave output map for various pumping wavelengths and corresponding THz-
wave frequencies is shown in Fig. 4. The magnitude of the map denotes the output voltage
of a Si bolometer with a gain of 200. The noise level of the bolometer was about 10 mV and is
shown as the blue region in the figure. The regions where over 2 V of output voltage were
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obtained is red. As seen in the figure, wide tunability in the range 0.2-3.0 THz was obtained
by choosing the proper pumping wavelength. Especially for lower frequency below 1.0 THz,
this was very efficient compared to our previous TPO systems that used 1470 nm pumping,.

3.0

2.5

Frequency [THz]
Output of Bolometer [V]

1300 1350 1400 1450 1500

Pump wavelength, A, [nm]

Fig. 4. THz-wave output mapping for various pumping wavelengths and corresponding
THz-wave frequencies. The X-axis and Y-axis denote pumping wavelength A1 and THz-
wave frequency, respectively. The magnitude of the map values indicates the output voltage
of the detector.

Figure 5 (a) shows cross sections of the THz-wave output map of Fig. 4. The highest THz-
wave energy obtained was about 800 pJ, using the fact that 1 V = 101 pJ/pulse for low
repetition rate detection, pulsed heating of the Si device, and an amplifier gain of 200 at the
bolometer, and the energy conversion efficiency from the A; wave (1 mJ/pulse) was about
10-4%. This value is comparable to that obtained with our previous TPO systems, despite the
low excitation energy of only 1 mJ. The figures clearly show the strong dependence of THz-
wave output energy on the pumping wavelength. In the case of 0.8 THz generation, the
output energy had a dip at a pumping wavelength of approximately 1400 nm as shown in
Fig. 5(a). We obtained extremely high energy in the low-frequency region below 0.3 THz
(millimeter wave region) using 1470 nm pumping. The reason for this is not clear, and the
dispersion of pumping waves cannot explain the results; thus, an explanation is left for
future research. The important result is that we could obtain a flat output spectrum in the
range 0.2-2 THz by choosing proper pumping wavelength, as shown in Fig. 5(b).

Cherenkov phase matching inherently requires a waveguide structure for nonlinear
polarization waves in the crystal to suppress phase mismatching in the direction
perpendicular to the guiding mode (i.e., normal to the crystal surface). If we reduce the
width of the pumping beams in the direction of THz-wave propagation to about one-half of
the THz wavelength, (i.e., about 10 um for 3 THz) by taking into account the refractive index
of MgO:LiNbO; in the THz-wave region, no need exists to consider phase matching in that
direction (Suizu et al., 2006). In our case, the waist of the pump beams in the MgO:LiNbO3
was about 300 pm, which corresponds to about five cycles of THz waves at 1.0 THz, and one
cycle of THz waves at 0.2 THz. Although the experimental conditions did not satisfy the
requirement for Cherenkov phase matching, we did successfully detect Cherenkov-radiated
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Fig. 5. THz-wave spectra (a) at various pumping wavelength and (b) under choosing proper
pumping wavelengths.

THz waves, which originated in the higher absorbance area of the crystal at the THz-wave
region. The THz waves generated far from the crystal surface would be attenuated and no
significant phase mismatch would occur. This also remains an area for future study.

By shaping the pumping beams with a focused cylindrical lens or by adopting the
waveguide structure of the crystal, we could neglect phase mismatches and obtain a higher
power density of the pumping beams, resulting in higher conversion efficiency.

4. Efficient Cherenkov-type phase-matched widely tunable THz-wave
generation via an optimized pump beam shape

We demonstrated the Cherenkov-type phase-matching method for monochromatic THz-
wave generation via the DFG process using bulk lithium-niobate crystal. We successfully
generated monochromatic, widely tunable THz waves in the 0.2- to 3.0-THz range. We
obtained efficient energy conversion in the low-frequency region below 0.5 THz and
achieved a flat tuning spectrum by varying the pumping wavelength during THz-wave
tuning. The highest THz-wave energy was about 800 pJ pulse!, which was obtained for a
broad spectral region in the range of 0.2 to 2.0 THz. However, obtaining high conversion
efficiency in the frequency domain above 2 THz was difficult, and the output was almost
zero at 3 THz. The output of the THz wave decreased in the high-frequency region due to a
phase mismatch incurred by the finite size of the pumping beam diameter. As shown in Fig.
6(b), Cherenkov-type phase matching arises due to a superposition of spherical THz waves
from the nonlinear polarization maxima created by pumping lights of two different
frequencies in the NLO crystal, and thus, when the finite beam size is taken into account, the
phase shift of the wave depends on the distance from the y-surface of the crystal. THz
waves generated far from the crystal surface destructively interfere with those generated in
the neighbourhood of a crystal surface. The beam diameter of the pumping wave in a
lithium-niobate crystal in our previous work was about 300 um, corresponding to about the
wavelength of the THz wave at 0.2 THz, and ten cycles of THz waves at 2.0 THz, as the
refractive index of lithium niobate is about 5.2. Since the 300-um beam diameter is over 15
times the wavelength of a THz wave above the 3-THz region, a phase mismatch occurred



Cherenkov Phase Matched Monochromatic Tunable Terahertz Wave Generation 131

and the THz-wave output decreased. In this experiment, we attempted to improve the THz-
wave generation efficiency above 3 THz by optimizing the beam shape of the pumping
wave to decrease the beam-diameter dependence effect (Shibuya et al., 2009).

@

Pump waves |

Fig. 6. (a) Ideal Cherenkov-type phase-matching condition; (b) Cherenkov-type phase-
matching condition when the beam diameter of the exciting light is considered. In (b), the
phase mismatch is caused by the finite size of the beam diameter.

4.1 Experimental setup

A dual-wavelength potassium titanium oxide phosphate (KTP) optical parametric oscillator
(OPO) with a pulse duration of 15 ns, a pulse energy of 1.6 mJ, a 50-Hz repetition rate, and a
tunable range of 1300 to 1600 nm was used for a DFG pumping source. The size of the MgO-
doped lithium-niobate crystal was 5x65x6 mm3. We used cylindrical lenses to reduce the
pump beam diameter. The focal lengths of the cylindrical lenses were 20, 50, 100, and 150
mm, and the beam widths parallel to the crystal’s y-axis were 35, 46, 83, and 127 pum
(FWHM), respectively. The pump power was adjusted, and the power density on the focus
position was made constant at 200 MW cm2 for all lenses.

The obtained THz-wave output spectrum is shown in Fig. 7. The vertical axis is the THz-
wave pulse energy calculated from the output voltage of a Si-bolometer detector. The
horizontal axis is the THz-wave frequency. THz-wave output spectra were measured by
selecting the excitation wavelength in which the maximum output was obtained for each
THz-wave frequency. The output in the high-frequency region increased as the focal length
of the cylindrical lens decreased. THz-wave generation was confirmed over the 3-THz
region with the 20-mm and 50-mm cylindrical lenses. The tunable range for the 20-mm
cylindrical lens was about 0.2 to 4 THz. This is the widest tuning range for the previous
lithium-niobate crystal-generated THz-wave source. The pumping-wave beam diameter in
the lithium-niobate crystal using the 20-mm cylindrical lens was about 35 pm, which
corresponded to about 1.8-THz wave cycles at 3 THz. The phase mismatch is thought to
have decreased as the beam diameter decreased, leading to an output improvement in the
high-frequency region. Meanwhile, the conversion efficiency decreased because the
pumping-wave beam diameter corresponded to over 2.3-THz wave cycles and the
absorption coefficient increased rapidly above 4 THz. The absorption coefficient of the
crystal at 4 THz was 425 cml. When the pump beam moved 100 um away from the y-
surface of the crystal, 98.6% of the output was lost. Additionally, narrowing the beam
diameter further was difficult due to diffraction. As the beam diameter narrowed, the
confocal length shortened and the conversion efficiency decreased. The low-frequency
region generation efficiency was expected to decrease for the 20-mm cylindrical lens case
because the confocal length shortened. This problem can be prevented by using a
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waveguiding structure. By limiting the beam diameter of the pump wave to half of the
wavelength using only the waveguide mode for THz-wave generation, the phase mismatch
can be neglected and absorption loss reduced. This is because the distance from the y-
surface to the pump beam drops to almost zero, causing a higher conversion efficiency and a
wider spectrum.
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Fig. 7. THz-wave output spectra obtained using various cylindrical lenses, as measured by
selecting the excitation wavelength in which the maximum output was obtained for each
THz-wave frequency.

5. Extremely frequency-widened Cherenkov-Type Phase-Matched terahertz
wave generation with a lithium niobate waveguide

Here, we show that Cherenkov radiation with waveguide structure is an effective strategy
for achieving efficient and extremely wide tunable THz-wave source (Suizu et al., 2009). We
fabricated MgO-doped lithium niobate slab waveguide with 3.8 um of thickness and
demonstrated difference frequency generation of THz-wave generation with Cherenkov
phase matching. Extremely frequency-widened THz-wave generation, from 0.1 to 7.2 THz,
without no structural dips successfully obtained. The tuning frequency range of
waveguided Cherenkov radiation source was extremely widened compare to that of
injection seeded-Terahertz Parametric Generator. The tuning range obtained in this work for
THz-wave generation using lithium niobate crystal was the widest value in our knowledge.
The highest THz-wave energy obtained was about 3.2 pJ, and the energy conversion
efficiency was about 10> %. The method can be easily applied for many conventional
nonlinear crystals, results in realizing simple, reasonable, compact, high efficient and ultra
broad band THz-wave sources.

5.1 Experimental setup

Here, we prepared a slab waveguide of a lithium niobate crystal. A Y-cut 5 mol % MgO-
doped lithium niobate crystal on a thick congruent lithium niobate substrate was polished
down to 3.8 um. A thin MgO-doped lithium niobate layer worked as an optical slab
waveguide, because the refractive indexes of 5 mol % MgO-doped lithium niobate and
congruent lithium niobate at 1300 nm are 2.22 and 2.15, respectively. The waveguide device
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was 5-mm wide and 70-mm long (X-axis direction). Each X-surface facet was mechanically
polished to obtain an optical surface. We demonstrated difference-frequency generation
using the experimental setup shown in Fig. 8(b). A dual-wavelength potassium titanium
oxide phosphate (KTP) optical parametric oscillator (OPO) with a pulse duration of 15 ns, a
pulse energy of 1 mJ and a 1300- to 1600-nm tunable range was used as a pumping source.
A thin (3.4-um thick) polyethylene terephthalate (PET) film was slipped between the array
of Si prism couplers and the Y-surface of the MgO-doped lithium niobate crystal. Directly
placing an array of Si prism couplers on the Y-surface of the MgO-doped lithium niobate
will inhibit the function of the MgO-doped lithium niobate layer as a waveguide for
pumping waves, because the refractive index of Si in the near-infrared region is higher
(about 3.5) than that of lithium niobate (about 2.2). A PET, in contrast, has a lower refractive
index in that region (about 1.3), so adding a thin PET film does not inhibit the function of the
crystal as a waveguide. An array of Si prism couplers on a PET film can work as a coupler
for THz-frequency waves, because the PET film is thin compared to the wavelength of a
THz-frequency wave. A schematic of the coupling system of the pumping wave and THz-
wave emitting system is shown in Fig. 8(a). To couple pumping waves, the pump beam was
reduced to few micrometers in the X-axis direction by a 3-mm diameter glass rod lens. The
width of the pumping beams in the Z-direction was about 1.9 mm. The waveguide power
density was about 53 MW cm?2, estimated from the pump wave pulse energy after
waveguide propagation (about 60 nJ). We did not observe or calculate the waveguide mode
of the structure in which a thin MgO-doped lithium niobate layer was sandwiched by a
thick congruent lithium niobate layer and a thin PET film. It remains an area of future work
to optimize the waveguide structure. The pump wave and THz-frequency wave
polarizations were parallel to the crystal’s Z-axis. The THz-wave output was measured with
a fixed 4-K Si bolometer.

(a) 5 mol % MgO-doped (b) |
Lithium niobate Waveguide, 3.8 um KTP-OPO |+~ Nd:YAG Laser

/
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~ Rod lens 2r=3 mm

Si prism arrays
> Parabolic mirror

&
, THz Wave

Non-doped Lithium niobate substrate

Rod lens 2r=5 mm

A
Power meter ) _/'_->
A
i

PET film, 3.4 um 4K Si-Bolometer

Fig. 8. (a) Schematic of the lithium niobate waveguide device with Si prism array coupler.
(b) THz-wave detection experimental setup.
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Figure 9 shows a THz-wave spectrum at various wavelength of A; from 1250 to 1350 nm.
The spectrum was obtained by varying A at fixed A1. As shown in Fig. 9, high-frequency
THz-wave output ranging to about 7.2 THz was confirmed. We were unable to observe
THz-wave generation around 7.2 THz due to very strong THz-wave absorption at 7.5 THz
by the LO-phonon mode. The THz-wave spectrum does not depend on pumping
wavelength because the near-infrared refractive index is almost constant in the 1250- to
1350-nm range.

100

104

— 1250 nm
—— 1300 nm
— 1350 nm

Output energy [pJ/pulse]

T T T T T T T 1

0 1 2 3 4 5 6 7 8
Frequency [THz]

Fig. 9. THz-frequency spectrum of waveguided Cherenkov radiation. Black, red, blue and
green curves represent pumping wavelengths of 1250, 1300, 1350 nm, respectively.

Figure 10 shows a comparison of normalized tuning spectrum of the waveguided
Cherenkov radiation source and injection seeded terahertz parametric generator (is-TPG)
(Kawase et al., 2002). Nevertheless each THz source were based on a same nonlinear crystal,
MgO-doped lihitum niobate, a tuning frequency range of waveguided Cherenkov radiation
source was extremely widened compare to that of is-TPG. We converted the output voltage
of the Si bolometer to the actual THz-wave energy, using the fact that 1 V = 20 p] pulse! for
low repetition rate detection, pulsed heating of the Si device, and an amplifier gain of 1000
at the bolometer. The highest THz-wave energy obtained was about 28 pJ, and the energy
conversion efficiency from the A\; wave (30 pJ pulse) was about 10-4%. This value is
comparable to our previous work on Cherenkov radiation using bulk crystal, despite the
low excitation energy of only 30 pJ. The tuning range obtained in this work for THz-wave
generation using lithium niobate crystal was the widest value in our knowledge.

The THz-wave emitting angle was absolutely constant, as Si dispersion in this range is
almost flat. The device would be work well in an optical rectification process using a
femtosecond laser. Such a range, free from structural dips between 0.1 and 7.2 THz, is
suitable for ultra-short pulse generation. Also, the surface emission process used here is
loss-less, permitting the generation of a continuous, widely-tunable THz-frequency range,
and requiring only two easily commercially available diode lasers. Compact, robust and
reasonable THz-wave sources can be realized by this method. Although we demonstrated
this method using only a lithium niobate crystal, it can be adopted for other nonlinear
crystals, such as LiTaOs, GaSe, GaP, ZnSe, ZnTe, ZGP, DAST and so on. By choosing the
best clad materials for the nonlinear crystals (in many case Si or Ge), the Cherenkov
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condition is easily satisfied, and control of crystal angles to satisfy phase-matching
conditions, such as birefringence phase-matching, is not required. This method opens the
door to simple, reasonable, compact, highly efficient and ultra-broadband THz-wave sources.

E is-TPG
Cherenkov

Normalized intensity [a.u.]

T T T

0 1 2 3 4 5 6 7 8
Frequency [THz]

Fig. 10. A comparison of normalized tuning spectrum of the waveguided Cherenkov
radiation source under 1250 nm pumping (red curve) and is-TPG (black curve).

6. Cherenkov phase matched THz-wave generation with surfing configuration
for bulk Lithium Niobate crystal

We demonstrated a Cherenkov phase matched THz-wave generation with surfing
configuration for bulk lithium niobate crystal (Suizu et al., 2009). THz-wave output was
enhanced about 50 times by suppressing phase mismatching for THz-wave propagation
direction. The suppression was achieved by combining two pumping waves with dual
wavelength with finite angle, and THz-frequency was controllable by changing the angle
within 2.5 degrees range. Higher frequency THz-wave generation at around 4.0 THz was
successfully obtained by the method.

6.1 Cherenkov phase mating with surfing configuration

We demonstrated Cherenkov phase matching method for monochromatic THz-wave
generation via DFG process using bulk lithium niobate crystal. We successfully generated
monochromatic THz-waves with wide tunability in the range 0.2-2.5 THz. The highest THz-
wave energy was about 800 pJ/pulse, and this energy could be obtained for the broad
spectral region in the range around 0.2-2.0 THz. Although we successfully got wide tunable
characteristics of THz-wave generation, conversion efficiency of a THz-wave generation at
higher frequency region above 2.0 THz was slightly low. It would be caused by phase
mismatch of generated THz-wave in a propagating direction of THz-wave. Beam diameter
of pumping waves in a lithium niobate crystal in our previous work was about 300 um,
which corresponded to about ten cycles of THz waves at 2.0 THz because the refractive
index of lithium niobate is about 5.2. THz-wave generated at far from a crystal surface
interfered with that generated at neighborhood of a crystal surface, resulted in denying each
other. By reducing the width of beam diameter in the crystal in the direction of THz-wave
propagation to about one-half of the THz wavelength, there was no need to consider phase
matching in that direction. We observed the effects by condensing a pump beam diameter to
a THz-wave propagation direction by cylindrical lenses. Although higher THz-wave around
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4.0 THz was successfully generated under tight focusing by the cylindrical lens with 20 mm
of focus length, output of THz-wave at lower frequency region was reduced, because tight
focusing resulted in reducing interaction length for pumping wave propagating direction.

In this study, we propose surfing configuration of Cherenkov type phase matching for THz-
wave generation for bulk crystal to suppress a phase mismatching. Interference pattern of
pumping waves in the crystal is induced by combining the dual wavelengths beams with
finite angle. It provides a same spatial pattern of second order nonlinear polarization in
THz-frequency. The interference pattern has not checkerboard one, which is a results of
interference of tilted beams with same frequency, because dual wavelength beam courses
other spatial interference pattern, corresponding to difference frequency, and the
interference pattern is superimposed in checkerboard one.

Figure 11 shows electric field distribution of (a) pumping waves and (b) excited nonlinear
polarization, with A;=1300 nm, 2,=1317 nm (here, three waves in DFG interaction has a
relation of w;=w;-wrH,, and corresponding THz frequency is 3 THz) and 3.7 degrees of angle
between divided pumping beams, a. The periods of nonlinear polarization pattern of dual
wavelengths beams, A for x-axis and B for y-axis are represented by following equations,

2r B 4 3)

(klsz)cos% (kl +k2)sin%

A=

where ki=2nni/A1 and ky=2nny/A;, here n; and n; are refractive index of A1 and 2,
respectively. We used Sellmeier equation at near-infrared region for a lithium niobate
crystal (Jundt, 1997). On the other hands, Cherenkov angle of the crystal, 6, is decided by
relation of length A and THz-wavelength in the crystal, C=AtH./ntHZ, here Ath, and nry, are
THz-wavelength in vacuum and refractive index of the crystal at THz frequency. A phase
matching condition for THz-wave propagation direction is satisfied by choosing an
appropriate angle o of the pump beams for required THz-frequency. The angle o is
formulated from geometric relation of A, B and C, A2C2=B2C2=A2B2, as shown in Fig.11(c).

16772
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1 2
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Generated THz-wave can propagate without influence of phase mismatching in the
direction of propagating direction, just like as surf rider on nonlinear polarization waves, as
shown in Fig.11 (b). The required angle for frequency tuning was shown in Fig.12 (a)
internal and (b) external crystal. Phase matching condition is satisfied by changing the angle
a for required THz-wave and pumping wave wavelength. And slightly narrow tunability
(about 300 GHz at around 3 THz generation) is obtained at a fixed angle, a=4.0 degrees.

6.2 Experimental setup

Figure 13 shows the schematic of experimental setup. A pump source for DFG process was
same as our previous works, and which has a tunable range of 1250 to 1500 nm, 15 ns of
pulse duration and 0.88 m] of pulse energy. An output of the source with dual wavelength
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Fig. 11. Normalized electric field distribution of (a) combined dual wavelength pump beams
with finite angle, and (b) exited second order nonlinear polarization of difference frequency.
Here, 11=1300 nm, A,=1317 nm and 3 THz of difference frequency with 3.7 degrees of beam
angle. (c) Geometric relation of A: excited nonlinear polarization for x-direction, B:
interference period of pump beams for y-direction and C: THz-wavelength in the crystal.
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Fig. 12. Tuning angle (a) internal and (b) external of crystal under 1300, 1400 and 1500 nm of
pumping wavelength of A;.

was focused by circular lens (f=500 mm) before divided by half beam splitter, and combined
again with finite angle. The spot diameter of the combined beam was 0.45 mm. The 5 mol %
MgO-doped lithium niobate crystal (MgO:LiNbO3) used in the experiment was cut from a 5
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x 65 x 6 mm wafer. The polarizations of the pump and THz waves were both parallel to the
Z-axis of the crystals. The THz-wave output was measured with a fixed 4 K Si bolometer.

Dual wave length ‘ Frequency doubled
KTP-OPO | Nd:YAG Laser
0.88 mJ | 1250-1500 nm 532 nm, 15 ns, 50 Hz
Half Wave Plate
% =500 mm 5 mol % MgO:LiNbO,

, Mirror with Si-prism coupler
L=65 mm

*a

Mirror

or beam dumper
Beam TH
Splitter Tsurupica Lens zwave
Mirror f=45 mm
or beam dumper Si-Bolometer

Fig. 13. Schematic of experimental setup for Cherenkov phase matching THz-wave
generation with surfing configuration.

6.3 Results and discussions

Input-output properties of THz-wave for pumping energy are shown in Fig.14 at 1.0 THz
generation with a=2.49 degrees. Circles and triangles denotes THz-wave output signal with
combined beams and with single beam by dumping the other beam before entrance to the
crystal, respectively. Maximum pumping energy of only 0.44 m] was achieved at single
beam pumping, because a half of whole pumping energy was dumped as shown in Fig.13.
The vertical axis is the THz-wave pulse energy calculated from the output voltage of a Si-
bolometer detector, a pulse energy of about 101 pJ/pulse corresponded to a Si-bolometer
voltage output of 1 V when the repetition rate was less than 200 Hz. As shown in the figure,
remarkable enhancement of THz-wave generation with surfing configuration, whose
magnetic was about 50 times, was successfully observed. Inset of Fig.14 shows double
logarithmic plot of input-output properties. Slope efficiency under combined beams and
single beam pumping were almost same values. It means that enhancement factor of about
50 was a result of a suppression of phase miss-matching.

The generated THz-waves at different position in the crystal were in-phase each other, and
outputted THz-wave was enhanced. Intensity of overlapping in-phase THz-waves in an
absorptive media was calculated as shown in Fig.15. A 5 mol % MgO-doped Lithium
Niobate crystal at THz-wave frequency region would has about 30 cm of absorption
coefficient (Palfalvi et al., 2005). The enhancement effect of in-phase interference would be
effective for about 2 mm of traveling distance of THz-wave, this fact leads optimum
pumping beam width in y-axis direction is about 1.8 mm. In this study, pumping beam
width in y-axis was about 0.45 mm, results in a propagating length of a THz-wave was
about 1.2 mm. Higher enhancement above 50 would be obtained with tight focused beam
only for z-axis by cylindrical lens.
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Fig. 14. Input-output property of THz-wave for pumping energy at 1.0 THz generation with
0=2.49 degrees. Circles and triangles denotes THz-wave output signal with combined
beams and with single beam. Inset shows double logarithmic plot of input-output
properties.
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Fig. 15. Calculated intensity of overlapping in-phase THz-waves in an absorptive media.

Figure 16 shows THz-wave output characteristics under fixed pumping wavelength of 1300
nm and several fixed angle, 2.49, 3.80 and 5.03 degrees. Maximum THz-wave output at each
angle was obtained at higher frequency in the bigger angle, o. Obtained peaks of THz-wave
output were about 1.1, 1.6 and 1.9 THz, respectively. The relation between the angle and the
frequency where maximum output was obtained agree well with Equation 4, 1.08, 1.61 and
2.07 THz under 1300 nm pumping respectively. Tuning range for higher frequency region
was remarkably improved compare with our previous collinear and not tight focused
configuration. THz-wave output at around 4 THz was successfully obtained.
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Fig. 16. THz-wave output spectra under fixed pumping wavelength of 1300 nm and several
fixed angle, 2.49, 3.80 and 5.03 degrees.

As described in our previous work, because the linewidth of each pumping wave is about 60
GHz, the source linewidth is about 100 GHz, which is slightly broader than that obtained
from sources such as injection-seeded terahertz parametric generator (Kawase et al., 2002) or
DAST crystal-based difference-frequency generators (Powers et al.,, 2005). This occurs
because the linewidth of the THz-wave depends on that of the pumping source.

The spectrum with a=2.49 degrees pumping had two dips at 1.8 and 2.6 THz. It coursed by
perfect phase miss-matching of THz-wave propagation. Figure 17 shows calculated
nonlinear polarization distributions at (a) 1.8 and (b) 2.6 THz generation with a=2.49. THz-
wavelength in the crystal at 1.8 THz generation is 32.2 um. Generated THz-wave at point
“a” in Fig.17 interferes with that at point “b”, which has a phase difference by © compare to
that of point “a”, results in destructive interference. Similarly, and adding higher order
interference, generated THz-wave at point “c” has destructive interference with that at point
“d”. THz-wave generation was observed at around the dips, because perfect phase miss-
matching was relaxed at these frequencies. We have not yet completed the analytical
solution predicting the frequency due to destructive interference, and it remains an area of
future work.

Broader tuning range would be obtained by controlling the angle o within about only 2.5
degrees range. Because lithium niobate is strongly absorbing at THz-frequencies, the beam-
crossing position was set near the crystal surface to generate the THz-wave. In this
configuration, the pumping beam passing through a Si prism yields an optical carrier
excitation in Si that prevents THz-wave transmission, while the interaction length decreases
at larger pumping angles, a. The interaction lengths,

[=2D/tana ®)

where D is the beam diameter, are 21.4 and 10.7 mm for as of 2.49° and 5.03°, respectively. If
we use a shorter lithium niobate crystal, the optical carrier excitation can be avoided, and
larger pumping angles can be employed to obtain higher-frequency generation. The method is
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very simple way to obtain higher frequency and efficient generation of THz-wave, because the
method does not require a special device such as slab waveguide structure.

~~
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- - o W ™

300 um
Fig. 17. Calculated nonlinear polarization distributions at (a) 1.8 and (b) 2.6 THz generation
with a=2.49.
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1. Introduction

There are a number of ways that reciprocity principles in optics may be affected by the
presence of a static magnetic field (Potton, 2004). A classic example is Faraday rotation in
which a plane polarised electromagnetic beam propagating through a suitable medium is
rotated in the presence of a static magnetic field along the direction of propagation. The
handedness of this rotation depends on the propagation direction, a nonreciprocal effect
usefully applied to the construction of optical isolators (Dotsch et al., 2005). Nonreciprocal
effects of this type are closely related to the idea that magnetic fields break time reversal
symmetry. Similar nonreciprocal phenomena can occur, in various guises, on reflection off a
semi-infinite sample. We discuss such behaviour in the present chapter, in the context of
reflection off antiferromagnetic materials. In contrast to nonreciprocal phenomena based on
the Faraday effect, our interest is in the Voigt geometry, in which the static magnetic field is
perpendicular to the direction of propagation. We consider the well established phenomena
of nonreciprocity in the intensity and phase of oblique incidence radiation, but concentrate
mainly on recent developments on nonreciprocal power flow and finite beam effects.

We restrict discussion to the simple two dimensional geometry shown in Figure 1. Radiation
is reflected, in the xy plane, off a semi-infinite sample, isotropic in this plane, in the presence
of a static magnetic field Bg along z (into the page). Note that, in this configuration, we do
not have to worry about polarisation effects, since there is no mixing between s-polarised
(electromagnetic E field component along z) and p-polarised (electromagnetic H field
component along z) radiation.

Now compare Figure 1(a) to Figure 1(b), in which the sign of the incident angle has been
reversed. In the absence of the magnetic field (Bo = 0), we can consider Figure 1(b) as the
mirror reflection of Figure 1(a) through the yz plane, so we expect no change in the reflection
behaviour. In terms of the incident and reflected beam signals, this is a trivial example of the
Helmholtz reciprocity principle, which, in the present context, can be interpreted as saying
that, in the absence of magnetic fields, an interchange of source and detector should not affect
the signal received by the detector (Born & Wolf, 1980). When By is nonzero, however, the
mirror reflection of Figure 1(a) through the yz plane no longer leads to Figure 1(b), as one
might expect. The essential point here is that the static magnetic field By is an axial vector, and
a mirror symmetry operation through the yz plane would therefore involve reversing the
direction of this field, so that it would come out of the page (Scott & Mills, 1977). In fact
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Fig. 1. Reflection geometry, showing interchange of incident and reflected beams.

there is no symmetry operation that leads us from Figure 1(a) to Figure 1(b), and the two
figures are not equivalent. Nonreciprocal behaviour is thus, in principle, possible. Whether
or not it occurs in practice, however, depends on the material properties of the sample.

In the present chapter we consider nonreciprocity associated with reflection off a simple
uniaxial antiferromagnet. In this case the static field represented by Bg in Figure 1 is an
external field, since an antiferromagnet has no intrinsic macroscopic magnetic field. We
consider a geometry in which the anisotropy associated with the spin directions, along with
the external field B, is perpendicular to the plane of incidence. This is equivalent to putting
the anisotropy along z in Figure 1, thus leaving the antiferromagnet isotropic in the xy plane.
The electric component of the electromagnetic field is along z and the magnetic component
is in the xy plane (s-polarisation).

In considering nonreciprocity in the intensity and phase of the reflected beam, it is sufficient to
simply consider the effect of interchanging the incident and reflected beams (i.e. reversing the
sign of 01). However, we note that a rotation of Figure 1(b) around the y axis brings us back to
Figure 1(a), but with the field direction reversed. It is therefore possible to consider
nonreciprocity in terms of a change in optical behaviour when the external field direction is
reversed. This turns out to be more convenient when considering nonreciprocal effects inside
the antiferromagnet and finite beam effects. It is notable that some of the new phenomena
under investigation in this chapter occur at normal incidence, so such a test is simpler to
visualise in such cases than a test based on the configurations of Figure 1. Thus our general test
for nonreciprocity will be to see what happens when we reverse the sign of Bo.

2. Antiferromagnet permeability

The crucial parameter that determines the nonreciprocal optical properties of
antiferromagnets is the magnetic permeability in region of the magnon (or spin wave)
frequencies (Mills & Burstein, 1974), which typically lie in the terahertz range. We think of
an antiferromagnet as two interpenetrating sublattices having opposite spin directions.
Waves consisting of spins precessing in opposite directions in the two sublattices are then
possible, and magnons of this type can interact with electromagnetic radiation. Their
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resonant frequencies are linked not only to the anisotropy field B4 that tends to align the
spins along a preferred axis (the z axis in our coordinate system), but also to the interaction
between the spins in the two sublattices. In the long wavelength limit (applicable to terahertz
frequencies), and in the absence of any external field, the resonance frequency is given by

o, = 7(231435 +B; )1/'2 1)

Here Bg is the exchange field representing the interaction between the spins of the opposing
sublattices and y is the gyromagnetic ratio. In the presence of an electromagnetic field whose
H component lies in the xy plane, the induced magnetisation follows the direction of this
field component, since the spins in the two sublattices precess in opposite directions with
equal amplitudes. The permeability tensor p is thus diagonal and of the form

u 0 0
u=10 u 0 )
0 0 1
The scalar quantity y is given, at frequency o, by
2
u=1+ 24,y B,M ®)

2 2 . :
W, — o +iol’

where Msis the sublattice magnetisation and I" is a damping parameter.

In this study, we are interested in propagation of electromagnetic waves (strictly speaking
polariton waves, since the waves include a contribution from the precessing spins in
addition to that of the electromagnetic radiation) within the xy plane. We consider the
electromagnetic E field component to be directed along z with the corresponding H field
component in the xy plane. In this case, for plane waves of the form

E(x,y,t)=E, exp[i(kxx +hy,y— wt)}, 4)

H(x,y,t)= Hoexp[i(kxx+klyy—a)tﬂ, )
the polaritons follow the familiar dispersion relation
k2 + k_f = ek} (6)

where k, and k, are wavevector components and e is the dielectric constant of the medium. ko
is the modulus of the free space wavevector, given by

k.=

0

= )
c

In the presence of an external field By along the anisotropy axis, the two sublattices are no
longer equivalent. This leads to two effects. Firstly, there are now two resonances instead of
one and, secondly, the permeability tensor is no longer diagonal, but gyromagnetic. It thus
takes the form (Mills & Burstein, 1974):
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Myoig 0
u=\=-ip, o 0|, )
0 0 1
where
H :1+ﬂ0}/zBAMS(Y++Y7)> ©)
Hy = /107ZBAM5 T -7, (10)
with
. 1
Y*= (11)

_a)f—(a)ino-kiF)z'

The diagonal elements 1 do not depend on the sign of the applied field Bo, but y» changes
sign when By is reversed. This is the basis of the nonreciprocal effects discussed in this
chapter. The polariton dispersion relation (Equation 6) is now replaced by

K+ k2 =euk; 12)

where i, is known as the Voigt permeability, and is given by

M. (13)
H

/’lV:

It is straightforward to see that ji, does not depend on the sign of the external field By, so the
polariton dispersion relation (Equation 12) is similarly unaffected. Thus polariton dispersion
corresponding to propagation through an antiferromagnet (as bulk polaritons) is, in the
present geometry, totally reciprocal. Nonreciprocal effects only occur in the presence of a
surface, as in the case of reflection off an antiferromagnet (Camley, 1987).

3. Nonreciprocity in reflection of plane waves

3.1 Reflected intensity

As discussed in the introduction, we can regard reflectivity R as nonreciprocal if there is a
change in reflected intensity when the incident and reflected beams are interchanged, i.e.
R(01) #R(—01) where 01 is the angle of incidence (see Figure 1), or, equivalently, when the
applied field Bois reversed, i.e. R(Bo) #R(—Bo). The possibility of nonreciprocal reflectivity in
the present geometry was first analysed using thermodynamic arguments (Remer et al.,
1984; Camley, 1987; Stamps et al., 1991). This analysis shows that reflectivity should be
reciprocal in the absence of absorption, but that it need not be in the presence of absorption.
Here we demonstrate the same result explicitly in the case of reflection off a uniaxial
antiferromagnet, using the arguments outlined by Abraha & Tilley (1996) and Dumelow et
al. (1998).

We are interested in reflection from vacuum in s polarisation. The complex reflection
coefficient r in this case can be easily worked out from the field continuity conditions at the
vacuum/antiferromagnet interface. Written in terms of the E field component of the
electromagnetic radiation, the complex reflection coefficient is given by
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o R, — ko, ik (| 1)

: (14)
klyluv +k2y +ik (1, /1)
with a corresponding transmission coefficient
2k, (1 /
(=147 by (46, 1 1) (15)

kg, + ke, + ik (1 /)

ky is the in-plane component of the wavevector, which is continuous in both media and
determined by the angle of incidence 6::

k. =k,sin6,. (16)

k1, and ky, are the normal components of the wavevector in vacuum and the antiferromagnet
respectively, and are given by

by = ks —k; (17)
koy = \/€pok3 — K% (18)

Since kx(01) = —k.(—01) and p2(Bo) = —pi2(—Bo), the effect of either changing the sign of 6; or
changing the sign of Byis to change the sign of the term ik.(y2/ 1) in both the numerator and
the denominator of Equation 14, all other terms in this equation being unaffected.

Let us first consider how this sign change affects the complex reflection coefficient r in the
case of zero absorption (I" = 0). In this case, all the parameters in Equation 14 are real, except
for kay, which may be either real or imaginary depending on the frequency. When k», is real,
there is propagation of radiation, as bulk polaritons, into the interior of the sample. When it
is imaginary the field within the antiferromagnet is evanescent, decaying away from the
interface. We refer to frequencies corresponding to k, real as bulk region frequencies and
those corresponding to ko, imaginary as reststrahl region frequencies.

At bulk region frequencies (ko real), separation of Equation 14 into real and imaginary parts
leads to

and

r*(Bo) :I’(—Bo). (19)
The overall reflectivity is given by

R=r¢*, (20)
and is therefore reciprocal.
At reststrahl region frequencies (k2,imaginary), the numerator of Equation 14 is the complex
conjugate of the denominator. Thus one can see from Equation 20 that R must be equal to 1,
regardless of the sign of By, so once again the reflectivity is reciprocal. The result R =1 is of
course what one should expect, since when k, is imaginary there is no propagation into the
sample, leading to total reflection.
Simulated oblique incidence (6; = 45°) reflectivity spectra off MnF; at 4.2 K, in an external
magnetic field By of magnitude 0.1 T, are shown in Figure 2(a), in which zero damping is
assumed. The frequency scale is expressed in terms of wavenumbers &/2rc, and the MnF,
parameters used in the calculation are (Dumelow & Oliveros, 1997) e =5.5, Ms=6.0x10° A/m,
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Ba=0.787 T, B =53.0 T and y = 0.975 cm™!/T, corresponding to &, = 8.94 cm~!. The curves
for Bo = +0.1 T and Bp = -0.1 T are coincident at all frequencies, confirming that the

reflectivity is reciprocal.

1-0-_ 1.0-. P
2 2 /
2 | ; 2
8 05 R E E 8 0.5
< i i <
) )
0.0 — ; — 0.0 . ; .
8.8 8.9 9.0 9.1 8.8 8.9 9.0 9.1
Wavenumber (cm™) Wavenumber (cm™)
(a) Ignoring damping (b) Damping included

Fig. 2. Calculated oblique incidence (61 = 45°) reflectivity spectrum off MnFin an external
field of Bo=+0.1T (solid curves) and Bo=—0.1 T (dashed curves). Note that in (a) the two
curves are coincident. The symbols B and R in (a) represent the bulk and reststrahl
frequency regions respectively.

061}
04

02F ™

0 L i
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Fig. 3. Experimental (solid curves) and theoretical (dashed curves) oblique incidence
reflectivity (61 = 45°) reflectivity spectra off FeF,at 4.2 K, in the presence of positive and
negative external magnetic fields. After Brown et al. (1994).

When the damping is nonzero, the above symmetry arguments do not apply, and the
reflectivity R is, in general, nonreciprocal. This can be seen from Figure 2(b), in which
damping has been included in the calculation, using the experimental value of I" = 0.0007
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cm~L In this figure, the curves for Bop = +0.1 T and Bo = —-0.1 T are not coincident. The
difference in this case is quite small, since the damping in MnF, is small. Remer et al. (1986)
was able to observe this small difference experimentally using a field scan at fixed
frequency, but found a larger nonreciprocity at higher temperature, corresponding to larger
damping. 4.2 K frequency scans of the type shown in Figure 2 have been performed on FeF»
(Brown et al., 1994), which has a considerably higher damping parameter than MnF,, using
far infrared Fourier transform spectroscopy (Brown et al., 1998). In this case the
nonreciprocity in the reflectivity is quite clear, as seen in Figure 3.

3.2 Reflected phase
The complex reflection coefficient r given by Equation 14 is commonly expressed in terms of
a reflection amplitude p,and phase ¢

r=p, exp(i¢,,), (21)
where
p,=R", (22)
and
_ @)
¢, = tan {Re(r)} (23)

Although thermodynamic arguments show that, in the absence of damping, the reflected
intensity R, and hence the amplitude p,, should be reciprocal (Remer et al., 1984), such
arguments cannot be applied to the reflected phase ¢. A detailed discussion of
nonreciprocity in the reflected phase on reflection off antiferromagnets is given in Dumelow
et al. (1998). Here we summarise the main results.

We consider first the case of zero damping (I" = 0). In the bulk regions, Equation 19 should
apply. Thus, since the phase is given by Equation 23, we can see quite straightforwardly that

#.(By) = —¢.(-B,) + 27m, (24)

where m is an arbitrary integer. We include the term 27m since it is convenient to plot the
phase outside the range -7 < ¢, < .

Equation 24 shows that, in the bulk regions, the reflected phase is nonreciprocal even in the
absence of damping. This is also the case in the reststrahl regions, but the phase does not
follow a simple symmetry relation of the type given by this equation.

The amplitude and phase for reflection off MnF; in the absence of damping are shown in
Figures 4(a) and 4(c) respectively. The conditions are the same as those used in Figure 2.
Note that we have shown the phase as varying within the range 7 to 37 in order to show that
it changes continuously with frequency. The amplitude is reciprocal, in agreement with
Figure 2, but nonreciprocity in the reflected phase is quite marked in both the bulk and
reststrahl regions, obeying Equation 24 in the bulk regions.

Figures 4(b) and 4(d) show reflection amplitude and phase respectively in the presence of
damping. In line with the reflectivity results in the previous subsection, the reflection
amplitude now shows slight nonreciprocity. The phase shows the same type of
nonreciprocity as seen without damping, although the bulk region symmetry arguments of
Equation 24 no longer apply.
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Fig. 4. Calculated reflected amplitude and phase spectra for oblique incidence (6=45°)
reflection off MnF in an external field of Bo= +0.1 T (solid curves) and Bo= —0.1 T (dashed
curves). Note that in (a) the two curves are coincident. The symbols B and R represent the
bulk and reststrahl frequency regions respectively.

3.3 Power flow
The nonreciprocal phenomena described in the Subsections 3.1 and 3.2 were analysed ten or

more years ago, and concern the behaviour of a reflected plane wave. Recently we have
started studying nonreciprocal behaviour within the antiferromagnet itself, in particular
with respect to the direction of the internal power flow (Lima et al., 2009), represented by
the time-averaged Poynting vector (Landau & Lifshitz, 1984),

(Sy=1/2 Re(ExH"). (25)

We consider an angle of refraction in terms of the direction of the time-averaged Poynting
vector (Sy) (which is not necessarily the same as the wavevector direction) in the
antiferromagnet, as shown in Figure 5. The angle of refraction 0,, defined in this way, is
given by

tan @, = <S2X>. (26)
(85.)
In s polarisation the E field is confined along z, so the Poynting vector is most easily
represented in terms of the E; field, making use of the conversion k x E = opuouH. The
resulting time averaged Poynting vector has components
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Vacuum Antiferromagnet

S,
y /{

®Bo

Fig. 5. Angle of refraction 8, defined by power flow direction.

E| k. —ik, (1, /

(S,)= z Re|: Ll z},(/uz /11):|, (27)
20)#0 :le
E| k, +ik (i, /

<S2y> i Re|: 2y T (1 ;Ul):|. (28)
2@/10 /uv

The direction of power flow can thus be obtained by substitution into Equation 26.
We now investigate the above expressions in order to search for possible nonreciprocity in
the power flow direction in the antiferromagnet, taking power flow to be nonreciprocal if

02(_B0) # Hz(Bo)- (29)

In order to consider power flow, we restrict ourselves initially to the case where there is no
damping in the system (I = 0). The calculated values of 02 for oblique incident reflection off
MnF; in this case are shown in Figure 6.

90

6, (degrees)
T

-904 i . i
8.8 8.9 9.0 9.1
Wavenumber (cm™)

Fig. 6. Calculated 0, values on oblique incidence reflection (61 = 45°) off MnF; in a field of Bg
=+0.1 T (solid curve) and Bo=—0.1 T (dashed curve), ignoring damping. Both curves are
coincident in the bulk regions. The symbols B and R represent the bulk and reststrahl
frequency regions (separated by dashed vertical lines) respectively.

In the case of zero damping, as discussed previously, ji1, p2, and p, are all wholly real. ky, is
real in the bulk regions and imaginary in the reststrahl regions.
First we consider power flow for ko, real (i.e. in the bulk regions). Equations 27 and 28 then

give
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E| k

() ="——, (30)
2w;u0/u\
E|lk

(8,,) =", (31)
21,4,

Thus, since none of the terms in Equations 30 and 31 depend on the sign of By, we see that
the power flow direction is reciprocal (62(—Bo) = 82(Bo)). We also see from Equations 26, 30
and 31 that

— kx s (32)

2y

so that S, is parallel to k. Since k; is continuous and k», positive it also follows that refraction
must be positive, i.e. 0, always has the same sign as ;. Overall, therefore, power flow
follows the type of behavior shown in Fig. 7(a). This is confirmed by the calculations of the
02 shown in Figure 6 for the bulk regions. Note that in these regions radiation may, in
principle, flow an infinite distance into the antiferromagnet, and is thus unaffected by the
sample surface. Our result that power flow is reciprocal in this case is thus consistent with
the idea that radiation should display reciprocal behavior in the interior of a sample.

ey

a) Bulk regions b) Lower reststrahl region

lon AT@BO

c) Upper reststrahl region
Fig. 7. Power flow in the various spectral regions for oblique incidence radiation.

We now consider the case when k, is imaginary. In this case we get

ik /
(5,) = E. [ . —iky, (1, ;ul)] (33)
O H,
(8,,) =0. (34)

There is thus no propagation into the antiferromagnet, but energy can travel along the
surface in the form of an evanescent wave within the antiferromagnet. In such cases, which
are characterized by 0> = £90°, the angle 0> does not describe refraction in the normal sense of
the word, since the associated radiation has an evanescent component. Indeed there is no
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transfer of radiation across the interface, since power is wholly reflected. The direction of
power flow may or may not be reciprocal, depending on the relative magnitudes of the two
terms in the numerator of Equation 33. However, if the external field is sufficiently large, the
second term dominates within both reststrahl regions. In the present example, for Bo = 0.1
T, this results in 0, = +90° in most of the lower reststrahl region (Figure 7(b)) and 0, = F90°in
most of the upper reststrahl region (Figure 7(c)), as shown in the calculation in Figure 6, and
nonreciprocity, as defined by Equation 29, occurs. There is, however, a narrow region of
reciprocal power flow (in terms of direction if not of magnitude) near the upper frequency
limit of each reststrahl region.

Possibly one of the most interesting aspects of the power flow is its behaviour in the case of
normally incident radiation (Lima et al., 2009). The calculated 0, values are shown in Figure
8. In the bulk regions, as expected, power flow is normal to the surface, as shown in Figure
9(a). In the reststrahl regions, however, power flow parallel to the sample surface is induced
in the same way as occurs at oblique incidence. The direction of this power flow depends on
the sign of the external field, as shown in Figures 9(b) and 9(c). This is distinctly counter-
intuitive considering that we are modelling plane waves normally incident on an infinite
surface, so that there should be no spatial variation of the field along x. Nevertheless, the

904 = i
2 R
[0} ]
;')’ g 1
) B ' R B R| B
=5 i i

-904 ' !_: . -

8.8 8.9 9.0 9.1

Wavenumber (cm™)

Fig. 8. Calculated 0> values on normal incidence reflection off MnF»in a field of Bo=+0.1 T
(solid curve) and Bo=-0.1 T (dashed curve), ignoring damping. The symbols B and R
represent the bulk and reststrahl frequency regions (separated by dashed vertical lines)
respectively. After Lima et al. (2009).
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a) Bulk regions b) Lower reststrahl region
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(c) Upper reststrahl region

Fig. 9. Power flow in the various spectral regions for normal incidence radiation.
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very fact that the field is assumed to extend over an infinite plane means that energy flow
along the surface does not violate causality.

We now turn to the case where damping is present. Now kz, should, in general, be complex,
with the its imaginary part greater near the reststrahl regions. Since imaginary k», results in
nonreciprocal power flow, we should also expect such nonreciprocity in the case of complex
koy. In Fig. 10 we show the power flow directions both for normal and for oblique incidence,
assuming I' = 0.0007cm~1. There is now no distinct division between reststrahl and bulk
regions, and nonreciprocal power flow occurs both inside and outside the nominal reststrahl
regions. At normal incidence the power flow directions are now no longer restricted to
02 = 0° and 0, = £90°. Since nonzero 0, implies nonreciprocity, the associated fields must be
some extent be bound to the sample surface in all regions for which 6, # 0°.

904 = 904 =
o o i |
8) 0 \ r 8) 0 N
k) k) |
CDN ‘ I cDN ‘ '
90 Lo 90 =
8.8 8.9 9.0 9.1 8.8 8.9 9.0 9.1
Wavenumber (cm™) Wavenumber (cm™)
(@) 6= 0 (b) 6, = 45°

Fig. 10. Calculated 6 values on reflection off MnF,in a field of Bo= +0.1 T (solid curve) and
Bo=—0.1T (dashed curve), assuming a damping parameter of I = 0.0007 cm-1.

4. Reflection of a finite beam

4.1 Introduction
The previous section discusses various phenomena associated with plane wave reflection off

an antiferromagnet. However, when the plane wave is replaced by a finite beam, we predict
additional effects concerning the profile and position of the reflected beam (Lima et al., 2008;
2009). Such effects are expected with either normal or oblique incidence radiation. However,
we concentrate on normal incidence effects firstly for simplicity and secondly because they
are more unexpected.

We examine reflection of finite beams in two ways. Firstly, we interpret the reflection using
an angular spectrum analysis, in which the incident beam is considered as a Fourier sum of
plane waves. We then give a power flow interpretation of the predicted effects.

4.2 Angular spectrum analysis
Here we summarise the angular spectrum analysis used in describing reflection of a finite

beam normally incident on an antiferromagnet (Lima et al., 2008), using a two dimensional
model in which the incident beam, centred at x = 0, is considered as an angular spectrum of
plane waves propagating in the xy plane. It can thus be represented in the form

E(x,y)= ffow(kx)eXP ik + k) k. (35)



Nonreciprocal Phenomena on Reflection of Terahertz Radiation off Antiferromagnets 155

where y(k;) is a distribution function representing the shape of the beam. At the sample
surface, which we place at y = 0, the electric field of the incident beam is

E,(x,0)= [ y(k,)exp(ik x) dk, . (36)

The electric field of the corresponding reflected beam is given, at the surface, by

E,(x.0)= [ rik (k) exp(ik,x)dk,. (37)

Here r(k:) represents the complex reflection coefficient for the relevant plane wave
component, and is given by Equation 14. It is convenient to consider this complex coefficient
in terms of amplitude p/(k;) and phase ¢(k:), in the form of Equation 21, i.e.,

r(k,)= p,(k,)explig, (k,)]. (38)

If the beam is sufficiently wide, there will be a narrow distribution of k. values centred, at
normal incidence, around k. = 0. We can thus substitute Equation 38 into Equation 37 and
expand p,(k:) and ¢ (k:) as a Taylor series around k= 0. If we ignore terms in & and above,
this leads to

E,(x.0)= (O] y(k,yexp(ik, X )dk, + "(0)[ " kyr(k, ) exp(ik, X )dk, . (39)
where
r(0) = p,(0)exp[ig, (0)], (40)
PO =222 explig 0)] (41)
dk. k=0 AV B
d
X=x+ d]f” kao' (42)

x

The second term on the right hand side of Equation 39 can, in practice, normally be ignored
(Lima et al., 2008). In fact, in the absence of damping, it is identically zero since reciprocity
in p, implies dp, /dk |, _,=0, and hence r(0) = 0. Even in the presence of damping,

however, the contribution of this term is negligible for a sufficiently narrow k, distribution.
The reflected field is thus given, to a good approximation, by the first term on the right hand
side of Equation 39. This term is simply the reflection coefficient r(0) for a normally incident
plane wave multiplied by an integral which gives the profile of the field along x. This
integral is identical to that of the incident beam (Equation 36) except that x has been
replaced by X, given by Equation 42. Thus the shape of the reflected beam is the same as
that of the incident beam, but it has been shifted along the surface of the sample by a
distance D, equal to

dg,
r _dkx |kX:O

(43)
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(a) Normal incidence reflection off AF  (b) Conventional Goos-Hénchen shift

Fig. 11. Comparison of the normal incidence Goos-Hénchen shift predicted for external
reflection off an antiferromagnet with the conventional Goos Hénchen shift for total internal
reflection.

as shown in Figure 11(a). In the case of reciprocal reflected phase (i.e. ¢(-ki) = ¢(k:)),
dg, /dk |, _, must be zero, so there will be no lateral shift. In the case of reflection off
antiferrorrxlagnets, however, the reflected phase is, in general, nonreciprocal, as discussed in
Section 3.2, and a nonzero displacement of the reflected beam is expected.

Before discussing the lateral shift described by Equation 43 in any detail, we note that the
behaviour of the reflected beam is in some ways similar to that of an oblique incidence finite
beam which undergoes total internal reflection when passing from an optically denser to a
less dense medium. Such a beam also suffers a lateral displacement D, upon reflection, as
shown in Figure 11(b). This displacement was observed experimentally by Goos & Héanchen
(1947) and is normally referred to as a Goos-Hanchen shift (Lotsch, 1970). Goos-Hénchen
shifts have also been reported in the case of external reflection in specific instances such as
reflection off metals (Wild & Giles, 1982; Leung et al., 2007), and the lateral displacement
discussed here can be considered as a type of a normal incidence Goos-Hénchen shift.
Equation 43 is, indeed, a normal incidence version of the classical expression commonly
used to describe Goos-Hénchen shifts (Artmann, 1948), and the angular spectrum analysis
used above in deriving the equation is basically the same as that previously used to describe
Goos-Hidnchen shifts in the case of total internal reflection (Horowitz & Tamir, 1971;
McGuirk & Carniglia, 1977).

We now apply Equation 43 to the specific case of reflection off an antiferromagnet. In the
absence of damping, the reflection coefficient r can easily be resolved into its real and
imaginary parts, allowing explicit evaluation of this equation. This gives

D, — 2(pa/ 1)

= koo —¢) (44)

in both the bulk and the reststrahl regions. Since the sign of yi» depends on the sign of By, it is
immediately obvious that the direction of the lateral displacement will be reversed if the
external field direction is reversed. In the presence of damping, Equation 43 can be
evaluated numerically, but the results are found to be almost identical to those with I'= 0
(Lima et al., 2008).
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Fig. 12. Calculated normal incidence reflectivity spectrum and lateral shift for reflection off
MnF; in an external field of Bo= +0.1 T. In (a) the solid curve is calculated without damping
and the dot-dash curve with I = 0.0007 cm~1. In (b) the solid curves are for an external field
of Bo=%0.1 T and the dashed curves for an external field of Bo= —-0.1 T. The vertical lines
separate the bulk and reststrahl regions. The marked frequencies are A: 9.0769 cm™1; B:
9.0994 cm1; C: 9.0705 cm~1. After Lima et al. (2009).

The calculated values of D,, ignoring damping, are compared with the reflectivity spectrum
at upper reststrahl region frequencies in Figure 12. A lateral shift is predicted in both the
bulk and the reststrahl regions. Similar shifts are predicted around the lower reststrahl
region, but of opposite sign (Lima et al., 2008). There is a divergence in D, at the reflectivity
minimum just below the reststrahl region. At this frequency, the assumptions made in
deriving Equation D, clearly do not apply.

In order ot verify the shifts shown in Figure 12, reflection of a particular incident beam
profile may be modelled. For simplicity, we have considered a gaussian beam whose focal
plane is the surface of the sample (Lima et al., 2008; 2009). The incident beam can thus be
represented by Equation (35) with (Horowitz & Tamir, 1971)

y(k,)= 25; exr{— g 4k* ] (45)

where 2g represents the beam width at the focal plane. At the sample surface the incident
beam profile is thus represented by Equation 36 and the reflected beam profile by Equation
37. The integrals in these two equations can be evaluated numerically, and the profiles of the
corresponding E fields thus obtained.

The incident and reflected beam intensities can, in general, be well represented by |E|2. In
Figure 13 we show the resulting intensity profiles along x for the three frequencies marked
in Figure 12. It is seen that, although the modelled incident beam is very narrow (g = A, the
free space wavelength), all the reflected beams are displaced along the surface in excellent
agreement with Equation 44. It is also observed that damping does not noticeably affect this
displacement. Explicit simulations have also confirmed the prediction of Equation 44 that
beam displacement is, to a very good approximation, independent of beam width (Lima et
al., 2008).

It is useful not only to consider the incident and reflected fields at the surface, but also the
overall E field distribution in the xy plane. We conveniently consider the electric fields in
terms of an incident field E;(x,y) and a reflected field E,(x,y) in the region x < 0 (vacuum) and
a transmitted field Ei(x,y) in the region x > 0 (antiferromagnet). E;(x,y) is given by Equation
35, with E,(x,y) and E«(x,y) given by
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Fig. 13. Intensity profiles, along the sample surface, in the case of reflection of a normally
incident gaussian beam off MnF; in an external magnetic field of 0.1 T. Solid curve: incident
beam; dotted curve: reflected beam ignoring damping; dashed curve: reflected beam with
' = 0.0007 cm~1; vertical solid line: centre of incident beam; vertical dashed line: centre of
reflected beam predicted by Equation 44. Note that, in (b), the reflected intensities with and
without damping are almost identical, and the curves cannot be separated. After Lima et al.
(2009).

E.(x,y) = J.j(jor(kx)l//(k[)exp [i(kox—k,»)]ak, (46)

and

E,(x,y) = J:k:()t(kx)l//(kx)exp [i(x+ ey, ) |, 47)

respectively. The resulting profiles at the three frequencies indicated in Figure 12 are shown
in Figures 14 and 15. Figure 14 shows the profile in the absence of damping and Figure 15
shows the profile when damping is included. The left hand panels show the incident and
transmitted fields, whilst the right hand panels show the reflected field.

In all cases the reflected fields are displaced along x in accordance with Figures 12 and 13. In
addition, we see that the transmitted field is also displaced. This result can be anticipated
from the fact that the phase ¢ of the complex transmission coefficient ¢ is nonreciprocal. An
analysis equivalent to that used in determining D, then gives a lateral displacement D; of the
transmitted field profile given by

p,--4

o (48)
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Fig. 14. Profiles of the amplitudes of the incident (Ei(x,y)), transmitted (E(x,y)), and reflected
(Er(x,y)) fields in the case of reflection of a normally incident gaussian beam off MnF; in an
external magnetic field of 0.1 T, ignoring damping. After Lima et al. (2009).
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Fig. 15. Profiles of the amplitudes of the incident (Ei(x,y)), transmitted (E(x,y)), and reflected
(Er(x,y)) fields in the case of reflection of a normally incident gaussian beam off MnF; in an
external magnetic field of 0.1 T, for I" = 0.0007 cm~1.



Nonreciprocal Phenomena on Reflection of Terahertz Radiation off Antiferromagnets 161

It is noticeable that, in the case of the bulk frequency B, near the top of the reststrahl band,
there is a much larger displacement in the transmitted field than in that of the reflected
beam. In the absence of damping, the field decays away from the interface in the reststrahl
region (Figure 14(a)), but propagates into the sample, perpendicular to the surface, in the
bulk regions (Figures 14(b) and 14(c)). When damping is included, the reststrahl region
behaviour is largely unchanged, but there may now be significant decay in the bulk regions.
At frequency B, just above the top of the reststrahl region, this decay is fairly small, but at
frequency C, near the bottom of the reststrahl region, it is similar to that in the reststrahl
region itself.

4.3 Power flow analysis

4.3.1 Reststrahl region

In the above analysis we have considered the displacement of the reflected beam as an
interference effect. It is also useful, however, to consider this effect in terms of power flow.
In the reststrahl regions, in the absence of absorption, energy conservation principles can be
used in a straightforward way to analyse the lateral shift (Lima et al., 2009). The analysis is
similar to that used by Renard (1964) in the case of the conventional Goos-Hénchen shift for
total internal reflection.

We make use of the result of subsection 3.3 that, in the reststrahl regions and in the absence
of damping, a normally incident plane wave reflected off an antiferromagnet induces power
flow parallel to the surface within the antiferromagnet, as shown in Figures 9(b) and 9(c).
We consider this to be the behaviour in the centre portion of a wide finite incident beam,
such as that represented in Figure 16. The central portion of this incident beam lies between
xzand x3, and it gradually decays away to zero between x; and x; and between x3 and x4. The
internal energy flux associated with plane wave reflection in the central portion is
represented by P». Energy conservation therefore requires that there is a net flux P; entering
the antiferromagnet near one edge of the beam and a net flux leaving near the other edge.
This is equivalent to a lateral shift D, of the reflected beam with respect to the incident beam.
Thus P; enters in the region between x1and x2 + D,and P;leaves in the region between x3 and
x4+ D;. We consider energy flow within a slice, of thickness Az, in the xy plane. Within this
slice we have P1= P> = Ps.

Py is the difference between the incident and reflected flux between X; and x2 + D,, and can
be written as

R= f(Si(x)>Ade+ 2_[ V(Si(x))Azdx+'2J r(Sf()g))Azdx, (49)

where (Si(x)) and (S/(x)) are the intensities, represented in terms of time averaged Poynting
vectors along y, of the incident and reflected waves respectively. Since we expect the
reflected beam to have the same shape as the incident beam, we can write

(8,(x)) ==(S,(x+D,)), (50)

so that the first and last terms on the right hand side of Equation 49 cancel. Thus only the
second term contributes to P1, and the integral is only performed between x; and x> + D, in
the central portion of the beam. Within this interval (Si(x)) has a constant value, which we
denote as (Smax). Equation 49 thus becomes
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Fig. 16. Model of lateral displacement of reflected beam in the reststrahl regions in terms of
power flow along the antiferromagnet surface.

R=(s

max

YAZD.. (51)

Using Equation 25 and a standard application of Maxwell’s equations, (Smax) can be
expressed in terms of the incident field Emax within the central region of the beam as

2

k,|E
< Smmc> — 0 max (52)
2,
The flux P> within the antiferromagnet is given by
P, = [ (S, (v)Azdy. (53)

(52:(y)) can be expressed in terms of the electric field E.(y) within the antiferromagnet using
Equation 27. E.(y) itself can be related to the field Emax of the incident beam by the equation

E.(y)=1E,, exp(ik,,y), (54)



Nonreciprocal Phenomena on Reflection of Terahertz Radiation off Antiferromagnets 163

so P> may also be obtained as a function of Enax. On putting P1 = P, in the above equations,
and solving for D, we get exactly the same result as obtained using the angular spectrum
analysis (Equation 44). Thus simple energy conservation principles may be used to predict
the Goos-Héanchen shift in this case.

We may examine explicitly the power flow behaviour in the xy plane using the type of
calculation used in obtaining Figures 14 and 15. Figure 17(a) shows the overall power
intensity and flux lines (Lai et al., 2000) for reflection off MnF, at frequency A,
corresponding to the upper reststrahl region. The behaviour is similar to that predicted from
Figure 16 (although in the present case the shift is negative). Thus, for x > -0.01 cm, the
incident intensity is greater than the reflected intensity, so that the overall power flow is to
the right. At x ~ -0.01 cm, the incident and reflected beams cancel, whereas for x < -0.01
cm, the reflected beam dominates and the overall power flow is to the left. Flux continuity is
thus preserved in the manner illustrated in Figure 16.

Vacuum Antiferromagnet Vacuum Antiferromagnet

X (cm)

0.000
y (cm) ¥ (cm)

(a) Ignoring damping (b) Damping included

Fig. 17. Overall power intensity and flow for reflection off MnF, in an external magnetic field
of 0.1 T in the upper reststrahl region (frequency A). After Lima et al. (2009).

Figure 17(b) shows power flow when damping is included. In this case the flux continuity
argument no longer applies (hence we have not attempted to show continuous flux lines),
but the overall behaviour is not significantly changed.

It is interesting to note that the power flow explanation of the normal incidence Goos
Hénchen shift gives a very clear example of the breaking of time reversal symmetry by a
static magnetic field. In the example shown in Figure 16, there is power flow along the
positive x direction within the antiferromagnet, and the reflected beam is thus displaced in
this direction. If, however, time reversal were applied to the reflected beam, so that it
became a new incident beam, without reversing the direction of Bo, the flow of energy
within the antiferromagnet would not retrace its path along the negative x direction, but
would once again flow along positive x, and there would be a further displacement of the
reflected beam in this direction.

4.3.2 Bulk regions
The above power conservation principles used in analysing the normal incidence Goos-
Hénchen shift in the reststrahl regions are based on the principle that all the incident energy



164 Recent Optical and Photonic Technologies

will be reflected back from the antiferromagnet surface. This is clearly not the case in the
bulk regions. Furthermore, in the absence of damping, the power flow resulting from
normally incident plane waves is transmitted normal to the surface, as seen in Figure 9(a).
The reststrahl region analysis requires power flow parallel to the interface, so one might
expect that there would be no lateral shift of the reflected beam in the bulk regions. The
angular spectrum analysis, however, predicts that such a shift should occur in both the
reststrahl and the bulk regions, so it is important to understand, in terms of energy flow,
how such a shift is possible in the bulk regions.

In order to analyse the power flow, we once again take the example of reflection of a
Gaussian beam and examine the power flow profile in the xy plane. The resulting overall
power intensity and flux at the two bulk frequencies B and C are shown in Figure 18. Before
analysing the lateral shift in any detail, it is worth noting that the profile of the power
intensity within the antiferromagnet is different from that of the electric field amplitudes
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E 0.0 0.001 g 0.0 0.001
x x
0.1 0.1
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(a) Frequency B, ignoring damping (b) Frequency B, damping included
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(c) Frequency C, ignoring damping (d) Frequency C, damping included

Fig. 18. Overall power intensity and flow for reflection off MnF, in an external magnetic field
of 0.1 T in the bulk regions. Note that the arrows in the bottom half of (c) are simply
intended to show the direction of power flow and are not a continuation of the flux lines in
the upper part of the figure. After Lima et al. (2009).
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shown in Figures 14 and 15. This is because the power intensity depends on the magnetic
field component of the electromagnetic field as well as its electric field component. The
magnetic field profile is in fact very different from that of the electric field (Lima et al., 2009),
leading to a different power intensity profile.

At frequency B, ignoring damping (Figure 18(a)), overall power flow is to the right both in
the vacuum region y < 0 and within the antiferromagnet y > 0, and remains perpendicular to
the surface. There is flux continuity across the interface, as expected, and the overall profile
is slightly displaced in the positive x direction with respect to the incident beam, which is
centred at x = 0. We can understand this if we recall that the reflected beam is slightly
displaced in the negative x direction and is less intense than the incident beam (see Figure
13(b)). The overall flux for y < 0, within the vacuum region, is the incident beam minus the
reflected beam, so it is shifted in the positive x direction with respect to the pure incident
beam. Flux continuity requires that this displacement is transferred to the transmitted beam,
i.e. in the bulk regions the transmitted beam is displaced along x in the direction opposite to
the displacement of the reflected beam. The behaviour in the presence of damping (Figure
18(b)) is not appreciably different.

At frequency C in the absence of damping (Figure 18(c)) the situation is similar to that at
frequency B except that there is now a resultant power to the left for x < —0.08 cm~1. This is
related to the fact that the reflected beam is more intense than the incident beam at these
values of x (see Figure 13(c)). This also means that there must be power flow to the left
within the antiferromagnet. This presents an apparent problem since there is no obvious
source for the associated energy. Nevertheless, detailed calculations of power flow several
centimeters into the antiferromagnet show that a portion of the incident energy does indeed
return to the left in this region (Lima et al., 2009). This is easier to see when damping is
present (Figure 18(d)), in which case some of the incident energy returns to the left without
penetrating a long distance into the antiferromagnet. In fact, in this case, the overall power
flow is somewhat similar to that observed in the reststrahl regions. This is another
illustration of the concept that, in the presence of damping, the bulk and reststrahl regions
can be thought of as merging into one another.

In the above examples, frequency B (Figures 18(a) and 18(b)) can be regarded as
representative of most of the bulk frequencies. Frequency C (Figures 18(c) and 18(d)), in
contrast, displays rather peculiar behaviour particular to frequencies between the reststrahl
region and the reflection minimum (see Figure 12).

5. Conclusions and future prospects

In this chapter we have examined various nonreciprocal effects associated with reflection of
terahertz radiation off antiferromagnets. Of these effects, only nonreciprocity in the
reflectivity has, to our knowledge, been investigated experimentally at the time of writing
(Remer et al., 1986; Brown et al., 1994).

A simple, if slightly indirect, way of observing the nonreciprocal reflected phase has been
suggested (Dumelow & Camley, 1996, Dumelow et al., 1998), and uses the configuration
shown in Figure 19. Here, a dielectric layer is deposited onto the surface of an
antiferromagnet and the overall reflectivity off the overall structure measured. In this setup,
there is reciprocal reflection from the vacuum/dielectric interface, but the phase of the
radiation reflected from the dielectric/antiferromagnet interface is mnonreciprocal.
Interference between these partial waves is thus nonreciprocal, leading to a nonreciprocal
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Fig. 19. Use of a dielectric layer for investigating nonreciprocal phase on reflection off an
antiferromagnet.
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Fig. 20. Calculated oblique incidence reflectivity spectrum off a Si/MnF; structure of the
type shown in Figure 19 in an external field of Bo= +0.1 T (solid curves) and Bo=—-0.1 T
(dashed curves).

overall reflectivity which depends on the dielectric layer thickness, as shown in Figure 20.
This is true even when the reflectivity off the pure antiferromagnet is close to reciprocal, as
is the case for MnF..

The discussion of nonreciprocity in the power flow is concerned with power flow behaviour
within the interior of an antiferromagnet. Obviously it is not straightforward to measure this
experimentally. It appears more reasonable to investigate the effect of this nonreciprocal
power flow on the radiation interacting with a finite sized sample of a given shape. The
analysis presented in this chapter does not extend to this type of system, since the
antiferromagnet is considered to be infinite along x. However, other techniques such as the
finite difference time domain (FDTD) method should help clarify the expected behaviour.
The lateral shift predicted in the case of reflection of a finite beam off an antiferromagnet
should in principle be measurable given a suitable coherent source such as a far infrared
laser (Rosenbluh et al., 1976), backward wave oscillator (Dobroiu et al., 2004), or YIG
oscillator with frequency multiplied output (Kurtz et al., 2005). In order to observe the
normal incidence shift, a beam splitting arrangement appears necessary. It is also, however,
important to consider the effect at oblique incidence, both theoretically and experimentally.
In this case the effect should be observable directly without the use of a beamsplitter.

In this chapter we have only discussed phenomena in the Voigt configuration with the
external field aligned along the anisotropy axis, deliberately avoiding the more complicated
configurations in which the external field makes an angle with the anisotropy field (Almeida
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& Mills, 1988), or in which these axes are not perpendicular to the plane of incidence.
However, we should point out that theoretical works on the reflected amplitude and phase
do exist for more complex geometries (Stamps et al., 1991; Dumelow et al., 1998), and, in the
case of reflectivity, there is some experimental work (Abraha et al., 1994; Brown et al., 1995).

Finally, we stress that, although we have concentrated on reflection off antiferromagnets in
this chapter, the basic priciples involved stem from the form of the permeability tensor
given in Equation 8. However, there are other types of material, such as ferromagnets or
ferrimagnets, that also have a gyromagnetic permeability of this form. We therefore expect
similar phenomena for these materials, although some of the symmetry arguments have to
be looked at in a slightly different way since, in general, such materials have their own
internal macroscopic magnetic field. One can also have a dielectric tensor of this form, such
as that associated with magnetoplasma excitations. In this case, p-polarisation radiation
should give results similar to those presented here for s-polarisation reflection off
antiferromagnets (Remer et al., 1984).
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1. Introduction

In the last years, the Terahertz (THz) domain has attracted an increasing interest in the
scientific community due to the large number of applications that have been identified
(Tanouchi, 2007).

Even if many different Terahertz sources - like photomixers, quantum cascade lasers, and
photoconductive antennas (Mittleman, 2003) - have been investigated in the past, the
fabrication of a compact device operating at room temperature and with an output power at
least in the pW range still constitutes a challenge.

A very promising approach to this problem relies on the nonlinear optical process called
Difference Frequency Generation (DFG) in materials like III-V semiconductors (Boyd, 2003).
In this chapter, we will propose an efficient, compact, and room-temperature THz emitter
based on DFG in semiconductor microcylinders. These are whispering gallery mode (WGM)
resonators capable to provide both strong spatial confinement and ultra-high quality factors.
Nonlinear optics applications benefit from an ultra-high-Q cavity, since the fields involved
in the nonlinear mixing interact for a long time, giving rise to an efficient conversion.

The structure we investigate is based on the technology of GaAs, owing to its wide
transparency range (between about 0.9 and 17 pm), large refractive index for strong field
confinement, and a huge nonlinear coefficient. Moreover, it offers attracting possibilities in
terms of optoelectronic integration and electrical pumping.

After an introductory part about whispering gallery modes, we will present the study of the
DFG inside GaAs microcylinders. The evanescent coupling with an external waveguide
allows a selective excitation of the pump cavity modes.

At the end, on the theoretical premises of the first part, we will show that an appealingly
simple structure can be used to confine both infrared and THz modes. Moreover,
embedding self-assembled quantum dots in the cavity allows the integration of the pump
sources into the device. With an appropriate choice of the cylinder radius, it is possible to
phase match two WGMs with a THz mode, and have a compact, room-temperature THz
emitter suitable for electrical pumping.
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2. Whispering gallery modes

2.1 Microcylinder cavity modes
Whispering gallery modes are the optical modes of microcylinders, and, being the
eigenmodes of a 3D structure, they cannot in general be derived analytically. However, the
simple approximation we describe in the following (Heebner et al., 2007) can be used to
reduce the 3D problem to a more manageable (2+1)D problem?.
From Maxwell’s equations in Fourier space and without source terms, we can easily obtain
the familiar wave equation:
n’e’ -

= F=0 1)

V2F+

where F is either E or H, and n is the refractive index (in general frequency dependent) of
the medium.
Using the cylindrical coordinates (p, 6, x) shown in Fig. 1, equation (1) can be rewritten as:

2 2 2. 2

9 19 193 9 ne - o
— t——t———+——+ =
8p2 p op p2 sz ax’ ¢

Let us assume that it is possible to classify the modes as purely TE or TM: in the first case,
the non-vanishing components are H,, E, and Eg, whereas, in the second, they are E,, Hyand
Hps. This assumption, which echoes the optical slab waveguide case, is only approximate but
greatly reduces the complexity of the problem: as we will see in the following, it is
equivalent to decoupling the in-plane problem from the vertical problem, using the effective
index method to take the latter into account (Tamir, 1990).

X

»

h

’R\- 0 z

v

Fig. 1. General scheme of a microcylinder with radius R and thickness h. The cylindrical
reference system used in the chapter is also shown.

Returning to Eq. (2) and writing the only independent field component Fy in the factorized
form F, = y(p) ©(0) G(x), we find the following three equations:

1 Recently, fully vectorial 3D approaches have also been proposed (Armaroli et al., 2008).
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The first equation tells us that G(x) is the eigenfunction of a slab waveguide with effective
index n¢ (§ = TE/TM), whereas the second can be integrated to obtain @(0) = e7m8, m being
the (integer) azimuthal number.

The radial mode dependence is obtained using the last equation in (3): if the microdisk
radius is R, then y(p) can be written in terms of first-kind Bessel functions (for p < R) and
second-kind Hankel functions (for p > R):

NBH?(kp) p>R @)

NI (kngp) <R
)= |
where N is a normalization constant, k= 0)/ c¢,B=J, (kngR)/ Hg) (kR), and we assume that
the microcylinder is surrounded by air. ~
If we impose the continuity of tangential components E and H, we find the following
dispersion relations:

TM modes n T (kngR) - Hg)(kR) =0
* Jm(knR)  HP(kR) 5
5
TE modes ]m(kngR -n Hg)(kR) =0
o) " )

Once these equations are numerically solved with respect to the variable k, we obtain the
resonance eigenfrequencies ® of the cavity.

At this point it is worth stressing that, despite the formal analogy with the optical slab
waveguide, the frequency of a WGM is a complex number, even if the effective index n¢ that
appears in equation (3) is real. This is due to the fact that the microcylinder walls are curved
and then all its resonances are affected by radiation losses, which can be quantified by
defining the WGM quality factor of a resonator mode:

WGM _ Re((T))
Q= 2Im (@) ©)
Simply stated, the bent geometry of the microdisk gives rise to a continuous decay rate of
the energy confined within the cavity, broadening the resonances linewidth.
Fig. 2 shows the square modulus of equations (5) versus the angular frequency for a
microcylinder of radius R = 1 pm and effective index n = 2.2: it is evident that once we
establish the structure under investigation (i.e. the disk radius and thickness, and
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subsequently the effective index ng) and the azimuthal number m, multiple radial solutions
exist. We can then label them by employing an additional integer number p, which is the
radial order of the mode and corresponds to the number of field maxima along the radial
axis of the microcylinder.

2

o

|Dispersion Relation|
o

107]

2.0x10'" 2.5x10" 3.0x10
o (Hz)

Fig. 2. Square modulus of the dispersion relations (5) versus angular frequency. The
azimuthal symmetry of the modes is fixed (m=20): different function dips correspond to
different radial order modes, as indicated.

It is interesting to note that higher p order modes have higher frequencies, as is shown in
Fig. 2. This can be intuitively understood in terms of the geometrical picture of a WGM: a
WGM is a mode confined in a microdisk by total internal reflections occurring at the
dielectric/air interface and that, additionally, satisfies the round trip condition.

The resonance frequencies of the modes with p =1 are then:

2nR = mA = Inﬂ (7)
n nw

High p modes have their “center of mass” displaced towards the microdisk center, so that,
for these modes, we can always use equation (7) but with a smaller “effective radius” R. As
equation (7) suggests, once m is fixed, this results in a higher mode frequency.
If the resonance frequencies are known, expression (4) allows to obtain the radial function
y(p) for TM or TE modes. At this point, we can write the independent field component E, or
H,, since the functions ©(0) and G(x) are already known.
Once E, or Hy is found, the other field components can be directly obtained by using
Maxwell’s equations:

H,=——E,
Hop®
TM modes j OE, ®)
Hy=——_
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If the vertical part fulfills the condition

TGz(x)dx =1 (10)

then the constant N in equation (4) can be chosen in order to normalize the mode to the
azimuthal power flow:

TM modes +%Re[ EXH;dp]
P, = - (11)
1 ,
TE modes ——Re jEpdeP
2 0

2.2 Quality factor
The Q-factor of a resonance physically represents the number of optical cycles needed before
its original energy decays by 1/e in the absence of further sourcing; this means that if U is
the energy stored in the cavity, then we have:
dU ®
—=-—U (12)
dt Q
Since the term -dU/dt represents the dissipated power Py, we find an alternative definition
of Q:
U

Q= (DE (13)

On the other hand, Q can be written in the following form (Srinivasan, 2006):

Pas nngh

N 1)

Q=w1 ph =
where T, is the photon lifetime, Lpy is the cavity decay length and ng is the group index
within the cavity.

Equation (14) is a useful relation because it allows to compare the losses of a microcylinder
with those of other devices (e.g. a planar waveguide): in fact, for a planar waveguide it is
customary to write the losses in terms of an inverse decay length o (in cm™1). Once we know
the resonance quality factor, we can use this equation to obtain Ly, and then express the
losses in the form o =1/Lpn.

Until now, the only loss mechanism introduced for the microcylinder resonances was
represented by the intrinsic radiation losses responsible for the finite value of Qwcm. In
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physical experiments, the situation is slightly more complex, and additional losses affect the
overall Q-factor of a WGM.

Under the hypothesis that all loss factors are so small that their effects on the intra-cavity
field can be treated independently, the overall quality factor can be written in the following
form:

11 .1 .1 _ 1. 1
Q - QWGM Qmat Qcpl - Qint Qcpl

Qcpl represents the losses due to an eventual external coupling (see section 3), and Qmat
quantifies the losses due to bulk absorption. In the linear regime, this can be the case of free-
carrier absorption, whereas, in the nonlinear regime, this term could include two-photon (or,
in general, multi-photon) absorption. In the latter case, Qmat will then depend on the field
intensity circulating inside the cavity.

Both QWEM and Qmat are intrinsic terms, whereas the last part of equation (15) describes the
external coupling. In the next section, we will use the coupled mode theory for a thorough
study of the evanescent coupling of a microcylinder and a bus waveguide or fiber; for the
moment, the discussion is limited to a qualitative picture. Looking at Fig. 3, we can imagine
to inject a given power into the fundamental mode of a single-mode waveguide sidecoupled
to the microcylinder. In the region where the two structures almost meet, the exponential
tail of the waveguide mode overlaps the WGM giving rise to an evanescent coupling.

(15)

('\) WGM

Qmat

Q) cpl

Fig. 3. Evanescent coupling scheme with a bus waveguide.

A final remark concerns the fact that the intrinsic quality factor Qint can be reduced by
additional contributions, e.g. the surface loss terms caused by surface scattering and surface
absorption (Borselli et al., 2005). For this reason, we will denote with Qrad (and not QWGM)
the radiation losses.

Surface losses cannot always be neglected and become dominant in particular situations;
moreover, they give rise to important phenomena like the lift of degeneracy for
standingwave WGMs.

3. Three-wave mixing in semiconductor microcylinders

Microcavities are very promising for nonlinear optics applications, thanks to the high optical
quality factors attainable with today’s technology. For example, the group of J. D.
Joannopoulos at MIT proved that high quality photonic crystal resonators can be very
effective in obtaining low-power optical bistable switching (Soljaci¢ et al., 2002), Second-
Harmonic Generation (SHG), and in modifying the bulk nonlinear susceptibility through the
Purcell effect (Soljacic¢ et al., 2004; Bravo-Abad et al., 2007).
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For nonlinear optics applications, the advantage of having a high-Q resonator is that its
modes are stored in the cavity for many optical periods: this provides a considerable
interaction time between modes and can be used to enhance parametric interactions.

WGM resonators are particularly well suited to attain high Q: for example, quality factors as
high as Q =5 x 106 and Q = 3.6 x 105 have been reported, at telecom wavelengths, for Si
(Borselli et al., 2005) and AlGaAs (Srinivasan et al., 2005) microdisks, respectively.

In a DFG process, two pumps of frequencies o1 and o; interact in order to generate a signal
at the frequency difference w3 = @1 — @y in this way, energy conservation is ensured at
photon level.

In this context, the exploitation of GaAs offers peculiar advantages with respect to other
materials. Apart from having a wide transparency range, large refractive index, and a huge
nonlinear coefficient, GaAs has in fact highly mature growth and fabrication technologies,
and offers attracting possibilities in terms of optoelectronic integration and electrical
pumping. On the other hand, due to its optical isotropy, GaAs-based nonlinear applications
normally require technologically demanding phase-matching schemes (Levi et al., 2002).
These are not necessary in the case of WGM resonators since, as theoretically demonstrated
for a second harmonic generation process (Dumeige & Feron, 2006; Yang et al., 2007), the
symmetry of a [100]-grown AlGaAs microdisk and the circular geometry of the cavity result
in a periodic modulation of the effective nonlinear coefficient experienced by the interacting
WGMs. This modulation can then be used to phase-match the pump and the generated
fields without additional requirements.

The evanescent coupling between a semiconductor microcylinder and a waveguide is a way
to excite two pump WGMs inside the microcavity. This technique has already been adopted
in our laboratory for the characterization of GaAs microdisks.

In Fig. 4 we report the top view of a cylindrical cavity of radius R side-coupled to a bus
waveguide used to inject two pump fields at @1 and w». The intracavity generated field could
be extracted by using a second waveguide, and the waveguide/microcavity distances can be
chosen to optimize the injection/extraction efficiency.

The difference frequency generation in a triply resonant microcylinder can be described
using the standard coupled mode theory.

The set of coupled mode theory equations describing this nonlinear process is (Haus, 1984):

da; . a, .| 2
1 =Jwqaq — f(l)t +J tot 51 _SlNL
dt L T

da2 g a, 2 2 NL

. T )®08y — S+ ] S TS 16
dt ot ot (16)
da; _. a3 _ NL

gt 19 —W—Ss

3

For the i-th resonant mode (i =1, 2, 3), a; is the mode amplitude normalized to its energy,
T =2Q" /o, is the total photon lifetime (including intrinsic and coupling losses). The
terms s; describe the external pumping, with |s;|2= P (P being the input power in the
bus waveguide).

The third equation is slightly different since the WGM field at w3, which is generated inside
the cavity, is not injected from the outside: its source is then constituted by the nonlinear



176 Recent Optical and Photonic Technologies

Fig. 4. Top view of a microcylinder coupled to an input waveguide.

term sy For typical values like the ones we will see in the following, the pump depletion
can be ignored, i.e. we can neglect the terms s withi=1,2.

In this way, putting a; = A,e’®" and looking for the steady state solution of the two pumps,
we find:

| '|2_ 4 QCP1 in
1 (1+Qcp1/th)2

Where QfPis the loss term due to the presence of the coupling to the waveguide, and Q™
the intrinsic quality factor, with 1/Q"* =1/Q™ +1/Q°?..

Equation (17) suggests that the power transfer from the waveguide to the cavity can be
adjusted by changing the coupling losses, i.e. by properly varying the distance between
waveguide and microcylinder and/or reducing the width of the waveguide. This transfer is
maximized under critical coupling (QfF' = Q).

The power fed into the mode at a3 1is:

(17)

p, =% j 5)- PN (@, )dV +c.c. (18)

where c.c. denotes the complex conjugate, and P! is the nonlinear polarization given by:

P (o SOZqu (01 B () (19)

By using equations (18) and (19) we can rewrite sy - in the form:
=150, )

where I, is the nonlinear overlap integral between the WGMs:

=g .[,ZXI,k (003 )E; (@7 JEx (@0, )dV 1)
ijk
with V the cavity volume and x@ the nonlinear tensor.
The 43m GaAs symmetry (Palik, 1999) and the growth axis in the [100] direction imply that
the overlap integral differs from zero only when two of the three WGMs are TE polarized
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and one is TM polarized. Moreover, the angular part of the integral in equation (20) can be
readily calculated, resulting in the phase-matching condition Am = m; +mz-m; +2 = 0.

The + 2 is due to the additional momentum provided by the periodic modulation of the x@
coefficient that comes from the circular geometry of the cavity.

Looking for the steady state solution of the field at a3, and taking into account equation (17),
we then find:

A 22(0)3/4)2 : 4 Qicpl IoV ZPin in 22
|As] (1/r§or)21;[ @; (1+Qicp1/Q§m)z| | P"P; 22)

Therefore, if the difference-frequency mode is extracted with an additional waveguide, and
under the hypothesis that the critical coupling condition is fulfilled for the three WGMs, the
generated power is:

2|A3|2 _1 o int

1 int ~in 2 5inpin
P3CP = 1 2tQ3t|Iov| P;"P, (23)
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On the other hand, if the intracavity-generated field is not coupled to any waveguide (it is
simply radiated) and under the hypothesis of critical coupling for the two pumps, we find:

2485 1 o, 1
rad

o 4o, pdfi/Qyd +y/Qp
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We see that, in both cases, the non linear efficiency is directly related to the overlap between
the three interacting fields and it is enhanced proportionally to the time the mode spend
inside the resonator: higher Q-factors result in a longer interaction time between the fields in
the nonlinear mixing.

4. Nonlinear GaAs Microcylinder for Terahertz Generation

4.1 Introduction

In the field of Terahertz spectroscopy there is a clear distinction between the broad-band
time-domain spectroscopy (TDS) and the single-frequency (CW) spectroscopy. In TDS, the
THz source is often a photoconductive dipole antenna excited by femtosecond lasers: by
Fourier transforming the incident and transmitted optical pulses, it is possible to obtain the
dispersion and absorption properties of the sample under investigation. This technique has
proven powerful to study the far-infrared properties of various components, like dielectrics
and semiconductors (Grischkowsky et al., 1990) or gases (Harde & Grischkowsky, 1991),
and for imaging (Hu & Nuss, 1995).

However, besides requiring costly and often voluminous mode-locked lasers, the principal
drawback of the THz TDS relies on its limited frequency resolution (Av ~ 5 GHz) resulting
from the limited time window (At ~ 100 ps), (Sakai, 2005).

On the other hand, narrow-band THz systems have found many applications in
atmospheric and astronomical spectroscopy, where a high spectral resolution (1-100 MHz)
is generally required (Siegel, 2002).

Among the large number of proposed CW-THz source schemes, it is worth mentioning at
least two. The first one, known as photo-mixing, makes use of semi-insulating or
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lowtemperature grown GaAs (Sakai, 2005). However, no significant progress in terms of
output power has been demonstrated in CW photoconductive generation during the last
few years, and the maximum output powers are in the 100 nW range.

The second CW scheme is the Quantum Cascade Laser (QCL) (Faist et al., 1994): in this case,
the photons are emitted by electron relaxations between quantum well sub-bands. The
original operating wavelength was A = 4.2 ym and was extended in the THz region (Kohler
et al., 2002). However, the main drawback of this kind of sources is that they are poorly
tunable and only operate at cryogenic temperatures.

An alternative and interesting approach for the generation and amplification of new
frequencies, both pulsed and CW, is based on second-order nonlinear processes: in this case,
the first THz generation from ultrashort near-infrared pulses was demonstrated in bulk
nonlinear crystals such as ZnSe and LiNbOs (Yajima & Takeuchi, 1970).

In 2006 Vodopyanov et al. demonstrated the generation of 0.9 to 3 THz radiation in
periodically inverted GaAs, with optical to THz conversion efficiencies of 1073
(Vodopyanov, 2006). With respect to terahertz generation in LiNbO3 (Kawase et al., 2002),
GaAs constitutes a privileged material choice, thanks to its large nonlinearity and inherently
low losses at THz frequencies (~ 1 cm™1). However, the periodically inversed GaAs sources
are neither compact nor easy to use outside research laboratories, since they require bulky
mode-locked pump sources. To avoid this technological complexity, it has been proposed to
exploit the anomalous dispersion created by the phonon absorption band in GaAs to phase
match a difference-frequency generation in the terahertz range (Berger & Sirtori, 2004).

In 2008 Vodopyanov and Avetisyan reported generation of terahertz radiation in a planar
waveguide: using an optical parametric oscillator operating near 2 pm (with average powers
of 250 and 750 mW for pump and idler), the THz output was centered near 2 THz and had 1
PW of average power (Vodopyanov & Avetisyan, 2008).

In the same year, Marandi et al. proposed a novel source of continuous-wave terahertz
radiation based on difference frequency generation in GaAs crystal. This source is an
integration of a dielectric slab and a metallic slit waveguide. They predicted an output
power of 10.4 pW at 2 THz when the input infrared pumps have a power of 500 mW
(Marandi et al., 2008).

In this section, we will present a CW, room-temperature THz source based on DFG from
two near-IR WGMs in a high-quality-factor GaAs microcylinder: these pump modes are
excited by the emission of quantum dots (QDs) embedded in the resonator.

The cavity, as sketched in Fig. 5, is a cylinder composed of a central GaAs layer sandwiched
between two lower-index AlAs layers, capped on both sides by a metallic film (e.g. Au).
This configuration provides both vertical dielectric confinement for the near-IR pump
modes and plasmonic confinement for the THz mode. The design stems from two opposite

Fig. 5. Sketch of a GaAs/ AlAs microcylinder.
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requirements on the thickness of AlAs layers, aimed at increasing the DFG efficiency:
maximize the overlap between the interacting modes, and prevent the exponential tails of
the near-IR modes from reaching the metallic layers, thus avoiding detrimental absorption
losses.

Fig. 6 shows an example of the pump and THz mode profile.
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Fig. 6. Example of the vertical near-IR (solid line) and THz (dashed line) mode profiles. The
wavelength are A = 0.9 pm e A = 70.0 pm for the IR e THz mode respectively.

The double metal cap allows to strongly confine the THz mode: with respect to a structure
with just a top metallic mirror, where the THz mode would leak into the substrate, this
allows to increase the overlap between the WGMs, thus improving the conversion
efficiency.

In the horizontal plane, the light is guided by the bent dielectric/air interface, which gives
rise to high-Q WGMs (Nowicki-Bringuier et al., 2007). The central GaAs layer contains one
or more layers of self-assembled InAs quantum dots, which excite the two near-IR modes,
and can be pumped either optically or electrically. The simultaneous lasing of these modes,
without mode competition, can be obtained thanks to the inhomogeneously broadened gain
curve of the QD ensemble, as observed for QDs in microdisks at temperatures as high as
300K (Srinivasan, 2005), and in microcylinders (Nowicki-Bringuier et al., 2007).

Fig. 7 shows the micro-photoluminescence (uPL) spectra of a 4 pm diameter pillar
containing QDs reported in (Nowicki-Bringuier et al., 2007). The number next to each peak
corresponds to the azimuthal number of a TE WGM excited by the QD ensemble emission.
The figure also shows that increasing the pillar diameter results in a reduced free spectral
range: if the structure diameter is big enough, it is possible to find two WGM whose
frequency difference lies in the THz range.

In order to find the WGM spectrum of the cavity shown in Fig. 5, we can use the effective
index method described in the previous sections: as demonstrated in (Nowicki-Bringuier et
al., 2007), this approach gives an excellent approximation for micropillar WGMs.
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Fig. 7. Left: experimental pPL spectra measured at 4K on a 4 pm diameter pillar. Right:
calculated (solid line) and observed (filled points) free spectral range versus diameter
(Nowicki-Bringuier et al., 2007).

Applying the coupled mode theory to the present case, we obtain the following equation for
the THz mode amplitude as:

da 1 1
3 _ . NL
=joza; —| T+ [a; +5; (25)
dt Tq 3

where 159 (1) represents the radiation (material absorption) limited photon lifetime.

Again, the sy term represents the nonlinear polarization source, and it is given by (20).

As mentioned before, in order to generate the third mode, we have to fulfill two conditions:
1. two of the three WGMs must be TE polarized and one TM polarized;

2. the phasematching condition Am = mj + m3 — m; + 2 = 0 must hold.

If A3 is the steady state solution of (25), the radiated THz power is:

2 rad
PBrad — 21A3| — @3 3 ]'~J1]J2|Iov|2

Tgad 4 (1+Q§ad /Qg\at)2 (26)
with Uy and U, the electromagnetic energy stored in the two pump WGMs and I, the
nonlinear overlap integral given by (21).

This shows that the emitted THz power is proportional to the energy of the pump modes,
and it can be increased by maximizing the overlap integral between the interacting WGMs.
As a final remark, we stress that the quality factor of the THz mode is mainly limited by
intrinsic (radiation and material) losses. Conversely, intrinsic losses are extremely small for
near-IR WGMs; therefore these modes will display experimentally quality factors that are
limited by extrinsic losses, such as scattering by sidewall roughness (Srinivasan et al., 2005;
Nowicki-Bringuier et al., 2007).

4.2 Numerical results

By numerically studying (Andronico et al., 2008) the structure of Fig. 5 with w = 0.325 pm
and h = 6 pm, we find that a radius R = 40.6 pm allows to phase-match two pumps near 1
pm (Ar = 0.923 pm and A\ = 0.936 ym) and a THz WGM with A; = 63.385 pm (i.e. v3 = 4.8
THz). The corresponding azimuthal numbers are m; = 917, m, = 913 and m3 = 2. For the two
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pump modes, we took AlGaAs dispersion into account according to the Gehrsitzs model
(Gehrsitzs et al., 2000).

Since the dipole of the fundamental transition in the InAs QDs is oriented in the
microcylinder plane (Cortez et al., 2001), the only WGMs excited by the QDs are TE
polarized. The THz WGM has then to be a TM mode.

Moreover, unlike quantum wells, the gain curve of QD ensembles is mostly broadened due
to QD size fluctuations (inhomogeneous broadening). For InAs QDs in GaAs, the latter is 60-
100 meV, and is centered around 1.3 eV (A = 0.95 pm), (Nowicki-Bringuier et al., 2007). Such
inhomogeneous broadening is thus much larger than the homogeneous broadening (10 meV
at room-temperature (Cortez et al., 2001)): this allows to have different WGMs
simultaneously lasing, with no mode competition (Siegman, 1986).

Under the hypothesis of Q = 105 for the two pump modes for AlGaAs microdisks with
embedded QDs, we can make important statements for our source: 1) its estimated
phasematching width, dictated by the finesse of the near-IR WGMs, is 3 GHz; 2) under the
conservative assumption of extracting 1 mW (corresponding to a circulating power of 16 W)
from each of the pump modes, the emitted THz power, calculated from equation (25), is
expected to be about 1 pW.

It is also interesting to observe that, at these pump powers, two-photon absorption does not
affect the performance of our device and can be safely neglected in the calculations.

Fig. 8 shows the far-field pattern of the source at room temperature obtained with a
semianalytic method developed following (Heebner et al.,, 2007). The emission is
concentrated at high angles, due to the strong diffraction experienced by the tightly
confined THz mode.
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Fig. 8. Far Field pattern of the THz microcylinder source at room temperature, emitting at As
= 63.4 pm. The inset shows the coordinate system used.

In Fig. 9 we report the effect of radius fabrication tolerance on the generated THz frequency,
for three different temperatures: the slight THz frequency shift resulting from non-nominal
fabrication is comparable to the phase-matching spectral width, and it is therefore
negligible. Once the temperature has been chosen, each point in Fig. 14 corresponds to a
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phase-matched triplet with fixed azimuthal and radial numbers on each curve (different for
each temperature).
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Fig. 9. Frequency deviation from nominal case v; versus radius tolerance, for three different
temperatures: 4K (circles), 296K (squares) and 316K (triangles).

A final remark concerns the wavelength range covered by this device: there are in fact two
independent factors that contribute to it. As previously stated, at 300K, the homogeneous
broadening of QDs is of the order of 10meV (Borri et al., 2001), which restricts the THz
generation to frequencies v3 > 2.4 THz. Emission at lower frequencies can be obtained by
reducing the QDs homogeneous broadening, at the expense of a low-temperature operation.
Conversely, the upper limit is set by the GaAs Rest-Strahlen band, i.e. v3< 6 THz.

In conclusion, this THz source is based on intracavity three-wave mixing between WGMs.
As compared to the other THz sources today available, it could have noteworthy
characteristics, such as: 1) room-temperature operation; 2) relatively high output power; 3)
compactness; and 4) fabrication simplicity.

5. Perspectives

Being based on a cylindrical geometry, our THz source results in a compact and solid
device, which provides a natural and elegant solution to combine the vertical confinement
of the near-IR WGMs and THz mode. The two mirrors optimize the spatial overlap between
the THz and the near-infrared modes, thus providing efficient conversion.

The presence of the QDs as active medium also allows, as an interesting perspective, to
electrically pump the two near-IR modes. This can be accomplished by modifying the
structure as shown in Fig. 10: the p-doped top and the n-doped bottom AlGaAs slabs allow
the current flow. Besides their use as mirrors, the metallic layers are then exploited as
external electrical contacts of the structure. Moreover, in order to selectively inject the
current in the outer part of the cylinder where the near-infrared WGMs are located, a highly
resistive region is defined by ion implantation in the central part of the cavity.
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Fig. 10. Side view and cross section of microcylinder for electrical injection.

Compared to the standard air-suspended microdisk, the microcylinder geometry comes
with a few crucial advantages, and it is well suited to achieve the high power lasing
necessary to increase the efficiency of the nonlinear conversion process. Indeed, the heat
sinking is significantly better than in air-suspended microdisks, where heating degrades the
lasing properties (mode shifts, power saturation).

Moreover, although electrical pumping of microdisk lasers has been reported (Fujita et al.
2000), the lasing performances are strongly limited by the fact that the current is injected
through the disk pedestal near the center of the microdisk. In the microcylinder geometry,
the current can be selectively injected at the circumference of the GaAs active layer, which
sustains the WGM modes.

Up to now, the lasing of WGMs in micropillars has been demonstrated only at low
temperature and under optical pumping. Structures enabling THz confinement and a
selective electrical injection at the edges of the microcylinder still need some technological
progress, in order to minimize the threshold current, and optimize the lasing properties of
the WGM modes under high injection conditions.

Although Q-factors in the 104 range have already been observed in similar structures
(Nowicki-Bringuier et al., 2007), further improvement would ameliorate the lasing
properties of the microcylinder, and increase the intensity of the near-IR light that is stored
in the cavity.

To conclude, it is worth stressing that our source offers other interesting possibilities, as
more long term developments: (a) the use of other semiconductors like the widely exploited
InGaAsP/InP system; (b) a microcylinder with a single top mirror: to vertically confine the
THz in the microcylinder a doped layer could be used below the AlAs layer, replacing the
bottom mirror. This configuration is technologically simpler to realize; however, the THz
mode would inevitably leak into the substrate, and we also expect a reduced efficiency due
to a reduced overlap integral; (c) the incorporation of a quantum cascade structure:
quantum cascade devices can simultaneously laser on two frequencies, without mode
competition (Franz et al., 2007). This dual emission could then provide the two pumps
needed in the DFG. Nevertheless, since the intersubband selection rules only allow TM
polarized light, we could not use the [100] direction as growth axis, but we could replace it
with the [111] direction (Berger & Sirtori, 2004); (d) a multi-spectral emission with
lithographically defined arrays of microcylinders; (e) the fabrication of phased-array
architectures by adjusting the distance between the microcylinders: this would allow to
control the far-field pattern of the device; (f) optical pumping the device by approaching a
fiber.
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1. Introduction

The terahertz (THz) frequency range is the region of the electromagnetic spectrum between
the microwave and optical bands spanning from 0.1 THz to 10 THz. Historically,
electromagnetic radiation in this frequency range has been inaccessible due to the lack of
widespread electronic or laser-based radiation sources. Electronic radiation sources such as
crystal oscillators are generally confined to operate at frequencies below ~ 100 GHz, while
laser radiation sources are generally confined to operate at frequencies above ~ 30 THz. In
recent years, the development of femtosecond lasers and quantum electronics have enabled
a wide range of implementations to both generate and detect THz radiation [14]. One of the
earliest and most widespread techniques is THz time-domain spectroscopy. THz time-
domain spectroscopy is based upon the generation of a broad-band, free-space THz
transient, which is detected using a femtosecond pulse to sample the THz electric field in the
time-domain. THz spectroscopic measurements are performed by illuminating materials
with a THz pulse and measuring the pulse after reflection from or transmission through the
material. The electromagnetic properties of the material are inferred from changes in the
amplitude and phase of the measured electric field pulse relative that of the incident electric
field pulse. THz time-domain spectroscopy has been applied in transmission mode to
characterize the THz-frequency optical constants of dielectrics and superconductors [5, 8, 15,
16] and in reflection mode to characterize the reflection amplitude and associated phase
change due to semiconductors such as InSb [6] and highly doped silicon [17, 18].

The implementation of THz time-domain spectroscopy requires that the reflected/
transmitted THz pulse undergo measurable transformation upon interacting with the
material; spectroscopic measurements made in transmission mode require that the
investigated material exhibit partial transparency to THz radiation (that is, some radiation
must pass through the material), while spectroscopic measurements made in reflection
mode require that the material exhibit partial reflectance to THz radiation (that is, the
reflected radiation must be altered relative to the incident radiation). Highly reflective
materials such as bulk metals are not amenable to THz time-domain spectroscopy in either
transmission or reflection modes. Due to the large and negative real part of the relative
permittivity of most metals at THz frequencies (where typically Re[g(w) ~—10°]), incident

THz radiation penetrates only a short, subwavelength distance § ~ 100nm into the surface of
the metal and nearly all the incident electromagnetic energy is reflected. The high
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reflectivity of bulk metals at THz frequencies precludes transmission-based measurements,
and the short penetration distance of THz electromagnetic radiation into bulk metal limits
the amplitude and phase change observable in a reflection measurement.

While bulk metals (defined as materials composed of a continuous, conducting medium
with physical dimensions much greater than the wavelength) are completely opaque to THz
radiation, dense collections of subwavelength sized metallic particles have been shown to
exhibit partial transparency at THz frequencies [2, 3]. This transparency is unexpected since
the particles that constitute the ensemble are composed of a material that is opaque to THz
radiation and the particles are densely packed in a manner which precludes direct THz
propagation through the ensemble. The objective of this Chapter is twofold: 1) we will
explore the physical mechanisms underlying the THz transparency of metallic particle
ensembles through experimental evidence supported by simulation and 2) we will
demonstrate the application of THz time-domain spectroscopy to study the effective optical
constants of a metallic sample. First, the THz electromagnetic response of a single, isolated
metallic particle is modeled using finite difference time-domain (FDTD) calculations of the
Maxwell Equations. FDTD calculations are then applied to model THz electromagnetic
wave interaction with a dense collection of metallic particles, where it is shown that THz
electromagnetic propagation through the particle ensemble is mediated by near-field
electromagnetic coupling between nearest-neighbor particles across the ensemble. The
influences of the extent of the ensemble L and the particle size d on the THz transparency are
experimentally tested using THz time-domain spectroscopy in transmission mode and the
experimental evidence is compared with numerical simulations based on FDTD
calculations. THz time-domain spectroscopy is then applied in transmission mode as a non-
invasive, direct probe of the effective dielectric properties of a metallic particle ensemble.
The sensitivity of this methodology for probing metallic media is tested by monitoring the
properties of the ensemble during the liquid-solid phase transition of the metallic medium.

2. Single subwavelength metallic particle

The electromagnetic response of a single, subwavelength metallic particle excited by a THz
electromagnetic wave is governed by two sequence of events: 1) the THz electromagnetic
wave incident on the particle surface penetrates 6 ~ 100nm into the metal where it induces
charge motion and subsequently, current density, and 2) a dipolar electric field, also known
as a particle plasmon, is formed by the accumulation of negative and positive charge at
opposite sides of the particle’s surface. At the surface of the particle, the dipolar electric field
induced by excitation of the particle is oriented normal to the particle surface and has a net
orientation along the direction of the incident electric field.

To visualize the electric fields associated with the THz particle plasmon, the electromagnetic
response of a single, isolated subwavelength metallic particle to electromagnetic wave
excitation is studied using the FDTD method to solve the Maxwell equations in two
dimensions. In the FDTD method, the material properties of each spatial grid point in the
simulation space are independently specified, and the complete spatial and temporal
evolution of the electric and magnetic fields are solved. Shown in Fig. 1 is a series of
snapshots of the electric field amplitude distribution obtained from an FDTD calculation
describing a THz electromagnetic pulse (with spectral contents centred at 0.6 THz and a 1
THz bandwidth) incident on a single copper particle having a diameter d = 75 ym immersed
in free-space. In the calculations, the THz pulse propagates upward from the bottom of the
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Fig. 1. Images of a FDTD calculation modeling single-cycle THz pulse excitation of an
isolated 75 ym diameter copper particle (A) prior to excitation, (B) at 0.0 ps, (C) at 3.5 ps, and
(D) at 8.5 ps.

images and is polarized in the plane of the images (transverse magnetic or TM). The images
in Fig. 1B to 1D correspond to snapshots of the THz electric field magnitude at various times
in the progression of the simulation. At ¢t = 0.0 ps, the single-cycle polarized THz pulse
propagates towards the subwavelength sized metallic particle, and when the THz pulse
overtakes the particle at 3.5 ps, negligible THz electric field amplitude is present inside the
particle, since the skin depth (penetration distance) of the THz electromagnetic wave is
significantly less than the particle diameter. At 3.5 ps, the electric field amplitude can be
conceptually divided into contributions from the external THz pulse and the electric field
amplitude arising from the induced charges at the particle’s surface. In this frame of the
simulation, it is not possible to separate the external and induced-charge contributions to the
total electric field amplitude. After the passage of the THz electric field pulse at 8.5 ps of the
simulation, the electric field amplitude (Fig. 1D) and vector electric field (Fig. 2A) arising
from the charges induced on the particle by the external electromagnetic wave can be
visualized. At this snapshot after the THz pulse has propagated past the particle, the
remnant electric field around the particle is confined to the surface and exhibits dipole-like
signatures. Such a surface field is attributed to the excitation of charge oscillations on the
particle oriented along the polarization of the external THz electric field. By taking the
divergence of the electric field distribution, the charge density distribution associated with
the dipolar electric fields can be obtained. As shown in Fig. 2B, the induced charge density
illustrates dipolar charge induction by the incident THz pulse, where positive and negative
charge density accumulate at opposing sides of the particle along the direction of the
incident THz pulse polarization. The induced charge densities are coupled to an
electromagnetic field confined to the surface of the particle. The dipolar electric field
(highlighted in Fig. 3) associated with the induced charge density is strongest directly above

the surface of the particle and decays exponentially within a distance of ~ 250 ym. This

distance is less than the central wavelength of the THz pulse, A = 500nm, indicating that the
surface fields are confined to within a subwavelength region in the vicinity of the particle.
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Fig. 2. (A) Vector plot of the electric field in the vicinity of a 75 ym copper particle after
excitation by a single-cycle THz pulse at 8.5 ps of the simulation shown in Fig. 1. (B)
illustrates the corresponding dipolar charge distribution at the surface of the particle.
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Fig. 3. Calculated amplitude of the electric field outside the surface of a 75- ymdiameter
copper particle after excitation by a single-cycle THz pulse (which has propagated past the
particle) with respect to the distance from the particle surface.

3. Ensemble of subwavelength metallic particles

In a collection of closely-spaced subwavelength metallic particles, electromagnetic
interaction between the particles plays an important role in the overall electromagnetic
properties of the ensemble. Since the particles are electromagnetically coupled, each particle
is excited by the external electric field in addition to the field scattered from all the other
particles. The complex interactions between metallic particles make it difficult to analytically
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describe the electromagnetic properties of the ensemble. One common technique to
determine the electromagnetic properties of subwavelength metallic particle collections is
via effective medium approximations [1, 11]. The effective medium approximation replaces
an inhomogeneous medium with a fictitious homogeneous effective medium which
expresses the linear response of the whole inhomogeneous sample to an external electric
field. Thus, rather than laboriously describing the microscopic interactions between the
constituents, the entire heterogeneous medium is described by a single effective parameter.
Effective medium approximations have been employed to derive the homogeneous optical
parameters of metallic clusters and metamaterials with subwavelength features [19]. The
validity of effective medium approximations is governed by the quasi-static approximation,
wherein the electric and displacement fields throughout the heterogeneous medium must be
approximately uniform. To illustrate, consider a subwavelength metallic sphere having a
diameter of d. The sphere is centred at z = 0 and illuminated by an electromagnetic plane-
wave from free-space. For the field amplitude within the particle to be uniform, there must
be minimal absorption over the particle dimension, or

zlm[/e(w)] < 1 1)

where Tm[y/e(w)] is the imaginary part of the complex refractive index of the metal and
z = wd/X is the size parameter. Similarly, there must be minimal spatial variation of the
electromagnetic wave in the sphere, which implies that the wavelength inside the sphere is
much greater than the particle size, or

zRe[Ve(w)] < 1 )

where Re[/€(w)] is the real part of the refractive index of the metal. Combining the
inequalities Egs. 1 and 2 gives the condition in which the quasi-static regime is valid

z|VeW)| <1 ®)

Eq. 3 can be applied to test the applicability of field-averaging for micron-scale particles
excited by electromagnetic waves at THz frequencies. Assuming a spherical copper particle
with a diameter of 75 ym and a metal permittivity €c, (w) (1 THz) ~ =104 + —105 excited by
an electromagnetic wave with a wavelength of 300 ym (corresponding to a frequency of 1
THz)

x‘\/m‘=248>1. @

Thus, field averaging techniques to derive effective homogeneous parameters cannot be
applied to describe the optical properties of micron-scale metallic particle at THz frequencies.

Since field-averaging cannot be used to effectively homogenize the THz electromagnetic
response of the dense metallic particle ensembles, electromagnetic interactions within the
ensemble are simulated rigorously using FDTD calculations of the Maxwell Equations in
two dimensions. The structure used in the simulation is a randomly generated ensemble of
copper particles in an air ambient that have a circular cross section with a diameter d = 75
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pm. The particles are randomly packed to achieve a packing fraction p = 0.56 and the
ensemble size is 5mm x 5mm, as depicted in Fig. 4A. In the simulations, a single-cycle THz
pulse (with spectral contents centred at 0.6 THz and a 1 THz bandwidth) is normally
incident on a flat face of the ensemble and the transmission through the opposing flat face of
the ensemble is measured.

B

Fig. 4. (A) Simulation geometry in which an ensemble of 75- ym diameter copper particles
with a volume fill fraction of 0.56 is excited by a TM-polarized THz electromagnetic pulse.
Snapshots of the THz electric field magnitude within a random 5mm x 5mm ensemble of
copper particles at times (B) 0 ps, (C) 5 ps, (D) 10 ps, (E) 18 ps, and (F) 21 ps.
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Examination of the dynamics of the internal electric field amplitude obtained from the
FDTD calculations shed insight into the mechanism underlying the propagation of THz
electromagnetic energy through the particle ensembles. Figs. 4B to 4F depict snapshots of
the spatio-temporal evolution of the electric field amplitude due to excitation of the
L = 5mm ensemble by the THz pulse at representative times, t. At ¢ = 0 ps, the polarized
THz pulse is incident on the particle ensemble, and at ¢ = 5 ps, the pulse couples into
particle plasmons on the individual particles, evidenced by the high electric fields near the
surfaces of the particles. The snapshots at time ¢ = 10 ps and ¢ = 18 ps show that significant
electromagnetic energy is squeezed in the free-space gaps between the particles, while there
is negligible field penetration into the individual particles. Collectively, the particles carry
electromagnetic energy over the extent of the ensemble, evidenced by a wave-front which
appears in the simulation as a large-electric-field-amplitude band progressing through the
medium. By tracking the wavefront as it advances through the system, an electromagnetic
energy velocity of 0.51¢ is measured. At ¢ = 21 ps, this leading wave-front approaches the
far boundary of the ensemble and radiates into free-space. The simulations demonstrate that
a THz electromagnetic wave in a dense metallic particle ensemble is squeezed into the
subwavelength-scale interstitial gaps of the metallic particle ensembles, yet can propagate
through large, millimetre-scale distances and at the back face of the ensemble, radiate into
free-space.

4. THz time-domain spectroscopy of metallic particles

In this section, the THz electromagnetic properties of an ensemble of subwavelength sized
copper particles are studied using THz time-domain spectroscopy in transmission mode.
The metallic particle ensemble consists of pure copper particles that are spherical in shape
and nearly mono-dispersed in size, with a mean particle diameter d = 75 ym and a volume
metal packing fraction (volume ratio of metal to the entire volume of the ensemble) p = 0.51
immersed in air. A scanning electron microscope image of a dispersed collection of the
particles is shown in Fig. 5. The THz transmission through the particle ensemble is
measured with the experimental configuration depicted in Fig. 6. Single-cycle, linearly
polarized THz pulses, with spectral contents centred at 0.6 THz and a 1 THz bandwidth, are
generated from a GaAs photoconductive switch excited with focused < 20 fs, 800 nm laser
pulses supplied from a Ti:Sapphire laser at a repetition rate of 80MHz. The collimated THz
beam is directed towards a sample cell, which is composed of THz-transparent polystyrene
windows with variable separation distance L, that houses the metallic particle ensemble. The
time-domain electric field transmission in addition to polarization of the transmission is
measured to characterize electromagnetic wave transport through the medium. The on-axis
THz electric field pulse transmitted through the ensemble is coherently detected via an
optically gated 500 ym thick (111) ZnSe electrooptic crystal, and time-resolved information
is obtained by varying the delay between the THz pulse and a sampling probe pulse.

Significant THz transmission through the particle ensemble is measured for sample
thicknesses, L, up to 7.7 mm, where nearly 20% transmission is observed for the thinnest L =
0.6-mm ensemble. Fig.7 depicts the time-domain THz electric field pulses transmitted
through particle ensembles over the range 0.6mm < L < 7.7 mm referenced to the
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Fig. 5. Scanning electron microscope image of a dispersed collection of copper particles with
an average diameter of 75 ym.
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Fig. 6. Schematic of the free-space THz generation and electro-optic detection setup used to

characterize the THz electric field transmission through the metallic particle ensembles.

transmission through an empty sample cell. Due to the opacity of the particles, the
subwavelength-scale of both the particle size and average inter-particle spacing, and the
long extent of the ensemble relative to the wavelength, the measured THz transmission
cannot arise from direct, line-of-sight electromagnetic propagation through the particles. In
general, the time-resolved signals are characterized by several broad oscillations, which are
relatively delayed as L increases. The reference pulse (corresponding to the pulse that is
incident on the ensembles) is localized in time (within ~ 1 ps); upon impulsive excitation of
the sample, it requires a finite time for energy to propagate through the sample. To estimate
the energy propagation velocity from one end to the sample to the other end, the relative
delay of the transmitted field is measured. Here, the delay corresponds to the time
difference between the centroid of the time-domain intensity distribution of the reference
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Fig. 7. Time-domain waveforms of the far-field THz transmission through ensembles of
copper particles with lengths ranging from L = 0.6 mm to L = 7.7 mm.

pulse and the centroid of the time-domain intensity distribution of the transmitted pulse.
Shown in Fig. 8 is the relative pulse delay as a function of sample thickness, referenced to an
equivalent air path. The measured delay translates to an electromagnetic energy velocity of
0.51+0.01c or an effective refractive index of 2.0+0.1. It should be noted that the effective
macroscopic index reported here describes the overall response of the metallic particle
ensemble to THz electromagnetic wave excitation, but is not derived from the effective
medium approximation. As L increases from 0.6 to 7.7 mm, the durations of the transmitted
electric field pulses are broadened from 2 ps to 6 ps. The pulse broadening, which increases
with larger values of L, is indicative of a preferential amplitude reduction in the higher
frequency components of the incident pulse. Due to the absence of significant intrinsic
material resonances for bulk copper at THz frequencies, the preferential loss of higher
frequency components likely originates from the scattering due to the extrinsic structural
characteristics of the random metallic medium.

The experimentally measured relative delay of the THz transmission is compared with
results obtained from FDTD calculations in Fig. 8. It should be noted that the packing
fraction of the sample in the calculations (0.56) is larger than the experimentally measured
packing fraction of the sample used in the experiments (0.51). Augmenting the packing
fraction in the two-dimensional system in the simulations effectively increases the surface
area of the particles, which more accurately accounts for non-radiative losses occurring at
the surface of the three-dimensional particles used in the experiments. As shown in Fig. 8,
the relative delay of the THz transmission obtained from FDTD calculations demonstrates
excellent agreement with experimental observations. The linear increase in the relative delay
with respect to the sample thickness indicates that the THz transmission is mediated by a
phase accrual across the length of the ensemble. By increasing the length of the sample, the
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THz electromagnetic wave interacts with a greater number of particles, which augments the
delay in the measured transmission.
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Fig. 8. The relative delay of the transmitted THz pulse through the copper ensembles with
respect to the thickness of the ensemble obtained from experiment and simulation.

The polarization of the electric field transmitted through the particle ensemble provides
further insights into the origin of the THz transmission. Comparison of the polarization of
the transmitted THz pulse with the linear polarization of the incident THz pulse maps the
degree of coherence of electromagnetic energy transport across the ensemble by onto a
polarization change. A high correlation between the incident and transmitted polarizations
would indicate a high degree of electromagnetic coupling between the incident and
transmitted electric fields, whereas a low correlation would indicate a low degree of
coupling. The transmitted electric field polarization is characterized by varying the angular
orientation of the optical axis of the (111) ZnSe crystal electro-optic detector relative to the
probe polarization. Fig. 9 illustrates polar plots of the intensity distribution of the free-space
THz pulse incident onto the sample, in addition to those of the transmitted THz pulse
through 2.2-mm thick and 7.7-mm thick ensembles of copper particles. The ensembles are
composed of copper particles that have a mean diameter of 75 + 5 ym and a packing fraction
of 0.51 £ 0.05. As highlighted in Fig. 9B, the THz electric field pulse transmitted through the
2.2-mm thick ensemble shows a high degree of polarization preservation of the incident
horizontal, linear polarization of the incident pulse. As the sample thickness increases to
7.7mm (Fig. 9C), the transmission becomes more unpolarized. Polarization preservation of
the transmission through the 2.2-mm thick ensemble indicates that at this thickness value,
the THz transmission is predominantly mediated by coherent coupling across the ensemble.
The diminishing polarization purity of the transmission as the sample thickness increases to
7.7 mm is attributed to augmented scattering of the THz electromagnetic wave, which
randomizes the polarization and impairs the correlation between the incident and
transmitted electric fields. From the data, it is inferred that the coherence length of
electromagnetic transport across the ensemble, delineating a length scale below which the
incident and transmitted electric fields are highly correlated, is on the order of several
millimetres.
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Fig. 9. Polar plot of the intensity distribution of (A) the incident THz pulse and the
transmitted THz pulse through (B) a 2.2-mm thick and (C) a 7.7-mm thick ensemble of
copper particles.

When a THz electromagnetic wave is incident on a subwavelength sized particle, a portion
of the incident energy is coupled into the particle plasmon (as illustrated by simulation in
Section 1) and a portion of the incident energy is scattered by the particle. Intuitively, the
amount of electromagnetic energy “lost” to scattering from the metallic particle should be
proportional to the cross-sectional area of the particle. As the particle cross sectional area
increases, a larger portion of the incident electromagnetic energy is reflected and less
electromagnetic energy is coupled into the localized particle plasmon at the surface of the
particle. In the limit where the cross-sectional area of the particle is infinite, the incident
electromagnetic wave encounters a bulk metallic surface and is completely reflected. To
further investigate the origin of the THz transparency of metallic particle ensembles, the
influence of the particle size on the THz transmission is studied. The relationship between
the particle size of the ensemble and the THz transparency of the ensemble is studied using
THz time-domain spectroscopy in transmission mode, where the THz electric field
transmission is measured through several particle ensembles of fixed length (and fixed
packing fraction) composed of copper spheres with average diameters of 85+ 9 ym, 194 + 9
pum, 250 £ 10 pm, 283 + 8 ym, 372 + 17 um, 462 + 17 ym, 560 = 15 ym, and 670 + 30 ym. In
reporting the particle sizes, the nominal size corresponds to the average particle diameter
and the error represents one standard deviation.

Shown in Fig.10 are the time-domain waveforms, the associated Fourier spectra, and the
total integrated power of the transmission through copper particle ensembles where the
particle sizes range from 85+9 ym to 670+30 ym. The thickness of the ensemble is kept
constant at L = 3.0 mm throughout the experimentation. As the average particle size
increases from 85 ym to 372 um, the THz electric field transmission amplitude is
dramatically reduced and is nearly zero for particles with diameters exceeding 462 pm.
Associated with this attenuation is a shift in the central frequency of the transmission from
0.1 THz to 0.08 THz, indicating a preferential attenuation of the higher frequency
components of the THz pulse (Fig. 10B). The preferential attenuation associated with the
increasing particle size is due to the frequency-selective particle plasmon response of the
particles. As the particle size increases, the shorter wavelength (higher frequency)
components of the incident THz pulse cannot efficiently polarize the individual particles
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and do not excite the particle plasmon mode. As a result, the higher frequency components
do not couple across the medium and are not radiated into the far-field.
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Fig. 10. (A) Time-domain waveforms of the far-field THz transmission through a 3.0-mm
thick ensemble of copper particles with average particle diameters ranging from 85 ym to
670 ym. (B) Power spectra of the transmission through the particle ensembles normalized by
the power spectrum of the incident THz pulse. (C) Total integrated transmitted power
through the particle ensembles with respect to the average diameter of the particles that
constitute the ensemble.

Fig.11 illustrates polar plots of the intensity distribution of the transmitted THz radiation
through a L = 3 mm thick ensemble of densely-packed copper particles with mean diameters
of 85 uym, 283 ym, and 372 uym. For the ensemble of 85- ym diameter particles, the
transmission polarization preserves the incident linear polarization, indicating a high degree
of electromagnetic coupling across the ensemble. The diminished polarization of the
transmission through the ensemble of 283- ym diameter particles indicates reduced
electromagnetic coupling. This observation coincides with a four-fold reduction in the
transmitted intensity through the ensemble of 283- ym diameter particles relative to that of
the 85- ym diameter particles.
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Fig. 11. Polar plot of the intensity distribution of the THz pulse transmitted through a 3.0-
mm thick ensemble of copper particles with average diameters of (A)85 um, (B)283 ym, and
(©)372 ym.

The transmission through the ensemble of 372- ym diameter particles is nearly unpolarized,
indicating that the transmitted energy is not coherently channeled across the extent of the
ensemble. For the ensemble of 372- ym diameter particles, the transmitted intensity is almost
fully extinguished.

The effect of the particle diameter on the polarizability of a single, isolated metallic particle
(which is indicative of the degree of coupling to the particle plasmon mode of the particle) is
illustrated via FDTD calculations of two situations in which a single, isolated metallic
particle with a diameter of either 75 ym or 200 ym is excited by a THz electromagnetic pulse
from free-space. The excitation pulse is a single-cycle THz transient centred at 0.6 THz with
a 1 THz bandwidth, matching the THz pulses employed in previous experiments and
simulations. In these simulations, the single-cycle THz pulse propagates upward toward the
metallic particle. To map out the charge density induced by the external THz electric field
pulse, the induced charge density distribution is calculated by taking the divergence of the
vector displacement field distribution. Fig. 12 illustrates the instantaneous induced charge
density distribution at the surface of the two particles after THz pulse excitation taken at the
same time. For the 75- ym diameter particle, the THz electric field pulse induces a dipolar
charge density distribution where conduction electrons at the surface of the two halves of
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Fig. 12. FDTD calculation of the induced charge density distribution of a (A) 75- ym
diameter particle and (B) 200- ym diameter particle after excitation by a single-cycle THz
pulse in free-space.
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the particle oscillate anti-parallel. As the particle size increases to 200 ym, the predominant
polarization mode induced by the THz electric field pulse is quadrupolar. The magnitude of
the charge density distribution for the larger particle is significantly weaker than the dipolar
charge density distribution of the smaller particle. The peak charge density of the
quadrupolar distribution is reduced to ~ 0.6 relative to the peak charge density of the
dipolar distribution. The larger metallic particle is not efficiently polarized by the incident
THz pulse, since a significant portion of the incident pulse is reflected by the larger particle
and only the lower frequency components of the pulse can polarize the particle. In an
ensemble of particles, this effect leads to a preferential reduction in the transmission of
higher frequency components and an overall reduction in the total transmitted power.

5. Phase-transition THz spectroscopy of metallic particles

Terahertz time-domain spectroscopy is applied to study intrinsic, temperature-dependent
phase transitions in a metallic particle ensemble. A phase transitions is defined as a
transformation of a thermodynamic system from one phase to another. A distinguishing
feature of phase transitions is an abrupt change in one or more physical properties of the
material with a small change in a thermodynamic quantity such as temperature. For instance,
when the specific energy of a metal is raised to the latent heat of fusion, the metal changes
from the solid phase to the liquid phase. The microscopic mechanism for melting can be
understood by considering the motions of ions in the solid and liquid states. Prior to melting,
the ions that constitute the metal remain relatively fixed in the vicinity of their equilibrium
positions. As the metal is heated above the melting temperature, the ions acquire enough
energy leave their equilibrium positions and wander relatively large distances, resulting in a
liquid state. Melting of solid metal is a typical example of a first order phase transition. First
order phase transitions are those in which the substance releases or absorbs heat energy
during the phase change. Since the energy cannot be absorbed or released instantaneously by
the substance at the phase transition temperature, first order phase transitions are
characterized by a mixed phase regime in which different phases of the medium coexist.

To date, metallic phase transitions are widely investigated using calorimetry techniques,
such as AC- calorimetry [7]. A disadvantage of this method is that an invasive physical
contact is required to accurately measure heat flow through the metallic sample. To
overcome this constraint, several groups [9, 12, 13] have employed the photo-acoustic effect
to non-invasively probe metallic phase transformations. In such experiments, phase
transition modulates the acoustic signal generated at the surface of a sample when a
surrounding ambient gas has been heated by a periodically modulated light beam.
However, such mechanism requires a gas that is highly absorbing to the illuminating light,
and interpretation of the acoustic signal is restricted by the complex nature of heat transfer
between the solid metallic sample and surrounding gas [13]. Gallium is a unique metallic
element existing at room temperature as solid a-Ga consisting of a mixture of stable
molecular and metallic phases. Solid a-Ga is a complex phase described as a metallic
molecular crystal with strong Ga; bonds and weaker intermolecular forces, whereas liquid
gallium is more free-electron like [4]. At a free-space wavelength of 1.55 ym, the permittivity
of liquid gallium has been estimated to be approximately 7 times larger than the
permittivity of a-Ga [10]. Gallium possesses one of the lowest melting points of all metals T
= 29.8C° which provides an ideal platform to study metallic solid-liquid phase
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transformation behavior via THz time-domain spectroscopy. Gallium particles are prepared
by cooling bulk 99.99% gallium pellets to 77K and mechanically grinding the gallium pellets
to achieve a powder having an average particle size of 109 + 10 ym and a packing fraction of ~
0.4 + 0.1. In order to probe the phase transition of the gallium, THz time-domain spectroscopy
in transmission mode is employed to monitor the effective optical properties of an ensemble of
gallium particles as the temperature of the particles is raised past the melting point.

In the experimental setup, THz radiation is focused onto a polystyrene sample cell housing
a L = 2.3mm thick collection of the random gallium particles. To examine the temperature-
dependent THz transmissivity of the particles, the gallium particles are homogeneously
heated, at a rate of 0.08 C°/min, from room temperature up to a temperature, T, of 38.2 C°
(> Tm). Because the time over which the temperature increases is much longer than the heat
diffusion time across the thin sample (< 1 s), it is ensured that the sample temperature is at
equilibrium during the transmission measurements. The particles ensemble temperature is
monitored (within £0.1 C°) via a thermocouple inserted into the particle collection adjacent
to the THz beam probing spot. During the measurements, both the beam spot size and
location are kept fixed, thus ensuring that the THz radiation interacts with the same random
realization of the particle ensemble throughout the temperature variation.

Melting is a thermal effect, and the temporal duration over which melting occurs is
determined by the time over which heat can diffuse and equilibrate throughout the sample.
The experiments are carefully designed and performed at an extremely slow heating rate
(0.08 C°/min) in order to ensure that equilibrium conditions are established through the
measurements. To quantify this condition, the heat diffusion times are estimated for both
gallium metal (a lower bound) and air (an upper bound) through a distance of 2.3 mm
corresponding to the sample thickness. Gallium has a thermal conductivity H; =
40 WK-1m™1, a density u = 5910 kgm™3, and a heat capacity C = 25.86 Jmol-1 K-1. For air, H;=
0.02WK-Im™, u = 1.251 kgm= and C = 29.12 Jmol-1 K-1. From these quantities, the thermal
diffusivity is obtained from

Di= Hyu1 C1. ®)

For a sample composed of gallium D:= 1.9 x 10-5m?/s and for a sample composed of air D:=9
x 1076 m2/s. The characteristic diffusion time over a distance L is estimated by taf = L%/D;,
yielding taijy = 0.6 s for a sample composed entirely of gallium and tuir = 0.28 s for a sample
composed entirely of air. The sample used in the experiments is a mixture of air and gallium,
and the characteristic heat diffusion time for the sample will lie between those bounds. To
obtain an upper bound of time lagged thermal effects, we assume that it requires 0.6 s for heat
to diffuse from one end of the sample to another. Over this time interval, a time-lagged
temperature increase of 0.08 C°/min x0.6 s = 0.0008 C°(« error in the temperature
measurement) may develop across the sample. Since the time over which the temperature of
the sample increases is much slower than the heat diffusion time across the sample thickness,
it can be confidently concluded that the samples have reached thermal equilibrium as the THz
time-domain spectroscopic measurements are taken. Fig. 13A illustrates the time-domain THz
electric field waveforms, E(f), transmitted through gallium particle collections measured at
various temperatures. Notably, for temperatures below the melting point (T < Tw), the bipolar
pulses transmitted through the particle collection all have an initial peak at a time ¢ = 3.1 ps.
The fact that the arrival delay, the amplitude, and the pulse shape of the transmitted pulses do
not change throughout the temperature range 22.4 C° < T < 29.7 C° suggests an absence of
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phase transformation or any changes to the gallium metallic properties. However, once the
temperature reaches the melting temperature of 29.9 C°, a temporal advancement (or early
arrival) of the pulse peak by 0.3 ps provides evidence of the onset of a significant
transformation in the electronic properties of the gallium particles. Although the pulse
corresponding to T = Tm = 29.9 C° is temporally advanced, interestingly, the pulse shape
remains unaltered at Tm. Further heating of the gallium particles from 29.9 C° to 38.2 C° induces
striking pulse shape transformation where the pulse is attenuated and broadened in time.
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Fig. 13. (A) Experimental time-domain waveforms of THz pulses transmitted through 2.3-
mmthick random gallium particle ensembles measured at various temperatures. The dashed
line indicates the arrival time of the peak of the THz electric field pulse. Shown in (B) are the
effective real refractive index change and (C) effective imaginary refractive index change
versus temperature and frequency. The refractive indices are measured relative to the
reference pulse transmitted through the sample at 21.2 C°.

Accompanying the temporal pulse shape trend with increasing temperature is a marked
progressive delay and attenuation of E(f). The pulse temporal shape, delay and amplitude
trends for T > Tw suggest conglomeration between adjacent, near-touching gallium particles.
Because the THz transmission through the particle collections is mediated by nearest
neighbor coupling between particles, conglomeration of the nearest-neighbor particles
quenches radiation propagation mechanism. As the particles coalesce, the particles become
larger and begin to exhibit metallic bulk-like electromagnetic properties, resulting in
reduced transmission amplitude. Similarly, particle conglomeration results in a higher metal
filling fraction, which increases the effective index of the particle ensemble and manifests as
a temporal delay of the transmitted pulse.

To further explore the temperature-dependent evolution of the waveforms, the frequency-
dependent relative effective refractive index inferred from the amplitude and phase of the
transmitted THz electric fields relative to a reference THz electric field is analyzed. The
effective real refractive index change
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are obtained as a function of temperature, T. In these relations, ®(w), ®ref (w), E(w), and
Eref (w) are the phase of the transmitted pulse, the phase of the reference pulse transmitted
through the sample at Tws = 21.2 C°, the amplitude of the transmitted pulse, and the
amplitude of the reference pulse, respectively. Shown in Fig. 13B and 13C are ARe[n] and
Alm[n] with respect to T over a frequency range between 0.1 THz and 0.2 THz
(corresponding to the bandwidth of the transmitted pulse). As shown in the plot, there is
negligible refractive index change between the temperature range 21.2 C° < T'< Tm. At Tm=
29.9 C°, ARe[n] decreases abruptly. As shown in Fig. 13B, this sharp discontinuity in ARe[n]
precisely at T'm is consistent over the entire transmission bandwidth. The abrupt, frequency-
independent change in ARe[n] suggests that the intrinsic electronic properties of gallium
have been altered at 7w and is strongly indicative of metallic phase transformation.
Interestingly, the onset of phase transition eludes detection in AIm[n], as AIm[n] remains
approximately zero up to 7 =~ 30.5 C°. With further increase in the sample temperature
above 30.5C° both ARe[n] and AIm[n] show large increases over the transmission
bandwidth as a function of T. These significant increases in the complex effective refractive
indices of the ensemble show that the particle ensemble becomes less transparent to the THz
pulse for T' > Twm due to coalescing of nearest-neighbor particles. The strikingly different
effective refractive index features for the range T'< Tw, T =~ Tw, and T > 30.5 C° highlight
three distinctive regimes where 1) the particles have not melted (constant ARe[n] and
Alm[n]), 2) the particles have melted but remain granular (discontinuity in ARe[n], but
constant AIm[n]), and 3) the particles have melted and are coalesced (large increases in both
ARe[n] and AIm[n]).

The temperature-dependent ARe[n] and AIm[n] trends at two frequencies, w1 = 0.1 THz and
w2 = 0.2 THz are charted in Figs. 14A and 14B. As shown in Figure 14A, for 21.2C° < T <
29.9 C°, ARe[n] is nearly zero. Upon reaching 7', the real part of the relative effective index
exhibits a notably large, discontinuous jump of —0.06, indicative of an abrupt change in the
intrinsic properties of gallium associated with metallic solid-liquid phase transformation.
Above the melting temperature, ARe[n] is strongly affected by conglomeration of the
particles, which changes the underlying extrinsic microstructure of the ensemble. This
extrinsic effect influences the effective index of the ensemble in a different way than the
intrinsic metallic phase transition at Tm. For T > Tw, ARe[n] increases from —0.06 to ~ 0.3
between 29.9 C° and 33.0 C° and beyond 7 > 33.0C° is constant at ~ 0.3. Particle
conglomeration occurring at 7 > Tw increases the effective real refractive index of the
ensemble, causing the arrival delay of the transmitted pulses. AIm[n] exhibits similar overall
trends as ARe[n]. Below the melting temperature, Alm[n] shows negligible temperature
dependence and is approximately zero. As shown in Fig. 14B, AIm[n(w»)] increases linearly
for T > Twand saturates at 0.2 for 7 > 33.0 C°. Such an increase in the imaginary effective
refractive index reveals increased absorption or scattering losses within the ensemble due to
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particle melting and subsequent coalescing. In contrast to Alm[n(w2)], AIm[n(w:1)] does not
significantly increase from zero until the temperature exceeds 30.5 C° > Twm. The slightly
different trends observed for Alm[n(wi)] and AIm[n(w)] suggest that the higher frequency
components of the pulse are more sensitive to particle conglomeration than the lower
frequency components. Overall, the real and imaginary parts of the complex effective index
of the sample exhibit high sensitivity to the solid-liquid phase transition of the gallium
particles and subsequent melting and coalescing dynamics beyond 7.
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Fig. 14. Experimental effective (A) real refractive index change and (B) imaginary refractive
index change at a frequency of 0.1 THz (empty circles) and 0.2 THz (filled circles) at various
temperatures. The discontinuity in the effective real refractive index occurs at the gallium
melting temperature, 29.8 C°.

The refractive index behavior for T > Twm shows interesting particle conglomeration
behavior of the gallium particles, where the particles begin to form interconnected networks.
The experimental results show that coalescing does not occur concurrently with particle
melting. To quantify the temperature where the particles begin to coalesce, the correlation
function, C(7) = (E(t+7)Erey (1)) is calculated, where E(t+7) is the sample pulse (at a given
temperature 7) shifted by a time 7 and Er (?) is the reference pulse transmitted at reference
temperature Tre. It is noted that referencing the correlation function to the transmitted
signal at Tres cancels out the inherent spectral response of the setup since the spectral
response of the system is fixed throughout the temperature variation. Because the only
experimental variable is the sample temperature, changes in C(7) as a function of T arise
directly from temperature-dependent changes in the transmissivity of the gallium sample.
As highlighted in the plot of the maximum correlation amplitude versus T [Fig. 15B], the
transmitted pulse remains highly correlated even for T'= 30.5 C° > Tm. Thus, at temperatures
exceeding the melting transition, the extrinsic microstructure of the particle ensemble has not
changed. However, at a coalescing temperature, 7. = 30.5 C°, there is a significant decrease in
C(7), marking the onset of particle conglomeration and transmission quenching. Because the
particles must overcome their surface energy prior to liquefying, T« is slightly higher than the
bulk melting temperature. As shown in Fig. 15B, C(7) decreases to 0.35 at 33.0 C°, and for T" >
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33.0 C°, the maximum correlation amplitude saturates and remains fixed. The experimental
results reveal a narrow temperature range, 7m < T < T¢, where the individual particles have
melted, yet the nearest-neighbor particles do not conglomerate.
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Fig. 15. (A) Size distribution of the gallium particles before melting (light bars) and after
melting (dark bars). (B) shows the maximum correlation amplitude of transmitted pulses at
various temperatures relative to the reference pulse at 21.2 C°. Insets are scanning electron
microscope images of (i) the gallium particles prior to the heating cycle and (ii) the solidified
particles after the heating cycle.

The gallium particle collection undergoes significant structural transformation over the
heating cycle. After heating the particles above Tm and cooling back to room temperature,
the nearest-neighbor particles have coalesced at small regions conjoining the particles, but
overall, the ensemble retains a granular appearance and structure with no significant
decrease in the total volume. The individual particles shapes are slightly distorted by the
heating. As shown in the scanning electron microscope images in the insets of Fig. 15B, the
particles prior to heating are characterized by sharp edges and flat faces. After cycling the
temperature, the particles are rounded and have a rougher surface. Although heating
induces shape change in the particles and coalescing between nearest-neighbor particles, the
overall size distribution of the ensemble after heating is not significantly affected. As shown
in Fig. 15A, the size distribution of the particles is nearly identical before and after heating.
This further confirms that over the heating cycle, the particles do not fully conglomerate to
form particles with augmented sizes. Rather, nearest-neighbor particles join at small sections
of the particles that are in direct contact with each other.

6. Conclusion

THz time-domain spectroscopy has been employed to study the THz transparency of
densely packed ensembles of subwavelength size metallic particles. Experimental
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investigations of the THz transmission with respect to the sample length and particle size,
with supporting evidence from numerical simulations based on FDTD calculations, indicate
that the transmission is mediated by coherent, near-field electromagnetic coupling between
nearest-neighbor particles. Transmission-based THz spectroscopy is applied as a non-
invasive probe to study the phase transition of a metallic particle sample.
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1. Introduction

Tilting the pump pulse front has been proposed for efficient phase-matched THz generation
by optical rectification of femtosecond laser pulses in LiNbO; (Hebling et al., 2002). By using
amplified Ti:sapphire laser systems for pumping, this technique has recently resulted in
generation of near-single-cycle THz pulses with energies on the 10-uJ scale (Yeh et al., 2007,
Stepanov et al., 2008). Such high-energy THz pulses have opened up the field of sub-
picosecond THz nonlinear optics and spectroscopy (Gaal et al., 2006, Hebling et al., 2008a).
The method of tilted-pulse-front pumping (TPFP) was introduced as a synchronization
technique between the optical pump pulse and the generated THz radiation.
Synchronization was accomplished by matching the group velocity of the optical pump
pulse to the phase velocity of the THz wave in a noncollinear propagation geometry.
Originally, TPFP was introduced for synchronization of amplified and excitation pulses in
so called traveling-wave laser amplifiers (Bor et al., 1983). By using such traveling-wave
excitation (TWE) of laser materials, especially dye solutions, extremely high gain (10°) and
reduced amplified spontaneous emission could be obtained (Hebling et al., 1991).

Contrary to the case of TWE, when TPFP is used for THz generation by optical rectification,
a wave-vector (momentum) conservation condition or, equivalently, a phase-matching
condition has to be fulfilled. It was shown (Hebling et al., 2002), that such condition is
automatically fulfilled if the synchronization (velocity matching) is accomplished. The
reason is that in any tilted pulse front there is present an angular dispersion of the spectral
components of the ultrashort light pulse and there is a unique connection between the tilt
angle of the pulse front and the angular dispersion (Bor & Racz, 1985, Martinez 1986,
Hebling 1996).

Angular dispersion was introduced into the excitation beam of so called achromatic
frequency doubler (Szabé & Bor, 1990, Martinez, 1989) and sum-frequency mixing
(Hofmann et al.,, 1992) setups in order to achieve broadband frequency conversion and
keeping the ultrashort pulse duration. It was pointed out that in non-collinear phase-
matched optical parametric generators (OPG) and optical parametric amplifiers (OPA) tilted
pulse fronts are expected (Di Trapani et al., 1995). TPFP was used in the non-collinear OPA
(NOPA) producing sub-5-fs pulses (Kobayashi & Shirakawa, 2000). The different aspect of
tilted pulse front and angular dispersion is usually not mentioned in these papers dealing
with broadband frequency conversion.

It is well known that the bandwidth of parametric processes is connected to the relative group
velocities of the interacting pulses (Harris, 1969). Phase matching to first order in frequency
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can also be formulated as matching the group velocities of (some of) the interacting pulses. In
schemes utilizing angular dispersion for broadband frequency conversion it is important to
consider the effect of angular dispersion on the group velocity for a precious connection
between the Fourier-domain and the spatio-temporal descriptions.

In this Chapter, we give a comprehensive overview of the different types of applications
relying on TPFP or angular dispersion with an emphasis on THz generation. The connection
between pulse front tilt, group velocity and angular dispersion will be discussed for each
type of application. The Chapter is organized as follows.

The introduction is followed by a discussion of the connection between pulse front tilt,
group velocity and angular dispersion. The main part of the Chapter deals with the different
types of applications. For the sake of simplicity we start with the applications relying on
synchronization by tilting the pulse front. These include traveling-wave excitation of dye
lasers, as well as possible future applications such as traveling-wave excitation of short-
wavelength x-ray lasers, and ultrafast electron diffraction. Subsequently, applications based
on achromatic phase matching for broadband frequency conversion will be discussed.
Finally, high-field THz pulse generation by optical rectification of femtosecond laser pulses
with tilted pulse front and its application to a new field of research, nonlinear THz optics
and spectroscopy will be reviewed.

2. Pulse front tilt, group velocity, and angular dispersion

Tilting of the pulse front of picosecond pulses after traveling through a prism (Topp &
Orner, 1975) or diffracting off a grating (Schiller & Alfano, 1980) was early recognized. Later,
the following expression was deduced between the angular dispersion dg/dA and the pulse
front tilt y created by the prism or the grating (Bor & Racz, 1985):

de

tany =-1 ,
D)

)
where yis the tilt angle (the angle between the pulse front and the phase front, see Fig. 1),
A is the mean wavelength and d&/d A is the angular dispersion. It was also shown that for a

grating immersed in a material Eq. (1) has to be modified as (Szatmari et al., 1990):

tanyzfﬂzﬁ,
n, dAa

8

@)

where n and ng are the (phase) index of refraction and the group index of the material,
respectively.

A device-independent derivation of Egs. (1) and (2) is possible (Hebling, 1996) for ultrashort
light pulses having large beam sizes. In this case the short pulse consists of plane-wave
monochromatic components with different frequencies (wavelengths). Such a case is
illustrated schematically in Fig. 2 assuming that the beam propagates, and has an angular
dispersion in the x-z plane. Hence, the phases of the spectral components are independent of
the third (y) coordinate, and the electric field of the components can be described as:

E,(x,z,t)=E, -sin(ot —k.x —k,z+ ¢@,) 3)
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(a) (b)

Fig. 1. (a) Pulse front tilt created by an optical element with angular dispersion (grating). (b)
The corresponding angular dispersion of the wave vectors of the different spectral
components of the ultrashort pulse.

Z A

Fig. 2. Phase fronts (dashed lines) and pulse front (continuous line) for a light beam
dispersed in the z-x plane. The phase front is indicated only for the mean wavelength. For
different wavelengths the phase fronts are tilted relative to this. Positive angles are
measured clockwise: ¢> 0 and y<0.

Here k,=2z/A,=(27/2)-sineand k,=27/A,=(27/2) cos¢ are the two components of

the wave-vector, ¢ is the angle of propagation measured from the z-axis as shown in Fig. 2,
and @w=2r/1is the angular frequency. Since for a phase front (a surface with constant
phase) the argument of the sine function in Eq. (3) is constant, the slope of the phase front is
given by:

k
m=—-—%=—tane. 4)
kZ
The pulse front at any time is the surface consisting of the points where the light intensity
has a maximum. The intensity has maximum at points where the plane wave components
with different frequencies have the same phase, i.e. where the derivative of the phase (the
argument of the sine function in Eq. (3)) with respect to frequency is equal to zero. The
result of such derivation is that the pulse front is plane with a slope of:
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m, =—tany = —tane + —= ~£, ®)
§ cos’e dk,
where Eq. (4) was also used. If we choose the coordinate-system such that the main
component propagates parallel to the z-axis, & becomes equal to zero. With this choice, and
by introducing the angular dispersion dg/dA instead of de/dk., Eq. (5) reduces to Eq. (1).
Since it was not necessary to suppose anything about the device which created the angular
dispersion, with the above derivation we proved that the relation between the angular
dispersion and the pulse front tilt as given in Eq. (1) is universal.
In order to prove the more general relationship given by Eq. (2) we suppose that the beam
with angular dispersion propagates in a medium with wavelength (frequency) dependent
index of refraction n(4). In this case the two components of the wave-vector of the plane
wave, propagating in the direction determined by ¢ are given by k, =2zn(1)/A, =
=[27n(A)/4]-sine and k, =27n(A)/A,=[27n(A)/2] cose, respectively. By using these
wave-vector components in the same derivation as above, one obtains Eq. (2) (Hebling,
1996). Again, since the derivation is independent of any device parameters, the relationship
between the angular dispersion and the pulse front tilt as given by Eq. (2) is universal.
We can easily obtain (the reciprocal of) the group velocity of a short light pulse in the
presence of angular dispersion. To this end we rewrite k. by introducing the frequency
instead of the wavelength as independent variable:

k,= m@)o cos¢ . (6)

z
C

Since the group velocity is equal to the derivative of the angular frequency with respect to
the wave vector (Main, 1978), we obtain for the reciprocal of the (sweep) group velocity
along the z axis:

4 dk, 1 ( dn . de ]
v, =—=~=—|n-cose+w| cosg-——sing-n-— ||. (7)
¢ do ¢ de de
Although this depends on the angular dispersion, the reciprocal of the group velocity is
independent of it. Really, using ¢ =0 in Eq. (7) results in the well known expression:

n
0*1:1[n+a)-ﬁj=—g, 8)

where n, =c /v, is the usual group index.

It is important to notice that the frequency derivative of the reciprocal of the group velocity
depends on the angular dispersion. The most important and well known implication of this
is the working of pulse compressors consisting of prism or grating pairs. In such
compressors angular dispersion is present in the light beam during the path between the
two dispersive elements (prisms or gratings). The (negative) group delay dispersion (GDD)
of such compressor is given as:

-1

do
GDD=[.—%, €
do
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where [ is the distance between the dispersive elements along the beam path. According to
this, by taking the frequency derivative of the reciprocal of the group velocity as given by
Eq. (7), substituting £ =0 and multiplying by I result in the general expression for the GDD
caused by propagation in the presence of angular dispersion:

2 2
p dn  ~d'm . (de , (10)
d

) do? %

GDD=i
c

in accordance with (Martinez et al., 1984). For the case of prism or grating compressors, with
alarge accuracy, n=1 and Eq. (10) simplifies to Eq. (10b), and the GDD is always negative:

l-o [ de JZ
GDD=—:|—| . (10b)
c \do

When pulse front tilt (or equivalently, angular dispersion) is introduced into a beam of
ultrashort pulses in order to achieve achromatic frequency conversion or synchronization of
pump and generated pulses (see examples below), n#1 in the medium, and the full
expression of Eq. (10) has to be considered. Since the first and second terms on the right
hand side of Eq. (10) are usually positive, and the third term always negative, the effect of
the angular dispersion and the material dispersion can sometimes compensate each other. If,
however, a very large angular dispersion is needed the third term becomes much higher
than the first two ones, and it causes a rapid change of the pulse length during propagation
hindering efficient frequency conversion.

In the above derivation plane wave components with infinite transversal extension were
assumed. For finite beam sizes a more complicated derivation (Martinez, 1986) is needed.
According to this, the tilt angle changes with propagation distance and besides angular
dispersion also spatial dispersion will be present. The spatio-temporal distortions in this
case are described and investigated by an elegant theory (Akturk et al., 2005). According to
numerical calculations, however, such distortions are usually not significant on a distance
smaller than the beam size. This condition is typically fulfilled in frequency conversion
processes of high-energy ultrashort pulses.

Finally, we have to recognize that a strong restriction was used in the above discussions,
namely, an isotropic index of refraction was assumed. However, it is well known that in
frequency conversion processes at least one of the beams involved has extraordinary
polarization with a refractive index depending on propagation direction. (The only possible
exception is quasi-phase-matching.) Because of this, it is essential to re-consider the above
derivations. Let us first investigate again the group index! If we just apply the definition of
the group index as it was introduced in Eq. (8) and take into account that besides the explicit
frequency dependence of the refractive index, in the presence of angular dispersion an

implicit dependence (@) =n(®,£(w)) can also be present, we obtain:

a l{ . dn*J 1( on on ds} 1( on ds] ny
v, == n"+w- =~ n+o—+w —- =—|ng+o-——|=-+.
c

an on de 11
8 do | ¢ dw oe dw) ¢ (1)

According to Eq. (11), in the presence of angular dispersion (which is in a plane containing
the optical axis) an n; modified group index is effective. Depending on the signs of the
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angular dependence of the refractive index and that of the angular dispersion, the effective
group index can be either larger or smaller than the (usual, material) group index.
Furthermore, the value of the effective group index and that of the group velocity can be set
by adjusting the angular dispersion. (A more rigorous derivation staring from Eq. (7) results
in the same expression as Eq. (11).) We note that even though extraordinary propagation of
an angularly dispersed beam is a common situation in many types of frequency conversion
schemes (see Section 4), not much attention has been payed previously to generalize the
definition of group velocity to such a case.

Describing the angular dispersion with the frequency dependence of the angle instead of its
wavelength dependence, the relation between the pulse front tilt angle and the angular
dispersion becomes:

tany =53¢ (2b)
ng do

By using a similar calculation as above, it is easy to show that for anisotropic materials Eq.
(2b) is modified similarly to the modification of the group velocity:

tany = ﬂ*@E . (12)
ng do

Both the group velocity and the tangent of the tilt angle are changing by a factor of n, / n;
in presence of angular dispersion in anisotropic materials.

In conclusion, if in the beam of an ultrashort pulse angular dispersion is present, then
necessarily a pulse front tilt is also present. Eq. (12) gives the relationship between the pulse
front tilt and the angular dispersion. Furthermore, we have shown that contrary to the
isotropic case, for anisotropic media the group velocity of the light pulse depends on the
angular dispersion, too. Hence, the group velocity can be adjusted by adjusting the angular
dispersion. This is utilized in many broadband frequency conversion schemes where the
group velocities of interacting pulses are matched in such a way. We will show examples for
this in Section 4.

3. Pulse front tilt for synchronization

In the first group of applications of TPFP the tilt of the intensity front is used to achieve the
same sweep velocity of the pump pulse along a surface or along a volume close to a surface
as the velocity of the generated excitation (i.e. amplified spontaneous emission, or surface
polariton), or to the velocity of an other pulse (i.e. electron packet). In this group of
applications angular dispersion is not an issue.

3.1 Traveling-wave excitation of lasers

Tilted-pulse-front excitation for generation of amplified spontaneous emission (ASE) pulses
in dye solutions was introduced in 1983 by two groups independently (Polland et al., 1983,
Bor et al., 1983). Both groups applied transversal pumping geometry, that is the pump
pulses illuminated the long side of the dye cell perpendicularly, and the generated ASE
pulse propagated along the surface in the pencil-like excited volume (see Fig. 3). The
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Fig. 3. Ultrashort (ps) light pulse generation by traveling-wave pumped ASE (Bor et al.,
1983).

technique of diffracting the pump pulses off an optical grating was applied to create the
tilted pulse front (Schiller & Alfano, 1980). The tilt angle y was chosen to fulfill the condition
tany =n, , where n, =c/v, is the group refractive index of the dye solution at the mean

ASE wavelength. In this way the pump pulse swept the surface of the dye solution with the
group velocity of the ASE pulse inside the dye solution. This situation is called traveling-
wave excitation(TWE). The exact temporal overlap between the pump pulse and the
generated ASE pulse allowed an effective use of the pump energy even for dyes having
excited state lifetimes of only a few ps. For example, 2% of the pump energy was converted
into the energy of the ASE pulse for IR dyes that have less than 102 fluorescence quantum
efficiency (Polland et al., 1983) due to the short lifetime dictated by fast non-radiative
processes. The reason for the much higher energy conversion efficiency of the traveling-
wave pumped amplifier as compared to the fluorescence quantum efficiency is that in the
traveling-wave pumped amplifier the dye molecules are in excited state only for a short
duration at every point of the amplifier because of the synchronism between the pump and
the generated pulse. Another consequence of this is that the TWE resulted in two times
shorter (6 ps) ASE pulse duration than that of the pump pulse (Bor et al., 1983). Using the
TWE scheme in distributed feedback dye lasers resulted in sub-ps Fourier-transform limited
pulses (Szab6 et al. 1984).

It was also possible to use TWE efficiently with fs pump pulses (Hebling & Kuhl, 1989a,
Hebling & Kuhl, 1989b, Klebniczki et al. 1990, Hebling et al., 1991). In these experiments
TWE was achieved by non-perpendicular excitation and by the pulse front tilt introduced by
a glass prism contacted to the dye cell, as shown in Fig. 4. By seeding the traveling-wave
amplifier by white-light continuum pulses stretched in BK7 glass it was possible to generate
about 100 fs long tunable pulses in the 640-680 nm range (Klebniczki et al., 1990).
Furthermore, by seeding with attenuated continuous light of a Kr+ laser, it was
demonstrated, that the traveling-wave pumped dye amplifier can work as a gated amplifier
with 100 fs gate window and as large as 10° gain (Hebling et al., 1991). According to the
measurements as well as to model calculations for exact synchronisms the duration of the
gate window is approximately equal to the pump pulse duration (somewhat shorter), while
for different pump sweep and ASE pulse velocities it is equal to the difference of the times
the pump and ASE pulses need to travel the length of the amplifier.
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Fig. 4. Non-perpendicular TWE for ultrashort (fs) light pulse generation (Hebling et al.,
1991).

3.2 Traveling-wave excitation of X-ray lasers

Laser action at extreme ultraviolet (XUV) and x-ray wavelengths is of great practical
importance for many applications. For biological applications especially the so-called water
window (4.4-2.2 nm) is of great interest. X-ray laser action can be achieved in highly ionized
plasmas or in free electron lasers. Many plasma-based x-ray laser schemes use short laser
pulses for creating the plasma and the population inversion required for x-ray lasing. In
many cases reported so far, the pumping mechanism is either electron collisional excitation
of neon-like or nickel-like ions, or inner-shell excitation or ionization processes (Daido, 2002,
and references therein).

One of the main difficulties associated with x-ray lasing is the short lifetime of the excited
states, which typically scales as 4> (Simon et al., 2005), where A is the wavelength. In the
1 nm - 100 nm region, spontaneous transition rates correspond to 0.1 ps? - 10 ps? (Kapteyn,
1992). Processes with even shorter time constants, such as Auger decay of inner-shell
vacancies with typical decay rates of 1 fs1 - 10 fs, can in many schemes impose further
constraints on the required pumping rate (Kapteyn, 1992). Due to the short time available
for the population inversion to build up, ultrashort pump pulses can be used to excite
population inversion efficiently.

Due to the decreasing rate of stimulated emission with decreasing wavelength (Simon et al.,
2005), in order to obtain a useful output level from an x-ray laser it is essential to provide
population inversion over sufficient length, typically a few millimeters up to a few
centimeters. This, together with the short amount of time available for population inversion
requires using ultrashort pump pulses with a traveling-wave pumping geometry, which
provides exact synchronization between the pump pulse and the generated x-ray pulse.

Sher et al. (Sher et al., 1987) have used grazing incidence excitation for nearly synchronous
traveling-wave pumping of an XUV laser at 109 nm wavelength in Xe (Fig. 5). Later, a
modified setup with grating-assisted traveling-wave geometry was used, where a grating
pair introduced a small tilt of the pump pulse front for more exact pump-XUV
synchronization (Barty, et al., 1988). However, in these early experiments a grooved target
had to be used in order to compensate for the reduced pumping efficiency caused by the
grazing incidence geometry. Kawachi et al. (Kawachi, et al, 2002) employed a quasi
traveling-wave pumping scheme using a step mirror, which was installed in the line-



Applications of Tilted-Pulse-Front Excitation 215

focusing system to excite the nickel-like silver and tin x-ray lasers at the wavelengths of 13.9
and 12.0 nm.

s
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Fig. 5. Grazing incidence x-ray laser pumping scheme (Sher, et al., 1987).

On the way towards achieving x-ray lasing from laser produced plasmas with photon
energies approaching the keV milestone, an important step, besides the investigation of
fundamental physics concerned with the creation of population inversion, is to develop
extremely accurate and controllable traveling-wave pumping systems (Daido, 2002). We
would like to emphasize that the existing technique of tilted-pulse-front pumping (see
Section 5) can provide the required tools for pump-x-ray synchronization with femtosecond
accuracy. It also allows for working with perpendicular incidence of the pump beam onto
the target. This gives higher effective pump intensity due to reduced pump spot size and
due to improved energy coupling-in efficiency allowed by the reduced reflection coefficient
from the plasma surface. A possible experimental setup is shown in Fig. 6. The pulse-front-
tilting setup made up of a grating and a spherical focusing lens is extended by a concave
cylindrical lens, which shifts the focus of the pump beam introduced by the spherical lens to
the surface of the target by its defocusing effect in the direction perpendicular to the plane of
the drawing. Thus, in the plane of the drawing a line focus is generated at the target. The
pump intensity can also be increased by using demagnifying imaging.

x-ray beam

plasma

grating target
focusing concave
spherical  cylindrical
lens lens

Fig. 6. Tilted-pulse-front pumping scheme for exactly synchronized excitation of an x-ray
laser from laser-produced plasma.
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3.3 Ultrafast electron diffraction

In recent years it became possible to achieve atomic-scale resolution simultaneously in time
and space in revealing structures and dynamics. One important tool for such high-
resolution studies is ultrafast electron diffraction and microscopy (Baum & Zewail, 2006). In
these techniques an ultrashort (femtosecond) laser pulse is used to initiate a change in the
sample. The dynamics is probed by an ultrafast electron pulse. Besides the temporal spread
of the electron pulse due to space charge effect the difference in the group velocities of the
optical and the electron pulses can impose an often more severe limitation on the temporal
resolution (Fig. 7(a)). This mismatch in the propagation velocities along the sample becomes
especially significant in case of ultrafast electron crystallography, where the electrons probe
the sample at grazing incidence and the laser pulse triggering the dynamics has (nearly)
perpendicular incidence (Fig. 7(b)).

Baum & Zewail (Baum & Zewail, 2006) proposed to use a traveling-wave type excitation
scheme with tilted laser pulse front for exact synchronization with the probing electron
pulse (Fig. 7(c-e)). They demonstrated a 25-fold reduction in time spread. They also discuss
limitations in time resolution due to the possible curvature of the tilted pulse front.
Furthermore, they proposed tilting the electron packet (generated by a tilted optical pulse
illuminating a photocathode) to overcome space charge problems that are especially
important in single-shot experiments.

A EI B : Laser

=
U7, 7

Ci 4 O
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Fig. 7. (a) Group velocity mismatch in ultrafast electron diffraction. (b) Ultrafast electron
crystallography without laser pulse front tilt. (c-e) Traveling-wave excitation of the sample
by tilting the optical pump pulse front for synchronization with the slow (33% of c) electron
pulse (Baum & Zewail, 2006). Copyright 2006 National Academy of Sciences, U.S.A.

4. Achromatic phase matching

In this part we consider various achromatic phase matching schemes used for frequency
conversion or parametric amplification of ultrashort laser pulses. In this group of
applications angular dispersion plays a key role, which affects the bandwidth of nonlinear
processes. It was early recognized that achromatic phase matching is related to group
velocity matching of the interacting pulses (Harris, 1969). An often neglected aspect in such
schemes is the pulse front tilt linked to angular dispersion. The following discussion will
include this aspect, too.

In frequency conversion of ultrashort laser pulses the bandwidth of the nonlinear material is of
crucial importance. In nonlinear processes such as second- and third-harmonic generation,



Applications of Tilted-Pulse-Front Excitation 217

sum-frequency generation, optical parametric amplification, etc., broadband phase matching
usually requires the use of thin nonlinear crystals. This, in turn, seriously limits the efficiency
of frequency conversion. One way to overcome this limitation is to adopt the technique of
achromatic phase matching to frequency conversion of ultrashort laser pulses.

Many different schemes have been proposed and used for various nonlinear optical
processes with ultrashort laser pulses. The theoretical analysis of these schemes was carried
out in most cases either in the Fourier domain (in terms of wave vectors and frequencies) or
in the spatio-temporal domain. Little or no attention was paid to the connection of the two
distinct descriptions. Even though descriptions in the two domains are equivalent, to
consider the connection between them gives a more complete picture and can, in some
cases, reveal new important features, which can be relevant for designing an experimental
setup. As examples, in the following we will consider collinear and non-collinear achromatic
second-harmonic generation (SHG), non-collinear achromatic sum-frequency generation
(SFG), and NOPA with and without angular dispersion of the signal beam.

4.1 Collinear achromatic SHG

Achromatic phase matching in nonlinear frequency conversion was originally introduced
for automatic, i.e. alignment-free phase matc