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Preface

Global technologies evolution triggered increasing complexity of applications devel-
oped both in industry and in the scientifi c research fi elds. Thus, many researchers 
concentrated their eff orts on providing simple and easy control algorithms to cope 
with the increasing complexity of the controlled systems. The main challenge of a con-
trol designer is how to fi nd a formal way to convert the knowledge and experience of 
a system operator into a well designed control algorithm. From other point of view, 
the control design method should allow a full fl exibility in the control surface adjust-
ing, taking into account that the systems involved in practice are generally complex, 
strongly nonlinear and oft en with poorly defi ned dynamics. If a conventional control 
methodology based on linear system theory is used, a linearised model of the non-
linear system should be previously developed. Because the validity of the linearised 
model is limited in a range around the operating point, any guarantee of good per-
formance can’t be provided by the obtained controller. As a consequence, to have a 
satisfactory control of a complex nonlinear system, a nonlinear controller should be de-
veloped. On the other way, if the controlled system is diffi  cult to be precisely described 
by conventional mathematical relations, hence the design of a controller using classical 
analytical methods would be totally impractical. With such systems is motivated the 
interest in using a control designed by an operator on the base of its years-long ex-
perience and knowledge about static and dynamic characteristics of the system; the 
controller is known as Fuzzy Logic Controller (FLC).  FLCs are based on fuzzy logic 
theory developed by L. Zadeh. By using multivalent fuzzy logic, linguistic expressions 
in antecedent and consequent parts of IF-THEN rules describing the operator’s actions 
can be effi  caciously converted into a fully-structured control algorithm suitable for 
microcomputer implementation or implementation with specially designed fuzzy pro-
cessors. In contrast with traditional linear and nonlinear control theory, a FLC is not 
based on a mathematical model, and provides a certain level of artifi cial intelligence to 
the conventional controllers.

Trying to meet the requirements in the fi eld, present book deals with some studies of 
control systems based on fuzzy logic both in terms of optimization of existing con-
trollers, as well as that of determining the optimal design techniques for new control-
lers. Developments made in some of the book chapters can also serve to acquaint the 
reader, eager to further deepening, with the complex problem of fuzzy logic control 
systems. The book is divided into seventeen chapters that treat diff erent fuzzy con-
trol architectures both in terms of the theoretical design and in terms of comparative 
validation studies in various applications, numerically simulated or experimentally 
developed.
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A very interesting idea regarding the hardware implementation of fuzzy controllers 
is exposed in Chapter 1. The study shows that for a suffi  cient wide set of applications, 
fuzzy controllers can be implemented as rather simple CMOS devices, which can be 
used in embedded systems or as an IP core. Starting from the deterministic character 
of the fuzzy controller device, for which one and only one value of the output analogue 
variable corresponds to each value combination of the input analogue variables, it re-
sults that the fuzzy controller should realize an analogue function. So, the proposed 
methodology is oriented to hardware implementation of fuzzy controllers as analogue 
devices, and is based on the searching for simple basic multi-valued functions, which 
would present a complete functional basis in the multi-valued logic and could be effi  -
ciently implemented by CMOS technology. It is shown that all parts of fuzzy controllers 
can be eff ectively implemented on the basis of summing amplifi ers with saturation.

In Chapter 2 a robust fuzzy control design based on gain and phase margins specifi ca-
tions for nonlinear systems in the continuous time domain is proposed. A mathemati-
cal formulation based on Takagi-Sugeno fuzzy model structure as well as the parallel 
distributed compensation strategy is presented. Analytical formulas are deduced for 
the sub-controllers parameters in the robust fuzzy controller rules base, according to 
the fuzzy model parameters of the fuzzy model plant to be controlled. Also, one axiom 
and two theorems are proposed in order to guarantee the robust stability, and the de-
rived results for the necessary and suffi  cient conditions for the fuzzy controller design 
are presented. The proposed method validation is made through numerical simulation 
for a one-link robotic manipulator.

Chapter 3 focuses on adaptive fuzzy modelling and control for non-linear systems us-
ing interval reasoning and diff erential evolution. As an introduction, a systematic de-
sign method of extended fuzzy logic system (EFLS) for engineering applications is pre-
sented. The EFLS is implemented to solve the inverse kinematic modelling problem of 
a two-joint robotic arm which cannot be well modelled by the typical fuzzy methods. 
Under the presented framework of EFLS, the adaptive fuzzy control system is designed 
to deal with the uncertainties from complex dynamics of control plant by integrating 
the global optimization method: Diff erential Evolution (DE). The main diff erence in 
this adaptive control system is the defuzzifi cation part. For dealing with the variable 
control target and solving the nonlinear optimization performance, the crisp outputs 
are derived from the interval of outputs of subsystems by the DE optimization method. 
The adaptive fuzzy control system is designed for a typical nonlinear quarter car active 
suspension system, and the obtained results confi rm that the control performance is 
improved, while the design process is more fl exible than other methods.

Chapter 4 proposes a new approach to improve the local and global approximation and 
modelling capability of Takagi-Sugeno (T-S) fuzzy model, and to design an optimal 
fuzzy controller. The approach is based on an iterative method using the extended 
Kalman fi lter, and can be considered as a generalized version of T-S fuzzy identifi ca-
tion method with optimized performance in estimating nonlinear functions. The main 
aims are the obtaining of high function approximation accuracy and the fast conver-
gence. To validate the proposed methodology, the stabilizing and balancing of swing 
up of an inverted pendulum are performed.

The design of a robust H∞ fuzzy controller for a class of uncertain fuzzy systems is per-
formed in Chapter 5. Firstly, this class of uncertain nonlinear systems is approximated 
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by a Takagi-Sugeno fuzzy model. Aft er that, based on a linear matrix inequalities (LMI) 
approach, is developed a technique for designing robust H∞ fuzzy state-feedback and 
output feedback controllers such that the L2-gain of the mapping from the exogenous 
input noise to the regulated output is less than a prescribed value. The LMI-based ap-
proach is used to derive suffi  cient conditions for the existence of a robust H∞ fuzzy 
controller in terms of a family of LMIs. The fuzzy controller design validation is made 
through numerical simulation for a problem of the chaotic Lorenz system.

Chapter 6 presents affi  ne-type fuzzy tracking-controllers to trace a moving-target and 
a model-following-target, respectively. Although a linear type T-S fuzzy system is very 
popular, and has been successfully applied to various fi elds, the affi  ne type system is 
more preferred for computation-intelligent (neural-fuzzy-evolution) modelling as a sys-
tem is too complex to be described. To compensate the target-variation and to respond 
to the rule-consequence singleton, two diff erential equations are derived and then in-
tegrated into an extra-action to achieve adaptive-tracking. Both designed closed-loop 
tracking systems are demonstrated to be globally stable by using a Lyapunov-based 
stability analysis.

Chapter 7 proposes a simplifi ed implementation of the type-2 fuzzy systems (T2FLS). 
The proposed architecture of Type-2 FLS uses four embedded Type-1 FLSs and is an 
alternative to the type-reduction method. To assess the ability of the proposed imple-
mentation to handle uncertainties, a numerical comparative analysis of the type-1 fuzzy 
systems (T1FLS) and type-2 fuzzy systems (T2FLS) proposed architecture for a green-
house climate control problem is made. The obtained T2FLS architecture provides a 
smoother control surface and a greater ability to detect and treat the measurement and 
modelling uncertainties in the controlled system with the aid of a genetic algorithm. 
It also achieved a dramatic reduction in computational complexity without sacrifi cing 
performance compared to its equivalent type-2 FLS with type-reduction method. The 
proposed T2FLS is easy to implement using MATLAB® Fuzzy Logic Toolbox™ and it 
does not require more than the basic knowledge of T1FLS.

In Chapter 8 a model-free self-learning fuzzy controller is proposed to control the mol-
ten steel level of strip casting process monitoring. The quality of strip casting process 
depends on many process parameters, such as molten steel level in the tundish, so-
lidifi cation position and roll gap. Their relationships are complex and the strip casting 
process has the properties of nonlinear uncertainty and time-varying characteristics. 
Hence, it is diffi  cult to establish an accurate process model for designing a model-based 
controller to monitor the strip quality. The proposed fuzzy controller has on-line learn-
ing ability and the rule tables can be modifi ed automatically and continuously for re-
sponding to the system’s nonlinear and time-varying behaviours. In addition, the ad-
opted control strategy can monitor the molten steel at the preset desired level without 
overshooting eff ectively to guarantee the steel strip casting quality.

Chapter 9 proposes an interesting application of fuzzy logic controllers, for maximum 
power point tracking for a grid-connected photovoltaic system. In this way, a control-
ler for a solid state inverter in a single phase grid-connected photovoltaic system is 
derived. The maximum power point tracking algorithm is improved by means a short 
circuit current estimator based on a Takagi-Sugeno (T-S) fuzzy model. Finally, simpler 
linear controllers are used to achieve the maximum power point where the reference is 
imposed by the short circuit current estimator.
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Chapter 10 presents a way for optimal tuning of proportional-integral fuzzy control-
lers, providing a scheme for obtaining optimum values of fuzzy membership function’s 
slope. As application for the proposed method validation, the control of the BLDC mo-
tor drive system is chosen.

Another interesting application of fuzzy control theory is described in Chapter 11, 
which shows an effi  cient controller that improves the operating characteristics of an 
atomic force microscope (AFM) by increasing the bandwidth of the feedback controller, 
thereby allowing for faster scan rates and higher resolutions. For closed-loop feedback 
control of an AFM probe two controllers are designed: 1) based on conventional fuzzy 
Mamdani control theory; and 2) based on the introduction of a fuzzy controller to a PD 
controller to tune online the PD gains resulting in a hybrid PD-fuzzy controller. Also, 
a comparative analysis of the results of these controllers and a baseline a high-gain PD 
controller is realised. 

Chapter 12 deals with an application of the fuzzy controllers in autonomic computing 
systems, the proposed objectives of the authors being to minimize response time by 
maximizing system utilization and also to maximize the profi t of an e-commerce sys-
tem by maximizing system utilization. In this way, two fuzzy controllers are designed 
and implemented: 1) for minimizing the response-time by optimizing the value of max-
requests, and 2) for maximizing the profi t by optimizing the value of max-requests.

In Chapter 13, a type-2 fuzzy controller is proposed to control both the left  and right 
drive wheel of a nonholonomic automatic guided vehicle (AGV) for the wall follow-
ing. The proposed controller is especially suitable for the AGV using a sonar system to 
measure the distance between the AGV and the wall. The inevitable noise problem in 
AGV’s sonar-based distance measuring scheme is resolved by using type-2 fuzzy sets 
to defi ne the distance measurements. An experimental comparative study of a non-
holonomic automatic guided vehicle (AGV) for the wall following with the proposed 
type-2 fuzzy controller and with a type-1 fuzzy controller is realised.

The application presented in Chapter 14 focuses on the development of a new mor-
phing mechanism using smart materials such as Shape Memory Alloy (SMA) as actua-
tors and fuzzy logic techniques. Two important applications of the fuzzy logic tech-
nique are highlighted in this work: the identifi cation of a model for a system starting 
from some experimental input-output data, and the automatic control of a system. In 
this way, in this morphing application two directions are developed: smart material 
actuator modelling and actuation lines’ control. Based on a neuro-fuzzy network and 
using numerical values resulted from the SMA experimental testing (forces, currents, 
temperatures and elongations), an empirical model is developed for the SMA actuators. 
The second application of fuzzy-logic techniques in this project (actuation lines’ con-
trol) supposes the design of an SMA actuators’ controller starting from the developed 
SMA actuators’ model. A fuzzy PD architecture is chosen for the controller. In its de-
sign, numerical simulations of the open loop morphing wing integrated system, based 
on a SMA neuro-fuzzy model, are performed. A bench test and a wind tunnel test are 
conducted as subsequent validation methods.

Chapter 15 presents the use of fuzzy-control to model the control behaviour of a hu-
man pilot during a high and a low gain fl ight task. The concrete realization of the 
fuzzy-sets as a mathematical representation of the linguistic terms is depended from 
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the variations of the individual human control behaviour. In both approaches the de-
veloped cognitive pilot model reproduced well the characteristics of the human pilot 
and it could be pointed out that the cognitive pilot models fulfi l the requirements of the 
according fl ight task; the measurements and the control commands of the pilot models 
and the human pilot are very similar in magnitude and trend; the control behaviour of 
the cognitive pilot models are based on the control strategy of the human pilot; the cog-
nitive pilot models commands induce a similar aircraft  reaction as the human pilot.

Chapter 16 of the book deals with the acquisition and chaos-entropy analysis of in-
dividuality and profi ciency of human operator’s skill using a fuzzy controller. As a 
demonstrative application the stabilizing control of an inverted pendulum by a hu-
man operator is chosen. It is demonstrated that the fuzzy controller identifi ed from 
the measured time series data for each trial for each human operator clearly exhibited 
the human-generated decision-making characteristics, exhibiting chaos and a large 
amount of disorder. Also, it is shown that the estimated number of degrees of freedom 
of motion increases and the estimated amount of disorder decreases with the increase 
in profi ciency in the fuzzy control simulation. The study clarifi es that a simple fuzzy 
controller can be very useful for identifying the individuality and profi ciency of a hu-
man operator when stabilizing an unstable system.

In Chapter 17 fuzzy logic dead-zone compensation with a linear controller for tracking 
of mobile manipulators is developed. The proposed design procedure results in a ki-
nematic tracking loop with an adaptive fuzzy logic system in the feed forward loop for 
dead-zone compensation. The proposed control scheme is shown to be asymptotically 
stable through theoretical proof and numerical simulation.

Through the subject matt er and through the inter and multidisciplinary content, this 
book is addressed mainly to the researchers, doctoral students and students interested 
in developing new applications of intelligent control, but also to the people who want 
to become familiar with the control concepts based on fuzzy techniques. Bibliographic 
resources used to perform the work include books and articles of present interest in the 
fi eld, published in prestigious journals and publishing houses, and websites dedicated 
to various applications of fuzzy control. Its structure and the presented studies include 
the book in the category of those that make a direct connection between theoretical 
developments and practical applications, thereby constituting a real support for the 
specialists in artifi cial intelligence, modelling and control fi elds.

Teodor Lucian Grigorie, PhD
Avionics Division,

Faculty of Electrical Engineering,
University of Craiova,

Craiova,
Romania
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Hardware Implementation of Fuzzy Controllers  
Victor Varshavsky, Viacheslav Marakhovsky1,  

Ilya Levin2 and Hiroshi Saito3 
1St. Petersburg State Politechnical University 

2Tel Aviv University 
3The University of Aizu  

1Russian Federation 
2Israel 
3Japan 

1. Introduction 
Fuzzy logic control is a methodology bridging artificial intelligence and traditional control 
theory. This methodology is usually applied in the only cases when accuracy is not of high 
necessity or importance. On the other hand, as it is stated in (TI SPRA028, Jan.1993), “Fuzzy 
Logic can address complex control problems, such as robotic arm movement, chemical or 
manufacturing process control, antiskids braking systems or automobile transmission 
control with more precision and accuracy, in many cases, than traditional control techniques 
… . Fuzzy Logic is a methodology for expressing operational laws of a system in linguistic 
terms instead of mathematical equations.”  
Wide spread of the fuzzy control and high effectiveness of its applications in a great extend 
is determined by formalization opportunities of necessary behavior of a controller as a 
“fuzzy” (flexible) representation. This representation usually is formulated in the form of 
logical (fuzzy) rules under linguistic variables of a type “If A then B”.  
The Fuzzy Logic methodology (Yager & Zadeh, 1992; Klir & Yuan, 1996) comprises three 
phases: 
1. The fuzzification is a transformation of analog (continuous) input variables to linguistic 

ones, e.g., transformation of temperature into the terms cool, warm, hot or transformation 
of speed into the terms negative big (NB), negative small (NS), zero (Z)”, positive small (PS), 
positive big (PB). Such transformation is realized by introduction of so-called membership 
functions, which define both a range of value and a degree of membership. For linguistic 
variables it is important not only which membership function a variable belongs to, but 
also a relative degree (weight) to which it is a member. A variable can have a weighted 
membership in several membership functions at the same time.  

2. The fuzzy inference maps input linguistic variables onto output linguistic variables on 
the base a system of fuzzy rules of the type “IF A THEN B” For instance: “IF the 
temperature is worm THEN the speed is Positive Small (PS)” or “IF the speed is Negative 
Big (NB) THEN force is ZERO”. Since input linguistic variables are weighted, the output 
linguistic variables can be obtained weighted as well. Traditional fuzzy logic approach 
comprises Mamdani- type and Sugeno-type inference methods. The Mamdani-type 
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method is more intuitive and assumes the output variables as a fuzzy set. Fuzzy rules in 
it contain a fuzzy precondition part (after IF) and a fuzzy consequence part (after THEN). 
The Sugeno-type method expects the output variables to be singletons or dealing with 
consequents that are equations. So it is better suited for mathematical analysis, 
nonlinear system modeling and interpolation. 

3. In the defuzzification phase, the weighted values of output linguistic variables obtained 
as a result of fuzzy inference have to be transformed to analogue (continuous) variables. 
This procedure is also based on membership functions. Two major methods are used 
for defuzzification: 

- The maximum defuzzification method, wherein an output value is determined by the 
linguistic variable with the maximum weight; 

- The centroid calculation defuzzification method, wherein an output value is determined 
by the weighted influence of all the active output membership functions.  

As a rule, or at least in a great part of applications, a fuzzy controller is a transformer of 
input analog signals into an analog output signal. A linguistic variable is a subjective 
characteristic of an input analog variable, values of which are transformed on bases of given 
membership functions into a set of weighted values of corresponding linguistic variables. 
This procedure is called a fuzzification and it contains as its composite part the analog-
digital transformation. 
A set of combinations of weighted linguistic variables corresponds to each value 
combination of input analog variables. On bases of a system of fuzzy inference rules it is 
possible to receive the set of weighted output linguistic variables. Using these variables and 
their membership functions, with help of one of well known defuzzification methods it is 
possible to form values of the analog output variable. The defuzzification procedure also 
includes digital-analog transformation. 
At present the most wide-spread way of fuzzy logic control implementation is using the 
programmable fuzzy controllers, which are available on the market together with the means 
of computer aided programming (e.g. Motorola’s 8-bit 68HC11 and 16-bit 68HC12 
microcontrollers or specialized fuzzy processors of Siemens 80C517/80C535 families). 
However, in spite of the implementation evidence and fuzzy controllers’ accessibility this 
approach to controller implementation possesses some disadvantages, e.g. such as high cost 
and low throughput (that is especially important when fuzzy control in the control contour 
is used) etc.  
This work shows that for a sufficient wide set of applications, fuzzy controllers can be 
implemented as rather simple CMOS devices, which can be used in embedded systems or as 
an IP core.  What is the basic idea of the proposal?  
A fuzzy controller is a deterministic device, for which one and only one value of the output 
analog variable corresponds to each value combination of the input analog variables. It 
means that the fuzzy controller should realize an analog function 1 2( , ,..., )nY f x x x= . It 
should be noticed that in suppressing majority of publications on fuzzy controllers, this 
function is given as a response surface and practically without exception this surface has a 
piecewise linear form. 
There are two important questions: 
1. How to transit from a standard specification of a fuzzy logic function to the 

specification of corresponding analog function? 
2. How to transit from an analog function specification and/or from a standard 

specification of a fuzzy logic function to corresponding CMOS implementation? 
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First of all, let us address to membership functions. In most cases (Yager & Zadeh, 1992; Marks 
II, 1994; Klir & Yuan, 1996) , membership functions have a triangle or trapeze form (see Fig. 1).  
 

A B C D E F G

T

1

α

 
Fig. 1. Types of membership functions. 
In Fig. 1 linguistic points (variables) A and B are cold, C is fresh, D and E are worm, F and G 
are hot. These points determine the connection of the linguistic variables with values of the 
analog variable T (T is temperature). Relatively to these points and similar points for other 
analog input variables we can compose a table of fuzzy rules connecting combinations of 
input linguistic variables with output linguistic variables. 
On bases of membership functions we can put into accordance to the input and output 
linguistic variables a set of integer numbers splitting by appropriate way all diapason of 
changing of corresponding analog variables. Then the table of fuzzy rules will to determine by 
obvious way the function of multi-valued logic, values of which define the digit representation 
of the output linguistic variable on chosen value combinations of multi-valued input variables. 
In other words, according to our concept, for a broad class of fuzzy controller specifications 
it is possible to construct corresponding tables connecting input and output membership 
functions. Frequently membership functions evenly divide the ranges of output variables’ 
variations. If it is not so, the membership functions can be brought to even scale by 
increasing the number of gradations or, as it will be shown later, by introducing a certain 
equalization procedure for logical levels. Therefore, specification tables represent nothing 
but tables determining a specific multi-valued logical function. And what is more, for a 
number of implementations it is possible to neglect weighting and determining input 
linguistic variables and simply to use continuous-valued variables. 
The above idea was in the focus of our research. We dealt with searching for simple basic 
multi-valued functions, which, from the one hand, would present a complete functional 
basis in the multi-valued logic, and from the other hand, could be efficiently implemented 
by CMOS technology.  

2. Hardware implementation of fuzzy controllers 
2.1 Summing amplifier as a multi-valued logical element  
Summing amplifier’s behavior, accurate to the members of the infinitesimal order that is 
determined by the amplifier’s gain factor in disconnected condition (Fig. 2), is described as 
follows: 
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where Vdd is the supply voltage, Vj is the voltage on jth input, Rj is the resistance of jth input, 
R0 is the feedback resistance, and Vdd /2 is the midpoint of the supply voltage.  
 

 
Fig. 2. Summing amplifier: a) general designation, b) CMOS implementation using 
symmetrical  invertors. 
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Fig. 3. Summing amplifier’s behavior: a) within voltage coordinates; b) within multi-valued 
variable coordinates. 
Let us split the source voltage Vdd on m = 2k+1 voltage levels. Then replacing the input 
voltages Vj −Vdd/2 by m-valued logical variables xj = (2Vj – Vdd )k/Vdd  and the output 
voltage Vout by m-valued variable y and designating R0/Rj = ωj  the system (1) can be 
represented as (2).  
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Graphical view of (2) is shown in Fig.3 (b). 
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Later on, we will call the functional element, whose behavior is determined by the system 
(2), a multi-valued threshold element. When ωj = 1, j = 1, 2, 3, , we will call it a majority 
element and designate as maj(x1, x2, x3).  

2.2 Functional completeness of the threshold element  
The basic operation (or a set of basic operations) is called functionally completed in arbitrary-valued 
logic, if any function of this logic can be represented as superposition of the basic operations. 
There are some known functionally complete sets of functions. It is clear, that for proving 
the functional completeness of a certain new function it is sufficient to show that every 
function of the known functionally complete set can be represented as a superposition of the 
considered function. One of functionally complete functions in m-valued logic is the Webb’s 
function (Post, 1921): 

 mod( , ) [max( , ) 1] mw x y x y= + .  (3) 

Therefore, for proving functional completeness of the threshold operation in multi-valued 
logic it is sufficient to show how the Webb’s function can be represented through this 
operation (Varshavsky et al., 2003, 2004).        
First, let us represent the function max(x1, x2) by threshold functions. To do this let us 
consider the function fa(x), such as 

  
     if     

( ) max( , )  ,   | | ,   | | .
     if     a

a a x
f x x a x k a k

x x a
≥⎧⎪= = ≤ ≤⎨ >⎪⎩

 (4)         

The diagram of this function is shown in Fig. 4(a). The −maj(x,−a,−k) function diagram is 
shown in Fig. 4(b). Actually, as far as x < a, x − a −k < −k and −maj(x,−a,−k) = −k. Note that for 
all values of x,  

( ) ( , , )af x maj x a k a k= − − − + +  

as it follows from Fig.4, hence  

 ( ) ( ( , , ), , )af x maj maj x a k a k= − − − − . (5) 

 

a) b)y y

x x

aa

a a

k k

kk

-k-k

-k -k

-maj(x,-a,-k)

 f  (x)a

 
Fig. 4. Diagrams of the functions a) fa(x) and b) −maj(x,−a,−k). 

Taking into consideration   

( , , ) ( , , ),maj a b c maj a b c− = − − −  
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it follows from (5) that 

 1 2 1 2 2max( , ) ( ( , , ), , )x x maj maj x x k x k= − − − − . (6) 

Now let us consider the representation of the function y = (x+1)modm, x ≥ 0, 0 ≤ y ≤ m−1 
through threshold functions. First of all we designate m = 2k+1 and change the beginning of 
coordinates so that the function will have a form  y = (x+k+1)mod(2k+1) − k, x ≥ −k, −k ≤ y ≤ +k. 
To implement this function on threshold elements let us turn to the sequence of pictures in 
Fig. 5. 
 

a)

x

y
k-1

1-k

b)

x

y
k-1

1-k

d)

x

y

k-1

1-k

c)

x

y

k-1

1-k

)0,1,()(1 xmajx −=ϕ ),1,()(2 kkxmajx −−−=ϕ )0,),(()( 23 kxmajkx ϕϕ ⋅=kkxy k −++= + )12mod()1(
 

Fig. 5. Implementation of the function   y = (x+k+1)mod(2k+1) − k. 
It is easy to see that 

mod(2 1) 1 3( 1) ( ) 2 ( )kx k k x xφ ϕ++ + − = +  

and obviously, this function can also be implemented on threshold elements as 

( ( ,1,0), ( ( ,1 , ), ,0), ( ( ,1 , ), ,0)).y maj maj x k maj maj x k k k k maj maj x k k k= ⋅ − − − ⋅ − − −  

Hence, the functional completeness of the summing amplifier in arbitrary-valued logic is 
shown. The proof procedure of functional completeness naturally does not give information 
about methods of effective synthesis. Some methods of a circuit design in the proposed basis 
will be developed later.  

2.3 Fuzzy devices as multi-valued and analog circuits  
Conventional implementation of fuzzy devices usually has the structure shown in Fig. 6. 
Analog variables X = {x1,x2,…,xn} enter the fuzzy device input. Fuzzifier converts a set of 
analog variables xj into sets of weighted linguistic (digital) variables A = {a1,a2,…,an}.  
 

analog digital

Fu
zz

ifi
er

Fu
zz

y
In

fe
re

nc
e

D
ef

uz
zi

fie
r

digital analog
X A B Y

 
Fig. 6. Conventional structure of a fuzzy device  implementation. 
Fuzzy Inference block generates based on the fuzzy rules a set of weighted linguistic 
variables values B = {b1,b2,...,bk}. 
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Defuzzifier converts sets of weighted linguistic (digital) variables B = {b1,b2,...,bk} into a set of 
output analog variables Y = {y1,y2,...,yk}. 
As a rule, fuzzifier and defuzzifier include AD and DA (analog-digital and digital-analog) 
converters and are implemented on both levels (hardware and software). Fuzzy inference is 
usually implemented on the level of microprocessor software. 
It is easy to see that each set of values of output analog variables unambiguously 
corresponds to some set of input analog variable values; hence a fuzzy device could be 
specified as a functional analog of a signal converter 

1 2( ) { ( ), ( ),..., ( )}kY X y X y X y X=  

and its output Y determines a system of n-dimensional surfaces. In cases of sufficient simple 
membership functions (in known publications such functions are in majority), for fuzzy 
controller implementations as analog devices it is sufficient to provide a piecewise-linear 
approximation between a couples of points calculated as adjacent values of a multi-valued 
logic function.  
Let m = 2k+1 linguistic variables aj (aj ∈ A) correspond to values of analog variable xj (xj ∈ X). 
Then basing on a system of fuzzy rules, we can specify a system of m-valued logic functions, 
as follows: 

 1 2( ) { ( ), ( ),..., ( )}kB A b A b A b A= . (7) 

Note that most publications describing fuzzy controllers contain tables specifying fuzzy 
controllers’ behaviour as (7) and a plenty of publications contain piecewise-linear 
approximations of the corresponding surfaces. 
The apparent conclusion can be made from the things mentioned above: if a fuzzy controller 
is represented as (7), it can be implemented as superposition of multi-valued threshold 
elements. In this case, owing linear behavior of the threshold element in the zone between 
the saturation levels ((2) and Fig. 3(b)), natural piecewise linear approximation appears 
between the discrete points of specification. 
In the last subsection of this section some illustrations will be given to show that for a 
number of real applications the offered approach can provides simple and efficient circuits 
of controllers. 

2.4 Fuzzy controller implementations as circuits from threshold elements    
2.4.1 Example 1  
Let us consider the example, which is taken from (Kandel & Zedeh, 1993, pp. 81 – 86): “Design 
of a Rule-Based Fuzzy Controller for the Pitch Axis of an Unmanned Research Vehicle”.  
The fuzzy control rules for the considered device depend on the error value e = ref − output 

and changing of error old e new ece
sampling period

−
= . Fuzzifier gives seven linguistic variables for 

each of input analog variables (NB – negative big; NM – negative middle; NS – negative 
small; ZO – zero; PS – positive small; PM – positive middle; PB – positive big). The output 
has the same seven gradations. Corresponding 49 fuzzy rules are represented in Table 1. 
Let us split evenly the source voltage (e.g. 3.5V) onto seven logical levels corresponding to 
linguistic levels and enumerate them with integer numbers from -3 to +3. Then Table 2 will 
represent Table 1 as the function of seven-valued logic. 
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 e 
 NB NM NS ZO      PS PM PB 
NB ZO     PS PM      PB      PB     PB PB 
NM NS ZO      PS PM      PB      PB PB 
NS NM NS ZO      PS PM      PB PB 
ZO NB NM NS ZO     PS PM PB 
PS NB NB NM NS ZO      PS PM 
PM NB NB NB NM NS ZO PS 

ce 

PB NB NB NB NB NM NS ZO  
Table 1. Table of Fuzzy Rules. 

It is seen from Table 2 that the function is symmetric with respect to “North-West – South-
East” diagonal and its values can be calculated as e ce− . This dependency is shown in Fig. 7. 
 

 e 
0 -3 -2 -1 0 1 2 3
-3 0 1 2 3 3 3 3
-2 -1 0 1 2 3 3 3
-1 -2 -1 0 1 2 3 3
0 -3 -2 -1 0 1 2 3
1 -3 -3 -2 -1 0 1 2
2 -3 -3 -3 -2 -1 0 1

ce

3 -3 -3 -3 -3 -2 -1 0

Table 2. The Seven-Valued Function.    
 

Output

e-ce
 1     2     3    4     5     6

 -6    -5  -4    -3   -2    -1
1

2

3

-1

-3

-2

 
Fig. 7. Graphical representation of the function specified by Table 2. 

It apparently follows from comparison of Fig. 3 (b) and Fig. 7 that in order to reproduce the 
function specified by Table 2 it is sufficient to have one two-input summing amplifier and 
one one-input amplifier that will be called inverter. 
Note that inversion of logic variables lying within k k− ÷ +  interval is the operation of 
diametric negation x x= − ; the operation out dd inV V V= −  corresponds to it in the terms of 
summing amplifier’s input and output voltages. Thus CMOS circuit containing 12 
transistors and 5 resistors, which implements our function, is shown in Fig. 8. 
 

1

S1

1
1

S2

Ve Vce

V   -Vdd e
Vout

 
Fig. 8. Implementation of the fuzzy controller specified by Table 2. 
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2.4.2 Example 2 
This example is taken from (Kandel & Zedeh, 1993, pp. 168 – 172): “Manipulator for Man-
Robot Cooperation (Control Method of Manipulator/Vehicle System with Fuzzy Inference)”. 
In the considered example the experimental manipulator has two force/torque sensors. One 
of them is the operational force sensor Fh; the other is “the environmental force sensor” ω. 
Each of input and output variables of the manipulator controller is represented with three 
linguistic variables – S (small), M (middle) and B (big). The controller has five fuzzy rules, as 
it follows: 
If  ω = S then   Output = B; 
If  ω = B  then   Output = S; 
If  ω = M  and Fh = S then Output = S;  
If  ω = M  and Fh = M then Output = M; 
If  ω = M  and Fh = B then Output = B. 
The controller Output is three-valued logic function specified in Table 3. 
 

hF  
 

−1 0 +1
−1 +1 +1 +1
0 −1 0 +1ω

+1 −1 −1 −1 

Table 3. The ternary function.    

It can be simply proved by trivial substitution that Output = maj(2ω,−Fh,0) and СMOS 
implementation coincides with the circuit shown in Fig. 8, if make substitutions ,

he FV V=  
ceV Vω= and change the weight of the input Vω  to 2.  

2.4.3 Example 3. Fuzzy controller for washing machine 
This example is taken from Aptronix Incorporated (http://www.aptronix.com/fuzzynet). 
A. Controller specification 
Input variables: 
Dirtiness of clothes: Large (L), Medium (M), and Small (S); 
Type of dirtiness: Greasy (G), Medium (M), and Not Greasy (NG). 
Output variable is washing time (minutes): Very Long (VL), Long (L), Medium (M), Short (S), 
and Very Short (VS). Fuzzy rules are represented in Table 4.  
 

Dirtiness of clothesWash. time S M L 
NG VS S M 
M M M L Type of dirt.
G L L VL 

Table 4. Matrix of linguistic variables. 

According to our approach Table 4 can be transformed into the table of multi-valued logic 
variables (Table 5).  
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Dirtiness of clothes (Y) Wash. time 
−2 0 +2 

−2 −2 −1 0 
0 0 0 +1 Type of dirt. 

(X) 
+2 +1 +1 +2 

 

Table 5. Matrix of multi-valued variables.             
 

In this table the output variable Wash. time has 5 logical levels but input variables X and Y 
have only three. Because of change ranges of the output and input variables should be the 
same in the Table 5 logical levels of input variables X and Y are −2, 0, and +2. 

B. Functional decomposition 
Let us represent the washing time matrix as a sum of two matrices: 

 

1 2 Wash time                                 
2 1 0 1 1 0 1 0 0

0 0 1 0 0 1 0 0 0
1 1 2 1 1 2 0 0 0

ϕ ϕ

− − − − −
+ = + +

+ + + + + +

 (8)  

or (Wash. time) = S(−ϕ1−ϕ2) were S is the function of summing amplifier with saturation. 
Let us take into consideration a function of one variable   

 3( ) (0.5 2) 2  2  1Y S Yϕ = ⋅ − = + + + . (9) 

In (9) Y corresponds to the dirtiness of clothes and varies from –2 to +2 as follows 

| 2    0   2|Y = − + . 

Now the following intermediate sum is introduced: 

 3 1

1 1  0
( ) 0.5 2 0 0 1

1 1 2
Y Xϕ ϕ

+ +
− ⋅ − = − = −

− − −
. (10) 

Here X corresponds to the type of dirtiness and varies also from –2 to 2 as follows 

2
0
2

X
−

=
+

. 

From (8) and (10) it is easy to see that (10) is −ϕ1 and    

3 2( . ) ( ( ) 0.5 2 )Wash time S Y Xϕ ϕ= − ⋅ − − . 

Now let us introduce the function: 
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 4

0 2 2
( , ) ( 4) 2 2 2

2 2 2
X Y S X Yϕ

− −
= + + = − − −

− − −
 (11) 

and form the second intermediate sum: 

 4 2

1  0 0
0.5 ( , ) 1 0 0 0

0 0 0
X Yϕ ϕ

+
⋅ + = = − . (12) 

Finally  

 3 4

4 1 2 3

(  ) [ ( ) 0.5 1 0.5 ( , )]
[ (0.5 2) 0.5 ( 4) 0.5 ( ) 1] .

Wash time S Y X X Y
S S Y S X Y S X

ϕ ϕ= − ⋅ − + =
− + + + + −

  (13)            

In Fig. 9 the CMOS implementation of the expression (13) is presented. The circuit is 
implemented as the superposition of four multi-valued threshold elements. 
 

 
Fig. 9. CMOS implementation of fuzzy controller for washing machine. 

The result of the SPICE simulation of the circuit in Fig. 9 is shown in Fig. 10 in the form of 
response surface.  

 
Fig. 10. Results of SPICE simulation for the controller in Fig.9. 
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In Fig. 10 all variables are represented in voltages. The correspondence of logical values to 
voltages is shown in Table 6. It is easy to see that the controller output signal represented by 
the surface in Fig. 10 has linear approximation between adjacent logical levels. 
 

-2 -1 0 1 2 
0V 0.875V 1.75V 2.625V 3.5V 

Table 6. Correspondence voltages to logical levels. 

3. Universal method of implementing fuzzy inference rules 
It was shown in 2.2 and (Varshavsky et al., 2003) that a summing amplifier with saturation 
is a functionally complete element in any multi-valued logic (of an arbitrary value). Thus it 
may serve as a basis for hardware implementation of fuzzy devices.  
The study subject is design techniques for analog CMOS circuits implementing fuzzy 
controller multi-valued functions. 
Without departing from the general character of the study, let us suppose that the logic has 
odd value m = 2k+1.  Let’s also assume that X = {x1,x2,...,xn}, −k ≤ xj ≤ +k, , is a set of input 
multi-valued variables and y = F(X) is the output variable. Then for a function of multi-
valued logic it is possible to build an analog of the Shannon’s decomposition in the binary 
logic:   

 ( ) [if  then ( , \ )].
k

i i j j j
k

y F X x y F x X x
α

α α
+

=−

= = = = =∪  (14) 

 

Equation (14) can be further expanded so that it would be possible to build an realizing 
circuit using the variables exclusion method. To this effect, we need a sub-circuit 
implementing the function:  

 if       then  ( , \ ) Z A y F Z A X Z= = =  (15) 
 

where Z ⊂ X and A is a value combination of the variable set Z.1 
Having a basic element (sub-circuit realizing (15)), we can implement a fuzzy device directly 
according to the system of fuzzy rules. However, note that equations (14) and (15) represent 
multi-valued functions in a piecewise-constant manner. An example of a 7-valued function 
is given in Fig. 11(a).   
Taking into account fuzzification and defuzzification procedures in fuzzy logic, 
corresponding multi-valued logic function should has at least piecewise-linear 
approximation between adjacent logical levels. Fig. 11(b) gives an example of such a 
representation of the function with evenly distributed logical values of the input and the 
output in the range of corresponding voltages. 

                                                 
1 It is possible to add else in (15) that can be defined by circuit requirements. 
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−2 −1−3
−1

−2

−3

1
1

2

2

3

3

a)

  

−2 −1−3
−1

−2

−3

1
1

2

2

3

3

b)

 
Fig. 11. Example of a seven-valued function: a) piecewise-constant representation; 
b) piecewise-linear representation.  

3.1 Masking inputs of summing amplifiers  
Let us rewrite the definition (2) of the inverting summing amplifier with saturation in the 
following form: 

 

1

1 1

1

      if    

( ; )   if   

      if     

n

i i
i

n n

i i i i
i i

n

i i
i

k x k

S A X x k x k

k k x

α β

β α β α β

α β

=

= =

=

⎧
+ ⋅ + ≤ −⎪

⎪
⎪⎪⋅ = − ⋅ − + > ⋅ + > −⎨
⎪
⎪
⎪− + ≤ ⋅ +
⎪⎩

∑

∑ ∑

∑

 (16) 

where A = {α1,α2,...,αn} is a set of weight coefficients, X = {x1,x2,...,xn} is a set of analog or 
multi-valued variables, β is a constant symbolizing a threshold, and ±k is a saturation value 
(in the case of m-valued logic, m = 2k+1). 
Let us introduce a masking function Mα(x) by the next way: 

 
           if                1

( ) ( )   if     1 1
            if     1

k x
M x k x x

k x
α

α
α α α

α

+ ≤ −⎧
⎪= − − < < +⎨
⎪− + ≤⎩

 (17) 

where α (−k ≤ α ≤ +k) is a fixed value of the variable x . It can be easily seen that when x = α, 
Mα(x) = 0. Fig. 12 illustrates an example of the function M−1 (x) for m = 7. 
Taking into account that the source voltage Vdd has the logical value equal to +k and the 
ground potential gndV  has the logical value equal to –k, the mask-function can be easily 
implemented on bases of summing amplifier as 

 
(  )  if  0 

( ) ( )                if  0
( )   if  0

dd

gnd

S kx V
M x S kx

S kx V
α

α α
α

α α

⎧ − ⋅ <
⎪

= =⎨
⎪ + ⋅ >⎩

 (18) 

where x (Vgnd ≤ x ≤ Vdd) is measured in voltages.  
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−2 −1−3
−1

−2

−3

1
1

2

2

3

3

M-1(x)

x

 
Fig. 12. M−1 (x) diagram for m = 7. 

Using the mask-function Mα(x) it is possible to implement the rule  

 if    then  ( , )  else  0x y F x Y yα α= = = = ,  (19) 

which extracts the value of the function F(x = α, Y) in the point x = α,  using the circuit from 
summing amplifiers shown in Fig. 13. 
 

α

1

1
1

1
1

1
1
1M  (x)

α-M  (x)

y
F(x=α ,Y)

 
Fig. 13. Implementation of the rule (19). 

This implementation can be written in analytical form as 

 { [ ( ) ( , )] [ ( ( )) ( , )] ( , )}.y S S M x F x Y S S M x F x Y F x Yα αα α α= + = + + = + =  (20) 

For example, in the case when α = −1, F(x = −1, Y) = 2, and m = 7, the behavior of the circuit 
in Fig.13 can be represented by Fig.14. 
 

-1M   (x)

-3 -2 -1 1 2 3

1

2

3

-1

-2

-3

-3 -2 -1 1 2 3

1

2

3

-1

-2

-3

a) c)-1-M   (x)

x x

y

-1S(M   (x)+2)

-3 -2 -1 1 2 3

b)

-1S(-M   (x)+2)

x

1

2

3

-1

-2

-3

 
Fig. 14. Implementation example of the rule (19). 
Analyzing the implementation of the rule (19) it is possible to see that in it the condition       
x = α  is realized as the condition Mα(x) = 0.  
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3.2 Mask-functions of other types   
To decrease the number of variables, which an m-valued logical function depends on, by 
one using the analog of Shannon’s decomposition (14) we need to implement m rules of the 
type (19) and to find m components F(x = α, Y), −k ≤ α ≤ +k, of the decomposition. 
Sometimes the number of rules can be reduced, if the function F(x,Y) doesn’t change on 
some interval of changing logical values of the variable x. A single rule can correspond to 
such interval of the variable x and the conditional part of this rule can have one of three 
forms: α ≤ x ≤ β, x ≤ β,   α ≤ x where −k ≤ α < β ≤ +k. For the condition α ≤ x ≤ β  let us 
construct the following mask-function: 

 , 1 1

,      if    1
( ) ( ) ( ),   if  1 1

,       if    1

k x
M x M x M x x

k x
α β α β

β
α β

α
− +

⎧+ ≥ +
⎪

= − − − < < +⎨
⎪− ≤ −⎩

 (21) 

It is easy to see (Fig. 15(b)) that on the interval α ≤ x ≤ β  this function takes the value 0. 
In the case when α = −k or β = k, this mask-function will have one of the forms: 

 ,
1

,                    if  1
( )

( ), if  1k
k x

M x
k M x xβ

β

β
β−

+

+ ≥ +⎧⎪= ⎨+ − < +⎪⎩
 or (22) 

 -1
,

M ( ) ,    if  1
( )

,                    if  1k
x k x

M x
k x

α
α

α
α+

− − − <⎧⎪= ⎨− ≤ −⎪⎩
 (23) 

and represents conditions x ≤ β  or α ≤ x respectively. 
Mask-functions (21), (22), and (23) can be implemented on bases of summing amplifiers as  

 , 1 1( ) [ ( ) ( )]M x S M x M xα β α β− += + ,  (24) 

 , 1( ) [ ( )]k gndM x S V M xβ β− += + , (25) 

 , 1( ) [ ( ) ]k ddM x S M x Vα α −= + . (26)  

Let us look how the masking can be performed for a wider scope of the variable changes, 
such as:  

 if  then ( , ) ( ) else 0.x y F x Y Y yα β α β≤ ≤ = ≤ ≤ = Φ =  (27)     

Using the mask-function Mα,β(x) it is possible to transform the rule (27) into the following 
form: 

 if ( ) 0 then ( , )  ( )  else  0.α,βM x y F x Y Y yα β= = ≤ ≤ = Φ =  (28) 

The rule (28) can be implemented with the circuit shown in Fig. 13, if to change in it the 
inputs Mα(x) and F(x = α,Y) with the inputs Mα,β(x) and Ф(Y) respectively. This 
implementation is represented analytically as 

 , ,{ [ ( ) ( )] [ ( ( )) ( )] ( )}.y S S M x Y S S M x Y Yλ δ λ δ= + Φ + + Φ + Φ  (29) 
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The sequence of pictures in Fig. 15 illustrates the implementation of the rule  

if 2 1 then 2 else 0x y y− ≤ ≤ + = − =  

for the case of ( 9m = )-valued logic. 
 

-3 -2 -1 1 2 3

1

2

3

-1

-2

-3

a)

x4

4

-4

-4 -3 -2 -1 1 2 3
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-3

x4

4

-4

-4

b)

M-3(x)

M+2(x)

M-2,+1(x) =
S(M-3(x)+M+2(x))

 

-3 -2 -1 1 2 3
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-3

x4

4

-4

-4 -3 -2 -1 1 2 3

1
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3

-1

-2

x4

4

-4

-4

c) d) y

S(S(M-2,+1(x))-2) S(M-2,+1(x)-2) S(S(S(M-2,+1(x))-2);S(M-2,+1(x)-2)-2)

 
Fig. 15. Example of mask-functions application.                     

3.3 An application example of interval masking  
For further explanation of the matter discussed in 3.2, let us recall an example from (Marks 
II, 1994, pp. 123 – 128) “A Fuzzy Logic Force Controller for a Stepper Motor Robot”. 
The fuzzy controller implements the function of two analog variables: position error and force 
error, which will be designate as x and y respectively. Each of the variables x and y is 
represented with 7 linguistic variables: NL, NM, NS, ZE, PS, PM, PL, and their membership 
functions are shown in Fig. 16. 
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Fig. 16. Fuzzy sets for force error and position error inputs. 

The Inference Engine Rule Matrix for the output linguistic variable from the cited work 
looks as it is shown in Table 7. 
Let us transform the Table 7 into the Table 8 taking into account that we are going to produce 
fuzzy inference calculating values of the corresponding multi-valued logic function. 
Table 8 comprises only two different columns defining two functions depending on the 
variable force error (Table 9). 
Fig. 17 illustrates graphs of these functions. It is easy to see that the function F1(y) looks like 
mask-function M−1,1(y) but has different slops of the lines. By analogy with (17), (18), (21), 
(24), Fig. 15(a), and Fig. 15(b), it is possible to construct the function F1(y) in accordance with 
graphics in Fig. 18. 
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position error (x)  NL NM NS ZE PS PM PL 
NL NM NL NL NL NL NL NM 
NM NS NM NM NM NM NM NS 
NS ZE NS NS NS NS NS ZE 
ZE ZE ZE ZE ZE ZE ZE ZE 
PS ZE PS PS PS PS PS ZE 
PM PS PM PM PM PM PM PS 

 
 

force 
error 

(y) 
PL PM PL PL PL PL PL PM 

Table 7. Rule matrix of the inference engine. 
 

position error (x)  
-3 -2 -1 0 1 2 3 

-3 -2 -3 -3 -3 -3 -3 -2 
-2 -1 -2 -2 -2 -2 -2 -1 
-1 0 -1 -1 -1 -1 -1 0 
0 0 0 0 0 0 0 0 
1 0 1 1 1 1 1 0 
2 1 2 2 2 2 2 1 

 
 

force 
error 

(y) 
 

3 2 3 3 3 3 3 2 

Table 8. Matrix of the multi-valued logic function.                
 

force error (y)  
-3 -2 -1 0 1 2 3 

1( )F y  -2 -1 0 0 0 1 2 

2( )F y  -3 -2 -1 0 1 2 3 

Table 9. Two different functions of the force error.        
  

-3 -2 -1 1 2 3

1

2

3

-1

-2

-3

-3 -2 -1 1 2 3

1

2

3

-1

-2

-3

a) b)

y y

F (y) F (y)1 2

 
Fig. 17. Components of the function defined by Table 8 and decomposed relative to  
variable x. 

As a result, the functions F1(y) and F2(y) can be implemented as  

 3 3 3 32 2
1 3 2 1 23 2 2 3 2 2( ) [ ( ) ( )],   ( ) .gnd ddF y S S y V S y V F y y= + + + =   (30) 
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-3 -2 -1 1 2 3

1

2

3

-1
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-3

a) b)

y -3 -2 -1 1 2 3

1

2

3

-1

-2

-3

y

 )( 2
3

2
3

2 gndVyS +

)( 2
3

2
3

1 ddVyS +

)()( 22
3

12
3

31 SSSyF +=

 
Fig. 18. Constructing of the function F1(y). 

It is seen from the Table 7 and Table 8 that the behaviour of the controller's output in the 
decomposition by variable x has the form: 

2 1if   then  ( )  else  ( );NM x PM Output F y Output F y≤ ≤ = =  or 

 2 1if  2 2  then  ( )  else  ( ).x Output F y Output F y− ≤ ≤ + = =  (31) 

It is possible to split the rule (31) into two rules and represent them as:  

 -2, 2 2if  ( ) 0  then  ( )  else  0;M x Output F y Output+ = = =  (32)                

 -2, 2 1if  ( ) 0  then  0  else  ( ).M x Output Output F y+ ≠ = =  (33)         

The rule (32) can be implemented in accordance with (29) and (30) and (24) as 

2, 2 4 3 3

2, 2 5 2, 2

1 11 6 2, 2 2 7 2, 2 2 2

( ) ( ( ) ( )),
( ) ( ( )),
{ [ ( ) ( )] [ ( )  ( )] ( )}.

M x S M x M x
M x S M x

S S M x F y S M x F y F y

− + − +

− + − +

− + − +

⎧ = +
⎪

− =⎨
⎪Φ = + + − + +⎩

 

It is easy to check that the rule (33) can be implemented in accordance with the structural 
scheme shown in Fig. 13, in which the output amplifier has the weight equal to 2 of the 
input F1(y): 

2 10 9 2, 2 1 8 2, 2 1 1{ [ ( ) ( )] [ ( ) ( )] 2 ( )}.S S M x F y S M x F y F y− + − +Φ = − + + − + +  

Finally the output of the controller can be calculated as 

1 2Output = Φ + Φ . 

For producing this summation it is possible to use summing amplifier S11 

11 1 2( ; ).Output S= −Φ −Φ  

Fig. 19 illustrates the structural scheme of the controller implementation with elements 
containing designations of input weights.  
The controller circuit has been constructed from three-stage push-pull CMOS operational 
amplifiers with 1-MegOhm resistors in the feedback (Fig. 2(b)). It’s functioning has been 
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checked with SPICE simulation (MSIM 8). MOSIS BSIM3v3.1, level 7 model of 0.4μm 
transistors has been used. In this paper, all other SPICE simulation experiments with 
designed circuits of controllers have been executed under the same conditions.  
 

ddV
outV

y

x
)(3 xM −

)(3 xM +

1S

2S

3S

4S

5S

6S

7S

8S

9S
10S

11S
1
1

3
3

1
1
1

1 1

1

1
1

1
1

1 1

1

2
1
1

3/2
3/2

3/2
3/2

2/3
2/3

3
3

 
Fig. 19. Structural diagram of the controller.  

In the experiments with the controller presented in Fig. 19, source voltage was 3.5V, input 
variable x changed linearly from 0V to 3.5V, input variable y changed discreetly in accordance 
with its logical values and kept constant value within one cycle of x changing. For the 
controller constructed from 3-stage elements results of SPICE simulation are shown in Fig. 20. 
It is possible to see that the functioning of the controller is correct (logical values of the circuit 
output depend on the logical values of the input variables in accordance with Table 7 and 8). 
 

 
Fig. 20. SPICE simulation results for the controller constructed from 3-stage summing 
amplifiers. 

4. Particular methods of fuzzy inference implementation  
The universal method of implementing multi-valued logic functions proposed in the 
previous section can be always used but often can give inappropriate results due to its 
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universality. For this reason some particular design methods for fuzzy inference part of 
controllers were developed. These methods utilize specific properties of certain multi-
valued logical function descriptions corresponding to sets of fuzzy inference rules. 
According to the approach described above, an initial set of fuzzy rules is represented in the 
form of a matrix or matrices defining multi-valued logical functions.  As a rule these 
matrices cannot be directly implemented. They must be decomposed into component 
matrices with relatively simple configuration of elements allocation, for which rather simple 
implementations can be find. The topologies of valuable elements inside of such component 
matrices can be specified as symmetrical, diagonal, matrixes with linear configurations of 
elements, with elements located along rows and columns, matrices containing single 
valuable element, and others.  
The best way to introduce particular design methods is to show possible matrix 
decomposition into a set of implementable matrices on bases of a real design example.  
Let us take the description of the rather complex fuzzy controller from the patent (Kimura & 
Kawawa, 1993) of Toyota Motors Corporation.  The controller calculates a regeneration time 
decision coefficient R on the base on a differential pressure coefficient Kp and total fuel 
consumption Qf. The set of fuzzy rules in terms of linguistic variables is represented in Table 
10.  Transformations of the input and output analog signals are performed in accordance 
with corresponding membership functions.  
 

pK  
 

NB NM NS ZO PS PM PB
NB NB NM NS ZO PB PB
NB NM NS NS ZO PB PB
NM NM NS ZO ZO PS PB
NM NS ZO ZO PS PM PB
NS ZO ZO PS PS PM PB
ZO ZO PS PM PM PM PB

fQ

NB 
NM
NS 
ZO 
PS 
PM 
PB PS PS PM PM PM PB PB

Table 10. Fuzzy rules for regeneration time decision coefficient R. 

Analysis of the membership functions in (Kimura & Kawawa, 1993) of linguistic variables 
representing input and output analog signals shows that the linguistic variables having 
maximum weight are evenly distributed within the change ranges of corresponding analog 
signals. It means that without losing the accuracy of representation, these linguistic 
variables can be replaced with logical values as it is shown in Table 11.  
 

x\y -3   -2   -1    0    1    2    3 
-3 
-2 
-1 
0 
1 
2 
3 

-3   -3   -1   -1    0    3    3 
-3   -2   -1   -1    0    3    3 
-2   -2   -1    0    0    1    3 
-2   -1    0    0    1    2    3 
-1    0    0    1    1    2    3 
0    0    1    2    2    2    3 
1    1    2    2    2    3    3 

Table 11. The 7-valued logical function    
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In this table, signals Qf and Kp are changed with 7-valued logic variables x and y respectively. 

4.1 Extracting a symmetrical component matrix  
Let the Table 11 of the controller is represented as initial matrix M, which, in its turn, can be 
represented as sum of two component matrixes (M1 and M2).  

1 2                                                                                                    
3 3 2 1 0 3 3
3 2 1 1 0 3 3
2 2 1 0 0 1 3

 2 1 0 0 1 2 3
1 0 0 1 1 2 3
0 0 1 2 2 2 3
1 1 2 2 2

M M M
− − − − ± + +
− − − − ± + +
− − − ± ± + +
− − ± ± + + +
− ± ± + + + +
± ± + + + + +
+ + + + +

3 3 2 2 1 0 0 0 0 0 1 1 3 3
3 2 2 1 0 0 1 0 0 1 0 0 3 2
2 2 1 0 0 1 1 0 0 0 0 0 0 2
2 1 0 0 1 1 2 0 0 0 0 0 1 1
1 0 0 1 1 2 2 0 0 0 0 0 0 1
0 0 1 1 2 2 3 0 0 0 1 0 0 0

3 3 0 1 1 2 2 3 3 1 0 1 0 0

− − − − − ± ± ≤ ≤ ± + + + +
− − − − ± ± + ≤ ± + ± ± + ≥
− − − ± ± + + ± ± ± ± ± ± ≥

= − − ± ± + + + + ± ± ± ± ± + ≥
− ± ± + + + + ± ± ± ± ± ± ≥
± ± + + + + + ± ± ± + ± ± ≥

+ + ± + + + + + + + ± + ± ± ≥ 0 0≥

 

Matrix M1 corresponds to a symmetrical component and M2 corresponds to nonsymmetrical 
residual component. 
Matrix M1 is symmetrical relative to the side diagonal. Its components can be represented as 
a function f1(z) of one variable z = (x+y)/2.  After performing the linear approximation 
between adjacent logical levels this function will has the form shown in Fig. 21. 
 

-3   -2.5   -2  -1.5   -1   -0.5          0.5    1    1.5    2    2.5    3

3

2

1

-1

-2

-3

f1(z)

z=(x+y)/2

 
Fig. 21. Graph of the function f1(z). 

To implement the function f1(z) let us represent it as a sum of 5 subfunctions αj(z) shown in 
Fig. 22(a). It is easy to see, that   

  
5

1
1

( ) ( )j
j

f z zα
=

= ∑ . (34)  

Let us consider formation of αj(z) using summing amplifiers on the example of α1(z). For this 
let us address to Fig. 22(b).                                 
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-3   -2.5   -2  -1.5   -1   -0.5          0.5    1    1.5    2    2.5    3

3

2

1

-1

-2

-3

z=(x+y)/2α1

α2

α3 α4 α5

a)

     

-3   -2.5   -2  -1.5   -1   -0.5          0.5    1    1.5    2    2.5    3

3

2

1

-1

-2

-3

z=(x+y)/2

β1

δ1

b)

 
Fig. 22. a) Five components of the function f1(z);  b) Representation of the function 1( )zα . 

The function β1(z) in Fig. 22(b) can be implemented as β1(z) = −S(k1· z + a1). For z = −2.25,       
β1 = 0  then a1 = 2.25k1. Taken into account that k1 = 6/0.5 = 12, we receive a1 = 27 and  

1( , ) (6 6 27)x y S x yβ = − + + , 1
1 16( , ) ( , )x y x yδ β= . 

Finally      

 1
1 1 16( , ) ( , ) 0.5 ( , ) 0.5x y x y x yα δ β= − = ⋅ − .  (35)           

In the same way it is possible to find  

 

1 1
2 23 3

1 1
3 36 6

1 1
4 46 6

1 1
5 56 6

( , ) ( , ) 1  (3 3 6) 1;

( , ) ( , ) 0.5 (6 6 3) 0.5;

( , ) ( , ) 0.5  (6 6 15) 0.5;

( , ) ( , ) 0.5  (6 27) 0.5.

x y x y S x y

x y x y S x y

x y x y S x y

x y x y S x y

α β

α β

α β

α β

= − = − + + −

= + = − + − +

= + = − + − +

= + = − + ⋅ − +

  (36) 

The function 1( )f z  can be calculated in accordance with (34) on one summing amplifier. 
Finally taking into account mutual compensation of constants, we have 

 1
1 1 2 3 4 56( , ) { [ ( , ) 2 ( , ) ( , ) ( , ) ( , )]}.f x y S x y x y x y x y x yβ β β β β= − ⋅ + ⋅ + + +  (37) 

Thus, the implementation of the function f1(x, y), which represents the matrix M1, consists of 
six summing amplifiers. 

4.2 Extracting a matrix with elements separated by a line 
This method is applicable for realization of matrices composed from two types of elements, 
which can be separated with a line. After extracting the symmetrical component the residual 
matrix is M2.  
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2 3 4                                                                                                           
0 0   0 1 1  3 3
0    0 1   0   0  3 2

   0    0    0   0   0    0 2
                

M M M
≤ ≤ + + + +
≤ + + ≥

≥

   0    0   0   0   0 3 3
   0    0   0   0   0 3 3
   0    0   0   0   0   0 3

  0    0    0   0   0  1 1      0    0   0 
   0    0    0   0   0    0 1
   0    0   0 1   0    0 0
 1    0 1   0   0 0 0

+ +
+ +

+
+ ≥ =

≥
+ ≥

+ + ≥ ≥

0 0   0 1 1 0 0
0    0 1   0   0 0 0

  0    0   0   0   0    0 0
 0   0   0 3    0    0   0   0   0  1 0

   0    0   0   0   0   0 3    0  
   0    0   0   0   0   0   0
   0    0   0   0   0   0   0

≤ ≤ + + ≥ ≥
≤ + ≥ ≥

≥
+ + + ≥
+  0   0   0   0    0 0

  0    0   0 1   0    0 0
1    0 1   0   0 0 0

≥
+ ≥

+ + ≥ ≥

 

This matrix has some elements of types ≤ a and ≥ b. This means that instead of values  a  and 
b of the elements it is possible to substitute any logical value less than a and more than b 
respectively. Let us split the matrix M2 in two matrices (M3 and M4) and try to implement 
the matrix M3. The matrix M4 is a new residual matrix.  
Let us address to Fig. 23. It is easy to see that the matrix M3 consists of elements with two 
different values, which can be separated with help of two parallel lines: x − 3y + 8 = 0 and     
x − 3y + 8 = 1.  A new variable is introduced 

 3 8w x y= − + . (38)           

Value of the variable w in the point with coordinates (x, y) is proportional to the distance of 
this point from the line. In all points lying on and up of the line, 0w ≤ , and in all points 
lying on and down of the dashed line (x − 3y + 7 = 0), w ≥ 1.  
 

-2

0

-1

1

2

3

-3

-3 -2 -1 1 2 3

x

y

x-3y+8=0

 
Fig. 23. Separating valuable elements of the matrix M3. 

It is easy to see, that the matrix M3 representing the function f2(x, y) can be implemented as  

 2( , ) { [3( 3 8)] 3}f x y S S x y= − + − − .  (39) 

In this implementation all valuable matrix elements are equal to “3”. 

4.3 Extracting a matrix with rectangular configuration of valuable elements  
Let us introduce a Pyramid Function that is the function, which corresponds to a matrix with 
a single valuable element and represents a rule of the type  
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 if  ( ) & ( )  then  ( , )   else ( , ) 0.x a y b f x y c f x y= = = =  (40)        

This function is shown in Fig. 24. 
 

x

y

f(x,y)

 
Fig. 24. A pyramid function. 

The Pyramid Function has some fixed value c (−k ≤ c ≠ 0 ≤ +k) at the point (a, b) and at the rest 
of the space bordered by points neighboring to (a, b) this function is zero. The transition 
from c to zero is linear. Neighborhood is defined by coordinate increments Δx = ±1 and        
Δy = ±1. 
Let's turn to Fig. 25 to construct the pyramid function.  
 

-k k

k

-k

a
a+1a-1 x

Ma+1(x) -Ma-1(x)

 
Fig. 25. Component functions of the pyramid projection onto the flat y = b; c = k. 

The figure shows two component mask-functions Ma+1(x) and  −Ma−1(x) those are 
implemented for (2k+1)-valued logic (−k ≤ x ≤ +k) as: 

 1

1

  ( ) [ ( 1)],
( ) [ ( 1)].

a

a

M x S k x a
M x S k x a

+

−

= ⋅ − −
− = ⋅ − + −

  (41)                          

Similarly component functions of the pyramid projection onto the flat x = a for the case c = k  
can be constructed as:  
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 1

1

  ( ) [ ( 1)],
( ) [ ( 1)].

b

b

M y S k y b
M y S k y b

+

−

= ⋅ − −
− = ⋅ − + −

  (42)                          

It is easy to check that the function  

 1 1( ) [ ( ) ( ) 2 ]a ax S M x M x kγ + −= − −   (43)                          

has the form shown in Fig. 26; γ (x) equals to “0” when x = a  and equals to “+k” for all other 
integer argument values. 
 

x

a-1 a+1a

k

k-k

-k

γ (x)

 
Fig. 26. Graph of the function γ (x). 
In a similar manner, we can construct the following function of 2 variables: 

 1 1 1 1( , ) [ ( ) ( )  ( ) ( ) 4 ].a a b bx y S M x M x M y M y kγ + − + −= − + − −   (44) 

The function γ (x, y) equals to “0” when (x = a)&(y = b) and equals to “+k ” for all other 
matrix points. 
Now it is easy to construct the pyramid function with height “c” presented in Fig. 25: 

 ( , ) [ ( , ) ]cf x y S x y k
k

γ= − . (45)           

A pyramid of an arbitrary height is obtained by simple input gain factor scaling of the next 
amplifier. The pyramid sign can be elementarily changed at the stage of component mask-
function constructions. 
We anticipate some complications in the case when it is needed to receive good "sewing" 
pyramids with already implemented functions. The pyramid function f (x, y) (45) of Fig. 24 
type has intersections with the flats y = {b, b ± 5, b ± 1} and with the flats x = { a, a ± 0.5, a ± 1}  
shown in Fig. 27. 
When “sewing” a pyramid function with other functions to get monotonous piece-linear 
approximation between adjacent logical values the view of the pyramid function by each of 
its coordinate can be changed to one of variants shown in Fig. 29. 
 To construct a pyramid function with graphs by coordinates x and y of the Fig. 28(a) type 
(center trapeze), it is sufficient to substitute in the functions (41) – (45) instead of original 
variables x, y new variables z = x + y, w = x − y and instead of points a, b points c = a + b,  
d = a − b  respectively.  
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Fig. 27. Graph of the pyramid function a) by coordinate x and b) by coordinate y. 
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Fig. 28. Possible graphs of a pyramid function by one of coordinates: a) center trapeze,  
b) right trapeze, c) left trapeze. 
It means the transition to the pyramid function shown in Fig. 29, which is implemented by 
analogy with (41) – (45) as 
 

f(x,y)

y

x

z

w  
Fig. 29. A pyramid in coordinates z = x + y  and w = x − y. 

 
( , ) { [ ( ( 1)) ( ( 1))

               ( ( 1)) ( ( 1)) 4 ] }.
f x y S S S k x y a b S k x y a b

S k x y a b S k x y a b k k
= + − − − + − − + + − +

− − + − + − + + − − − −
 (46)            

For implementing a function that has graphs along one of its variables (e.g. x) of the right 
trapeze type (Fig. 28(b)), let us introduce two intermediate functions  [ , ( )]x yφ ξ  and 

 [ , ( )]x yψ ξ shown in Fig.30. 
It is easy to check that these intermediate functions can be implemented as  

 1[ , ( )] [ ( ) 2 ( )],
[ , ( )] [ ( ) 2 ( )].

a

a

x y S M x k y
x y S M x k y

ϕ ξ ξ
ψ ξ ξ

−= + −
= − − −

 (47) 
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0< ξ(y)<k

ξ(y)=0b)

 
Fig. 30. Intermediate functions  a) [ , ( )]x yϕ ξ , b) [ , ( )]x yψ ξ .  

The function ( , ) [ , ( )] [ , ( )]f x y x y x yϕ ξ ψ ξ= +  has the right-hand trapeze form along the axis x 
(Fig. 28(b)). If the function ( )yξ  has a triangle form, ( )b kξ = ± , and 

( 1) ( 1) 0y b y bξ ξ< − = > + = , the function f (x, y) is a pyramid function.  
For implementing a function that has graphs along the axis x of the left trapeze type (Fig. 
28(c)), two intermediate functions [ , ( )]x yϕ ξ  and [ , ( )]x yψ ξ  shown in Fig. 31 are 
introduced. 
 

xa-1 a

k

k-k

-k

ϕ (x,ξ(y))

ξ(y)=k

0< ξ(y)<k

ξ(y)=0
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x

a-1 a+1a
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0< ξ(y)<k
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Fig. 31. Intermediate functions a) [ , ( )]x yϕ ξ , b) [ , ( )]x yψ ξ . 

These functions are implemented as 

1

[ , ( )] [ ( ) 2 ( )] 2 ( ),
[ , ( )] [ ( ) 2 ( )] 2 ( ).

a

a

x y S M x k y k y
x y S M x k y k y

ϕ ξ ξ ξ
ψ ξ ξ ξ+

= + − − +
= − − − + −

 

Then the function   

 
1

( , ) [ , ( )] [ , ( )] [ ( )
2 ( )] [ ( ) 2 ( )]

a

a

f x y x y x y S M x
k y S M x k y

ϕ ξ ψ ξ
ξ ξ+

= + =
+ − + − − −

 (48) 

has the form of the left trapeze type along the axis x shown in fig. 28(c). 
The pyramid function approach is not limited to rules with point condition (40) and may be 
extended to rules with interval condition of the type 

 1 2 1 2if  (   and   )  then ( , )   else  ( , ) 0.a x a b y b f x y k f x y≤ ≤ ≤ ≤ = =  (49) 
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Interval conditions can be implemented by simple changing constants in mask-functions. 
The rule (49) represents matrices with rectangular configurations of valuable elements. Such 
matrices can be implemented as truncated pyramids. 
Note that the function similar to (44) may be constructed for an arbitrary number of 
variables. Implementation of a pyramid function of two variables requires 6 amplifiers. 
Introducing each additional variable requires two additional amplifiers. 

4.4 Extracting a matrix with valuable elements laying on a diagonal  
Let us split the matrix M4 on two matrices (M5 and M6) and try to implement the matrix M5. 
Matrix M6 is the next residual matrix. 

4 5 6                                                                                 
0 0   0 1 1 0 0
0    0 1   0   0 0 0

   0    0   0   0   0    0 0
   0    0   0   0   0  1 0
   0    0   0   0 

M M M
≤ ≤ + + ≥ ≥
≤ + ≥ ≥

≥
+ ≥

0   0   0   0   0   0   0
0   0   0   0   0   0   0
0   0   0   0   0   0 1
0   0   0   0   0 1   0

  0    0 0 0   0   0   0   0   0   0
   0    0   0 1   0    0 0 0   0   0 1   0   0
 1    0 1   0   0 0 0

+
= +

≥
+ ≥ +

+ + ≥ ≥

0 0   0 1 1 0 0
0    0 1   0   0 0 0

  0    0   0   0   0    0 0
  0    0   0   0   0    0 0
  0    0   0   0   0    0 0

  0    0    0   0   0   0    0 0
0   0 1   0   0   0   0  1    0   0   0   0 0

≤ ≤ + + ≥ ≥
≤ + ≥ ≥

≥
+ ≥

≥
≥

+ + ≥ ≥ 0

 

In its turn, the matrix M5 can be composed from two matrices  

51 52                                                 
0   0   0   0   0   0   0
0   0   0   0   0   0   0
0   0   0   0   0   0 3

1 0   0   0   0   0 3   0
3

0   0   0   0 3   0   0
0   0   0 3   0   0   0

M M

+
+

+
+

0   0   0   0   0   0   0
0   0   0   0   0   0   0
0   0   0   0   0   0   0

1 0   0   0   0   0   0   0
3

0   0   0   0  3   0   0
0   0   0   0   0   0   0

0   0 3   0   0   0   0 0   0   0   0   0  0   

-
+

+ 0

 

and represented as the sum of corresponding functions 

1
3 31 323( , ) [ ( , ) ( , )]f x y f x y f x y= + . 

In the matrix M51, elements with the value “+3” lay on the line x + y −2 = 0. This matrix can 
be described by the function of one variable f31(z = x + y), which is defined by the rule 

31 31if 2 then ( ) 3 else ( ) 0.z f z f z= = =  

The function f31(z) can be constructed as it is shown in Fig. 32.  
It is easy to see from this figure that  

31 6 6 6 6 6 6( ) ( ) 3,   ( ) [ ( ) ( ) 6],   ( ) (3 3),    ( ) ( 3 9).f z z z S z z z S z z S zα α β δ β δ= + = + + = − = − +  
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α6 , f31β6 , δ6
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Fig. 32. Functional representations of the matrixes M5. 

For good “sewing” the function f32 with f31 and the function f3 with f1 the function f32 has to 
be implemented as pyramid function of variables z = (x + y)/2 and w = (x − y)/2 as it is 
shown in Fig. 29. Substitution of the variables z and w in formula (46) instead of  x + y  and   
x − y  respectively,  a = +1, b = +1, k = 3, and changing the sign of the function gives 

32 6 6 7 7( , ) { [ ( ) ( ) ( ) ( ) 12] 3}f z w S S z z w wβ δ β δ= + + + + +  

where  β6(z), δ6(z) are already implemented and 

7 7( ) (3 3),    ( ) ( 3 3).w S w w S wβ δ= + = − +  

Finally, the function f3(x, y) corresponding to the matrix M5 can be implemented as  

 1
3 6 6 6 6 7 73( , ) { ( , ) ( , ) [ ( , ) ( , ) ( , ) ( , ) 12] 9} 1f x y S x y x y S x y x y x y x yβ δ β δ β δ= + + + + + + + +  (50)          

where 

6 6

7 7

( , ) (3 3 3),    ( , ) ( 3 3 9),
( , ) (3 3 3),    ( 3 3 3).
x y S x y x y S x y
x y S x y x y

β δ
β δ

= + − = − − +
= − + − + +

 

4.5 Implementation of the matrix M6 
Let us split the matrix M6 on two matrices (M7 and M8) and try to implement the matrix M7. 
The new residual matrix is M8, all elements of which are defined. 
The matrix M7  

6 7 8                                                                                        
0 0   0 1 1 0 0
0    0 1    0   0 0 0

   0    0    0    0   0    0 0
     0    0    0    0   0    0 0

   

M M M
≤ ≤ + + ≥ ≥
≤ + ≥ ≥

≥
≥

0   0   0 1 1 1 1
0   0   0   0    0    0   0
0   0   0   0    0    0   0
0   0   0   0    0    0   0

0    0    0    0   0    0 0 0   0   0   0    0 
   0    0    0    0   0    0 0

1    0    0    0   0 0 0

+ + + +

=
≥
≥

+ ≥ ≥

  0   0    0   0   0   0   0
  0   0 1   0   0   0   0
  0   0    0   0   0   0   0
  0   0    0   0   0   0   0

   0   0    0   0    0   0   0  
0   0   0   0    0    0   0
0   0   0   0    0    0   0

+

+
0   0

  0   0    0   0   0   0   0
1   0    0   0   0   0   0+
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has one rectangular component and can be represented as the function f4(x, y) that is defined 
by the rule 

4 4if ( 3 )&( 0 )  then  ( , ) 1  else  ( , ) 0.x y f x y f x y= − ≥ = =  

By analogy with constructing formulas (41) – (45) let us compose two auxiliary functions: 
γ1(x) for the condition x = −3 and γ1(y) for the condition y ≥ 0. These functions are 
represented in Fig. 33 and can be constructed as 

1 3 1 1( ) [ ( )],    ( ) [ ( ) 3]x S M x y S M yγ γ− −= − = + . 

 
 

x

γ1(x)

y

a) b)

-3   -2   -1 1    2    3 -3   -2   -1  1   2    3

γ1(y)

1
2
3

1
2

3

-1
-2

-3 -3

-1
-2

 
 

Fig. 33. Two auxiliary functions:  a) γ1(x) for the condition x = −3  and  
b) γ1(y) for the condition y ≥ 0 . 

Based on the functions γ1(x) and γ1(y) it is possible to construct the function of two variables 

1 3 1( , ) [ ( ) ( ) 3].x y S M x M yγ − −= − + +  

Taking into account that for k = 3 

3 1( ) ( 3 9),    ( ) (3 3)M x S x M y S y− −− = − − = +  

it is not difficult to find 

 1
4 3( , ) [ ( 3 9) (3 3) 3] 1f x y S S x S y= − − + + + + . (51) 

The residual matrix M8 has only two nonzero elements with coordinates (x = +3, y = −3) and 
(x = −2, y = −1). Let us designate the functions, with help of which the controller function can 
be corrected in these points, as f5 and f6 respectively. Depending on coordinates of a valuable 
element and conditions of good “sewing” its function with already implemented fragments 
different implementation methods can be used.  
The function f5(x, y) is equal to 0 everywhere except the point (x = +3, y = −3), at which     
f5(x, y) = 1. For monotonic piecewise-linear connection of this function with the function   
f1(x, y), graphs of the function f5(x, y) along each of its arguments must have the form of Fig. 
28(a) or (b).  The function f5(x, y) can be implemented as pyramid function in accordance 
with (46) but the following approach, which is shown in Fig. 34, gives better 
implementation. 
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x
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y
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-3   -2   -1

1     2    3 -3   -2   -1

 1   2    3

−Μ−3(y)−3

1
2
3

1
2

3

-1
-2

-3 -3

-1
-2

 
 

Fig. 34. Auxiliary functions: a) − M3(x) and  b) − M3(y) − 3. 
Now it is not difficult to construct the function  

1
5 3 3 33( , ) { [ ( ) 3 ( )] ( )}f x y S M y M x M x−= − − − −  

and finally the function f5 is implemented as 

 1 1
5 3 3( , ) [ ( 3 9) ( 3 9) 3] ( 3 9).f x y S S y S x S x= − − + − + − + − +   (52)               

As experiments showed, the monotonic piecewise-linear approximation between the logical 
level in the point (-2,-1) and logical levels in the adjacent points of the functions  f1(x, y)  and 
f4(x, y) will be obtained, if the pyramid function f6 in the point (-2,-1) is implemented in 
accordance with the formula (46). 

1
6 3( , ) { [ (3 3 6) ( 3 3 12) (3 3 ) ( 3 3 6) 12] 3}.f x y S S S x y S x y S x y S x y= + + + − − − + − + − + − − −  

After some transformations providing the possibility to save one summing amplifier this 
function looks as follows 

 1
6 3( , ) [ ( 3 3 6) (3 3 12)  ( 3 3 ) (3 3 6) 12] 1.f x y S S x y S x y S x y S x y= − − − + + + + − + + − + + +  (53) 

4.6 Implementation of the controller  
Correctness of the designed controller and its functioning has been checked with SPICE 
simulation (MSIM 8). In simulation experiments MOSIS BSIM3v3.1 level 7 models of 0.4μm 
transistors have been used.  
As building blocks for the controller circuit two types of summing amplifiers were used 
(ordinary and powerful). They are built on the basis of three-stage push-pull CMOS 
operational amplifier2 with 1.5-MegOhm resistor in the feedback. Examples of such 
summing amplifiers are shown in Fig. 35. Transistors in this figure are marked with two 
numbers, which designate transistor dimensions (length and width). 
 

                                                 
2The operational amplifier of this type ii the simplest and is chosen only with the purpose of simplifying 
SPUCE simulation. 
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Fig. 35. Operational amplifier with feedback: a) ordinary, b) powerful. 

The controller schematic for experiments is represented in Fig. 36. Two powerful elements 
PHS1 and PHS2 of the controller produce signals -y and -x respectively. Other elements are 
ordinary. 
Analytical description of the controller schematic can be derived on bases of the function 
implementations (35) – (37), (39), (50) – (53) and has the following form 

1 1 1
1 9 3 4 56 3 6

1 1
6 76 6

2 9 8
1

3 12 10 11 15 103

( , ) [ (6 6 27)  (3 3 6) (6 6 3)

                 (6 6 15) (6 6 27)];
( , ) ( ( 3 9 24) 3);
( , ) { (3 3 3)  ( 3 3 9) [ (3 3 3)

          

f x y S S x y S x y S x y

S x y S x y
f x y S S x y
f x y S S x y S x y S S x y

= + + + + + + + − +

+ − + + −

= − + − −

= + − + − − + + + − +

16

11 14 13
1

4 18 173
1 1

5 21 19 20 193 3
1

6 26 23 22 253

       ( 3 3 9) (3 3 3) ( 3 3 3) 12] 9} 1;
( , ) [ ( 3 9) (3 3) 3] 1;

( , ) [ ( 3 9) ( 3 9) 3] ( 3 9);

( , ) [ ( 3 3 6)  (3 3 12) ( 3

S x y S x y S x y
f x y S S x S y

f x y S S x S y S x

f x y S S x y S x y S x

− − + + − + + − + + + + +

= − − + + + +

= − + + − − − + − −

= − − − + + + + − +

24
6

1 1 1 1 1
28 27 9 12 18 19 21 263 3 3 3 3

1

3 )
                 (3 3 6) 12] 1;

( , ) ( , ) [ (  3)].j
j

y
S x y

F x y f x y S S S S S S S S
=

+

− + + +

= = + + + + + +∑

 

Enumeration of summing amplifiers in this description corresponds to enumeration of 
elements in the controller circuit. The controller contains 28 amplifiers and 86 resistors. 
Resistor values have been calculated as Rj = R0 / wj where wj is logical weight of the jth 
element input signal.  
In experiments, source voltage was 3.5V. Input variable x changed linearly from 0V to  
3.5V, input variable y changed discreetly and kept constant value within one cycle of x 
changing.  
The voltage range was evenly divided onto seven logical levels so that the logical levels “-3” 
and “+3” corresponded to voltages Vgnd and Vdd respectively. 
Results of SPICE simulation of the controller schematic are represented in Fig. 37. This 
figure has been constructed by using GNUplot and illustrates the response surface in the 
coordinates X, Y. Analyzing the surface it is possible to conclude that the functioning of the 
controller is correct because of logical values of the circuit output depend on the logical 
values of the input variables in accordance with the Table 11. 
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Fig. 36. The controller schematic for experiment. 

Moreover, the controller output signal has monotonic piecewise-linear approximation 
between adjacent logical levels. Thus the designed controller can be used as an analog 
device, which has analog inputs and produces an analog output signal. 
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Fig. 37. The response surface of the controller.  

5. Transformation of analog signals into multi-valued logic variables 
In previous sections functions of multi-valued logic were specified by tables of fuzzy rules 
over linguistic variables. It was implicitly assumed that values of analog signals, which 
corresponded to linguistic variables, were evenly distributed in the range of voltages 
representing analog signals. Otherwise by artificial means the number of linguistic variables 
can be increased that leads to growing the implementation complexity.  
In this section a procedure of transforming input analog variables into multiple-valued logic 
variables with evenly distributed logical levels is suggested. This procedure in some sense is 
analogous to the procedure of fuzzification in fuzzy controllers. Because of using a fuzzy 
control description for implementation of controllers as multi-valued logical functions the 
same term “fuzzification” for the suggested procedure of logical levels equalization for 
input variables will be used.  
The same procedure is supposed to be used when output multi-valued variables with 
evenly distributed logical levels demand backward transformation to an analog form with 
not evenly distributed voltages corresponding to logical levels. In this case the term 
“defuzzification procedure” will be applied.  

5.1 Fuzzification procedures  
Let us examine more attentively the fuzzification procedure for the case of linear 
membership functions or membership functions, which sufficiently simply can be 
represented as piecewise-linear, and propose sufficiently simple universal method. Here the 
standard determination of a membership function is used. The membership function 
determines the weight of the corresponding linguistic variable b for each value of an analog 
variable X: 

( , ); 0 1b bw F b X w= ≤ ≤ . 

The simplest example of membership functions is given in Fig. 38. 
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Fig. 38. The simplest type of membership functions. 
“The membership function is a graphical representation of the magnitude of participation of 
each input. It associates a weighting with each of the inputs that are processed, define 
functional overlap between inputs, and ultimately determines an output response. The rules 
use the input membership values as weighting factors to determine their influence on the 
fuzzy output sets of the final output conclusion. Once the functions are inferred, scaled, and 
combined, they are defuzzified into a crisp output which drives the system. There are 
different memberships functions associated with each input and output response. Some 
features to note are: 
SHAPE - triangular is common, but bell, trapezoidal, haversine and, exponential have been 

used (More complex functions are possible but require greater computing overhead 
to implement.);  

HEIGHT or magnitude (usually normalized to 1);  
WIDTH (of the base of function);  
SHOULDERING (locks height at maximum if an outer function. Shouldered functions 

evaluate as 1.0 past their center);  
CENTER points (center of the member function shape);  
OVERLAP (N&Z, Z&P, typically about 50% of width but can be less)”. 3 
Fig.38 illustrates the features of the triangular membership function, which is used in the 
following example. 
The procedure of fuzzification and constructing corresponding diagram is examined on an 
example of the Container Crane fuzzy Controller, membership functions for which are given 
in Fig. 39.4  
It is assumed, without disrupting the generality of reasoning, that with changing the angle 
within the limits ( 90 90− ÷ +D D ) and the distance in the limits (-10 ÷ +30) yards the 
corresponding analog voltages vary within the range (0÷3.5)V. The source voltage of the 
controller circuit is also 3.5V. 
                                                 
3 Citation is taken from “Fuzzy Logic – an Introduction”, part 4, by Steven D. Kaehler, 
http://www.seattlerobotics.org/encoder/mar98/fuz/fl_part4.html   
1 http://www.fuzzytech.com/e/e_a_pdf.html   
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Fig. 39. Membership functions for the Container Crane Fuzzy Controller: a) for the angle and 
b) for the distance.  
Table 12 determines the function of fuzzification for the piecewise-linear membership 
functions of the variable angle shown in Fig. 39(a). It contains linguistic variables, 
corresponding to them angle values and voltages, and also logical values evenly distributed 
within the voltage range. Linearity the membership functions gives the possibility to 
connect the points of logical values by straight lines. The corresponding fuzzification 
(equalization) function is given in Fig. 40(a). In this figure the variations of voltages from the 
average (equilibrium) point of summing amplifier are plotted along the axes.  
 

neg_big neg_small zero pos_small pos_big 
-90°÷-60° 
(0÷0.58)V

-20° 
1.361V 

0° 
1.75V

20° 
2.139V 

60°÷90° 
(2.917÷3.5)V

-2 
0V 

-1 
0.875V 

0 
1.75V

+1 
2.625V 

+2 
3.5V 

Table 12. Angle membership functions. 

For implementation of the function Vout = F1(Vin) shown in Fig. 40(a) three auxiliary 
functions should be introduced. These functions are represented in Fig. 40(b). Their sum 
with saturation on the levels ± 1.75V determines the fuzzificated input function for the 
controller fuzzy inference part, which, as it has been already proved in previous sections, 
can be implemented as a multi-valued logic function. 
In Fig. 40(b) the angle α and functions ϕj (α) are represented in positive and negative 
voltages. These component functions and the fuzzifier output function F1(α) can be 
implemented by the following way: 

1 2 3
1

1 1 2 3 2

( ) 0.5 (4.5 );    ( ) (1.125 2.19);    ( ) (1.125 2.19);
( ) ( ( ) ( ) ( )) ( (4.5 ) (1.125 2.19) (1.125 2.19)).

S S S
F S S S S S
ϕ α α ϕ α α ϕ α α

α ϕ α ϕ α ϕ α α α α

= − = − + = − −

= − − − = + + + −
   (54) 
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-1.75V 1.75V-1V 1V

1.75V or

0.39V-0.39V
-1.167V 1.167V

0.875V or

-0.875V or  -1(neg_small)

-1.75V or  -2(neg_big)

+2(pos_big)

+1(pos_small)

0 (zero)

V     -1.75V

V   -1.75V in

outa)

 

-1.75V 1.75V-1V 1V

1.75V

0.389V-0.389V-1.167V 1.167V

0.875V

-0.875V

-1.75V

)(1 αϕ

)(2 αϕ

)(3 αϕ

b)

 
Fig. 40. a) Piecewise-linear function for fuzzification of the variable angle; 
b) Component functions for the function represented in (a). 
Now let us show how to construct and implement the fuzzification function for the input 
variable distance. As can be inferred from Fig. 40(b), the membership functions are 
characterized, first, by asymmetry of the measured distance ((-10 ÷ +30) yards) and, second, 
by the explicit asymmetry of the linguistic variable positions along the distance axis. It 
assumed that the complete range of the measured distance corresponds to the complete 
range of the supply voltages (0V ÷ 3.5V) or (-1.75V ÷ +1.75V) in deviations from the middle 
point of amplifiers. For this case, the fuzzification function is determined by Table 13.  
 

neg_close zero close medium far 
≤ -5  

yards 
≤ 0.4375V

0 
yards 
0.875V 

3 yards 
1,1375V

10 yards
1.75V 

≥ 20 
yards 

≥ 2.625V 
-2 
0V 

-1 
0.875V 

0 
1.75V 

+1 
2.625V 

+2 
3.5V 

Table 13. Distance membership functions                                                                     

In this table the linguistic variable close corresponds to value “log.0” and the linguistic 
variable zero corresponds to the value “log.-1”. The balance point of the amplifier input 
voltage corresponds to linguistic variable medium. 
Corresponding function Vout(Vin) = F2(Vin) is given in Fig. 41. For implementation of this 
function it is necessary to realize four auxiliary functions, whose sum with saturation on the 
levels ±1.75V will give the desired result. The auxiliary functions are given in Fig.42. Their 
values and value of the variable d (distance) are represented in negative and positive 
voltages. 
The ways of forming the component functions given in Fig.42 and the function 2( )F d are 
shown below:  
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1 2

3 4

2 1 2 3 4

( ) (2 3.5);    ( ) 0.25 (13.6 10.14);
( ) 0.25 (5.67 1.75);    ( ) ( 1.75);
( ) ( ( ) ( ) ( ) ( ))

[ (2 3.5) 0.25 (13.6 10.14)  0.25 (5.67 1.75) ( 1.75)].

d S d d S d
d S d d S d

F d S d d d d
S S d S d S d S d

ψ ψ
ψ ψ

ψ ψ ψ ψ

= − + = − +
= − + = − −
= − − − − =

+ + + + + + −

 (55) 

 

-1.75V 1.75V-1V 1V

1.75V

0.875V-0.6175V
-1.3125V

0.875V

+2 (far)

+1 (medium)

-0.875V
0V
0 (close)

-1 (zero)-0.875V

-1.75V -2 (neg_close)

V   -1.75Vin

V    -1.75Vout

 
Fig. 41. Piecewise-linear fuzzifications function for the variable distance. 
 

-1.75V 1.75V-1V 1V

1.75V

0.875V-0.6175V

-1.3125V

0.875V

-0.875V

0V

-0.875V

-1.75V

-1.75V

1.75V

-1V 1V

1.75V

0.875V-0.6175V-1.3125V

0.875V

0V

-0.875V

-1.75V

0.4375V

-0.4375V

d

d-0.4375V

0.4375V

)(djψ )(djψ

)(1 dψ

)(2 dψ )(3 dψ

)(4 dψ

 
Fig. 42. Component functions for the function represented in Fig.41. 

5.2 Fuzzifier implementations 5.2 
For the completion of the fuzzifier design it only remains to determine the values of the 
input resistances of summing amplifiers and to conduct SPICE simulation for checking 
correctness of the implementations (54) and (55). These implementations are represented 
graphically in Fig.43(a) and Fig.43(b) respectively. Their schematics, which have been used 
for SPICE simulations, are shown in Fig.44 (a) and Fig.44 (b). 
Summing amplifiers used in the schematics are constructed on the bases of three-stage 
push-pull CMOS operational amplifier in accordance with Fig.35(a).  
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Fig. 43. Fuzzifiers of the variables a) angle and b) distance. 

 

 

   
Fig. 44. Fuzzifier schematics a) for the angle and b) for the distance.  
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Results of SPICE simulation of the fuzzifiers for variables angle and distance are shown in 
Fig. 45. 
It is easy to see that the simulation plots are exactly the same as it is required for 
fuzzification of the input variables angle (Fig.40(a)) and distance (Fig.41).  This proves the 
correctness of the fuzzifier implementations. 
 

  
 

 
Fig. 45. Outputs of the fuzzifiers (shown in Fig.44) derived by SPICE simulation. 

It should be noted that in the case of software implementation of the fuzzification and 
defuzzification functions, their component functions may be chosen not only piecewise-
linear but providing any reasonable approximations.  

6. Conclusion 
Thus, it was shown that all parts of fuzzy controllers can be effectively implemented on 
bases of summing amplifiers with saturation in accordance with the proposed methodology. 
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This methodology is oriented to hardware implementation of fuzzy controllers as analog 
devices. Certainly the traditional approach to implementation of fuzzy controllers provides 
more accurate control and gives better approximation extracted levels in comparison with 
suggested. But in many cases our approach gives so simple circuits of controllers that their 
implementation on the base of standard processors looks rather redundant. Moreover, 
hardware implementation have advantages of better response time and reliability, low 
power consumption, smaller die area, etc.  It should be noticed that the methodology also 
admits software implementation of the controllers by means of simulation using the 
summation operation with restrictions.    
In all examples of controllers presented in the paper, the push-pull summing amplifier 
containing three CMOS invertors is used. Obviously this amplifier circuit is the simplest 
among operational amplifiers of other types but unfortunately it has the worst 
characteristics. It was chosen only by two reasons: first, to simplify SPICE simulation of 
designed controllers and second, to show that using even such primitive and imperfect 
building block gives rather appropriate characteristics of designed controllers. Certainly in 
real projects of controllers it is better to use another types of operational amplifiers, e.g., a 
differential amplifier.  
Someone may object that summing amplifiers in all examples of controllers designed with 
help of suggested methodology contain resistors of large values and it is very difficult to 
implement these resistors in CMOS VLSI technology. Indeed it is correct. In our case p-well 
resistors (1-10K Ohms/sq.) or pinch resistors (5-20K Ohms/sq.) can be used. These resistors 
are compatible with CMOS technology but occupy very large die area, possess bad 
accuracy, and have big temperature and voltage coefficients. By these reasons the possibility 
of creating a dynamical model of the summing amplifier with saturation using capacitors 
instead of resistors has been considered. This consideration gave positive results and 
perhaps will be published in the future.  
The proposed methodology has been applied for designing several devices specified as 
fuzzy controllers, showed high efficiency and gave very economical implementations. 
Techniques of synthesizing fuzzy devices in the offered base should get further developing 
and problems of implementability under the conditions of real production should be 
resolved in the nearest future.  
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1. Introduction

In the design of modern and classical control systems, the first step is establish a suitable
mathematical model to describe the behavior of the controlled plant (Takagi & Sugeno, 1985;
Ying et al., 1990). However, in practical situations, such a requirement is not feasible because
in practical control systems the plants are always nonlinear systems, which makes this task
analytically unfeasible for complex systems (Cetin & Demir, 2008; Dong et al., 2009; Park et al.,
2007; Pelladra et al., 2009). This fact has motivated the use of fuzzy logic in the development
of fuzzy model based control systems. In this context, The Fuzzy Systems have been widely
used due to flexibility of its structure to incorporate linguistic information (knowledge expert)
with numerical information (sensors and actuators measurements), as well as its functional
efficiency as universal approximator capable of treat adequately uncertainties, parametric
variations and nonlinearity of the plant to be controlled (Castro-Sitiriche et al., 2008; Cetin
& Demir, 2008; Cheng et al., 2009; Ibrahim, 2003; Mishra et al., 2000; Park et al., 2007; Wen-Xu
et al., 2009). Modeling is the task that simplifies a real system or complex reality with the
aim of easing its understanding. In this sense, an effective approach to the identification of
complex nonlinear systems is to partition the available data into subsets and approximate
each subset by simple model. Fuzzy Clustering can be used as a tool to obtain a partitioning
of experimental data where the transitions between the subsets are gradual rather than
abrupt. The potential of fuzzy clustering algorithms to reveal the underlying structures in
data can be exploited, not only for classification and pattern recognition in the available data,
but also for the reduction of complexity in modeling and identification. One of the major
applications of the model is the design of a controller for the true system. The ultimate goal
of a control-system is to build a system that will work in the real environment. Since the
real environment may change with time (parametric variations and nonlinearity) or operating
conditions may vary (noise and disturbance), the control system must be able to withstand
these variations (Petros & Sun, 1996). This fact has motivated, since 1980’s, the proposal of
new methodologies for design of robust controllers. In this context, fuzzy systems have been
widely used in robust controllers design (Barton, 2004; Serra & Boturra, 2006; Silva & Serra,
2009; Tanaka & Sugeno, 1993; Zhan, 2010). In this paper a robust fuzzy control design based on
gain and phase margins specifications for nonlinear systems, in the continuous time domain,
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is proposed. A mathematical formulation based on Takagi-Sugeno fuzzy model structure as
well as the PDC strategy is presented. Analytical formulas are deduced for the sub-controllers
parameters, in the robust fuzzy controller rules base, according to the fuzzy model parameters
of the fuzzy model plant to be controlled. Results for the necessary and sufficient conditions
for the fuzzy controller design, from the proposed robust methodology, with one axiom and
two theorems are presented. Simulation results, based on robust methodology, for a single
link robotic manipulator are presented. The paper is organized as follows: In section II, it
is introduced firstly the preliminary concepts fot the proposal methodology; secondly the
the robust fuzzy control design and tuning formulas, based on gain and phase margins
specifications, as well as the robust stability analysis of the fuzzy controller, are proposed
in section III. Finally, Simulation results and conclusions are drawn in sections IV and V,
repectively.

2. Preliminary concepts

In this section, some importants concepts to development the proposal methodology are
presented.

2.1 Takagi-Sugeno fuzzy inference systems
The TS fuzzy model, originally proposed by Takagi and Sugeno (Takagi & Sugeno, 1985), is
composed of a fuzzy IF-THEN rule base that partitions a space - usually called the universe
of discourse - into fuzzy regions described by the antecedents. The consequent of each rule i
is a simple functional expression of model inputs and that all fuzzy terms are monotonic
functions. In this case, specifically, the TS fuzzy model can be regarded as a mapping from the
antecedent (input) space to a convex region (polytope) in the local sub-models space into the
consequent, defined by the variants consequents parameters of the plant to be controlled. This
property simplifies the analysis of the TS fuzzy model in a context of robust time-variant and
linear system for design of controllers with desired characteristics of the closed loop control
system or stability analysis.
The i|[i=1,2,...,l]-th TS rule, without loss of generality, the following structure:

R(i) : IF x̃1 is Fi
j|x̃1

AND · · · AND x̃n is Fi
j|x̃n

THEN ỹi = fi (x̃) (1)

where

x̃T = [x̃1, x̃2, · · · , x̃n],
ỹT = [ỹ1, ỹ2, · · · , ỹn],

l is the number of fuzzy IF-THEN rules. The vector x̃ ∈ �n contains the antecedent linguistic
variables. Each linguistic variable has its own universe of discourse Ux̃1 , · · · , Ux̃n partitioned
by fuzzy sets representing the linguistic terms. The variable x̃t|[t=1,2,...,n] belongs to the fuzzy
set Fi

j|x̃t
with a value μi

Fj|x̃t
defined by a membership function μi

x̃t
: � → [0, 1], with μi

Fj|x̃t
∈

μi
F1|x̃t

,μi
F2|x̃t

,μi
F3|x̃t

,. . .,μi
Fpx̃t |x̃t

, where px̃t is the number of partitions of the universe of discourse

associated to the linguistic variable x̃. The activation degree of hi for the rule i, is given by:

hi (x̃) = μi
Fj|x̃∗1

⊗ μi
Fj|x̃∗2

⊗ · · · μi
Fj|x̃∗n

(2)

where x̃∗t is some point in Ux̃t . The normalized activation degree for the rule i, is given by:
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γi (x̃) =
hi (x̃)

l

∑
λ=1

hλ (x̃)

(3)

where it is assumed that

l

∑
λ=1

hλ (x̃) > 0,

hλ (x̃) ≥ 0, i = 1, 2, · · · , l

And, this normalization implies that

l

∑
i=1

γi (x̃) = 1 (4)

The TS fuzzy model response is a weighted sum of the consequent parameters, i.e., a convex
linear combination of the local functions (models) fi, which reads

fi (x̃) =
l

∑
i=1

γi (x̃) fi (x̃) (5)

Each linear component fi (x̃) is called a subsystem. This model can be seen as a Linear
Parameters Varying (LPV) System (Balas et al., 1997; Shamma & Athans, 1991). This property
simplifies the analysis of the TS fuzzy model in a context of robust time-variant and linear
system for design of controllers with desired characteristics of the closed loop control system
or stability analysis.

2.2 Fuzzy model based control design steps
The design of a controller that can alter or modify the behavior and response of an unknown
plant to meet certain perfomance requirements can be a tedious and challenging problem in
many control applications. The plant inputs u are processed to produce several plant outputs y
that represent the measured output response of the plant. The control design task is to choose
the input u so that the output response y(t) satisfies certain given performance requirements.
Because the plant process is usually complex, i.e., it may consist of various mechanical,
electronic, hydraulic parts, etc., the appropriate choise of u is in general straightforward. The
control design steps often followed by most control engineers in choosing the input u are
explained below.

2.2.1 Modeling
The task os the control engineer in this step is to undestand the processing mechanism of
the plant, which takes a given input signal u(t) and produces the output response y(t), to
the point that he or she can describe it in the form of some mathematical equations. These
equations constitute the mathematical model of the plant. An exact plant model should
produce the same output response as the plant, provided the input to the model and initial
conditions are exactly the same as those of the plant. The complexity of most physical plants,
however, makes the development of such an exact model unwarranted or even impossible.
But even if the exact plant model becomes available, its dimension is likely to be infinite, and
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its description nonlinear or time time varying to the point that its usefulness from the control
design viewpoint is minimal or none. This makes the task of modeling even more difficult
and challenging, because the control engineer has to came up with a mathematical model that
describes accurately the input/output behavior of the plant and yet is simple enough to be
used for control design purposes. A simple model usually leads to a simple controller that is
easier to understand and implement, and often more reliable for practical purposes. A simple
model usually leads to a simple controller that is easier to understand and implement, and
often more reliable for practical purposes.
A plant model may be developed by using physical laws or by processing the plant
input/output (I/O) data obtained by performing various experiments. Such a model,
however, mat still be complicated enough from the control design viewpoint and further
simplifications may be necessary. Some of the approaches often used to obtain a simplified
model are:

(a) Linearization around operating points;

(b) Model order reduction techniques;

(c) Fuzzy Clustering.

In approach (a) the plant is approximated by a linear model that is valid around a given
operating point. Different operating points may lead to several different linear models that
are used as plant models. Linearization is achieved by using Taylor’s series expansion and
approximation, fitting of experimental data to a linear model, etc.
In approach (b) small effects and phenomena outside the frequency range of interest are
neglected leading to a lower order and simpler plant model.
In approach (c), used in this work, the fuzzy clustering algorithms are used to construct fuzzy
models from experimental data. Among the most popular methods are the following: Fuzzy
C - Means (FCM), Gustafson - Kessel (GK) and Fuzzy Maximum Likelihood Estimates (FLME)
algorithms. All these algorithms share the following definitions.
A cluster is a group of objects that are more similar to another than to members of other
clusters (Bezdek, 1981; Jain & Dubes, 1988). The term "similarity" should be understood as
mathematical similarity, measure in some well-define sense. In metric spaces, similarity is
often defined by means of a distance norm. Distance can be measure from a data vector
to some cluster prototypical (center). Data can reveal clusters of different geometric shapes,
sizes and densities. While clusters can be characterized as linear and nonlinear subspaces of
the data space.
The objective of clustering is to partition the data set Z into c clusters. Assume that c is known,
based on priori knowledge. The fuzzy partition de Z can be defined as a family of subsets
{Ai|1 ≤ i ≤ c} ⊂ P(Z), with the following properties:

c⋃
i=1

Ai = Z (6)

Ai ∩ Aj = 0 (7)

0 ⊂ Ai ⊂ Zi (8)

Equation 6 means that the subsets Ai collectively contain all the data in Z. The subsets must
be disjoint, as stated by 7, and none off than is empty nor contains all the data in Z, as stated
by 8.
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In terms of membership functions, μAi is the membership function of Ai. To simplifly the
notation, in this work we use μik instead μi (zk). The cxN matrix U = [μik] represents a
fuzzy partitioning space if and only if:

Mf c =

{
U ∈ �cxN |μik ∈ [0, 1] , ∀i, k;

c

∑
i=1

μik = 1, ∀k; 0 <
N

∑
k=1

μik < N, ∀i

}
(9)

The i-th row of the fuzzy partition matrix U contains values of the i-th membership function
of the fuzzy subset Ai of Z.
The clustering algorithms optimizes an initial set of centroids by minimizing a cost function J
in an iterative process. Such function is usually formulated as:

J (Z; U, V, A) =
c

∑
i=1

N

∑
k=1

μm
ik D2

ikAi
(10)

where, Z = {z1, z2, · · · , zN} is a finite data set. U = [μik] ∈ Mf c is a fuzzy partition of Z.
V = {v1, v2, · · · , vc} , vi ∈ �n, is a vector of cluster prototypes (centers). A denote a c-tuple of
the norm-induting matrices: A= (A1, A2, · · · , Ac). D2

ikAi
is a squared inner-product distance

norm. m ∈ [1, ∞) is a weighting exponent which determines the fuzziness of the resulting
clusters.
The clustering algorithms differ in the choice of the norm distance. The norm metric influences
the clustering criterion by changing the measure of dissimilarity. The Euclidean norm induces
hiperspherical clusters. It’s characterizes the FCM algorithm, where norm-inducing matrix
AiFCM is equal to identity matrix (AiFCM = I), this strictly imposes a circular shape to all
clusters. The Euclidean Norm is given by:

D2
ikFCM

= (zk − vi)
T AiFCM (zk − vi) (11)

An adaptative distance norm, in order to detect clusters of different geometrical shapes in one
data set, characterizes the GK algorithm:

D2
ikGK

= (zk − vi)
T AiGK (zk − vi) (12)

In this algorithm, each cluster has its own norm-inducing matrix AiGK , where each cluster to
adapt the distance norm to the local topological structure of the data set. AiGK is given by:

AiGK = [ρidet (Fi)]
1/n F−1

i , (13)

where ρi is cluster volume, usually fixed in one. n is data dimension. Fi is the fuzzy covariance
matrix of the i-th cluster defined by:

Fi =
∑N

k=1 (μik)
m (zk − vi) (zk − vi)

T

∑N
k=1 (μik)

m (14)

The eigenstructure of the cluster covariance matrix provides information about the shape and
orientation cluster. The ratio of the hyperellipsoid axes is given by the ratio of the square
roots of the eigenvalues of Fi. The directions of the axes are given by the eigenvectores of
Fi. The eigenvector corresponding to the smallest eigenvalue determines the normal to the
hyperplane, and can be used to compute optimal local linear models from the covariance
matrix.
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The fuzzy maximum likelihood estimates (FLME) algorithms employs a distance norm based on
maximum lekelihood estimates:

DikFLME =

[
detGiFLME

]1/2

Pi
exp

[
1
2
(zk − vi)

T F−1
iFLME

(zk − vi)

]
(15)

Note that, contrary to the GK algorithm, this distance norm involves an exponential term and
thus decreases faster than the inner-product norm. FiFLME denotes the fuzzy covariance matrix
of the i-th cluster, given by equation 14. When m is equal 1, we have a strict algorithm FLME.
If m is greater than 1, we have a extended algorithm FLME, or Gath-Geva (GG) algorithm. Pi is
the prior probability of selecting cluster i, given by:

Pi =
1
N

N

∑
k=1

(μik)
m (16)

Gath and Geva (Gath & Geva, 1989) reported that the FLME algorithm is able to detect clusters
of varying shapes, sizes and densities. This is because the cluster covariance matrix is used in
conjuncion with an "exponential" distance, and the clusters are not constrained in volume.
The system identification procedure is illustrated in the Figure 1 below.

Experiment
Design

Experimental 
Data

Model 
Estructure

Fuzzy 
Clustering

Parameters
Estimation

Prior 
Knowledge

Calculate Model

Validate
Model

OK: Use it !

NOT OK: Revise

PDC Strategy

Fuzzy Controller Robust Stability Specificications

Fig. 1. The control system diagram

The fuzzy clustering algorithms can be used to approximate a set of experimental data by local
linear models. Each of these models is represented by a fuzzy subset in the data set available
for identification. In order to obtain a model useful for controller design, an additional step
must be applied to generate a model independent of the identification data. Such a model
can be represented either as a rule base. Each cluster obtained by clustering algorithms of
the identification data set can be regarded as a local linear approximation of the regression
hypersurface. The global model can be conveniently represented as a set affine Takagi-Sugeno
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(TS) rules, can decribed in equation 1. The antecedent fuzzy sets can be computed analitically
in the antecedent product space, or can be extracted from the fuzzy partition matriz by
projections.
The consequent parameters are estimated from the data using the weighted least-squares
method. Where, the identification data and the membership degrees of the fuzzy partition
are arranged in the following matrices:

X =

⎡
⎢⎢⎢⎣

xT
1

xT
2
...

xT
N

⎤
⎥⎥⎥⎦ , y =

⎡
⎢⎢⎢⎣

y1
y2
...

yN

⎤
⎥⎥⎥⎦ , Ωi =

⎡
⎢⎢⎢⎣

μi1 0 · · · 0
0 μi1 · · · 0
...

...
. . .

...
0 0 · · · μiN

⎤
⎥⎥⎥⎦ (17)

The consequent parameters of the rule belonging to the i-th cluster, depending of the model
identification structure, are concatenated into a single parameter vector, θi, for example:

θi =
[

aT
i , bT

i

]
(18)

Xreg gives the extended regressor matrix, depending too of the model identification structure.
Assuming that each cluster represents a local linear model of the system, the consequent
parameter vectors θi, i = 1, 2, · · · , c, can be estimated independently by the weighted
least-squares method. The membership degrees μik of the fuzzy partition serve as the weights
expressing the relevance of the data pair (xk, yk) to that local model. If the columns of Xreg are
linearly independent and μik > 0 for 1 ≤ k ≤ N, then

θi =
[

XT
regΩiXreg

]−1
XT

regΩiy (19)

Since that,

ỹk = fi (xk; θi) (20)

where the functions fi are parameterized by θi ∈ �pi . We have,

ỹ (x̃) =
∑l

i=1 hi (x̃) ỹi

∑l
i=1 hi (x̃)

(21)

2.2.2 Controller design
Once a model of the plant is available, one can proceed with the controller design. The
controller is designed to meet the performance requirements for the plant model. If the model
is a good approximation of the plant, one would hope that the controller performance for the
plant model to be close to that achieved when the same controller is applied to the plant. In
this sence, the robust stability control problem is to find a control law which maintains system
response and error signals within prescribed tolerances despite the effects of parametric
variations on the plant. In this paper a robust fuzzy control design based on gain and phase
margins specifications for nonlinear systems, in the continuous time domain, is proposed. A
mathematical formulation based on Takagi-Sugeno fuzzy model structure as well as the PDC
strategy is presented. Analytical formulas are deduced for the sub-controllers parameters, in
the robust fuzzy controller rules base, according to the fuzzy model parameters of the fuzzy
model plant to be controlled.
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2.2.3 Implementation
In this step, a controller designed in previous step, which is shown to meet performance
requirements for the plant model and is robust with respect possible plant model
disturbances, is ready to be applied to the unknow plant. The implementation can be done
using a digital computer, all though in some applications analog computers may be used
too. Issue such as the type of computer available, the type of inference devices between the
computer and the plant, software tools, etc., need to be considered priori. Computer speed
and accuracy limitations may put constraints complexity of the complexity of the controller
that may force the control engineer to go back to previous step or even first step to come up
with a simpler controller without violating the performance requirements.
Another important aspect of implementation is the final adjustment or as often called the
tuning, of the controller to improve performance be compensating for the plant model
disturbances that are not accounted for during the design process. Tuning is often done by
trial and error, and depends very much on the experience and intuition of control engineer. In
this work, the adjusts are done based on gain and phase margin especifications.

2.3 Gain and phase margins especifications
A successfully designed control system should be always able to maintain stability and
performance level in spite of disturbances in system dynamics and/or in the working
environment to a certain degree. Gain margin and phase margin have always served as
important measures of robustness. It is also known from classical control that phase margin is
related to the damping of the system, and can therefore also serve as a performance measure
(Franklin et al., 1986). Controller designs to satisfy gain margin and phase margin (GPM)
criteria are not new (Franklin et al., 1986; Ogata, 2002).
The Phase Margin is that amount of additional phase lag at the gain crossover frequency
required to bring the system to the verge of instability. The gain crossover frequency is the
frequency at which |G(jω)|, the magnitude of the open-loop transfer function, is unity. The
phase margin φm is 180◦ plus the phase angle ∠G(jω) of the open-loop transfer function at
the gain crossover frequency, or:

φm = ∠G(jω) + π (22)

The phase margin is positive for φm > 0 and negative for φm < 0. For a minimum-phase
system1 to be stable, the phase margin must be positive.
The Gain Margin is the reciprocal of the magnitude |G(jω)| at the frequency at which the
phase angle is −180◦. Defining the phase crossover frequency ωp, to be the frequency at
which the phase angle of the open-loop transfer function equals −180◦ gives the gain margin
Am:

Am =
1∣∣G(jωg)

∣∣ (23)

The gain margin expressed in decibels is positive if Am, is greater than unity and negative if
Am is smaller than unity. Thus, a positive gain margin (in decibels) means that the system
is stable, and a negative gain margin (in decibels) means that the system is unstable. For a
stable minimum-phase system, the gain margin indicates how much the gain can be increased

1 Transfer functions having neither poles nor zeros in the right-half s plane are minimum-phase transfer
functions, whereas those having poles and/or zeros in the right-half s plane are nonminimum-phase
transfer functions
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before the system becomes unstable. For an unstable system, the gain margin is indicative
of how much the gain must be decreased to make the system stable. For a minimum-phase
system, both the phase and gain margins must be positive for the system to be stable. Negative
margins indicate instability. Proper phase and gain margins ensure us against variations in the
system components and are specified for definite positive values. The two values bound the
behavior of the closed-loop system near the resonant frequency. For satisfactory performance,
the phase margin should be between 30◦ and 60◦, and the gain margin should be greater than 6
dB. With these values, a minimum-phase system has guaranteed stability, even if the openloop
gain and time constants of the components vary to a certain extent. Although the phase
and gain margins give only rough estimates of the effective damping ratio of the closed-loop
system, they do offer a convenient means for designing control systems or adjusting the gain
constants of systems. the Figure 2 shows the gain and phase margins for two different systems.
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Fig. 2. The phase (9.54dB) and gain (25.4dB) margins of the system 10/s(s + 1)(s + 5) is
showed in (a). The phase (25.8dB) and gain (inf.) margins of the system 10/(s2 + s + 10) is
showed in (b). Note that the gain margin of a first or second-order system is infinite since the
polar plots for such systems do not cross the negative real axis.

For minimum-phase systems, the magnitude and phase characteristics of the openloop
transfer function are definitely related. The requirement that the phase margin be between
30◦ and 60◦ means that in a Bode diagram the slope of the log-magnitude curve at the gain
crossover frequency should be more gradual than -40 dB/decade. In most practical cases, a
slope of -20 dB/decade is desirable at the gain crossover frequency for stability. If it is -40
dB/decade, the systems could be either stable or unstable. (Even if the system is stable,
however, the phase margin is small.) If the slope at the gain crossover frequency is -60
dB/decade or steeper, the system is most likely unstable.
Denote the process and the controller transfer function by Gp(s) and Gc(s), and the specified
gain and phase margins by Am and φm, respectively. The formulas for gain margin and phase
margin are as follows:

arg
[
Gc(jωp)Gp(jωp)

]
= −π (24)

Am =
1∣∣Gc(jωp)Gp(jωp)

∣∣ (25)
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∣∣Gc(jωg)Gp(jωg)
∣∣ = 1 (26)

φm = arg
[
Gc(jωg)Gp(jωg)

]
+ π (27)

where the gain margin is defined by Eqs. 24 and 25, and the phase margin by Eqs. 26 and
27. The frequency ωp at which the Nyquist curve has a phase of −π is known in classical
terminology as the phase crossover frequency, and the frequency ωg at which the Nyquist
curve has an amplitude of 1 as the gain crossover frequency.

2.4 Parallel Distributed Compesation (PDC) strategy
The history of the so-called parallel distributed compensation (PDC) began with a
model-based design procedure proposed by Wang (Wang et al., 1995). The PDC offers a
procedure to design a fuzzy controller from a given T-S fuzzy model. To realize the PDC, a
controlled plant is first represented by a T-S fuzzy model. In the PDC design, each control rule
is designed from the corresponding rule of a T-S fuzzy model. The designed fuzzy controller
shares the same fuzzy sets with the fuzzy model in the premise parts. The Figure 3 shows the
concept of PDC design.

Antecedent fuzzy sets

Rule 1

Rule 2

Rule n

Rule 1

Rule 2

Rule n

Fuzzy System Fuzzy Controller

Fig. 3. In the PDC strategy, the fuzzy controller shares the same fuzzy sets with the fuzzy
system.

In this paper is presented an fuzzy robust model based control scheme from the TS fuzzy
model structure, the PDC strategy and gain and phase margins robust specifications. In
the proposed methodology, the fuzzy controller parameters, with TS structure, are obtained
through analytical formulas from the definition of gain and phase margins specifications.
The robust fuzzy controller designed and the TS fuzzy model of the plant model to be
controlled shares the same fuzzy sets, in the antecedents. In the fuzzy inference engine
the sub-controller is selected based on the plant dynamic behavior and the gain and phase
margins robust specifications. The dynamic system class under analysis for the fuzzy control
design structure of the robust control is proposed with the objective to obtain the above
robustness characteristics, from generalized analytical formulas.
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3. Robust fuzzy control based on gain and phase margins especifications

In this section, the robust fuzzy control methodology based on gain and phase margins
especifications are presented.

3.1 TS fuzzy dynamic model
The TS fuzzy inference system for a second-order plant, Gp(s),presents in the i|[i=1,2,...,l]-th
rule, without loss of generality, the following structure:

R(i) : IF τ̃ is Fi
k|τ̃ AND τ̃′ is Gi

k|τ′ AND K̃p is Hi
k|K̃p

THEN Gi
p(s) =

Ki
p

(1 + sτi)(1 + sτ
′ i)

e−sL (28)

The time constants τ̃ and τ̃′, where τ̃ ≥ τ̃
′
, and the gain K̃p, represent the linguistic variables

of the antecedent. The activation degree of hi for the rule i, is given by:

hi
(
τ̃, τ̃′, K̃p

)
= μi

Fk|τ̃∗ ⊗ μi
Gk|τ̃′∗

⊗ μi
Hk|K̃∗p

(29)

The normalized activation degree for the rule i, is given by:

γi
(
τ̃, τ̃′, K̃p

)
=

hi
(
τ̃, τ̃′, K̃p

)
l

∑
λ=1

hλ

(
τ̃, τ̃′, K̃p

) (30)

And, this normalization implies

l

∑
i=1

γi
(
τ̃, τ̃′, K̃p

)
= 1 (31)

Therefore, the TS fuzzy model, Gi
p(s), of the plant is a weighted sum of second order linear

sub-models, as follow:

Gp
(
s, τ̃, τ̃′, K̃p

)
=

l

∑
i=1

γi
(
τ̃, τ̃′, K̃p

) Ki
p

(1 + sτi)(1 + sτ′i)
e−sL (32)

3.2 TS robust fuzzy controller
The TS fuzzy inference system proposed for the fuzzy controller, Gc (s), whereas the definition
of parallel distributed compensation, presents in the j|[j=1,2,...,l] -th rule, without loss of
generality, is given by:

R(j) : IF τ̃ is Fj
k|τ̃ AND τ̃

′
is Gj

k|τ′ AND K̃p is Hj
k|K̃p

THEN Gj
c(s) =

Kj
c

(
1 + sTj

I

) (
1 + sTj

D

)
sTj

I

(33)
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The activation degree hj for the rule j, is given by:

hj
(
τ̃, τ̃′, K̃p

)
= μ

j
Fk|τ̃∗

⊗ μ
j
Gk|τ̃′∗

⊗ μ
j
Hk|K̃∗p

(34)

where τ̃∗, τ̃′∗ and K̃∗
p are some point in Uτ̃ , Uτ̃′ and UK̃p

, respectively. The normalized
activation degree for the rule j, is given by:

γj
(
τ̃, τ̃′, K̃p

)
=

hj
(
τ̃, τ̃′, K̃p

)
l

∑
λ=1

hλ

(
τ̃, τ̃′, K̃p

) (35)

And, this normalization implies

l

∑
j=1

γj
(
τ̃, τ̃′, K̃p

)
= 1 (36)

Therefore, the TS fuzzy model for the fuzzy controller, Gc
(
τ̃, τ̃′, K̃p, s

)
, is a weighted sum of

the local fuzzy sub-controllers, as follows:

Gc
(
s, τ̃, τ̃′, K̃p

)
=

l

∑
i=1

γj
(
τ̃, τ̃′, K̃p

) Kj
c

(
1 + sTj

I

) (
1 + sTj

D

)
sTj

I

(37)

The compensated open-loop fuzzy model (Figure 4), according to the PDC strategy, with the
controller and the plant, from the equations 32 and 37, respectively, is

Gp(s)Gc(s) =
l

∑
j=1

l

∑
i=1

γj

(
τ̃, τ̃

′
, K̃p

)
γi

(
τ̃, τ̃

′
, K̃p

)
× (38)

×
Kj

cKi
p

(
1 + sTj

I

) (
1 + sTj

D

)
sTj

I
(
1 + sτi

) (
1 + sτ

′ i
) e−sL

3.3 Robust stability based on gain and phase margins
Denote the process and the controller transfer function by Gp (s) and Gc (s), and the specified
gain and phase margins by Am and φm, respectively, as defined previously in the Section 2.3.
The formulas for gain margin and phase margin, in the fuzzy context, are as follows::

arg
[
Gc(τ̃, τ̃′, K̃p, jωp)Gp(τ̃, K̃p, jωp)

]
= −π (39)

Am =
1∣∣Gc(τ̃, τ̃′, K̃p, jωp)Gp(τ̃, K̃p, jωp)

∣∣ (40)

∣∣Gc(τ̃, K̃p, jωg)Gp(τ̃, τ̃′, K̃p, jωg)
∣∣ = 1 (41)
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Fig. 4. Controller and plant fuzzy model in open-loop share the same fuzzy sets in the
antecedent space.

φm = arg
[
Gc(τ̃, K̃p, jωg)Gp(τ̃, τ̃′, K̃p, jωg)

]
+ π (42)

Replacing the equation 38 in 39-42, it has:

l

[
l

∑
i=1

(
arctan

(
ωpTi

I

)
− arctan

(
ωpτi

))
− π

2
− ωgL ] = −π (43)

Am =
1

l

∑
j=1

l

∑
i=1

γj

(
τ̃, τ̃

′
, K̃p

)
γi

(
τ̃, τ̃

′
, K̃p

)⎛⎝Kj
cKi

p

ωpTj
I

⎞
⎠
⎛
⎜⎜⎝
√√√√√

(
ωpTj

I

)2
+ 1(

ωpτi
)2

+ 1

⎞
⎟⎟⎠

(44)

l

∑
j=1

l

∑
i=1

γj

(
τ̃, τ̃

′
, K̃p

)
γi

(
τ̃, τ̃

′
, K̃p

)⎛⎝Kj
cKi

p

ωgTj
I

⎞
⎠
⎛
⎜⎜⎝
√√√√√

(
ωgTj

I

)2
+ 1(

ωgτi
)2

+ 1

⎞
⎟⎟⎠ = 1 (45)

φm = l

[
l

∑
i=1

(
arctan

(
ωgTi

I

)
− arctan

(
ωgτi

))
− π

2
− ωpL

]
+ π (46)

For a given linear sub-model, Gi(s, K̃i
p, τ̃i, τ̃

′ i), and gain and phase margins specifications
(Am, φm), the Equations 43-46 can be used to determine the parameters of the PID
sub-controllers, Gj

c(s, Kj
c, Tj

I , Tj
D). Therefore, using the approximation of arctan function in

the case |x| > 1, the Equations 44 and 45 are given by:

l

∑
j=1

l

∑
i=1

γj

(
τ̃, τ̃

′
, K̃p

)
γi

(
τ̃, τ̃

′
, K̃p

) Am

ωp

⎛
⎝Kj

cKi
p

τi

⎞
⎠ = 1 (47)

l

∑
j=1

l

∑
i=1

γj

(
τ̃, τ̃

′
, K̃p

)
γi

(
τ̃, τ̃

′
, K̃p

)⎛⎝Kj
cKi

p

ωgτi

⎞
⎠ = 1 (48)
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respectively. Using the same approach, the Equations 43 and 46 are given by:

l

[
l

∑
i=1

(
π

4ωpτi −
π

ωpTi
I
− π

2
− ωpL

)]
= −π (49)

φm = l

[
l

∑
i=1

(
π

4ωgτi −
π

ωgTi
I
− π

2
− ωgL

)]
+ π (50)

respectively. Therefore, the analytical solution for the tuning of the PID sub-controllers

parameters, Gj
c(s)

∣∣∣[i=1,2,...,l] , according to Equations 47-50, is given by

Tj
D = τ

′ i (51)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l

∑
i=1

γi

(
τ̃, τ̃

′
, K̃p

)(Ki
p

τi

)
· · ·

l

∑
i=1

γi

(
τ̃, τ̃

′
, K̃p

)(Ki
p

τi

)

l

∑
i=1

γi

(
τ̃, τ̃

′
, K̃p

)(Ki
p

τi

)
· · ·

l

∑
i=1

γi

(
τ̃, τ̃

′
, K̃p

)(Ki
p

τi

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
×

×

⎡
⎢⎢⎣

γ1

(
τ̃, τ̃

′
, K̃p

)
· · ·

...
. . .

0 · · ·

0
...

γl

(
τ̃, τ̃

′
, K̃p

)
⎤
⎥⎥⎦
⎡
⎢⎣

K1
c
...

Kl
c

⎤
⎥⎦ =

[ ωp

Am
ωg

]
(52)

and

⎡
⎢⎢⎢⎣

l
π

ωp
· · · l

π

ωp

l
π

ωg
· · · l

π

ωg

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

(
T1

I

)−1

...(
Tl

I

)−1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

l

{
l

∑
i=1

(
π

4ωpτi

)
− π

2
− ωpL

}
+ π

l

{
l

∑
i=1

(
π

4ωgτi

)
− π

2
− ωgL

}
− φm + π

⎤
⎥⎥⎥⎥⎥⎥⎦

(53)

where ωp is given by:

ωp =
Amφm +

1
2

πAm(Am − 1)

(A2
m − 1)L

(54)
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3.3.1 Robust stability analysis
For the design of robust fuzzy PID controller, from Equations 51-53, respectively, based on the
gain and phase margins specifications, the following Axiom and Theorems are proposed:

Axiom: The linear sub-models, Gi
p(s)

∣∣∣[i=1,2,...,l] , of the plant, are necessarily of minimum phase, i.e.,
all poles of the characteristic equation are placed in the left half-plane of the complex plane.

Theorem 1: Each robust PID sub-controller, Gj
c(s)

∣∣∣[j=1,2,...,l] , guarantee the gain and phase

margins specifications for the linear sub-model, Gi
p(s)

∣∣∣[i=1,2,...,l] with i = j, of the plant to be
controlled.

Proof: The normalized activation degree, in a given operating point, on the rules base of the
robust PID fuzzy controller, satisfies the following condition:

l

∑
i=1

γj

(
τ̃, τ̃

′
, K̃p

)
= 1 (55)

The total normalized activation degree, for a simple p-th rule activated, as defined in the
equation 4, is given by

γp

(
τ̃, τ̃

′
, K̃p

)
= 1 (56)

Based on the Parallel Distributed Compensation strategy, it has

⎡
⎢⎢⎢⎢⎢⎢⎣

γp

(
τ̃, τ̃

′
, K̃p

)(Kp
p

τp

)
. . . γp

(
τ̃, τ̃

′
, K̃p

)(Kp
p

τp

)

γp

(
τ̃, τ̃

′
, K̃p

)(Kp
p

τp

)
. . . γp

(
τ̃, τ̃

′
, K̃p

)(Kp
p

τp

)

⎤
⎥⎥⎥⎥⎥⎥⎦
×

×

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0
0 γ1

(
τ̃, τ̃

′
, K̃p

)
. . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0
Kp

c
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎣

ωp

Am

ωg

⎤
⎥⎦ (57)

Solving the Equation 57 for Kc, it has

γp

(
τ̃, τ̃

′
, K̃p

)(Kp
p

τp

)
γp

(
τ̃, τ̃

′
, K̃p

) (
Kp

c

)
=

ωp

Am
(58)

and

γp

(
τ̃, τ̃

′
, K̃p

)(Kp
p

τp

)
γp

(
τ̃, τ̃

′
, K̃p

) (
Kp

c

)
= ωg (59)
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Isolating Kp
c , the Equation 58, is given by:

Kp
c =

(
τp

Kp
p

)(
ωp

Am

)(
1

γp
(
τ̃, τ̃

′ , K̃p
)2

)
(60)

To obtain the parameter Tp
I , in a given time, as defined previously, it has:

⎡
⎢⎢⎢⎣

l
π

ωp
. . . l

π

ωp

l
π

ωg
. . . l

π

ωg

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0(
Tp

I

)−1

...
0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

l
(

π

4ωpτp − π

2
− ωpL

)
+ π

l
(

π

4ωgτp − π

2
− ωgL

)
+ π − φm

⎤
⎥⎥⎥⎥⎦ (61)

which results in (
π

4ωpτp − π

2
− ωpL

)
+ π (62)

and

l
π

ωg

1
Tp

I
= l

(
π

4ωgτp − π

2
− ωgL

)
+ π − φm (63)

Isolating φm, the Equation 63, is given by:

φm = l

(
π

4ωgτp − π

ωg

1
Tp

I
− π

2
− ωgL

)
+ π (64)

and,

γp

(
τ̃, τ̃

′
, K̃p

)
γp

(
τ̃, τ̃

′
, K̃p

)(Kp
p Am

τpωp

)
×

(
τpωp

Kp
p Am

)(
1

γp
(
τ̃, τ̃

′ , K̃p
)

γp
(
τ̃, τ̃

′ , K̃p
)
)

= 1 (65)

and

Am = Am (66)

Assuming, in a given time, the total activation of a simple rule p, as defined previously, in
Equation 35, we have:

φm = l

(
π

4ωgτp − π

ωgTp
I
− π

2
− ωgL

)
+ π (67)
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Comparing the Equation 67 with 64, it has

φm = φm (68)

From those analysis, the robust fuzzy PID controller guarantee the gain and phase margins
specifications for the plant to be controlled.

Theorem 2: Each robust PID sub-controller, Gj
c(s)

∣∣∣[j=1,2,...,l] , guarantee the stability for all

linear sub-models, Gi
p(s)

∣∣∣[i=1,2,...,l] , of the non-linear plant to be controlled.
Proof: The closed-loop transfer function is given by:

GMF

(
s, τ̃, τ̃

′
, K̃p

)
=

l

∑
j=1

l

∑
i=1

γj

(
τ̃, τ̃

′
, K̃p

)
γi

(
τ̃, τ̃

′
, K̃p

) Kj
cKi

p

(
1 + sTj

I

)
e−sL[

sTj
I

(
1 + sτi

)
+ Kj

cKi
p

(
1 + sTj

I

)](69)

For the stability condition, the characteristic equation of the closed-loop transfer function,
given in Equation 69, must have roots (poles) in the left half-plane of the complex plane
(negative real part). Therefore, it has

l

∑
i=1

l

∑
j=1

γi

(
τ̃, τ̃

′
, K̃p

)
γj

(
τ̃, τ̃

′
, K̃p

) [
sTj

I

(
1 + sτi

)
+ +Ki

pKj
c

(
1 + sTj

I

)]
= 0 (70)

l

∑
i=1

l

∑
j=1

γi

(
τ̃, τ̃

′
, K̃p

)
γj

(
τ̃, τ̃

′
, K̃p

) [
τiTj

I s2+ +
(

Tj
I + Ki

pKj
cTj

I

)
s +

(
Ki

pKj
c

)]
= 0

By application of the Routh Stability Criterion Franklin et al. (1986) in 69, it has

s2

s1

s0

∣∣∣∣∣∣∣∣∣∣∣∣

τiTj
I Ki

pKj
c

(Tj
I + Ki

pKj
cTj

I ) 0

Ki
pKj

c

(71)

And, it is necessary that all terms of the first column are positive:

τiTj
I > 0 (72)

(Tj
I + Ki

pKj
cTj

I ) > 0 (73)

Ki
pKj

c > 0 (74)
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Since the parameters of the stable sub-models of the plant to be controlled (τi, τ
′ i e Ki

p),
according to Axiom, are positive as well as the gain and phase margins specifications (Am

e φm), from Equations 51-53, the values of the robust fuzzy PID controller parameters (Kj
c, Tj

I ,

Tj
D) are positive. Therefore, the inequalities, in Equations 72-74, are satisfied, and each robust

PID sub-controller guarantee the stability for all sub-models of the plant to be controlled.

4. Computational results

This section describes the experimental results of the robust fuzzy control method in this
paper.

4.1 Dynamic system description
To illustrate the proposed robust fuzzy control method in this paper, a simulation example is
carried out for a one-link robotic manipulator showed in Figure 5. The dinamic equation of
the one-link robotic manipulator is given by:

ml2 θ̈ + dθ̇ + mglsin(θ) = u (75)

with,
m = 1kg, payload,
l = 1m, length of link,
g = 9.81m/s2, gravitational constant,
d = 1kgm2/s, damping factor,
u =control variable (kgm2/s2).

2l

u

mg

0

- pi/2pi/2

0

Fig. 5. One-link robotic manipulator.

This process has as input the torque, and as output the robotic manipulator angular position,
denoted by θ.

4.2 Data collection
Several simulations were performed to collect suitable identification and validation data. The
input of the system were excited with chirp signal. The left plots in Figure 6 show the input
signal and the right plot shows the corresponding output.
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Fig. 6. Identification data set

4.3 Takagi-Sugeno fuzzy model
Based on the prior knowledge about the process, a second-order structure in transfer function
terms was selected, resulting in TS rules of the following form:

IF θ̃(t) is Ai
k|θ̃ THEN Gi

p(s) =
bi

s2 + ai
1s + ai

2
e−sL (76)

where θ̃(t) is the angular position at the time t. The membership functions of the antecedent
linguistic term Ai

k|θ̃ , as well as the consequent parameters bi, ai
1 and ai

2 were estimated from
the data by fuzzy clustering, as described in subsection 2.2.1.
First the data matrix Z is formed, which contains the regressors u(t), θ̇(t) and θ̈(t):

Z =

⎡
⎢⎢⎢⎣

u(1) θ̇(1) θ̈(1)
u(2) θ̇(2) θ̈(2)

...
...

...
u(t − 1) θ̇(t − 1) θ̈(t − 1)

⎤
⎥⎥⎥⎦ (77)

All the clustering algorithms, described in this paper, was applied to the data, but the GK
algorithm has selected. We choose the fuzzification factor m = 2 and the termination criterion
ε = 0.001. The clusters number varied from 2 to 5. Due the lower mean square error or MSE
obtained for five clusters, as show in Figure 8, the following data classification and clustering,
as show in Figure 7, is obtained.
Each obtained cluster corresponds to one rule of the TS fuzzy model. The antecedent
membership degrees are directly obtained in the product space of the antecedent variable,
and the consequent parameters are estimated by weighted least-squares method. Using the
identification method based on fuzzy clustering, the following five TS rules, to plant model,
were extracted from identification data:

Rule 1 : IF θ̃(t) is A1
k|θ̃ THEN G1

p(s) =
1.001

s2 + 1.014s + 9.464
e−0.1s

Rule 2 : IF θ̃(t) is A2
k|θ̃ THEN G2

p(s) =
0.998

s2 + 1.002s + 9.125
e−0.1s
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Rule 3 : IF θ̃(t) is A3
k|θ̃ THEN G3

p(s) =
0.892

s2 + 0.706s + 7.828
e−0.1s

Rule 4 : IF θ̃(t) is A4
k|θ̃ THEN G4

p(s) =
0.999

s2 + 1.023s + 9.389
e−0.1s

Rule 5 : IF θ̃(t) is A5
k|θ̃ THEN G5

p(s) =
0.998

s2 + 0.991s + 9.342
e−0.1s
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Fig. 7. The dark dots represents the obtained clusters and data classification. Each cluster
represents the estimated local sub-models.
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Fig. 8. Modeling error vs. clusters number.

Validation was performed on a different data set than the one used for identification. From
Figure 9 one can see that the TS model follows the process output with a reasonable accuracy.

4.4 Robust fuzzy control based on gain and phase margins
Based on the PDC strategy, each control rule in the robust fuzzy controller rules base is
designed from the corresponding rule of the TS fuzzy model. The designed fuzzy controller
shares the same fuzzy sets with the fuzzy model in the premise parts. The robust fuzzy
controller rule base is:
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Fig. 9. Validation of the TS fuzzy model. Solid line: dynamic system, dashed line: TS fuzzy
model.

Rule 1 : IF θ̃(t) is A1
k|θ̃ THEN G1

c (s) =
0.647s2 + 3.292s + 3.979

0.507s

Rule 2 : IF θ̃(t) is A2
k|θ̃ THEN G2

c (s) =
0.643s2 + 3.258s + 3.939

0.500s

Rule 3 : IF θ̃(t) is A3
k|θ̃ THEN G3

c (s) =
0.389s2 + 2.199s + 3.107

0.353s

Rule 4 : IF θ̃(t) is A4
k|θ̃ THEN G4

c (s) =
0.662s2 + 3.349s + 4.019

0.511s

Rule 5 : IF θ̃(t) is A5
k|θ̃ THEN G5

c (s) =
0.624s2 + 3.190s + 3.898

0.495s
For robust fuzzy controller design, different gain margins and phase margins are specified
for the model of robotic manipulator plus dead-time in Table 1. Observed that among the
gain and phase margins specifications obtained (marked by *), to Am = 2 and φm = 45, and
Am = 3 and φm = 60 the phase margin is quite close to the specified ones. The largest error
occurred for gain margin. The dead-time process is 0.1s and the Padé approximation order is
2.

Specified Resultant

Am φm A∗
m φ∗

m
6.02 45 12.62 48.86
9.54 45 12.9 20.23
13.98 45 13.8 36.58
9.54 60 13.7 60.28
13.98 60 14.1 66.30

Table 1. Gain and phase margins obtained from the especifications.

The Figure 10 shows the results obtained with the fuzzy robust controller based on gain and
phase margins specifications plus the TS fuzzy model. As well as the gain and phase margins
resulting.
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Fig. 10. Performance of the robust fuzzy controller based on the gain and phase margins
specifications. The dashed line is the reference and the solid line is the robotic manipulator
model with the robust fuzzy controller.

5. Conclusion

This paper presented a proposal for analysis and design of robust fuzzy control, for non-linear
systems based on gain and phase margins specifications. From the proposed analysis and
design, it has the following final remarks:

• The TS fuzzy model, due to the flexibility to incorporate in its structure the linear
sub-models of the non-linear plant made possible, via PDC strategy, the design of robust
fuzzy sub-controllers;

• The proposed Axiom and Theorems guaranteed the robust stability, since all formulation
and analysis were made in the frequency domain, based on gain and phase margins
specifications;

• As noted, the identification method based on fuzzy clustering is effective for modeling the
robotic manipulator;

• The proposed robust fuzzy controller, based on gain and phase margins specifications,
guarantees the stability of the obtained model as observed.
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1. Introduction

Fuzzy systems have been developed to a major scientific domain since fuzzy set theory was
introduced by Zadeh about four decades ago (Zadeh, 1965). There are certain particular
properties of fuzzy systems that offer them better performance for specific applications. In
general, fuzzy systems are suitable for uncertain or approximate reasoning, allow decision
making with estimated values under incomplete information and represent descriptive or
qualitative expressionswhich are easily incorporatedwith symbolic statements (Klir & Folger,
1987). However, under the general framework of typical fuzzy systems, some kinds of
uncertainty cannot be handled, particularly in practical applications (Mendel & John, 2002;
Ross, 2004; Hagras, 2004). Therefore, further flexibility can be obtained by considering
the uncertainty in fuzzy systems which occur from qualitative knowledge and stochastic
information.
As mentioned in (Mendel & John, 2002; Hagras, 2004; Liu & Li, 2005a), most of uncertainties
in fuzzy systems can be embodied by the information of fuzzy membership functions. In
order to expand fuzzy systems to solve more complex uncertainty, some novel methods have
been proposed during recent decade. Type-2 fuzzy logic system (T2FLS) was proposed to
model and control further uncertainties in typical fuzzy systems by using the secondary
fuzzy membership functions (Karnik & Liang, 1999; Liang & Mendel, 2000a). The T2FLS was
originally inspired by the fact that the typical FLS limits introducing uncertain factors from
linguistic rules through predefined membership functions. The type-2 fuzzy methods can be
roughly described that their fuzzy sets are further defined by the typical fuzzy membership
functions, i.e., the membership degree of belonging for each element of these sets are fuzzy
sets, not a crisp number (Liang & Mendel, 2000b; Karnik & Mendel, 2001; Wu &Mendel,
2009). In comparison with the typical FLS, a type-2 FLS has the two-fold advantages as
follows. Firstly, it has the capability of directly handling the uncertain factors of fuzzy rules
caused by expert experience or linguistic description. Secondly, it is efficient to employ a
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type-2 FLS to cope with scenarios in which it is difficult or impossible to determine an exact
membership function and related measurement of uncertainties. These strengths have made
researchers consider type-2 FLS as the preference for real-world applications (Sepúlveda et al.,
2007; Astudillo et al., 2007).
From the viewpoint of real-time application, many researchers use interval type-2 fuzzy sets
to solve the computational complexity of general type-2 fuzzy sets and have brought some
application results(Wu & Mendel, 2002; Julio & Alberto, 2007). However, the computational
expense on type reduction of type-2 FLS also is a bottleneck to use an type-2 FLS for real-time
control applications(Mendel, 2007). Some new alternative ways have been provided to reduce
the computational expense and to promote the applications (Castro et al., 2008; Hagras, 2008;
Nie & Tan, 2008; Cao et al., 2008). Up to now, how to design an efficient type-2 FLS with less
calculation and strong adaptive ability to overcome uncertainty of industrial control is still an
open question.
By introducing the probabilistic information into fuzzy membership functions, the
Probabilistic Fuzzy Logic Systems (PFLS) were established to handle stochastic uncertainties
which occurred in complex plant dynamics (Liu & Li, 2005a;b). The mathematical expectation
of fuzzy output centroid was calculated to perform defuzzification of PFLS. In spite of many
research results, the problem of systematic handling uncertainty of fuzzy system has not yet
been completely resolved.
In this paper, firstly, a systematic design method of extended fuzzy logic system (EFLS) is
represented for engineering applications based on our previous research(Cao et al., 2009). By
introducing the degree of uncertainty in membership functions, the EFLS can not only make
use of typical fuzzy system which has been well developed, but also can expand its capability
of handling uncertainty in complex circumstance. In the EFLS, the process is similar to
conventional fuzzy systemwhich includes fuzzification, inference engine and defuzzification.
But in each part of this process, the operation methods are different. In the fuzzification, the
EFLS uses the interval membership functions which are generated from typical membership
functions. The inference engine is separated into two parts which perform fuzzy reasoning
on inner and outer fuzzy subsystems, respectively. In the defuzzification, the outputs are
calculated by weighted outputs of subsystems with novel adaptive optimal algorithm and
feedback structure.
Secondly, under the above framework of EFLS, the adaptive fuzzy control system is designed
to deal with the uncertainties from complex dynamics of control plant by integrating the
global optimization method : Differential Evolution(DE). The main difference in this adaptive
control system is the defuzzification part. For dealing with the variable control target
and solving the nonlinear optimization performance, the crisp outputs are derived from
the interval of outputs of subsystems by the DE optimization method. For evaluating the
framework of EFLS, it is applied on the inverse kinematics modelling problem of a two-joint
robotic arm. The adaptive fuzzy control system is implemented on a typical nonlinear quarter
car active suspension system.
The paper is organized as follows. In Section 2 the interval fuzzy membership functions with
degree of uncertainty are addressed. A systematic design method based on interval fuzzy
membership functions and adaptive optimal algorithm is represented in Section 3. The novel
adaptive fuzzy control system with DE method is designed in Section 4. Simulations on the
two-joint robotic arm and the quarter car active suspension system are investigated in Section
5, finally the paper is concluded with concluding remarks and future work in Section 6.
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Fig. 1. Degree of uncertainty in fuzzy membership function

2. Interval fuzzy membership function generation methods

Although fuzzy systems have been used in different scientific and engineering applications,
the phenomenon of uncertainty in typical fuzzy systems has been studied and some novel
methods have been proposed to cover more uncertainties. Type-2 fuzzy methods expanded
the typical fuzzy systems by a secondary membership function. The PFLS methods proposed
the probabilistic fuzzy membership functions to represent the stochastic uncertainty in fuzzy
systems. However, it is still a difficult task to completely solve all problems caused by
uncertainty in fuzzy systems.
Generally, there are three types of uncertainty which mainly occur in conventional fuzzy
methods. First type is uncertainty due to variability of inputs and/or model parameters.
Second type is uncertainty due to understanding of linguistic knowledge and quantification of
fuzzy rules. Third type is uncertainty due to unknown process and/or unmodelled dynamics.
In this section, by introducing the degree of uncertainty in fuzzy membership function,
interval membership function generation method is proposed to build proper membership
functions for covering possible uncertain information.

2.1 Degree of uncertainty in fuzzy membership function
Considering the natural property of uncertainty, there are many different methods to
quantitatively describe it. Generally, there are three kinds of methods to quantify uncertainty.
One is margin of uncertainty which is stated by giving a range of values around true value.
The other is standard deviation of estimate value by repeating measurement enough times.
The third one is fuzzy presentation by fuzzy sets and fuzzy rules. The second method has
been used in PFLS and the third method was used in type-2 fuzzy systems. Here, the first
method is used to define a margin of uncertainty for membership function which is called
degree of uncertainty in fuzzy membership function. In this paper, the degree of uncertainty
is used to describe possible uncertainty which is inherent in fuzzy membership functions.
As an example, a triangle membership function with degree of uncertainty is shown in Fig.1.
For implementation, the center triangle membership function can be presented as [a,b, c]. It
is deduced by expert knowledge or any training methods of fuzzy membership function.
With degree of uncertainty, the proposed fuzzy membership function belongs to a bounded
region which the outer and inner boundaries of membership function can be presented as
[a− ΔO,b, c+ ΔO] and [a+ ΔI ,b, c− ΔI ]. Here,ΔO and ΔI are defined as bounded values
of uncertainty in fuzzy membership function and their values can be adaptive tuned by
proposed method in Section 3. The inner and outer degrees of uncertainty are defined in
equation 1.
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α =
ΔO

ΔO + ΔI
,β =

ΔI

ΔO + ΔI
(1)

With the membership function [a,b, c], the membership grade of crisp input a′ is μ0. However,
with proposed interval membership function, the membership grade belongs to an interval
domain [μI ,μO]. The exact grade will depend on the bounded uncertainty and the proposed
fuzzy system in Section 3.

2.2 Interval fuzzy membership functions
The proposed method simply uses an appropriate predefined typical fuzzy membership
functions, such as triangular, trapezoidal, Gaussian, or S functions, to expand to the interval
fuzzy membership functions with the degree of uncertainty. The following is an example
of triangular membership function which can be expanded to interval membership function
from typical membership function.
The typical triangular fuzzy membership function is

μ(x; a,b, c) =

⎧⎪⎪⎨
⎪⎪⎩

0 x ≤ a
x−a
b−a a ≤ x ≤ b
c−x
c−b b ≤ x ≤ c
0 x ≤ c

(2)

Based on the above fuzzy membership function, with the defined degree of uncertainty in
Section 2.1, the interval fuzzy membership function can be represented as below.

μ (x; a,b, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x ≤ a− ΔO
x−a+ΔO
b−a+ΔO

a− ΔO ≤ x ≤ a+ ΔI[
x−a−ΔI
b−a−ΔI

, x−a+ΔO
b−a+ΔO

]
a+ ΔI ≤ x ≤ b[

c−ΔI−x
c−ΔI−b ,

c+ΔO−x
c+ΔO−b

]
b ≤ x ≤ c− ΔI

c+ΔO−x
c+ΔO−b c− ΔI ≤ x ≤ c+ ΔO

0 x ≥ c+ ΔO

(3)

3. Systematic design of extended fuzzy logic system

A framework of EFLS for fuzzy modelling is proposed as Fig. 2. Similar to the typical
FLS (Ross, 2004), the EFLS still has operations of fuzzification, inference engine and
defuzzification. Different with the typical FLS, the EFLS uses the interval fuzzy membership
functions which can be generated from typical fuzzy membership function. Thus the
membership grade for the crisp input belongs to an interval which aims to expand the typical
fuzzy sets to cover more uncertain information in practical applications. Considering the
computational cost, the inference engine of EFLS is separated into two parts and the reasoning
results are presented by two typical boundary FLSs. With the fuzzy interval reasoning results,
a novel adaptive algorithm is established to transfer them into expected crisp output.

3.1 Fuzzification of EFLS
Considering a T-S fuzzy model represented as the general form:
R(k): IF z1 is Fk1 and z2 is Fk2 , . . ., and zm is Fkm, THEN x(t + 1) is gk(X,U), here, k ∈ K :=
1,2, . . . ,n
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Fig. 2. The framework of interval fuzzy logic system

Here Rk denotes the kth fuzzy rule, n denotes the number of fuzzy rules, m denotes the
number of input variables, Fkj (j = 1,2, . . . ,m) = (Fkj (inner),F

k
j (outer)) denote the proposed

interval fuzzy sets as shown in Section 2, z(t) := [z1,z2, . . . ,zm] denote measurable variables,
x(t) ∈ �n denotes the state vector, u(t) ∈ �p denotes the input vector, and the T-S consequent
term gki is defined in equation 4.

gk(X,U;θk) = Akx(t) + Bku(t)
k ∈ K := 1,2, . . . ,n

(4)

where Ak and Bk are the parameter matrices of the kth local model.
Different with other fuzzy systems, the fuzzification of EFLS requires the predefined outer
and inner degrees of uncertainty in fuzzy membership functions, that is α, β which can be
defined by expert knowledge or the measurement data and predicted error boundary. These
degrees of uncertainty are used to present the possible uncertainty due to the understanding
of linguistic knowledge or unknowing system dynamic in fuzzy system. The structure of
fuzzification is shown in Fig. 3. And all the degrees can be self-tuned by proposed adaptive
algorithm in Section 3.3.
Based on these degrees of uncertainty and typical fuzzy sets, a crisp input variable is
transferred into two fuzzy membership grades which belong to an interval region. From
practice viewpoint, a bounded region of fuzzy membership grade will be more flexible to
cover uncertain information.

3.2 Inference engine in EFLS
With the proposed fuzzification, each crisp input variable is changed to fuzzy value which
relates to two fuzzy membership grades in a bounded fuzzy set. The fuzzy inference engine is
separated into two parts to perform fuzzy reasoning on the inner boundary fuzzy subsystem
Sinner and the outer boundary fuzzy subsystem Souter as shown in Fig. 4. With the fixed
fuzzy membership functions Fkj (inner) and Fkj (outer), typical fuzzy inference engines are
used to perform fuzzy reasoning with the same fuzzy rules. However, since the degree of

Fig. 3. The interval membership functions(MFs) generation
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Fig. 4. The inference engine of EFLS

uncertainty is tuned in real time, the inner boundary fuzzy subsystem possibly becomes a
sparse fuzzy rule-based system. That’s means, for some inputs, their fuzzy sets are not defined
or their fuzzy membership grade can’t covered by neighbourhood membership functions.
In order to deal with these problems, there have been many fuzzy interpolative reasoning
methods for the sparse fuzzy systems (Baranyi et al., 2004; Huang & Shen, 2006; Lee & Chen,
2008). Considering the overlapping phenomenon in the inner boundary fuzzy subsystem, the
method in (Lee & Chen, 2008) is used.
With the fuzzy rules in Section 3.1, the firing strength of the kth rule can be described as:

μI
k = μI

Fk
1
∗ μI

Fk
2
∗ · · · ∗ μ

I(∗)
Fk
i
∗ · · · ∗ μI

Fk
m
≥ 0 (5a)

μO
k = μO

Fk
1
∗ μO

Fk
2
∗ · · · ∗ μO

Fk
m
≥ 0 (5b)

in which μI
k ∈ [0,1] and μO

k ∈ [0,1] denote the inner and outer grades of membership governed

by the inner and outer fuzzy membership functions, respectively. Furthermore, μ
I(∗)
Fk
i

denotes

the interpolative grade by the interpolative reasoning method. The fuzzy inference logic
employs the max-min product to operate the fuzzy rules. The reasoning results are two fuzzy
values which are deduced from two fuzzy subsystems.

3.3 Defuzzification and adaptive algorithm
The centroid calculation is used to obtain crisp outputs from two fuzzy reasoning results by
typical defuzzification. Each crisp output corresponds to one bounded fuzzy subsystem. The
two boundary outputs can be written as

xI(t+ 1) =

n
∑
k=1

μI
k[Akx(t)+Bku(t)]

n
∑
k=1

μI
k

=
n
∑
k=1

hIk [Akx(t) + Bku(t)]

(6a)

Fig. 5. The defuzzification of EFLS
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xO(t+ 1) =

n
∑
k=1

μO
k [Akx(t)+Bku(t)]

n
∑
k=1

μO
k

=
n
∑
k=1

hOk [Akx(t) + Bku(t)]

(6b)

where

hIk =
μI
k

n
∑
k=1

μI
k

,hOk =
μO
k

n
∑
k=1

μO
k

(7)

And,
hIk ≥ 0,hOk ≥ 0,k = 1,2, · · · ,n
n
∑
i=1

hIk = 1,
n
∑
i=1

hOk = 1 (8)

For interpreting the uncertain information inherent in these two subsystems, an adaptive
algorithm is established to get final crisp outputs. The algorithm can be presented as follows.
Let yI = xI(t+ 1) and yO = xO(t+ 1),

eO = y∗ − yO, eI = y∗ − yI (9)

here, y∗ is the reference value, measurement value or objective function for systemmodelling.
Let ẽI = |eI | and ẽO = |eO|, the crisp output of EFLS is

y = f (yO,yI) =
ẽO

ẽO + ẽI
yI +

ẽI
ẽO + ẽI

yO (10)

The system error is
e= y∗ − y (11)

In order to tune the degree of uncertainty to deal with uncertainties, the adaptive algorithm is
presented as follows.
If the condition is

eOeI < 0, and, ẽO > ẽI (12)

then the inner degree of uncertainty is kept as the same, and the outer degree of uncertainty
will be tuned as

α = (1− Δα)α (13)

here,

Δα = ηO ·
ẽO

ẽO + ẽI
(14)

and ηO is the tuning factor for the outer subsystem. If the condition is

eOeI < 0, and, ẽO < ẽI (15)

then the outer degree of uncertainty is kept as the same, and the inner degree of uncertainty
will be tuned as

β = (1− Δβ)β (16)

here,

Δβ = ηI ·
ẽI

ẽO + ẽI
(17)
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and ηI is the tuning factor for the inner subsystem. If the condition is

eOeI > 0, and, ẽO > ẽI (18)

then the outer degree of uncertainty is kept as the same, and the inner degree of uncertainty
will be tuned as

β = (1+ Δβ)β (19)

here, Δβ can be solved by equation 17.
If the condition is

eOeI > 0, and, ẽO < ẽI (20)

then the inner degree of uncertainty is kept as the same, and the outer degree of uncertainty
will be tuned as

α = (1+ Δα)α (21)

here, Δα can be solved by equation 14.
Once the outer and inner degree of uncertainty are tuned to new values, by solving the
equation 1, the new values of ΔO and ΔI are obtained. Then the new bounded region for
uncertainty is rebuilt.

3.4 Systematic design of EFLS
With the information of section 3.1-3.3, a systematic procedure is obtained to design the EFLS
for system modelling.

– Step 1) Determine the state variables, their typical fuzzy membership functions and fuzzy
rules.

– Step 2) Define the degrees of uncertainty in membership functions and build the interval
membership functions for all the input variables by equations 1-3.

– Step 3) Obtain the input and output data of modelled process.

– Step 4) Calculate the fuzzy reasoning results by equation 10 and the system error by
equation 11.

– Step 5) Performon-line adaptive algorithm to update the degree of uncertainty by equations
12-21. Then back to the second step to rebuild the interval membership functions and
recalculate the system outputs. Recycle this process until that system error reduces to an
expected region.

4. Adaptive fuzzy control system

With the above systematic design of EFLS, a novel general framework of interval fuzzy
reasoning system has been built. From the point of control system design, by implementing
the DE to optimize the control performance on the interval reasoning results, an adaptive
control structure is proposed in this section.

4.1 Design of the adaptive control system
Based on the reasoning results from subsystems as equations 6a- 6b, the further optimization
process can be designed to find the optimal values which satisfy the required control
performance. This adaptive control structure aims to rebuild the switching routes between
the local subsystems.
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With the proposed adaptive control structure, the crisp outputs of the control system can be
recalculated as,

u∗c =min
{
xI(t),xO(t)

}
(22a)

u∗c =max
{
xI(t),xO(t)

}
(22b)

Γ = f (ũ(t))
ũ(t) ∈ (u∗c + Δu∗c ,u∗c + 2Δu∗c , · · · ,u

∗
c )

(22c)

Δu∗c =
u∗c − u∗c

n
(23)

where xI(t) and xO(t) can be calculated from equations 6a and 6b, n denotes the re-sampling
number, Γ denotes the further optimization goal, f is defined as a performance function of
the system with variable ũ(t). The control output ũ(t) can be solved from equation 22c by
the global optimization algorithm: DE algorithm. For clearly showing the details of optimal
process, the DE method is represented in Section 4.2.

4.2 Differential evolution algorithms
DE method, recently proposed by Storn (Storn & Price, 1997), is one kind of evolutionary
algorithms(EAs) which are a class of direct search algorithms. The main advantage of DE
method is to converge fast and to avoid being trapped by local minim. It has been applied
to several engineering problems in different areas(Storn, 1999; Abbass, 2002; Price et al., 2005;
Brest et al., 2006). The main difference between the DE method and other EAs is the mutation
scheme that makes DE self adaptive the selection process. In DE algorithms, all solutions have
the same chance of being selected as parents without dependence of their fitness value. DE
algorithm employs a greedy selection process: The better one of new solution and its parent
wins the competition providing significant advantage of converging performance over other
EAs (Karaboga et al., 2004).
As a population based algorithm, DE algorithms uses the similar operators as the genetic
algorithms: crossover, mutation and selection. The main difference is that genetic algorithms
rely on crossover while DE algorithm relies on mutation operation. The DE algorithm also
uses a non-uniform crossover that can take child vector parameters from one parent more
often than it does fromothers. By using the components of the existing populationmembers to
construct trial vectors, the crossover operator efficiently shuffles information about successful
combinations, enabling the search for a better solution space.
The main steps of the DE algorithm is given below(Karaboga et al., 2004):

– Initialization

– Evaluation

– Repeat
Mutation
Recombination
Evaluation
Selection

– Until(termination criteria are met)
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Fig. 6. Obtaining a new proposal in DE algorithm (Karaboga et al., 2004)

4.2.1 Mutation
For each target vectorxi,G, a mutant vector is produced by

ui,G+1 = xi,G + K · (xr1,G − xi,G) + F · (xr2,G − xr3,G) (24)

where i,r1,r2,r3 ∈ 1,2, · · · ,NP are randomly chosen and must be different from each other. In
24, F is the scaling factor which has an effect on the difference vector (xr2,G − xr3,G), K is the
combination factor.

4.2.2 Crossover
The parent vector is mixed with the mutated vector to produce a trial vector uji,G+1 as below.

uji,G+1 =

{
vji,G+1if(rndj ≤ CR)orj = rni
qji,Gif(rndj>CR)andj �= rni

(25)

where j = 1,2, · · · ,D; rj ∈ [0,1] is the random number; CR is crossover constant ∈ [0,1] and
rni ∈ (1,2, · · · ,D) is the randomly chosen index.

4.2.3 Selection
All solutions in the population have the same chance of being selected as parents without
dependence of their fitness value. The child produced after the mutation and crossover
operations is evaluated. Then, the performance of the child vector and its parent is compared
and the better one is selected. If the parent is still better, it is retained in the population.
Figure6 shows DE algorithm process in detail. The difference between two population
members (1,2) is added to a third population member(3). The result (4) is subject to the
crossover with the candidate for replacement (5) to obtain a proposal (6). The proposal is
evaluated and replaces the candidate if it is found to be better.
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4.3 Systematic design of adaptive fuzzy control system
With the above information, the systematic control procedure of proposedmethod is obtained
as follows.

– Step 1) Determine all the state variables, their typical fuzzy MFs and fuzzy rules.

– Step 2) Define the degrees of uncertainty in membership functions and build the interval
membership functions for all the input variables by equations 1-3.

– Step 3) With the control plant and required control aims, design the optimization task and
the related parameters for the DE algorithm.

– Step 4) Obtain the system inputs, the interval outputs are calculated with the proposed
EFLS by equations 5a- 6b.

– Step 5) Calculate the fuzzy control outputs by further optimization structure with equations
22a - 23.

– Step 5) Perform the control outputs on the plant, the system inputs are updated and the
system performance in further optimization part are also recalculated.

– Step 6) Return to the Step 4) to do the next interval fuzzy reasoning. Recycle this process
until the expected system performance is obtained.

In comparisonwith the existed type-2 fuzzy control systems and PFLS, the proposed structure
build a more general framework to represent the fuzzy modelling and control process. Under
the proposed structure, the crisp output of the EFLS and the related control system represent
two-fold information. One is the fuzzy rules which are extracted from expert knowledge or
industrial experience. The other is the further optimal goal which is required by practical
issues or is impossible to be combined into the fuzzy rules. With the optimization algorithms,
the control performance will be improved and the optimal goal can be flexibly designed.
For the purpose of evaluating the proposed structure, a inverse kinematics modelling of a
two-joint robotic arm and a case study on a non-linear quart-vehicle active suspension system
are presented in Section 5.

5. Simulations

5.1 Modelling by EFLS
In order to demonstrate the performance of proposed EFLS, the numerical simulations have
been carried out on the inverse kinematics modelling of a two-joint robotic arm (Gan et al.,
2005). The model of robotic arm is presented in Fig. 7.

Fig. 7. The two-joint robotic arm with two angles
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l S1 S2 S3

B1 1 4 7

B2 2 5 8

B3 3 6 9

Table 1. The Antecedents of Fuzzy Rules

The inverse kinematics modelling is a typical problem in robotics. In a two-dimensional input
space, with a two-joint robotic arm and the desired location, the problem reduces to find
the angles between arms. For simple structures of the two-joint robotic arm, its dynamics is
described as the following dynamical equations:

c1 =
x2 + y2 − L21 − L22

2L1L2
(26a)

c2 =
√

1− c21, c3 = L1 + L2c1, c4 = L2c2 (26b)

θ1 = arctan
Y
X
− arctan

c4
c3

(26c)

θ2 = arctan
c2
c1

(26d)

where, X,Y are the desired location, θ1 and θ2 are the corresponded angles as shown in Fig.7.
The parameters are chosen as: L1 = 8 and L2 = 5.
With the fuzzy toolbox of MATLAB, the typical fuzzy system for this inverse kinematics
problem is established which membership functions have been decided by hybrid
neuro-fuzzy learning algorithm. Based on this typical fuzzy system, the proposed EFLS is
designed. The inputs are the desired locations which are presented by the data pair (X,Y).
Their typical membership functions are shown in Fig. 8 and Fig.9. The original uncertain
margins are chosen as ΔI = 0.4 and ΔO = 0.4. The outputs are two angles. By the T-S fuzzy
model, the fuzzy rules are described as:
R(l): IF X is Slp and Y is Bl

q, THEN θ1 = cl1X+ cl2Y+ cl3, θ2 = dl1X+ dl2Y+ dl3, here, l = 1,2, . . . ,9,
p = 1,2,3 and q = 1,2,3.
The antecedents are shown in TABLE 3 and the consequents are shown in TABLE 2.
The true values of angles are solved from equations 26a-26d. The predicted angles are
obtained by the typical fuzzy system and the proposedEFLS, respectively. The comparisons of
modelling results are performed by the error of predicted angles. For evaluating performance
of the proposed EFLS, the inverse kinematics with or without noise are modelled and the
predicted errors of two angles are shown in Fig.10-Fig.13.
According to the comparison of modelling errors in Fig.10 and Fig. 11, the proposed EFLS
improved typical FLS to obtain better non-linear model of inverse kinematics. Also Fig.12
and Fig.13 both showed that robust and adaptive ability of the proposed EFLS was stronger
than the typical FLS.
The simulation results have demonstrated the proposed EFLS can deal well with non-linear
model and expanded the typical fuzzy system to handle uncertainty in complex circumstance.
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Fig. 8. The fuzzy membership functions of input X
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Fig. 9. The fuzzy membership functions of input Y
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Fig. 10. The angle error of θ1 by typical FLS(solid line) and EFLS(dot line)
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Fig. 11. The angle error of θ2 by typical FLS(solid line) and EFLS(dot line)
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Fig. 12. The angle error of θ1 by type-1 FLS(solid line) and EFLS(dot line) with random noise
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Fig. 13. The angle error of θ2 by type-1 FLS(solid line) and EFLS(dot line) with random noise

83
Adaptive Fuzzy Modelling and Control for
Non-Linear Systems Using Interval Reasoning and Differential Evolution



16 Fuzzy Controllers, Theory and Applications

l cl1 cl2 cl3 dl1 dl2 dl3

1 -0.12 0.09 0.16 -0.01 0.19 0.36

2 -0.11 0.11 0.03 -0.01 0.18 0.03

3 -0.09 0.12 -0.11 -0.01 0.17 -0.26

4 -0.12 0.09 0.14 -0.03 0.19 0.35

5 -0.10 0.11 0.03 -0.03 0.18 0.28

6 -0.09 0.12 -0.10 -0.02 0.17 -0.26

7 -0.11 0.10 0.13 -0.04 0.19 0.35

8 -0.09 0.11 0.02 -0.04 0.19 0.03

9 -0.09 0.11 -0.09 -0.04 0.17 -0.25

Table 2. The Consequents of Fuzzy Rules

5.2 Control by the adaptive fuzzy control system and DE
For evaluating the performance of proposed adaptive fuzzy control system, the numerical
simulations have been carried out on a quarter vehicle active suspension system as shown in
Fig. 14 whose mathematical model was given in (Cao et al., 2008). Parameters of the model
are provided in Table 3, partly from (Taghirad & Esmailzadeh, 1998).
The vehicle body velocities (i.e., żb, żw), displacements (i.e., zb and zw) are chosen as input
variables, the actuator forces (i.e., fa is output variables. The original MFs of the inputs and
outputs are provided in Fig. 15. Here, N means negative, Z means zero, P means positive.
These typicalMFs are used to build the interval fuzzyMFs by themethod in section 2. With the
assumption that the amplitude of uncertainty will not extend the one fifth of original variable,
the original values of α and β are 0.2. Considering the balance between the convergence
speed and stability of adaptive algorithm, the tuning factors (i.e., ηI and ηO) are both 0.9.
For simplicity, the MFs of outputs are chosen as typical MFs which are shown in Fig. 16. Here,

Fig. 14. The quarter vehicle active suspension system
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mb(Kg) mw(Kg) ks0 (N) ks1 (N/m)

1494.4 120.04 -136 70502

ks2 (Ns/m) ks3 (N/m3) c1 (Ns/m) c2 (Ns/m)

-10865 104 1290 426

Table 3. The Parameters of Quarter Vehicle Active Suspension

NBmeans negative big, NSmeans negative small, PS means positive small, PBmeans positive
big. Since the main task is to improve the ride comfort by reducing the body acceleration, the
reference variable y∗ is defined as the body acceleration, the value is equal to zero. The vehicle
speed is 20 m/s.
For evaluation propose, a passive suspension system and a typical FLC are also designed to
compare with the proposed approach. The MFs for typical FLC are the original MFs in Fig.
15-Fig. 16.
According to the International Standardization Organization (ISO) classification using the
Power Spectral Density (PSD), the class average and poor road surfaces are used as random
road inputs, where their road roughness are 6.4× 10−5 m3/cycle and 2.56× 10−4 m3/cycle,
respectively.
Here, two kinds of performance criteria are used to evaluate the vehicle suspension
system. One is the root mean square (RMS) value which presents the vehicle ride comfort
and handling performance from time domain(Hrovat, 1997). Another is the ride index
of body vibration which focus on the ride comfort from frequency weighted vibrating
accelerations(2631-1, 1997).

Average Road VA(m/s2) TD (m)

Passive 4.5211× 10−4 1.2010× 10−6

FLC 4.1460× 10−4 2.1465× 10−7

Proposed method 4.0032× 10−4 1.8423× 10−7

Poor Road VA(m/s2) TD (m)

Passive 2.4216 × 10−3 3.1087 × 10−5

FLC 1.5671 × 10−3 1.6233 × 10−6

Proposed method 1.3211 × 10−3 1.4213 × 10−6

aVA: Vehicle Accelerations, TD: Tyre Deflections

Table 4. The RMS Values Comparison of Body Accelerations with nominal mass mb
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(a) Membership functions of the vehicle body velocities, żb
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(b) MFs of displacements of the vehicle body, zb

Fig. 15. Fuzzy membership functions of the input variables
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Fig. 16. Membership functions of control forces, fa

The comparison of RMS values with nominal vehicle body mass mb are shown in Table 4.
With additional ±20% changes of vehicle body mass, the RMS value comparisons are shown
in Table 5 and Tabel 6.
Regarding to the RMS accelerations of the vehicle body , the proposed method has achieved
better performance on ride comfort than the other two methods. Furthermore, with the
comparison of tyre deflections, vehicle handling performance has been improved by proposed
method.

6. Concluding remarks

A novel extended fuzzy logic system has been built in this paper. With the interval fuzzy
reasoning and adaptive tuning rules, the proposed structure generated a more general
framework to cover the uncertain information of complex dynamic systems. Based on
this framework, integrating with the DE algorithm, an adaptive fuzzy control system was
designed to improve the control performance by using the further optimization process. The
EFLS was implemented to solve the inverse kinematic modelling problem of a two-joint
robotic arm which can not be well modelled by the typical fuzzy methods. The simulation
results verified the EFLS can not only obtain more precise model, but also has potential
capability to handle the high level uncertain information due to the understanding of
linguistic knowledge and the quantification of fuzzy rules. Furthermore, an adaptive fuzzy
control system was designed for a typical complex non-linear system: quarter-vehicle active
suspension system. The control performance was improved and the design process was more
flexible than other existed methods.
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Average Road VA(m/s2) TD (m)

Passive 4.7160× 10−4 1.4145× 10−6

FLC 4.2312× 10−4 2.3254 × 10−7

Proposed method 4.012× 10−4 1.9744× 10−7

Poor Road VA(m/s2) TD (m)

Passive 2.5764 × 10−3 3.7677 × 10−5

FLC 1.6070 × 10−3 2.0001 × 10−6

Proposed method 1.4912 × 10−3 1.8231 × 10−6

Table 5. The RMS Values Comparison of Body Accelerations with (1+20%) mb

Average Road VA(m/s2) TD (m)

Passive 4.3762× 10−4 6.8341 × 10−7

FLC 4.1579× 10−4 2.0502× 10−7

Proposed method 3.6352× 10−4 1.2133 × 10−7

Poor Road VA(m/s2) TD (m)

Passive 2.1945 × 10−3 3.0046 × 10−5

FLC 1.5071 × 10−3 1.4907 × 10−6

Proposed method 1.2958 × 10−3 1.2877 × 10−6

Table 6. The RMS Values Comparison of Body Accelerations with (1-20%) mb
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Future work has been targeted to address the theory analysis of proposed framework,
especially the convergence of adaptive algorithm and impact assessment of uncertainty.
Besides, the stability of closed-loop control system should be analyzed.
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Sepúlveda, R., Castillo, O., Melin, P., Rodrı́guez-Dı́az, A. & Montiel, O. (2007). Experimental

Study of Intelligent Controllers Under Uncertainty Using Type-1 and Type-2 Fuzzy
Logic, Information Sciences 177(10): 2023–2048.

Storn, R. (1999). System design by constraint adaptation and differential evolution, IEEE
Transactions on Evolutionary Computation 3(1): 22–34.

Storn, R. & Price, K. (1997). Differential Evolution - a Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces, Journal of Global Optimization 11(1): 341–359.

Taghirad, H. & Esmailzadeh, E. (1998). Automobile passenger comfort assured through
LQG/LQR active suspension, Journal of Vibration and Control 4(5): 603–618.

Wu, D. & Mendel, J. (2009). A comparative study of ranking methods, similarity
measures and uncertainty measures for interval type-2 fuzzy sets, Information Sciences
179(8): 1169–1192.

Wu, H. & Mendel, J. (2002). Uncertainty bounds and their use in the design of interval type-2
fuzzy logic systems, Fuzzy Systems, IEEE Transactions on 10(5): 622–639.

Zadeh, L. (1965). Fuzzy sets, Information and Control 8(3): 338–353.

90 Fuzzy Controllers, Theory and Applications



4 

Extended Kalman Filter for the Estimation and 
Fuzzy Optimal Control of Takagi-Sugeno Model 

Agustín Jiménez, Basil M.Al-Hadithi and Fernando Matía 
Intelligent Control Group, Universidad Politecnica de Madrid 

Spain 

1. Introduction     
This chapter is aimed at improving the local and global approximation and modelling 
capability of Takagi-Sugeno (T-S) fuzzy model and the design of an optimal fuzzy 
controller. The main aim is obtaining high function approximation accuracy and fast 
convergence.  The approach developed here can be considered as a generalized version of T-
S fuzzy identification method with optimized performance in estimating nonlinear 
functions. We propose an iterative method by applying the extended Kalman filter. We 
show that the Kalman filter is an effective tool in the estimation of T-S fuzzy model. It is a 
powerful mathematical tool for stochastic estimation from noisy environment. It has various 
applications in optimizing fuzzy systems. For example, it has been used to extract fuzzy 
rules from a given rule base (Wang, L. & Yen, J. (1998)) and to optimize the output function 
parameters of T-S fuzzy systems (Ramaswamy, P.; Edwards, R. R. & Lee, K. (1993)). For 
linear systems with white noise and measurement noise, the Kalman filter is known to be an 
optimal estimator. For nonlinear dynamic systems with coloured noise, the Kalman filter 
can be extended by linearizing the system around the current parameter estimates. This 
algorithm updates parameters in a way that is consistent with all previously measured data 
and generally converges in a few iterations. In this chapter, we describe how the extended 
Kalman filter can be applied to fuzzy system optimization. Fuzzy logic has been used to 
compute the gains of a bank of parallel Kalman filters in order to combine their outputs 
(Hsiao, C. (1999)). Fuzzy logic has also been used to tune the parameters of a Kalman filter (  
Kobayashi, K.; Cheok, K. & Watanabe, K.(1995). ). 
A fuzzy controller (FC) based Linear Quadratic Regulator (LQR) is then proposed in order 
to show the effectiveness of the estimation method developed here in control applications. 
An Illustrative example of a highly nonlinear system is chosen to evaluate the robustness 
and remarkable performance of the proposed method. The main idea is to design a 
supervisory fuzzy controller capable to adjust the controller parameters in order to obtain 
the desired response. The reason behind this scheme is to combine the best features of fuzzy 
control and those of the optimal LQR. 
In control design, it is often of interest to design a controller to fulfil, in an optimal form, 
certain performance criteria and constraints in addition to stability. The theme of optimal 
control addresses this aspect of control system design. For linear systems, the problem of 
designing optimal controllers reduces to solving algebraic Riccati equations, which are 
usually easy to solve and detailed literature of their solutions can be found in many 
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references. Nevertheless, for nonlinear systems, the optimization problem reduces to the so-
called Hamilton-Jacobi (HJ) equations, which are nonlinear partial differential equations. 
Different from their counterparts for linear systems, HJ equations are usually difficult to 
solve both numerically and analytically. Improvements have also been carried out on the 
numerical solution of the approximated solution of HJ equations. But few results so far can 
provide an effective way of designing optimal controllers for general nonlinear systems.  
In the past, the design of controllers based on a linearized model of real control systems. In 
many cases a good response of complex and highly non-linear real process is difficult to 
obtain by applying conventional control techniques which often employ linear mathematical 
models of the process. One reason for this lack of a satisfactory performance is the fact that 
linearization of a non-linear system might be valid only as an approximation to the real 
system around a determined operating point.  
However, fuzzy controllers are basically non-linear, and effective enough to provide the 
desired non-linear control actions by carefully adjusting their parameters. 
In this chapter, we propose an effective method to nonlinear optimal control based on fuzzy 
control. The optimal fuzzy control methodology presented in this chapter is based on a 
quadratic performance index. The optimal fuzzy controller is designed by solving a 
minimization problem that minimizes a given quadratic performance function.  
Both the controlled system and the fuzzy controller are represented by the affine T-S fuzzy 
model taking into consideration the effect of the constant term. Most of the research works 
analyzed the T-S model assuming that the non-linear system is linearized with respect to the 
origin in each IF-THEN rule, which means that the consequent part of each rule is a linear 
function with zero constant term. This will in turn reduce the accuracy of approximating 
non-linear systems. Moreover, in linear control theory, the independent term does not affect 
the dynamics of the system rather the input to it. In the case of fuzzy control, the blending of 
the independent term of each rule will no longer be a constant but a function of the variables 
of the system and thus affects the dynamics of the resultant system. A necessary condition 
has been added to deal with the independent term. The control is carried out based on the 
fuzzy model via the so-called parallel distributed compensation scheme. The idea is that for 
each local affine model, an affine linear feedback control is designed. The resulting overall 
controller, which is also a non-linear one, is again a blending of each individual affine linear 
controller. 
LQR is used to determine best values for parameters in fuzzy control rules in which the 
robustness is inherent in the LQR thereby robustness in fuzzy control can be improved. 
With the aid of LQR, it provides an effective design method of fuzzy control to achieve 
rapid, robust and accurate tracking control of a class of nonlinear systems. 
In this chapter, we will also show how the LQR, the structure of which is based on 
mathematical analysis, can be made more appropriate for actual implementation by 
introduction of fuzzy rules.  
The results obtained show a robust and stable behaviour when the system is subjected to 
various initial conditions, moment of inertia and to disturbances. 
The content of this chapter is organized as follows. In section 2, an overview of Kalman 
Filter’s Estimation and Optimal Control Techniques for Fuzzy Systems are presented. 
Section 3 presents the identification of T-S model. Section 4 demonstrates the iterative 
parameters’ identification using extended Kalman filter. In section 5, a design of a fuzzy 
optimal controller is developed.  Section 6 entails the application of the proposed FC-LQR 
on nonlinear model to demonstrate the validity of the proposed approach. This example 
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shows that the proposed approach gives a stable and well damped response in front of 
various initial conditions, moment of inertia and a robust behaviour in the presence of 
disturbances. The conclusion of the effectiveness and validity of the proposed approach is 
explained in section 7. 

2. Overview of identification and estimation of fuzzy systems 
Nonlinear control systems based on the T–S fuzzy model (Sugeno, M. & Tanaka, K. (1991). ), 
(Sugeno, M. & Kang, G. (1988)) and (Takagi T. & Sugeno, M. (1985)) have attracted lots of  
attention during the last twenty years (e.g., see  (Baranyi, P. (2003), (Tanaka, K.; Wang, H. O. 
(2001). ), (Hou, Y.; Zurada, J. M.; Karwowski, W.; Marras, W. S. & Davis, K. (2007)), (Xian-
Tu, P. (1990)), (Gang, F. (2006)), (Lian, K.-Y.; Su, C.-H. & Huang, C.-S. (2006)), (Hseng, T.; Li, 
S. & Tsai, S.-H. (2007)) and (Kim, J.-H.; Hyun, C.-H.; Kim, E. & Park, M. (2007).). It provides 
a powerful solution for development of function approximation, systematic techniques to 
stability analysis and controller design of fuzzy control systems in view of fruitful 
conventional control theory and techniques. They also allow relatively easy application of 
powerful learning techniques for their identification from data. 
This model is formed by using a set of fuzzy rules to represent a nonlinear system as a set of 
local affine models which are connected by fuzzy membership functions  (Cao, S. G.; Rees, 
N. W. & and Feng, G. (1996). ). 
This fuzzy modelling method presents an alternative technique to represent complex 
nonlinear systems  (Fantuzzi, C. & Rovatti, R. (1996). ), (Ying, H. (1998)) and  (Zeng, K.; 
Zhang, N. Y. & Xu, W. L. (2000)) and reduces the number of rules in modelling higher order 
nonlinear systems  (Takagi T. & Sugeno, M. (1985))  and (Gang, F. (2006)).  
T–S fuzzy models are proved to be universal function approximators as they are able to 
approximate any smooth nonlinear functions to any degree of accuracy in any convex 
compact region ( Fantuzzi, C. & Rovatti, R. (1996). ), (Johansen, T. A.; Shorten, R. & Murray-
Smith, R. (2000) ), (Ying, H. (1998)) and (Zeng, K.; Zhang, N. Y. & Xu, W. L. (2000)). This 
result provides a theoretical foundation for applying T–S fuzzy models to represent complex 
nonlinear systems approximately.  
Great attention has been paid to the identification of T–S fuzzy models and several results 
have been obtained (Cao, S. G.; Rees, N. W. & and Feng, G. (1997)), (Teixeira, M. C. M.; 
Assunção, E. & Avellar, R. G. (2003)) and (Yu, W. & Li, X. O. (2004). They are based upon 
two kinds of approaches, one is to linearize the original nonlinear system in various 
operating points when the model of the system is known, and the other is based on the 
input-output data collected from the original nonlinear system when its model is unknown. 
The authors in  (Cao, S. G.; Rees, N. W. & and Feng, G. (1997) use a fuzzy clustering method 
to identify T–S fuzzy models, including identification of the number of fuzzy rules and 
parameters of fuzzy membership functions, and identification of parameters of local linear 
models by using a least squares method (Skrjanc, I.; Blazic, S. & Agamennoni, O. (2005)) and  
(Wang, L. X. & Mendel, J. M. (1992). ). The goal is to minimize the error between T–S fuzzy 
models and the corresponding original nonlinear systems. In (Klawonn, F. & Kruse, R. 
(1997)), Klawonn et al. explained how fuzzy clustering techniques could be applied to design 
a fuzzy controller from the training data. In (Hong T. P. & Lee, C. Y. (1996)), Hong and Lee 
have analyzed that the disadvantages of most fuzzy systems are that the membership 
functions and fuzzy rules should be predefined to map numerical data into linguistic terms 
and to make fuzzy reasoning work. They suggested a method based on the fuzzy clustering 
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technique and the decision tables to derive membership functions and fuzzy rules from 
numerical data. However, Hong and Lee’s algorithm presented in  (Hong T. P. & Lee, C. Y. 
(1996)) needs to predefine the membership functions of the input linguistic variables and it 
simplifies fuzzy rules by a series of merge operations. As the number of variables becomes 
larger, the decision table will grow tremendously and the process of the rule simplification 
based on the decision tables becomes more complicated. 
In (Matía, F.; Jiménez, A. & Al-Hadithi, B. M. (2008)), the authors proposed to obtain the best 
features of Mamdani and Takagi-Sugeno models by using an affine global model with 
function approximation capabilities which maintains local interpretation. The suggested 
model is composed of variant coefficients which are independently governed by a zeroth 
order fuzzy inference system. This model may be interpreted as a generalization of T-S 
model in which dynamics coefficients have been decoupled. They have shown that 
Mamdani and Takagi-Sugeno models can be combined so that local and global 
interpretations are preserved.  
The authors in (Johansen, T. A.; Shorten, R. & Murray-Smith, R. (2000) ) suggest a method to 
identify T–S fuzzy models. Their method aims at improving the local and global 
approximation of T-S model. However, this complicates the approximation in order to 
obtain both targets. It has been shown that constrained and regularized identification 
methods may improve interpretability of constituent local models as local linearizations, 
and locally weighted least squares method may explicitly address the trade-off between the 
local and global accuracy of T–S fuzzy models. 
In (Skrjanc, I.; Blazic, S. & Agamennoni, O. (2005)) a new method of interval fuzzy model 
identification was developed. The method combines a fuzzy identification methodology 
with some ideas from linear programming theory. The idea is then extended to modelling 
the optimal lower and upper bound functions that define the band which contains all the 
measurement values. This results in lower and upper fuzzy models or a fuzzy model with a 
set of lower and upper parameters. This approach can also be used to compress information 
in the case of large amount of data and in the case of robust system identification. The 
method can be efficiently used in the case of the approximation of the nonlinear functions 
family. The paper focuses on the development of an interval L∞-norm function 
approximation methodology problem using the LP technique and the TS fuzzy logic 
approach. This results in lower and upper fuzzy models or a fuzzy model with lower and 
upper parameters. 
In  (Mencattini, A.; Salmeri M. & Salsano, A. (2005)) a constructive method to synthesize a 
MISO TS fuzzy logic system imposing the requested derivative constraints on the function 
representing its behaviour is presented. The values of that function and its partial 
derivatives on the grid points of the input space permit to define a suitable interpolator of 
the function itself.  
In  (Kim, J.; Suga, Y. & Won, S. (2006). ), a new approach to fuzzy modelling using the 
relevance vector learning mechanism (RVM) based on a kernel-based Bayesian estimation is 
introduced. The main concern is to find the best structure of the T-S fuzzy model for 
modelling nonlinear dynamic systems with measurement error. The number of rules and 
the parameter values of membership functions can be found as optimizing the marginal 
likelihood of the RVM in the proposed FIS. Because the RVM is not necessary to satisfy 
Mercer’s condition, selection of kernel function is beyond the limit of the positive definite 
continuous symmetric function of SVM. The relaxed condition of kernel function can satisfy 
various types of membership functions in fuzzy model. The RVM which was compared 
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with support vector learning mechanism in examples had the small model capacity and 
described good generalization. Simulated results showed the effectiveness of the proposed 
FIS for modelling of nonlinear dynamic systems with noise. 
In  (Takagi T. & Sugeno, M. (1985)), the authors develop an interesting method to identify 
nonlinear systems using input-output data. They divide the identification process in three 
steps; premise variables, membership functions and consequent parameters. With respect to 
membership functions, they apply nonlinear programming technique using the complex 
method for the minimization of the performance index.  
In 1991, Wang and Mendel developed a method for generating fuzzy rules by learning from 
examples  (Wang, L. X. & Mendel, J. M. (1992). ) and proved that a fuzzy inference system is 
a universal approximator by the Stone–Weierstrass theorem  (Wang, L. (1994)). 
In 1995, Wang proposed a new state-space analytical approach to fuzzy identification of 
nonlinear dynamical systems (Wang, L. X. & Mendel, J. M. (1995)). In 1996, Langari and 
Wang proposed achieving structure identification of a T-S fuzzy model by using a 
combination of fuzzy c-means clustering technique and a fuzzy discretization technique  
(Langari R. & Wang, L. (1996). 
In (Nozaki, K.; Ishibuchi, H. & Tanaka, H. (1997), Nozaki et al. presented a heuristic method 
for generating T-S fuzzy rules from numerical data, and then converted the consequent 
parts of T-S fuzzy rules into linguistic representation. 
In (Kumar et al., 2006), a study has outlined a new min–max approach to the fuzzy 
clustering, estimation, and identification with uncertain data. The proposed approach 
minimizes the worst-case effect of data uncertainties and modelling errors on estimation 
performance without making any statistical assumption and requiring a priori knowledge of 
uncertainties. Simulation studies have been provided to show the better performance of the 
proposed method in comparison to the standard techniques. The developed fuzzy 
estimation theory was applied to a real world application of physical fitness classification 
and modelling. 
A new fuzzy system containing a dynamic rule base is proposed in (Chen, W. & Saif, M. 
(2005). ). The characteristic of the proposed system is in the dynamic nature of its rule base 
which has a fixed number of rules and allows the fuzzy sets to dynamically change or move 
with the inputs. The number of the rules in the proposed system can be small, and chosen 
by the designer. The focus of article is mainly on the approximation capability of this fuzzy 
system. The proposed system is capable of approximating any continuous function on an 
arbitrarily large compact domain. Moreover, it can even approximate any uniformly 
continuous function on infinite domains. This paper addresses existence conditions, and as 
well provides constructive sufficient conditions so that the new fuzzy system can 
approximate any continuous function with bounded partial derivatives.  
Fuzzy system optimization problem is studied in several works. Some articles focused on 
choosing proper rules in the inference engine (Cordon, O.; Herrera; Magdalena; F. L. & 
Villar P. (2001)) and  (Xian-Tu, P. (1990)). Also tuning of the input and output scale factors 
are proposed (Cordon, O.; Herrera; Magdalena; F. L. & Villar P. (2001)), (Gudwin, R.; 
Gomide, F. & Pedrycz, W. (1998)) and (Pedrycz, W.; Gudwin, R. & Gomide, F. (1997)). 
Because of the importance of selecting proper MF’s for fuzzy systems (Cordon, O.; Herrera. 
& Villar P. (2000)), several methods are used to deal with the problem of optimizing 
membership functions, which are either derivative-based or derivative-free methods. The 
derivative free approaches do not use the derivative of the performance of the system with 
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respect to the MF’s parameters, and they are desirable because they are more robust than 
derivative-based methods with respect to finding global minimum and with respect to a 
wide range of objective function and MFs types. The main drawback is that they converge 
more slowly than derivative-based techniques (Tao, C. & and Taur, J. (1999). 
On the other hand, derivative-based methods have the advantage of fast convergence and 
fine tuning in finding the optimum functions, but they tend to converge to local minimums. 
In addition, due to their dependence on analytical derivatives, they are limited to specific 
objective functions and types of inference and MFs. The most common approaches are: 
gradient descent (Simon, D. (2000). ), least squares (Skrjanc, I.; Blazic, S. & Agamennoni, O. 
(2005)), back propagation  (Wang, L. & Mendel, J. (1992). ) and Kalman filtering  (Simon, D. 
(2002). ), (Simon, 2002). 
The use of Kalman filter training to optimize the MFs of a fuzzy system was introduced by 
Simon (Simon, D. (2002). ) for motor winding current estimation. The used MFs were 
assumed as symmetric triangular forms. The Kalman filter training was extended to 
asymmetric triangles in (Simon, 2002), and a matrix was defined relating the parameters of 
the MFs together based on the sum-normality conditions, then projecting this matrix in each 
iteration of optimization to constrain the MFs to sum normal types. 
Since the derivatives of the functions are used in Kalman filtering, it is limited to special 
type of MFs because of complicated and time consuming calculations. So far only triangular 
types are optimized for both inputs and outputs of a FLC  Simon, D. (2002). ), (Simon, 2002). 

3. Identification of T-S model 
An interesting method of identification is presented in (Takagi T. & Sugeno, M. (1985)). The 
idea is based on estimating the nonlinear system parameters minimizing a quadratic 
performance index. The method is based on the identification of functions of the following 
form: 
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Where the fuzzy estimation of the output is:  
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Let m be a set of input/output system samples { }1 2, , , ,k k nk kx x x y… . The parameters of the 
fuzzy system can be calculated as a result of minimizing a quadratic performance index:  
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If X is a matrix of complete rank, the solution is obtained as follows:  
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4. Iterative parameters’ identification 
The inconvenient feature of the non iterative methods is the amplification of the matrix X 
throughout the time, so that they become inappropriate to be used in real time application as 
adaptive control for example (Jiménez, A.; Al-Hadithi, B. M. & Matía, F. (2008)). The solution is 
finding an iterative method so that the dimension of the calculation will not be augmented for 
each sample. In this work, we use an iterative method based on the extended Kalman.                

4.1 Kalman filter 
Kalman filter is widely used for state estimation. It was developed by Rudolph E. Kalman  
(Kalman, R. E. (1960). Kalman filter is known to be optimum for linear systems (Maybeck, P. 
S. (1979)) with white process and measurement noises. It is assumed that the system is 
described by the following sampled model: 
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where ( )x k  represents the state of the dynamic system, ( )u k is the input vector and ( )y k is 
the output vector. The vector ( )v k  represents the Gaussian-white noise of the system and 
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( )e k  is Gaussian-white noise of the output measure. Both of them are independent from 
each other with zero mean. The objective of the Kalman filter is to obtain an optimum 
estimation ˆ( )x k  of the state ( )x k  from measurements of the input / output vectors. The 
covariance matrices are supposed to be known and are given as: 
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where E(.) is the expectation operator. It is also assumed that the initial condition (0)x  is 
Gaussian distributed with 
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It is supposed that ˆ( / 1), ( ) and ( )x k k u k y k− are known and the objective is to estimate 
ˆ( 1 / )x k k+ . The prediction problem can be improved by introducing the difference between 

the measured and estimated outputs,  ( )ˆ( ) ( / 1)y k Cx k k− −  as a feedback gain: 

 ( )ˆ ˆ ˆ( 1 / ) ( / 1) ( ) ( ) ( ) ( / 1)x k k x k k u k K k y k Cx k k+ = Φ − + Γ + − −  (12)  

The resultant prediction error is the difference between the state of the true system and the 
estimated one: 

 ˆ( 1) ( 1) ( 1 / )k x k x k kε + = + − +  (13) 

It should be observed that as above mentioned Gaussian errors   ( )v k  and ( )e k  are with 
zero mean, it can be verified that: 

 ( )( 1) ( ) ( )k K k C kε + = Φ − ε  (14) 
Thus, 

 If  0ˆ ˆ(0) 0 ( (0) ) 0 ( ) 0 ( ( ) )kx m k k x k mε = ⇒ = ⇒∀ > ε = =  (15)  

And if the dynamics of (3) is stable, then:  

  ˆ(0) lim ( ) 0 lim ( ) kk k
x e k x k m

→∞ →∞
∀ = ⇒ =  (16)  

The secondary objective is to minimize the covariance matrix which denoted as ( )P k , 

   ( ) (( ) ( ) )tP k E= ε − ε ⋅ ε − ε  (17)  

in the sense that it approaches its minimum for:  

  min( ( ) )t nP kα α ∀α∈ℜ  (18)  
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The algorithm of Kalman filter can be summarized by the following iterative process:  
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This process is initialized with 0ˆ(0)x m=  and 0(0)P R=  which have been initially estimated. 
The classic formulation of Kalman filter can be complemented with an additional useful 
filtering process for certain applications. 

4.2 Extended Kalman filter 
Kalman filter can also be used for state estimation of nonlinear systems. For nonlinear 
systems, e.g. fuzzy systems, the Kalman filter can not be applied directly; but if the 
nonlinearity of the system be sufficiently smooth, then we can linearize it about the current 
mean and covariance of the state estimation. This is called Extended Kalman Filter (EKF) 
with white process and measurement noises. Derivations of the extended Kalman filter are 
widely available in the literature (Gelb, A. (1974)). In this section, we briefly outline the 
algorithm and show how it can be applied to fuzzy system optimization. 
Consider a nonlinear discrete time system of the form:  
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In this case, Jacobian matrices are those which represent the nonlinear systems:  
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Moreover, the prediction formula for the nonlinear case is the following:  

   ( )( )ˆ ˆ ˆ( 1 / ) ( / 1) ( ) ( ) ( ) ( / 1), ( )x k k x k k u k K k y k g x k k u k+ = Φ − + Γ + − −  (22)  

It must be noted that in this case, the system matrices in this depend on both the state and 
input of the system in each instant. Thus, it becomes necessary the calculation of these 
matrices in each iteration of the algorithm. 

4.3 Kalman filter for parameters’ identification 
One of the applications of Kalman filter is the identification of parameters. Let us suppose 
that a function depends on q parameters 1 2, , , qp p p…  
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The problem of identification of parameters can be explained as a problem of estimation of 
systems´ states.  
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Then, if we have a set of m samples  { }1 2, , , ,k k nk kx x x y…  of the function to be identified, 
Kalman filter can be used with the following particularities. The matrix Φ  will be an 
identity matrix in this case. It is assumed a free system without an external input so the 
matrix Γ  is null and the matrix C can be calculated as follows:  
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The matrices 1R  y 12R  become null, while 2R  is selected based on trial and error. If y∈ℜ  
and we suppose that 2R I= , which would correspond to Gaussians error functions N(0,1), 
and the function is a linear one, the algorithm becomes equivalent to the recursive minimum 
square one.  
The initial covariance state matrix is supposed to be (0)P cI=  where C is a number 
relatively large with respect to the data of the problem. The algorithm becomes:    
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4.4 Application of Kalman filter for T-S fuzzy model 
Motivated by the successful use of the Kalman filter for training neural networks  
(Puskorius, G. & Feldkamp, L. (1994). ) and for defuzzfication strategies, we can apply a 
similar method to the training of fuzzy systems. In general, we can view the identification of 
fuzzy systems a weighted least-squares minimization problem, where the error vector is the 
difference between the fuzzy model outputs and the target values for those outputs. The 
proposed solution for its application is to combine it with a minimization of a weighting of 
the norm of the vector of parameters p. Let a function be represented as: 

  

1 2

:
( , , , )

n

n

f
y f x x x

ℜ →ℜ
= …

 (27)  

The optimum approximation of the function is searched by describing the function as a 
fuzzy system represented in the following form:   
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… … … …

…

…
 (28) 
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In order to cast the fuzzy system identification problem in a form suitable for Kalman 
filtering, we let the parameters of the rules constitute the state of a nonlinear system, and we 
consider the output of the fuzzy system as the output of the nonlinear system to which the 
Kalman filter is applied.  

 
1 2

( 1) ( )
( , , , , ( )) ( )k k k nk

p k p k
y f x x x p k e k

+ =
= +…

 (29) 

It should be noticed that the function f is a linear one with respect to the parameters and 
therefore it can be calculated in a direct form as follows:  
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 (30)  

and 
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…

……
 (31) 

 Therefore, the Jacobian coincides with the row  k  of the matrix X defined in section II.  

 ( ) ( ) ( ) ( ) ( )1 11 1 1 1 1 1
1

ˆ( )

( ( )) n nr r r r
k k nk nkk k k k k

p p k

fC p k X x x x
p

=

∂ ⎡ ⎤= = = β β β β β⎢ ⎥⎣ ⎦∂
… …… … …… " …  (32) 

And thus, the problem can be formulated as an estimation of the state of the linear system  

 
( 1) ( )

ˆ( ( )) ( ) ( )k

p k p k
y C p k p k e k

+ =
= ⋅ +

 (33) 

The prediction formula in this case becomes:  

 ( )ˆ ˆ( 1 / ) ( / 1) ( ) ( ( )) ( )kp k k p k k K k y C p k p k+ = − + − ⋅   (34  

5. Design of optimal fuzzy controller  
In order to show the effectiveness of the proposed estimation methods, a design of an 
optimal controller is carried out for a dynamic system whose model is of the following form:  

 ( ( 1( , , , , )n nx f x x x u−′= …  (35) 

Applying the proposed estimation method, the T-S model can be adjusted as follows:  
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The controller fuzzy rule is represented in a similar form:  
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…
 (37) 

5.1 Calculation of the affine term 
The proposed methodology of design is based on the possibility of formulate the feedback 
system as shown previously 
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Firstly, the affine term of the control action is used to eliminate the affine term of the system:  
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and the feedback system is rewritten as follows:  
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5.2 State space feedback control based on the proposed estimation approach 
Any control methodology by state feedback design can be applied to calculate the rest of 
control coefficients. Together with the proposed estimation method, the well known LQR 
method might be an appropriate choice (Aström, K. J.; Wittenmark, B1985). The system can 
be represented in state space form:  

 , , , ,n m nxn nxmx Ax Bu x u A B′ = + ∈ℜ ∈ℜ ∈ℜ ∈ℜ  (41) 

The objective is to find the control action u(t) to transfer the system from any initial state 
0( )x t to some final state ( ) 0x ∞ = in an infinite time interval, minimizing a quadratic 

performance index of the form:  

 ( )
0

t t

t

J x Qx u Ru dt
∞

= +∫  (42) 

where nxnQ∈ℜ  is a symmetric matrix, at least positive a semidefinite one and mxmR∈ℜ  is 
also a symmetric positive definite matrix. The optimal control law is computed as follows:  

 1( ) ( ) ( )tu t Kx t R B Lx t−= − = −  (43) 
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 where the matrix nxnL∈ℜ is a solution of the Riccati equation:  

 10 t tQ LBR B L LA A L−= − + − −  (44) 

The design algorithm includes firstly the cancellation of the affine term in each subsystem of 
the form:  

 ( ) ( ) ( ) ( ) ( )1 1 11 1( 1)
1 20

i i i i i in n nn ni i i in (n-
nx a a x a x a x b u′= + + + + +

… … …… ……  (45) 

The system is then represented in state space form as:  

 ( 1 tnx x x x −⎡ ⎤′= ⎣ ⎦"  (46) 
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 (47) 

Secondly, the LQR methodology is applied for each subsystem using a common state 
weighting matrix Q and input matrix R for all the rules. Thus, Riccati equation is solved for 
each subsystem as follows:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 110 n n n n n n n ni i i i i i i i i i i i i i i it tQ L B R B L L A A L−= − + − −… … … … … … … …  (48) 

Then the state feedback gain vector can be obtained as follows:  

 ( ) ( ) ( ) ( ) ( ) ( )1 11 1 1 11
1 2

n nn n n ni i i ii i i i i i i it
nK k k k R B L−⎡ ⎤= =⎢ ⎥⎣ ⎦

… …… … … ……  (49) 

6. Example  
In this section the proposed estimation method and its application to control design of FC-
LQR is illustrated by an example of an inverted pendulum. 
Consider the problem of stabilizing and balancing of swing up of an inverted pendulum 
(see figure 1). The control of this system is a widely used performance measure of a 
controller, since this system is unstable and highly nonlinear. The objective is to maintain 
the inverted pendulum upright with θ despite small disturbances due to wind or system 
noises. The inverted pendulum can be represented as follows:  
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Fig. 1. Inverted pendulum 

where θ denotes the angular position (in radians) deviated from the equilibrium position 
(vertical axis) of the pendulum and θ�  is the angular velocity, g(gravity  acceleration)=9.8 
m/sec2, M(mass) of the cart=1 kg, m(mass) of the pole=0.1 kg, l is the  distance from the 
center of the mass (m) of the pole to the cart=0.5 m. Assuming that x1=θ and x2= θ� , then the 
inverted pendulum model can be rewritten in state space form as follows:  

 

1

1 2

2
2

2 1
1 1

2 2
1

sensen cos

4 cos
3

x
x x
x

u ml x xg x x
M m

x
m xl

M m

=
′ =
=

⎛ ⎞+
− ⎜ ⎟⎜ ⎟+⎝ ⎠′ =
⎛ ⎞

−⎜ ⎟⎜ ⎟+⎝ ⎠

�

ϕ

ϕ

 (51) 

The aim is to move the pendulum to its instable equilibrium position, i.e., 1 2 0x x u= = = . 
The membership functions are as shown in figures 2 and 3: 
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Fig. 2. Membership functions for the angle position  
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Fig. 3. Membership functions for the angular velocity 

Using the iterative method mentioned above, the inverted pendulum fuzzy model can be 
represented as follows:  

 

11 1 1
1 1 2 2 2 1 2
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1 1 2 2 2 1 2

21

2 9699 10 3602 0 2535 1 0001

2 4941 10 4319 0 0000 1 0001

2 9699 10 3602 0 2535 1 0001

S : if x is M and x is M then x . . x . x . u
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The resultant mean square error from this approximation is 0.0014.  For each one of these 
subsystems, a feedback state LQR controller has been designed with the affine term.     
Firstly, the affine term of the controller is used to eliminate the affine term of the system. 
The other terms are calculated by the LQR minimizing the following performance index:  

 ( )
0

2 2 2
1 2100 10

t

J x x u dt
∞

= + +∫  (53) 

Thus, the resultant fuzzy optimal LQR is:  
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Fig. 4. Several trajectories in state space form of the system for several initial conditions 
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7. Conclusions 
New efficient approach has been presented to improve the local and global estimation of T-S 
fuzzy model. The approach developed here can be considered as a generalized version of T-
S method with optimized performance in approximating nonlinear functions. A simple and 
less computational method, based on the extended Kalman filter has been developed. A FC 
based LQR has been proposed in order to show the effectiveness of the estimation method 
developed here in control applications. An Illustrative example of an inverted pendulum 
has been chosen to evaluate the robustness and remarkable performance of the proposed 
method and the high accuracy obtained in approximating nonlinear and unstable systems 
locally and globally in comparison with the original T-S model.  Simulation results have 
shown the potential, simplicity and generality of the algorithm.  
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1. Introduction

Over the past two decades, there has been rapidly growing interest in application of fuzzy
logic to control problem. Researches have been focused on its application to industrial
processes and a number of successful results have been reported in the literature. In spite
of these successes, there are many basic issues remain to be addressed. One of them is
how to achieve a systematic design that guarantees closed-loop stability and performance.
Recently, a great amount of effort has been devoted to describing a nonlinear system using
a Takagi-Sugeno fuzzy model (see [1-28]). The Takagi-sugeno fuzzy model represents a
nonlinear system by a family of local linear models which smoothly blended together through
fuzzy membership functions. Unlike conventional modelling techniques which uses a single
model to describe the global behavior of a nonlinear system, fuzzy modelling is essentially
a multi-model approach in which simple sub-models (typically linear models) are fuzzily
combined to described the global behavior of a nonlinear system. Based on this fuzzy model, a
number of systematic model-based fuzzy control designmethodologies have been developed.
The aim of this paper is to study the problem of designing robust H∞ fuzzy controller for
a class of uncertain fuzzy systems. First, we approximate this class of uncertain nonlinear
systems by a Takagi-Sugeno fuzzy model. Then based on an LMI approach, we develop a
technique for designing robustH∞ fuzzy state-feedback and output feedback controllers such
that the L2-gain of the mapping from the exogenous input noise to the regulated output is less
than a prescribed value.
This paper is organized as follows. In Section 2, system descriptions and definition are
presented. In Section 3 and Section 4, based on an LMI approach, we respectively develop a
technique for designing robustH∞ fuzzy state-feedback and output-feedback controllers such
that the L2-gain of the mapping from the exogenous input noise to the regulated output is less
than a prescribed value for the system described in Section 2. The validity of this approach is
demonstrated by an example from a literature in Section 5. Finally, conclusions are given in
Section 6.

2. System descriptions and definitions

In this chapter, we generalize the TS fuzzy system to represent a TS fuzzy system with
parametric uncertainties as follows:
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2 Fuzzy Controllers, Theory and Applications

ẋ(t) = ∑r
i=1 μi(ν(t))

[
[Ai + ΔAi]x(t) + [B1i + ΔB1i ]w(t)

+[B2i + ΔB2i ]u(t)
]
, x(0) = 0

z(t) = ∑r
i=1 μi(ν(t))

[
[C1i + ΔC1i ]x(t) + [D12i + ΔD12i ]u(t)

]
y(t) = ∑r

i=1 μi(ν(t))
[
[C2i + ΔC2i ]x(t) + [D21i + ΔD21i ]w(t)

]
(1)

where ν(t) = [ν1(t) · · · νϑ(t)] is the premise variable vector that may depend on states in many
cases, μi(ν(t)) denotes the normalized time-varying fuzzy weighting functions for each rule
(i.e., μi(ν(t)) ≥ 0 and ∑r

i=1 μi(ν(t)) = 1), ϑ is the number of fuzzy sets, x(t) ∈ �n is the state
vector, u(t)∈�m is the input, w(t)∈�p is the disturbancewhich belongs toL2[0,∞), y(t)∈��

is the measurement, z(t) ∈ �s is the controlled output, the matrices Ai,B1i ,B2i ,C1i ,C2i ,D12i
and D21i are of appropriate dimensions, and r is the number of IF-THEN rules. The matrices
ΔAi,ΔB1i ,ΔB2i ,ΔC1i ,ΔC2i ,ΔD12i and ΔD21i represent the uncertainties in the system and
satisfy the following assumption.

Assumption 1
ΔAi = F(x(t), t)H1i ,

ΔB1i = F(x(t), t)H2i , ΔB2i = F(x(t), t)H3i ,

ΔC1i = F(x(t), t)H4i , ΔC2i = F(x(t), t)H5i ,

ΔD12i = F(x(t), t)H6i and ΔD21i = F(x(t), t)H7i

where Hji , j = 1,2, · · · ,7 are known matrix functions which characterize the structure of the
uncertainties. Furthermore, the following inequality holds:

‖F(x(t), t)‖ ≤ ρ (2)

for any known positive constant ρ.

Next, let us recall the following definition.

Definition 1 Suppose γ is a given positive number. A system (1) is said to have an L2-gain less than
or equal to γ if

∫ Tf

0
zT(t)z(t)dt≤ γ2

[∫ Tf

0
wT(t)w(t)dt

]
, x(0) = 0 (3)

for all Tf ≥ 0 and w(t) ∈ L2[0,Tf ].

Note that for the symmetric blockmatrices, we use (∗) as an ellipsis for terms that are induced
by symmetry.

3. Robust H∞ state-feedback control design

The aim of this section is to design a robustH∞ fuzzy state-feedback controller of the form

u(t) =
r

∑
j=1

μjKjx(t) (4)
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where Kj is the controller gain, such that the inequality (3) holds. The state space form of the
fuzzy system model (1) with the controller (4) is given by

ẋ(t) = ∑r
i=1 ∑r

j=1 μiμj

[
[(Ai + B2i Kj)

+(ΔAi + ΔB2i Kj)]x(t) + [B1i + ΔB1i ]w(t)
]
, x(0) = 0.

(5)

The following theorem provides sufficient conditions for the existence of a robust H∞
fuzzy state-feedback controller. These sufficient conditions can be derived by the Lyapunov
approach.

Theorem 1 Consider the system (1). Given a prescribed H∞ performance γ > 0 and a positive
constant δ, if there exist a matrix P = PT and matrices Yj, j = 1,2, · · · ,r, satisfying the following
linear matrix inequalities:

P > 0 (6)

Ωii < 0, i = 1,2, · · · ,r (7)

Ωij + Ωji < 0, i < j ≤ r (8)

where

Ωij =

⎛
⎜⎜⎜⎝
(

AiP+ PAT
i

+B2iYj + YT
j B

T
2i

)
(∗)T (∗)T

B̃T
1i

−γI (∗)T

C̃1i P+ D̃12iYj 0 −γI

⎞
⎟⎟⎟⎠ (9)

with
B̃1i =

[
δI I δI B1i

]
,

C̃1i =
[

γρ
δ HT

1i 0
√
2λρHT

4i

√
2λCT

1i

]T
,

D̃12i =
[

0 γρ
δ HT

3i

√
2λρHT

6i

√
2λDT

12i

]T
,

λ =

⎛
⎝1+ ρ2

r

∑
i=1

r

∑
j=1

[
‖HT

2i H2j‖
]⎞⎠

1
2

,

then the inequality (3) holds. Furthermore, a suitable choice of the fuzzy controller is

u(t) =
r

∑
j=1

μjKjx(t) (10)

where

Kj = YjP
−1. (11)

Proof: Using Assumption 1, the closed-loop fuzzy system (5) can be expressed as follows:

ẋ(t) = ∑r
i=1 ∑r

j=1 μiμj

(
[Ai + B2i Kj]x(t) + B̃1i w̃(t)

)
(12)
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where
B̃1i =

[
δI I δI B1i

]
,

and the disturbance w̃(t) is

w̃(t) =

⎡
⎢⎢⎣

1
δ F(x(t), t)H1i x(t)
F(x(t), t)H2iw(t)

1
δ F(x(t), t)H3iKjx(t)

w(t)

⎤
⎥⎥⎦ . (13)

Let consider a Lyapunov function

V(x(t)) = γxT(t)Qx(t)

where Q= P−1. Differentiate V(x(t)) along the closed-loop system (12) yields

V̇(x(t)) = γẋT(t)Qx(t) + γxT(t)Qẋ(t)

=
r

∑
i=1

r

∑
j=1

μiμj

(
γxT(t)(Ai + B2i Kj)

TQx(t)

+γxT(t)Q(Ai + B2i Kj)x(t)

+γw̃T(t)B̃T
1i Qx(t) + γxT(t)QB̃1i w̃(t)

)
. (14)

Adding and subtracting −z̃T(t)z̃(t) + γ2 ∑r
i=1 ∑r

j=1 ∑r
m=1 ∑r

n=1 μiμjμmμn[w̃T(t)w̃(t)] to and
from (14), we get

V̇(x(t)) = γ
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

μiμjμmμn

([
xT(t) w̃T(t)

]
×

⎛
⎜⎜⎜⎝
⎛
⎜⎝

(Ai + B2i Kj)
TQ

+Q(Ai + B2i Kj)

+
(C̃1i+D̃12i Kj)

T(C̃1m+D̃12mKn)
γ

⎞
⎟⎠ (∗)T

B̃T
1i
Q −γI

⎞
⎟⎟⎟⎠
[

x(t)
w̃(t)

])

−z̃T(t)z̃(t) + γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

μiμjμmμn[w̃T(t)w̃(t)] (15)

where

z̃(t) =
r

∑
i=1

r

∑
j=1

μiμj[C̃1i + D̃12i Kj]x(t) (16)

with

C̃1i =
[

γρ
δ HT

1i 0
√
2λρHT

4i

√
2λCT

1i

]T
and D̃12i =

[
0 γρ

δ HT
3i

√
2λρHT

6i

√
2λDT

12i

]T
.
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Pre and post multiply (7)-(8) by

⎛
⎝ Q 0 0

0 I 0
0 0 I

⎞
⎠ yields

⎛
⎜⎜⎝
(

(Ai + B2i Ki)
TQ

+Q(Ai + B2i Ki)

)
(∗)T (∗)T

B̃T
1i Q −γI (∗)T

C̃1i + D̃12i Ki 0 −γI

⎞
⎟⎟⎠ < 0, (17)

i = 1,2, · · · ,r, and ⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
(

(Ai + B2i Kj)
TQ

+Q(Ai + B2i Kj)

)
(∗)T (∗)T

B̃T
1i Q −γI (∗)T

C̃1i + D̃12i Kj 0 −γI

⎞
⎟⎟⎠

+

⎛
⎜⎜⎜⎝

(
(Aj + B2j Ki)

TQ
+Q(Aj + B2j Ki)

)
(∗)T (∗)T

B̃T
1j
Q −γI (∗)T

C̃1j + D̃12j Ki 0 −γI

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

< 0, (18)

i < j ≤ r, respectively. Applying the Schur complement on (17)-(18) and rearranging them,
then we have ⎛

⎜⎜⎜⎝
⎛
⎜⎝

(Ai + B2i Ki)
TQ

+Q(Ai + B2i Ki)

+
(C̃1i+D̃12i Ki)

T(C̃1i+D̃12i Ki)
γ

⎞
⎟⎠ (∗)T

B̃T
1i
Q −γI

⎞
⎟⎟⎟⎠ < 0, (19)

i = 1,2, · · · ,r, and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝
⎛
⎜⎝

(Ai + B2i Kj)
TQ

+Q(Ai + B2i Kj)

+
(C̃1i+D̃12i Kj)

T(C̃1i+D̃12i Kj)
γ

⎞
⎟⎠ (∗)T

B̃T
1i
Q −γI

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

(Aj + B2j Ki)
TQ

+Q(Aj + B2j Ki)

+
(C̃1j+D̃12j Ki)

T(C̃1j+D̃12j Ki)

γ

⎞
⎟⎟⎠ (∗)T

B̃T
1j Q −γI

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

< 0, (20)

i < j ≤ r, respectively. Using (19)-(20) and the fact that

r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

μiμjμmμnMT
ijNmn ≤

1
2

r

∑
i=1

r

∑
j=1

μiμj[M
T
ijMij + NijN

T
ij ], (21)

115Synthesis of a Robust ¥ Fuzzy Controller for Uncertain Nonlinear Dynamical Systems



6 Fuzzy Controllers, Theory and Applications

it is obvious that we have⎛
⎜⎜⎜⎝
⎛
⎜⎝

(Ai + B2i Kj)
TQ

+Q(Ai + B2i Kj)

+
(C̃1i+D̃12i Kj)

T(C̃1i+D̃12i Kj)
γ

⎞
⎟⎠ (∗)T

B̃T
1i
Q −γI

⎞
⎟⎟⎟⎠ < 0 (22)

where i, j= 1,2, · · · ,r. Since (22) is less than zero and the fact that μi ≥ 0 and ∑r
i=1 μi = 1, then

(15) becomes

V̇(x(t)) ≤ −z̃T(t)z̃(t) + γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

μiμjμmμn[w̃T(t)w̃(t)]. (23)

Integrate both sides of (23) yields

∫ Tf

0
V̇(x(t))dt ≤

∫ Tf

0

[
− z̃T(t)z̃(t) + γ2

r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

μiμjμmμn[w̃T(t)w̃(t)]
]
dt

V(x(Tf ))−V(x(0)) ≤
∫ Tf

0

[
− z̃T(t)z̃(t) + γ2

r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

μiμjμmμn[w̃T(t)w̃(t)]
]
dt.

Using the fact that x(0) = 0 and V(x(Tf )) ≥ 0 for all Tf 	= 0, we get

∫ Tf

0
z̃T(t)z̃(t)dt≤ γ2

⎡
⎣∫ Tf

0

r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

μiμjμmμn[w̃T(t)w̃(t)]dt

⎤
⎦ . (24)

Putting z̃(t) and w̃(t) respectively given in (16) and (13) into (24) and using the fact that

‖F(x(t), t)‖ ≤ ρ, λ2 =
(
1+ ρ2 ∑r

i=1 ∑r
j=1[‖H

T
2i H2j‖]

)
and (21), we have

∫ Tf

0

r

∑
i=1

r

∑
j=1

μiμj

(
2λ2xT(t)[C1i + D12i Kj]

T[C1i + D12i Kj]x(t)

+2λ2ρ2xT(t)[H4i + H6i Kj]
T[H4i + H6i Kj]x(t)

)
dt

≤ γ2λ2
[∫ Tf

0
wT(t)w(t) dt

]
. (25)

Adding and subtracting

λ2zT(t)z(t) = λ2
r

∑
i=1

r

∑
j=1

μiμj

(
xT(t)

[
C1i + F(x(t), t)H4i + D12i Kj + F(x(t), t)H6iKj

]T
[
C1i + F(x(t), t)H4i +D12i Kj + F(x(t), t)H6iKj

]
x(t)
)
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to and from (25), one obtains∫ Tf

0

{
λ2zT(t)z(t) +

r

∑
i=1

r

∑
j=1

μiμj ×

(
2λ2xT(t)[C1i + D12i Kj]

T[C1i + D12i Kj]x(t)

+2λ2ρ2xT(t)[H4i + H6i Kj]
T [H4i + H6i Kj]x(t)

−λ2xT(t)[C1i + F(x(t), t)H4i + D12i Kj + F(x(t), t)H6iKj]
T

[C1i + F(x(t), t)H4i + D12i Kj + F(x(t), t)H6iKj]x(t)
)}

dt

≤ γ2λ2
[∫ Tf

0
wT(t)w(t) dt

]
. (26)

Using the triangular inequality and the fact that ‖F(x(t), t)‖ ≤ ρ, we have

λ2
r

∑
i=1

r

∑
j=1

μiμj

(
xT(t)

[
C1i + F(x(t), t)H4i + D12i Kj + F(x(t), t)H6iKj

]T
[
C1i + F(x(t), t)H4i + D12i Kj + F(x(t), t)H6iKj

]
x(t)
)

≤
r

∑
i=1

r

∑
j=1

μiμj

({
2λ2xT(t)

[
C1i + D12iKj

]T [
C1i +D12i Kj

]
x(t)
}

+2λ2ρ2xT(t)
[
H4i + H6i Kj

]T [
H4i + H6i Kj

]
x(t)
)
. (27)

Using (27) on (26), we obtain∫ Tf

0
zT(t)z(t)≤ γ2

∫ Tf

0
wT(t)w(t) dt. (28)

Hence, the inequality (3) holds.

4. Robust H∞ output feedback control design

The nature of the information of the state available to the controller has a major effect on
the complexity of the designing problem and of the resulting controller. The state-feedback
control design problem is an easier problem in which all information are available. However,
in most real physical systems, the state is not perfectly known, and so we must estimate it.
The process of estimating the system state from the measurement output that are available is
called the estimator design. By utilizing the state estimator, the output feedback problem is
converted to the state-feedback problem for a new problem. This new problem employs the
estimated state as its own state variable and the solution of the new state-feedback problem
leads to the solution of the dynamic output feedback control problem. Basically, the dynamic
output feedback is a coupling of control and estimation.
This section aims at designing a full order dynamic H∞ fuzzy output feedback controller of
the form

˙̂x(t) = ∑r
i=1 ∑r

j=1 μ̂iμ̂j

[
Âijx̂(t) + B̂iy(t)

]
u(t) = ∑r

i=1 μ̂iĈi x̂(t)
(29)
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where x̂(t) ∈ �n is the controller’s state vector, Âij, B̂i and Ĉi are parameters of the controller
which are to be determined, and μ̂i denotes the normalized time-varying fuzzy weighting
functions for each rule (i.e., μ̂i ≥ 0 and ∑r

i=1 μ̂i = 1), such that the inequality (3) holds.
In this section, we consider the designing of the robust H∞ output feedback control into two
cases as follows. In Subsection A, we consider the case where the premise variable of the fuzzy
model μi is measurable, while in Subsection B, the premise variable which is assumed to be
unmeasurable is considered.

4.1 Case I–ν(t) is available for feedback
The premise variable of the fuzzy model ν(t) is available for feedback which implies that μi is
available for feedback. Thus, we can select our controller that depends on μi as follows:

˙̂x(t) = ∑r
i=1 ∑r

j=1 μiμj

[
Âijx̂(t) + B̂iy(t)

]
u(t) = ∑r

i=1 μiĈi x̂(t).
(30)

Before presenting our next results, the following lemma is recalled.

Lemma 1 Consider the system (1). Given a prescribed H∞ performance γ and a positive constant δ,
if there exists a matrix P = PT satisfying the following linear matrix inequalities:

P > 0 (31)⎛
⎜⎜⎜⎜⎝

(
Aij
clP

+P(Aij
cl)

T

)
(∗)T (∗)T

(Bij
cl)

T −γ2 I (∗)T

Cij
clP 0 −I

⎞
⎟⎟⎟⎟⎠ < 0, (32)

where i, j = 1,2, · · · ,r

Aij
cl =

[
Ai B2i Ĉj

B̂iC2j Âij

]
, Bij

cl =

[
B̃1i

B̂iD̃21j

]

and Cij
cl = [C̃1i D̃12i Ĉj]

with
B̃1i =

[
δI I δI 0 B1i 0

]
,

C̃1i =
[

γρ
δ HT

1i
0 γρ

δ HT
5i

√
2λρHT

4i

√
2λCT

1i

]T
,

D̃12i =
[

0 γρ
δ HT

3i 0
√
2λρHT

6i

√
2λDT

12i

]T
,

D̃21i =
[
0 0 0 δI D21i I

]

and λ =

⎛
⎝1+ ρ2

r

∑
i=1

r

∑
j=1

[
‖HT

2i H2j‖+ ‖H
T
7i H7j‖

]⎞⎠
1
2

,

then the inequality (3) is guaranteed.
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Proof: The state space form of the fuzzy system model (1) with the controller (30) is given by

˙̌x(t) = ∑r
i=1 ∑r

j=1 μiμj

(
Aij
cl x̌(t) + Bij

clw̃(t)
)

ž(t) = ∑r
i=1 ∑r

j=1 μiμjC
ij
cl x̌(t)

(33)

where x̌(t) =
[
xT(t) x̂T(t)

]T and the matrix functions Aij
cl, B

ij
cl and Cij

cl are defined in Lemma
1 and the disturbance is

w̃(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
δ F(x(t), t)H1i x(t)
F(x(t), t)H2iw(t)

1
δ F(x(t), t)H3i Ĉj x̂(t)
1
δ F(x(t), t)H5i x(t)

w(t)
F(x(t), t)H7iw(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (34)

Let choose a Lyapunov function

V(x̌(t)) = x̌T(t)Qx̌(t), (35)

where Q= P−1. Differentiate V(x̌(t)) along the closed-loop system (33) yields

V̇(x̌(t)) = ˙̌xT(t)Qx̌(t) + x̌T(t)Q ˙̌x(t)
r

∑
i=1

r

∑
j=1

μiμj

(
x̌T(t)(Aij

cl)
TQx̌(t) + x̌T(t)QAij

cl x̌(t)

+w̃T(t)(Bij
cl)

TQx̌(t) + x̌T(t)QBij
clw̃(t)

)
. (36)

Add and subtract−žT(t)ž(t)+γ2 ∑r
i=1∑r

j=1 ∑r
m=1 ∑r

n=1 μiμjμmμn[w̃(t)Tw̃(t)] to and from (36)
yields

V̇(x̌(t)) =
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

μiμjμmμn
[

x̌T(t) w̃T(t)
]

⎛
⎜⎝
(

(Aij
cl)

TQ+ QAij
cl

+(Cij
cl)

TCmn
cl

)
(∗)T

QBij
cl −γ2 I

⎞
⎟⎠[ x̌(t)

w̃(t)

]

−žT(t)ž(t) + γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

μiμjμmμn[w̃T(t)w̃(t)]. (37)

Now suppose there exits a matrix P > 0 such that (32) holds, i.e.,

⎛
⎜⎝ Aij

clP+ P(Aij
cl)

T (∗)T (∗)T

(Bij
cl)

T −γ2 I (∗)T

Cij
clP 0 −I

⎞
⎟⎠ < 0. (38)
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Pre and post multiply (38) by

⎛
⎝ Q 0 0

0 I 0
0 0 I

⎞
⎠ yields

⎛
⎜⎝ (Aij

cl)
TQ+ QAij

cl (∗)T (∗)T

(Bij
cl)

TQ −γ2 I (∗)T

Cij
cl 0 −I

⎞
⎟⎠ < 0. (39)

The Schur complement of (39) is(
(Aij

cl)
TQ+ QAij

cl + (Cij
cl)

TCij
cl (∗)T

(Bij
cl)

T −γ2 I

)
< 0. (40)

Using (40) and the fact in (21) together with the fact that μi ≥ 0 and ∑r
i=1 μi = 1, then (37)

becomes

V̇(x̌(t)) ≤ −žT(t)ž(t) + γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

μiμjμmμn[w̃T(t)w̃(t)]. (41)

Integrate both sides of (41) yields
∫ Tf

0
V̇(x̌(t))dt ≤

∫ Tf

0

(
− žT(t)ž(t) + γ2

r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

μiμjμmμn[w̃T(t)w̃(t)]
)
dt

V(x̌(Tf ))−V(x̌(0)) ≤
∫ Tf

0

(
− žT(t)ž(t) + γ2

r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

μiμjμmμn[w̃T(t)w̃(t)]
)
dt.

Using the fact that x̌(0) = 0 and V(x̌(Tf )) > 0 for all Tf 	= 0, we have

∫ Tf

0
žT(t)ž(t)dt≤ γ2

⎡
⎣∫ Tf

0

r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

μiμjμmμn[w̃T(t)w̃(t)]

⎤
⎦dt.

(42)

Putting ž(t) and w̃(t) respectively given in (33) and (34) into (42) and using the fact that

‖F(x(t), t)‖ ≤ ρ, λ2 =
(
1+ ρ2 ∑r

i=1 ∑r
j=1

[
‖HT

2i H2j‖+ ‖H
T
7i H7j‖

])
and (21), we have

∫ Tf

0

r

∑
i=1

r

∑
j=1

μiμj

(
2λ2 x̌T(t)[C1i D12i Ĉj]

T[C1i D12i Ĉj]x̌(t)

+2λ2ρ2 x̌T(t)[H4i H6i Ĉj]
T[H4i H6i Ĉj]x̌(t)

)
dt

≤ γ2λ2
[∫ Tf

0
wT(t)w(t) dt

]
. (43)

Adding and subtracting

λ2zT(t)z(t) = λ2
r

∑
i=1

r

∑
j=1

μiμj

(
x̌T(t)

[
C1i + F(x(t), t)H4i D12i Ĉj + F(x(t), t)H6i Ĉj

]T
[
C1i + F(x(t), t)H4i D12i Ĉj + F(x(t), t)H6i Ĉj

]
x̌(t)
)
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to and from (43), one obtains
∫ Tf

0

{
λ2zT(t)z(t) +

r

∑
i=1

r

∑
j=1

μiμj ×

(
2λ2 x̌T(t)[C1i D12i Ĉj]

T[C1i D12i Ĉj]x̌(t) + 2λ2ρ2 x̌T(t)×

[H4i H6i Ĉj]
T [H4i H6i Ĉj]x̌(t)

−λ2 x̌T(t)[C1i + F(x(t), t)H4i D12i Ĉj + F(x(t), t)H6i Ĉj]
T

[C1i + F(x(t), t)H4i D12i Ĉj + F(x(t), t)H6i Ĉj]x̌(t)
)}

dt

≤ γ2λ2
[∫ Tf

0
wT(t)w(t) dt

]
. (44)

Using the triangular inequality and the fact that ‖F(x(t), t)‖ ≤ ρ, we have

λ2
r

∑
i=1

r

∑
j=1

μiμj

(
x̌T(t)

[
C1i + F(x(t), t)H4i D12i Ĉj + F(x(t), t)H6i Ĉj

]T
[
C1i + F(x(t), t)H4i D12i Ĉj + F(x(t), t)H6i Ĉj

]
x̌(t)
)

≤
r

∑
i=1

r

∑
j=1

μiμj

(
2λ2 x̌T(t)

[
C1i D12i Ĉj

]T [
C1i D12i Ĉj

]
x̌(t)

+2λ2ρ2 x̌T(t)
[
H4i H6i Ĉj

]T [
H4i H6i Ĉj

]
x̌(t)
)
. (45)

Using (45) on (44), we obtain
∫ Tf

0
zT(t)z(t)≤ γ2

∫ Tf

0
wT(t)w(t) dt. (46)

Hence, the inequality (3) is guaranteed.
Knowing that the controller’s premise variable is the same as the plant’s premise variable, the
left hand of (32) can be re-expressed as follows:

Aij
clP+ P(Aij

cl)
T + γ−2Bij

cl(B
ij
cl)

T + P(Cij
cl)

TCij
clP. (47)

Before providing LMI-based sufficient conditions for the system (1) to have an H∞
performance, let us partition the matrix P as follows:

P =

[
X Y−1 − X
Y−1 − X X− Y−1

]
(48)

where X ∈ �n×n and Y ∈ �n×n. Utilizing the partition above, we define the new controller’s
input and output matrices as

Bi
Δ
=

[
Y−1 − X

]
B̂i

Ci
Δ
= ĈiY.

(49)

Using these changes of variable, we have the following theorem.
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Theorem 2 Consider the system (1). Given a prescribed H∞ performance γ > 0 and a positive
constant δ, if there exist matrices X = XT, Y = YT, Bi and Ci, i = 1,2, · · · ,r, satisfying the following
linear matrix inequalities: [

X I
I Y

]
> 0 (50)

X > 0 (51)

Y > 0 (52)

Ψ11ii < 0, i = 1,2, · · · ,r (53)

Ψ22ii < 0, i = 1,2, · · · ,r (54)

Ψ11ij + Ψ11ji < 0, i < j≤ r (55)

Ψ22ij + Ψ22ji < 0, i < j≤ r (56)

where

Ψ11ij =

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎝

AiY+ YAT
i

+B2iCj + C
T
i B

T
2j

+γ−2B̃1i B̃
T
1j

⎞
⎟⎠ (∗)T

[
YC̃T

1i
+ CTi D̃

T
12j

]T
−I

⎞
⎟⎟⎟⎟⎠ (57)

Ψ22ij =

⎛
⎜⎜⎜⎝

⎛
⎜⎝ AT

i X+ XAi
+BiC2j + CT

2iB
T
j

+C̃T
1i
C̃1j

⎞
⎟⎠ (∗)T

[
XB̃1i + Bi D̃21j

]T
−γ2 I

⎞
⎟⎟⎟⎠ (58)

with
B̃1i =

[
δI I δI 0 B1i 0

]
,

C̃1i =
[

γρ
δ HT

1i
0 γρ

δ HT
5i

√
2λρHT

4i

√
2λCT

1i

]T
,

D̃12i =
[

0 γρ
δ HT

3i 0
√
2λρHT

6i

√
2λDT

12i

]T
,

D̃21i =
[
0 0 0 δI D21i I

]

and λ =

⎛
⎝1+ ρ2

r

∑
i=1

r

∑
j=1

[
‖HT

2i H2j‖+ ‖H
T
7i H7j‖

]⎞⎠
1
2

,

then the prescribed H∞ performance γ > 0 is guaranteed. Furthermore, a suitable controller is of the
form (30) with

Âij =
[
Y−1 − X

]−1
MijY−1

B̂i =
[
Y−1 − X

]−1
Bi

Ĉi = CiY−1
(59)

where

Mij = −AT
i − XAiY− XB2i ĈjY

−
[
Y−1 − X

]
B̂iC2jY− C̃T

1i

[
C̃1jY + D̃12j ĈjY

]
−γ−2

{
XB̃1i +

[
Y−1 − X

]
B̂iD̃21i

}
B̃T
1j . (60)

122 Fuzzy Controllers, Theory and Applications



Synthesis of a Robust H∞ Fuzzy Controller for Uncertain Nonlinear Dynamical Systems 13

Proof: Suppose there exist X and Y such that the inequalities (50) and (51)-(52) hold. The
inequality (50) implies that the matrix P defined in (47) is a positive definite matrix. Using the

partition (48), the controller (49) and multiplying (47) to the left by
[

Y I
Y 0

]
and to the right

by
[

Y Y
I 0

]
, we have

[
Φ11ij 0
0 Φ22ij

]
(61)

where

Φ11ij = AiY+ YAT
i + B2iCj + C

T
i B

T
2j + γ−2B̃1i B̃

T
1j

+
[
YC̃T

1i + C
T
i D̃

T
12j

][
YC̃T

1i + C
T
i D̃

T
12j

]T (62)

Φ22ij = AT
i X+ XAi + BiC2j + CT

2iB
T
j + C̃T

1i C̃1j

+γ−2
[
XB̃1i + BiD̃21j

][
XB̃1i + Bi D̃21j

]T. (63)

Note that Φ11ij and Φ22ij are the Schur complements of Ψ11ij and Ψ22ij , Using (53)-(56), we
have (61) less than zero. Hence, by Theorem 2, we learn that the inequality (3) holds.

4.2 Case II–ν(t) is unavailable for feedback
The output feedback fuzzy controller is assumed to be the same as the premise variables of the
fuzzy system model. This actually means that the premise variables of fuzzy system model
are assumed to be measurable. However, in general, it is extremely difficult to derive an
accurate fuzzy system model by imposing that all premise variables are measurable. In this
subsection, we do not impose that condition, we choose the premise variables of the controller
to be different from the premise variables of fuzzy system model of the plant. In here, the
premise variables of the controller are selected to be the estimated premise variables of the
plant. In the other words, the premise variable of the fuzzy model ν(t) is unavailable for
feedback which implies μi is unavailable for feedback. Hence, we cannot select our controller
which depends on μi. Thus, we select our controller as follows:

˙̂x(t) = ∑r
i=1 ∑r

j=1 μ̂iμ̂j

[
Âijx̂(t) + B̂iy(t)

]
u(t) = ∑r

i=1 μ̂iĈi x̂(t).
(64)

where μ̂i depends on the premise variable of the controller which is different from μi.
Let us re-express the system (1) in terms of μ̂i, thus the plant’s premise variable becomes the
same as the controller’s premise variable. By doing so, the result given in the previous case
can then be applied here. First, let us rewrite (1) as follows:

ẋ(t) = ∑r
i=1 μi

[
[Ai + ΔAi]x(t) + [B1i + ΔB1i ]w(t) + [B2i + ΔB2i ]u(t)

]
+∑r

i=1 μ̂i

[
[Ai + ΔAi]x(t) + [B1i + ΔB1i ]w(t) + [B2i + ΔB2i ]u(t)

]
−∑r

i=1 μ̂i

[
[Ai + ΔAi]x(t) + [B1i + ΔB1i ]w(t) + [B2i + ΔB2i ]u(t)

]
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z(t) = ∑r
i=1 μi

[
[C1i + ΔC1i ]x(t) + [D12i + ΔD12i ]u(t)

]
+∑r

i=1 μ̂i

[
[C1i + ΔC1i ]x(t) + [D12i + ΔD12i ]u(t)

]
−∑r

i=1 μ̂i

[
[C1i + ΔC1i ]x(t) + [D12i + ΔD12i ]u(t)

]
y(t) = ∑r

i=1μi

[
[C2i + ΔC2i ]x(t) + [D21i + ΔD21i ]w(t)

]
+∑r

i=1 μ̂i

[
[C2i + ΔC2i ]x(t) + [D21i + ΔD21i ]w(t)

]
−∑r

i=1 μ̂i

[
[C2i + ΔC2i ]x(t) + [D21i + ΔD21i ]w(t)

]
.

(65)

Rearranging (65) together with employing Assumption 1, we obtain

ẋ(t) = ∑r
i=1 μ̂i

(
[Ai + F(x(t), t)H1i + (μ1 − μ̂1)A1 + · · ·+ (μr − μ̂r)Ar

+F(x(t), t)(μ1− μ̂1)H11 + · · ·+ F(x(t), t)(μr − μ̂r)H1r ]x(t)
+[B1i + F(x(t), t)H2i + (μ1 − μ̂1)B11 + · · ·+ (μr − μ̂r)B1r
+F(x(t), t)(μ1− μ̂1)H21 + · · ·+ F(x(t), t)(μr − μ̂r)H2r ]w(t)
+[B2i + F(x(t), t)H3i + (μ1 − μ̂1)B21 + · · ·+ (μr − μ̂r)B2r
+F(x(t), t)(μ1− μ̂1)H31 + · · ·+ F(x(t), t)(μr − μ̂r)H3r ]u(t)

)
z(t) = ∑r

i=1 μ̂i ×
(
[C1i + F(x(t), t)H4i + (μ1 − μ̂1)C11 + · · ·+ (μr − μ̂r)C1r

+F(x(t), t)(μ1− μ̂1)H41 + · · ·+ F(x(t), t)(μr − μ̂r)H4r ]x(t)
+[D12i + F(x(t), t)H5i + (μ1 − μ̂1)D121 + · · ·+ (μr − μ̂r)D12r

+F(x(t), t)(μ1− μ̂1)H51 + · · ·+ F(x(t), t)(μr − μ̂r)H5r ]u(t)
)

y(t) = ∑r
i=1 μ̂i

(
[C2i + F(x(t), t)H6i + (μ1 − μ̂1)C21 + · · ·+ (μr − μ̂r)C2r

+F(x(t), t)(μ1− μ̂1)H61 + · · ·+ F(x(t), t)(μr − μ̂r)H6r ]x(t)
+[D21i + F(x(t), t)H7i + (μ1 − μ̂1)D211 + · · ·+ (μr − μ̂r)D21r

+F(x(t), t)(μ1− μ̂1)H71 + · · ·+ F(x(t), t)(μr − μ̂r)H7r ]w(t)
)

(66)

Then, from (66), we get

ẋ(t) = ∑r
i=1 μ̂i

[
[Ai + ΔĀi]x(t) + [B1i + ΔB̄1i ]w(t)

+[B2i + ΔB̄2i ]u(t)
]
, x(0) = 0

z(t) = ∑r
i=1 μ̂i

[
[C1i + ΔC̄1i ]x(t)

+[D12i + ΔD̄12i ]u(t)
]

y(t) = ∑r
i=1 μ̂i

[
[C2i + ΔC̄2i ]x(t)

+[D21i + ΔD̄21i ]w(t)
]

(67)

where
ΔĀi = F̄(x(t), x̂(t), t)H̄1i ,

ΔB̄1i = F̄(x(t), x̂(t), t)H̄2i , ΔB̄2i = F̄(x(t), x̂(t), t)H̄3i ,

ΔC̄1i = F̄(x(t), x̂(t), t)H̄4i , ΔC̄2i = F̄(x(t), x̂(t), t)H̄5i ,

ΔD̄12i = F̄(x(t), x̂(t), t)H̄6i

and ΔD̄21i = F̄(x(t), x̂(t), t)H̄7i
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with
H̄1i =

[
HT
1i A

T
1 · · ·A

T
r HT

11 · · ·H
T
1r

]T
,

H̄2i =
[
HT
2i B

T
11 · · ·B

T
1r H

T
21 · · ·H

T
2r

]T
,

H̄3i =
[
HT
3i B

T
21 · · ·B

T
2r H

T
31 · · ·H

T
3r

]T
,

H̄4i =
[
HT
4i C

T
11 · · ·C

T
1r H

T
41 · · ·H

T
4r

]T
,

H̄5i =
[
HT
5i C

T
21 · · ·C

T
2r H

T
51 · · ·H

T
5r

]T
,

H̄6i =
[
HT
6i D

T
121 · · ·D

T
12r H

T
61 · · ·H

T
6r

]T
H̄7i =

[
HT
7i D

T
211 · · · DT

21r H
T
71 · · ·H

T
7r

]T
and F̄(x(t), x̂(t), t) =

[
F(x(t), t) (μ1− μ̂1) · · · (μr− μ̂r) F(x(t), t)(μ1− μ̂1) · · · F(x(t), t)(μr−

μ̂r)
]
. Note that ‖F̄(x(t), x̂(t), t)‖ ≤ ρ̄ where ρ̄ = {3ρ2 + 2}

1
2 . ρ̄ is derived by utilizing the

concept of vector norm in basic system control theory and the fact that μi ≥ 0, μ̂i ≥ 0, ∑r
i=1 μi =

1 and ∑r
i=1 μ̂i = 1.

Note that the above technique is basically employed in order to obtain the plant’s premise
variable to be the same as the controller’s premise variable; e.g. (22). Now, the premise
variable of the system is the same as the premise variable of the controller, thus we can apply
the result given in Case I.

Theorem 3 Consider the system (1). Given a prescribed H∞ performance γ > 0 and a positive
constant δ, if there exist matrices X, Y, Bi and Ci, i = 1,2, · · · ,r, satisfying the following linear matrix
inequalities: [

X I
I Y

]
> 0 (68)

X > 0 (69)

Y > 0 (70)

Ψ11ii < 0, i = 1,2, · · · ,r (71)

Ψ22ii < 0, i = 1,2, · · · ,r (72)

Ψ11ij + Ψ11ji < 0, i < j≤ r (73)

Ψ22ij + Ψ22ji < 0, i < j≤ r (74)

where

Ψ11ij =

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎝

AiY +YAT
i

+B2iCj + C
T
i B

T
2j

+γ−2 ˜̄B1i
˜̄BT
1j

⎞
⎟⎠ (∗)T

[
Y ˜̄CT

1i + C
T
i
˜̄DT
12j

]T
−I

⎞
⎟⎟⎟⎟⎠ (75)
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Ψ22ij =

⎛
⎜⎜⎜⎝

⎛
⎜⎝

AT
i X+ XAi

+BiC2j + CT
2iB

T
j

+ ˜̄CT
1i
˜̄C1j

⎞
⎟⎠ (∗)T

[
X ˜̄B1i + Bi

˜̄D21j
]T

−γ2 I

⎞
⎟⎟⎟⎠ (76)

with
˜̄B1i =

[
δI I δI 0 B1i 0

]
,

˜̄C1i =
[

γρ̄
δ H̄T

1i 0 γρ̄
δ H̄T

5i

√
2λ̄ρ̄H̄T

4i

√
2λ̄CT

1i

]T
,

˜̄D12i =
[

0 γρ̄
δ H̄T

3i 0
√
2λ̄ρ̄H̄T

6i

√
2λ̄DT

12i

]T
,

˜̄D21i =
[
0 0 0 δI D21i I

]

and λ̄ =

⎛
⎝1+ ρ̄2

r

∑
i=1

r

∑
j=1

[
‖H̄T

2i H̄2j‖+ ‖H̄
T
7i H̄7j‖

]⎞⎠
1
2

,

then the prescribed H∞ performance γ > 0 is guaranteed. Furthermore, a suitable controller is of the
form (64) with

Âij =
[
Y−1 − X

]−1
MijY−1

B̂i =
[
Y−1 − X

]−1
Bi

Ĉi = CiY−1
(77)

where

Mij = −AT
i − XAiY− XB2i ĈjY

−
[
Y−1 − X

]
B̂iC2jY−

˜̄CT
1i

[ ˜̄C1jY + ˜̄D12j ĈjY
]

−γ−2
{
X ˜̄B1i +

[
Y−1 − X

]
B̂i

˜̄D21i

}
˜̄BT
1j . (78)

Proof: Since (67) is of the form of (1), it can be shown by employing the proof for Theorem 2.

5. Example

Consider the following problem of the chaotic Lorenz system which is described by the
following equations (see [29]).

ẋ1(t) = −σx1(t) + σx2(t) + u(t) + 0.1w1(t)
ẋ2(t) = rx1(t)− x2(t)− x1(t)x3(t) + 0.1w2(t)
ẋ3(t) = x1(t)x2(t)− bx3(t) + 0.1w3(t)
z(t) =

[
xT1 (t) xT2 (t) xT3 (t)

]T
y(t) = Jx(t) + 0.1w1(t)

(79)

where x1(t), x2(t), x3(t) denote the state vectors, u(t) is the control input, w1(t), w2(t), w3(t)
are the disturbance noise inputs, y(t) is the measurement output, z(t) is the controlled output,
J is the sensor matrix and the bounded uncertain parameters σ, r and b are given by 10± 30%,
28± 30% and 8/3± 30%, respectively. Note that the variables x1(t), x2(t) and x3(t) are treated
as the deviation variables (variables deviate from the desired trajectories).
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Fig. 1. Membership functions for the two fuzzy set.

Since the nonlinear terms in (79) can be viewed as a function of x1(t), we can re-expressed (79)
as

ẋ1(t) = −σx1(t) + σx2(t) + u(t) + 0.1w1(t)
ẋ2(t) = rx1(t)− x2(t)− (x1(t)) · x3(t) + 0.1w2(t)
ẋ3(t) = (x1(t)) · x2(t)− bx3(t) + 0.1w3(t)
z(t) =

[
xT1 (t) xT2 (t) xT3 (t)

]T
y(t) = Jx(t) + 0.1w1(t).

(80)

The control objective is to control the state variable x1(t) for the range x1(t) ∈ [N1 N2]. For the
sake of simplicity, we will use as few rules as possible. Note that Figure 1 shows the plot of
the membership functions represented by

M1(x1(t)) =
−x1(t) + N2
N2 − N1

and M2(x1(t)) =
x1(t)− N1
N2 − N1

.

Knowing that x1(t) ∈ [N1 N2], the nonlinear system (80) can be approximated by the following
two rules TS model:
Plant Rule 1: IF x1(t) is M1(x1(t)) THEN

ẋ(t) = [A1 + ΔA1]x(t) + B11w(t) + B21u(t), x(0) = 0,

z(t) = C11x(t),

y(t) = C21x(t) + D211w(t).

Plant Rule 2: IF x1(t) is M2(x1(t)) THEN

ẋ(t) = [A2 + ΔA2]x(t) + B12w(t) + B22u(t), x(0) = 0,

z(t) = C12x(t),

y(t) = C22x(t) + D212w(t)

where

A1 =

⎡
⎣ −10 10 0

28 −1 −N1
0 N1 −8/3

⎤
⎦ , A2 =

⎡
⎣ −10 10 0

28 −1 −N2
0 N2 −8/3

⎤
⎦ ,
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B11 = B12 =

⎡
⎣ 0.1 0 0

0 0.1 0
0 0 0.1

⎤
⎦ , B21 = B22

⎡
⎣ 1

0
0

⎤
⎦ ,

C11 = C12

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , C21 = C22 = J,

D211 = D212 =
[
0.1 0 0

]
, ΔA1 = F(x(t), t)H11 , ΔA2 = F(x(t), t)H12 ,

x(t) = [xT1 (t) x
T
2 (t) x

T
3 (t)]

T and w(t) = [wT
1 (t) w

T
2 (t) w

T
3 (t)]

T.

Let us choose the value of [N1 N2] in the membership function as [−20 30]. Now, by assuming
that in (2), ‖F(x(t), t)‖ ≤ ρ = 1 and since the values of σ, r, b are uncertain but bounded within
30% of their nominal values given in (79), we have

H11 = H12 =

⎡
⎣ −0.3σ 0.3σ 0

0.3r 0 0
0 0 −0.3b

⎤
⎦ .

State-feedback controller design
Using the LMI optimization algorithm and Theorem 1 with γ = 1 and δ = 1, we obtain

P =

⎡
⎣ 104.7498 −8.1629 −1.1823
−8.1629 5.1783 0.9345
−1.1823 0.9345 6.7383

⎤
⎦,

K1 =
[
−38.8875 −816.1115 −3.9273

]
, K2 =

[
−37.4290 −815.5695 4.1287

]
.

The resulting fuzzy controller is

u(t) =
2

∑
j=1

μjKjx(t)

where

μ1 = M1(x1(t)) and μ2 = M2(x1(t)).

Output feedback controller design
Case I: ν(t) are available for feedback
In this case, x1(t) = ν(t) is assumed to be available for feedback; for instance, J = [1 0 0]. This
implies that μi is available for feedback. Using the LMI optimization algorithm and Theorem
2 with γ = 1 and δ = 1, we obtain the following results:

X =

⎡
⎣ 40.9617 −0.3001 0.0003
−0.3001 0.0326 −0.0020
0.0003 −0.0020 0.0529

⎤
⎦, Y =

⎡
⎣ 64.0418 −6.6279 −0.0180
−6.6279 0.7784 0.0345
−0.0180 0.0345 0.8385

⎤
⎦,

Â11 =

⎡
⎣ −52.6459 913.0329 11.1683

0.4211 −93.8119 −1.1292
2.3239 −0.4233 0.0865

⎤
⎦, Â12 =

⎡
⎣ −52.9740 909.6351 0.8313

0.5070 −93.0535 −0.2157
2.3414 −0.2540 0.1024

⎤
⎦,
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Â21 =

⎡
⎣ −54.8390 912.4579 −6.7553

1.4467 −93.6196 0.6829
−3.5367 −0.1599 0.2080

⎤
⎦, Â22 =

⎡
⎣ −54.7676 913.4610 −17.1638

1.3897 −94.0748 1.5985
−3.5229 −0.0374 0.1865

⎤
⎦,

B̂1 =

⎡
⎣ −110.4306

4.8589
2.9909

⎤
⎦, B̂2 =

⎡
⎣ 113.2188

6.1387
−4.5464

⎤
⎦,

Ĉ1 =
[
−36.1488 −710.9845 −3.2817

]
, Ĉ2 =

[
−35.9847 −709.7215 5.1803

]
.

The resulting fuzzy controller is

˙̂x(t) =
2

∑
i=1

2

∑
j=1

μiμj Âij x̂(t) +
2

∑
i=1

μiB̂iy(t)

u(t) =
2

∑
i=1

μiĈi x̂(t)

where
μ1 = M1(x1(t)) and μ2 = M2(x1(t)).

Case II: ν(t) are unavailable for feedback
In this case, x1(t) = ν(t) is assumed to be unavailable for feedback; for instance, J = [0 0 1].
This implies that μi is unavailable for feedback. Using the LMI optimization algorithm and
Theorem 3 with γ = 1 and δ = 1, we obtain the following results:

X =

⎡
⎣ 15.3866 −0.0454 0.0001
−0.0454 0.0086 −0.0005
0.0001 −0.0005 0.0121

⎤
⎦, Y =

⎡
⎣ 195.0825 −19.8577 −0.0836
−19.8577 2.3203 0.1018
−0.0836 0.1018 2.5038

⎤
⎦,

Â11 =

⎡
⎣ −72.5111 1594.5334 6.34563

5.0232 −162.6656 −0.6001
1.2000 −0.7556 0.1000

⎤
⎦, Â12 =

⎡
⎣ −72.9233 1603.7455 −9.7233

5.1345 −162.8555 0.9974
1.2000 −0.5689 0.1000

⎤
⎦,

Â21 =

⎡
⎣ −74.5456 1595.2543 −5.6743

5.5411 −162.1785 0.5609
−1.7009 −0.9421 0.2000

⎤
⎦, Â22 =

⎡
⎣ −74.5290 1595.2231 −5.6744

5.5411 −162.1323 0.5966
−1.7008 −0.9432 0.2000

⎤
⎦,

B̂1 =

⎡
⎣ −166.7783

7.4682
4.5048

⎤
⎦, B̂2 =

⎡
⎣ −173.8473

9.1193
−6.8346

⎤
⎦,

Ĉ1 =
[
14.1938 −410.5257 −0.3593

]
, Ĉ2 =

[
14.2366 −412.9750 3.8984

]
.

The resulting fuzzy controller is
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Fig. 2. The ratio of the regulated output energy to the disturbance noise energy:( ∫ Tf
0 zT(t)z(t)dt∫ Tf
0 wT(t)w(t)dt

)
.

˙̂x(t) =
2

∑
i=1

2

∑
j=1

μ̂iμ̂j Âij x̂(t) +
2

∑
i=1

μ̂iB̂iy(t)

u(t) =
2

∑
i=1

μ̂iĈi x̂(t)

where

μ̂1 = M1(x̂1(t)) and μ̂2 = M2(x̂1(t)).

Remark 1 Both robust fuzzy state and output controllers guarantee that the L2-gain, γ, is less than
the prescribed value. The ratio of the regulated output energy to the disturbance input noise energy
which is obtained by using the H∞ fuzzy controllers is depicted in Figure 2. The disturbance input
signals, w1(t), w2(t) and w3(t), which were used during the simulation is given in Figure 3. After
3 seconds, the ratio of the regulated output energy to the disturbance input noise energy tends to a
constant value which is about 0.32 for the state-feedback controller, and 0.21 for the output feedback
controller in Case I and 0.14 in Case II. Thus, for the state-feedback controller where γ =

√
0.32 =

0.566, for output feedback controller in Case I where γ =
√
0.21 = 0.458 and in Case II where γ =√

0.14 = 0.374, all are less than the prescribed value 1.

6. Conclusion

This chapter has investigated the problem of designing a robust fuzzy controller for a TS
fuzzy system with parametric uncertainties that guarantees the L2-gain from an exogenous
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input to a regulated output being less than or equal to the prescribed value. An LMI-based
approach has been employed to derive sufficient conditions for the existence of a robust H∞
fuzzy controller in terms of a family of LMIs. Finally, a numerical simulation example has
been presented to illustrate the effectiveness of the designs.
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Fig. 3. The disturbance input signals, w1(t), w2(t) and w3(t).
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Affine-TS-Based Fuzzy Tracking Design
Shinq-Jen Wu

Department of Electrical Engineering, Da-Yeh University, Chang-Hwa
Taiwan, R.O.C.

1. Introduction

Research in fuzzy modelling and fuzzy control have come of age (1), (2), (3), (4). There are
two model-based approaches to theoretically construct the T-S fuzzy system of a nonlinear
system. One is from local linear approximation, which generates linear singleton-included
rule-consequences (affine T-S fuzzy system). The other is via the sector nonlinearity
concept (5), (6), (7), which generates linear singleton-free rule-consequences (linear T-S fuzzy
system). Both are demonstrated to be universal approximations to any smooth nonlinear
systems (8), (9), (10). The linear type T-S system is popular due to its further intrinsic
analysis. A linear matrix inequality (LMI)-based fuzzy controller was used to minimize
the upper bound of a performance index (9). Structure-oriented and switching fuzzy
controllers were developed for more complicated systems (7), (11), (12). Optimal fuzzy
control techniques were proposed to minimize a performance index from local-concept and
global-concept approach, respectively (13), (14), (15). Yang and coworkers used an input-free
T-S fuzzy system to approximate a uncertain nonlinear state function, and adopted hybrid
sliding-mode, adaptive and back-stepping control techniques to control a strick-feedback
uncertainty-included nonlinear system (16). Via a fuzzy-static-output-feedback technique,
Lo and Lin transformed a robust H∞ quadratic tracking problem into a bilinear-matrix
inequality (17).
Target tracking is common in the real world. However, it is tough work to construct a
system to achieve perfect tracking. We derived local-concept-based tracking technologies for
various tracking problems (18). Cuevas and Toledo solved a chaotic-synchronization problem,
and found out two Lorenz’ attractors (19). Uang and Hung focused on a model-following
tracking problem (20). Chen and coauthors reformulated a H∞ tracking problem into a LMI
problem (21). They also adopted this technique to derive a reference-tracking-control design
for an interconnected system (22). Recently, they used a T-S fuzzy model to describe a fuzzy
stochastic moving-average system, and derived a minimum-variance (23).
However, it is impractical to theoretically convert a mathematical model into a T-S fuzzy
model if a nonlinear system is too complex to describe. More and more researchers attempt
to identify fuzzy models from input-output data (24), (25). The approach of model-free
nonlinear systems to guarantee the proposed fuzzy model under limited modelling error
and the corresponding fuzzy control with desirable implementation is still in development.
For this model-free approach, an affine type fuzzy model will be more preferred than
linear type on providing one more adjustable parameter during computation-intelligent
(neural-fuzzy-evolution) learning process (26). However, no affine-type tracking-controller
and few affine-type regulating-controllers were proposed. Hsiao and coworkers proposed
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a hybrid-compensation controller (27). E. Kim and coworkers used convex optimization
technique to construct a LMI-based affine-type fuzzy controller (28), (29). They recently
specialized in an affine T-S fuzzy system with constant input-matrix and transformed a
regulating problem into a bilinear-matrix inequality (30). P. Bergsten and coworkers tried
to derive an affine-type observer by regarding the singleton of an affine rule-consequence as
a trivial term. Therefore, the result was, in fact, belong to a typical linear-type case (31).
Here, we realize a tracking system as an affine T-S fuzzy systems, and formulate a tracking
problem as a fuzzy quadratic-tracking problem. The tracking-control deign schemes for
an affine TS-based nonlinear system to trace two kinds of targets (moving target and
model-following target) are derived in Sections 2 and 3. These two sections describe
fuzzy quadratic tracking problems, the derived optimal fuzzy tracking-controllers, and the
Lyapunov-based stability analysis. The performance of the proposed affine-based trackers for
these two targets is examined in Section 4. Section 5 summarizes the results of our research
and suggests areas for further research.

2. Moving-target tracking problem

By local-linear approximation or neural fuzzy inference networks, a nonlinear system can be
realized as an affine T-S fuzzy system,

Ri : If x1 is T1i, . . . , xn is Tni, then Ẋ(t) = AiX(t) + Biu(t) + Di, i = 1, . . . ,r,

Y(t) = CX(t), (1)

where Ri denotes the ith rule of the fuzzy model; x1, . . . ,xn are system states; T1i, . . . ,Tni are
input fuzzy terms in the ith rule; X(t) = [x1, . . . ,xn]t ∈�n is state vector, Y(t) = [y1, . . . ,yn′ ]t ∈
�n′ is system output vector, u(t) ∈ �m is system input; and Ai, Bi, Ci and Di are n× n, n×m,
n′ × n and n× 1 matrices, respectively. We note that the entire T-S fuzzy system in Eq. (1) can
be expressed as

Ẋ(t) =
r

∑
i=1

hi(X(t))(AiX(t) + Biu(t) + Di) (2)

with X(0) = X0 ∈ �
n; hi(X(t)) denotes the normalized firing-strength of the i th rule of

the fuzzy system, hi(X(t)) = αi/∑r
i=1 αi with αi = Πn

j=1μTji(X(t)), where μTji(X(t)) is the
membership function of fuzzy term Tji.
The problem of minimal energy consumption for the moving-target tracking control of
a nonlinear system is to control the system such that its output Y(t) keeps close to the
moving-target Yd(t) under a minimal energy condition. Therefore, we can formulate it as
a fuzzy quadratic tracking problem.
PROBLEM 1. Given a rule-based fuzzy tracking system in Eq. (1) with X(t0) = X0 ∈ �

n and
a rule-based fuzzy tracking-controller,

Ri : If y1 is S1i, . . . , yn′ is Sn′i, then u(t) = ri(t), i = 1, . . . ,δ, (3)

find the individual tracking-law, r∗i (·), i = 1, . . . ,δ, such that the composed tracking controller,
u∗(·), can minimize a quadratic cost function,

J(u(·)) =
∫ ∞

t0
[ut(t)Su(t) + Xt(t)L1X(t) + (Y(t)− Yd(t))tL2(Y(t)− Yd(t))]dt, (4)
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where L1 = [In − Ct(CCt)−1C]tL3[In − Ct(CCt)−1C]; S, L2 and L3 are, respectively, m × m,
n′ × n′ and n× n positive symmetric matrices; Xt(t)L1X(t) is the state-trajectory penalty to
produce smooth response, ut(t)Su(t) denotes fuel consumption, and the last term in J(u(·))
relates to error cost. Let L= L1+CtL2C. And, we define an artificial desired-trajectory (Xd(t) =
Ct[CCt]−1Yd(t)) to simplify the cost function as

J(u(·)) =
∫ ∞

t0
[ut(t)Su(t) + (X(t)− Xd(t))tL(X(t)− Xd(t))]dt. (5)

According to a dynamic-programming formalism, this quadratic optimal problem can be
regarded as a successively on-going dynamic problem with regard to the state from the
previous decision. At any time-instant, the energy of the entire fuzzy system is the “fuzzy
summation” of the energy of each fuzzy subsystem. Therefore, solving a quadratic optimal
tracking-control problem is to find only one corresponding optimal solution of the fuzzy
tracking-controller for each rule of the affine fuzzy model. We further introduce an augmented
target to re-formulate the affine-type local quadratic problem into a linear-type problem. And
then, we can obtain our tracking-control design scheme as follows.

Theorem 1 (moving-target) For affine T-S fuzzy system in Eq. (1) and fuzzy tracking-controller
in Eq. (3), if Ai is nonsingular, π̄−1i (L + At

i π̄i) > 0, (Ai,Bi) is completely controllable (c.c.), and
(Ai,C) is completely observable (c.o.) for i = 1, . . . ,r, then (1) the local fuzzy tracking-law is

r∗i (t) = −S−1Bt
i π̄iX

∗(t) + r̄si + r̄exti (t), i = 1, . . . ,r; (6)

their ”blending” global fuzzy tracking-controller (u∗(t) = ∑r
i=1 hi(X

∗(t))r∗i (t)) minimizes J(u(·))
in (4), where r̄si = −S−1Bt

i (π̄iX̄s
i + b̄si ), r̄exti (t) = −S−1Bt

i b̄i(t), X̄s
i = A−1i Di, b̄i(t) is the

target-dependent variable for adapting to the target-variation, b̄si is a fuzzy singleton-related constant,

ḃi(t) = −(Ai − BiS
−1Bt

i π̄i)
tbi(t) + LXd(t), bi(∞) = 0n×1, (7)

b̄si = −
∫ ∞

0
e[Ai−BiS−1Bt

i π̄i ]
tτdτ · LX̄s

i , (8)

and π̄i is a unique symmetric positive-definite solution of a Riccati equation,

KiAi + At
iKi − KiBiS

−1Bt
iKi + L = 0; (9)

(2) the entire feedback fuzzy tracking system is stable,

Ẋ∗(t) =
r

∑
i=1

hi(X
∗(t))[(Ai − BiS

−1Bt
i π̄i)X

∗(t) + Bi(r̄
s
i + r̄exti (t)) + Di]. (10)

Proof. See the Appendix.

3. Model-following tracking problem

In this section, we consider another fuzzy tracking problem, whose target comes from the
response of a referencemodel. We shall derive a tracking design scheme to control a nonlinear
system such that system-output Y(t) keeps following the model-response-target Yd(t) with
minimal energy consumption.
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PROBLEM 2. Given an affine T-S fuzzy tracking system in Eq. (1) and a fuzzy
tracking-controller in Eq. (3) with X(t0) = X0 ∈ �

n, find the individual tracking-law, r∗i (·),
i = 1, . . . ,δ, such that the composed tracking-controller, u∗(·), can minimize J(u(·)) in Eq. (4)
and follow the target Yd(t), which is the response of a linear model,

ż1(t) = F1z1(t) + J1ν(t),

Yd(t) = E1z1(t) (11)

with z1(t0) = z10; and input-command ν(t) ∈ �m′ is the zero-input response of the system:
ż2(t) = F2z2(t) and ν(t) = E2z2(t) with z2(t0) = z20, where z1(t) ∈ �h and z2(t) ∈ �h′ are
system states; F1, J1, E1, F2 and E2 are respectively h × h, h × m′, n′ × h, h′ × h′ and m′ × h′

matrices.
By defining Z(t) = [zt1(t) zt2(t)]

t, we can rewrite the desired tracked system as

Ż(t) =

[
F1 J1E2

0h′×h F2

]
Z(t) = FZ(t),

Yd(t) = [E1 0n′×h′ ]Z(t) = EZ(t). (12)

We further define X̃(t) = [Xt(t) Zt(t)]t to simply Problem 2 into the following augmented
regulating problem.
PROBLEM 2.1. Given an augmented affine T-S fuzzy regulating system,

˙̃X(t) =
r

∑
i=1

hi(X̃(t))[ÃiX̃(t) + B̃iu(t) + D̃i] (13)

with X̃(t0) = X̃0 ∈ �
n+h+h′ , hi(X̃(t)) = hi(X(t)), and rule-based fuzzy controller in Eq. (3),

find the individual regulating law, r∗i (·), i = 1, . . . ,δ, to minimize

J(ri(·)) =
∫ ∞

t0
[X̃t(t)L̃X̃(t) + ut(t)(t)Su(t)]dt, (14)

where parameters

B̃i =

[
Bi

0(h+h′)×m

]
, D̃i =

[
Di

0(h+h′)×1

]
, Ãi =

[
Ai 0n×(h+h′)

0(h+h′)×n F

]
,

and

L̃ =

[
L −LCt[CCt]−1E

−Et[CCt]−1CL Et[CCt]−1CLCt[CCt]−1E

]
.

To solve this issue, we first regards Problem 2.1 as Problem 1 in case of Yd(t) = 0n′×1. Then, we

introduce two parameters, K̃i(t) =

[
Ki(t) K21t(t)

i
K21
i (t) K22

i (t)

]
and b̃i(t) =

[
bsi (t)
b2i(t)

]
. After a series

of complicated matrix-manipulations, we derive the following theorem.

Theorem 2 (model-following) For affine T-S fuzzy system in Eq. (1) and fuzzy tracking-controller
in Eq. (3), let an artificial desired trajectory Xd(t) be defined as Yd(t) = CXd(t), where Yd(t) is the
output of a tracked model in Eq. (11), and

Z(t) =
[

z1(t)
z2(t)

]
, F =

[
F1 J1E2

0h′×h F2

]
,
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E = [E1 0n′×h′ ]. If Ai is nonsingular, π̄−1i (L + At
i π̄i) > 0, (Ai,Bi) is c.c. and (Ai,C) is c.o. for

i = 1, . . . ,r, then
(1) the local fuzzy tracking-law is

r∗i (t) = −S−1Bt
i [π̄iX

∗ + π̄21t
i Z(t)] + r̄si , i = 1, . . . ,r; (15)

their ”blending” global fuzzy tracking-controller (u∗(t) = ∑r
i=1 hi(X

∗(t))r∗i (t)) minimizes J(u(·)) in
(4), where r̄si = −S−1Bt

i (π̄iX̄s
i + b̄si ), X̄

s
i = A−1i Di, b̄si satisfies Eq. (8), π̄i is the unique solution of

the Riccati equation in Eq. (9), and

π̄21
i = −

∫ ∞

0
eF

tτ · Et(CCt)−1CL · e(Ai−BiS−1Bt
i π̄i)τ · dτ; (16)

(2) the entire feedback fuzzy tracking system is stable,

Ẋ∗(t) =
r

∑
i=1

hi(X
∗(t))[(Ai − BiS

−1Bt
i π̄i)X

∗(t)− BiS
−1Bt

i π̄
21t
i Z(t) + Bir̄

s
i + Di]. (17)

Proof. See the Appendix.

4. Numerical simulation

In this section, we use an affine TS-based nonlinear system to examine the performance of our
fuzzy tracking-controllers. As we know, via analytical or hybrid-soft-computing technique
any nonlinear system can be approximated by an affine T-S fuzzy system. Therefore, we
can choose any affine-TS-based nonlinear system as our tracking system. We shall examine
the tracking performance for moving-target first, and then for model-following-target. We
consider our system as

R1 : If x(t) is F11 and ẋ(t) is F12 , then Ẋ(t) = A1X(t) + B1u(t) + D1,

R2 : If x(t) is F11 and ẋ(t) is F22 , then Ẋ(t) = A2X(t) + B2u(t) + D2,

R3 : If x(t) is F21 and ẋ(t) is F12 , then Ẋ(t) = A3X(t) + B3u(t) + D3,

R4 : If x(t) is F21 and ẋ(t) is F22 , then Ẋ(t) = A4X(t) + B4u(t) + D4 (18)

with system-output Y(t) = CX(t), where for each rule C = [0 1] and

X(t) =
[

ẋ(t)
x(t)

]
; D1 =

[
1
1

]
, D2 =

[
1
0.5

]
, D3 =

[
1
0

]
, D4 =

[
0.3
1

]
;

A1 =

[
0 −0.02
1 0

]
, A2 =

[
−0.225 −0.02

1 0

]
, A3 =

[
0 −1.5275
1 0

]
,

A4 =

[
−0.225 −1.5275

1 0

]
; Bi =

[
1
0

]
, i = 1, . . . ,4.

The membership functions are chosen as μF11
(x(t)) = 1− x2(t)

2.25 , μF21
(x(t)) = x2(t)

2.25 , μF12
(ẋ(t)) =

1− ẋ2(t)
2.25 , and μF22

(ẋ(t)) = ẋ2(t)
2.25 . We shall design a fuzzy-rule-based tracking-controller,
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R1 : If x(t) is F11 and ẋ(t) is F12 , then u(t) = r1(t),

R2 : If x(t) is F11 and ẋ(t) is F22 , then u(t) = r2(t) (19)

R3 : If x(t) is F21 and ẋ(t) is F12 , then u(t) = r3(t),

R4 : If x(t) is F21 and ẋ(t) is F22 , then u(t) = r4(t), (20)

such that the designed affine-type closed-loop fuzzy system can keep tracing the
moving-target with minimal cost consumption,

J(u(·)) =
∫ ∞

0
[ut(t)Su(t) + Xt(t)L1(t)X(t) + ey(t)tL2ey(t)]dt (21)

with ey(t) = Y(t) − Yd(t) and L1 = [I2 − Ct(CCt)−1C]tL3[I2 − Ct(CCt)−1C]. We now set
penalty-parameters as S = 0.001, L3 = I2, and L2 = I1. (These parameters can be regarded
as weighting factors for cost, trajectory-smoothness and output-error. Therefore, they can
be chosen optionally.) Since each fuzzy subsystem is well-behaved (rank[Ai AiBi] = 2 and
rank[Ct At

iC
t]t = 2 for i = 1, . . . ,4), we have the unique symmetric positive-definite solution

of the algebraic Riccati equation,

π̄1 =

[
0.0326 0.0316
0.0316 1.0311

]
,

π̄2 =

[
0.0324 0.0316
0.0316 1.0311

]
,

π̄3 =

[
0.0326 0.0301
0.0301 1.0309

]
, π̄4 =

[
0.0323 0.0301
0.0301 1.0306

]
. And, we have π̄−1i (L + At

i π̄i) > 0 for

each rule.
So, the tracking-controller is u∗(t) = ∑r

i=1 hi(X
∗(t))[−S−1Bt

i π̄iX∗(t) + r̄si + r̄exti (t)], where
r̄si = −S−1Bt

i (π̄i X̄s
i + b̄si ), r̄

ext
i (t) = −S−1Bt

i b̄i(t), X̄
s
i = A−1i Di. Figure 1 shows the tracking

trajectories for various moving targets (Yd is a step’wise function, Yd(t) = 3 + 2sin0.2t,
Yd(t) = 3+ 4e−0.3t, and Yd(t) = 0.5+ 2log(3+ t)).
This affine TS fuzzy system is also used for model-following-target tracking. Our tracked
target is from a model-response Yd(t) in Eq. (11) with initial-condition z10 = 10, where
parameters are set at (F1, J1,E1) = (−1,1,1); and input-command ν is from a zero-input
linear system with initial-condition z20 = 10 and parameters E2 = 1, F2 = −0.2. That is, our
augmented tracked system Z(t) is in Eq. (12) with initial condition,

Z(0) =
[

z10
z20

]
=

[
10
10

]
,

and parameters,

F =

[
F1 J1E2
0 F2

]
=

[
−1 1
0 −0.2

]
,

E = [E1 0] = [1 0]. Based on Theorem 2, we have the model-following controller, u∗(t) =
∑r

i=1 hi(X
∗(t))[−S−1Bt

i (π̄iX∗ + π̄21t
i Z(t)) + r̄si ], where π̄21

i = −
∫ ∞
0 eF

tτ · Et(CCt)−1CL ·

e(Ai−BiS−1Bt
i π̄i)τ · dτ. Figure 2 shows the tracking-performance also for (F1, F2) = (−0.2, −1),

(−5, − 1
30 ) and (− 1

30 ,−5). Simulation results show that the designed affine-type optimal
fuzzy tracking-controllers can efficiently push the tracking system to trace various
moving-targets (Fig. 1) and to follow various parameter-variation tracked model (Fig. 2) in
a short time.
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5. Conclusions

Although a linear type T-S fuzzy system is very popular, and has been successfully applied
to various fields, the affine type system is more preferred for computation-intelligent
(neural-fuzzy-evolution) modelling as a system is too complex to be described. In this paper,
we derive an affine-type fuzzy tracking-controller for tracking various moving-targets and
another for keeping following a linear system whose input-command is generated from
another zero-input system. Both designed closed-loop tracking systems are demonstrated to
be globally stable. We use an affine-based nonlinear system to demonstrate that the proposed
tracking-controllers can quickly reach a perfect tracking-effect. In the future, we shall discuss
the robustness of the designed systems.

6. Appendix

Proof of Theorem 1.
(1) From the essence of the dynamic programming formalism, the operation of minimizing
J(u(·)) in Eq. (??) can be decomposed as follows:

min
u[t0,∞]

J(u(·)) =min
u[t,∞]

{
∫ ∞

t
(etxl Lexl + utlSul)dl +min

u[t0,t]

∫ t

t0
(etxl Lexl + utlSul)dl}, (22)

where state-error exl = Xl − Xd
l and the lower index is used to denote time-dependence for

notation-simplification (Xl for X(l)). Therefore, the quadratic optimization problem is, in
fact, a successively on-going dynamic problem with regard to the system-state resulting from
the previous decision, i.e., the initial system-state at time t is X0t = X∗t . So, the objective of
Problem 1 is to successively find the optimal global decision (global optimal fuzzy controller) u∗t
for minimizing the cost function,

Jt(ut) =
∫ ∞

t
(etxl Lexl + utlul)dl, t ∈ [t0,∞], (23)

and for estimating X∗t+ with regard to initial-state X∗t , where t+ denotes the time-instant
slightly later than time t; and then, with the new initial-state, X∗t+ , resolving u∗t+ to minimize
Jt+ (ut+). At any time-instant t, the optimal local decision (local optimal fuzzy tracking-law) derives
from minimizing Jt(ut) in Eq. (23) with regard to the fuzzy subsystem,

Ẋl = AiXl + Biul + Di, l ∈ [t,∞], i = 1, . . . ,r; (24)

and the optimal global decision derives from minimizing Jt(ut) with regard to the entire fuzzy
system,

Ẋl =
r

∑
i=1

hi(Xl)(AiXl + Biul + Di), l ∈ [t,∞]. (25)

Since u∗t is just a variable to be solved either for the aforementioned local optimization
problem or for the global optimization issue, we can use r∗it to denote the optimal local decision
of the i-th fuzzy subsystem.
(2) We shall further demonstrated that the global optimal decision in Problem 1 can be
obtained by fuzzily blending those optimal local decisions. Now, let ζl(Xl ,ul) and ζil (Xl ,ril ),
i = 1, . . . ,r, denote, respectively, the entire energy and local energy at any time-instant l,
l ∈ [t,∞]. Then, Jt(ut) =

∫ ∞
t ζl(Xl ,ul)dl and Jt(rit ) =

∫ ∞
t ζil (Xl ,ril )dl. At any time-instant, the
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energy of the entire fuzzy system is some kinds of nonlinear combination (fuzzy summation) of
the energy of fuzzy subsystems. In other words, the global energy can be expressed in terms
of rule-based local energy. We note that this combination is only state-dependent, which is
nothing to do with system-input. Therefore, no matter that system behavior is nonlinear with
regard to input or not, the input-term cannot be included into fuzzy-precondition for physical
realizable consideration, even it is reasonable in mathematical concept. And, this nonlinear
combination is not necessary to be the same type as that for blending fuzzy subsystems into
an entire system. Therefore, we use h′(X(t)) to denote that (a) nonlinear summation is only
state dependent; (b) the energy-relationship between entire system and subsystems could be
totally different from the behavior-relationship, which is denoted by normalized membership
function h(X(t)). Therefore, we write ζl(Xl ,ul) = ∑r

i=1 h
′
i(Xl)ζil (Xl ,ril ). At time-instant t

with initial-condition X∗t , let r
∗
it
denote the optimal local decision to minimize Jt(rit ) for all

i = 1 . . . ,r, i.e.,

∂Jt(rit )
∂rit

|r∗it
=

∂

∂rit

∫ ∞

t
ζil (Xl ,ril )dl |r∗it

=
∂ζit(X

∗
t ,rit)

∂rit
|r∗it

= 0,

∂2 Jt(rit)

∂r2it
|r∗it

=
∂2ζit(X

∗
t ,rit)

∂r2it
|r∗it

> 0

.
Their corresponding global decision ŭt = ∑r

i=1 hi(X
∗
t )rit |r∗it

can satisfy

∂Jt(ut)
∂ut

|ŭt =
∂

∂ut

∫ ∞

t
ζl(Xl ,ul)dl |ŭt

=
∂

∂ut

∫ ∞

t

r

∑
i=1

h′i(Xl)ζil (Xl ,ril )dl |ŭt

=
r

∑
i=1

h′i(X
∗
t )

∂ζit(X
∗
t ,rit )

∂ut
|ŭt

=
r

∑
i=1

h′i(X
∗
t )

∂ζit(X
∗
t ,rit )

∂rit
·

∂rit
∂ut

|ŭt= 0,

∂2 Jt(ut)
∂u2t

|ŭt =
r

∑
i=1

h′i(X
∗
t )

∂2ζit(X
∗
t ,rit )

∂r2it
· (

∂rit
∂ut

)2 |ŭt

+
r

∑
i=1

h′i(X
∗
t )

∂ζit(X
∗
t ,rit)

∂rit
·

∂2rit
∂u2t

|ŭt > 0,

i.e., ŭt = u∗t . Therefore, at any time instant t if we can find r∗it to minimize Jt(rit ), then it follows
that their composed global decision u∗t can be the global minimizer of the total cost Jt(ut).
(3) We assume Ai to be nonsingular for i = 1, . . . ,r, and let X̂(t) = X(t) + X̄s

i , where X̄
s
i = A−1i Di .

An affine-type local tracking problem can be rewritten as a linear-type tracking issue with
augmented target X̂d

i (t) = X̄s
i + Xd(t). In other words, our problem is reformulated as: Given a

fuzzy subsystem, ˙̂Xl = AiX̂l + Biril , l ∈ [t,∞], i = 1, . . . ,r with X̂0t = X̂∗t , find the local decision
at time-instant t, r∗it , for minimizing a cost function,

Jt(rit) =
∫ ∞
t ((X̂l − X̂d

i (t))
tL(X̂l − X̂d

i (t)) + rtil Sril )dl. Then, we obtain the tracking law (18),

r∗i (t) = −S−1Bt
i [π̄iX̂∗(t) + b̂i(t)], the fuzzy subsystem,
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Ẋ∗(t) = (Ai − BiS−1Bt
i π̄i)X̂∗(t)− BiS−1Bt

i b̂i(t), where π̄i satisfies Eq. (9) and b̂i(t) satisfies

˙̂
ib(t) = −(Ai − BiS

−1Bt
i π̄i)

t b̂i(t) + LX̂d
i (t), b̂i(∞) = 0n×1. (26)

According to the linearity property, we have b̂i(t) = bsi (t) + bi(t), where bi(t) = b̄i(t) in Eq. (7)
is to adaptively trace the target and

ḃi
s
(t) = −(Ai − BiS

−1Bt
i π̄i)

tbsi (t) + LX̄s
i , b

s
i (∞) = 0n×1. (27)

Further, (Ai,Bi) is c.c. and (Ai,C) is c.o. So, we have bsi (t) = b̄si in Eq. (8) to response
to fuzzy consequence-singleton Di. By using r̄si = −S−1Bt

i (π̄iX̄s
i + b̄si ) to denote the local

singleton-related law, and r̄exti (t) = −S−1Bt
i b̄i(t) to denote local target-related law, we obtain

the tracking law r∗i (t) in Eq. (6) and the fuzzy system X∗i (t) in Eq. (10).
(4) Stability analysis: We use Ūaug

i to denote an augmented-target-associated input, Ūaug
i =

Bi(r̄si + r̄exti ) +Di. Then, the designed feedback system in Eq. (10) can be rewritten as Eq. (28).
Its stability concurs with the zero-input system in Eq. (29).

Ẋ∗(t) =
r

∑
i=1

hi(X
∗(t))[Ai − BiS

−1Bt
i π̄i]X

∗(t) + Ūaug
i , (28)

Ẋ∗(t) =
r

∑
i=1

hi(X
∗(t))[Ai − BiS

−1Bt
i π̄i]X

∗(t). (29)

We define a Lyapunov function V(X) = XtPX, where P is a symmetric positive-definite
matrix. According to Eq. (9), we obtain
Ai − BiS−1Bt

i π̄i = −π̄−1i (L+ At
i π̄i),

and

V̇(X) = ẊtPX+ XtPẊ

= [
r

∑
i=1

hi(X(t))X
t(Ai − BiS

−1Bt
i π̄i)

t]PX

+XtP[
r

∑
i=1

hi(X(t))(Ai − BiS
−1Bt

i π̄i)X]

= −
r

∑
i=1

hi(X(t)){X
t [(L+ At

i π̄i)
tπ̄−1i P

+Pπ̄−1i (L+ At
i π̄i)]X}

= −2
r

∑
i=1

hi(X(t))[X
tPπ̄−1i (L+ At

i π̄i)X]

= −2
r

∑
i=1

hi(X(t))[X
tπ̄−1i (L+ At

i π̄i)X] < 0

for P = I and π̄−1i (L+ At
i π̄i) > 0 since hi(X(t)) is a positive number always.

Proof of Theorem 2.
(1) An affine-type fuzzy regulating issue in Problem 2.1 is equivalent to Problem 1 in the case
of Yd(t) = 0n′×1. Therefore, based on Theorem 1 and its proof, we have
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r∗i (t) = −S−1B̃i
t
π̃i(t, t1)X̃

∗(t) + r̄si (t),
˙̃X∗(t) = [Ãi − B̃iS

−1B̃i
t
π̃i(t, t1)]X̃

∗(t) + B̃ir̄
s
i (t) + D̃i,

˙̃bsi (t) = −[Ãi− B̃iS
−1B̃i

t
π̃i(t, t1)]

t b̃si (t) + L̃ ˜̄Xs
i , b̃si (t1) = 0(n+h+h′)×1,

where

r̄si (t) = −S−1B̃i
t
(π̃i(t, t1) ˜̄Xs

i + b̃si (t)),
˜̄Xs
i = Ãi

−1D̃i =

[
X̄s
i

0h×1

]
, and π̃i(t, t1) is the symmetric

positive-definite solution of a Riccati equation,

− ˙̃Ki(t) = K̃i(t)Ãi + Ãi
tK̃i(t)− K̃i(t)B̃iS

−1B̃i
tK̃i(t) + L̃, K̃i(t1) = 0(n+h)×(n+h).

We here replace b̃si (∞) and ˜̄πi by b̃si (t1) and π̃(t, t1) for further derivation; in fact, ˜̄πi =
limt1→∞ π̃(t, t1).
Now, let

K̃i(t) =

[
Ki(t) K21t(t)

i
K21
i (t) K22

i (t)

]
,

b̃i(t) =
[

bsi (t)
b2i(t)

]
,

and

X̃(t) =
[

X(t)
Z(t)

]
.

For infinite-horizon case (t1 = ∞), after a series of complicated matrix-manipulations we
obtain r∗i (t) in Eq. (15) and X∗(t) in Eq. (17), where r̄si = −S−1Bt

i (π̄iX̄s
i + b̄si ); b̄

s
i is in Eq.

(8) as (Ai,Bi) is c.c. and (Ai,C) is c.o.; π̄i = limt1→∞ π(t, t1) is the unique solution of the
Riccati equation in Eq. (9); b2i(t), K21

i and K22
i (t) satisfy

ḃ2i(t) = K21(t)BiS
−1Bt

i b
s
i (t) + Ftbi(t)− Et(CCt)−1CLX̄s

i , (30)

−K̇21(t) = FtK21(t) + K21(t)Ai − K21(t)BiS
−1Bt

i π̄i − Et(CCt)−1CL, (31)

−K̇22(t) = Et(CCt)−1CLCt(CCt)−1E+ FtK22(t)− K21(t)BiS
−1Bt

iK
t
21(t) + K22(t)F (32)

with b2i(∞) = 0h×1, K21(∞) = 0h×n, and K22(∞) = 0h×h.
(2) We will derive the solution of Eq. (31) is π̄21

i in Eq. (16). Now, we rewrite Eq. (31) as

− K̇21(t) = FtK21(t) + K21(t)Aci − L21, (33)
where Aci = Ai − BiS−1Bt

i π̄i and L21 = Et(CCt)−1CL. We then obtain

K21(t) = φ1(t, t0)K21(t0)φ
t
2(t, t0) +

∫ t

t0
φ1(t,τ)L21φt

2(t,τ)dτ, (34)

where φ1(t, t0) and φ2(t, t0) are state-transition matrices of Ẋ(t) = −FtX(t) and Ẋ(t) =
−At

ciX(t), respectively. Therefore, we have

K21(t1) = φ1(t1, t0)K21(t0)φ
t
2(t1, t0) +

∫ t1

t0
φ1(t1,τ)L21φt

2(t1,τ)dτ,

K21(t0) = φ1(t0, t1)K21(t1)φ
t
2(t0, t1)−

∫ t1

t0
φ1(t0,τ)L21φt

2(t0,τ)dτ.

142 Fuzzy Controllers, Theory and Applications



Affine-TS-Based Fuzzy Tracking Design 11

Substituting K21(t0) into Eq. (34), we obtain

K21(t) = φ1(t, t1)K21(t1)φ
t
2(t, t1)−

∫ t1

t
φ1(t,τ)L21φt

2(t,τ)dτ.

Since limt1→∞K21(t1) = 0h×n, we have the solution of K̄21(t) in Eq. (31),

K̄21(t) = −
∫ ∞

t
e−Ft(t−τ) · L21 · e

−At
ci(t−τ)dτ = −

∫ ∞

0
eF

tτ · L21 · e
At

ciτdτ. (35)

Therefore, we have π̄21
i in Eq. (16) satisfies Eq. (35) and also Eq. (31).

(3) Stability analysis: S−1Bt
i π̄

21t
i Z(t) in Eq. (17) is associated only with the target. Bir̄si + Di

in Eq. (17) relates to the fuzzy-singleton. So, we lump these two together into an augmented
artificial-target, Ūart

i . Then, we can rewrite the proposed closed-loop tracking-control system
in Eq. (17) as

Ẋ∗(t) =
r

∑
i=1

hi(X
∗(t))[(Ai − BiS

−1Bt
i π̄i)X

∗(t) + Ūart
i ], (36)

where Ūart
i = S−1Bt

i π̄
21t
i Z(t)+ Bir̄si +Di. As we know, the stability of nonlinear tracking fuzzy

system in Eq. (36) is coincident with that of zero-input fuzzy system in Eq. (29). In Proof of
Theorem 1, we have demonstrated that the system in Eq. (29) is globally stable if each fuzzy
subsystem satisfies (Ai,Bi) c.c. and (Ai,C) c.o. and π̄−1i (L+ At

i π̄i) > 0.
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Fig. 1. Output responses (denoted by dashed line) of the affine T-S fuzzy tracking system
with the designed affine-type fuzzy moving-target tracking controllers in Section 2 for various
moving targets (denoted by solid line), where (a) Yd(t) being a step’wise target, (b)
Yd(t) = 3+ 2sin0.2t, (c) Yd(t) = 3+ 4e−0.3t and (d) Yd(t) = 0.5+ 2log(3+ t).
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Fig. 2. Output responses (denoted by dashed line) of the affine T-S fuzzy tracking system
with the designed affine-type fuzzy model-following tracking controllers in Section 3 for the
targets (denoted by solid line) from the tracked model in Eq. (11) with E1 = 1, E2 = 1 and four
different sets of parameters (F1,F2) = (−1,−0.2), (−0.2,−1), (−5,−1/30) and (−1/30,−5).
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1. Introduction  
Despite the advantages offered by type-2 fuzzy systems (T2FS) in handling uncertainties in 
control applications, one major problem that hinders its wide-spread implementation in 
real-time applications is its high computational cost (Hameed, 2010). In order to reduce the 
computational burden of T2FS, a simplified T2FS based on a hybrid structure of four type-1 
fuzzy systems (T1FS) and a genetic algorithm (GA) is introduced (Hameed, 2009). In 
addition to its rule in providing the system with adaptability to cope with changing 
conditions, a GA provides the system with a tool to detect and illustrate the amount of 
uncertainty incorporated in the system. In order to show the robustness and reliability of the 
new implementation, the developed approach is applied to: (a) control a nonlinear multi-
input multi-output (MIMO) system equipped with various types of uncertainties as an 
example of using T2FS in industrial applications, and (b) evaluate students’ learning 
achievement as an example of using T2FS in decision support systems. The new 
implementation of T2FS showed a superior response compared to the very complex and 
computational costly type-reduction approach. In addition, the ease of using the new 
implementation, which does not require more than the basic knowledge of T1FS and GA, is 
expected to help advancing the application of T2FS in multiple different areas of 
applications. 
FLS constructed based on type-1 fuzzy systems (T1FS), referred to as T1FLS, have 
demonstrated their ability in many applications, especially for the control of complex 
nonlinear systems that are difficult to model analytically (Zadeh, 1973; King & Mamdani, 
1997).  However, researchers have shown that T1FLS have difficulty in modeling and 
minimizing the effect of uncertainties (Mendel, 2001). A reason being that, T1FS are certain 
in the sense that for each input there is a crisp membership grade. T2FS, characterized by 
membership grades that are themselves fuzzy, were first introduced by Zadeh in 1975 to 
account for this problem (Zadeh, 1975a).  As it is illustrated in Fig. 1, the MF of a T2FS has a 
footprint of uncertainty (FOU), which represents the uncertainties in the shape and position 
of T1FS (Wu & Tan, 2004). The FOU is bounded up by an upper MF (UMF) and lower by a 
lower MF (LMF), both of which are T1MF. Since the FOU of T2FS provides an extra 
mathematical dimension, they are very useful in circumstances where it is difficult to 
determine an exact membership grade for FS. Therefore, the amount of uncertainty in a 
system could be reduced by using T2FLS since it offers better capabilities to handle 
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linguistic uncertainties by modeling vagueness and unreliability of information and hence 
have the potential to outperform its T1 counterpart (Karnik & Mendel, 2001; Sepulveda et 
al., 2007a). 
 

 
(a) (b) 

Fig. 1. Gaussian type-2 FS: (a) blurring the width of type-1 FS where σL and σU are the 
minimum and maximum resultant widths respectively, (b) blurring the center of type-1 FS 
where c1 and c2 are minimum and maximum resultant centers respectively. 

The ability of T2FLS to eliminate persistent oscillations surpasses that of its T1 counterpart. 
One reason is that the control surface of a T2FLS is smoother than that of T1FLS, especially 
around the origin (Tan & Pall, 2003). As a result, small disturbances around steady state will 
not result in significant control signal changes and thus minimizing the amount of 
oscillation. The additional degree of freedom provided by the FOU allows T2FLS to handle 
modeling uncertainties better than conventional T1FLS can do. This advantage is practically 
useful because many fuzzy controllers are designed offline using genetic algorithms (GA) 
and a model of the controlled process. As it is impossible for a model to capture all the 
characteristics of the actual plant, the performance of a controller designed using a model 
will inevitably deteriorate when it is applied to the actual plant, therefore a controller that is 
equipped with the ability to handle modeling uncertainties would be valuable. 
Despite the advantages offered by T2FLS, one major problem that may hinder its use in real-
time applications is its high computational cost. Type-reduction, which is used to convert 
T2FS into T1FS so that they can be processed by the defuzzifier to give a crisp output, is very 
computationally intensive, especially when there are many MFs and the rule base is large 
(Karnik & Mendel, 1998, 1999). To reduce the computational burden while preserving the 
advantages of T2FLS, two approaches may be considered: 1) faster type-reduction methods, 
such as the uncertainty bound method (Wu & Mendel, 2002); and 2) a simpler architecture, 
such as using only one T2FS in each input domain (Wu & Tan, 2004). In this chapter, a 
simplified implementation of T2FLS is proposed. The proposed approach only requires the 
basic knowledge of T1FLS and GA. Fuzzy Logic Toolbox™ and Optimization Toolbox™ 
from MathWorks™ are used for carrying out this purpose. 
The rest of the chapter is organized as follows: Section 2 introduces the proposed simplified 
implementation of T2FLS using four embedded T1FSs. How GA is used to adjust the 
controller parameters is described in Section 3. The greenhouse climate control (GCC) 
problem and a simulation study to assess the ability of the proposed implementation to 
handle uncertainties are presented in Section 4. Finally, conclusions are drawn in Section 5. 

c1 c2

σL

σU
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2. A simplified implementation of T2FS 
As illustrated in Fig. 1, a T2FS could be obtained by blurring a T1FS. A Gaussian T1FS is 
often used to represent vague linguistic terms and it is given by: 

 ( )( )2 2( ) exp 2i i iA
x c xμ σ= − − , (1) 

where ci and σi are the center and width of the ith fuzzy set Ai, respectively, i = 1, 2, …, n, 
and n is the total number of MFs used to represent a universe of discourse. A Gaussian MF 
(GMF) with uncertain width (i.e., variance) is obtained by blurring its width and keeping its 
mean (i.e., center) fixed, as shown in Fig. 1(a). On the other hand, a GMF with an uncertain 
center is obtained by blurring its center and keeping its width fixed, as shown in Fig. 1(b). In 
this paper and for the sake of simplicity, GMF with uncertain width has been adopted. The 
upper and lower bounds of a Gaussian T2FS with uncertain width could be represented by: 

 ( )( )2 2( ) exp 2i
U

i UiA
x c xμ σ= − − , (2) 

 ( )( )2 2( ) exp 2i
L

i LiA
x c xμ σ= − − , (3) 

where Ui Liσ σ≥ , shown in Fig. 1 (a). The upper and lower bounds of each GMF can be 
further decomposed into the left and the right side MF and represented in the form: 

 ( )( )2 2( ) exp 2 ,i
UL

i Ui iA
x c x x cμ σ= − − < , (4) 

 ( )( )2 2( ) exp 2 ,i
UR

i Ui iA
x c x x cμ σ= − − ≥ , (5) 

 ( )( )2 2( ) exp 2 ,i
LL

i Li iA
x c x x cμ σ= − − < , (6) 

 ( )( )2 2( ) exp 2 ,i
LR

i Li iA
x c x x cμ σ= − − ≥ , (7) 

A T2FS can be thought of as a set of an infinite number of T1FSs, and correspondingly, the 
defuzzified output of T2FLS could be obtained by aggregating the centroids of an infinite 
number of embedded T1FLSs. When the antecedent and consequent membership grades in 
T2FLS have a continuous domain, the number of embedded T1FLSs becomes uncountable. For 
the sake of simplicity and without loss of generality, each T2MF will be represented by its 
upper (U) and lower (L) bounds which are T1MFs, as shown in Fig. 2. Therefore, each two 
neighbor T2MFs will intersect in four points instead of one point as is the case of the 
traditional T1MFs. The four intersection points are referred to by upper point, right point, 
lower point and left point, as shown in Fig. 2. MFs, constitute the upper intersection points, are 
the combination of the right side of the upper bound of each T2MF with the left side of the 
upper bound of its neighbor. MFs, constitute the right intersection points, are the combination 
of the right side of the upper bound of each T2MF with the left side of the lower bound of its 
neighbor. MFs, constitute the lower intersection points, are the combination of the right side of 
the lower bound of each T2MF with the left side of the upper bound of its neighbor. Each 
intersection point occurs equally likely to each of the other intersection points. The 
corresponding TIMFs, shown in Fig. 3, could be summarized as follows: 
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Fig. 2. Illustration of decomposing T2MFs into 4 T1MFs. 

 

 
(a)                                                                 (b) 

 
(c)                                                                 (d) 

Fig. 3. (a) Membership functions of left intersection points. (b) Membership functions of 
upper intersection points. (c) Membership functions of lower intersection points, and (d) 
Membership functions of right intersection points. 

Upper 

Left Right 
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i. MFupper = {( i
URA , 1i

ULA + ): i = 1, 2, …, n-1} is used to construct the input/output MFs of the 
so called upper FLS (UFLS), 

ii. MFright = {( i
URA , 1i

LLA + ): i = 1, 2, …, n-1} is used to construct the input/output MFs of the so 
called  right FLS (RFLS), 

iii. MFlower = {( i
LRA , 1i

LLA + ): i = 1, 2, …, n-1} is used to construct the input/output MFs of the so 
called lower FLS (LWFLS), and 

iv. MFleft = {( i
LRA , 1i

ULA + ): i = 1, 2, …, n-1} is used to construct the input/output MFs of the so 
called left FLS (LFLS). 

MFs constitute the upper, right, lower and left intersection points will be used as the 
input/output MFs of the upper, right, lower and left T1FLSs respectively. The defuzzified 
output of the T2FLS is then obtained by averaging the defuzzified outputs of the resultant 
four embedded T1FLSs, as shown in Fig. 4. When uncertainty equals zero, the four 
intersection points become one and T2MF degrades to T1MF. Therefore, the proposed 
structure will vary between T1 and T2 according to the level of uncertainty detected in the 
system. The proposed method has more degrees of freedom compared to the method 
represented by Sepulveda and his colleagues in which type-2 MF is decomposed into only 
UMF and LMF (Sepulveda et al., 2007a; Sepulveda et al., 2007b).   

 

defuzzifed 
output 

Inputs 

x1 

x2 

Type-2 fuzzy controller 

Type-1 
FLS 
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Type-1 
FLS 
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Type-1 
FLS 
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σU σL 

 
Fig. 4. Simplified type-2 fuzzy logic system: controller output is the average of the four 
outputs of the embedded upper, left, right, and lower type-1 fuzzy logic systems, x1 and x2 
are the controller inputs and y is the controller output. 

3. Genetic Algorithm (GA) 

A genetic algorithm (GA) is a search technique used in computing to find exact or 
approximate solutions to optimization and search problems. GAs was first introduced by John 
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Holland in 1975 (Holland, 1975; Goldberg, 1988). In this chapter, a GA will be used to evolve 
the parameters of the proposed implementation of T2FLS to test the hypothesis that the 
simplified architecture retains the ability to handle measurement and modeling uncertainties. 
It is not mandatory to use a GA to adjust the controller parameters and instead the controller 
parameters could be set manually. GA will not only be used as an optimization algorithm but 
rather it will be used as an uncertainty sensor to detect the level of uncertainty which exist in 
the controlled system. In other applications such as students\s evaluation, GA can not be used 
and a proper thickness of T2FS would be manually selected. The thickness of a T2FS will 
increase as the amount of uncertainty detected in the systems is increased and vice versa. 
When the uncertainty level is very low or zero, the thickness of a T2FS will equal to zero and 
the controller will simply behave like a T1FLS. In this chapter, seven MFs are used. The centers 
of the MFs are set constant, -1 for negative big (NB), -2/3 for negative medium (NM), -1/3 for 
negative small (NS), 0 for zero (Z), 1/3 for positive small (PS), 2/3 for positive medium (PM) 
and 1 positive big (PB) and their optimum widths are obtained using a real-valued GA. Each 
T2GMF has two widths, Uσ  and Lσ where U Lσ σ≥  while T1GMF has only one width value, σ . 
Since each controller input and output variables are set to the same range of universe of 
discourse, [-1, 1], three additional parameters, called scale factors (SFs), could be tuned. SFs are 
real constants which multiply the values of the variables (input or output variables), 
modifying the limits of their variation range, and therefore have a significant impact on the 
performance of the resulting fuzzy control system, and hence they are often a convenient 
parameter for tuning. The modification of the input scale factors has a general effect on the 
behaviour of the system: increasing input gains implies reducing their universes of discourse, 
having a direct consequence on control: the response is faster and more oscillatory, reducing 
the stationary error. It thus improves the transient response by reducing rise time and set-up 
time, but it does increase the risk of instability with the overshoot increment. On the other side, 
reducing input gains produces the opposite effects; the wider the membership functions the 
rougher control can be achieved, which produces a slower response with less overshoot. 
However, the variation of the output gain has a complex relation with the behaviour of the 
controller and has not been analysed in depth (Rojas et al., 2006). For the sake of simplicity, it is 
assumed that all MFs have equal widths. For T2FLS, five parameters namely, Uσ , Lσ , SF1, SF2, 
and SF3 and for T1FLS, four parameters, namely, σ , SF1, SF2, and SF3 have to be tuned. 
For the proposed T2FLS, up to 4(2n+3) parameters could be optimized, where 4 stands for 4 
embedded T1FLSs, 2 stands for the center and the width of the GMF, n stands for the 
number of MFs used in universe of discourse, and 3 stands for 3 SFs of the input and output 
parameters of each embedded T1FLS, which could result in better results but also requires 
greater computational costs. The fitness function used to quantify the optimality of a 
solution (i.e., chromosome) is the reciprocal of the Integral of Square Error (ISE), given in Eq. 
(8) where the error e is the difference between the desired set point and the actual system 
output (Sepulveda et al., 2007b). Chromosomes in a population are ranked according to 
their fitness value. Optimal or near optimal chromosomes (i.e., solutions) are allowed to 
reproduce through new generations that will (hopefully) be even better. In this paper, the 
maximum number of generations is set to 30. The number of chromosomes or solutions in a 
population is set to 20. The mutation and crossover probability are set to 0.2 and 0.25 
respectively. The roulette wheel selection method is used to select the fittest chromosomes, 
the generational process is repeated until a termination condition has been reached; a 
solution is found that satisfies minimum criteria or a fixed number of generations reached. 
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 ( )2

0

ISE= ( )e t dt
∞

∫ . (8)  

4. Simulation experiments 
In this section, the developed implementation of T2FS will applied to Greenhouse climate 
control (GCC) problem as an example of an industrial application. It will also applied to the 
problem of students’ evaluation as an example of using T2FS as a decision support system. 
GCC has received considerable attention in agricultural engineering research (Albright et 
al., 2001; Koutb et al., 2004; Van Henten & Bontsema, 2009). Controlling the climate inside a 
greenhouse is a challenging task because of the many sources of uncertainty. Such 
uncertainty could arise from using none or near accurate models, greenhouse orientation, 
age and type of crop inside the greenhouse, sensor measurements, actuators and outdoor 
climate conditions. In this chapter, a simple greenhouse heating-cooling ventilating (HCV) 
model will be used to control temperature and humidity ratio inside a greenhouse by means 
of heating, ventilating, and humidifying the air inside the greenhouse. ). In this chapter, two 
types of uncertainty will be introduced to the system to evaluate the performance of the 
proposed controller; 1) measurement uncertainty which is introduced to the system by 
adding random noise to sensory measurements, and 2) modeling uncertainty which is 
introduced to the system by changing the model parameters by ±10%. 
A first simulation experiment has been conducted to demonstrate the ability of control scheme 
to provide non-interacting control and smooth closed-loop response to set-point step change. 
Measurement uncertainty has been introduced by adding a 10% multiplicative error to all the 
measured signals. The responses for set-point step changes in temperature and humidity ratio 
for T1 and T2 controllers are shown in Fig. 5. Fig. 6 illustrates the controller outputs. A 
simulation of the outside weather conditions of a normal hot day are shown in Fig. 7. The 
T1MFs and T2MFs for both temperature and humidity loops are shown in Fig. 8, respectively. 
Fig. 9 illustrates the control surface for both T1 and T2 controllers, respectively. 
 

 
Fig. 5. Greenhouse outputs: indoor air temperature (upper) and indoor air humidity ratio 
(bottom). 
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Fig. 6. Control outputs: ventilation rate (upper), humification rate (middle) and heating rate 
(bottom). 

 

 
 

Fig. 7. Climate variables: outdoor air temperature (upper), outdoor humidity ratio (middle) 
and outdoor solar radiation (bottom). 
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Fig. 8. MF’s: type-1 fuzzy logic controller of temperature loop (left upper), type-1 fuzzy logic 
controller of humidity ratio loop (right upper), type-2 fuzzy logic controller of temperature 
loop (left bottom) and type-2 fuzzy logic controller of humidity ratio loop (right bottom). 
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Fig. 9. Control surface: type-1 fuzzy logic controller of temperature loop (left upper), type-1 
fuzzy logic controller of humidity ratio loop (right upper), type-2 fuzzy logic controller of 
temperature loop (left bottom) and type-2 fuzzy logic controller of hu humidity ratio loop 
(right bottom). 
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In the second simulation experiment, measurement uncertainty has been removed and 
model parameters are multiplied by values in the range [0.9, 1.1] to demonstrate the ability 
of the controller to overcome the modeling uncertainties. The system responses and the 
controller outputs are shown in Figs. 10-11. T1MFs and T2MFs and their respective control 
surface plot are given Figs 14-15, respectively. 
 
 

 
 

Fig. 10. Greenhouse outputs: indoor air temperature (upper) and indoor air humidity ratio 
(bottom). 

 

 
 

Fig. 11. Control outputs: ventilation rate (upper), humification rate (middle) and heating 
rate (bottom). 
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Fig. 12. MF’s: type-1 fuzzy logic controller of temperature loop (left upper), type-1 fuzzy logic 
controller of humidity ratio loop (right upper), type-2 fuzzy logic controller of temperature 
loop (left bottom) and type-2 fuzzy logic controller of humidity ratio loop (right bottom). 
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Fig. 13. Control surface: type-1 fuzzy logic controller of temperature loop (left upper), type-1 
fuzzy logic controller of humidity ratio loop (right upper), type-2 fuzzy logic controller of 
temperature loop (left bottom) and type-2 fuzzy logic controller of humidity ratio loop (right 
bottom). 
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Temperature control-loop Humidity control-loop Exp. σL σU SFe SFΔe SFΔu σL σU SFe SFΔe SFΔu 
T1 0.5297 - 0.1501 0.0538 12.6897 0.3282 - 0.0594 0.1290 9.4390 1 
T2 0.3835 0.9103 0.1072 0.0910 13.7273 0.5007 0.7665 0.0587 0.3083 12.7123 
T1 0.5297 - 0.1501 0.0538 14.1524 0.3282 - 0.0594 0.1290 9.4390 2 T2 0.2223 0.5009 0.0404 0.0601 14.9196 0.1336 0.2683 0.0500 0.0893 5.4417 

Table 1. Parameters of type-1 (T1) and type-2 (T2) fuzzy logic controllers obtained by GA 
where measurement uncertainty is introduced in experiment 1 and modeling uncertainty is 
introduced in experiment 2. SFe, SFΔe, and SFΔu are the scale factors of error, change of error 
and change of control signal respectively. 

The parameters of T1 and T2 controllers are shown in Table 1. From the table, the difference 
between σL and σU increases as the level of uncertainty detected in the system increases. For 
the sake of comparison, Mean Squared Error (MSE) and Signal-to-Noise Ration (SNR) for 
temperature and humidity loops are computed for T1, T2 (the proposed structure), T2 
structure proposed by Sepulveda and his colleagues (Sepulveda et al., 2007b) and T2 using 
type-reduction method (Mendel, 1998), as shown in Table 2. Although the performance of 
the proposed structure of T2FLS using four embedded T1FLSs is similar to the performance 
of T2 using type-reduction (T2TR) but implementing T2TR requires acquiring new 
knowledge and writing new codes but in the case of the proposed T2 structure using four 
embedded T1FLSs, only the basic knowledge of T1 fuzzy sets is required and take the 
advantage of using MATLAB® Fuzzy Logic Toolbox™ and Optimization Toolbox™ from 
MathWorks™ for ease of implementation. 
 

Exp. Controller type MSE SNRT SNRH 

Type-1 fuzzy controller 4.0674 0.0154 0.0163 

Type-2 fuzzy controller using Sepulveda's method 4.0425 0.0235 0.0342 

Type-2 fuzzy controller using four embedded type-1 fuzzy 
controllers (proposed) 3.9608 0.0256 0.0486 

1 

Type-2 fuzzy controller using type- reduction method 3.9727 0.0259 0.0441 

type-1 fuzzy controller 1.8855 0.0232 0.0348 

Type-2 fuzzy controller using Sepulveda's method 1.7942 0.0249 0.0297 

Type-2 fuzzy controller using four embedded type-1 fuzzy 
controllers (proposed) 1.7452 0.0248 0.0243 

2 

Type-2 fuzzy controller using type- reduction method 1.7439 0.0294 0.0309 

Table 2. Mean squared error (MSE) and signal-to-noise ratio of temperature (SNRT) and 
humidity ratio (SNRH) of different types of controllers when measurement uncertainty is 
introduced in experiment 1 and modeling uncertainty is introduced in experiment 2 

Saleh and Kim (2009) proposed a three nodes fuzzy system to evaluate students’ learning 
achievement. The transparency and objective nature of the fuzzy system makes their 
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method easy to understand and enables teachers to explain the results of the evaluation to 
sceptic students. The method involved conventional triangular MFs of fixed parameters 
which could result in different results when changed. In order to improve the reliability and 
robustness of the system, Gaussian membership functions (GMFs) are proposed as an 
alternative to the traditional triangular MFs (Hameed & Sorensen, 2010). When the three 
nodes system based on Gaussian membership of width of 4.0 is applied to all students, the 
resultant new total scores of students rounded to two digits are equal to that of the classical 
scores but with new ranking orders. The same result is obtained when the T2FS for σL and 
σU of 0.2 and 0.4, respectively, are applied. 

5. Conclusions 
The proposed architecture of Type-2 FLS using four embedded Type-1 FLSs provides a 
smoother control surface and a greater ability to detect and treat the measurement and 
modeling uncertainties in the controlled system with the aid of a GA. It also achieved a 
dramatic reduction in computational complexity without sacrificing performance compared 
to its equivalent type-2 FLS with type-reduction method. The proposed T2FLS is easy to 
implement using MATLAB® Fuzzy Logic Toolbox™ from MathWorks™ and it does not 
require more than the basic knowledge of T1FLS. 
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1. Introduction 
The twin-roll strip casting process is a typical steel-strip production method which combines 
continuous casting and hot rolling process. The production line from molten liquid steel to 
the final steel-strip is shortened and the production cost is reduced significantly compared 
to the conventional continuous casting. The twin-roll strip casting process can produce 1-5 
mm thin steel strip directly from the molten steel. Furthermore, since the strip casting 
process has high cooling rate, it can improve the mechanical properties of steel (Liang et al. 
1997; Cook et al. 1995). Usually, the molten steel level is controlled at a preset desired level 
to monitor the normal strip casting operation. During the roll casting process, once the 
molten metal contacts with the rotating rolls, a thin solidification shell is formed on the 
surface of each roll. The shell thickness gradually grows from each roll surface, finally 
contacts with each other and weld together at a position around the roll exit, called the 
solidification final point. If the molten metal level is higher than the specified value, the 
solidification final point will occur at a point above the roll exit. That will result in heat 
cracking and damage to the cooling roll surface in addition to material structural 
abnormalities of the steel strip. If the molten metal level is lower than the desirable value, 
the solidification final point will occur at a point below the roll exit. The steel strip surface 
will have inferior quality due to the breakout and oxidation. Hence, the molten metal level is 
an important process control parameter to guarantee the solidification final point and 
rolling strip quality. The molten steel level must maintain within a specific range during the 
full casting process except the initial startup operating mode by filling the molten steel into 
the twin roll cylinders from the tundish. 
Since the strip casting process has nonlinear dynamics uncertainty and coupled behaviors, 
accurate molten steel level control problem is still an important research topic to guarantee 
the steel strip quality. Graebe et al. (1995) verified the dynamic model and various 
nonlinearities appearing in the continuous casting process and proposed different issues 
that had to be solved in controller design. Hesketh et al. (1993) applied an adaptive control 
strategy for the mold level control of a continuous steel slab casting. Hong et al. (2001) 
investigated the modeling and control problem of a twin-roll strip caster. They analyzed 
different critical dynamics, including molten steel pool leveling, and developed a two-level 



 Fuzzy Controllers, Theory and Applications 

 

164 

control strategy to achieve a constant strip thickness and maintain a constant roll separating 
force. 
Since the dynamic characteristic of this strip casting process is very complicated, it is 
difficult to establish an appropriate dynamic model for a model-based controller design. 
Hence, a model-free fuzzy control strategy is considered to solve this problem (Dussud et al. 
1998; Joo et al. 2002; Park and Cho 2005). However, the design of a traditional fuzzy 
controller fully depends on an expert, or the experience of an operator, to establish the fuzzy 
rule bank. Generally, this knowledge is difficult to obtain. A time consuming adjusting 
process is required to achieve the specified control performance. These factors hinder its 
application and implementation. 
Herein, a self-learning fuzzy controller with learning ability is utilized without the process 
dynamic model requirement to control the molten steel level of strip casting process. This 
control strategy can establish the fuzzy control rule tables automatically from zero initial 
rules and adjust on line to tackle the system variation and disturbance for reducing the 
effort of trial-and-error process. Here, the self-learning fuzzy controller is designed for 
regulating the height of the stopper controlled by an electric servomotor to achieve the 
desired molten steel level during the strip casting process. The control performance of the 
designed controller is evaluated based on numerical simulation results. For approaching a 
real case implementation, the simulation cases are selected based on the semi-experimental 
system dynamic model and parameters (Joo et al. 2002). In addition, the performance of this 
intelligent controller is compared with that of a traditional PID technique to show the 
performance improvement. 
This article is organized as follows: Section 2 describes the twin-roll strip casting process 
dynamics and system model for simulation purpose. Section 3 presents the model-free self-
learning fuzzy control strategy. Section 4 describes the numerical results of this intelligent 
controller. Final conclusions are presented in Section 5. 

2. Process dynamics and system model for simulation purposes 
A process mathematical model, which describes the relationship between the command 
inputs and the measured outputs, is required for the numerical simulation to evaluate the 
dynamic performance of a model-free controller. The mathematical model for the molten 
steel leveling dynamics developed in (Joo et al. 2002) is adopted and described in this 
section. Fig. 1 shows a schematic drawing of a twin-roll strip casting process. For developing 
the mathematical model, it is assumed that the molten steel is incompressible and two rolls 
are identical. The continuity equation of the liquid steel can be described as: 

 in out
dV Q Q
dt

= −  (1) 

where V  is the volume of the molten steel stored between the twin-roll cylinders, inQ  is the 
input flow rate into the space between roll cylinders and outQ  is the output flow rate from 
the roll cylinders. The volume V  can be calculated as: 

 rV AL=   (2) 

where rL  is the length of the roll cylinders and A  is the oblique area shown in Fig. 1. 
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Fig. 1. Schematic diagram of the twin-roll strip casting process 
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where gx (t)  is the roll gap, R  is the radius of the roll cylinder and y(t)  is the height of 
molten metal above the axis of rollers. By substituting equations (2) and (3) into equation (1), 
obtain: 

 ( )g 2 2
r r g

dx dydV dAL L y x 2R 2 R y
dt dt dt dt

⎡ ⎤
= = + + − −⎢ ⎥

⎣ ⎦
 (4) 

If ( )2 2
gx 2R 2 R y+ − −  is defined as r gB (x ,y) , the following form can be derived from 

equation (1). 

 g
in out r

r g r

dxdy 1 Q Q L y
dt B (x ,y)L dt

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
 (5) 
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Here, the input flow rate inQ  can be derived from the stopper opening height h(t)  and a 
nonlinear time varying input flow rate parameters a(t)  depends on the shape of the nozzle 
and the stopper, clogging/unclogging dynamics and the height and the viscosity of the 
molten metal in the tundish. 

 inQ a(t) h(t)= ⋅  (6) 

where the orifice opening, h(t) , equal to the height of the stopper is controlled by an electric 
servomotor. Due to fast response of the electric servomotor, the stopper motion dynamics is 
assumed to be negligible. In addition, if the response of the stopper actuator is fast enough, 
the orifice opening can be derived as: 

 h(t) ku(t)=  (7) 

where u(t)  denotes the control input and k  is the servo gain. 
The output flow rate outQ  can be derived from the product of roll surface tangential velocity 

rv , roll gap gx  and the length of the roll cylinder rL . 

 out r g rQ L x v=    (8) 

The dynamic model will only be used in the numerical simulations for evaluating the 
dynamic performance of the model-free self-learning fuzzy controller. The designing 
process of this intelligent controller does not need this dynamic model. 

3. Self-learning fuzzy control strategy 
Generally, for a non-linear dynamic system with uncertainties, it is very difficult to establish 
an accurate mathematical model for designing the control laws. Although the linearized 
model or simplified model can be employed to design the controller, the control 
performance of these model-based controllers still depends on many factors, such as the 
working position and operating conditions. Hence, model-free fuzzy control strategy was 
proposed to solve this kind of problem. It does not need a mathematical model for 
designing a fuzzy logic control law. In addition, a fuzzy logic controller can compensate the 
environmental variation during operation processes. However, to establish the fuzzy rule 
tables of a traditional fuzzy controller still depends on an expert or the experience of an 
operator. Generally, this knowledge is not easy to obtain and a time-consuming adjusting 
process is required to achieve the specified control performance. 
A self-learning fuzzy controller with learning ability was utilized to establish the fuzzy rule 
tables on-line automatically for reducing the effort of trial-and-error process (Chen and 
Huang 2004). It facilitates the design process of a fuzzy controller and makes the 
implementation of a fuzzy controller easier. Usually, the output response error and the 
change of error are selected as the fuzzy input variables. Both of them stimulate two fuzzy 
subsets (E and CE) for each sampling instant. Then, maximum four fuzzy rules in the fuzzy 
rule table are fired instead of the entire rule table and only these four rules are modified in 
each sampling time. This method can significantly reduce the computing time, therefore 
increasing the sampling frequency. Since this approach has learning ability to establish and 
regulate the fuzzy rule tables continuously, its control implementation can begin with zero 
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initial fuzzy rules. The fuzzy rules were adjusted on-line by means of a simple modification 
equation for each rule instead of a performance decision table. 
Fig. 2 shows that the self-learning part is added into a traditional fuzzy controller to form a 
self-learning fuzzy controller. Among them, the traditional fuzzy controller carries out the 
mission of control and the self-learning part is responsible for real-time recognition of the 
system variation. The self-learning part contains three steps: performance measure, model 
estimation and rule modification. The system performance measure is to calculate the 
deviation between the system output and the specified values. The purpose of system 
performance measure is to establish a successful correcting basis for a learning controller. 
Usually, two physical features including system output error and the change of error are 
chosen as performance indices to establish a performance decision table, which is similar to 
establish a fuzzy rule table. 
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Fig. 2. The self-learning fuzzy control block diagram 

The purpose of model estimation is to find the relationship between the system output 
performance and the control input. Based on the estimation model, the performance 
measure can be used to calculate the correction value of each fuzzy rule. However, it’s 
difficult to establish an appropriate performance decision table for each control system. A 
real-time linguistic self-learning fuzzy control strategy with a modification equation is used 
instead of the performance decision table to eliminate this difficulty. During the rule 
modification period, the size of rule table is limited to that of the original fuzzy rule table, 
and the correction value of each fuzzy rule is introduced into the original fuzzy rules as a 
new control rule. This approach can both improve the database expansion shortcoming of 
the Procky scheme (Procky and Mamdani 1979) and increase the computing speed. In 
addition, the system output characteristic can be monitored by definite design parameters. 
An auto-regression and moving average (ARMA) model can be used to represent the system 
dynamic response feature: 
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1 1X(nT) A(z )X(nT T) Mu(nT mT) B(z )u(nT mT T)− −= − + − + − −  

 (r 1)1 1
0 1 r 1A(z ) a a z a z− −− −

−= + + +  (9) 

(s m 1)1 1
0 1 s m 1B(z ) b b z b z− − −− −

− −= + + +  

where mT is the time delay of the system and M  is the system direct forward gain of the 
control system. The values of r , s and m  depend on the dynamic characteristics of the 
control system. They are difficult to estimate for the given system due to the non-linearity 
and uncertainty. Fortunately, fuzzy control has model-free feature and it does not require a 
definite mathematical model and system parameters. If the system is excited with a different 
control input u (nT mT)′ −  at time step nT mT− , there will be a new output value X (nT)′  at 
time step nT . Substituting u (nT mT)′ −  into Equation (9) will generate: 

 1 1X (nT) A(z )X(nT T) Mu (nT mT) B(z )u(nT mT T)− −′ ′= − + − + − −  (10) 

Then, the output difference between Equation (9) and (10) can be obtained: 

X X (nT) X(nT)′Δ ≡ −  

 u u (nT mT) u(nT mT)′Δ ≡ − − −  (11) 

The relationship between control input difference and corresponding output deviations are 
established. 

 X (nT) X(nT) M[u (nT mT) u(nT mT)]′ ′− = − − −  (12) 

 X M uΔ = Δ      or     X M
u

Δ
=

Δ
 (13) 

If a system at time step nT  has an output error XΔ  and an error change XΔ  needed be 
compensated, the theoretical correction values of the corresponding control input are euΔ  
and ceuΔ , respectively. Then 

 e
Xu

M
Δ

Δ =       and    ce
T Xu
M
Δ

Δ =  (14) 

Since the system has one control input u only, the above two terms must be combined 
together appropriately into the control input correction. Generally, the following equation 
can be chosen: 

 e ceu (1 ) u uΔ = − ξ Δ + ξΔ ,     0 1≤ ξ <   (15) 

where ξ  is a design parameter representing the weighting distribution between euΔ  and 

ceuΔ . If there is a large deviation between the system output X(nT)  and the desired value 

dX , the suitable X (nT)′  value is chosen between X(nT)  and dX  with a weighting 
parameter γ . Then the system output response X  can approach dX  gradually. 
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 dX (nT) (1 )X(nT) X′ = − γ + γ ,   0 1< γ <   (16) 

Then the output and output change rate deviations become 

 dX(nT) [X X(nT)] e(nT)Δ = γ − = γ   (17) 

 X(nT) e(nT) ce(nT)
T
γ

Δ = γ =  (18) 

From Equations (13) and (17), the correction value of the control input can be represented as: 

 u [(1 )e(nT) ce(nT)]
M
γ

Δ = − ξ + ξ  (19) 

In this study, the output error E and the change of error CE are normalized and divided into 
eleven equal span fuzzy subsets within [-1, +1]. The fuzzy input variables, i.e. the system 
output error and the change of error will stimulate two fuzzy subsets of the E and CE 
universe of discourse, respectively for each control step. Since the control input u is derived 
from the inference of fuzzy rules, four fuzzy rules will be influenced by the rule 
modification for each control step. The correction value of each fuzzy rule is proportional to 
its excitation strength w , which is designed as a triangular membership function and 
calculated with a linear interpolation algorithm. Then the control input correction equation 
of the ith rule is: 

                        i i iu (nT T) u (nT) u+ = + Δ  

  i ei ceiu (nT) w w [(1 )e(nT) ce(nT)]
M
γ

= + × − ξ + ξ  (20) 

The term /Mγ  in the above equation can be considered as a designing learning factor. 
Besides this intelligent has a rule modification equation as the above equation, its operating 
processes are the same as the fuzzy logic controller. The general form of a self-learning 
fuzzy control rule can be expressed as: 

 iRule : IF XΔ  is  A  AND XΔ  is  B, THEN  U  is  C  (21) 

where iRule  is the ith rule, XΔ and XΔ  are the states of the system output to be controlled, 
U is the control input and A, B and C are the corresponding fuzzy subsets of the input and 
output universe of discourse, respectively. The output importance of each rule is dependent 
on the membership functions of the linguistic input and output variables. An equal-span 
triangular membership function shown in Fig. 3 is employed in this article for fuzzifying the 
input and output variables. The membership function used in the present article for 
fuzzification is of a triangular type. The function can be expressed as: 

 1(x) ( x W)
W

μ = − − δ +  (22) 

where W  is the distribution span of the membership function, x  is the fuzzy input variable 
and δ  is the parameter defining the value 1 of the membership function. The height method 
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is employed to defuzzify the fuzzy variable in order to obtain the control input for each 
control step. The equation can be described as: 
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uΔ

 
(b) 

Fig. 3. The fuzzy membership functions for (a) the inputs control variables errors; (b) the 
control input 

 i i0

i

w y
y

w
= ∑
∑

,      
ij

0
i A j

j
w (x )= μ∏   (23) 

where
ij

0
A j(x )μ  is the linguistic value of the fuzzy set variable, iw  is the weight of the 

corresponding rules that have been activated, iy  is the resulting fuzzy control value of the 
ith fuzzy rule and 0y  is the net fuzzy control action. The two dimensional linear 
interpolation algorithm also can be used to calculate the inference of four fired fuzzy rules 
for obtaining the control value of each control step. 

4. Numerical results 

In order to verify the effectiveness of this intelligent controller, the following numerical 
simulations are performed in this study. The system parameters used in the simulation 
study are selected as: R 650= (mm), rL 1350= (mm). These values are chosen from the 
previous researches (Joo et al. 2002, Park and Cho 2005). The variation of the input flow rate, 
a(t) , to describe the slow nozzle clogging and sudden unclogging is shown in Fig. 4 from 
reference (Joo et al. 2002). The input flow rate is dependent upon the viscosity of the molten 
steel, the molten steel level in the tundish, clogging and unclogging. The initial molten steel 
level and desired molten steel level were set to be 200 and 250 mm, respectively. The 
sampling frequency was selected as 100 Hz. The fuzzy control parameters ge  and gce  are 
chosen as 35 and 150. The weighting parameter ξ  and the learning factor /Mγ  in Equation 
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(20) were chosen as 0.5 and 1/1.9, respectively. An equal-span triangular membership 
function shown in Fig. 3 is employed for fuzzifying the input and output variables. 
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Fig. 4. Variation of the input flow rate 

Case A: The parameters gx  and rv  are constants: 

The system parameters roll gap gx  and roll speed rv  used in this simulation are set as 
constants, rv 13= (mpm) and gx 2= (mm). In practice, they are important to reach the 
desired molten steel level dy  in short period of time without overshooting, and to 
guarantee the molten steel level within a bounded endurable region during the casting 
process. The dynamic responses of the controller based on numerical results are shown in 
Fig. 5 (transient response) and Fig. 6 (steady-state response). The variations of orifice 
opening is shown in Fig. 7. The dynamic responses and the variations of orifice opening of 
the traditional PID controller ( pk 25= , ik 0.15= , dk 1= ) is shown in Figs. 8 and 9, 
respectively. Since the variation of the input flow rate has a sudden change from 0.16 to 0.2 

2m /s  at the moment of 100, 200 and 300 sec. The small change in times 100 and 200 sec in 
Fig. 6 is due to the sudden variation of the input flow. It takes about 10 steps (0.1 sec) for the 
height of molten steel, y , converges to the desired molten steel level, dy  by using this 
intelligent controller. The converging time of the molten steel level is faster than the result, 
0.15 sec of the PID controller. It can be observed that the steady-state error can be kept 
within 0.02 mm to the end of the control process even at the instants with the input flow rate 
variations due to the sudden unclogging shown in Fig. 4. The steady-state error is smaller 
than the result, 0.5 mm of the PID controller. 
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Case B: The parameters gx  and rv  are not constants: 

Since the system roll gap gx  and roll speed rv  parameters may have some perturbations in 
the real strip casting process, the values of gx  and rv  with certain variation instead of 
constants are chosen in this simulation. These parameter perturbations are set as random 
variations with the maximum amplitude of 25% system nominal parameter values. The 
disturbances are added for the entire control process to represent the parameter 
perturbations. The dynamic responses of this intelligent controller based on numerical 
results are shown in Fig. 10 (transient response) and Fig. 11 (steady-state response). The 
variations of orifice opening is shown in Fig. 12. The dynamic responses and the variations 
of orifice opening of the traditional PID controller ( pk 25= , ik 0.15= , dk 1= ) is shown in 
Figs. 13 and 14, respectively. It takes about 10 steps (0.1 sec) for the height of molten steel, 
y , to converge to the desired molten steel level, dy , with 0.3± mm steady-state error by 
using this intelligent controller. The converging time of the molten steel level is faster than 
the result, 015 sec of the PID controller and the steady-state error is smaller than the result, 

1± mm of the PID controller even at the instants with the input flow rate variations due to 
the sudden unclogging. 
Based on the simulation results, it can be observed that the self-learning fuzzy controller can 
regulate the molten steel level at the preset desired level without overshooting effectively. 
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Fig. 5. Case A: Molten steel level (transient response) 
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Fig. 6. Case A: Molten steel level (steady-state response) 
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Fig. 7. Case A: Variations of orifice opening 
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Fig. 8. Case A: Molten steel level (PID controller: pk 25= , ik 0.15= , dk 1= ) 
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Fig. 9. Case A: Variations of orifice opening (PID controller: pk 25= , ik 0.15= , dk 1= ) 
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Fig. 10. Case B: Molten steel level (transient response) 
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Fig. 11. Case B: Molten steel level (steady-state response) 
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Fig. 12. Case B: Variations of orifice opening 
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Fig. 13. Case B: Molten steel level (PID controller: pk 25= , ik 0.15= , dk 1= ) 
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Fig. 14. Case B: Variations of orifice opening (PID controller: pk 25= , ik 0.15= , dk 1= ) 

5. Conclusion 
The twin-roll strip casting process dynamics has the properties of nonlinear uncertainty and 
time-varying characteristics. It is difficult to establish an accurate process model for 
designing a model-based controller to monitor the strip quality. A model-free self-learning 
fuzzy controller is employed to control the molten steel level of the strip casting process. 
This intelligent control strategy has online learning ability for responding to the system’s 
nonlinear and time-varying behaviors during the molten steel level control. From the 
simulation results, it can be observed that the converging time of the molten steel level is 
less than 0.1 sec and the steady-state error is less than 0.3 mm for both simulation cases. In 
addition, this control strategy can monitor the molten steel at the preset desired level 
without overshooting effectively to guarantee the steel strip casting quality. Furthermore, 
from the control results, it can be concluded that the performance of this self-learning fuzzy 
controller is better than that of a traditional PID controller. This has reduced significantly 
the trial-and-error efforts of implementing a PID control strategies. 
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1. Introduction

Issues such as the increasing worried about global warming caused by the use of energy
resources based on fossil fuel such as oil, gas and coal, have pointed the target toward
sustainable energy resources free of greenhouse gas emissions. The PhotoVoltaic (PV) energy
plays an important role into the called green energies sources, reason why its use has been
rapidly invigorated A. Yafaoui (2009). However of this, a PV generator has two significant
problems; the mismatch between the load and the conductance of the PV generator . Since, the
load must match PV conductance of the PV generator to ensure the maximum power transfer
A. Yafaoui (2009), Hohm & Ropp (2000). The other point, is that the PV generation depends
of the weather conditions, such as solar irradiance and temperature Mutoh et al. (2006).
To ensure the maximum power transfer the load seen from the PV generator must be
continuously adjusted. Therefore, a Maximum Power Point Tracking (MPPT) algorithm must
be implemented to achieve the match between the PV generator (PVG) and the load in real
time, taking into account that the maximum power point is not known a priori it is not an
easy task to track the maximum power point Mutoh et al. (2006) Kim et al. (2006), Zeng & Liu
(2009). Additionally, regarding the low efficiency of a PVG it would be desirable to obtain the
maximum power under any weather condition Mutoh et al. (2006), Roman et al. (2006).
Many MPPT algorithm methods have been proposed to deal with the problem of the power
generation variations due to changes at the solar irradiance and at PV cell temperature.
They range from simple algorithm based on perturbation and observation to more complex
based on neural network, and fuzzy logic control A. Yafaoui (2009), Hohm & Ropp (2000),
Zeng & Liu (2009).
A PV system can be implemented as a stand-alone system or as a grid connected generator.
A stand-alone system requires a battery bank to store the energy obtained from the PV
generator. That kind of system is frequently used in low power system to support a local
energy requirement. On the other hand, a grid-connected PV system (GCPVS) usually does
not require the battery bank and has become the primarymethod for high-power applications
Kim et al. (2006). A GCPVS takes an important part into distributed power generation systems
such as low-voltage distribution grids Alonso-Martinez et al. (2009), Vandoorn et al. (2009),
Xue et al. (2004). Where, the energy generated by the GCPVS is sent to the power grid
and consumed by the nearest customers. This is accomplished through an efficient DC/AC
conversion by means of a solid-state Inverter. The inverter becomes the interface between the
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Fig. 1. Grid-Connected Photovoltaic System schematic.

AC grid load and the PVG, it has to match the PVG output resistance to ensure the MPPT
(active power flow control).
In this chapter, a controller for a solid state inverter in a single phase GCPVS is proposed
looking for MPPT. First the components of the GCPVS are explorer and the nonlinear
current-Power relationship of a PVG is analyzed. Second a MPPT algorithm based on
fuzzy logic is proposed and improved by means a short circuit current estimator based on a
TakagiSugeno (TS) fuzzy model BABUSKA (2009). Third simpler linear controllers are used to
achieve the maximum power point where the reference is imposed by the short circuit current
estimator. The controllers were verified in simulation under various weather conditions.

2. Proposed grid connected photovoltaic system

A typical GCPVS as shown in figure 1 is composed by the PV modules, a Solid-state DC/AC
conversion stage which is the interface between the variable DC generator and the power
grid. For instance, at this case of study, the system will supply power to a single power

grid Vs = 120V to
→ 60Hz. The conversion stage can be composed by a single o dual power

processing stage Xue et al. (2004), Kjaer et al. (2005). Moreover, the conversion stage must also
include a MPPT algorithm in order to obtain the maximum power generated from the PVG
Kjaer et al. (2002). Next follows a brief analysis and description for each CGPVS component.

2.1 PV generator
By means of a p-n semiconductor junction it is possible to convert the solar radiation into
DC currents using the photovoltaic effect. A PV panel is composed by an array of PV cells
grouped together in series to increase the output voltage (usually 12 or 24 V), or in parallel to
increase the electrical current that the PV module can provide to the load Kim et al. (2006),
Molina & Mercado (2008). The traditional equivalent circuit of a solar cell is build by a
photocurrent source Iph, a diode parallel to the source, a series resistor Rs, and a shunt resistor
Rsh as shown in figure 2 Kim et al. (2006), Xiao et al. (2006). A PV panel is composed by an
array of cells, then an equivalent circuit for the PVmodule has the same configuration. Hence,
the model of a single cell can be extrapolated to a PV panel model and consequently to a PV
panels array interconnected in serial or parallel configuration. The equivalent circuit shown in
figure 2, is useful to obtain a model of the PVG to simulate the system under different weather
conditions Mutoh et al. (2006), Kim et al. (2006).
From the circuit in figure 2 the output current I is expressed by Mutoh et al. (2006):
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Fig. 2. Equivalent circuit of a PV generator.

I = Iph − I0

[
exp

(
V+ IRs

Vt

)
− 1

]
− (V + IRs)/Rsh (1)

Where:

– Vt =
nKT
q ;

– n is the diode factor (ideality factor (= 1) maximum value 2) Mutoh et al. (2006),Kim et al.
(2006);

– IO cell reverse saturation current;

– K Boltzmanns constant (= 1.38x10−23Nm/K);

– T cell temperature (in kelvin);

– q electronic charge(= 1.6x10−19C);

– I Output current (A).

– V Output voltage (V).

The two internal resistances Rs and Rsh are usually neglected in order to simplify the model
Mutoh et al. (2006), Kjaer et al. (2005). Hence, (1) is simplified to:

I = Iph − I0

[
exp

(
V
Vt

)
− 1

]
(2)

However, it is not an easy task for the users to obtain further information about n and I0.
Generally Those parameters are not listed in data sheets. Instead of those parameters in data
sheets are listed the short-circuit current Isc and the open circuit voltage Voc under standard
irradiance conditions (1000W/m2 at 25oC in a cell) Mutoh et al. (2006). Furthermore, the
following expression can be used.

Isc = Iph (V = 0, I = Isc) (3)

I0 = Iscexp
(
− Voc

Vt

)
; (I = 0, V = Voc) (4)

The maximum power generated by the PV panel is also specified in the data sheet. That
power is written in terms of the Current Ipm and Voltage Vpm at maximum-power point.
Those parameters have been measured under standard condition. From (2) to (4) regarding

that exp
(

V+ IRs
Vt

)
> 1 under normal operation of the diode, the following expressions can be

approximated as Mutoh et al. (2006):
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Ipm = Isc

[
1− exp

(
Vpm−Voc

Vt

)]
(5)

1
Vt

=
1(

Vpm −Voc
) log(1− Ipm

Isc

)
(6)

Thus Vt and hence n can be obtained from (6). The output voltage of the PV generator can be
expressed as a function of the output current, using parameters such as Voc, Isc.

V = Voc

{
1+Vt log

(
1−

I
Isc

)}
(7)

(7) can be used as the model of the PVG. The power generated from the PV array is:

P = I ∗V = I ∗Voc

{
1+Vt log

(
1−

I
Isc

)}
(8)

Other important parameters provided by the manufacturer are the Cell temperature
coefficients, those parameters provide information about how the electrical parameters could
vary under temperature change. In the table 1 are summarized the main electrical data
provided by the manufacturer under standard condition. In this case for the study as PVG
are used two panels ASE-300-DGF/17, with a nominal power of 300W each one. The two
panels are connected in series hence the PV generator can provide a nominal power of 600W.
The Open-circuit voltage temperature coefficient TK(Voc), and the value of n obtained from
(6) are also summarized at the table 1.
The data reported in table 1 are used in the expression (7) to obtain the I-V curve under SIC;
however, it would be desirable to obtain the I-V curve under different weather conditions.
Taking into account the expression (3), there is also a proportional relationship between the
short-circuit current Isc and the solar irradiance Mutoh et al. (2006). Hence, by assuming that
the Isc change in the same proportion than the solar irradiance, it is possible to obtain the I-V
curve under differentweather conditions as is shown in fig 3. Figure 4 shows P-I curves under
different weather conditions obtained from (8).

PV panel PV generator
Pmax (Watts) 300 W 600 W
Vpm 17.2 V 34.4 V
Ipm 17.4 A 17.4 A
Voc 20 V 40 V
Isc 19.1 A 19.1 A
TK(Voc) −0.38%/C −0.38%/C
n 1.6311 1.6311

Table 1. Data PV panel and PV generator
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2.2 Inverter
The main function of an inverter is to convert the DC voltage obtained from the PV generator
into an AC current. Besides, it is the interface between the variable DC generator and the
power grid. The inverter involves three major tasks; Inject sinusoidal current into the power
grid; provide compensation against harmonic and reactive power; and finally the inverter
must ensure maximum power tracking (MPPT) Kjaer et al. (2005), Patel & Agarwal (2006).
A dual-stage inverter have been selected for the GCPVS like the shown in figure 5, it offers an
additional degree of freedom in the operation of the system than the one-stage configuration
Xue et al. (2004), Kjaer et al. (2005). Instead of the degree of freedom, it is decreased global
efficiency of the inverter because of the connection of two converters.
The first stage is a DC- DC boost converter that boosts and regulates the voltage Vdc, advisable
for a normal operation of the inverters since it requires that Vdc > Vs in spite of disturbances
(the PV voltage vary in a wide range) Zhang & Xu (2001). The output voltage is a function
of the input voltage, the duty cycle D (period of time in witch the MOSFET Q1 in figure 5
is active), the load current as well as the values of converter components. Neglecting losses
the output voltage of the boost converter is given by the equation (9) Erickson &Maksimovic
(2000).

Vdc =
V

(1− D)
(9)
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Fig. 4. P-I curves.
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Fig. 5. Two-stage boost inverter Xue et al. (2004).

At this case the boost converter has been dimensioned for an output voltage Vdc = 70V.
Hence, a compensator has been designed regarding the worst phase margin obtained from
load variations and input voltage variations, to attain adequate phase margin and good
rejection of expected disturbances. The compensator design was developed by frequency
domain response. In figure 6 is shown the frequency response of the compensated loop
gain T(S) and the sensitivity function 1/ (1+ T(S)) Erickson & Maksimovic (2000). The
compensator design will not be explored in deep at this chapter, because of, it is out of the
scope of this Chapter.
The second stage, a voltage-source inverter (VSI), converts the regulate DC voltage Vdc into
an AC current. The inverter becomes the load seen from the first stage. Hence, the VSI
operation point is adjusted to perform the MPPT. A sinusoidal AC voltage vc (t) as shown
in (10) can be virtually generated at any angle and amplitude using Sinusoidal Pulse Wide
Modulation (SPWM) techniques at forced commutation and subsequent filtering of high
frequency components. The active and reactive power flow can be independently controlled
manipulating the phase and amplitude of the AC wave voltage generated by the converter
Sood (2004), Diaz et al. (2007), Zhang & Xu (2001), Gengyin et al. (2004), Padiyar & Prabhu
(2004). This assumption is based on the fact that the VSI connected to an active AC grid
behaves like the stator of a synchronous machine (figure 7), regarding only the fundamental
frequency component. The active and reactive power flow neglecting the losses are given by
(11) and (12), Diaz et al. (2007), Ruihua et al. (2005), Li et al. (2006). In (11) and (12) Vc is the
fundamental component of the converter voltage, Vs is the fundamental component of the AC
grid voltage, X is the reactance of the reactor that connects the two voltage sources, ϕ is the
phase shift between Vc and Vs. At figure 7, r represents the losses at the conversion stage. In
order to simplify the analysis r is neglected; this assumption can be done taking into account
that typically the VSI losses are usually less than 5% of the rated capacity Diaz et al. (2007),
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Fig. 7. Equivalent circuit of a VSI interconnected to the AC grid.

Zhang & Xu (2001).

vc (t) = mVdc sin(ωt+ ϕ) (10)

P =
VcVs

X
sin(ϕ) (11)

Q =
Vs (Vs −Vc cos(ϕ))

X
(12)

(11) and (12) show that P depends mainly of the angle ϕ and Q depends mainly of Vc
amplitude, which is controlled by the modulation ratio m that is the relationship between
the peak AC output voltage and the DC voltage m = Vc(peak)/Vdc Zhang & Xu (2001), Li et al.
(2006). In that sense it is possible to control independently the active and reactive power,
adjusting the values of ϕ and Vc respectively Diaz et al. (2007). However, the VSI is a
nonlinear double input double output coupled control system Zhang & Xu (2001). So the
system cannot be easily controlled through conventional feedback controllers with fixed-gain.
In addition, the power converter has important variations on its principal parameters, so,
classical feedback controllers cannot compensate variations in the parameters of the system,
and cannot be adapted to changes in the environment easily Gounden et al. (2009). Therefore,
nonlinear controller appears as a possibility to control reactive and active power. A nonlinear
fuzzy controller can work easily and directly with nonlinear systems and system that does
not have constant parameters at the whole range of operating points, like the solid state
converters. The fuzzy controllers do not use the parameters of the plant for their design
Diaz et al. (2007), BABUSKA (2009). Then, fuzzy controllers may be used to control the active
and reactive power flow and assure the MPPT by matching the impedance seen from the
DC-DC converter under environmental changes.
The conversion stage is also composed by a step-up line-frequency coupling transformer and
a low pass sine wave filter, designed to reduce the perturbation on the distribution system
due to high-frequency switching harmonics generated by PWM control Xue et al. (2004),
Kjaer et al. (2005), Molina & Mercado (2008).

3. MPPT algorithm

The slope of P-I curve (dP/dI) shown in figure 4 is positive on the left side of the maximum
power point (MPP), negative on the right side of MPP and zero at MPP (dP/dI = 0). Based on
that characteristic, the MPPT algorithm can be indicated as:
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i f dP/dI > 0; le f t o f MPP, Then I must be increased.

i f dP/dI = 0; at MPP, Then I must remain constant. (13)

i f dP/dI < 0; rigth o f MPP, Then I must be decreased.

Adjusting the current at the PVG it is possible to track the maximum power point (MPP). The
current at the DC side Idc of the inverter is related to the ac current iac(t) by the equation (14).

Idc = Siac(t) (14)

S = msin (ωt+ ϕ) (15)

S is the rectangle switching function whose AC fundamental component is expressed
in (15) Li et al. (2006). Besides the PV current I is related to DC current Idc by (16)
Erickson & Maksimovic (2000).

I =
Idc

(1− D)
(16)

I =
m

(1− D)

Vc

X
sin(2ϕ)

2
(17)

The PV current I depends of the duty cycle D at the first conversion stage, the modulation
index m and the phase shift ϕ as can be seen in (17). Regarding a regulated DC voltage I
dependsmainly of the angle ϕ like the active power. So, the MPP can be obtained by adjusting
the angle ϕ taking into account that m and D are imposed by the Vdc control and reactive
power control respectively.
Taking into account that the power generated depends on solar irradiance and temperature as
is shown in figure 4. It is desirable that if the system is close to the MPP the angle ϕ change a
few. But if the system is far from the MPP the angle must change a lot.

4. Fuzzy MPPT algorithm

A fuzzy logic controller can easily incorporate all the qualitative knowledge above mentioned
and summarized in (13) about the behavior of the system required to perform the MPPT. The
fuzzy control also has the advantage to be robust and relatively simple to design, since it
does not require the knowledge of the exact model Zeng & Liu (2009), Gounden et al. (2009),
Larbes et al. (2009). A Mamdani fuzzy logic controller has been proposed to perform the
MPPT, this kind of controller are usually used in feedback control mode, because they are
computationally simple, present low sensibility to noise in the input (what is important in
power system), and can easily represent the knowledge about the control action BABUSKA
(2009). The knowledge is represented by means of rules in the form if-then and synthesized
in form of an input-output mapping between the antecedent and the consequent variables
BABUSKA (2009).
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Fig. 8. FLC membership function for dP/dI, CP and Δϕ.

A PD fuzzy logic controller (FLC) has been proposed in order to synthesize the MPPT
algorithm. The inputs are the slope of the curve P-I (dP/dI)which shows the actual operation
point, and the change of the power CP which expresses the moving direction of this point. In
samples time k = 1.4ms. the inputs variables are defines as follow:

dP
dI

=
ΔP
ΔI

=
P(k)− P(k− 1)
I(k)− I(k− 1)

(18)

CP = ΔP = P(k)− P(k− 1) (19)

The control rules are indicated in Table 2. Where (dP/dI) and CP are the inputs and the
change in the phase shift Δϕ is the output. The membership function of the two input
variables and the control action Δϕ are triangular and trapezoidal membership functions
because of they are computationally simpler in figure 8 BABUSKA (2009). The membership
functions were tuned searching the minimum error in steady state and the minimum
oscillation in transitory state by trial and error method using the toolbox FIS of MATLAB.
The input and output membership function are shown in figure 8 BABUSKA (2009).

4.1 Improvement of the MPPT by means of a fuzzy Isc estimator
To avoid small current increments at high solar irradiance level and slow response of the
MPPT, or high increments of the current at low irradiance level, that may cause high
oscillations around the MPP, it is desirable a smaller step size of Δϕ under low irradiance,

CP CNB CNS ZC CPS CPV
dP/dI
NB IB IB IB IB IM
NS IM IP IP Z Z
Z IP Z Z Z DP
PS IM IP IP Z Z
PB DN DB DB DB DB

Table 2. Rule Base FLC

187
Fuzzy Maximum Power Point Tracking Techniques
Applied to a Grid-Connected Photovoltaic System



10 Fuzzy Controllers, Theory and Applications

and a higher step size of Δϕ under high irradiance. The step size of Δϕ might be weighted by
the Isc under different solar irradiance conditions. However, it is difficult to know in advance
Isc for all solar irradiance range and temperatures to weight the step size. To obtain the Isc the
PV generator should be disconnected from the system and by a short circuit in the generator
the Isc can be measured. A problem with this procedure is that available energy is wasted
when the generator is disconnected from the system.
Figure 4, shows that the slope (dP/dI) for different levels of irradiance are similar in relation
with the gap between the operating point and MPP location, where the gap depends on Isc.
Figure 9 shows different surfaces obtained by plotting the dP/dI values (under irradiance
levels of 1000W/m2, 750W/m2 and 500W/m2) versus the normalized PV current I/Isc and
temperature. The figures are similar and they cannot be distinguished. Therefore, the curves
under different weather conditions could be represented by an unique nonlinear model.
The nonlinear curves in figure 9 can be approximated by using a Takagi-Sugeno (TS) fuzzy
model BABUSKA (2009). A TS fuzzy model can represent the nonlinear function as a
smoothed piece-wise linear approximation as shown in figure 10. TS fuzzy model uses crisp
functions of the antecedent variable at the consequents rather than fuzzy preposition like
in FLC BABUSKA (2009). Hence, the model can be seen as a combination of linguistic and
mathematical regressionmodeling in the sense that the antecedents describe fuzzy regions in
the input space in which the consequent functions are valid BABUSKA (2009).
The TS model is obtained by means of fuzzy clustering algorithms that are used to partition
an input-output data base into groups of similar objects. The term ”similarity” should be
understood as mathematical similarity, it is often defined by means of a distance norm from a
data vector to some prototypical object or center of cluster. The centers of clusters are usually
unknown a priori, they are obtained by the clustering algorithms simultaneously with the
partitioning of the data. The concept of graded membership is used to represent the degree
at which a given data is similar to some center of cluster. Based on the similarity, the data
can be clustered such that the data within a cluster are as similar as possible, then a cluster is
a group of objects that are more similar to one another than to members of other clusters.
The prototypes may be vectors of the same dimension as the data objects, but they can
also be defined as ”higher-level” geometrical objects, such as linear or nonlinear subspaces
or functions. Fuzzy clustering methods, allow the objects to belong to several clusters
simultaneously, with different degrees of membership between 0 and 1 indicating their partial
membership. That provides interpolation between clusters, what allow to approximate the
nonlinear function BABUSKA (2009).
A clustering algorithmwas used for the automatic generation of fuzzy models. The algorithm
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is based on optimization of the basic c-means objective function as exposed in BABUSKA
(2009). The data base used to perform the algorithm is composed by the inputs dP/dI
and temperature Temp, and the output of the model which is the normalized current I/Isc.
The data base is obtained from the PV generator model exposed before under variations
of iradiance and temperature. Each obtained cluster is represented by one rule in the
Takagi-Sugeno model.
The data base were partitioned into five clusters. Figure 10 shows the five local linear
models obtained through clustering. Figure 11 shows the corresponding fuzzy partition
of the consequents dP/dI and T. The parameters of the local linear models of each rule
were obtained by least-squares estimation BABUSKA (2009). The TS rule base obtained is
summarized as follow:

1. If dP/dI is A11 and Temp is A12 then
I/Isc(k) = 1.73 · 10−3u1 − 4.21 · 10−3u2 + 9.16 · 10−1

2. If dP/dI is A21 and Temp is A22 then
I/Isc(k) = 2.50 · 10−4u1 − 6.49 · 10−4u2 + 9.97 · 10−1

3. If dP/dI is A31 and Temp is A32 then
I/Isc(k) = −3.97 · 10−3u1 + 2.97 · 10−4u2 + 9.29 · 10−1

4. If dP/dI is A41 and Temp is A42 then
I/Isc(k) = −3.52 · 10−2u1 − 3.58 · 10−3u2 + 1.90 · 100

5. If dP/dI is A51 and Temp is A52 then
I/Isc(k) = −1.20 · 10−1u1 − 1.88 · 10−2u2 + 5.31 · 100

Since, the PV current can be measured, it is possible to estimate the short-circuit current Isce
without disconnecting the PVG and measuring the short-circuit current. Figure 12 shows
a comparison between the estimated short circuit current Isce and the expected short circuit
current Isc. The percentile variance accounted for (VAF) between the Isc and Isce (formula 20)
was used as a performance index of the TS fuzzy model where VAF = 96.13%.
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VAF = 100%
[
1−

var(Isc − Isce)
var (Isc)

]
(20)

The estimated Isce weights the output of the (FLC) which allows adjust the step-size under
different solar irradiance and then assure a step-size Δϕ proportional to the irradiance level.
Another problem to solve is the operation of the system under solar irradiance decrements.
When the solar irradiance deceases drastically the system operates in the right side of the MPP
and hence the voltage on the PVG and the voltage Vdc become zero due to the relation given
by (9). That may cause instability in the system since the condition for a normal operation of
the system (Vdc > Vs ) is not satisfied. Hence, the load should be decreased and the inverter
should be turned off. To do that an additional crisp function has been added to the MPPT
algorithm, it has the main function of reduce the angle ϕ to a half of its value when the PVG
voltage decreases below 20V.
The fuzzy controllers are also composed of dynamic pre and post-filters the pre-filter used is
an approximation of the derivative effect in the domain of discrete time, this approximation is
often used and well accepted for computational implementation, the propose of the derivative
effect is obtain a fast response to perturbations. To improve the precision in steady state was
used an integrator as dynamic pos-filter in the output of the fuzzy controller Diaz et al. (2007),
BABUSKA (2009).

4.2 Reactive power control
Since the inverter would be connected to power grid, the standards given by the utility
companies must be obeyed (The power converter in a GCPV must have high conversion
efficiency and a power factor exceeding 90% for wide operating range, while maintaining
current harmonics THD less than 5%) Kjaer et al. (2005), Eltawil & Zhao (2010). The reactive
power flow can be regulated by adjusting the AC voltage generated by the converter Vc as
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ΔeQ CNB CNS ZC CPS CPV
eQ
PB Z IS IS IM IG
PS DS Z IS IS IM
Z DS Z Z Z IS
NS DM DS DS Z IS
NB DB DM DS DS Z

Table 3. Rule Base FCQ

is shown in (12). The Vc amplitude is regulate mainly by the modulation index m which is
controlled by the SPWM signal. A Mamdani fuzzy controller has been designed to regulate
the reactive power flow close to zero and deal with the nonlinear behavior.
The proposed controller is a kind of Fuzzy PD controller in counterpart of linear Proportional
Derivative controllers BABUSKA (2009). The rule base of the the FCQ (Fuzzy Control of Q)
has two inputs as antecedents; the error (eQ), and the error change (ΔeQ), In order to obtain
a derivative effect. The output of the fuzzy inference system is the incremental variable (Δm).
The rule base of FCQ is summarized in table 3. The FCQ was tuned in MATLAB using the
fuzzy inference system toolbox. Dynamic pre and post-filters were also used on this controller.

5. Simulation results

The GCPVS was tested by simulation in the SimPowerSystem toolbox of MATLAB. The
system is schematized in figure 5.
The simulation results in figure 13 show that the MPPT is achieved under different solar
irradiance at 250C in the cell. The converter has a efficiency of 97%, and a settling time around
150ms. The reactive power is also compensated by remaining it close to zero, then the power
factor is close to one in steady state as shown in figure 14.
The TS fuzzy system became an efficient tool to estimate the short circuit current without
disconnect the system. The estimator can be used in simpler MPPT methods like the short
circuit current method, without having to shutdown the system in order to measure the short
circuit current.

6. Short circuit current method

The P-I curves of the PV generator suggest a linear relation between the open short-circuit
current (Isc) and the maximum power point current (IMPP) at different irradiance and
temperature conditions A. Yafaoui (2009), Mutoh et al. (2006). This relation can be described
by:

IMPP = kIsc k < 1 (21)

The value of the constant K depends on characteristics of the PV generator, but a commonly
used value is 90%Mutoh et al. (2006). The short circuit current method is a very simple MPPT
method, the PV current is compared with a constant reference current that corresponds to the
IMPP. The error signal can be used in simple controllers with integral action to eliminate the
error in steady state Tariq & Asghar (2005).
One of the main drawback of this method is that available energy is wasted when the load
is disconnected from the PV generator to measure the (Isc). The measurement of the (Isc)
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during the operation of the system also increases the complexity of the circuit (Isc). Moreover,
the ambient conditions may change between the different measurements intervals and the PV
generator conditions may vary A. Yafaoui (2009), Mutoh et al. (2006), Tariq & Asghar (2005).
Those problems make this method less popular despite of its simplicity.
However, with the fuzzy short circuit estimator proposed before, the (Isc) can be estimate
without additional power power losses. The estimated short circuit current Isce can be
multiplied by the factor k in order to estimate the maximum power point current (IMPPe) =
kIsce.
In order to verify this method a simple proportion integral (PI) controller has been designed.
The reference of the controller is the Isce multiplied by a factor k= 0.88. The simulation results
in figure 15 show that the MPPT is achieved under different solar irradiance at 250C in the
cell.

7. Conclusion
The MPPT algorithm can be easily synthesize by means of a fuzzy logic controller. The shape
of the membership function of the fuzzy controllers can be adjusted in order to make the
control action proportional to the gap between the operation point and the maximum power
point. The increment of the conductance must be proportional to the solar irradiance to avoid
high steps size under low irradiance or low step size under high irradiance, which may cause
high oscillation around the maximum power point or high settling time under high solar
irradiance. A good commitment has been achieved by weighting the step size of the MPPT
algorithm by the short-circuit current.
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TS fuzzy system became an efficient tool to estimate the short circuit current without
disconnecting the system. The estimator can be used in simpler MPPT methods like the short
circuit current method, without having to shutdown the system in order to measure the short
circuit current and then, overpass the main problem of this method. A similar strategy could
be used to estimate the open circuit voltage improving the efficiency of this method since it
will not be necessary to disconnect the panel from the PV system.
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1. Introduction 
As the speed controlled BLDC motor drive systems are increasingly employed in the 
industrial drive systems, the various requirements for the performance of such systems 
become severe. In this investigation, we employ a simple and natural method to design a 
controller to control the BLDC motor drive system, which is so-called Takagi-Sugeno fuzzy 
model [1]. 
Recently, there have been a lot of researches in the Takagi-Sugeno fuzzy model [2], [3], [4]. 
They offer a systematic procedure to design controllers of BLDC motor drive systems. Servo 
motor position controller using the fuzzy control algorithm has been developed by Li and 
Lau [15], and they discuss the steady-state error, settling time, and response time. According 
to their paper, the performance of the fuzzy controller is better than that of the conventional 
PI controller and as good as that of the Model Reference Adaptive Control. We do not think 
a general method can be found to obtain optimum values for fuzzy controllers, because any 
optimum values always depend on specific models of the process and the control objectives. 
So, tuning fuzzy controllers must done based on experts' knowledge of the controlled plant, 
not by computation. 
In this paper, our objective is to prescribe a methodology for tuning fuzzy controllers, and 
this paper presents a scheme for obtaining optimum values of fuzzy membership function's 
slope. In other words, an optimal slope is sought by evaluating various fuzzy membership 
function‘s slope values. With this imformation, you can tune your fuzzy control systems 
easier and faster, also of course based on your knowledge of the controlled plant. 
This paper is organized as follow. A brief description of the used fuzzy system are 
presented in Section 2. Section 3 present fuzzy membership functions. Simulation results are 
presented in Section 4 with setup of the BLDC motor drive system. Section 5 concludes this 
paper. 

2. Used fuzzy systems 

The used fuzzy logic system is a zero-order Takagi-Sugeno fuzzy system which performs a 
mapping from an input vector [ ]1

m
m zz z z= ∈Ω ⊂" \  to a scalar output variable fy ∈\ , 

where 
1 mz z zΩ = Ω × ×Ω"  and

izΩ ⊂ \ . If we define iM fuzzy sets j
iF , 1, , ij M= … , for each 
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input iz , then the fuzzy system will be characterized by a set of if-then rules of the 
form[5,14] 

kR : If 1z  is 1
kG  and...and  mz   is k

mG  

 Then u  is  ku  ( 1, ,k N= … )  (1) 

where { }1 , , iMk
i i iG F F∈ … , 1, ,i n= … , ky is the crisp output of the k-th rule, and N  is the 

total number of rules. 
The FLC can operate either on the actual universes of discourse or on the normalized 
universes of discourse of the variables. In case of operating on the actual universe of 
discourse, the FLC has three main stages, as shown in Fig. 7, which are: 
1. Fuzzification, a process of producing a fuzzy input on the base of a crisp one. 
2. Inference engine and rule-base, a process of tranforming fuzzy input into a fuzzy output 

by dealing with fuzzy rules and as a result the response corresponding to the inputs is 
produced. 

3. Defuzzification, a process of producing a crisp output on the base of a fuzzy one. 
However, in case of operating on the normalized universe of discourse, we add two more 
stages - one before fuzzification and one after defuzzification -, which are: 
1. Normalization, a process of mapping the actual value of the input variable to the 

normalized space of the same variable. 
2. Denormailization, a process of mapping the normalized value of the output control 

signal to the actual space of the same output control signal. 
By using the singleton fuzzifier, product inference engine, and center-average defuzzifier, 
the final output of the fuzzy system is given as follows [5]: 

 1

1

( )
( )

( )

N
k

k
k

l N

k
k

z y
u z

z

μ

μ

=

=

=
∑

∑
  (2) 

where 

1
( ) ( )k

i

m

k iG
i

z zμ μ
=

=∏  with { }1 , ,Z Mi
i i iG F Fμ μ μ∈ …  

where  ( )j
i

iF xμ  is the membership function of the fuzzy set j
iF . 

By introducing the concept of fuzzy basis function [5], the output given by Eq. (2) can be 
rewritten in the following compact form: 

 ( ) ( )Tu z w z θ=   (3) 

where 1 , ,
TNw wθ ⎡ ⎤= ⎣ ⎦… is a vector grouping all consequent parameters, and 

[ ]1( ) ( ), , ( ) T
Nw z w z w z= …  is a set of fuzzy basis functions defined as 

1

( )( )
( )

k
k N

j
i

zw z
z

μ

μ
=

=

∑
, 1,k N= …  
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The fuzzy system (3) is assumed to be well defined so that 
1

( ) 0
N

j
i

zμ
=

≠∑  for all zz∈Ω  . 

The fuzzy system (3) is a universal approximator of continuous functions over a compact set 
if its parameters are suitably selected [5]. 

4. Membership function and slope 
In practical control applications, the triangular membership function is generally selected 
for representing fuzzy sets. Because, in term of real-time requirements by the inference 
engine, their parametric, functional description of membership function can be easily 
obtained, stored with minimal use of memory, and manipulated efficiently [11]. 
A triangular membership function is described by three parameters a, b and c and given by 
the expression  

 ( ), , , max min , ,0x a c xf x a b c
b a c b

⎧ ⎫− −⎛ ⎞= ⎨ ⎬⎜ ⎟− −⎝ ⎠⎩ ⎭
  (4) 

 

where the parameters a and c locate the "feet" of the triangle and the parameter b locates the 
peak, as shown in Fig. 1 
We confine our discussion to a PI like fuzzy controller with triangle membership functions. 
PI-like fuzzy controllers are so named because their inputs and outputs are equivalent to 
traditional PI controllers. In a PI-like fuzzy controller, the following parameters can be 
tuned. 
SCALING FACTORS of IF-part/THEN-part fuzzy variables. We define a scaling factor as the 
maximum peak value, which defines the universe of discourse of the fuzzy variable (Fig. 2). 
PEAK VALUE : the value at which the membership function is 1.0 (Fig. 2). 
WIDTH VALUE : the interval from the peak value to the point at which membership 
becomes 0.0 (Fig. 2). 
We define the membership functions with equal-interval peak values shown in Fig. 2 as 
standard membership functions. When the standard membership functions are used on a 
PI-like fuzzy controller, the relationship between output μ  (membership value) and input 
x  (crisp value) can be expressed approximately as follows: (d = width value) 
 

 
Fig. 1. Triangular Membership Function 
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Fig. 2. Scaling Factor of a Membership Function 
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where d is membership function's slope 
 

 
Fig. 3. Different Slopes 
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α β γ

μ μ μ
+ +

= = + +
+ +

  (10) 

5. Simulation results 
 

 
Fig. 4. BLDC Test Platform 

3.1 Control system setup 
We will assume the following values for the physical parameters. These values were derived 
by Maxon Motor Catalog. 
 

 
Fig. 5. The electric circuit of the armature and the free body diagram of the rotor. 

The motor torque, ( )T t , is related to the armature current, i , by a constant factor TK . 
( )LT t is load torque. The back emf, e , is related to the  

rotational velocity by the following equations: 

 ( ) TT t K i=   (11) 

ee K θ= �  
In SI units (which we will use), TK  (armature constant) is equal to eK  (motor constant). 
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From the figure above we can write the following equations based on Newton's law 
combined with  
Kirchhoff's law: 

TJ B K iθ θ− =�� �  

 e
diL Ri V K
dt

θ+ = − �   (12) 

Using Laplace Transforms, the above modeling equations can be expressed in terms of s 

( ) ( ) ( )Ts Js B s K I sθ+ =  

( ) ( ) ( )Ls R I s V Ks sθ+ = −  

By eliminating ( )I s we can get the following open-loop transfer function, where the 
rotational speed is the output and the voltage is the input. 

 
( )( ) 2

K
V Js B Ls R K
θ
=

+ + +

�
  (13) 

In the state-space form, the equations above can be expressed by choosing the rotational 
speed and electric current as the state variables and the voltage as an input. The output is 
chosen to be  
the rotational speed. 

 
0
1

B K
d J J V
dt i iK R

L
L L

θ θ
⎡ ⎤− ⎡ ⎤⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥− − ⎣ ⎦⎢ ⎥⎣ ⎦

� �
  (14) 

[ ]1 0
i
θ

θ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

�
�  

And, the block diagram of BLDC motor drive system is shown in Fig.6.  
 

 
Fig. 6. The block diagram of BLDC motors drive system. 

Figure 7 shows the general structure of a FLC which accepts the input variables, process 
state variables, as crisp values and produce an output control signal, process input, also as 
crisp values [18]. The input variables are selected among: 
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1. Error signal, denoted by e ; 
2. Sum of errors or error integral, denoted by e∑ ; 
The output control signals are selected among: 
3. Control output, denoted by u . 
This controller describes with the aid of fuzzy if-then rules the relationship between the 
control output ( )u k on the one hand, and the error ( )e k and its sum ( )e k∑ on the other 
hand as shown in Fig. 7. 

( ) ( ), ( )u k f e k e k⎡ ⎤= ⎣ ⎦∑  

This can be seen as a mapping of the pair ( )e k and ( )e k∑ to the corresponding control 
output ( )u k .This is similar to the well-known conventional PI controller described by the 
equation: 

0
( ) ( ) ( )

t
P Iu k K e t K e t dt= + ∫  

In the case of conventional PI controller, the relationship is linear, while in PI-like FLC it is 
nonlinear in general[18]. 
 

 
Fig. 7. The block diagram of a basic Fuzzy control system. 

 
Specifications Units 
Number of poles 1 

Moment of inertia, J  0.00000512 2 2kgm s   

Viscous damping constant, B  0.00057875 Nms 

Torque constant, TK  0.028 Nm/Amp 

Back-EMF constant, eK  0.028 Nm/Amp 

Armature inductance, L  0.000186 H 

Terminal resistance, R  1.35 Ω   
Rated speed 6540 rpm 
Rated torque 0.088 Nm 
Rated current 3.39A 

Table 1. MOTOR RATINGS 
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3.2 B. Simulation results 
 
 
 
 
 

 

1γμ , 
2γμ 's slope 

1αμ , 
2αμ  ‘s 

slope 
1βμ , 

2βμ 's 
slope 0.5 1 2 

0.5 0.312 0.731 0.422 

1 0.296 0.1 0.116 0.5 

2 0.279 0.128 0.155 

0.5 0.758 0.192 0.067 

1 0.103 0.065 0.066 1 

2 0.132 0.181 0.065 

0.5 0.448 0.036 0.066 

1 0.114 0.036 0.066 2 

2 0.118 0.035 0.065 

 

 
Table II. Settling time     Unit : second 
 
 
 
 

 Sum of Error 

e∑  
e  

αμ  βμ  γμ  

αμ  0 0.3 0.6 

βμ  0.7 1 1.3 

Error 

γμ  1.4 1.7 2 

 
 
Table III. Rule Table 
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Fig. 8. e

αμ , e
αμ∑  , e

βμ  , e
βμ∑ , e

γμ , e
γμ∑  's slope = [1, 1, 1, 1, 1, 1] 

 

 
Fig. 9. e

αμ , e
αμ∑  , e

βμ  , e
βμ∑ , e

γμ , e
γμ∑  's slope = [2, 2, 2, 2, 1, 1] 

6. Conclusions 
This paper has focused on the effect of fuzzy membership function's slope for PI-like fuzzy 
control system. We use three membership functions to construct a fuzzy system. It was also 
proven that the fuzzy system guarantees that the output converged to the desired value. We 
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confirmed that increasing the slopes of the triangular membership functions (left and center) 
for fuzzifying the error and the sum of error can improve the starting and steady state 
performance of the BLDC motor drive system. It is also observed that changing of the slope 
of the membership functions (right) for fuzzifying the error and the sum of the error has a 
detrimental effect on the performance. 
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1. Introduction   
The atomic force microscope (Binnig et al., 1986) utilizes a sharp tip moving over the surface 
of a sample in a raster scan mode to measure the topography and material properties of the 
surface. The tip is located at the free end of a cantilever microbeam (probe) which bends in 
response to the interaction forces between the tip and the sample. An estimate of the 
microbeam stiffness is used to determine the interaction forces from measurements of these 
deflections.  
A precision positioning device, usually made of a piezoelectric tube, is used to move the tip 
or the sample. AFMs can be operated in one of two principal modes: (i) with feedback 
control or (ii) without feedback control. Though widely practiced, open-loop operation has 
the potential for chaotic probe tip response, thus rendering erroneous topographical 
information. Therefore, in a typical imaging operation the cantilever deflection is 
maintained at a set point by means of a feedback controller, while scanning the sample 
surface. The control effort is used as a measure of the sample surface profile. Actuator creep, 
hysteresis, probe vibrations, modeling errors, and nonlinearities are major sources of error 
in AFM measurements (Barret & Quate, 1991; Devasia et al., 2007; Jung 7 Gwon, 2000). 
In addition to analytical methodologies for compensation of the above mentioned errors, 
feedback control strategies have been developed in order to improve AFM region of 
operation. Conventional PD, PI, and PID feedback controllers of the AFM probe were 
presented in (Ashhab et al., 1999) and (Sinha, 2005). Two nonlinear control techniques using 
a learning-based algorithm were presented in (Fang et al., 2005). H∞ and Glover-McFarlane 
controllers (Sebastian et al., 2003), (Salapaka et al., 2005) were also designed to achieve high 
bandwidth and robustness during AFM scanning. Other controllers based on inverse model 
control and combinations of feedforward and feedback and L1 and H∞ controllers were 
proposed to increase the scanning speed and overcome nonlinear effects in piezoelectric 
actuation (Jalili et al., 2004; Leang & Devasia, 2007; Pao et al., 2007; Rafai & Toumi, 2004; 
Salapaka et al., 2002; Schitter et al., 2004; Schitter et al., 2004; Sebastian et al., 2007).  
Although these methods can overcome modeling errors and have the robustness to 
overcome some parameter variations, they provide limited vibration compensation. In 
addition, in most of these methods, design complexity is combined with the use of linear 
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system models extracted from experimentally-measured frequency-response curves. For this 
reason, they neglect the nonlinear dynamics of the system and the control system is only 
locally stable. 
The design of fuzzy controllers is simpler and faster than conventional controllers, 
especially in the presence of nonlinear dynamics or uncertainties where the system is not a 
well-posed linear system. Fuzzy control handles the nonlinearities and uncertainties of the 
system using rules, membership functions, and the inference process. In addition, when 
uncertainties or complex dynamics, which can not be modeled easily, are present in the 
system, the use of a fuzzy system to model the system and design the controller gives the 
designer the ability to implement the controller on a simple system model and extend it later 
to more complex or more practical systems. Moreover, fuzzy controller has an improved 
performance, a simpler implementation, and a reduced design and implementation cost. 
In this chapter, we present an efficient PD-fuzzy controller that improves the operating 
characteristics of AFMs by increasing the bandwidth of the feedback controller, thereby 
allowing for faster scan rates and higher resolutions. We present the AFM system model in 
section 2, a basic fuzzy controller in section 3, our hybrid PD-fuzzy controller in section 4, 
and a comparative study for the performance of the two controllers and a high-gain PD 
controller proposed in (Leang & Devasia, 2007) in section 5. Finally, in section 6 we provide 
concluding remarks. 

2. System model 
The dynamics of the probe-sample system in an AFM can be modeled by the following 
lumped-mass system (Sinha, 2005): 

 ( )mx bx kx F x u+ + + =  (1) 

where x denotes the tip displacement, m, b, and k denote the probe mass, damping 
coefficient, and stiffness, respectively, u(t) represents the controller force input, and F(x) 
denotes the interaction forces between the tip and surface defined by (Ashhab et al., 1999): 

 
6

2 8
0 0

( )
( ) 30( )

Dk DkF x
z x z x

σ
= −

+ +
 (2) 

zo is the cantilever tip equilibrium position, σ denotes the molecular diameter, D is defined 
as: 

 
6
HA RD
k

=  (3) 

AH is the Hamaker constant, and R is the tip radius. A schematic of the probe and sample 
system is shown in Figure 1. 
The tip displacement ( )x t  is measured with respect to the equilibrium position zo. To 
prevent contact between the tip and the surface, it is constrained by following inequality [5]: 

 0( )z x R+ ≥   (4) 

A block diagram of the AFM feedback control system is shown in Figure 2.  
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Fig. 1. A schematic of the AFM as a 1-DOF harmonic oscillator.  
 

 
Fig. 2. A schematic of the AFM feedback control system. 

3. Design of the basic fuzzy controller 
The first step in the design of the fuzzy controller is to determine the inputs and outputs of 
the fuzzy system. The error between the reference and actual tip position e(t) and its time 
derivative ( )e t  are taken as the system inputs and the controller input force u(t) is taken as 
the fuzzy system output. The linguistic variables listed in table 1 are chosen to represent the 
size of the inputs and output. The shape of membership functions of these rules has a key 
role in the controller design.Although trapezoidal and bell-curve functions are used in fuzzy 
control systems, the triangular function is computationally simpler. Other important factors 
in the design membership functions are the number of curves and their position. The 
membership functions for each linguistic variable are shown in Figures 3-5. The 
inputs/output is normalized to vary between -1 and 1 using the scaling boxes Gain(i) and 
G(i) in the Simulink diagrams, Figures 6 and 7, respectively. The membership functions for 
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the linguistic variables “PS” and “NS” strongly influence the steady state error of the 
system, whereas the membership functions for the linguistic variables “NB” and “PB” 
strongly influence the initial undershoot and overshoot, respectively, following a 
disturbance. The control surface, Figure 3, shows the operation of the fuzzy controller 
schematically. The magnitude of the controller input force is strongly influenced by both the 
error and the derivative error.  
The rules commanding the fuzzy system response (output) are given in table 2. For example, 
when the error between the reference and actual tip position and its derivative are “small 
negative” and “small positive”, respectively, the output of the fuzzy controller is a “negative 
small” force.  We selected Mamdani method to design the fuzzy inference engine using 
“min-function” for “and-method”, “max-function” for “or-method”, and aggregation. The 
“bisector-method” was used for defuzzification; that is to transform the fuzzy output to a 
crisp output. 
 

NB Negative Big 
NS Negative Small 
PS Positive Small 
PB Positive Big 

Table 1. Linguistic Variables for Input/Output. 
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Fig. 3. Error e(t) and input force u(t) membership functions. 
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Fig. 4. Error derivative ( )e t membership function.  
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Fig. 5. Control surface of the fuzzy controller. 

 
Fig. 6. Simulink block diagram of the system and the fuzzy controller.  

 
e\ e NB NS PS PB 
NB NB NB NS NS 
NS NB NS NS NS 
PS PS PS PS PB 
PB PS PS PB PB 

Table 2. Tabulated Fuzzy Rules. 

4. Design of the PD-fuzzy controller 
To improve the performance of the PD controller proposed in (Leang & Devasia, 2007) 
against external disturbances and increase the operation bandwidth of the control system, 
we used Mamdani fuzzy control to design a PD-fuzzy controller that will automatically tune 
the gains. Figure 7 shows the block diagram of the controller.  
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Fig. 7. Block diagram of the PD- fuzzy controller. 

In this controller, the standard PD control law: 

 1 2u u u= +   (5) 

where 1u is the proportional control input and 2u  is the derivative control input, is replaced 
with: 

 0 0( ) ( ) ( ) ( ) ( )p p D Du t k Fk e t k Fk e t= + + +  (6) 

where kpo = 5000 and kDo = 10 are fixed gains acting as the nominal values of the PD 
controller. The value of PFk and DFk are to be determined by fuzzy logic based on the system 
inputs and added to the nominal gains. Figure 7 shows the manner of adding fuzzy parts of 
proportional and derivative parts of the PD-Fuzzy control input. After that PFk and DFk are 
constructed by fuzzy logic section they are added to fixed proportional and derivative gains. 
The fuzzy logic part of the system is designed to improve the robustness of the PD control 
system against parameter uncertainties and external disturbances. Table 3 lists the scaling 
factors which are shown in Figure 7 and used in the PD-Fuzzy control system. Figures 8-10 
show the membership functions of the inputs and output of the hybrid PD-Fuzzy controller. 
Figure 11 shows the control surface of the controller. The error input dominates the output 
of the fuzzy control indicating that the fuzzy-side of the controller has to compensate 
particularly for deficiencies in proportional gain. 
 
 

G1=4e7 G2=1250 G3=8e6 
G4=250 G5=10000 G6=100 

 

Table 3. Scaling Factors. 
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Fig. 8. Error membership functions for the PD-Fuzzy controller. 
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Fig. 9. Error derivative membership functions for the PD-Fuzzy controller. 
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Fig. 10. Output membership functions for the PD-Fuzzy controller. 
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Fig. 11. Control surface of the PD-Fuzzy controller. 

5. Results 

A set of simulated tests was designed to compare the efficiency of the proposed controllers 
against that of the controller proposed in (Leang & Devasia, 2007). The tests were conducted 
on an AFM probe [19] with the following specifications: Length=225 μm, Width=45 μm, 
Thickness=2.5 μm, and tip radius R = 5 nm. Also, 2330ρ = 3/kg m and 

111.69 10E∗ = × 2/N m . According to these dimensions and parameters, the lumped stiffness 
was found by: 

 
3

3E Ik
L

∗

=  (7) 

  m LAρ=   (8) 

So, m=5.89e-11 Kg and k = 2.6 N/m and f=33.5 KHz. We conducted three sets of tests 
imposing progressively more stringent demands on the controllers’ performance. 

5.1 Test one 
The controller performance was investigated for a sinusoidal terrain and sinusoidal tip 
displacement trajectory for a range of scan rates from 0.3 μm/s to 15 μm/s. The AFM is 
traversing in the sinusoidally varying grating with a pitch of 10 nm, resulting in frequencies 
of encounter varying from 30 Hz to 1500Hz. Figures 12-15 show the tracking-error using the 
high gain PD controller, the PD-fuzzy, and the fuzzy controllers for 30 Hz, 200 Hz, 500 Hz 
and 1500Hz, respectively. We found that the tracking-errors of the fuzzy and PD-fuzzy 
controllers were consistently better than that of the PD controller. In comparison between 
the fuzzy controller and PD-fuzzy controller, we found that the fuzzy controller had 
consistently smaller tracking-errors. On the other hand, the fuzzy controller assumes that 
the plant can supply infinite power, while the PD-fuzzy sets the gains at practically 
attainable power levels. 
However, Figure 13(b) shows that the abrupt gain changes in the PD-fuzzy controller can 
induce oscillations in the tip position. With this drawback in mind and considering the 
results obtained in (Salapaka et al., 2005) and (Leang & Devasia, 2007), it is concluded that 
the PD-fuzzy controller has a very good response that balances error minimization against 
limiting demands on the plant. 
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Fig. 12. Tip tracking-error using PD, PD-Fuzzy, and Fuzzy controllers at an encounter 
frequency of 30 Hz. 
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b) Error signals 

Fig. 13. Tip tracking-error using PD, PD-Fuzzy, and Fuzzy controllers at an encounter 
frequency of 200 Hz. 
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b) Error signals 

Fig. 14. Tip tracking-error using PD, PD-Fuzzy, and Fuzzy controllers at an encounter 
frequency of 500 Hz. 
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b) Error signals 

Fig. 15. Tip tracking-error using PD, PD-Fuzzy, and Fuzzy controllers at an encounter 
frequency of 1500 Hz. 
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We use the root-mean-square of the error (erms) (Leang & Devasia, 2007): 

 

2

0

1 ( )
(%) 100%

max( ) min( )

T

rms
ref ref

e t dt
T

e
x x

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ×⎜ ⎟
−⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠

∫
 (7) 

As a figure-of-merit to quantify the performance of each of the controllers. Tab.4 lists the 
tracking root-mean-square error for each controller in each of the test cases above as a 
percentage of the total output range (3 nm). We find that the performance of the fuzzy and 
fuzz-PD controllers are consistently, at least, one-order of magnitude, better than that of the 
PD controller. 
 

Frequency (Hz) \ 
Controller PD PD-Fuzzy Fuzzy 

30 .3 .0638 0.044 
200 1.53 .14 0.069 
500 3.67 .58 0.084 

1500 10.12 1.62 0.1 

Table 4. Tracking-error performance for sinusoidal trajectories (%)rmse . 

5.2 Test two 
This simulation examines the tip response to a triangular terrain resulting in the tip 
displacement trajectories shown in Figures 16(a) and 17(a). The figures show the tracking-
error for scan rates of 0.5 μm/s and 2 μm/s, respectively, resulting in encounter frequencies 
of 50 Hz and 200 Hz. We find that the abrupt position changes in the trajectory result in 
similar error levels for the PD and the PD-fuzzy controllers that are twice as large as those 
seen in the fuzzy controller. However, away from these sharp position changes the PD-
fuzzy controller performs better than the PD controller. When we compare the results 
obtained as well as those in (Salapaka et al., 2005) and (Leang & Devasia, 2007), we conclude 
that both fuzzy and PD-fuzzy controller offer enhanced AFM tip tracking performances.  
Tab.5 shows the tracking root-mean-square error for each controller in the two test cases. 
While the PD-fuzzy controller has smaller errors than that of the PD controller, they are of 
the same order, whereas the error of the fuzzy controller is one order of magnitude smaller 
than both of them. 
 

Frequency 
(Hz)\Controller PD PD-Fuzzy Fuzzy 

50 .35 .11 .07 
200 1.31 .42 .075 

Table 5. Tracking-error performance for triangular trajectories (%)rmse . 
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Fig. 16. AFM response with 50 Hz.  
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Fig. 17. AFM response with 200 Hz.  
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5.3 Test three 
We investigate the response of the controllers to a train of sharp terrain changes resulting in 
a tip trajectory similar to that shown in Figure 18(a), while the AFM is scanning at a rate of 1 
μm/s. This condition represents a more general specimen surface with irregular and sharp 
height changes representing the asperities of the surface. The error in the fuzzy controller is 
one-order of magnitude smaller than those of the PD and PD-fuzzy controllers. The PD-
Fuzzy controller tracking-error is smaller both in absolute and average senses than that of 
the PD controller as shown in Figure 18(b) and Tab.6, respectively.  
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Fig. 18. AFM response in random reference. 
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PD PD-Fuzzy Fuzzy 
.46 .15 .08 

Table 6. Tracking-error performance for the random trajectory (%)rmse . 

6. Conclusion 
In this paper we used fuzzy control theory to design two controllers for closed-loop 
feedback control of an AFM probe. These controllers are designed based on conventional 
fuzzy Mamdani control theory and the introduction of a fuzzy controller to a PD controller 
to tune online the PD gains resulting in a hybrid PD-fuzzy controller. Comparing the results 
of these controllers and a baseline a high-gain PD controller, we found that the fuzzy 
controller had the best position-tracking performance. However since it imposes unrealistic 
power demands on the AFM plant, it was concluded that the PD-fuzzy controller represents 
the best balance between minimization of the tracking-error and realistic power demands on 
the plant.  
Since the PD-fuzzy controller had smaller tracking-error than other controllers reviewed in 
this chapter , it allows the AFM to operate at faster scanning rates, resulting in wider 
bandwidth of encounter frequencies, for the same error tolerance levels. Finally, it was 
found that the PD-fuzzy controller can induce oscillations in the position of the probe tip. 
Therefore, we recommend enhancing the PD-fuzzy controller to mitigate this negative effect 
of abrupt changes in the PD controller gains. 
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1. Introduction     
The difficulty of managing today’s computing systems goes well beyond the administration 
of individual software environments. The need to integrate several heterogeneous 
environments into corporate-wide computing systems, and to extend that beyond company 
boundaries into the Internet, introduces new levels of complexity. Relying solely on further 
innovations in programming methods will not get us through the present complexity crisis. 
The only option remaining is Autonomic Computing – computing systems that can manage 
themselves given high level objectives from administrators. 
An autonomic system has four major characteristics: self-configure, self-heal, self-optimize 
and self-protect (Salehie & Tahvildari, 2005). 
Self-configuring is the capability of adapting automatically and dynamically to 
environmental changes. This characteristic has two aspects 
1. installing, (re-)configuring and integrating large, complex network intensive systems 
2. adaptability in architecture or component level to re-configure the system for achieving 

the desired quality factors. 
Self-healing is the capability of discovery, diagnosing and reacting to disruptions. Such a 
system must be able to recover by detecting a failed component, taking it off-line to be fixed, 
and replacing the fixed component into the system without any apparent disruption. 
Self-optimizing is the capability to efficiently maximize resource allocation and utilization 
for satisfying requirements of different users. While, in a short term, self-optimizing can 
address the complexity of managing system performance, in a long run its components will 
automatically and proactively seek ways to tune their operations and make themselves 
more cost efficient. 
Self-protecting is the capability of reliably establishing trust, and anticipating, detecting and 
recovering from the effects of attacks with two aspects 
1. defending the system against correlated problems arising from malicious attacks or 

cascading failures that remain uncorrected by self-healing measures 
2. anticipating problems based on early reports from sensors and taking steps to avoid or 

mitigate them. 
The autonomic computing architecture (explained later) provides a blue print for 
developing feedback control loops for self-managing systems. This observation suggests 
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that control theory might provide guidance as to the structure of and requirements for 
autonomic managers. 
Intelligent control emerged as a viable alternative to conventional model-based control 
schemes because issues such as uncertainty or unknown variations in plant parameters and 
structure can be dealt with more effectively. This improves the robustness of the control 
system. One of the ways of developing an intelligent control system is through Fuzzy 
control. Fuzzy logic offers the important concept of fuzzy set theory, fuzzy if-then rules and 
approximate reasoning which deals with imprecision and information granularity. 
E-commerce is an area where an Autonomic Computing system could be very effectively 
deployed. E-commerce has created demand for high quality information technology (IT) 
services and businesses seek ways to improve the quality of service (QoS) in a cost-effective 
way. Properly adjusting tuning parameters for best values is time-consuming and skills-
intensive. 
The objectives of this chapter are to minimize response time by maximizing system 
utilization and also to maximize the profit of an e-commerce system by maximizing system 
utilization. The outline of the chapter is as follows. Initially the basic concepts of Autonomic 
Computing, Fuzzy Control and applications of Fuzzy Control to e-commerce system are 
explained. Then the contributions made in these areas are clearly explained focussing on the 
methods used. 

1.1 Concepts of autonomic computing system 
Figure 1.1 depicts the components and key interactions for a single autonomic manager and a 
single resource. The resource, sometimes called a managed element, is what is being made 
more self-managing. This could be a single system (or even an application within a system), or 
it may be a collection of many logically related systems. Sensors provide a way to obtain 
measurement data from resources, and effectors provide a means to change the behavior of the 
resource. Autonomic managers read sensor data and manipulate effectors to make resources 
more self-managing. The autonomic manager contains components for monitoring, analysis, 
planning, and execution. Common to all of these is knowledge of the computing environment, 
service level agreements, and other related considerations. The monitoring component filters 
and correlates sensor data. The analysis component processes these refined data to do 
forecasting and problem determination, among other activities. Planning constructs workflows 
that specify a partial order of actions to accomplish a goal specified by the analysis component. 
The execute component controls the execution of such workflows and provides coordination if 
there are multiple concurrent workflows. (The term “execute” may be broadened to 
“enactment” to include manual actions as well.) Scaling is achieved by having a single 
autonomic manager control multiple resources and by applying the architecture recursively so 
that lower level managers are treated as resources by higher level managers. In essence, the 
autonomic computing architecture provides a blue print for developing feedback control loops 
for self-managing systems. This observation suggests that control theory might provide 
guidance as to the structure of and requirements for autonomic managers. 

1.2 Fuzzy logic concepts 
Fuzzy logic refers to a logical system that generalizes classical two valued logic for 
reasoning under uncertainty. In a broad sense fuzzy logic refers to all the theories that 
employ fuzzy sets which are classes with boundaries that are not sharply defined. 
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Fig. 1.1. Autonomic Computing architecture 

Fuzzy logic is a technology for developing intelligent control. It achieves machine 
intelligence by offering a way for representing and reasoning about human knowledge that 
is imprecise by nature. Even though fuzzy logic is not the only technique for developing AI 
systems, it is unique in its approach for explicit representation of the impreciseness in 
human knowledge and problem solving techniques. Fuzzy logic offers a practical way for 
designing nonlinear control systems. It achieves nonlinearity through piece wise linear 
approximation. The basic building block of a fuzzy logic control system is a set of fuzzy if 
then rules that approximates a functional mapping. 
Fuzzy logic can be used for controlling a process that is too nonlinear or too ill understood 
to use conventional control designs. It also enables control engineers to easily implement 
control strategies used by human operators. Briefly fuzzy logic is mainly to deal with 
complex systems and also for the ease of describing human knowledge. 
Fuzzy logic has emerged as a viable alternative to conventional model-based control 
schemes because issues such as uncertainty or unknown variations in plant parameters and 
structure can be dealt with more effectively. This improves the robustness of the control 
system. Fuzzy logic offers the important concept of fuzzy set theory, fuzzy if-then rules and 
approximate reasoning which deals with imprecision and information granularity. 
The three main steps that are part of any fuzzy control system (Yen & Langari, 2005) – 
i) Fuzzification ii) Inference mechanism iii) Defuzzification 
The heart of the fuzzy controller involves a set of IF-THEN rules stored in a rule base. The 
rules are expressed using linguistic variables and linguistic values. For example, “IF 
temperature IS high THEN speed IS high”. This means, increase the speed of the fan if 
temperature is high. The terms temperature and speed are linguistic variables, while high is a 
linguistic value. Linguistic variables exist in one-to-one correspondence with numeric 
variables. Linguistic variables take on linguistic values that correspond to the values of the 
corresponding numeric variables. For example, temperature can take on values high, medium 
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or low corresponding to the numeric variable for temperature. Converting the input 
numeric variables into linguistic values of linguistic variables is known as fuzzification. 
Membership functions are used for the conversion. Next the inference mechanism invokes 
each appropriate rule, generates a result for each, then combines the results of all the rules. 
Defuzzification involves converting the combined result back into a specific numeric output 
value. 

1.3 Application of fuzzy control to e-commerce – an overview 
E-commerce is one area where an Autonomic Computing system could be very effectively 
deployed. E-commerce has created demand for high quality information technology (IT) 
services.  For example, a “buy” transaction that takes more than a few seconds may cause 
the customer to abandon the purchase. As a result, businesses are seeking quality of service 
(QoS) guarantees from their service providers. (Diao et al., 2002a). These guarantees are 
expressed as part of service level agreements (SLAs). SLA is a part of a service contract 
where the level of service is formally defined. It is a contract that exists between customers 
and their SP, client or between SPs. Many SLAs include specifications (Diao et al., 2001) of: 
- revenue that is accrued to the SP for services delivered and 
- costs that are incurred by the SP in the form of rebates to customers if previously agreed 

constraints are violated or the service is unavailable. 
An SLA is characterized by a profit model. Consider a profit model described by 3 
parameters 
1. r, the revenue received for each completed transaction; 
2. W, the response time constraint; and 
3. c, the cost incurred if a transaction’s response time exceeds W (offending transaction) 
Thus, Profit = Revenue – Cost, where 
Revenue = r * (number of completed transactions) 
Cost = c * (number of offending transactions) 
Since demand for services is often unpredictable, providers must sometimes make tradeoffs 
between losing revenue and incurring penalties. Making such choices is skill intensive and 
time consuming, and the decisions must be made in real time. 
An ecommerce system is basically a client server system. The server being the most 
important part, it is very advantageous if autonomic computing concepts are incorporated 
into the server. The system studied here is the Apache web server. In Apache version 2.2 
(configured to use Multi-Processing Module prefork), there are a number of worker 
processes monitored and controlled by a master process. The worker processes are 
responsible for handling the communications with the web clients, including the work 
required to generate the responses. A worker process handles at most one connection at a 
time, and it continues to handle only that connection until the connection is terminated. 
Thus, the worker is idle between consecutive requests from its connected client. 
A parameter termed MaxClients limits the size of this worker pool, thereby providing a kind 
of admission control in which pending requests are kept in the queue. MaxClients should be 
large enough so that more clients can be served simultaneously, but not so large that 
resource contention occurs. The optimal value depends on server capacity and the nature of 
the workload. If MaxClients is too small, there is a long delay due to waits in the queue. If it 
is too large resources become over utilized which degrades performance as well. The 
combined effect is that the response time is a concave upward function of MaxClients (Diao 
et al., 2002a). 
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The setting of MaxClients can also be carried out by looking at the profits (Diao et al., 
2002b). Consider an e-commerce system, in which revenues accrue if the admitted requests 
are processed within the specified deadline and costs are incurred otherwise. If MaxClients 
is too small, the number of requests that can be processed in a given interval is small. 
Though the number of violations and hence, costs will be small (mostly zero), profits will be 
less because of decreased revenue. As MaxClients increases, revenue increases 
proportionately till the point where the server gets saturated. Thereafter there will be no 
further increase in revenue but there will be an increase in costs because of increased 
violations. The combined effect is that profits are concave downwards in the parameter, 
MaxClients. 

2. Minimizing response time 
2.1 Simulation using M/M/1 queue and processes 
Here the client server architecture is simulated using an M/M/1 queue and processes. 
Parameter MaxClients is simulated by max-requests. The response time is minimum for an 
optimum value of max-requests. In the next subsection, the simulation environment used is 
described. Later, the design and implementation of a fuzzy controller for optimizing the 
value of max-requests is presented. This ensures that the response time is minimized. 

2.1.1 Simulation environment 
A workload generator is used to simulate the generation of requests from many clients. The 
workload generator generates requests such that the time between generations of 
consecutive requests is exponentially distributed. The processing of these requests by the 
server is simulated by a program, in which the parent process creates a child process every 
time a request is received. Each child process sleeps for a time which is exponentially 
distributed before exiting. Thus, the client server architecture is simulated here as an 
M/M/1 queue. 

2.1.2 Design and Implementation of Fuzzy Controller 
The block diagram of the fuzzy control system is shown in Figure 2.1. The fuzzy controller 
has two inputs: change-in-response-time (dr) and change-in-max-requests (dm) between 
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Fig. 2.1. Fuzzy control system – minimizing response time 
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Fig. 2.2. Membership functions – minimizing response time 

intervals. The controller’s output is next-change-in-max-requests (dnm). An integrator 
converts this value into max-requests. Next-change-in-max-requests of this interval is taken 
as change-in-max-requests for the next interval. The value of change-in-response-time is 
obtained from the differentiator. 
The triangular membership functions used for the fuzzification of the inputs and 
defuzzification of the output are shown in Figure 2.2. In each case, the parameter is divided 
into 5 intervals called neglarge, negsmall, zero, possmall and poslarge. The measured numeric 
values are multiplied by normalized gains. This is the reason why the x-axis shows -1 and 1 for 
all the membership functions. Inputs change-in-response-time (dr) and change-in-max-
requests (dm) are multiplied by ng-dr and ng-dm respectively. Output is denormalized by 
multiplying by ng-dnm to obtain next-change-in-max-requests (dnm). Response time is a 
concave upward function of max-requests. Hence, a gradient descent procedure is used to 
minimize response times. This is described using fuzzy rules shown in Table 2.1. 
Since the value of max-requests that minimizes the response-time is not known, these rules are 
described in terms of changes to max-requests and reponse-times. As an example, consider 
rule 5. It means that max-requests has been increased by a large amount (in the beginning of 
the current measurement interval) and it is observed that the response-time has decreased by a 
large amount by the end of the interval. This means the change to max-requests is in the 
correct direction. Hence, it is continued to be changed in the same direction. That is, for the 
next interval, max-requests is increased further. Thus, rules 1 through 10 take care of the 
correct situations where as rules 16 through 25 handle the incorrect situations. In rules 16 
through 25 the previous action caused the response-time to increase, so the direction has to be 
“reversed”. Later the consequents from all the activated rules are weighted using the centre of 
gravity method to obtain the (normalized) output value. 
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IF THEN 
Rule change-in-

max-requests AND change-in-
response-time 

next-change-in-
max-requests 

1 
2 
3 
4 
5 

neglarge 
negsmall 

zero 
possmall 
poslarge 

AND
AND
AND
AND
AND

neglarge 
neglarge 
neglarge 
neglarge 
neglarge 

neglarge 
negsmall 
possmall 
possmall 
poslarge 

6 
7 
8 
9 
10 

neglarge 
negsmall 

zero 
possmall 
poslarge 

AND
AND
AND
AND
AND

negsmall 
negsmall 
negsmall 
negsmall 
negsmall 

neglarge 
negsmall 

zero 
possmall 
poslarge 

11 
12 
13 
14 
15 

neglarge 
negsmall 

zero 
possmall 
poslarge 

AND
AND
AND
AND
AND

zero 
zero 
zero 
zero 
zero 

negsmall 
zero 
zero 
zero 

possmall 
16 
17 
18 
19 
20 

neglarge 
negsmall 

zero 
possmall 
poslarge 

AND
AND
AND
AND
AND

possmall 
possmall 
possmall 
possmall 
possmall 

poslarge 
possmall 

zero 
negsmall 
neglarge 

21 
22 
23 
24 
25 

neglarge 
negsmall 

zero 
possmall 
poslarge 

AND
AND
AND
AND
AND

poslarge 
poslarge 
poslarge 
poslarge 
poslarge 

poslarge 
possmall 
negsmall 
negsmall 
neglarge 

Table 2.1. Fuzzy rules – minimizing response time 

Normally, when one or both inputs are zero, the output is set to zero. But in the rules 3, 11, 
15, and 23, the output is set to a small value. This helps the controller to converge faster. As 
an example, let us consider rule 23. Without any change in max-requests, there is a large 
increase in response-time. This means that the incoming requests need larger service times 
and the number of requests admitted should be decreased. Hence, max-requests is 
decreased by a small value. 
The set-up for the simulation consists of 
• a workload generator program to generate requests, 
• a server program to service the requests, 
• a differentiator routine, 
• a fuzzy controller program and 
• an integrator routine. 
The incoming request from the workload generator is first put into a queue in the server. 
When the server becomes free, the first request in the queue is dequeued. Workload 
generator is set to generate requests such that the time between arrivals of consecutive 
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requests on an average (mean inter-arrival) is 0.2 second. That is 300 requests per minute on 
an average. Mean service time is set to 60 seconds. 
Simulation readings are recorded after every measurement interval. At the end of every 
measurement interval, response time of that interval is sent to the differentiator whose 
output is the change-in-response-time (dr) between current and previous intervals. The 
number of requests accepted by the server, is limited by the parameter max-requests, which 
is updated by the integrator at the beginning of every measurement interval. The parameter 
max-requests correspond to MaxClients in an Apache web server. 
A measurement interval of 3 minutes is used. To ensure that transients do not affect the 
readings, readings are taken for the last 1 minute of the 3 minute interval. Response time 
values of the requests which entered service in the last 1 minute are noted and the average is 
calculated. For the normalizing gains, large values increase the speed of the controller, but 
too large values will cause the system to oscillate. After experimenting with a few values, 
the values selected were ng-dr = ng-dm = 1/10 and ng-dnm = 10. This means a change of 10 
in response-time or in max-requests is considered to be large. 

2.2 Results 
Here to minimize the response time the client server architecture is simulated as an M/M/1 
queue and processes. That is, the time between generations of consecutive requests is 
exponentially distributed. Also processing of each request is simulated by a process which 
runs for a time which is exponentially distributed. Parameter MaxClients is simulated by 
max-requests. The response time is minimum for an optimum value of max-requests. The 
controller minimizes the response time by finding an optimum value for max-requests. 
The variation of response time with respect to max-requests is plotted in Figures 2.3, 2.4 and 
2.5. The mean of the distribution of the inter-arrival times between consecutive requests is 
kept constant at 0.2 second. This facilitates easy comparison among the three sets of results. 
Figure 2.3 shows the result for the case where mean of the service time distribution is 40 
seconds. One can see that there is some oscillation. Parameter max-requests increases to 100, 
before settling to a value around 80. The minimum response time obtained is about 49 
seconds. Initially change-in-max-requests is positive, while change-in-response-time is 
negative. This means the value of max-requests is increasing towards the optimum value. 
However there is an overshoot and so the controller decreases max-requests towards the 
optimum. 
Figure 2.4 shows the result for the case where mean of the service time distribution is 30 
seconds. Once again there is some oscillation, but it is reduced. Parameter max-requests 
increases to about 104, before settling to a value around 98. The minimum response time 
obtained is about 30 seconds. The response time is smaller because of the reduced service 
time. As before, there is an overshoot before the controller decreases max-requests towards 
the optimum. 
Figure 2.5 shows the result for the case where mean of the service time distribution is 20 
seconds. There is almost no oscillation. Parameter max-requests settles to a value of about 
103. Since the service time is smaller than the previous two cases, the response time obtained 
of around 20 seconds is also lesser than that obtained previously. 
Thus, it is seen that the controller always adjusts the value of max-requests for minimizing 
response-time. 



An Application of Fuzzy Controllers: Autonomic Computing Systems   

 

233 

 

 
Fig. 2.3. With mean of the service time distribution = 40 secs 
 

 

 
Fig. 2.4. With mean of the service time distribution = 30 secs 
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Fig. 2.5. With mean of the service time distribution = 20 secs 

3. Maximizing profit of an e-commerce system 
3.1 Simulation using M/M/1 queue and processes 
Here also the client server architecture is simulated using an M/M/1 queue and processes. 
As before, parameter MaxClients is simulated by max-requests. The profit is maximum for 
an optimum value of max-requests. In the next subsection, the simulation environment used 
is described. This is followed by the design and implementation of a fuzzy controller for 
optimizing the value of max-requests. This ensures that the profit is maximized. 

3.1.1 Simulation environment 
A workload generator is used to simulate the generation of requests from many clients. The 
workload generator generates requests such that the time between generations of 
consecutive requests is exponentially distributed. The processing of these requests by the 
server is simulated by a program, in which the parent process creates a child process every 
time a request is received. Each child process sleeps for a time which is exponentially 
distributed before exiting. Thus, the client server architecture is simulated here as an 
M/M/1 queue. 

3.1.2 Design and Implementation of Controller 
The block diagram of the fuzzy control system is shown in Figure 3.1. The client server 
architecture is simulated here as an M/M/1 queue. The number of requests accepted by the 
server is limited by the parameter max-requests, which is updated by the integrator at the 
beginning of every measurement interval. The parameter max-requests corresponds to 
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MaxClients in an Apache web server. The number of child processes which are able to run 
to completion are called completed transactions, while those which are unable to run to 
completion are called violating transactions. These two values are sent to the profit module 
for calculating profit. This value of profit is input to a differentiator whose output is the 
change-in-profit (dft) between current and previous intervals. The fuzzy controller has two 
inputs: change-in-profit (dft) and change-in-max-requests (dm) between intervals. The 
controller’s output is next-change-in-max-requests (dnm), whose value is taken as the 
change-in-max-requests for the next interval. An integrator converts this value into max-
requests. 
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Fig. 3.1. Fuzzy control system – maximizing profit 

The triangular membership functions used for the fuzzification of the inputs and 
defuzzification of the output are shown in Figure 3.2. In each case, the parameter is divided 
into 5 intervals called neglarge, negsmall, zero, possmall and poslarge. The measured 
numeric values are multiplied by the normalized gains. Value change-in-profit (dft) is 
multiplied by ng-dft, while change-in-max-requests (dm) is multiplied by ng-dm. The 
output value next-change-in-max-requests (dnm) is denormalized by multiplying by the 
normalized gain, ng-dnm, to obtain the actual output value. It is previously noted that profit 
is a concave downward function of max-requests. Hence, a hill climbing procedure is used 
to maximize profit. This is described using fuzzy rules shown in Table 3.1. 
Since the value of max-requests that maximizes the profit is not known, these rules are 
described in terms of changes to max-requests and profit. As an example, consider rule 25. It 
means that max-requests has been increased by a large amount (in the beginning of the 
current measurement interval) and it is observed that the profit has increased by a large 
amount by the end of the interval. This means the change to max-requests is in the correct 
direction. Hence, it is continued to be changed in the same direction. That is, for the next 
interval, max-requests is increased further. Thus, rules 16 through 25 take care of the correct 
situations where as rules 1 through 10 handle the incorrect situations. In rules 1 through 10 
the previous action caused the profit to decrease, so the direction has to be “reversed”. Later 
the consequents from all the activated rules are weighted using the centre of gravity method 
to obtain the (normalized) output value. 



 Fuzzy Controllers, Theory and Applications 

 

236 

 

-1 +10

µ
negsmall zero possmall

neglarge poslarge

change-in-max-requests

-1 +1 0

µ
negsmall zero possmall 

neglarge poslarge 

change-in-profit

-1 +10

µ

negsmall zero possmall

neglarge poslarge

next-change-in-max-requests  
Fig. 3.2. Membership functions – maximizing profit 
Normally, when one or both inputs are zero, the output is set to zero. But in the rules 3, 11, 
15, and 23, the output is set to a small value. This helps the controller to converge faster. As 
an example, let us consider rule 23. Without any change in max-requests, there is a large 
increase in profit. This means that the incoming requests need smaller service times and and 
more such requests can be admitted. Hence, max-requests is increased by a small value. 
The simulation environment consists of 
• a workload generator program to generate requests, 
• a server program to service the requests, 
• a profit module for calculating profit values, 
• a differentiator routine, 
• a fuzzy controller program and 
• an integrator routine. 
Simulation readings are recorded after every measurement interval. A measurement 
interval of 60 seconds was used. 
The profit module contains the profit model which is characterized by r, the revenue per 
completed transaction and c, the cost per violating transaction. Three profit models are 
defined. P1: r = c, that is, equal weight is assigned to completed and violating transactions; 
P2: r = k*c, more weight is assigned to completed transactions; P3: r = c/k, more weight is 
assigned to offending transactions. The constant k should be specified in the SLA. In this 
work, value for k is taken as 5. 
Too large normalizing gains result in the controller oscillating, while too small ones result in 
a slow performance. For better performance, different values of normalizing gains were 
selected for different profit models. For profit model P1, ng-dft = ng-dm = 1/5 and ng-dnm 
= 5. For P2, ng-dft = 1/25, ng-dm = 1/5 and ng-dnm = 5. For P3, ng-dft = 1/10, ng-dm = 1/5 
and ng-dnm = 5. 
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IF THEN 
Rule change-in- 

max-requests AND change-in 
-profit 

next-change-in-
max-requests 

1 
2 
3 
4 
5 

neglarge 
negsmall 

zero 
possmall 
poslarge 

AND
AND
AND
AND
AND 

neglarge 
neglarge 
neglarge 
neglarge 
neglarge 

poslarge 
possmall 
negsmall 
negsmall 
neglarge 

6 
7 
8 
9 
10 

neglarge 
negsmall 

zero 
possmall 
poslarge 

AND
AND
AND
AND
AND 

negsmall 
negsmall 
negsmall 
negsmall 
negsmall 

poslarge 
possmall 

zero 
negsmall 
neglarge 

11 
12 
13 
14 
15 

neglarge 
negsmall 

zero 
possmall 
poslarge 

AND
AND
AND
AND
AND 

zero 
zero 
zero 
zero 
zero 

negsmall 
zero 
zero 
zero 

possmall 
16 
17 
18 
19 
20 

neglarge 
negsmall 

zero 
possmall 
poslarge 

AND
AND
AND
AND
AND 

possmall 
possmall 
possmall 
possmall 
possmall 

neglarge 
negsmall 

zero 
possmall 
poslarge 

21 
22 
23 
24 
25 

neglarge 
negsmall 

zero 
possmall 
poslarge 

AND
AND
AND
AND
AND 

poslarge 
poslarge 
poslarge 
poslarge 
poslarge 

neglarge 
negsmall 
possmall 
possmall 
poslarge 

Table 3.1. Fuzzy rules – maximizing profit 

3.2 Results 
Here to maximize the profit, the client server architecture is simulated as an M/M/1 queue 
and processes. That is, the time between generations of consecutive requests is exponentially 
distributed. Also processing of each request is simulated by a process which runs for a time 
which is exponentially distributed. Parameter MaxClients is simulated by max-requests. 
Parameter max-requests is the upper limit of the number of requests accepted by the server 
in the given interval. The number of requests which are able to run to completion are called 
processed-requests. These contribute to the revenue, while those which are not able to run to 
completion, called, violating-requests contribute to the cost. The contributions of processed-
requests and violating-requests towards the profit are decided by the profit model. 
Let ‘r’ be the revenue per processed-requests, ‘c’ the cost per violating-requests and ‘k’ be a 
constant. For profit model P1, r = c, that is, equal weight is assigned to processed-requests 
and violating-requests. For profit model P2, r = c * k, that is, more weight is assigned to 
processed-requests. For profit model P3, r = c / k, that is, more weight is assigned to 
violating-requests. Irrespective of the profit model, profit is maximum for an optimum value 
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of max-requests. The controller maximizes the profit by finding an optimum value for 
max-requests. 
The variation of profit with respect to max-requests for various profit models are plotted in 
Figures 3.3, 3.4 and 3.5. In this simulation, values selected are r = 1, c = 1 and k = 5. 
The results for profit model P1 are shown in Figure 3.3. As mentioned before, equal weight 
is assigned to processed-requests as well as violating-requests. It can be seen that the 
controller sets max-requests to moderate values. The profit is also moderate. 
The results obtained for profit model P3 are shown in Figure 3.4. In this case, more weight is 
assigned to the violating-requests. In an attempt to reduce the number of violating-requests, 
the controller tries to be more conservative and sets max-requests to comparatively smaller 
values. The profit is smaller, but it will reduce further if the controller increases the value of 
max-requests. Thus the controller has maximized the profit, even in the presence of 
constraints. 
The results obtained for profit model P2 are shown in Figure 3.5. Since more weight is 
assigned to processed-requests, the controller is more aggressive and sets max-requests to 
comparatively larger values. This can be seen when these results are compared with that of 
Figure 3.3. Larger values of max-requests combined with a more favorable profit model 
leads to a high value of profit. 
 
 
 

 

 
 

 

Fig. 3.3. For profit model P1 
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Fig. 3.4. For profit model P3 

 

 

 
Fig. 3.5. For profit model P2 



 Fuzzy Controllers, Theory and Applications 

 

240 

4. Conclusions 
This chapter focuses on two objectives: i) Minimize the response time, and ii) Maximize the 
profit of an e-commerce system. The client server architecture is simulated using an M/M/1 
queue and processes. In case the server is busy, the incoming requests wait in a queue. The 
average time spent by requests in the queue is the response-time. Here, MaxClients is 
simulated by max-requests. A fuzzy controller is designed and implemented for minimizing 
the response-time by optimizing the value of max-requests. The results obtained are also 
presented. It is seen that the fuzzy controller was successful in minimizing response-time. 
To meet the second objective, the client server architecture is again simulated using an 
M/M/1 queue. Here also, MaxClients is simulated by max-requests. A fuzzy controller is 
designed and implemented for maximizing the profit by optimizing the value of max-
requests.  For these simulations, it is seen that the fuzzy controller is able to maximize profit. 
Thus it can be concluded that fuzzy controllers play a vital role in the area of autonomic 
computing systems. 
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Guided Vehicle for Wall-Following 

Leehter Yao and Yuan-Shiu Chen 
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1. Introduction 
Fuzzy logic inference system (FIS) has been widely applied to the controller design for 
automatic guided vehicles (AGV) because FIS allows easier controller design under 
uncertainty and nonlinearity (Hwang et al., 2007; Godjevac & Steele, 1999; Baturone et al., 
2008; Er &Deng, 2004; Ng & Trivedi, 1998). Wall following is a commonly adopted scheme 
for an AGV to navigate in the indoor or outdoor environments. Sonar system is usually the 
most popular hardware system installed on the AGV for wall following due to its cost-
effective functionality and computational efficiency. There has been some research applying 
FIS to the sonar-based wall following task (Tsui et al., 2008; Li et al., 2003; Juang & Hsu, 
2009). The sonar constantly transmits ultra-sound signals during the wall following process. 
The ultra-sound signals cannot go through most of the objects, walls or structures in the 
environment, and thus are reflected back to the sonar. By calculating the difference between 
the time when the ultra-sound signals are transmitted and are received, the AGV is able to 
constantly detect the distance between the AGV and the object the ultra-sound signals are 
reflected from. For the wall following, the AGV is controlled to navigate along the wall 
while maintaining a fixed distance based on the received ultra-sound signals. If the surface 
or texture of the wall varies as AGV navigates in the environment, the ultra-sound signals 
might not be directly reflected back to the receiver or the intensity of received signals might 
not be constant all the time. The time difference of the transmitted and received ultra-sound 
signals is determined by calculating the time when the transmitted signal is above a 
threshold and the time when the received signal is above another threshold. The deflection 
of the ultra-sound signals due to the variation of object surface and the reduction of 
reflected signals due to the surface texture and material characteristic will cause the 
uncertainty of distance detection based on reflected ultra-sound signals. In other words, the 
calculated distance is corrupted by inevitable noise and disturbance contained in the 
received ultra-sound signals.  
Although fuzzy controllers are credited with a high degree of reliability for controlling such 
a complicated system as AGV, the type-1 fuzzy controller sometimes is not robust enough to 
cope with the uncertainty existed in the noise-corrupted sonar signals. In this paper, a type-2 
fuzzy controller (Mendel, 2001; Mendel & John, 2002) is proposed to control both the left 
and right drive wheel of an nonholonomic AGV for the wall following. It will be shown in 
this paper that the proposed type-2 fuzzy controller resolves the inevitable noise problem 
due to its flexibility of processing controller’s input and output signals with uncertainty and 
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its robustness held in the type-2 fuzzy control system. AGV usually works in uncertain 
environments with noisy sensing data and has nonlinear interactions with the changing 
environments. In some situations or applications, the type-2 FIS is more suitable to being 
applied to the design of AGV controllers. Recently, some research has applied the type-2 FIS 
to the control of AGV. In (Hagras, 2004), a hierarchical type-2 fuzzy controller was design 
for a mobile robot navigating in new environments. In (Zhang & Wang, 2007), a type-2 
fuzzy controller was successfully designed to control the periodic walking motion for a 
biped robot. The type-2 FIS was also integrated with a neural network. A type-2 fuzzy-
neural network was designed for the environment recognition as part of the navigation 
control of a mobile robot (Nurmaini et al., 2009). To reduce the heavy computational efforts 
in type-reduction process of a type-2 FIS, several efficient type-reduction schemes have been 
proposed to simplify the computation for defuzzification (Karnik & Mendel, 2001; Wu & 
Tan, 2005; Wu & Mendel, 2002). 

2. Problem statement and interval type-2 fuzzy controller 
Given that an AGV is to navigate within an environment by following walls or structures in 
the environment. For the convenience and simplicity of description, the wall or structure for 
the AGV to follow is called the wall in the rest of this paper. The AGV is controlled to 
maintain constant distance between the AGV and the wall despite that the texture and the 
surface of the wall may vary to some extent during the wall following process. Assume that 
the sonar system is utilized on AGV to detect the distance between the wall and the AGV. 
As shown in Fig. 1, the AGV used in this paper is equipped with 12 sonar transceivers 
around the vehicle body.  
In this paper, a fuzzy controller is designed to control the steering of both AGV’s drive 
wheels for wall following despite the noise and disturbance that might cause miscalculation 
of distance between the AGV and the wall. A type-2 FIS is adopted in the proposed fuzzy 
controller due to the flexibility to describe controller’s input and output signals and the 
robustness held in the type-2 fuzzy control system. It is known from Fig. 1 that both front 
and rear sonar transceivers numbered 1 and 9 are used for following the right wall while 
two sonar transceivers numbered 6 and 14 are used for following the left wall. Denote D as 
the distance the AGV is controlled to keep away from the wall during the wall following 
process. Let T be the sampling interval, d1(kT) and d2(kT) be the measured distance based on 
the ultra-sound signals received by the front and rear sonar transceivers, respectively, at k-th 
sampling interval. For the convenience of notation, the sampling interval T is omitted for the 
following signal notations. If e1(k) = D - d1(k) and e2(k) = D - d2(k), the type-2 fuzzy controller 
for the wall following is to control the AGV’s increment of rotation angle, b(k) ≡ Δθ(k) as 
following: 

 1 2 1 2( ) ( ) ( )
1 1 2 2( ) ( ) ( )i i i iif e k is A and e k is A then b k is B  (1) 

where 1( )
1
iA , 2( )

2
iA are the i1-th and i2-th type-2 fuzzy sets for controller inputs e1, e2, 

while 1 2( )i iB is the corresponding output i1 = 1…N1, i2 = 1…N2, and i3 = 1…N3. Assume that 
N1, N2 and N3 type-2 fuzzy sets are defined to describe the fuzzy inputs e1, e2 and output y, 
respectively. M fuzzy rules are assigned in the fuzzy controller. As the rotational increment 
b(k) is determined by the fuzzy controller at every k-th sampling interval, AGV’s rotation 
angle at (k+1)-th sampling interval is defined as: 
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 θ(k+1) = θ(k) + b(k) = θ(k) +Δθ(k) (2) 

To increase the computational efficiency of the fuzzy controller, the input type-2 fuzzy sets 
are defined as interval type-2 fuzzy sets, i.e.,   

 
,

( ) ( 1 )
h

h h h h h A Ah h

h h h h hA
e E e E q

A e e q e
μ μ

μ
∈ ∈ ⎡ ⎤∈⎢ ⎥⎣ ⎦

= =∑ ∑ ∑ , h = 1…2. (3) 

where ( )
h hA eμ is the secondary membership of the type-2 fuzzy set hA for the h-th input 

signal eh, and Eh is universe of discourse of eh. The primary membership values are set to be 
1 for primary variable [ , ]

h hh A Aq μ μ∈ . 
 

 
Fig. 1. (a) Side view of an AGV.  (b) Sonar transceivers around the AGV. 
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3. Calculation of AGV’s rotational increment 
The measured signals e1(⋅) and e2(⋅) are transformed to be type-2 fuzzy singletons. At every 
k-th sampling interval, assume that the e1(k) = '

1e and e2(k) = '
2e . The degree of firing (DOF) of 

every fuzzy rule in the fuzzy rule base 1 2 1 2 1 2( ) ( ) ( )' ' ' ' ' '
1 2 1 2 1 2( , ) [ ( , ), ( , )]i i i i i ie e e e e eγ γΓ = ,where 

 1 2
( ) ( )1 2
1 2

( ) ' '
1 2( ) ( )i i

i i
A A

e eγ μ μ=  (4) 

 1 2
( ) ( )1 2
1 2

( ) ' '
1 2( ) ( )i i

i i
A A

e eγ μ μ=  (5) 

The center-of-sets type reduction scheme (Mendel, 2001;Mendel & John, 2002) is to be used 
along with the defuzzification approach. The centroid of the type-2 output fuzzy set 1 2( )i iB in 
(1) is represented by ( )1 2i iB

C , which is a type-1 interval fuzzy set 1 2 1 2( ) ( )[ , ]i i i i
l rc c , i.e.,  

 1 2 1 2
( )1 2

( ) ( )1 2 1 2

( ) ( )

[ ,  c ]

1 / [ , ]i i
i i i i

rl

i i i i
l rB

c c

C c c c
∈

= =∑ . (6) 

The type-reduced fuzzy output, denoted as bcos, generated from the fuzzy controller in (1) is 
also an interval fuzzy set. Let bcos = [bl, br]. In order to calculate both bl and br, assume that the 
DOF associated with 1 2( )i i

lc is denoted as 1 2( )i i
lγ and the DOF associated with 1 2( )i i

rc is denoted 
as 1 2( )i i

rγ . Then, 

 
1 2 1 2

1 2 1 2 1 2

1 2 1 2

( ) ( ) ( )

1 1 1 1
( ) /( )

N N N N
i i i i i i

l l l l
i i i i

b cγ γ
= = = =

= ∑∑ ∑∑ , (7) 

and 

 
1 2 1 2

1 2 1 2 1 2

1 2 1 2

( ) ( ) ( )

1 1 1 1
( ) /( )

N N N N
i i i i i i

r r r r
i i i i

b cγ γ
= = = =

= ∑∑ ∑∑ . (8) 

Note that the DOF 1 2( )i i
lγ and 1 2( )i i

rγ in (7) and (8) are set as either 1 2( )i iγ or 1 2( )i iγ depending on 
the calculated values of bl, br, and 1 2( )i i

lc and 1 2( )i i
rc in the following iterative computation 

process for bl or br. The computation process for bl is described as following. 
1. Compute bl in (7) by initially setting 1 2 1 2 1 2( ) ( ) ( )( ) / 2i i i i i i

lγ γ γ= + , i1 = 1…N1, i2 = 1…N2. Let 
'
l lb b= . 

2. Update bl in (7) with 1 2 1 2( ) ( )i i i i
lγ γ= if 1 2( ) 'i i

l lc b≤ and 1 2 1 2( ) ( )i i i i
lγ γ= if 1 2( ) 'i i

l lc b> , i1 = 1…N1,  

i2 = 1…N2. Let "
l lb b= . 

3. If " '
l lb b≠ , go to step 4; otherwise stop and set "

l lb b= . 
4. Set ' "

l lb b= and return to step 2. 

The value of br can be obtained by the process similar to the above except that both 1 2( )i i
lγ and 

1 2( )i i
lc in the above computation process are replaced with 1 2( )i i

rγ and 1 2( )i i
rc , respectively. In step 

2 of the computation process for br, 1 2 1 2( ) ( )i i i i
rγ γ= if 1 2( ) 'i i

r rc b≤ and 1 2 1 2( ) ( )i i i i
rγ γ= if 1 2( ) 'i i

r rc b> , i1 = 
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1…N1, i2 = 1…N2. Different from the type reduction process proposed in (Mendel, 
2001;Mendel & John, 2002), the values of 1 2( )i i

lc , i1 = 1…N1, i2 = 1…N2, need not be pre-
arranged in an ascending order. The type-reduction scheme proposed in this paper directly 
uses 1 2( )i i

lc  to calculate 1 2( )i i
lγ for every indices pair (i1 i2) rather than locating the order of '

lb in 

the ascending values of all 1 2( )i i
lc before determining the value of 1 2( )i i

lγ . Therefore, the 
proposed modification of type-reduction scheme saves the computation effort compared to 
the one in (Mendel, 2001; Mendel & John, 2002). 
After calculating both bl and br in the type-reduced output bcos of an interval singleton type-2 
fuzzy controller based on (4)-(8) with e1(k) = '

1e and e2(k) = '
2e , the defuzzified output 

 b(k) ≡ Δθ(k) = (bl + br)/2. (9) 

4. Implementation of AGV’s wall following control 
It is shown in the above discussion that the wall following control of AGV mainly depends 
on delicate control of AGV’s rotational increments. The implementation of AGV’s rotational 
increments and the associated rotational dynamics will be further investigated in this 
section. The rotational dynamics of a nonholonomic AGV is shown in Fig. 2, where Q 
denotes the center of an AGV and Q’ denotes the new position after AGV moving forward 
from Q for a period of sampling interval T. Let dl and dr be the moving distance of AGV’s 
left and right wheel with respect to the Cartesian coordinate centered at the origin O. If rl 
and rr are the rotational radius for the left and right wheel, respectively, then,  

 ( ) ( ) ( )l l ld k r k V k Tθ= ⋅ Δ = ⋅ ,   (10)  

 ( ) ( ) ( )r r rd k r k V k Tθ= ⋅ Δ = ⋅ .  (11) 

where Vl(⋅)and Vr(⋅) are AGV’s left and right wheel speed, respectively. The speed of AGV 
can be defined as Vavg(k) = (Vr(k) + Vl(k))/2. The moving distance do(k) can be considered as 
the moving distance of AGV’s center Q, i.e.,   

 ( ) ( ) ( ) ( ( ) ( )) / 2o avg r ld k r k V k T V k V k Tθ= ⋅ Δ = ⋅ = + ⋅ . (12) 

From (11) and (12), the rotational increment for the k-th sampling interval  

 ( ) ( ( ) ( )) /( ) ( ( ) ( )) / 2r l r l r lk d k d k r r d k d k wθΔ = − − = − , (13) 

where w is the radius of AGV. Substituting dl(k) and dr(k) in (10) and (11) into (13),  

 ( ) ( ( ) ( )) / 2r lk V k V k T wθΔ = − . (14) 
Then,  

 ( ) ( ) 2 ( ) /r lV k V k w k Tθ− = Δ . (15) 

From (12),  

 ( ) ( ) 2 ( ) /r l oV k V k d k T+ = . (16) 
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Hence, Vl(k) and Vr(k) can be obtained from both (15) and (16) as following: 

 ( ) ( ( ) ( )) /l oV k d k w k Tθ= − Δ , (17) 

   ( ) ( ( ) ( )) /r oV k d k w k Tθ= + Δ . (18) 

For wall following, AGV’s average speed Vavg is set as a constant despite that the left and 
right wheel speed Vl and Vr vary with time. As long as Vavg is a constant, AGV’s moving 
distance within every sampling interval, do(k), is also a constant according to (12). Referring 
to (17) and (18), if do(k) is set as a constant and Δθ(k) is determined by the type-2 fuzzy 
controller as in (9), Vl(k) and Vr(k) can be both determined. Since AGV’s left and right wheel 
motor are driven by the voltage-controlled PWM drivers, the left and right wheel can be 
driven to achieve the calculated speed Vl(k) and Vr(k) by applying corresponding voltages to 
the PWM drivers.   
Referring to Fig. 2 and (10)-(11),  

 ( ) / 2 ( ( ) ( )) / 2 ( )r l r lr r r V k V k T kθ= + = + Δ . (19) 

Substituting (13) into (19) yields 

 ( ( ) ( )) /( ( ) ( ))r l r lr V k V k w V k V k= + − . (20) 

Referring to Fig. 2, assume that AGV’s rotation angle is θ(k) at the k-th sampling interval 
with respect to x-axis of the global coordinate. Let Δu(k) and Δv(k) be AGV’s displacement 
increment moving from Q to Q’ with respect to the AGV’s coordinate. Therefore,  
 

θΔ
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rdlr
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Fig. 2. Rotational dynamics of a holonomic AGV. 
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 ( ) cos( ( ))u k r k rθΔ = ⋅ Δ − , (21) 

and 

 ( ) sin( ( ))v k r kθΔ = ⋅ Δ . (22) 

The u-v coordinate is the x-y global coordinate with clockwise rotation (π/2 - θ). Therefore, 

 
cos( ) sin( )( ) ( )2 2

( ) ( )sin( ) cos( )
2 2

x k u k
y k v k

π πθ θ

π πθ θ

⎡ ⎤− −⎢ ⎥Δ Δ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ Δ⎢ ⎥⎣ ⎦ ⎣ ⎦− − −⎢ ⎥⎣ ⎦

. (23) 

Substituting (21) and (22) into (23), 

 ( ) (sin( ( ) ( )) sin( ( )))x k r k k kθ θ θΔ = + Δ − , (24) 

 ( ) (cos( ( )) cos( ( ) ( )))y k r k k kθ θ θΔ = − + Δ . (25) 

With AGV’s position and heading angle [x(k), y(k), θ(k)]T at Q, the position and heading 
angle at Q’ for the (k+1)-th sampling interval can be updated as 

 
( 1) ( ) ( )
( 1) ( ) ( )
( 1) ( ) ( )

x k x k x k
y k y k y k

k k kθ θ θ

+ Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = + Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, (26) 

where Δx(k) and Δy(k) are determined by (24) and (25), respectively, Δθ(k) is determined by 
the type-2 fuzzy controller as in (4)-(9). 

5. Experiment 
The AGV is set to follow a round clump of bushes in the park as shown in Fig. 3. It is 
obvious that the ultra-sound signals transmitted from the sonar transceivers are easy to be 
deflected by the flowers, leaves and trigs in the bushes. The distance between the AGV and 
bushes measured by the sonar systems is contaminated by inevitable noise. Referring to (1), 
two different interval type-2 fuzzy sets are utilized for 1( )

1
iA and 1( )

2
iA describing the linguistic 

terms “negative” and “positive”, respectively, i.e., N1 = N2 = 2. Let 
( 1) ( 1 )
1 1

[ , ]
A A

μ μ = ( 1) ( 1 )
2 2

[ , ]
A A

μ μ =[-35, -25], and ( 2 ) ( 2 )
1 1

[ , ]
A A

μ μ = ( 2 ) ( 2 )
2 2

[ , ]
A A

μ μ =[25, 35]. Referring (6), a 

singleton is used to define the centroid of the output fuzzy set 1 2( )i iB in (1). Let (1,1) (1,1)
l rc c= =-

1.25, (1,2) (1,2)
l rc c= =-0.1, (2 ,1) (2 ,1)

l rc c= =0.1, (2 ,2) (2 ,2)
l rc c= =1.25. To verify the effectiveness and 

efficiency of the proposed type-2 fuzzy controller, the controller is compared with a type-1 
fuzzy controller with similar parameterization. As in the type-2 fuzzy controller, 4 fuzzy 
rules are defined in the type-1 fuzzy controller. The parameterizations for the type-1 fuzzy 
controller are set to be as close to the type-2 settings as possible in order to have a fair 
comparison. The left and right semi-Gaussian function is defined as the membership 
function for the fuzzy sets describing the linguistic terms “negative” and “positive”. Define 
the left and right semi-Gaussian function, respectively, as following. 
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 2 2

1,   
( ; , )

exp( ( ) / ),  
l

l l
l l l

x m
LG x m

x m x m
σ

σ
≤⎧

= ⎨ − − >⎩
 (27) 

 
2 2exp( ( ) / ),   

( ; , )
1,  

r r r
r r

r

x m x m
RG x m

x m
σ

σ
⎧ − − ≤⎪= ⎨

>⎪⎩
 (28) 

The left semi-Gaussian function with ml = -30 and σl = 16.5 in (27) is used as the membership 
function of the fuzzy set describing the linguistic term “negative” for both e1 and e2. Similarly, 
the right semi-Gaussian function with mr = 30 and σr = 16.5 in (28) is used as the membership 
function of the fuzzy set describing the linguistic term “positive” for both e1 and e2. The 
running paths of the wall-following results using type-2 and type-1 fuzzy controllers are 
compared in Fig. 3 (a) and (b). It is obvious that the running path due to the type-2 fuzzy 
controller is smoother than the one due to the type-1 fuzzy controller. The variations of AGV’s 
rotation angle θ(k) in (26) with respect to time due to type-2 and type-1 fuzzy controller are 
compared in Fig. 4 (a) and (b). It numerically justifies that the running path due to the type-2 
fuzzy controller is smoother because the variations of θ(k) in Fig. 4(a) due to the type-2 fuzzy 
controller is much smaller than the one in Fig. 4(b) due to the type-1 fuzzy controller. 
 

  
(a)                                                                                  (b) 

Fig. 3. Comparison of AGV’s running paths due to (a) type-2 fuzzy controller, (b) type-1 
fuzzy controller. 
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Fig. 4. Comparison of AGV’s rotation angle θ(k) due to (a) type-2 fuzzy controller, (b) type-1 
fuzzy controller. 

6. Conclusion 
A wall-following type-2 fuzzy controller for AGV has been designed in this paper. The 
proposed type-2 fuzzy controller is especially suitable for the AGV that uses sonar system to 
measure the distance between the AGV and the wall. The distance measuring scheme used 
in the sonar system is sensitive to the received ultra-sound signals. The proposed type-2 
fuzzy controller features the robustness of the distance measurement. The inevitable noise 
problem in AGV’s sonar-based distance measuring scheme is resolved by using type-2 
fuzzy sets to define the distance measurements. Similar approach can also be applied to the 
sonar-based obstacle avoidance because the surface of obstacle might not be smooth enough 
to reflect the ultra-sound signals back to AGV’s sonar transceivers. 
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1. Introduction     
Automatic control can be defined as a way of analyzing and designing a system that can 
self-regulate with minimal human intervention. It is based on control theory, viewed as an 
interdisciplinary branch of engineering and mathematics. The device that monitors and 
modifies the operational conditions of a dynamic system is called a controller. 
The global technology evolution has triggered an ever-increasing complexity of 
applications, both in industry and in the scientific research fields. Many researchers have 
concentrated their efforts on providing simple control algorithms to cope with the 
increasing complexity of the controlled systems (Al-Odienat & Al-Lawama, 2008). The main 
challenge of a control designer is to find a formal way to convert the knowledge and 
experience of a system operator into a well-designed control algorithm (Kovacic & Bogdan, 
2006). From another point of view, a control design method should allow full flexibility in 
the adjustment of the control surface, as the systems involved in practice are, generally, 
complex, strongly nonlinear and often with poorly defined dynamics (Al-Odienat & Al-
Lawama, 2008). If a conventional control methodology, based on linear system theory, is to 
be used, a linearized model of the nonlinear system should have been developed 
beforehand. Because the validity of a linearized model is limited to a range around the 
operating point, no guarantee of good performance can be provided by the obtained 
controller. Therefore, to achieve satisfactory control of a complex nonlinear system, a 
nonlinear controller should be developed (Al-Odienat & Al-Lawama, 2008; Hampel et al., 
2000; Kovacic & Bogdan, 2006; Verbruggen & Bruijn, 1997). From another perspective, if it 
would be difficult to precisely describe the controlled system by conventional mathematical 
relations, the design of a controller using classical analytical methods would be totally 
impractical (Hampel et al., 2000; Kovacic & Bogdan, 2006). Such systems have been the 
motivation for developing a control system designed by a skilled operator, based on their 
multi-year experience and knowledge of the static and dynamic characteristics of a system; 
known as a Fuzzy Logic Controller (FLC) (Hampel et al., 2000). FLCs are based on fuzzy 
logic theory, developed by L. Zadeh (Zadeh, 1965). By using multivalent fuzzy logic, 
linguistic expressions in antecedent and consequent parts of IF-THEN rules describing the 
operator’s actions can be efficiently converted into a fully-structured control algorithm 
suitable for microcomputer implementation or implementation with specially-designed 
fuzzy processors (Kovacic & Bogdan, 2006). In contrast to traditional linear and nonlinear 
control theory, an FLC is not based on a mathematical model, and it does provide a certain 
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level of artificial intelligence compared to conventional PID controllers (Al-Odienat & Al-
Lawama, 2008). 
The objective of the research presented here is to develop a new morphing mechanism using 
smart materials such as Shape Memory Alloy (SMA) as actuators and fuzzy logic 
techniques. These smart actuators deform the upper wing surface, made of a flexible skin, so 
that the laminar-to-turbulent transition point moves closer to the wing trailing edge. The 
ultimate goal of this research project is to achieve drag reduction as a function of flow 
condition by changing the wing shape. The transition location detection is based on pressure 
signals measured by optical and Kulite sensors installed on the upper wing flexible surface. 
Depending on the project evolution phase, two architectures are considered for the 
morphing system: open loop and closed loop. The difference between these two 
architectures is their use of the transition point as a feedback signal. This research work was 
a part of a morphing wing project developed by the Ecole de Technologie Supérieure in 
Montréal, Canada, in collaboration with the Ecole Polytechnique in Montréal and the 
Institute for Aerospace Research at the National Research Council Canada (IAR-NRC) 
(Brailovski et al., 2008; Coutu et al., 2007; Coutu et al., 2009; Georges et al., 2009; Grigorie & 
Botez, 2009; Grigorie & Botez, 2010; Grigorie et al., 2010 a; Grigorie et al., 2010 b; Grigorie et 
al., 2010 c; Popov et al., 2008 a; Popov et al., 2008 b; Popov et al., 2009 a; Popov et al., 2009 b; 
Popov et al., 2010 a; Popov et al., 2010 b; Popov et al., 2010 c; Sainmont et. al., 2009), initiated 
and financially supported by the following government and industry associations: the 
Consortium for Research and Innovation in Aerospace in Quebec (CRIAQ), the National 
Sciences and Engineering Research Council of Canada (NSERC), Bombardier Aerospace, 
Thales Avionics, and the National Research Council Canada Institute for Aerospace 
Research (NRC-IAR). 
Recently, morphing wing system studies have branched out into new research directions. 
Extremely complex and catalogued as inter- and multidisciplinary studies, morphing wing 
studies continue to ‘push’ the science to the extreme boundaries of mathematics and 
physics. These multidisciplinary studies therefore require knowledge of the following 
disciplines: aerodynamics and computational fluid dynamics, aeroelasticity, automatic 
control, intelligent materials, signal detection using the latest miniaturized sensors, high 
computer-time calculations, wind tunnel and flight testing, instruments, and signal 
acquisition -- these signals have such speed that they are raising serious problems for the 
existing calculus technology. Consequently, real-time system functioning is conditioned (in 
addition to other factors) by being able to obtain the best data processing algorithms and 
employing easy-to-implement software for the command and control unit. Fuzzy logic 
theories, which offer remarkable facilities, may therefore be used in these algortihms. They 
facilitate signal processing by allowing empirical models to be designed based on 
experimental data; thus avoiding the complex mathematical calculus currently in use. In 
addition, fuzzy logic can be used to model highly non-linear, multidimensional systems, 
including those with parameter variations, or where the sensors’ signals are not accurate 
enough for other models. This research project included the following: optical sensor 
selection and testing for laminar-to-turbulent flow transition validation (by use of XFoil 
code and Matlab), smart material actuator modeling, aeroelasticity wing studies using 
MSC/Nastran, open loop and closed loop transition delay controller design, and integration 
and validation on a wing equipped with SMAs and optical sensors (simulation versus 
experimental test results) (Fig. 1 (Grigorie et al., 2010 b)). 
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A first phase of this project involved the determination of optimized airfoils available for 35 
different flow conditions expressed in terms of five Mach numbers (0.2, 0.225, 0.25, 0.275, 
0.3) and seven angles of attack (-1˚, -0.5˚, 0˚, 0.5˚, 1˚, 1.5˚, 2˚) combinations. The optimized 
airfoils, derived from a laminar WTEA-TE1 reference airfoil, were calculated and used as a 
starting point in the actuation system design. Three steps were completed in the actuation 
system design phase: optimization of the number and positions of flexible skin actuation 
points, establishment of each actuation line’s architecture, and modeling of the smart 
materials actuators used in this application with fuzzy logic techniques. The next phase of 
the project was about the design of the actuation control, for which a fuzzy PD architecture 
was chosen. In this design, numerical simulations of the open loop morphing wing 
integrated system, based on an SMA non-linear model, were performed. As subsequent 
validation methods, a bench test and a wind tunnel test were conducted. 
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Fig. 1. General architecture of the mechanical model 
The shape memory actuator wires were made of nickel-titanium, known as Nitinol, and they 
contract as muscles do when electrically driven. This ability to flex or shorten is a 
characteristic of certain alloys that dynamically change their internal structure at certain 
temperatures. These alloys have the properties of exhibiting martensitic transformation 
when they deform at a low temperature phase, and may recover their original shape after 
heating (Popov et al., 2008 a). This phase change, from martensite to austenite, is shown in 
Fig. 2 (Baron et al., 2003; Thill et al., 2008). The load changes the internal forces between the 
atoms, forcing them to change their positions in the crystals and consequently forcing the 
wires to lengthen, which is called the SMA activation or the initial phase. When the wire is 
heated using a current, the heat generated by the current resistivity causes the atoms in the 
crystalline structure to realign and force the alloy to recover its original shape. Therefore, 
any change in the alloy’s internal temperature would modify the crystalline structure 
accordingly and thus the wire’s exterior shape. This property of changing the wire length as 
a function of the electrical current passing through the wire is used for actuation purposes 
(Popov et al., 2008 a). Another major reason for using Nitinol is that it is the most effective 
material at withstanding repeated cycles of heating and cooling without exhibiting a fatigue 
phenomenon (Gonzalez, 2005). 
SMA wires can process the deflections obtained using the applied forces and they provide a 
variety of shapes and sizes that are extremely useful to achieve actuation system goals. For 
example, SMA wires can provide high forces corresponding to small strains to achieve the 
correct balance between the forces and the deformations, as required by the actuation 
system. To ensure a stable system, a compromise or balance must be established and 
maintained. The structural components of the actuation system should be designed to 
respect the actuators’ capabilities to accommodate the required deflections and forces. 



 Fuzzy Controllers, Theory and Applications 

 

256 

Each of our actuation lines uses three shape memory alloys wires as actuators, and contains 
a cam, which moves in translation relative to the structure (on the x-axis in Fig. 3 (Georges et 
al., 2009). The cam causes the movement of a rod related on the roller and on the skin (on 
the z-axis). The recall employed here is a gas spring. So, when the SMA is heating the 
actuator contracts and the cam moves to the right, resulting in the rise of the roller and the 
displacement of the skin upwards. In contrast, the cooling of the SMA results in a movement 
of the cam to the left, and thus a movement of the skin downwards. The horizontal 
displacement of each actuator is converted into a vertical displacement at a fixed rate. 
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Fig. 2. SMA phase change 

SMA wires can execute the deflections resulting from contracting or expanding forces and 
can provide a variety of shapes and sizes that are extremely useful to achieve actuation 
system goals. To ensure a stable system, a compromise or balance must be established and 
maintained. The structural components of the actuation system should be designed to 
respect the actuators’ capabilities to accommodate the required deflections and forces. 
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Fig. 3. The actuation mechanism concept 

The SMA actuator control can be achieved using any method for position control. However, 
the specific properties of SMA actuators such as hysteresis, the first cycle effect and the 
impact of long-term changes must be considered. The operating scheme of our open loop 
controller can be developed as illustrated in Fig. 4 (Grigorie et al., 2010 b; Grigorie et al., 
2010 c). 
Based on the 35 studied flight conditions, a database of the 35 optimized airfoils was built. 
For each flight condition, a pair of optimal vertical deflections (dY1opt, dY2opt) for the two 
actuation lines is apparent (Fig. 5). The SMA actuators morphed the airfoil until the vertical 
deflections of the two actuation lines (dY1real, dY2real) became equal to the required  
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Fig. 4. Operating scheme of the SMA actuators’ control 

deflections (dY1opt, dY2opt). The vertical deflections of the real airfoil at the actuation points 
were measured using two position transducers. The controller’s role is to send a command 
to supply an electrical current signal to the SMA actuators, based on the error signals (e) 
between the required vertical displacements and the obtained displacements. The designed 
controller was valid for both actuation lines, which are practically identical. 
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Fig. 5. dY1opt and dY1opt, dY2opt as functions of M for various angles of attack 

During the first phase of the controller design, numerical simulation of the controlled 
actuation system was performed; a step which required an SMA actuator model. In the 
literature, the modeling and control of smart material actuators can be categorized as recent 
research fields. Technical literature is available in three independent domains: modeling, 
control and smart materials. A smart actuator is formulated for a large range of smart 
materials and devices, and can be found in a variety of different configurations. It is 
common knowledge that all physical systems, including smart actuators, contain 
nonlinearities. As a consequence, linear modeling of smart material actuators may contain 
errors, while non-linear modeling  remains possible. 
In order to conceive such a model, a fuzzy set must be designed, which may be given by the 
original fuzzy logic theory conceived by Lotfi A. Zadeh (Zadeh, 1965). The most serious 
problem arises from the determination of a complete set of rules and the membership 
functions corresponding to each input. The multiple attempts required to reduce errors and to 
optimize the model are time-consuming and, very often, the results are far from what was 
expected. A modern design method allows fuzzy model design to be completed in a relatively 
short time interval. The Adaptive Neuro-Fuzzy Inference System (ANFIS) design technique 
allows the generation and the optimization of the set of rules and the membership functions’ 
parameters by use of Neural Networks. Moreover, the ANFIS design technique already 
implemented in Matlab’s Neuro-Fuzzy software tools should be relatively easy to use. 
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Considering the numerical values resulting from the SMA experimental testing (forces, 
currents, temperatures and elongations), an empirical model can be developed, based on a 
neuro-fuzzy network. The model can learn the process behavior based on the input-output 
process data by using a Fuzzy Inference System (FIS), which should model the experimental 
data. 

2. SMA actuator fuzzy model 
The general aim of the SMA model is to calculate the elongation of the actuator (Δδ) under 
the application of a thermo-electro-mechanical load for some time (Δt). The load is so-
qualified because the actuator can be operated by varying temperature (Tamb), by injection of 
electric current (i) or by applying a force (F). The geometry of the actuator is an SMA wire 
with constant section and perimeter over the length of the actuator. For these specific model 
objectives, in the first phase, the SMA actuators were experimentally tested in conditions 
close to those in which they will be used. 
The SMA testing was performed using at Tamb=24˚C, for six load cases with the forces of 700 N, 
850 N, 1000 N, 1100 N, 1250 N and 1500 N. The electrical currents following the increasing-
constant-decreasing-zero values evolution were applied to the SMA actuator for each of the six 
load cases. In each case, the following parameters were registered: time, the electrical current 
supplied to the SMA, the load force, the material temperature and the actuator elongation. 
To model the SMA we will built an integrated controller based on Adaptive Neuro-Fuzzy 
Inference Systems. The experimental elongation-current curves obtained from the six load 
cases are indicated in Fig. 6. One can observe that all six of the curves are characterized by 
four distinct zones: electrical current increase, constant electrical current, electrical current 
decrease and null electrical current in the cooling phase of the actuator. Therefore, four 
Fuzzy Inference Systems (FIS’s) are used to obtain four neuro-fuzzy controllers: one 
controller for the current increase, one for a constant current, one for the current decrease, 
and one controller for the null current (after its decrease). For the first and the third 
controllers, inputs such as the force and the current are used, while for the second and the 
fourth controller, inputs such as the force and the time values reflecting the SMA thermal 
inertia are used (for the four controllers the time values used are those required for the SMA 
to recover its initial temperature value (approximately 24˚C)). Finally, the four obtained 
controllers must be integrated into a single controller. 
The reasoning behind the design of the first and the third controllers is that from the 
available experimental data, two elongations for the same values of forces and currents are 
used (see Fig. 6). Due to the experimental data values, this data cannot be represented as 
algebraic functions, and therefore it is impossible to use the same FIS representation. An 
interpolation between the two elongation values obtained for the same values of forces and 
currents can be performed in Matlab, but it is not valid for our application. 
Also, the constant values, respectively the null values of the current before, respectively 
after the current decrease phase are not suggestive to be considered like inputs in the second 
and in the four controllers. Practically, with these phases the values of the actuator 
temperature could be used. The time values for these phases do prove very useful, because 
these values represent a measure of the thermal inertia of the actuator. We use the time 
value as the second input of the third controller, and therefore, as the second input of the 
second and of the fourth controllers – since force was considered as the first input (the time 
values must be considered from the moment when the current becomes constant, or null). 
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Fig. 6. Elongation versus the current values for different forces values for six load cases 

2.1 SMA model architecture based on fuzzy logic controllers 
A fuzzy inference system (FIS) can be easily generated using Matlab’s “genfis1” or “genfis2” 
functions. The “genfis1” function generates a single-output Sugeno-type fuzzy inference 
system (FIS) using a grid partition on the data (no clustering). The FIS thus obtained is used 
to provide the initial conditions for ANFIS training. The “genfis1” function uses generalized 
bell-type membership functions for each input. Each rule generated by a “genfis1” function 
has one output membership function, which is a linear type by default. It is also possible to 
create the FIS using the Matlab “genfis2” function, which first generates an initial Sugeno-
type FIS by decomposition of the operation domain into different regions using the fuzzy 
subtractive clustering method. For each region, a low order linear model can describe the 
local process parameters. The non-linear process can then be locally linearized around a 
functioning point by using the Least Squares method. The obtained model is considered 
valid in the entire region around this point. To limit the operating regions implies the 
existence of overlapping among these different regions, whose definition is given in a fuzzy 
manner. Thus, for each model input, several fuzzy sets are associated with their 
corresponding definitions of their membership functions. By combining these fuzzy inputs, 
the input space is divided into fuzzy regions. For each such region, a local linear model is 
used, while the global model is obtained by defuzzification with the center-of-gravity 
method (Sugeno), which interpolates the local models’ outputs (Sivanandam et al., 2007; 
MathWorks Inc., 2008). 
Based on the concept of finding regions with a high density of data points in the feature 
space, the subtractive clustering method divides space into a number of clusters. Centers of 
clusters are selected, starting with the points with the highest number of neighbours. The 
clusters are identified one by one; for each cluster the data points within a prespecified 
fuzzy radius are removed (subtracted). After each cluster identification, the algorithm looks 
for a new one until all of the data points have been examined. If a collection of M data 
points, specified by l-dimensional vectors uk, k = 1, 2..., M, is considered, a density measure 
at data point uk can be defined as follows: 
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where rm is a positive constant that defines the radius within the fuzzy neighborhood and 
contributes to the density measure. The point with the highest density is selected as the first 
cluster center. Let uc1 be the point selected and ρc1 its density measure. Next, the density 
measure for each data point uk is revised by the formula: 
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in which rn is a positive constant, larger than rm, and defines a neighborhood to be reduced 
in its density measure to prevent closely-spaced cluster centers. In this way, the data points 
near the first cluster center uc1 will have significantly reduced density measures, and these 
points cannot be selected as centers for the next clusters. After the density measure for each 
point has been revised, the next cluster center uc2 is selected and all the density measures are 
revised again. The process is repeated until all of the data points have been examined and a 
sufficient number of cluster centers generated. When the subtractive clustering method is 
applied to an input-output data set, each of the cluster centers are used as the centers for the 
premise sets in a singleton type of rule base (Khezri & Jahed, 2007). 
The Matlab “genfis1” function generates membership functions of a generalized bell type, 
defined as follows (Kosko, 1992; Kung & Su, 2007): 
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where i
qc  is the cluster center defining the position of the membership function, a, b are two 

parameters which define the shape of the membership function, and ),1( NiAi
q =  are 

associated individual antecedent fuzzy sets of each input variable (N - number of rules).  
The Matlab “genfis2” function generates membership functions of the Gaussian type, 
described by the following expression (Kosko, 1992; Kung & Su, 2007): 
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where i
qc  is the cluster center, and i

qσ  is the dispersion of the cluster. 
The Sugeno fuzzy model was proposed by Takagi, Sugeno and Kang to generate the fuzzy 
rules from a given input-output data set (Mahfouf et al., 1999). For our system, for all four of 
the FIS’s (two inputs and one output) a first-order model is considered, and for N rules is 
given by (Kung & Su, 2007; Mahfouf et al., 1999): 
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where )2,1( =qxq  are individual input variables, and ),1( Niy i =  is the first-order 
polynomial function in the consequent. ),1,2,1( Nikai

k ==  are the parameters of the linear 
function and ),1(0 Nibi =  denotes a scalar offset. The parameters ),1,2,1(, 0 Nikba ii

k ==  are 
optimized by Least Square method. 
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For any input vector, Txx ],[ 21=x , if the singleton fuzzifier, the product fuzzy inference and 
the center-average defuzzifier are applied, the output of the fuzzy model y is inferred as 
follows (weighted average): 
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where 
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)(xiw  represents the degree of fulfillment of the antecedent, that is, the level of firing of the 
ith rule. 
The adaptive neuro-fuzzy inference system adapts the parameters of Sugeno-type fuzzy 
inference systems using the neural networks. A very simple way to realize the FIS’s training 
is by using  the Matlab “ANFIS” function, which use a learning algorithm for the 
identification of the membership functions’ parameters of a Sugeno-type fuzzy inference 
system with two outputs and one input. As a starting point, the input-output data and the 
FIS models generated with the “genfis1” or “genfis2” functions are considered. The 
“ANFIS” optimizes the membership functions’ parameters for a number of training epochs; 
this number is set by the user. The optimization is realized for a better process 
approximation performed by the neuro-fuzzy model by means of a quality parameter 
present in the training algorithm (MathWorks Inc., 2008). Following the training phase, the 
models may be used for elongation value generation corresponding to the parameters at the 
input. 
For training the fuzzy system, ANFIS employs a back-propagation algorithm for the 
parameters associated with the input membership functions, and a least mean square 
estimation for the parameters associated with the output membership functions. For the FISs 
generated using the “genfis1” or “genfis2” functions, the membership functions are of the 
generalized bell type and gaussian type, respectively. In accordance with equations (3) and 
(4), in these kinds of membership functions, a, b and c, and σ and c, respectively, are 
considered variables and must be adjusted. Therefore, the back-propagation algorithm may 
be used to train these parameters. In this way, we can achieve our goal to minimize a cost 
function of the form 

 ( ) ,2/2yydes −=ε  (8) 

where ydes is desired output. The output of each rule ),( 21 xxyi  is defined by: 

 ),/()()1( i
y

ii yktyty ∂ε∂−=+  (9) 

in which ky is the step size. 
Starting from the Sugeno system’s output (eq. (6)), we find: 
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Therefore, the following equation for the output of each rule is 
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If a generalized bell-type membership function is used, for the jth membership function of 
the ith fuzzy rule the parameters are determined with the relations: 
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For a Gaussian-type membership function, the parameters of the jth membership function of 
the ith fuzzy rule are calculated with the relations: 
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After the four controllers (Controller 1 for increasing current, Controller 2 for constant 
current, Controller 3 for decreasing current and Controller 4 for null current) have been 
determined, they must be integrated, resulting in the  logical scheme in Fig. 7. 
The decision to use one of the four controllers depends on the current vector type 
(increasing, decreasing, constant or zero) and on the value of variable “k”. Depending on 
the “k” variable value, we may decide if a constant current value is a part of an increasing 
vector or a part of a decreasing vector. The initial “k” value is equal to 1 when Controller 1 
is used, and is equal to 0 when Controllers 2, 3 or 4 are used. 
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Fig. 7. The logical scheme for the four controller’s integration 
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2.2 The SMA model design and evaluation 
In a first phase, the “genfis2” Matlab function (MathWorks Inc., 2008) was used to generate 
and train the FISs associated with the four controllers in Fig. 7: “Controller1Fis” (for the 
increasing current phase), “Controller2Fis” (for the constant current phase), 
“Controller3Fis” (for the decreasing current  phase) and “Controller4Fis” (for the null values 
of the current obtained after the decreasing phase). 
The first FIS, with force and electrical current as its inputs, was trained for 5000 epochs 
using the “ANFIS” Matlab function. The rules were of the type: if (in1 is in1cluster„k”) and 
(in2 is in2cluster„k”) then (out1 is out1cluster„k”). For both of these inputs, nine Gaussian-
type membership functions (mf) were generated; within the set of rules they are noted by: 
in„j”cluster„k”; where j is the input number (1÷2), and k is the number of the membership 
function (1-9). “Controller1Fis” fuzzy inference system thus has the structure shown in Fig. 
8, while Controller 1 has the structure indicated in Fig. 9. 
The rules of “Controller1Fis” fuzzy inference system, before and after training, are 
presented in Fig. 10, and Fig. 11 displays the deviation between the neuro-fuzzy models and 
the experimentally obtained data, defining the quality parameter from the training 
algorithm, for different training epochs. 
Figure 11 shows a rapid decrease in the deviation between the experimental data and the 
neuro-fuzzy model for the quality parameter within the training algorithm over the first 100 
training epochs, from a value of 0.062 to 0.03. Evaluating the FIS before and after training for 
the experimental data, using the “evalfis” command, the characteristics in Fig. 12 were 
obtained. The mean of the relative absolute values of the errors decreased from 0.3063% 
before training to 0.119% after training, while its maximum value decreased from 0.9339% to 
0.4342%. Since the error determined for “Controller1Fis” was very small, this FIS was 
selected to be implemented in the Simulink integrated controller. 
 
 

 
 

Fig. 8. Structure of the “Controller1Fis” fuzzy inference system 
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Fig. 9. The structure of Controller 1 

 

 
Fig. 10. The “Controller1Fis” rules, before and after training 

From Fig. 12 one observes a good overlapping of the FIS model with the elongation 
experimental data. This superposition is dependent upon the training epochs’ number, and 
improves as the number of training epochs increases. Because the training errors take 
constant values, an improved approximation of the real model can be achieved with neuro-
fuzzy methods only in the case when a larger amount of experimental data is used. 
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Fig. 11. The training error for “Controller1Fis” 
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Fig. 12. “Controller1Fis” evaluation, before and after training 
The parameters of the input’s membership functions for “Controller1Fis”, before and after 
training, are shown in Table 1, while the membership functions’ shapes are depicted in Fig. 
13. For the Gaussian-type membership functions generated with “genfis2”, the parameters 
are half of the dispersion (σ/2) and the center for the membership function (c). 
 

Status Input Param. mf1 mf2 mf3 mf4 mf5 mf6 mf7 mf8 mf9 
σ/2 142.7 142.7 142.7 142.7 142.7 142.7 142.7 142.7 142.7 Force 

[N] c 1003 701.6 1248 851.8 1096 1493 1094 849.3 1498 
σ/2 1.867 1.867 1.867 1.867 1.867 1.867 1.867 1.867 1.867 

Before 
training Current 

[A] c 6 4.95 7.7 9.45 2.08 5.1 10.4 2.1 9.18 
σ/2 142.8 142.8 142.7 142.7 142.7 142.7 142.7 142.7 142.8 Force 

[N] c 1003 701.6 1248 851.8 1096 1493 1094 849.4 1498 
σ/2 2.598 3.321 2.328 4.208 2.271 2.252 3.671 2.965 1.885 

After 
training Current 

[A] c 6.998 4.795 6.942 8.627 0.7952 6.609 10.35 3.194 10.21 

Table 1. Parameters of the “Controller1FIS” input’s mf, before and after training 
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Fig. 13. Membership functions of “Controller1Fis”, before and after training 

Comparison of the FIS characteristics and the membership function parameters in Table 1, 
before and after training, indicates a redistribution of the membership functions in the 
working domain (modification of the c parameter) and a change in their shapes by the 
modification of the σ parameter. 
According to the parameter values from Table 1, the FIS’s generated with the “genfis2” 
function give, as a first result, the choice of the same values for the σ/2 parameter, for all 
membership functions which characterize an input. A second result is the separation of the 
working space for the respective input, using the fuzzy subtractive clustering method. 
Surfaces that reproduce the experimental data before and after the “Controller1Fis” training 
are presented in Fig. 14. 
The second FIS, “Controller2Fis”, with inputs of force and time, was trained for the 100000 
epochs using the “ANFIS” Matlab function. The rules here were also of the type: if (in1 is 
in1cluster„k”) and (in2 is in2cluster„k”) then (out1 is out1cluster„k”). For both of this FIS’s 
inputs, eight Gaussian-type membership functions (mf) were generated. Therefore, 
“Controller2Fis” fuzzy inference system has the structure shown in Fig. 15, while Controller 
2 has the structure given in Fig. 16. 
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Fig. 14. Control surfaces resulted for “Controller1Fis”, before and after training 

 

 
Fig. 15. Structure of the “Controller2Fis” fuzzy inference system 
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Fig. 16. The structure of Controller 2 

The rules of the “Controller2Fis” fuzzy inference system, before and after training, are 
presented in Fig. 17, while Fig. 18 displays the deviation between the neuro-fuzzy models 
and the experimentally obtained data, defining the quality parameter from the training 
algorithm, for different training epochs. 
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Fig. 17. The “Controller2Fis” rules, before and after training 
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Fig. 18. The training error for “Controller2Fis” 

Figure 18 shows a rapid decrease in the deviation between the experimental data and the 
neuro-fuzzy model for the quality parameter within the training algorithm over the first 
5000 training epochs, from 0.31 until a value of 0.09. Evaluating the FIS before and after 
training for the experimental data, the characteristics in Fig. 19 were obtained. The mean of 
the relative absolute values of the errors decreased by 3.76 times -- from 3.3503% before 
training to 0.8902% after training. Considering that the error for the “Controller2Fis” is in 
the desired limits after 100000 training epochs, this FIS was selected to be implemented in 
the Simulink integrated controller. 
In Fig. 19, a good overlapping of the FIS models’ data with the elongation experimental data 
is clearly visible. As in the previous FIS case, this superposition is dependent on the training 
epochs’ number, and improves as the number of training epochs increases. 
The parameters of the input’s membership functions for the “Controller2Fis”, before and 
after training, are shown in Table 2, while the membership functions’ shapes are depicted in 
Fig. 20. 
Comparison of the FIS characteristics and the membership functions parameters, before and 
after training, indicates a redistribution of the membership functions in the working domain 
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(modification of the c parameter) and a change in their shapes by modification of the σ 
parameter (Table 2). 
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Fig. 19. “Controller2Fis” evaluation, before and after training 

 
Status Input Param. mf1 mf2 mf3 mf4 mf5 mf6 mf7 mf8 

σ/2 143 143 143 143 143 143 143 143 
Force [N]

c 1002 1254 700.9 1096 1503 1002 1492 699.5 
σ/2 4.757 4.757 4.757 4.757 4.757 4.757 4.757 4.757 

Before 
training 

Time [s]
c 11.86 8.412 10.46 21.75 13.06 2.355 2.968 1.562 

σ/2 159.8 134.6 142.2 137.4 142.1 133.1 150.1 144.6 
Force [N]

c 1007 1254 702.7 1099 1498 997.4 1487 700.3 
σ/2 2.624 4.197 3.393 2.768 5.349 5.261 1.835 3.346 

After 
training 

Time [s]
c 8.244 0.9308 8.639 11.89 6.099 -5.344 1.777 -3.61 

Table 2. Parameters of the “Controller2FIS” input’s mf before and after training 
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Fig. 20. Membership functions of “Controller2Fis”, before and after training 

Surfaces which reproduce the experimental data, before and after the “Controller2Fis” 
training, are represented in Fig. 21. 
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Fig. 21. Control surface resulted for “Controller2Fis”, before and after training 
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The third FIS, “Controller3Fis”, which has the force and the current as its inputs, was 
trained for 20.000 epochs. The rules were also of the type: if (in1 is in1cluster„k”) and (in2 is 
in2cluster„k”) then (out1 is out1cluster„k”). For both of this FIS’s inputs, seven Gaussian-
type membership functions (mf) were generated. Therefore, “Controller3Fis” fuzzy 
inference system has the structure presented in Fig. 22, while Controller 3 has the same 
structure as Controller 1, represented in Fig. 9. 
The rules of the “Controller3Fis” fuzzy inference system, before and after training, are 
presented in Fig. 23, and Fig. 24 displays the deviation between the neuro-fuzzy models and 
the experimentally obtained data for different training epochs, defining the quality 
parameter from the training algorithm. 
 

 
Fig. 22. Structure of the “Controller3Fis” fuzzy inference system 
 

 
 
Fig. 23. The “Controller3Fis” rules, before and after training 
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Figure 24 shows a decrease in the deviation between the experimental data and the neuro-
fuzzy model for the quality parameter (with some oscillations) within the training algorithm 
over the first 3500 training epochs, from the value of 2.52·10-4 to that of 2.05·10-4. Evaluating 
the FIS before and after training for the experimental data, the characteristics in Fig. 25 were 
obtained. The mean of the relative absolute values of the errors decreased from 1.5154·10-3 % 
before training, to 2.3106·10-13 % after training. “Controller3Fis” was selected to be 
implemented in the Simulink integrated controller because its obtained error was within the 
desired limits after 20000 training epochs. 
From Fig. 25 one observes a good overlapping of the FIS models with the elongation 
experimental data. As in the previous FISs cases, this superposition is dependent upon the 
training epochs’ number, and is better as the number of training epochs is higher. 
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Fig. 24. The training error for “Controller3Fis” 

The parameters of the input’s membership functions for “Controller3Fis”, before and after 
training, are shown in Table 3, while the membership functions’ shapes are depicted in  
Fig. 26. 
 

Status Input Param. mf1 mf2 mf3 mf4 mf5 mf6 mf7 
σ/2 141.8 141.8 141.8 141.8 141.8 141.8 141.8 

Force [N]
c 1003 847.3 1102 701 1250 1497 1500 

σ/2 2.042 2.042 2.042 2.042 2.042 2.042 2.042 
Before 

training Current 
[A] c 0 11.55 11.44 0 0 10.2 0 

σ/2 141.7 141.8 141.8 141.7 141.6 141.8 141.8 
Force [N]

c 1003 847.3 1102 701 1250 1497 1500 
σ/2 2.042 2.165 1.838 2.042 2.042 2.058 2.042 

After 
training Current 

[A] c 8.184·10-5 11.3 11.73 -1.398·10-6 -4.591·10-6 10.25 -1.582·10-7 
 
Table 3. Parameters of the “Controller3FIS” input’s mf before and after training 
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Fig. 25. “Controller3Fis” evaluation, before and after training 

Comparison of the FIS characteristics and the membership functions’ parameters, before and 
after training, indicates a redistribution of the membership functions in the working domain 
(modification of the c parameter) and a change in their shapes by modification of the σ 
parameter (Table 3). 
The surfaces reproducing the experimental data, before and after training of the 
“Controller3Fis”, are presented in Fig. 27. 
The fourth and last controller FIS, “Controller4Fis”, with inputs of force and time, was 
trained for 250000 epochs. As with the others, the rules were of the type: if (in1 is 
in1cluster„k”) and (in2 is in2cluster„k”) then (out1 is out1cluster„k”). Seven Gaussian-type 
membership functions (mf) were generated for each of the two inputs. Therefore, the 
“Controller4Fis” fuzzy inference system has the structure given in Fig. 28, while Controller 4 
has the same structure as Controller 2, shown in Fig. 16. 
The rules of the “Controller4Fis” fuzzy inference system, before and after training, are 
presented in Fig. 29, while Fig. 30 displays the deviation between the neuro-fuzzy models 
and the experimentally obtained data, defining the quality parameter from the training 
algorithm, for different training epochs. 
Figure 30 shows a rapid decrease in the deviation between the experimental data and the 
neuro-fuzzy model for the quality parameter within the training algorithm over the first 
50000 training epochs, from the value of 0.67 to that of 0.13. By evaluating the FIS before and 
after training for the experimental data, the characteristics shown in Fig. 31 were obtained. 
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The mean of the relative absolute values of the errors decreased from 5.1855% before 
training, to 1.0316% after training. Since the error found for the “Controller4Fis” was within 
the desired limits after 250000 training epochs, this FIS was chosen to be implemented in the 
Simulink integrated controller. 
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Fig. 26. Membership functions of “Controller3Fis”, before and after training 
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Fig. 27. Control surface resulted for “Controller3Fis”, before and after training 
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Fig. 28. Structure of the “Controller4Fis” fuzzy inference system 

 

 
Fig. 29. Rules of the “Controller4Fis” before and after training 
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Fig. 31. “Controller4Fis” evaluation, before and after training 

From Fig. 31, a good overlapping of the FIS model’s output with the elongation experimental 
data can be observed. As in the previous FIS cases, this superposition is dependent upon the 
training epochs’ number, and is better as the number of training epochs is higher. 
The parameters of the input’s membership functions for the “Controller4Fis”, before and after 
training, are shown in Table 4, while the membership functions’ shapes are depicted in Fig. 32. 
 

Status Input Param. mf1 mf2 mf3 mf4 mf5 mf6 mf7 
σ/2 143.4 143.4 143.4 143.4 143.4 143.4 143.4 

Force [N] 
c 1003 847 1255 703 1103 1505 1497 

σ/2 24.86 24.86 24.86 24.86 24.86 24.86 24.86 
Before 

training 
Time [s] 

c 26.03 92.38 53.75 33.43 112.2 54.45 12.09 
σ/2 131.2 154.4 119 107.7 148.2 142.7 216.1 

Force [N] 
c 975.6 862 1309 747.9 1077 1493 1462 

σ/2 15.24 13.58 11.41 13.16 13.71 10.4 16.79 
After 

training 
Time [s] 

c 59.28 64.99 51.19 54.08 76.06 50.11 44.6 

Table 4. Parameters of the“Controller4FIS” input’s mf before and after training 
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Fig. 32. Membership functions of “Controller4Fis”, before and after training 

Comparison of the FIS characteristics and the membership functions parameters, before and 
after training, indicates a redistribution of the membership functions in the working domain 
(modification of the c parameter) and a change in their shapes by the modification of the σ 
parameter (Table 4). 
The surfaces reproducing the experimental data, before and after training of the 
“Controller4Fis”, are presented in Fig. 33. 
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Fig. 33. Control surface resulted for “Controller4Fis”, before and after training 
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Each of the four obtained FISs was imported at the fuzzy controller level, resulting in four 
controllers: Controller 1 (“Controller1Fis”), Controller 2 (“Controller2Fis”), Controller 3 
(“Controller3Fis”), and Controller 4 (“Controller4Fis”). The integration of these four 
controllers is carried out using the logical scheme given in Fig. 7; resulting in the 
Matlab/Simulink model below, in Fig. 34. 
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Fig. 34. The integration model schema in Matlab/Simulink 
In the Matlab/Simulink model shown in Fig. 34, the second input for Controller 2 and for 
Controller 4 (Time) is generated by using an integrator, and starts from the moment that 
either of these controllers is used (the input of the Gain block is 0 if the schema decides not 
to work with either Controller 2 or 4). Because is possible that the simulation sample time 
may be different than the sample time used in the experimental data acquisition process, we 
use the “Gain” block that gives their rapport; “Te” is the sample time in the experimental 
data and “T” is the simulation sample time. In the scheme, the constant “C” represents the 
maximum time that it takes for the actuator to recover its initial temperature (approximately 
24˚C) when the current becomes null. 
Evaluating the integrated model for controller (Fig. 34) in all six cases of experimental data, 
the results in Fig. 35 and Fig. 36 are obtained. These results represent the elongations versus 
the number of experimental data points and versus the applied electrical current, 
respectively, using the experimental data and the integrated neuro-fuzzy controller model 
for the SMA. A good overlapping of the outputs of the integrated neurro-fuzzy controller 
with the experimental data can be easily observed. 
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Fig. 35. Elongations versus the number of experimental data points 
The same conclusion can be devolved from the 3D characteristics for the experimental data, 
and for neuro-fuzzy modeled data in terms of temperature, elongation and force, as 
depicted in Fig. 37 a., and in terms of current, elongation and force, depicted in Fig. 37 b. 
The mean values of the relative absolute errors of the obtained model for the six load cases 
of the SMA actuator, based on adaptive neuro-fuzzy inference systems, are: 1.7538% for 
700N, 1.2738% for 850N, 1.0964% for 1000N, 0.5228% for 1100N, 0.7179% for 1250N and 
0.2532 for 1250N. Therefore, the mean value of the relative absolute error between the 
experimental data and the outputs of the obtained model is 0.9363%. 
A very important advantage of this new model is its rapid generation due to the “genfis2” 
and “ANFIS” functions already implemented in Matlab. The user only need assume the four 
FIS’s training performances using the “anfisedit” interface generated with Matlab. 
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Fig. 36. Elongations versus the applied electrical current 
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Fig. 37. 3D evaluation of the integrated neuro-fuzzy controller 
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Another alternative to design the SMA model, necessitating some supplementary work, but 
also with very good results, uses the “genfis1” Matlab function. In this case, generalized 
bell-type membership functions are generated for the FISs; within the sets of rules they are 
noted by: in„j”mf„n”; j is the input number (1÷2), and n is the number of membership 
functions. The rules are of the type: if (in1 is in1mf„k”) and (in2 is in2mf„p”) then (out1 is 
out1mf„r”). The number of the output membership functions (mf) is k×p (r=1÷(k×p)) and is 
equal to the number of rules; k and p are the number of mf of the two FIS’s inputs. The 
“genfis1” function allows the membership function number to be chosen for each FIS input 
(k and p) , while “genfis2” automatically generates the membership function’s number. 
For example, if k=6 and p=12 are chosen, the structure of the “Controller1Fis” generated 
with the “genfis1” function can be organized as in Fig. 38, while Controller 1 has the same 
structure as that presented in Fig. 9. 
 

out1

in1

in1mf1

in1mfk

in1mf6

...
...

Inputs Input mf Rules Output mf

...
...

1

out1mfp

in2

in2mf1

in2mfp

in2mf12

...
...

...
...

...

...
...

...
...

out1mfr

out1mf72

Agregated
Output1

Output

Force

Current

Elongation

p

72

12

r

pkr ×=

out1mf12

out1mf1
...

...
...

 
Fig. 38. Structure of „Controller1Fis” if the “genfis1” function is used for k=6 and p=12 

By using the “genfis1” function, generalized bell-type membership functions are generated; 
their parameters are the membership function center (c) defining their position, and a, b 
which define their shape (see eq. (3)). Generating FIS’s with the “genfis1” function has as a 
primary result the choice of the same values for the a and b parameters for all of the 
membership functions that characterize an input, and as a secondary result the separation of 
the working space for the respective input using a grid partition on the data (no clustering). 
FIS training with the “ANFIS” function produces an optimized redistribution of the 
membership functions in the working domain (modification of the c parameter) and a 
change in their shapes by modification of the a and b parameters. 
Usually, for an experimental data set modeling, the “genfis2” function is first used for FIS 
generation, followed by FIS training with the “ANFIS” function over a different number of 
training epochs. If the obtained results are not the ones desired, the “genfis1” function will 
be used to generate the FIS in order to improve the accuracy of the obtained model. 

3. Actuation lines’ control 
3.1 Controller design 
Starting from the developed SMA actuators model and based on the operating scheme of the 
SMA actuators control in Fig. 4, a controller must be designed in order to control the SMA 
actuators by means of the electrical current supply, in order to cancel the deviation e 
between the required values for vertical displacements (corresponding to the optimized 
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airfoils) and the real values, obtained from two position transducers. The design of such a 
controller is difficult due to the strong nonlinearities of the SMA actuators’ characteristics. In 
these conditions, and considering our research team experience in fuzzy logic control 
systems design, we decided that one variant of control would be developed with fuzzy 
logic. 
The simplest fuzzy logic controller is the Fuzzy Proportional (FP) controller, being relevant 
for state or output feedback in a state space controller. Its input is the error and the output is 
the control signal. From another perspective, derivative action helps to predict the error, and 
the Proportional-Derivative (PD) controller uses further the derivative action to improve 
closed-loop stability (Jantzen, 1998). The equation of a PD controller can be expressed as 
follows: 

 ,
d

)(d)(
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)(d)()( ⎥⎦
⎤
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where i(t) is the command variable (electrical current in our case), that is time dependent; e 
is the operating error (see Fig. 4),  KP is the proportional gain and KD is the derivative gain. 
In discrete form, the equation (15) becomes (Kumar et al., 2008): 
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where k  is the discrete step, ST  is the sample period, and )(keΔ  is the change in error. 
Therefore, the inputs to the Fuzzy Proportional-Derivative (FPD) controller are the error and 
its derivative (called change in error in fuzzy control language), while the output is the 
control signal. We have chosen the structure shown in Fig. 39 for our FLC, where KD is the 
change in the output gain. 
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Fig. 39. Fuzzy PD controller architecture 

To realize the input-output mapping of the designed controller, we must consider that in the 
SMA cooling phase the actuators would not be powered or the supplying current would be 
very small. This cooling phase may occur not only when controlling a long-term phase, 
when a switch between two values of the actuator displacements is ordered, but also in a 
short-lived phase, which occurs when the real value of the deformation exceeds its desired 
value and the actuator wires need to be cooled. 
Each of the FLC input or output signals have the real line as the universe of discourse. In 
practice, the universe of discourse is restricted to a comparatively small interval, many 
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authors and several commercial controllers using standard universes such as [-1, 1], or [-100, 
100] corresponding to percentages of full scale. For our system, the [-1, 1] interval was 
chosen as the universe for inputs signals, and [0, 2.5] interval was chosen as the universe for 
output signal. Also, following numerical simulations, we have chosen a number of three 
membership functions for each of the two inputs, and three membership functions for the 
output. The shapes chosen for inputs membership functions were s-functions, π-functions, 
and z-functions. Generally, an s-function shaped membership function can be implemented 
using a cosine function: 
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a z-function shaped membership function is a reflection of a shaped s-function: 
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and a π -function shaped membership function is a combination of both functions: 

 )],,,(),,,(min[),,,,( 21121 xxxzxxxsxxxxx rightmmleftrightmmleft =π  (20) 

with the peak flat over the [xm1, xm2] middle interval. x is the independent variable on the 
universe, xleft is the left breakpoint, and xright is the right breakpoint (Jantzen, 1998). 
To define the rules, a Sugeno fuzzy model was chosen, which for a two input - single output 
system with N rules is given by eq. (5): 
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In the [-1, 1] universe interval, a three range partition, Negative (N), Zero (Z) and Positive 
(P), were chosen for the inputs e and Δe while in the [0, 2.5] universe interval three-range 
partition, Zero (Z), Positive-Small (PS) and Positive-Big (PB) were used for the output. 
According to the values in the Table 5, the membership functions for the inputs are by the 
form depicted in Fig. 40, and are given by the eq. (18), (19) or (20): 
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mf parameters Input mf mf type 

xleft xm1 xm2 xright 
mf1 )( 1

1A  z - function -0.5 - - 0 
mf2 )( 2

1A  π -function -1 0 0 1 e  
mf3 )( 3

1A  s - function 0 - - 1 
mf1 )( 1

2A  z - function -1 - - 0 
mf2 )( 2

2A  π - function -1 -0.1 -0.1 1 eΔ  
mf3 )( 3

2A  s - function 0 - - 1 

Table 5. Parameters of the input’s membership functions 

For the output membership functions constant values were chosen (Z=0, PS=1.25, PB=2.5), 
so the values of ),1,2,1( Nikai

k ==  parameters in eq. (21) were zero. Starting from the 
inputs’ and output’s membership functions, a set of 5 inference rules were obtained (N=5): 
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Fig. 40. Membership functions for the fuzzy logic controller inputs 

The rule-based inference chosen for each consequent is presented in Table 6. With the 
previous considerations, the fuzzy control surface results by the form presented in Fig. 41 
(two views for different angles). 
 

Δe/e N Z P 
N - PS(1.25) - 
Z PB(2.5) - Z(0) 
P Z(0) Z(0) - 

Table 6. Rule-based inference for the fuzzy logic controller 
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Fig. 41. The fuzzy control surface (two views for different angles) 

3.2 Actuation lines’ controller implementation and numerical simulation 
Implementing the operating scheme of the SMA actuators control (Fig. 4) in Matlab-
Simulink, the model shown in Fig. 42 was obtained. The input variable of the scheme is the 
desired skin deflection, while the output is the real skin deflection. 
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Fig. 42. The simulation model for the controlled SMA actuator with the neuro-fuzzy model 

The “FPD controller” block contains the implementation of the controller presented in Fig. 
39; the detailed Simulink scheme of this block is shown in Fig. 43. The block has as input the 
control error (the difference between the desired and the obtained displacements), and the 
controlled electrical current applied on the SMA actuators as output. The “SMA Fuzzy 
Model” block has the schema presented in Fig. 34; its inputs are the SMA loading force and 
the electrical current, while its output is the SMA elongation. The “Mechanical System” 
block in Fig. 43 models the SMA loading force starting from the aerodynamic force, skin 
elastic force, gas spring elastic force and gas spring pretension force. 
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Fig. 43. “FPD controller” block in Simulink 

To obtain an automatic control system, the preloaded forces on the gas springs in the two 
actuation lines must be valid for all 35 studied cases. By estimating the aerodynamic forces 
for all 35 studied flight conditions and optimized airfoils, a compromise should be done to 
balance the aerodynamic forces with the preloaded forces of the gas spring. Following 
estimation calculations, the pretension force of the gas springs in “Mechanical system” 
Simulink block (see Fig. 42) was considered with the value of 1250 N. In this situation, if the 
simulated model in Fig. 42 was loaded with an aerodynamic force Faero=1150 N, for a 
successive steps input signal applied to the controlled actuator, the characteristics shown in 
Fig. 44 are obtained. 
The results shown in Fig. 44 confirm that the obtained FPD controller works very well in 
both phases (heating and cooling) of the SMA actuators. To see the manner in which the 
controller works, screenshots were taken at different times of the numerical simulation 
presented in Fig. 44. The screenshots (Fig. 45) highlighted the fuzzy model input-output 
mapping of the eight analyzed points (P1÷P8). The chosen time values, shown on Fig. 44, 
are: 11.67 s (P1), 27.03 s (P2), 29.40 s (P3), 55.32 s (P4), 62.75 s (P5), 108.42 s (P6), 119.12 s (P7) 
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Fig. 44. Response for a successive steps input when Faero=1150 N and Fpretension=1250 N 

127.71 s (P8). Fig. 45 shows that the correspondence between the membership functions of 
the inputs and the membership functions of the output through the inference engine of the 
designed fuzzy model was correctly established. The same observation can be found by 
correlating Fig. 45 with the positions of the analyzed points in Fig. 44 and with the error e 
and change in error Δe signs and trends. 

3.3 Bench test and wind tunnel experimental validation 
From the SMA theory and based on the numerical simulations of the morphing wing 
system, the limits for the electrical current used to drive the actuators, correlated with the 
SMA temperature and SMA loading force, were estimated. As a consequence, two 
Programmable Switching Power Supplies AMREL SPS100-33 (Brailovski et al., 2008; Coutu 
et al., 2007; Coutu et al., 2009), controlled by Matlab/Simulink through a Quanser Q8 data 
acquisition card (Fig. 46) were chosen to implement the controller model (Austerlitz, 2002; 
Kirianaki et al., 2002; Park & Mackay, 2003). The AMREL SPS100-33 Power Supplies have 
RS-232 and GPIB IEEE-488 as standard features, and their technical characteristics include: 
Power 3.3kW, Voltage (dc) 0-100 V, Current (dc) 0-33 A. The Quanser data acquisition card 
has 8 single-ended analog inputs with 14-bit resolution, which can be sampled 
simultaneously at 100 kHz, with A/D conversion times of 2.4 µs/channel, and is equipped 
with 8 analog outputs, software programmable voltage ranges, that allow the control of the 
SMA actuators. 
The Q8 data acquisition card was connected to a PC and programmed via Matlab/Simulink 
R2006b and WinCon 5.2 (Fig. 47). 
As observed on Fig. 47, all data acquisition card single-ended analog inputs were used: two 
signals indicating the vertical displacements dY1 and dY2 of the SMA actuators are provided 
by two Linear Variable Differential Transformer (LVDT) potentiometers, and six signals are 
provided by six thermocouples installed on each of the SMA wires’ components. Two of the 
card output channels were used to control each power supply through analog/external 
control by means of a DB-15 I/O connector, and other two card output channels were used 
to start the power supplies with a 5V analog signal. The “SMA1” block had the scheme 
presented in Fig. 48. 
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Fig. 45. Fuzzy model input-output mapping of the analyzed points 

As seen in Fig. 48, the “SMA1” block, controlling the first actuation line, contains the 
implementation of the controller presented in Fig. 43 and the observations related to the 
SMA actuators’ physical limitations in terms of temperature and supplying currents. The 
current supplied to the actuator was limited at 10A, and the control signal was set to be 0-
0.606V (maximum voltage for the power supply is 2V for a 33A current supply). The upper 
limit of the SMA wires temperature in the “Temperature limiter” block was established at 
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130˚C. The control scheme in Fig. 43 was improved with conditioners related to physical 
model protection. In this way, a software protection of the actuation lines was realized. 
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Fig. 46. Bench test physical model operating schema 
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Fig. 47. Q8 data acquisition card using to control the actuators 

After some tests with the experimental model, the preloaded force of the gas springs that 
maintains the SMA wires in tension was chosen to be 1000 N, since in the laboratory the 
existence of aerodynamic forces could not be considered. 
The Matlab/Simulink implemented controller was used in the same way for both actuation 
lines of the morphing wing system, so the “SMA2” block had a similar scheme to the 
“SMA1” block, with the exception of the numerical values of the thermocouples calibration 
gains and constants. 
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Fig. 48. “SMA1” block, controlling the first actuation line 

The validation of the designed controller during bench test runs consisted in two main 
steps, followed by a secondary one. Firstly, each of the two actuation lines of the morphing 
system were tested independently, the control prescribed values (the desired displacements 
dY1 and dY2) being presented under the form of successive steps. In this way, the actuation 
lines responses were obtained in Fig. 49; the characteristics confirmed that the control works 
very well for both actuation lines. After this first step, the challenge was to test the actuation 
lines working simultaneously (synchronized commands), for desired displacements (dY1 
and dY2) under the form of successive steps signals applied at their inputs. A situation 
acquired during this test is presented in Fig. 50, and validates the good functioning of the 
designed controller. The obtained results presented in Figs. 49 and 50 show that the 
controllers, in the two actuation lines, work even at zero values of the desired signal because 
of the pre-tensioned gas springs. Small oscillations of the obtained displacements are 
observed around their desired values. The amplitude of the oscillations in this phase is due 
to the LVDT potentiometers’ mechanical link (were not finally fixed because the model was 
not equipped with the flexible skin in this test – Fig. 51) and to the SMA wires thermal 
inertia; the smallest amplitude is less than 0.1 mm. In the secondary step of the bench test all 
pairs of the desired displacements characterizing the 35 optimized airfoil cases were 
imposed simultaneously as input signals on the two actuation lines, while the skin was 
provisionally mounted on the model. In this step, we could see if the skin supports both 
strains simultaneously; the recorded results for all 35 tested cases confirmed the good 
working of the integrated morphing wing system. 
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Fig. 49. Actuation lines independent bench test 

This secondary step of the bench test was considered in wind tunnel, and get together with 
the transition point real time position detection and visualization, in order to validate 
experimentally all of the 35 optimized airfoils theoretically obtained. A typical test for one of 
the 35 flight conditions consisted in a wind tunnel tare run, followed by a run for the 
reference (un-morphed) airfoil, and finally by a run for morphed airfoil, reproducing the 
corresponding optimized airfoil. The morphing wing system during wind tunnel tests is 
shown in Fig. 52. 
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Fig. 50. Actuation lines simultaneously bench test 
 

 
Fig. 51. Morphing wing system in the bench test 
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Fig. 52. Morphing wing system in the wind tunnel test runs 

Because of the presence of the aerodynamic forces on the flexible skin of the wing for the 
wind tunnel tests, the preloaded forces of the gas springs were reconsidered at 1500 N. The 
control results for test run 42, characterized by the angle of attack α=2° and Mach number 
Mach=0.2 (deflections of both actuators are dY1=5.73 mm and dY2=7.45 mm), are shown in 
Fig 53.  
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Fig. 53. Wind Tunnel Test for α=2°, Mach=0.2 (dY1=5.73 mm, dY2=7.45 mm) 

From the experimental results, it can still be observed a high frequency noise influencing the 
LVDT sensors and thermocouple’s instrumentation amplifiers, but with small amplitudes 
with respect to those for the bench tested cases. A positive impact on the noise amplitude 
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reduction is the completion of mechanical model by final fixing of the skin on the model; 
this time, the noise sources are the wind tunnel vibrations, the instrumentation electrical 
fields and the wind tunnel supplying and monitoring equipments electrical fields. 
Fig. 53 and all the tested situations results confirmed that the designed controller works 
very well in the wind tunnel, being positively influenced by the aerodynamic forces 
presence. 

4. Conclusions 
The approaches for the design and to the validation of a morphing wing fuzzy logic 
application were presented. The developed morphing mechanism used smart materials such 
as Shape Memory Alloy (SMA) in the actuation control concept. 
Two important applications of the fuzzy logic technique were highlighted in this work: the 
identification of a model for a system starting from some experimental input-output data, 
and the automatic control of a system. In this way, in our morphing application two 
directions were developed: smart material actuator modeling and actuation lines’ control. 
Based on a neuro-fuzzy network and using numerical values resulted from the SMA 
experimental testing (forces, currents, temperatures and elongations), an empirical model 
was developed for the SMA actuators that could be used in the design phase of the actuation 
lines’ control. The SMA testing was performed at Tamb=24˚C for six load cases with the forces 
of 700 N, 850 N, 1000 N, 1100 N, 1250 N and 1500 N. The electrical currents following the 
increasing-constant-decreasing-zero values evolution were applied on the SMA actuator in 
each of the six cases considered. Four Fuzzy Inference Systems (FIS’s) were used to obtain 
four neuro-fuzzy controllers: one controller for the current increase, one for a constant 
current, one for the current decrease, and one controller for the null current (after its 
decrease). For the first and for the third controllers, inputs such as the force and the current 
were used, while for the second and the fourth controllers, inputs such as the force and the 
time values reflecting the SMA thermal inertia were used. Finally, the four obtained 
controllers were integrated into a single controller. 
The “genfis2” Matlab function was used to generate and train the fuzzy inference systems 
associated with the four controllers. The four initially obtained fuzzy inference systems were 
trained for 5000, 100000, 20000, and 250000 training epochs. For the four FISs, the mean of 
the relative absolute values of the errors decreased from 0.3063%, 3.3503%, 1.5154·10-3 %, 
and 5.1855%, respectively, before training, to 0.119%, 0.8902%, 2.3106·10-13 %, and 1.0316%, 
respectively, after training.  
Evaluating the model obtained for the SMA actuators (the final, integrated controller) in all 
six cases of experimental data, the mean values of the relative absolute errors were: 1.7538% 
for 700N, 1.2738% for 850N, 1.0964% for 1000N, 0.5228% for 1100N, 0.7179% for 1250N, and 
0.2532 for 1250N. Therefore, the mean value of the relative absolute error between the 
experimental data and the outputs of the obtained model was 0.9363%. 
A very important advantage of this new model is its rapid generation, since the “genfis2” 
and “ANFIS” functions are already implemented in Matlab. The user only needs to assume 
the four FIS’s training performances using the “anfisedit” interface generated with Matlab. 
The second application of fuzzy-logic techniques in our project (actuation lines’ control) 
supposed the design of an SMA actuators’ controller starting from the developed SMA 
actuators’ model. The controller was designed to control the SMA actuators by means of the 
electrical current supply, in order to cancel the deviation e between the required values for 
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vertical displacements (corresponding to the optimized airfoils) and the real values, 
obtained from two position transducers. Finally, a fuzzy PD architecture was chosen for the 
controller. In its design, numerical simulations of the open loop morphing wing integrated 
system, based on a SMA neuro-fuzzy model, were performed. A bench test and a wind 
tunnel test were conducted as subsequent validation methods. 
A [-1, 1] interval was chosen as the universe for the inputs’ signals, and a [0, 2.5] interval 
was chosen as the universe for the output signal. Also, following numerical simulations, 
three membership functions for each of the two inputs, and three membership functions for 
the output were chosen. The experimental validation tests (bench tests and wind tunnel test) 
confirmed that the designed controller works very well. The wind tunnel tests were quite 
positive, with their transition point real time position detection and visualization, which 
experimentally validated all of the 35 theoretically-obtained optimized airfoils. 
As a general conclusion, the work presented here has proved the feasibility of using fuzzy 
logic methodologies in multidisciplinary research studies in the aerospace field, especially 
for morphing wing or morphing aircraft studies. 
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1. Introduction

This chapter presents the use of Fuzzy Control to model the control behaviour of a human
pilot during two particular flight tasks. Pilot models are used in different areas of the
aeronautical research such as handling qualities, cockpit assistant systems as well as in the
area of Human Factors or Human Computer Interaction. Aircraft safety analysis is closely
connected with the error analysis of pilot computer interaction (see Enders (1989)). This aspect
is also supported by the fact, that 55 % the flight accidents are caused by human factors (see
N.N. (2006)). Consequently, knowledge about human factors, for example the pilot workload,
during the flight or during a particular flight task is important. For instance significant
deviations during a particular fight task of a human pilot from his individual corresponding
pilot model could be understood as a modification of his workload.
In general pilot models can be classified into behavioural and biomechanical models
(see McRuer & Krendel (1974), McRuer (1988) and Luckner (2010)).The biomechanical
models defines the human pilot as a passive biodynamic system and concentrates on the
biomechanical and neuromuscular aspects. They emulate the torso, the hip, upper arm and
forearm as well as the Stick ”feel system” dynamics of a human pilot (see Allan et al. (1973)
Köhler (1997), Jex & Magdaleno (1978), von der Vorst (1999) and Höhne (2000))
Behavioural models define the human pilot as a active dynamic control element. They
can themsleves also be divided into the conventional and alternative concepts. Conventional
concept makes use of the classical control technology to model a human pilot. Typical example
of this approach are the quasi-linear model and the models based on optimal control theory
as shown for instance in Hess (1990) and Hosman & Stassen (1999). In Dooyong et al. (2003)
an optimal control model of a human pilot was used to simulate pilot control activity for
a particular approach trajectory. The pilot model was used to predict pilot workload for
shipboard approaches in two different wind-over-deck conditions. Johnson & Pritchett (2002)
applied an adaptive control architecture to develop a generic pilot model for inner-loop
attitude control.
Alternative concepts are based on soft-computing techniques such as Petri nets, expert
systems, decision models, neural networks, or fuzzy-logic. For instance a neural network
pilot model was proposed in Amelsberg et al. (2009) for wake vortex recovery of an aircraft
during departure. Gestwa & Viet (2009) demonstrate that neural networks can learn from a
human pilot to perform a particular flight task during a flight. Furthermore, the knowledge
based cockpit assistant system (CASSY) contains a Petri net based reference pilot model.

Using Fuzzy Control for Modeling the Control 
Behaviour of a Human Pilot 
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Fig. 1. ILS-Geometry

2. Introduction to flight control during approach

The crucial part of every flight is the approach. In particular pilot workload during approach
is significantly higher than during most other phases. For this reason the two scenarios which
are considered later are based on this phase.
Fig. 1 shows a typical trajectory for an approach using instrument landing system (ILS).
Various types of ILS exist and are very widely used around the world. They are highly
accurate means for positioning the aircraft with respect to the runway and this allow
operations in poor visibility conditions. This positionings basically constis in determining
two angles relatively to the ideal approach path:

– localizer (LOC) which is the lateral deviation to this path

– glide slope (GS) which is the vertical deviation to this path

(see FAA (2009) and Brockhaus (1994)). For each angle exists an corresponding indicator on
the cockpit displays. Fig. 2 shows a typical primary flight display (left display ) and a typical
navigation display (right display).
A precision approach is an approved descent procedure using a navigation facility aligned
with a runway where glide slope information is given. When all components of the ILS system

Fig. 2. Typical primary flight display and navigation display
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are available, including the approved approach procedure, the pilot may execute a precision
approach. FAA (2009) contains a detailed description of an ILS.
A standard ILS-procedure is composed into five parts:

1. The pilot approaches with an offset of 45◦to the runway heading.

2. When the aircraft is in the visualised range of the localizer (+2.5◦) the pilot initialises the
interception. At the end of this maneuver, the aircraft has the right runway heading and
the localizer deviation is nearly zero.

3. The next important phase begins when the aircraft is in the visualised range of the glide
slope (+0 .5◦). Then the pilot changes the aircraft configuration. The landing flaps and slats
are set to their maximum position and the gear is extended. The descent initialised and the
aircraft declines with an angle of nearly 3◦. This angle is called flight path angle.

4. Now the main task of the pilot is to keep the configured aircraft on the glide slope and the
localizer with a desired speed. In this state, a slight overshooting of the speed is usually
acceptable. However, an significant undershooting of the desired airspeed can lead to a
dangerous flight situation. Hence, the pilot observes the speed indicator very carefully
during the final approach.

5. At the end of the approach, the landing is performed. In a defined altitude, the pilot
initialises the flare. He puts the thrust lever in idle position and commands a pitch up.
Afterwards the main gear and a little bit later the nose gear touches down on the runway.
Now, the pilot brakes the aircraft and rolls to the final position on the airport.

On order to follow this standard procedure, the pilot has several control actions to perform.
Some of them are purely discrete such as flaps and slats configuration or gear extension.
Others require quasi-continuous control actions such as longitudinal and lateral control. This
control is achieved though a two-axis side stick, pedals and thrust command. All along this
chapter the pedals will not be considered because the discussed flight tasks do not require
them. The way both side stick and thrust commands change aircraft movement is briefly
explained here after. The energy balance of an aircraft is the sum of kinetic and potential
energy:

Etotal = Epot + Ekin = mgh +
1
2

mv2 (1)

During a short period of time m is almost constant and can be considered as constant. With
this assumption the potential energy only depends on the altitude and the kinetic energy only
depends on the speed. If the pilot pushes the side stick, the aircraft reduces the altitude.
Potential energy will be transformed in kinetic energy. Without a thrust command the energy
balance is quasi constant and consequently the speed increases. According to this the pilot
pulls the side stick without a thrust command. The aircraft reduces the speed and increases
the altitude. The control strategy of a pilot reflects this fact and can be described as follows:

– If the pilot pulls the side stick, the corresponding thrust command results from the
following aspects:
If the aircraft has a positive speed difference, no thrust is given because the climb reduces
the speed difference. If the speed difference is roughly equal zero, a very small amount of
thrust has to be set to hold the speed. If the aircraft has a negative speed difference, thrust
has to be given because the climb will increase the existing speed difference.
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– If the pilot pushes the side stick the thrust command results from the following aspects:
If the aircraft has a negative speed difference, no thrust is given because the descent reduces
the speed difference. If the speed difference is roughly equal to zero, thrust has to be
reduced a little bit to hold the speed. If the aircraft has a positive speed difference, thrust
has to be reduced because the descent will increase the existing speed difference.

– The pilot increases only the thrust and with it the airspeed also. The engines of the aircraft,
which is consider in this chapter, are beyond the center of gravity. On account of this
an increment of the thrust produces a pitch up moment. To compensate this upward
movement the pilot gives a small pitch down command.

– The pilot reduces only the thrust and with it the airspeed also. The aircraft pitches down,
because a reduction of the thrust produces a pitch down moment. To compensate this
downward movement the pilot gives a small pitch up command.

An additional important aspect is that many modern aircraft and in particular the one which
is used after are equipped with a flight control system. All pilot commands are inputs of the
flight control system. This system compute the necessary displacements of the control surfaces
of the aircraft in order to satisfy pilots commands. The later can be differ. Furthermore, a
so called rate command attitude hold command system is used. Such a command system
stabilises an aircraft on a command attitude, like pitch or roll angle. Side-stick deflection
defines a pitch or a roll rate. A consequence of the use of a rate command attitude hold
control system is that pilots will only need to perform very short corrections taking the form
of short peaks. This will be observed later on Fig. 6 and Fig. 14.

3. The ILS tracking task

The ILS tracking task (abbrev. ITT) is based on an instrument landing system of one virtual
airport’s (see Fig. 1 ) and focuses only the longitudinal motion of the aircraft. If the aircraft is
established on the glide slope and has the required flight conditions, the pilot do not control
activities. To compel the pilot to an active control behaviour the ITT was developed and can
be described in the following way (see Bauschat (2000)):

The ITT consists of seven phases. At the beginning the aircraft flies with the
target speed and established on the glide slope. After 70 sec the glide slope
transmitter shifts to a new position so that the glide slope indicator on the display
in the cockpit moves downwards to its minimal deflection (see Subfigure (a) in
Fig. 3). Now, the aircraft is above the glide slope, the pilot has to reduce the
altitude. For this manoeuvre he has 70 seconds. After this procedure the glide
slope transmitter is shifted again so that the glide slope indicator moves upward
to its maximal deflection (see Subfigure (b) in Fig. 3). Now the aircraft is under
the glide slope and the pilot has to climb with the aircraft. Again the pilot has
70 seconds to compensate the glide slope deviation. In the next phase the glide
path indicator moves downward again, afterwards upward again etc. The whole
ITT task requires 490 seconds, thereby the glide path indicator moves three times
downward and three times upward in a given sequence.

A major aspect for the design of this flight task is to ensure, that the dynamic of the aircraft
is sufficient to compensate the resultant altitude difference of the first transmitter shifting.
With the typical 3◦value for the glide slope tilt angle this would be possible for the aircraft
used during this work. Consequently, this tilt angle is later reduced to 1,5◦which ensures
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(a) Shifting of the ILS transmitter - aircaft is above the glide slope

(b) Shifting of the ILS transmitter - aircaft is over the glide slope

Fig. 3. Principle of the ILS tracking Task

the feasibility of the experimental task. Furthermore, this modification implicates that the
pilot has to compensate an altitude difference of 196 m instead of 394 m. The shifting of
the transmitter raises, that the glide slope display jumps suddenly to its maximum. The pilot
senses this behaviour as unrealistic and extremely diverting. Therefore, the shifting rate of the
ILS transmitter is attenuated by a first-order filter. This ensures that the glide slope indicator
does not jumps but moves continuously in the direction of the current maximum deflection.
To acquire the data basis for the pilot modelling a test pilot has performed three ILS Tracking
Task in a flight simulator (see Klaes (2002)). The pilot was instructed to compensate the glide
slope deviation as fast as possible and if possible not to deviate from the target speed of 72
m/s (140 kts). Furthermore, the pilot was requested to comment his own control behaviour.
These comments were recorded and used for the analysis of his control behaviour as well as
for the development of the individual pilot model.

3.1 Development of the ITT-fuzzy pilot
The pilot has to observe many instruments in the cockpit. To find out the information the
human pilot uses primarily consciously and unconsciously to perform the ITT, he has to fill a
questionnaire (see Rasmussen (1986)). In this questionnaire the pilot describes the priority of
the instruments he needed. A given scale is divided into ten priorities, which are subdivided
into three classes again (see Table 1).
This information is used to choose the measurements which will be used by the fuzzy pilot.
The label numbers in Table 1 are the priorities of a professional pilot who has performed
the ITT. His priorities show that for him five indicators are important to perform the ITT. By
three of them the signal dynamic is important too. All very important indicators identified by
means of the questionnaire in Table 1 is used for the fuzzy pilot model. The dynamics of the
indicators is obtained by

Δẋ =
xt+Δt − xt

Δt
(2)
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(1) Priority of the instrument
very important important unimportant

pitch 1 2 3 4 � 6 7 8 9 10
speed trend 1 2 � 4 5 6 7 8 9 10
speed difference 1 2 � 4 5 6 7 8 9 10
glide slope � 2 3 4 5 6 7 8 9 10
flight path angle � 2 3 4 5 6 7 8 9 10
altitude 1 2 3 4 5 6 7 8 9 �

vertical speed 1 2 3 4 5 � 7 8 9 10
Distance 1 2 � 4 5 6 7 8 9 10
(2) Priority of the instrument dynamic

very important important unimportant
pitch 1 2 3 4 5 � 7 8 9 10
speed trend 1 2 3 4 5 6 7 � 9 10
speed difference 1 2 � 4 5 6 7 8 9 10
glide slope � 2 3 4 5 6 7 8 9 10
flight path angle 1 2 3 � 5 6 7 8 9 10
altitude 1 2 3 4 5 6 7 8 9 �

vertical speed 1 2 3 4 5 6 7 8 9 �

Distance 1 2 � 4 5 6 7 8 9 10

Table 1. Questionnaire on instrument priority

Between the identified measurements exists a relation which is based on the flight dynamics
and physical law. This relation can be used to reduce the number of measurements. For
instance, the flight path angle can be derived from the glide slope indicator. If an aircraft
is established on the glide slope, the flight path angle is equal the angle of the glide slope.
Consequently the flight path angle can be disregarded as a measurement. Similarly, the
distance can be derived from the sensitivity the glide slope indicator. Though the pilot
consider the label information as important the aforementioned aspects can be used to reduce
the numbers of measurements from seven to four. The recorded commentary of the pilot
reflects that he also unconsciously reduced the parameter he constantly observe. The four
chosen parameters are the glide slope indicator Δε, the derivative of the glide slope indicator
Δ̇ε, the speed difference Δv and the derivative of the speed difference Δ̇v. Regarding control
commands there is no possibility or need to make such a choice: the control commands of the
fuzzy pilot are thus simply defined by the control elements in the cockpit. In other words the
fuzzy pilot will deliver a side stick command and a thrust command.

3.2 Specification of the linguistic terms and their fuzzy sets
In the following subsection the definition of the linguistic terms and their associated fuzzy
sets are described. As examples the glide slope derivative and the side stick command are
explained in details. These definitions are based on both pilot comments and recorded flight
data.

3.2.1 Derivative of the glide slope indicator
Fig. 4 shows the time evolution of the glide slope indicator derivative. The six movements
of the glide slope transmitter are obvious. Except during a few seconds after a move of the
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Fig. 4. Time series of the glide slope indicator derivative

glide slope transmitter, the glide slope indicator derivative is in the [-0.02◦/sec to 0.02◦/sec]
interval (identified by the yellow background in Fig. 4).
The investigation of the pilot reaction shows that he does not make any control command
immediately after the glide slope transmitter starts to move. The pilot knows that he cannot
follow the glide slope directly and that a new phase of the ITT starts. He waits until a
quasi-stabilised situation is indicated and then starts to compensate the glide slope deviation.
To model this effect the fuzzy pilot will make use of a separate controller to detect the
movements of the glide slope transmitter. The measurement of this controller is the glide
slope indicator derivative with the universe [−0.1◦/s,0.1◦/s] and in agreement with Fig. 4
the three linguistic terms below, zero and above are defined. This fuzzy set overlaps at the
begin and end of the the yellow range. The definition points are provided in Table 2.

μ below zero above
0 -0.025 0.015
1 -0.100 -0.015 0.025
1 -0.025 0.015 0.100
0 -0.015 0.025

Table 2. Definition points of the fuzzy sets for the detection of the glide slope transmitter
movement

The control commands of the separate controller are the two linguistic terms yes and no which
indicate that the glide slope transmitter has moved. So, the rule base contains the three rules:

IF IS above THEN shifting IS yes
IF IS zero THEN shifting IS no
IF IS below THEN shifting IS yes

Now the linguistic terms of the glide slope derivative have to be defined in the universe
[−0.025◦/s,0.025◦/s] (the yellow range in Fig. 4). To describe the strategy of the glide slope
derivative the yellow range is enlarged in Fig. 5.
In Fig. 5 six horizontal lines and the zero line can be seen. Based on this classification the
universe is divided into seven areas and each area represents a special situation. First the
three areas above the zero line will be explained:

– [0.01◦/s,0.02◦/s]:
The glide slope transmitter has reached a new position. The motion of the glide slope
indicator is normal. The pilot starts to stabilise the aircraft on the glide slope.
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Fig. 5. Zoom of the marked range of Fig. 4

– [0.0025◦/s,0.01◦/s]:
The aircraft is in stationary descent or climb. The glide slope deviation is reduced.

– [0.0◦/s,0.0025◦/s]:
The aircraft is near to the glide slope and has to be stabilised on the glide slope. According
to the commands of the pilot the aircraft oscillates around the glide slope.

– 0◦/s:
On the glide slope the derivative should have a value of zero. Consequently the aircraft is
in a stationary state.

This description can be transfered to the area below the zero line. With the help of the
commentaries of the pilot seven linguistic terms can be defined. The terms are:

descent rapidly, descent, descent slightly,
zero,

climb slightly, climb, climb heavily

and the determining points of their fuzzy sets are summarised in Table 3.

μ descent
rapidly

descent descent
slightly

zero climb
slightly

climb climb
rapidly

0 -0.0150 -0.0075 -0.0025 0.0 0.0025 0.0120
1 -0.0250 -0.0120 -0.0025 0.0 0.0025 0.0075 0.0150
1 -0.0150 -0.0075 -0.0025 0.0 0.0025 0.0120 0.0250
0 -0.0120 -0.0025 0.0 0.0025 0.0075 0.0150

Table 3. Points of the glide slope deviation

3.2.2 Side stick command
The side stick deflections are given as inputs to a rate-command system and Fig. 6 shows the
side stick commands of an ITT. It can be seen that the pilot commands have mainly the shape
of short peaks. To model this the maximum method will be used for defuzzification because
this method tends to cause a pulsed behaviour (see Kruse et al. (1995) and Kahlert & Frank
(1994)). With this method the output of the fuzzy pilot is the control action corresponding to
the fuzzy set having the greatest value of μ. To determine the control actions an investigation
of the pilot side stick commands was made and resulted in the definition of seven actions:
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Fig. 6. Side Stick command of the pilot

null, 3 positive and 3 negative. They are represented by the horizontal green and red lines in
Fig. 6.
With the values in Fig. 6 and pilot comments the corresponding linguistic terms for the side
stick commands can be derived. They are:

pull heavily, pull, pull slightly,
zero,

push slightly, push, push heavily

The universe of the side stick command is defined by the side stick signal with the interval
[−1,1]. The fuzzy-sets are defined by triangular functions having their maximum exactly at a
single point. The linguistic terms and the corresponding fuzzy sets are given in Table 4.

μ pull
heavily

pull pull
slightly

null push
slightly

push push
heavily

0 -1.0 -0.4 -0.2 -0.1 0.0 0.1 0.2
1 -0.4 -0.2 -0.1 0.0 0.1 0.2 0.4
0 -0.2 -0.1 0.0 0.1 0.2 0.4 1.0

Table 4. Points of the side stick command

The control architecture is now complete and is graphically shown in Fig. 7. The ITT rule base
must however still be defined.

3.3 Definition of the ITT-rule base
In this section the rule base of the fuzzy pilot will be defined using the specified linguistic
terms. For this the basic control strategy of the pilot should be determined from the time
histories (see Fig. 8) and the pilot comments.
This strategy can be divided into three phases:

– In the first phase the glide slope transmitter is moving. The absolute value of the glide slope
derivative is large. Since he knows that he cannot follow the glide slope indicator, he waits
until the indication moves slowly. This behaviour is already modeled by the rule base given
in section 3.2.1 on page 7.

– In the second phase the glide slope indicator moves slowly. Now the pilot starts
compensating the glide slope deviation. Depending on the actual situation he initiates a
descent or climb. In this phase he is reducing the glide slope deviation very fast. He brings

305Using Fuzzy Control for Modeling the Control Behaviour of a Human Pilot



10 Fuzzy Controllers, Theory and Applications

Fig. 7. Structure of the ITT fuzzy pilot

the aircraft as fast as possible close to the glide slope. During the phase of the glide slope
movement the pilot only has to wait and to observe.

– In the third phase the aircraft is near the glide slope. Now the pilot has to stabilise the
aircraft on the glide slope. For this procedure he stops the descent or climb by pulling or
pushing the side stick. Consequently the descent or climb is interrupted and the aircraft
will be stabilised on the glide slope as well as possible. Now the aircraft is approximately
on the glide slope. The pilot knows that a slight side stick inputs is enough to compensated
these deviations it always has except if low frequency component are 0. Furthermore he
knows that these slight inputs have no effect to the airspeed.

Evaluating the airspeed difference in Fig. 8 it is remarkable that in some situation the power
lever has reached the lower limit but the speed is still too high. In this situation the pilot
can reduce the speed difference only with the side stick. If he pulls the side stick the aircraft
interrupts the descent and the glide slope deviation is not decreasing. But it is the task of the
pilot to compensate the glide slope deviation as quickly as possible. So, he has to accept the

Fig. 8. Strategy of the human pilot
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IF Δε IS zero ∧ Δ̇ε IS zero ∧ Δv IS zero ∧ Δ̇v IS zero ∧ shifting IS no
THEN side stick IS zero ∧ thrust IS hold
IF Δε IS over ∧ Δ̇ε IS climb ∧ Δv IS zero ∧ Δ̇v IS zero ∧ shifting IS no
THEN side stick IS push heavily ∧ thrust IS raise
IF Δε IS over ∧ Δ̇ε IS climb ∧ Δv IS zero ∧ Δ̇v IS sink ∧ shifting IS no
THEN side stick IS push heavily ∧ thrust IS raise slightly
IF Δε IS over ∧ Δ̇ε IS climb ∧ Δv IS zero ∧ Δ̇v IS climb ∧ shifting IS no
THEN side stick IS push ∧ thrust IS raise
IF Δε IS over ∧ Δ̇ε IS climb slightly ∧ Δv IS zero ∧ Δ̇v IS climb ∧ shifting IS no
THEN side stick IS push ∧ thrust IS raise heavily
IF Δε IS over ∧ Δ̇ε IS descent rapidly ∧ Δv IS zero ∧ Δ̇v IS climb ∧ shifting IS no
THEN side stick IS null ∧ thrust IS hold
IF Δε IS over ∧ Δ̇ε IS descent ∧ Δv IS zero ∧ Δ̇v IS climb ∧ shifting IS no
THEN side stick IS null ∧ thrust IS hold

Table 5. Outline of the rule base

interim speed deviation. Here the pilot uses the relation between the side stick and thrust
command, which is described in the second section 2 on page 7.
The rule base of the fuzzy pilot has to be designed taking the above mentioned aspects into
account. For the development of the rules an iterative approach is applied in order to keep the
numbers of rules as low as possible. This iterative process starts with only one rule and the
other rules are defined one after the other. If a situation during the ITT occurs for which the
fuzzy pilot has no rule the ITT is aborted. A new rule can be defined by analysing the current
flight state and this process is repeated until it does not happen anymore. Table 5 contains the
result after seven iteration steps.
The control behaviour of these seven rules are shown in Fig. 9 on the base of the first
movement of the glide slope transmitter. This method was used to define the whole rule
base of the fuzzy pilot.
The development of the fuzzy pilot model based on the information gained from one pilot.
This has the consequence, that only his specific control characteristics will be matched.

Fig. 9. A control behaviour of the fuzzy pilot by using the rule of Table 5
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Fig. 10. Control policy of the fuzzy pilot by the ITT

3.4 The fuzzy pilot in comparison with the human pilot
The way the fuzzy pilot performs the ITT is shown in Fig. 10. The fuzzy logic system
compensates all glide slope deviations caused by the movements of the transmitter and
stabilises the aircraft on it with the demanded target speed. In order to know whether a
fuzzy logic control approach is a suitable method to model the human control behaviour
an assessment of the control behaviour of the fuzzy pilot in comparison with the control
behaviour of the human pilot is necessary. Indeed, many factors may influence the control
activities of a human pilot (see Budd (1992)). Therefore the number of experiments which are
required to identify the real influence of each one of them is very high. For simplicity, only a
simplified comparison is presented here.

3.4.1 Comparison of the glide slope indicator
To compare the glide slope indicator deviations of the human pilot and the fuzzy pilot their
time evolution on the same ITT experiment may be analysed. These time evolution are shown
in Fig. 11.
During the 2nd, 4th and 5th transmitter movements the two curves are matching acceptably.
On the basis of the mean value and the standard deviation of the glide slope deviation it can
be assessed, how well the pilot and the fuzzy pilot maintain the glide slope. Table 6 shows that
all mean values can be found in the proximity of the ideal mean value zero and all standard

Fig. 11. Glide slope indicator deviations of the pilot (2nd ITT) and the fuzzy pilot
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fuzzy pilot pilot (1st ITT) pilot (2nd ITT) pilot (3rd ITT)
μ 0.00990 0.00083 0.00140 0.00830
σ 0.10100 0.10600 0.09400 0.09700

σμ=0 0.01030 0.01130 0.00880 0.00950

Table 6. Mean value and standard deviation of the glide slope indicator signal

deviations are almost zero, too. Indeed the first and second ITT of the human pilot is better
than the fuzzy-pilot. The mean value of fuzzy pilot and the third ITT is very similar. That
applies to the standard deviation, also. Consequently, the all values of fuzzy pilot are in the
range of the nature bandwidth of the human pilot control activities.

3.4.2 Comparison of the side stick commands
Fig. 12 shows the time series of the side stick commands of the fuzzy pilot and human pilot
(2nd ITT).

Fig. 12. Side stick command of the pilot and the fuzzy pilot

The maximum values of the side stick commands of the fuzzy pilot are rather acceptable.
However, the commands of the human pilot can be characterised as jerky and short inputs in
contrast to the fuzzy pilot which prefers weak and long inputs. This difference is based on the
defuzzification and is typical for the maximum method. In spite of this difference the reaction
of the aircraft is nearly the same (see the last section). Table 7 reflects this result, because the
mean value and the standard deviation are in the range of the nature bandwidth of the human
pilot control activities

fuzzy pilot pilot (1st ITT) pilot (2nd ITT) pilot (3rd ITT)
μ 0.00610 0.00680 0.00620 0.00580
σ 0.10200 0.14100 0.13600 0.14700

σμ=0 0.01100 0.02000 0.01800 0.02200

Table 7. Mean values and standard deviations of the side stick command

3.4.3 Comparison of the control strategy
The comparison between the human control strategy and the control strategy of the fuzzy
pilot implies that the previously discussed measurements can be seen as an inherent part of a
control concept. This concept defines how the pilot has to react in a situation and determine
his control behaviour. During the ITT the situation is described by means of the glide slope
and the speed. The control strategy is characterised by the side stick command and the thrust
command. In the following example one ITT section is evaluated with respect to the control
strategy.
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Fig. 13. Control strategy of the fuzzy pilot in comparison with the one of the human pilot

The reaction of the fuzzy pilot is very similar to the reaction of the pilot (see Fig. 13). Both
react on a glide slope transmitter shifting with a stationary climb. During the stationary climb,
the pilot waits until the aircraft is near the glide slope. Both begin to interrupt the climb so that
the aircraft is stabilised on the glide slope. Both pilots stop the climb too late. Consequently,
the aircraft overshoots the glide slope. In this situation the pilot as well as the fuzzy pilot push
the side stick to return on the glide slope. In the final phase of the ITT both pilots succeed to
stabilise the aircraft on the glide slope.
The coupling of the side stick and thrust command can be also observed in this section of the
ITT. The commands push and thrust reduction as well as pull and thrust increase define a
control unit. It is noticeable that the pilot and the fuzzy pilot has the same strategy to stabilise
the aircraft on the glide slope. Both pushes the side stick but the aircraft overshoots the glide
slope (see Fig. 13 from 168 to 182 seconds). The flight section in Fig. 13 points out, that
the control strategy of both pilots during a negative, maximal movement of the glide slope
transmitter is very similar. The previously described control strategy can be observed in every
phase of the tracking task. An investigation of all opposed reactions of the fuzzy pilot and the
human pilot shows that they are based on different flight states. However, both reactions are
traceable and logical. Although some differences between the reaction of the human pilot and
the fuzzy pilot exist, the fuzzy pilot reproduce sufficiently well control strategy of the pilot
during this particular task.

4. The localizer intercept task

In this section a pilot model for a typical ILS approach should be developed (see Fig. 1). First,
a brief description of the ILS approach is given:
The pilot begins the landing with a offset of 45◦to the runway. When the localizer indicator
starts to move (+2,5◦) the pilot initiates the intercept onto the Localizer. At the end of this
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manoeuvre the aircraft is approximately on the localizer. The next part starts when the glide
slope indicator begins to run downwards (+0.5◦). The pilot lowers the landing flaps and
landing gear. He changes the aircraft configuration and ensures a descent of approximately
-3◦. The aircraft is established with target speed on the localizer and on the glide slope. The
ILS task ends with the beginning of the flare because the flare is excluded from this study. To
develop the pilot model for this flight task a professional human pilot performs this task in a
ground simulator.
The ITT can be characterised as a flight task with high control activities of the pilot because
the pilot should compensate the deviations as fast as possible. It is a so called high gain task.
In contrast to the ITT the ILS task can be characterised with low control activities but with
high precision. Therefore, the ILS task is a so called low gain task.
Compared to the experiences with the ITT the structure of the pilot model will be different. By
using the theory of the mental models from the cognitive psychology pilot model of the ILS
flight task consists of simple, compact controllers (see Dutke (1994)). Each control represents
a mental model and they are combined to a complex control. Similarly to classical flight
controllers and control laws separate fuzzy controller will be develop for longitudinal and
lateral motion. Each movement is separately considered (see Brockhaus (1994)). Furthermore,
the fuzzy control of the longitudinal motion contains the thrust controlling (see section 2 on
page 2 relation between side stick and thrust command). Consequently, the structure of the
control is based on a two-stage controller structure. This structure reflects the strategy of the
human pilot in a better way.

4.1 Recording and Preprocessing of the Flight Test Data
To get the knowledge and the control behaviour of a human pilot, a pilot performed ILS
approaches in the ground simulator all data of these approaches were recorded. Additionally,
the pilot explains his control activities and why he reacts in such a way. The comments of
the pilot were recorded as well. This information is the basis for the development of the
fuzzy-controller.
An initial analysis of the pilot comments and the general knowledge about the ILS approach
permit to identify the measurements which are mainly used by the pilot to perform the ILS
flight task:

– time, air speed, pitch angle, and rate as well as roll angle and rate, magnetic heading

– configuration of the landing flaps

– side-stick pitch and roll command as well as position of the right and left power lever

– status of the landing gear, middle, and outer marker

– localizer and glide slope deviation

These measurements can be extracted out of the flight test database.

4.2 Development of a conventional fuzzy controller
The first design step consists in defining the measurements and the control variables. In
the case of modeling a human pilot the cockpit indicator, the cockpit input devices and the
knowledge of the pilot are information sources to define the input and output variables of the
fuzzy controller or rather the cognitive pilot model. All inputs of the pilot are on the primary
flight- and navigation display. (see Fig. 2). As mentioned above two separate controllers are
developed. The controller of the lateral motion stabilises the aircraft on the localizer whereas
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Time [sec] Comments of the human pilot
9.66 It has been adjusted so far.

And now, I simply fly until the Localizer comes in.
41.85 Now, the localizer comes in.
44.76 Now, I initialised the turn left, 20◦or so.
63.66 Therefore, I finish the turn, in order to reach the desired heading

without an overshoot.
120.45 A little correction to the left
124.57 Now, I finish the turn again.
148.35 Intermediate, I check the localizer, it is o.k.
163.95 Localizer is o.k. with a slight tendency to the right

Table 8. Typical comments of the human pilot about the lateral motion

the controller of the longitudinal motion is responsible to keep the aircraft on the glide slope
and controls the airspeed.

4.2.1 Fuzzy-controller for the lateral motion
The pilots comments were analysed to identify which indicator on the displays are used by
the pilot for the lateral control task. Table 8 summarises some typical comments about the
lateral motion.
This analysis showed that the localizer indicator was the primary source of information for the
lateral motion during the ILS approach. In addition to the current position the dynamic of the
localizer indicator is also important (see the commentary at 41.85 sec in Table 1). Furthermore
the pilot derives out of the current localizer indicator position a roll angle, which is qualified
for an enhancement of the current fight condition. For the evaluation of a roll command the
roll angle gives a good orientation, because the pilot has an accurate idea of the required roll
angle. Therefore, the localizer indicator deviation and its derivative as well as the roll angle is
used as input for the roll controller. Additional to these inputs the status of the localizer signal
is also applied as an input because this controller should only be active when the aircraft
receives the localizer signal
The analysis of the flight test data has shown that only the aileron is used to control the
lateral motion of the aircraft during the ILS approach and not the rudder. Furthermore, the
pilot uses the localizer indicator to perform the intercept. From this fact it follows that the
pilot commands only roll input to compensate localizer deviations. Table 9 summarizes the
interface of the controller for the lateral motion.
The lateral motion is only controlled by the side-stick roll command. The lateral control
strategy of the pilot consists of two parts. First the pilot analyses the localizer deviation.
Consequently he derives a set point for the roll angle PHI new. Then he compares this set
point with the current roll angle PHI and compensates a possible difference with an adequate

Measurements:
Localizer indicator deviation (DeltaLOC)
Derivation of the localizer indicator deviation (dDeltaLOC)
Roll angle (Phi)
Status of the localizer (LOC Status)
Control variables:
Side-stick roll command (SiStRollCmd)

Table 9. Interface of controller for the lateral motion
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Fig. 14. Fuzzy-Controller of the Lateral Motion

roll command. Fig. 14 shows the resulting structure of the lateral fuzzy-controller.
First the localizer indicator and its derivative are interpreted by the fuzzification interface.
Then, the rules of the fuzzy controller transform this information into a target roll angle, which
is stored in the internal linguistic variable PHI new. This linguistic variable and the current
roll angle of the aircraft PHI are the inputs of the second fuzzy-controller which generates the
corresponding side-stick command. This combination of both controller leads to a classical
cascade structure which can easily be identified in Fig. 14.

Fig. 15. Analysis of the roll commands of the human pilot

Fig. 15 shows the roll commands of the human pilot during the first ILS approach. The time
history exposes that the roll commands have mainly the shape of short peaks. As already
seen before this control behaviour is typical for a pilot, using a rate command system (see
section 2 on page 2). To model this control behaviour the maximum method is also used for
the defuzzification. The fuzzy set of this fuzzy-controler will be defined in the same way like
in section 3.2.2 on page 8 describe. The red lines in Fig. 15 represents the tops of the triangle
fuzzy-sets.

4.2.2 Fuzzy-controller for the longitudinal motion
The same method as for the lateral motion controller is applied to design the longitudinal
controller. Table 10 contains the inputs and the outputs of the controller. Similarly to the
lateral motion, the glide slope indicator and its dynamics are the primary information sources
which are used by the pilot. Additional the deviation of the target speed is also important.
As seen in section 2 and for the ILS tracking task the control of the longitudinal motion
involves the control of both pitch and airspeed. As both are strongly coupled pilots combine
both actions and the fuzzy controller has to therefore also work this way. Fig. 16 shows the
controller for the longitudinal motion and the airspeed.
The studies in the ground simulator have shown that the human pilot uses the thrust lever
rarely. One reason for this behaviour is the knowledge about inertia of the engines. A thrust
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command needs a period until the engines reach the new commanded number of revolutions.
Therefore, the human pilot moves the thrust lever carefully. In addition, it is possible that a
thrust lever command is needless because a pitch command is given.
The controller uses three rule bases. The first rules basis generates an internal thrust lever
command out of the difference of the target speed and the current airspeed as well as out of
the airspeed tendency or dynamic. The second rule produces an internal pitch command. As
inputs this rule basis uses the glide slope deviation and its derivative to model the dynamic
of the indicator as well as the glide slope status. The status indicates whether the aircraft
receives the glide slope signal or not. In section 2 the relation between pitch and thrust
command is explained. This third rule basis combines both commands and generates the
ultimate commands. The import aspect of this rule basis is to filter out unnecessary thrust
lever commands. Besides, pilots effectively use such a control strategy because they know that
it does not make sense to move the thrust lever every second. Thus they adapt themselves by
limiting their control bandwidth for the engines which indeed corresponds to what the third
rule base does this for the fuzzy-controller.
To defuzzificate the fuzzy control value into a crisp value the maxima of mean method is
applied again.
Besides, the fuzzy controller outputs and the changing of aircraft configuration is an important
control activity. The trigger of this activity is when the aircraft reaches the reception area of
the glide slope. Then the pilot sets the landing flaps and the landing gear. Consequently, this
action is a unique event during the flight task and not really a control task. Therefore, this
functionality is modeled outside the fuzzy-controller and is a singular discrete procedure.
The studies in the ground simulator have shown that the pilot accepts a slight overshooting
of the target speed but on no account a undershooting. Consequently, two fuzzy-sets ”null”

Measurements:
Glide slope indicator deviation (DeltaGS)
Derivation of the glide slope indicator deviation (dDeltaGS)
Status of the glide slope (GS Status)
Target speed deviation (DeltaV)
Derivation of the target speed deviation (dDeltaV)
Control variables:
Side-stick pitch command (SiStPitchCmd)
Thrust command (dDeltaPLA)

Table 10. Interface of controller for the longitudinal motion

Fig. 16. Fuzzy controller of the longitudinal motion
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Fig. 17. Fuzzy sets of the difference airspeed

and ”slightly positive” were defined to obtain such a strategy (Fig. 17).
It can observe on Fig. 17 that the fuzzy pilot has an asymmetrical tolerance range of [-0.5 m/s,
2.5m/s] which is shown by the yellow sector. -0.5 m/s is the intersection point to the fuzzy set
”negative” and 2.5 is the intersection point to ”slightly positive”. The fuzzy-sets ”positive”,
”slightly positive” and ”negative” define an over- and undershooting of the target airspeed.
In these cases the aircraft has an undesirable flight state and the pilot has to do some control
activities.
To model the control commands of the pilot the recorded flight test data is analysed.
This procedure is also applied to define the other fuzzy-sets of the control variables.
The last design step consists in defining the rule bases. In principal, the rule base of a controller
describes the physical process. In the case of modeling the control behaviour of a person or
a human pilot the rule base can be interpreted as his mental model of the process or flight
task. Additionally, the ILS approach to an airport is a standard flight procedure and all pilots
performs it in a quite similar manner.
This knowledge can be used to define an initial subset of rules. The missing rules were
defined by using an iterative process (see section 3.3). If all necessary rules were defined
to perform the ILS approach the fine tuning of the rule base finished the development of the
rule base. Therefore the rule base is analysed to detect gaps or weak points with fewer rules
by using a debug-tool. Taking all knowledge about the ILS approach and the flight mechanics
as well as flight control into account the rule base is completed. With these rule bases the
fuzzy-controller is now defined.

4.2.3 Result of the fuzzy controller
The design fuzzy-controller was used in ILS approach simulations. For one of these
simulations Fig. 18 shows the plots of the current airspeed as well as the position with respect
to the localizer and glide slope. At the beginning of the simulation, the aircraft is on the left
side of the localizer and flying in tis direction: the fuzzy controller has to make a turn left
to catch the middle of the localizer signal. For a better understanding the airspeed is plotted
against the geodetic y-coordinate as well.The default airspeed of the ILS approach was 140
kts (appr. 72 m/sec). The three time histories show, that the conventional ILS fuzzy-pilot
performs the ILS approach. The first plot shows the airspeed. At a y-distance of 17000 m
before the runway the ILS-fuzzy-pilot extends the landing gear. In this way he changes the
aircraft configuration. Consequently the air drag is increased and the airspeed is reduced.
Additionally, the ILS-fuzzy-pilot commands a pitch down command to initialise the descent.
According to these control activities the airspeed increases. To keep the default airspeed the
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Fig. 18. ILS-approach perform by the conventional fuzzy controller

ILS-fuzzy-pilot has to reduce the thrust. The second and third plot shows the localizer and
glide slope deviation. Both plots verify that the ILS-fuzzy pilot perform the ILS approach. The
simulation delivers nearly the same results if the aircraft is on right side of the localizer.

4.3 Development of a cognitive pilot model
The aim was to develop a cognitive pilot model for an ILS approach. Therefore the structure
of the above fuzzy-controller has to be modified in such a way that the fuzzy controller
presumes control characteristics of the human pilot. To realise this aspect the following two
modifications are made:

1. The observation of the pilot during the ILS approach in the ground simulator offered that
the pilot mostly monitored the cockpit displays. With it, he supervises the flight condition
of the aircraft in consideration of the ILS approach. If the current flight condition does
not match the desired flight condition well enough the pilot reacts with a corresponding
command input at the side stick, the thrust lever or both. This control behaviour can
be interpreted as a state switching. The pilot is switching from a monitoring state to a
controlling state. Indeed, every pilot has his own tolerances. This fact is the basis of
the idea to develop a fuzzy-controller in combination with a finite state machine. The
finite state machine is applied to model the state switching of the pilot. As noted below
the state machine has the state monitoring and controlling. Between these states the
corresponding transitions have to be modeled. The finite state machine starts logically
in the state monitoring. In this state the pilot monitors the flight condition and he remains
in this state if his evaluation of flight condition is positive. Otherwise he is switching to
the state controlling and initialises a control command which is adequately to the current
situation. When the control command is finished the finite state machine switch back to
the state monitoring.

2. The ILS approach is a standard procedure, but each pilot has his own control characteristic.
Typical characteristics are the maximum value or the duration of a control command.
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Fig. 19. Structure of the cognitive pilot model for an ILS-approach

To combine clear specified control commands with individual control characteristics
the fuzzy-controller generates control command templates instead of a direct control
command. These command templates are executed outside the fuzzy-controller. The
fuzzy-controller does not generate a new command template as long as the last command is
not finished. This technique offers the option to store the control characteristics of each pilot
in a database. Furthermore, each pilot has his individual range of permissibility for each
measurement. Consequently, the fuzzy-sets of the measurements have to be decoupled
from the controller itself. For this purpose the fuzzy-sets are normalised to the interval
[-1,+1]. This normalisation has to be adapted for each pilot by defining an individual
mapping function.

The combination of a finite state machine with a normalised fuzzy-controller introduces
the possibility to adapt the fuzzy-controller to a given control behaviour. The finite state
machine models the state switching of the human pilot between monitoring and controlling.
During the transition from monitoring into controlling the state machine initialises the control
command which is adequately to the current situation. The fuzzy-controller generates
a control command template which is corresponding to the standard procedure of the
ILS-approach. This output is based on normalised measurements. Afterwards the control
command template is executed. The pure fuzzy-controller is transferred to a cognitive pilot
model by linking the fuzzy-controller with pilot characteristics database. Fig. 19 shows the
final global structure of the cognitive pilot model.

4.3.1 Definition of the control command templates
The definition of the control command templates is based on the idea that all pilot commands
can be approximated by triangle or trapezoid signals. These signal types are typical for a rate
command system and can be divided into three phases:

1. The pilot moves the side stick from the neutral position to a given value.

2. The pilot holds this value for a time span.

3. The pilot moves the side stick back to the neutral position.

To model this kind of signal the following four parameters are required:
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1. Value of the maximum (MaxSiSt)

2. Period of time during which the pilot moves the side stick from the neutral position to the
MaxSiSt value (ΔTup).

3. Period of time during which the pilot holds the MaxSiSt value (ΔThold).

4. Period of time during which the pilot moves the side stick from the MaxSiSt value to the
neutral position (ΔTdown).

During the whole ILS approach the pilot has the sidesstick during in his hand. Furthermore,
the movement of the side stick is not constant and accurate. This effect is not modeled
and the human pilot corrects it immediately (see at time 40.510 s in Fig. 15). To define all
forementioned parameters a two-stage analysis is applied. First the time of the beginning and
the end of the command is determined. Afterward the maximum into this time interval is
computed. With this method all side-stick commands are approximated. To check the quality
of this approximation the integral of the original signal and the approximated signal was
computed.

∫
(sidestickpilot − sidestick f uzzy)

2dt The value of this integrals was small enough to
justify the use of this approximation. Additionally, the aircraft flight condition is stored at the
beginning and the end of the command as well.
To model the self-limitation of the control bandwidth for the engines the aforementioned
method has to be varied a little bit. The human pilot knows that the engines have a delay.
For this reason he generates a thrust lever deflection and waits for a moment until the engines
react. Consequently, the airspeed changes very slowly. This implicit knowledge of the pilot is
the reason, why an additional time delay has to be defined for the thrust lever command.
Without such a restriction the fuzzy pilot would move the thrust lever to the maximum,
because the slow airspeed change produces a slow reduction of the difference speed. Thereby
a hustle and bustle control behaviour of the fuzzy-pilot is avoided. The real thrust control
command of the fuzzy pilot is a thrust lever deflection which has to be integrated.

4.3.2 The definition of the pilot database
The structure of the cognitive pilot model is based on the combination of a finite state machine
and a normalised fuzzy controller. To adapt this cognitive pilot model to a real human pilot
the following parameters of each pilot has to be stored:

– The parameters which are mentioned in the last section

– The tolerances which have an effect on the finite state machine

– The input fuzzy sets which characterised the measurements

To define all above mentioned parameters the same technique as in section 4.2 can be used. To
reduce the number of tunable parameters only normalised fuzzy sets are used to model the
linguistic terms. Consequently, the apexes of the right and left neighbour fuzzy sets can be
used to define the whole fuzzy set. On account of this fact only the apexes of the fuzzy sets
have to be defined.
Now all parameters of the cognitive pilot model are defined and Fig. 21 shows the resulting
control commands during an ILS approach.

4.3.3 Fine tuning of the cognitive pilot by means of simulations
An important parameter for the tuning of the cognitive pilot model is the tolerance which
controls the state transition. To illustrate this three simulations are presented on Fig. 20: for
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Fig. 20. Cognitive pilot model for the ILS-approach with various tolerances

the blue one the tolerance is set to 0.3, for the green one to 0.7, and finally for the yellow one
to 0.9.
First the ILS approach with a tolerance of 0.3 is analysed (blue line in Fig. 20). The
corresponding time history of the control commands of the cognitive pilot model are shown
in Fig. 21. The localizer deviation has the same behaviour as the conventional fuzzy controller
of section 4.2.3. Therefore, the first activity of the cognitive pilot was to initiate the localizer
interception with a heavy turn left. Afterwards he compensates the remaining localizer
deviation. In the final phase of the approach the cognitive pilot model has stabilised the
aircraft on the localizer.

Fig. 21. Control commands of the cognitive pilot model
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His first four side stick roll commands can be interpreted as follows:

– Initiates a heavy turn left

– Concludes a heavy turn left

– Initiates a slight turn left

– Concludes a slight turn left

In the last third of the approach the cognitive pilot model makes some slight corrections to
stabilise the aircraft definitely on the localizer.
The controlling of the airspeed has the some behaviour as the conventional fuzzy controller.
One main aspect of the ILS standard procedure is that the human pilot extends the landing
gear when the glide slope starts to move up. When the landing gear is extended the aircraft
configuration changes. The new configuration defines a new target speed which is a little bit
lower than the previous (in this case 135 kts) and the speed difference increases. Beyond this,
the air drag raises and therefore the speed is reduced. After this the cognitive pilot model
makes a pitch command to initialise the descent to hold the glide slope. Then again the speed
difference increases. To control the speed the cognitive pilot model reduces the thrust by
giving a heavy thrust command. To generate no negative difference speed the cognitive pilot
model increases the thrust at 150 seconds. During the remaining approach the cognitive pilot
model holds the target speed in an acceptable range, a little bit above the target speed.
The control of the glide slope deviation starts with the change of the aircraft configuration.
This change is triggered when the glide slope indicator reaches the zero position. As
mentioned above the cognitive pilot model makes a side stick pitch down command to
initialise the descent on the glide slope. This is necessary because the aircraft is already slightly
above the glide slope. The command of the cognitive pilot model was a little bit too heavy
and in consequence the glide slope enters zero position too fast. Therefore the fuzzy-pilot
gives a pitch up command which finally stabilises the aircraft on the glide slope with a slight
deviation.
With tolerances of 0.7 and 0.9 the cognitive pilot model accepts a larger localizer deviation. A
greater influence of the tolerance can be obviously observed by the glides slope and the speed
difference. Therewith the influence of the finite state machine tolerance is presented clearly.

4.4 Comparison of the cognitive pilot model and the human pilot
The check that a cognitive pilot model can successfully perform a given flight task is relatively
easy. For this purpose, only the flight test data have to be analysed, to decide whether the
controller can compensate the deviation from the desired value or not (see Fig. 20 for the ILS
approach). It is more difficult to decide whether a cognitive pilot model has the same control
behaviour as a human controller or at least the same characteristics. One problem is in fact,
that there is a fundamental difference between the control behaviour of a fuzzy-system and
a human controller. If the fuzzy-system has no random component, it acts deterministically
despite all fuzziness. A human pilot cannot reach this high level of determinism, because it is
interfered with the following aspects:

– The ability of a human pilot to concentrate depends on his physical and psychological
health.

– The environment can also influence the concentration. For instance, disturbing noise or
optical stimuli can provoke mistakes.

– It is difficult for a human pilot to concentrate on many things at the same time.
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– In the cockpit of an aircraft, the human pilot gets various information at the same time and
only a sequential handling can process this information.

– The response time of a human pilot is definitely longer than the response time of a
fuzzy-controller.

– A human pilot is adaptive and multiple repeating of a special task improves his
performance.

– It is also possible that the routine produces a slinky security feeling which can lead to
negligence.

Out of these differences the following problems arise at the interpretation of the pilot
behaviour:

– The human pilot can make random faulty control inputs.

– The same human pilot shows different noticeable reactions at several approaches although
the same conditions predominate during all these approaches.

– The human pilot uses inadequate commands which forces him to further corrections.

The developed fuzzy-controller and the cognitive pilot model are based on an ILS approach
of a human pilot. The rule base, the fuzzy-sets as well as the measurements and the control
variables are extracted out of the flight test data of this approach. At first the basic strategy
was realised. This strategy was adapted during the further development process to the control
behaviour of the human pilot. For instance the moment when the human pilot initiates the
localizer interception could be transferred in the fuzzy-pilot very well. The shapes of the
command templates are not directly based on the flight test analysis. The templates were
tuned during the test of the fuzzy-pilot in such a way that the resulting aircraft dynamics is
equal to the dynamics which was induced by the human pilot. Therewith, the artificial pilot
gets a similar behaviour like the human pilot. Consequently, the control behaviour of the
cognitive pilot model includes yet characteristics of the human pilot. To compare the control
behaviour of a human pilot and a cognitive pilot model a method is needed which actually
describes their similarity.
In the first instance a direct comparison of their signals can be ruled out due to the non
deterministic control behaviour of the human pilot. Therefore, a method has to be applied
which uses a no pointwise comparison like the euclid norm or the correlation. The Dynamic
Time Warping is a method to compare two data series. This method was introduced to the data
mining community in Keogh & Pazzani (1999). DTW is still widely used in various fields, e.g.
bioinformatics.
Now the DTW is used to compare the control behaviour of the human pilot and the cognitive
pilot model. This comparison is made in two steps. Firstly the control strategy of both pilots
is intuitively compared. For this reason Fig. 22 shows both roll angle in one time history.
Both pilot initialised the intersection obviously at the same time with approximately the
same deflection. Furthermore the overshooting of the localizer is compensated in the same
manner. It can be summarised that the control strategy of the cognitive pilot model resembled
relatively well to the control strategy of the human pilot.
The second step is based on the DTW to compare parts of the ILS approach. Using this a
better statement about the adaptation of the cognitive pilot model can be made. For this
reason initially the lateral motion is considered, especially the moment where the localizer
indicator starts to move. It ends with the stabilisation of the aircraft on the localizer. In the

321Using Fuzzy Control for Modeling the Control Behaviour of a Human Pilot



26 Fuzzy Controllers, Theory and Applications

(a) Roll Angle

(b) Localizer deviation

Fig. 22. Comparison of the pilot model and the human Pilot

following 80 seconds, respectively a series with 2000 points, are compared and Fig. 22 shows
the time series of localizer deviation of both pilots. Obviously, the cognitive pilot model is
able to generate the same localizer deviation as the human pilot. This fact is confirmed by the
DTW because the DTW computes the low value 0.00002739. In addition, the reaction of the
aircraft to the pilot command is compared, too.
The below time history in Fig. 22 shows the roll angle of both pilot model. These time
histories are rather similar and this fact is confirmed by a low DTW value of 0.007351. It
can be summarised that the cognitive pilot model has roughly the same control behaviour
like the first pilot or the first approach.
This positive result is based on the fact, that the first ILS approach is used to develop the
cognitive pilot model. Consequently, both pilots have to have a great similarity. To support
this simple fact the fuzzy-pilot is compared with the second ILS-approach. Fig. 23 shows the
time histories of the localizer deviation and the roll angle. The intuitive comparison points
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(a) Roll angle

(b) Localizer deviation

Fig. 23. Comparison with the second approach

out that the cognitive pilot model and the second human pilot has slightly different control
behaviour. For the localizer deviation the DTW computes a 0.0002011 and for the roll angle
a 0.01894. Therefore, the DTW reflects the first visual impression that the both pilots have a
slight different control behaviour.
The DTW can be used to prove the similarity of two signals. It is indeed not possible to get
direct information on how to modify the parameters of the fuzzy-controller to get a better
adaptation. The absolute DTW-value is in any way not that important. Nevertheless, the
DTW gives the possibility to show which data series are similar.

5. Conclusion

This chapter presents the use of fuzzy-control to model the control behaviour of a human
pilot during a high and a low gain flight task. In both approaches the developed cognitive
pilot model reproduced well the characteristics of the human pilot and it could be pointed out
that:
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– The cognitive pilot models fulfil the requirements of the according flight task

– The measurements and the control commands of the pilot models and the human pilot are
very similar in magnitude and trend.

– The control behaviour of the cognitive pilot models are based on the control strategy of the
human pilot.

– The cognitive pilot models commands induce a similar aircraft reaction as the human pilot.

Both approaches were based on a fuzzy-controller. The rule base of the controller is an
intuitive description of the controlling of the physical process and the rules are to be
interpreted easily. The concrete realisation of the fuzzy-sets as a mathematical representation
of the linguistic terms is depended from the variations of the individual human control
behaviour.
The adaption of the pilot model to another human pilot is not easy because each pilot has
to have his individual fuzzy sets. Consequently, the number of tunable parameter is large.
Compared with this the pilot model of the ILS Approach based on a finite state machine and a
universal fuzzy controller. To adapt this model only the parameters in the pilot database has
to be fitted. Nevertheless, the second pilot model profit from the experience of the ITT task.
Certainly, in both model the rule base is fixed.
In another research project of the author neural networks are used to model the control
behaviour of a human pilot during a clear defined flight task (see Gestwa & Viet (2009)).
A great advantage of the neural networks are the automation of the learning. But, on the
other hand the neural networks have the disadvantage that they hides their knowledge in
a black box. Consequently, their interpretations are very difficult whereas they are easy in
combination with a fuzzy-controller.
Based on these aspects future research project of the author will use the neural fuzzy
approach or evolution strategies to optimise fuzzy-sets. An other optimisation strategy is the
Ants-algorithm. In current and future research activities this work is extended to helicopters
as a new platform for pilot modeling investigation.
In the field of pilot modeling the time series comparison is an important subarea. In this
context further analyses are necessary. For example instead of the native DTW algorithm
the DTW with Sakoe-Chiba band or with Itakura parallelogram could be used (see Salvador
& Chan (2007)). Furthermore, the Average Angle Measure could be an adequate criteria to
compare two time series.
Thought the rule base is a description of the control activities which are required to perform
the ITT. Furthermore, the rules are based on flight mechanic equations and for all pilots these
equations are equal. Consequently it can be deduced, therefore, that for an adaption to another
pilot only the fuzzy-set has to be modified and the main part of the rule base can be used
unmodified.
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1. Introduction     
There is an infinite variety of motions ranging from our daily activities to the exceptional 
movement of an athlete or a musician. Based on his extensive observation of child growth, 
Gesell (1945) stated some empirical rules. In particular, he noted that the development of 
motion progresses from a generally integrated state to an individualized state in which 
individual sections have specialized functions. He also noted that the number of degrees of 
freedom of the motion increases with development, and that periods of unstabilization and 
stabilization are repeated to advance development by taking advantage of such fluctuations 
well. Finally, he observed that chaos plays a very important role in motion. The human 
process of learning motion can also be studied by focusing on the degrees of freedom. When 
a person who normally writes with his or her right hand (i.e., their dominant hand) is asked 
to write with the left hand (i.e., their non dominant hand), the number of degrees of freedom 
of each joint is initially fixed; but, after training, each joint moves according to a peculiar 
phase relationship after training (Newell & Van Emmerik, 1989). This implies that we are 
rigid when we attempt a new motion, but become more relaxed after getting accustomed to 
it (Taga, 2002). 
Machinery and human beings are absolutely of a different nature at the present stage, but 
most research work on man-machine systems has dealt with the linear characteristics of 
human behavior (Kawazoe et al., 2008). As an example, many studies on control systems for 
stabilizing the inverted pendulum as an inherently unstable system have been presented. 
These studies focus on the linear characteristics of human behavior. There seem to be few 
studies and a number of unknowns regarding both the nonlinear characteristics of human 
behavior in an inherently unstable man-machine system as well as the learning process of 
human operators with objects difficult to control (Kawazoe et al., 2008, 2009). 
In order to stabilize an unstable system such as the inverted pendulum, strict judgment of 
the situation is required. Accordingly, it can be expected that the human operators exhibit 
complex behaviors or contingencies, that is, the mixture of regular and random actions 
intermittently.   
The behavior during stabilizing control of an inverted pendulum by a human operator 
exhibits a random-like or limit-cycle like fluctuation, and the stabilizing control by the 
human operator is robust against the disturbance. This may be because the limit-cycle-like 
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fluctuation produced by the digital PID computer controller, which means lineally unstable, 
is more robust against the disturbance than the lineally stable fluctuation according to the 
experiments. The limit cycle was very stable in the sense of nonlinearity, which means it is 
robust against the disturbance (Kawazoe et al., 1992, 1994, 1999, 2000, 2001a, 2001b).  
This chapter investigates the identification of the chaotic characteristics of human operation 
from the experimental time series data by utilizing fuzzy inference. It shows how to 
construct rules automatically for a fuzzy controller of each trial of each human operator. It 
tries to acquire the individual skill of each operator. Human operators in an experiment 
were trained so that they were skilled to some extent in stabilizing the pendulum by 
training, and the data of ten trials per person were successively taken for an analysis. The 
entropy is estimated from the time series data as a measure of the amount of disorder in a 
system, and the degrees of freedom of the motion are estimated by the dimensions when 
curves of the largest Lyapunov exponents are saturated against the embedding dimensions 
for quantifying the proficiency.  

2. Chaos-entropy analysis of human operator's skill during stabilizing control 
of an inverted pendulum on a cart  
2.1 Trials of stabilizing control of an inverted pendulum on a cart by a human operator 
Figure 1 shows the experimental setup. An inverted pendulum is mounted on a cart that can 
move along the line of a sliding rail of limited length. The pendulum is attached to the rail 
such that the pendulum rotates in one plane. A human operator manipulates the cart 
directly by hand. Although some time and intensive training are needed in order for a 
human operator to succeed in stabilizing the pendulum for 60 s, this task becomes less 
difficult after the first successful instance of stabilization. The human operators in the 
experiment were trained so that they were skilled to a certain extent in stabilizing the 
pendulum, and the data obtained in 10 successive trials per person were used for analysis. 
The angle that the pendulum makes with the vertical axis and the displacement of the cart 
were measured, and the derivatives and the force that moves the cart can be derived based 
on these quantities (Kawazoe et al., 2008, 2009). 
Figure 2 shows phase plane representations of the chaotic behavior of the inverted pendulum 
on a cart during stabilizing control by a human operator NK during the first trial after training.  
 

Cart FX

Y

Inverted
pendulumθ

L

mg

0      
               (a)                                (b) 
Fig. 1. Stabilizing control of an inverted pendulum. 
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Fig. 2. Behavior of an inverted pendulum in a phase plane. 

2.2 Diagnosis of amount of disorder by entropy analysis 
Consider a hypothetical statistical system in which the outcome of a certain measurement 
must be located on a unit interval. If a line is subdivided into N subintervals, then we can 
associate a probability pi with the i-th subinterval containing a particular range of possible 
outcomes. The entropy of the system is then defined as follows: 

                                                        
1

ln
Nc

i i
i

S p p
=

= −∑ . (1) 

This quantity may be interpreted as a measure of the amount of disorder in the system or as 
the information necessary to specify the state of the system. If the subintervals are equally 
probable, so that pi = 1/N for all i, then the entropy reduces to S = ln N, which can be shown 
to be the maximum value. Conversely, if the outcome is known to be in a particular 
subinterval, then S = 0 is the minimum value. When S = ln N, the amount of further 
information needed to specify the result of a measurement is at a maximum, and, when S = 
0, no further information is required (Baker et al., 1996; Baierlein, 1997). We applied this 
formulation to the time series data by establishing N bins or subintervals of unit intervals 
into which the values of the time series data may fall. We define S as the net entropy 
calculated using Eq. (1) and S/( ln N) as the entropy ratio  (Kawazoe et al., 2008, 2009). The 
ratio of entropy to maximum entropy was estimated at the point at which the ratio saturated 
as the number of partitioned cells increased.  

2.3 Diagnosis of chaotic dynamics by Lyapunov exponent analysis 
The detection of the chaotic dynamics and the quantitative characterization of the chaotic 
dynamics when the model of the entire system is unknown requires the analysis of time 
series data. Although methods for dynamic analysis of time series data are currently under 
development, the following two-step process is commonly used at present: (1) 
reconstruction of the strange attracter of an unknown dynamic system from the time series, 
and (2) determination of certain invariant quantities of the system from the reconstructed 
attracter. It is possible to obtain the dynamics from a single time series without reference to 
other physical variables (Kawazoe, 1999, 2000). A rigorous mathematical basis of this 
concept has been presented by Takens (1981) and Mane (1981). 
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Since the attracter dimension is unknown for time series data and the required embedding 
dimension M is unknown, it is important that the reconstruction be embedded in a space of 
sufficiently large dimension to represent the dynamics completely. Thus, the dimension of 
the embedding space is increased by increments of one. The attractor is reconstructed, and 
its largest Lyapunov exponent is calculated. The process is continued until the largest 
Lyapunov exponent is saturated with respect to the embedding dimensions, and the 
dimension, i.e., the degrees of freedom of the system behavior, is estimated. The largest 
Lyapunov exponent can be obtained from time series data using an algorithm presented by 
Wolf et al. (1985). The Lyapunov exponent can be used to obtain a measure of the sensitivity 
under the initial conditions. This measure of sensitivity is characteristic of chaotic behavior. 
If the Lyapunov exponent is positive, nearby trajectories diverge, and so the evolution is 
sensitive to initial conditions and therefore chaotic. 
Consider the time series data x(t1), x(t2), …. Successive points in the phase space formed 
from time-delay coordinates can be written in vector form Xi as follows: 

                

1 1 1 1

2 2 2 2

3 3 3 3

( ( ), ( ), , ( ( 1) ))
( ( ), ( ), , ( ( 1) ))
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= + + −

X
X
X

X

X

 (2) 

where the symbol τ denotes the time delay, and the symbol m denotes the embedding 
dimension. 
The choice of an appropriate delay τ is important to the success of the reconstruction. If τ is 
too short, then the coordinates are approximately the same and the reconstruction is useless. 
If τ is too large, then the coordinates are so far apart as to be uncorrelated. If the system has 
some rough periodicity, then a value comparable to but somewhat less than that period is 
typically chosen. Since there is no simple rule for choosing τ in all cases, τ is occasionally 
adjusted until the results appear to be satisfactory. Time τ is typically some multiple of the 
spacing between the time series points (Baker,1996). We chose 7 times the spacing between 
the time series points, i.e., 7 × 0.0293 s, as the value of τ because the calculated largest 
Lyapunov exponents were not too sensitive to τ and because the curves of the largest 
Lyapunov exponents versus embedding dimensions were smooth within a reasonable 
range, whereas the dominant period of the experimental time series data was 0.5 to 1.0 s. 
Since the time series is presumed (by hypothesis) to be the result of a deterministic process, 
each xn+1 is the result of a mapping. In other words, we have 

     1 ( )n nx f x+ = .  (3) 

The differentiation of the above equation is approximated as 

 1 1

-1
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'( )j j j j

j
j j j j
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.  (4) 
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Thus, the general expression of the Jacobian matrices and the orthogonal vectors 
b ( 1,2, , )ij i m=  can be obtained (Kawazoe et al., 2008, 2009). The Lyapunov exponents iλ  for 
each embedding dimension i are then obtained as (Kawazoe et al., 2008,2009; Baker et al., 
1996; Baierlein,1971; Takens, 1981; Mane, 1981; Wolf et al., 1985). 

  
n 1

e
10

1 log ( 1,2,3, , )i
jn

i m
t t

λ
−

=

= =
− ∑ ijb . (5) 

The calculated largest Lyapunov exponent converges at the end of the time series data as the 
embedded dimensions increase. The number of degrees of freedom of motion are estimated 
by the dimensions when the curves of the largest Lyapunov exponents are saturated with 
respect to the embedding dimensions. 

3. Generation of a fuzzy controller from time series data during stabilizing 
control of an inverted pendulum by a human operator 
Fuzzy control has a distinguishing feature in that it can incorporate experts' control rules 
using linguistic expressions. One of the main problems of fuzzy control is the difficulty in 
acquiring fuzzy rules and tuning the membership functions. The conventional control 
theory used to design controllers using models of controlled objects has been established. In 
addition, a number of studies have examined the design of fuzzy control systems using 
fuzzy models of controlled objects. 
To identify the nonlinear characteristics of the human operator from the experimental time 
series data, we choose the pendulum angle θt, angular velocityθ'ｔ, and the cart 
displacement Xt and its velocity X't as input variables and the force Ft that moves the cart as 
the output of the fuzzy controller. Furthermore, we choose the combined variables θt + βθ't 
and Xt + γX't as inputs so as to reduce the complexity of the control rule table, where β and γ 
are combination variables. 
The method used to obtain the membership functions and the control rules are described in 
the following. The values of β and γ are identified using the identification of membership 
functions and control rules by a trial and error method after repeating several simulations. 
In order to partition the data and determine the border of the data with the fuzzy sets for the 
assumed values of coefficient β and γ, for example, GNB = 10%, GNS = 25%, GZR = 30%, GPS = 
25%, and GPB = 10% were chosen (Fig.3), and the borders were denoted by DNB NS, DNS ZR, 
DZR PS, and DPS PB (Fig. 4). 
The labels of the membership functions with θ + βθ' and X + γX' were determined as 
follows: 
NB = minimum of the data: DMIN, NS = (DNB NS + DNS ZR)/2, ZR = mean of the data: DAVE, 
PS = (DZR PS + DPS PB)/2, PB = maximum of the data: DMAX. 
The labels of the membership function with F are also determined as follows: 
NB = minimum of the data: DMIN, NMB = (NB + NS)/2, NS = (DNB NS + DNS ZR)/2, NMS = 
NS/2, ZR = average of the data: DAVE, PMS = PS/2, PS = (DZR PS + DPS PB)/2, PMB = (PB + 
PS)/2, PB = maximum of the data: DMAX (Fig. 5). 
Suppose that θt + βθ't is GNB, Xt + γX't is GZR, and Ft+1 is GNS. Then, we count to the cell of 
label F = NS in the numbered grid to which θ + βθ' = NB and X + γX' = ZR are given as 
inputs. Figure 6 shows the fuzzy output grid numbers for generating a control rule. The 
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output is derived using the label frequencies of each grid for each trial and for each human 
operator and using the following equation (continues to page 334, Eq.(6))  
 

 
(a) Rates of combined variables with pendulum angle θt + βθ't 

 
(b) Rates of combined variables with cart displacement Ｘt ＋ γＸ' t 

 
(c) Rates of applied force F on the cart 

Fig. 3. Example of rates of inputs and output. 



Acquisition and Chaos-Entropy Analysis of Individuality  
and Proficiency of Human Operator's Skill Using a Fuzzy Controller   

 

333 

 
 

LNB
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1
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Fig. 4. Membership function for inputs. 
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Fig. 5. Membership function (singleton) for output. 
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Fig. 6. Fuzzy output grid number for generating a control rule. 
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Fig. 7. Conformity of output Fout. 
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Fig. 8. Rule for control of a pendulum on a cart (first trial NK01 of human operator NK). 
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                    ( ) ( ) ( ) ( ) ( )
OUT

NB NS ZR PS PB
NB NS ZR PS PB

4.4 2.0 0.0 2.0 4.4
F

− ⋅ + − ⋅ + ⋅ + ⋅ + ⋅
=

+ + + +
. (6) 

We can determine the output label using Fig.7 and construct the operator's control rule for 
balancing the inverted pendulum as shown in Fig.8. 
Figure 9 shows a block diagram of the stabilizing control simulation of the pendulum on a 
cart using the constructed fuzzy controller from the time series data of the human operator. 
Figure 10 shows the conformity of ′+θ βθ , and Fig. 11 shows the conformity of ′+ γX X , if 
θ + βθ' = 4.0 degrees and ′+ γX X  = 5.0 cm, as an example. In Fig. 10, the conformity of PS is 
determined to be 0.70, and that of PB is determined to be 0.30. In Fig. 11 the conformity of 
ZR is determined to be 0.73, and that of PS is determined to be 0.27. Using the fuzzy rule in 
Fig. 8, the following rules are found: 

IF and X X THEN F
else

IF and X X THEN F
else

IF and X X THEN F
else

IF and X X THEN F

θ βθ γ

θ βθ γ

θ βθ γ

θ βθ γ

′ ′+ = + = =

′ ′+ = + = =

′ ′+ = + = =

′ ′+ = + = =

PS ZR NS

PS PS NMS

PB ZR NMB

PB PS NMB

 

The output values are derived using max-min composition as follows. We use singleton 
fuzzification as a membership function of output. Figure 12 shows the process called 
“cutting” by MIN value. Figure 13 shows the process of composition by MAX value. Thus, 
the membership functions of output referred to as composite fuzzy output are obtained as 
NMB: 0.30, NS: 0.70, and NMS: 0.27. The output values are calculated using the center of 
gravity method as follows: 

  
OUT

9

1
9

1

i i
i

i
i

X Y
F

Y

=

=

⋅
=

∑

∑
, (7) 

where the term Xi is the X coordinate (-20.46, -13.37, -6.27, -3.14, -0.02, 3.09, 6.18, 14.72, 23.25) 
of the output membership function, Yi is the composite conformity, and i denotes an index. 
The result of fuzzy inference, F = -7.28, is obtained using composite fuzzy output in Fig. 16. 
The differential equation of motion of this pendulum-cart system is described as follows: 

     2cos sin xMX mL mL X Fθ θ θ θ μ− + + =  (8) 

            cos sinI mLX mgLθθ θ μ θ θ− + =  (9) 

where m denotes the mass of the pendulum; M denotes the mass of the pendulum, the cart, 
and a human arm; L is the half-pendulum length; I is the inertial moment of pendulum 
about the supporting point; F is the force that moves the cart, μθ is the frictional coefficient of 
the pendulum support point, and μX is the frictional coefficient between the cart and the rail. 
The coefficients μθand μX are derived from the experiment. The sampling time for control is 
0.06 s, and the initial pendulum angle is 3.0 degrees. 
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Combining

tθ tθ ′
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a Cart

1+tθ 1+′tθ 1+tX 1+′tX, , ,

,
,

 
Fig. 9. Stabilizing control simulation of the pendulum using the constructed fuzzy controller 
from the time series data of a human operator. 
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Fig. 10. Conformity of ′+θ βθ . 
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Fig. 11. Conformity of ′+ γX X . 
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Fig. 12. Cutting by MIN value. 
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Fig. 13. Composition by MAX value. 

We choose the pendulum angle θｔ, angular velocity θ'ｔ, the cart displacement Xｔ and its 
velocity Ｘ'ｔ as input variables, and the force Ｆｔ that moves the cart as output of the fuzzy 
controller, trying to identify the nonlinear characteristics of the human operator from the 
experimental time series data. Furthermore, we choose the combined variables θｔ＋βθ'ｔ and 
Ｘｔ＋γＸ'ｔ as inputs so as to eliminate the complexity of the control rule table. The β and γ 
are the combination variables.  
The values of β and γ are identified with the identification of membership functions and 
control rules by a trial and error method after repeating many simulations.  
We can determine the output label and construct the operator's control rule for balancing 
the inverted pendulum.  

4. Chaos-entropy analysis and acquisition of individuality and proficiency 
using a fuzzy controller    
Figure 14 and Fig.15 show the membership functions of pendulum angle and its angular 
velocity, the membership function of cart displacement and its velocity, and the  
 

 
Fig. 14. Identified membership function (operator OT01) 
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Fig. 15. Identified membership function (operator ME01) 
 

 
(a) Human operator AT01 

β=0.0608, γ=0.2280 

 
(b) Human operator ME01 

β=0.0174, γ=0.0797 

 
(c) Human operator OT01 

β=0.0451, γ=0.1619 

 
(d) Human operator ST01 

β=0.0595, γ=0.6806 

Fig. 16. Individual skill of each operator captured in fuzzy rules constructed from the 
experimental time series data 

membership function (Singleton) for output force, which are identified from experimental 
time series data of Human Operator OT's 1st trial and ME's 1st trial. Figure 16 shows the 
individual skill of each operator captured in fuzzy rules constructed from the experimental time 
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series data. It is seen that the fuzzy rules depend on the individual operator and are not 
symmetrical. 
Entropy can be interpreted as a measure of the amount of disorder in the system, and the 
maximum entropy can be interpreted as a random process with a uniform probability. 
Figure 17 shows the entropy ratio vs. number of trial for human operators NK and Ot. 
According to the results for the estimated entropy ratio, the simulated time series data have 
a large amount of disorder. The estimated entropy ratio of motion increases with the 
increase in proficiency. 
Figure 18 shows the estimated dimension (degrees of freedom) of motion vs. the number of 
trials for operators NK and OT. The estimated number of degrees of freedom of motion 
increases with the increase in proficiency. 
Figures 19-1 and 19-2 show examples of simulated waveforms with the identified fuzzy 
controller and measured waveforms that are similar in appearance for eight human 
operators. 
 

 
                 (a) Human operator NK                                    (b) Human operator OT 

Fig. 17. Entropy ratio vs. number of trials by human operators (measured and simulated 
with the identified fuzzy controller). 
 

  
                      (a) Human operator NK                                (b) Human operator OT 

Fig. 18. Estimated dimension (degrees of freedom) of motion vs. number of trials by human 
operators (measured and simulated with the identified fuzzy controller). 
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               (a) Operator AT  
 

             (b) Operator HT

 

              (c) Operator NK 

 

           (d) Operator OT  
Fig. 19-1. Examples of simulated waveforms with the identified fuzzy controller and 
measured waveforms that are similar in appearance for eight human operators. 
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           (e) Operator KT  
 

          (f) Operator ME 
 

           (g) Operator ST  
 

           (h) Operator FT  
 

Fig. 19-2. Examples of waveforms simulated with the identified fuzzy controller and 
measured waveforms that are similar in appearance for eight human operators. 
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Figure 20 shows the entropy ratios for eight human operators and for simulations using an 
identified fuzzy controller to produce similar waveforms. 
Figure 21 shows the estimated dimension (degrees of freedom) for eight human operators 
and for simulations using an identified fuzzy controller to produce similar waveforms. 
The agreement between the simulated and experimental values for the number of degrees of 
freedom of motion and the entropy ratio is particularly good when the simulated waveform 
and the measured waveform are similar in appearance. 
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Fig. 20. Entropy ratios for eight human operators and for simulations using an identified 
fuzzy controller to produce similar waveforms. 
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Fig. 21. Estimated dimension (degree of freedom) for eight human operators and for 
simulations using an identified fuzzy controller to produce similar waveforms.  

5. Conclusion 
we have demonstrated that the fuzzy controller identified from the measured time series 
data for each trial for each human operator clearly exhibited the human-generated decision-
making characteristics, exhibiting chaos and a large amount of disorder. We have also 
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shown that the estimated number of degrees of freedom of motion increases and the 
estimated amount of disorder decreases with the increase in proficiency in the fuzzy control 
simulation. In addition, we have shown that the agreement between the experimental 
results and the fuzzy simulation for the number of degrees of freedom and for the entropy 
ratio of motion is particularly good when the measured waveform and the simulated 
waveform are similar in appearance. Accordingly, it was clarified that a simple fuzzy 
controller can be very useful for identifying the individuality and proficiency of a human 
operator when stabilizing an unstable system. 
At present, despite notable differences in the behaviors of machinery and human beings, 
most research on man-machine systems has dealt with the linear characteristics of human 
behavior. There appear to be few studies and a number of unknowns regarding both the 
nonlinear characteristics of human behavior in an inherently unstable man-machine system 
and the learning process of human operators for objects that are difficult to control  
(Kawazoe et al., 2008, 2009) . 
 The excessive number of degrees of freedom appears to provide considerable advantages. 
In several cases, a more flexible instrument, which is certainly much more challenging to 
work with, has undeniable advantages that provide better results. An experienced master 
will always prefer an instrument with a greater number of degrees of freedom over an 
instrument that is easier to use but constrains the worker. For example, a bicycle is harder to 
control than a tricycle, but anyone who has mastered a bicycle will probably never want to 
ride a tricycle again. The bicycle is preferred because in the hands of an experienced rider, it 
is more flexible and maneuverable and becomes more stable than the tricycle. Similarly, 
lightweight children's skates with their wide blades are less flexible and maneuverable than 
narrow-bladed speed skates. The practical problem of acquiring dexterity occurs in the early 
stages of skill development. This fascinating and extremely important area can move us 
closer to the deepest, concealed caches of knowledge about the human brain and its function 
(Bernstein, 1996). Real intelligence in autonomous robots appears to be expressed by 
dexterity in humans or other living creatures as complex systems, and research and 
development are required to realize intellectual autonomous robots. 
Confusion and doubt arise among individuals who are involved in robotics research and 
development for a long time because numerous robot control theories have been proposed. 
Dexterous dynamic actions required for humanoid biped robots, for example, are difficult to 
achieve through the current standard control strategy for humanoid robots based on the 
asymptotic convergence to the successive desired states with small fluctuations. Thus, a new 
and alternative approach is necessary. In the future, we would like to apply the simple 
nonlinear optimal control of various movements to make full use of instability as a source of 
driving force. 
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Fuzzy Logic Deadzone Compensation 
for a Mobile Robot 

Jun Oh Jang 
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South Korea 

1. Introduction     
Mobile manipulators have been introduced as a way of expanding the effective workspace 
of robot manipulators. Robots with moving vehicle such as macro-micro manipulators, 
space manipulators, and underwater robotic vehicles can be used for extending the 
workspace in repair and maintenance, inspection, welding, cleaning, and machining 
operation. Mobile manipulators possess strongly coupled dynamics of mobile vehicles and 
manipulators. With the assumption of known dynamics, much research has been carried 
out. Yamamoto & Yun (1996) addressed the coordination of locomotion and manipulator 
motion between the base and the arm, and the problem of following a moving surface. 
Khatib (1999) proposed the coordination and control of the mobile manipulator with two 
basic task-oriented controls: end-effector task control and platform self posture control. In 
(Bayle et al., 2003), the concept of manipulability was generalized to the case of mobile 
manipulators and the optimization criteria in terms of manipulability were given to 
generate the controls of the system.       
Most approaches require the precise knowledge of dynamics of the mobile manipulator, or, 
they simplify the dynamical model by ignoring dynamics issues, such as vehicle dynamics, 
payload dynamics, dynamics interactions between the vehicle and the arm, and unknown 
disturbances such as the dynamic effect caused by terrain irregularity. To handle unknown 
dynamics of mechanical systems, robust, and adaptive controls have been extensive 
investigated for robot manipulators and dynamic nonholonomic systems. Dixon et al. (2000) 
developed a robust tracking and regulation controller for mobile robots.  In (Li et al., 2008), 
adaptive robust output feedback motion/force control strategies were proposed for mobile 
manipulators under both holonomic and nonholonomic constraints in the presence of 
uncertainties and disturbances. Impedance control of flexible base mobile manipulator using 
singular perturbation method and sliding mode control law was presented in (Salehi & 
Vossoughi, 2008). Because of the difficulty in dynamic modeling, adaptive neural network 
control has been studied for different classes of systems, such as robotic manipulators (Lewis 
el al., 1996) and mobile robots (Jang & Chung, 2009). In (Lin & Goldenberg, 2001), adaptive 
neural network controls have been developed for the motion control of mobile manipulators 
subject to kinematic constraint. In (Mbede et al., 2005), intelligent navigation is presented for 
mobile manipulator using adaptive neuro-fuzzy systems. In these schemes, the controls are 
designed at kinematic level with velocity as input or dynamic level with torque as input, but 
the actuator dynamics are ignored. Therefore, the actuator nonlinearity deteriorates the system 
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performance. The actuator nonlinearity compensation techniques are published in (Jang, 2009) 
for saturation, in (Jang, 2005) for deadzone, and in (Jang & Jeon, 2006) for backlash.        
In this paper, we present the deadzone compensation method for a mobile manipulator 
using fuzzy logic. A rigorous design procedure with proofs is given that results in a 
kinematic tracking loop with an adaptive FL system in the feed forward loop for deadzone 
compensation. We derive a practical bound on tracking error from the analysis of the 
tracking error dynamics and investigate the performance of the FL deadzone compensator 
in a mobile manipulator through the computer simulations. This paper is as follows. Section 
2 provides the mobile manipulator. The FL deadzone compensation is derived in Section 3. 
The proposed FL deadzone compensation scheme is developed in Section 4. Simulation 
results of the FL deadzone compensation scheme are given in Section 5. Finally, conclusions 
are included in Section 6.  

2. Mobile manipulator 
Consider a mobile manipulator mounted on nonholonomic mobile platform, as shown in 
Fig. 1. The dynamics of a mobile manipulator subject to kinematics can be obtained using 
Lagrangian approach in the form (Yamamoto & Yun, 1996) 

 ( ) ( , ) ( ) ( ) ( ) ( )T
dM q q C q q q F q G q B q A qτ τ λ+ + + + = −   (1) 

where kinematic constraints are described by  

 ( ) 0A q q = . (2) 

and pq R∈  is the generalized coordinates, ( ) p pM q R ×∈  is a symmetric and positive definite 
inertia matrix, ( , ) p pC q q R ×∈  is the centripetal and Coriolis matrix, ( ) pF q R∈  denotes the 
surface friction, ( ) pG q R∈  is the gravitational vector, dτ  denotes the bounded unknown 
disturbances including unstructured unmodeled dynamics, ( )( ) p p rB q R × −∈  is the input 
transformation matrix, p rRτ −∈  is the input vector, ( ) r pA q R ×∈  is the matrix associated with 
the constraints, and rRλ ∈  is the vector of constraint forces. 
In (1), the following properties hold (Lewis et al., 1999). 

Property 1 (Skew Symmerricity) 

2 ( 2 )TM C M C− = − −  

 TM C C= + .  (3) 

The generalized coordinates q  may be separated into two sets [ ]T
v rq q q=  with m

vq R∈  
describes the generalized coordinates appearing in the constraint equations (2), and n

rq R∈  
are the free generalized coordinates; p m n= + .  Therefore, (2) can be simplifed to  

 ( ) 0v v vA q q =    (4) 

with ( ) r m
vA q R ×∈ .  Assume that the robot is fully actuated, then (1) can be further rewritten as 

 11 12 11 12 1 1 1

21 22 21 22 2 2 2 0

T
v v d v v v

r r d r

M M q C C q F G B A
M M q C C q F G

τ τ λ
τ τ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + + + = − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (5) 
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Fig. 1. Trajectory tracking of a mobile manipulator.  
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Fig. 2. Two – DOF manipulator mounted on a mobile robot. 

where m r
v Rτ −∈  represents the actual torque vector of the constrained coordinates, those 

related to the constrained motion of the wheels, the joints, and the end effector. For simplicity 
in the theoretical derivation, hereafter we consider only the case where the vehicle motion is 
constrained. However, the proposed theory can be easily extended to include joint and/or 
end-effector constraints. ( )m m r

vB R × −∈  represents the input transfomation matrix; n
r Rτ ∈  the 

actuating torque vector of the free coordinates; 1dτ  and 2dτ  are disturbance torques bounded 
by 1 1| |d Nτ τ<  and 2 2| |d Nτ τ< , with 1Nτ  and 2Nτ  some positive constants. 
It is straightforward to show that the following properties hold.  

Property 2 :  

                                                                       21 21 12
TM C C= +  

 12 21
TM M=  .  (6) 
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Let ( )( ) m m r
v vS q R × −∈  be a full rank matrix formed by a set of smooth and linearly 

independent vector fields in the null space of ( )v vA q , i.e,  

 ( ) ( ) 0T T
v v vS q A q = . (7) 

According to (7) , it is possible to find an auxiliary vector time function ( ) m rv t R −∈ such that, 
for all t   

 ( ) ( )v vq S q v t=   (8) 

and its derivative is  

 ( ) ( )v v vq S q v S q v= + . (9) 

Equation (8) is called the steering system. ( )v t can be regarded as a velocity input vector 
steering the state vector q in state space. 
Let us consider the first m -equations of (5)  

    11 12 11 12 1 1 1
T

v r v r d v v vM q M q C q C q F G B Aτ τ λ+ + + + + + = − .  (10) 

Multiplying both sides of (10) by TS and using (7) to eliminate the constraint force we obtain  

 11 12 11 12 1 1 1
T T T T T T T T

v r v r d v vS M q S M q S C q S C q S F S G S S Bτ τ+ + + + + + = . (11) 

Substituting (8) and (9) into (11) yields 

 11 11 12 11 12 1 1 1
T T T T T T T T T

r r d v vS M Sv S M Sv S M q S C Sv S C q S F S G S S Bτ τ+ + + + + + + = . (12) 

Let us rewrite (12) in a compact form as 

 11 11 1 1d vM v C v f τ τ+ + + =    (13) 

where 11 11
TM S M S= , 11 11 11

T TC S C S S M S= + , 1 1
T

d dSτ τ= ; 1 1| |d Nτ τ≤  with 1Nτ  some positive 
constant, and  

 T
v v v v vS B Bτ τ τ= =    (14) 

 1 12 12 1 1( )T
r rf S M q C q F G= + + + .  (15) 

1f  consists of the gravitational and friction force, the disturbances on the vehicle base, and 
the dynamic interaction with the mounted manipulator arm which has been shown to have 
significant effect on the base motion, thus it needs to be compensated for (Yamamoto, 1994)    

Property 3: 112M C−  is skew-symmetric.  
Proof: 

 11 11 11 11 11

11 11

2 2 2 2

( 2 )

T T T T

T

M C S M S S M S S M S S C S
S M C S

− = + − −

= −
. (16) 
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Since 112M C−  is skew-symmetric, therefore, 112M C−  is also skew-symmetric. 
Let us consider the last n -equations of (5)  

 21 22 21 22 2 2 2v r v r d rM q M q C q C q F G τ τ+ + + + + + = . (17) 

Rearrange (17) as follows:  

 22 22 21 21 2 2 2( )r r v v d rM q C q M q C q F G τ τ+ + + + + + = . (18) 

Equation (18) represents the dynamic equation of the mounted manipulator arm. The terms 
in the brackets consist of the dynamic interaction term( 21 21v vM q C q+ ), the gravitational and 
friction force vector, and the disturbance on the manipulator. Equation (8), (13), and (18) 
form the complete dynamic model of the mobile manipulator subject to kinematic 
constraints.    
The Lagrange formulism is used to derived the dynamic equation of the mobile 
manipulator. The dynamical equations of the mobile manipulator in Fig. 2 can be expressed 
in the matrix form where      

v

x
q y

θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,  1

2
rq

θ
θ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

2

12 122 2

2

11 12 122 2

2
2

12 12 12 12 2

2 sin 2 sin cos sin

2 sin cos 2 cos cos

sin cos 2

w w
p

w w
p

p w

I Im m d
r r

I IM m m d
r r

lm d m d I I m d I
r

θ θ θ θ

θ θ θ θ

θ θ

⎡ ⎤
+ −⎢ ⎥

⎢ ⎥
⎢ ⎥

= − + −⎢ ⎥
⎢ ⎥
⎢ ⎥

− + + +⎢ ⎥
⎣ ⎦

  

12

12

0 0
0 0

0
M

I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 12
21

0 0
0 0 0

I
M

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 12
22

12

0
0

I
M

I
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

12 12p pm m m= + , 12 1 2m m m= + , 12 1 2I I I= +  

2

122 2

2

11 122 2

2 sin cos 2 sin cos

2 cos 2 sin cos sin

0 0 0

w w

w w

I I m d
r r

I IC m d
r r

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

12

0 0
0 0
0 0

C
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 21

0 0 0
0 0 0

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 22

0 0
0 0

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
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1

0
0
0

G
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 2

2 2 2

0
0
sin

G
m gl θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, R
v

L

τ
τ

τ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1

2
r

τ
τ

τ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
sin

cosT
vA

d

θ
θ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

  

 
cos cos

1 sin sinvB
r

l l

θ θ
θ θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

,   12( cos sin )pm x yλ θ θ θ= − + . (19) 

Similar dynamical models have been reported in the literature, for instance in (Yamamoto, 
1996) the mass and inertia of the driving wheels and manipulator are considered explicitly.  

3. Fuzzy logic deadzone compensation 
In this section a FL precompensator is designed for the non-symmetric deadzone 
nonlinearity. It is shown that the FL approach includes and subsumes approaches based on 
switching logic and indicator functions (Recker et al., 1991). This brings these references 
very close to fuzzy logic work in (Kim et al., 1994), and potentially allows for more exotic 
compensation schemes for actuator nonlinearities using more complex decision (e. g. 
membership) functions. This section provides a rigorous framework for FL applications in 
deadzone compensation for a broad class of mobile robot. 
 

u
+d0

)(uNd

−d

 
Fig. 3. Deadzone nonlinearity.      

If u ,τ are scalars, the nonsymmetric deadzone nonlinearity, shown in Fig. 3, is given by  

 
,

( ) 0,
, .

d

u d u d
N u d u d

u d d u
τ

− −

− +

+ +

− <⎧
⎪= = ≤ <⎨
⎪ − ≤⎩

 (20) 

The parameter vector [ ]Td d d+ −= characterizes the width of the system deadband. In 
practical control systems the width of the deadzone is unknown, so that compensation is 
difficult. Most compensation schemes cover only the case of symmetric deadzones where 
d d− += .  
The nonsymmetric deadzone may be written as  
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 ( ) ( )d dN u u sat uτ = = −  (21) 

where the nonsymmetric saturation function is defined as  

 
,

( ) ,
, .

d

d u d
sat u u d u d

d d u

− −

− +

+ +

<⎧
⎪= ≤ <⎨
⎪ ≤⎩

 (22) 

To offset the deleterious effects of deadzone, one may place a precompensator as illustrated 
in Fig. 4.  There, the desired function of the precompensator is to cause the composite 
throughput from w  to τ  to be unity. The power of fuzzy logic systems is to that they allow 
one to use intuition based on experience to design control systems, then provide the 
mathematical machinery for rigorous analysis and modification of the intuitive knowledge, 
for example through learning or adaptation, to give guaranteed performance, as will be 
shown in Section 4.  Due to the fuzzy logic classification property, they are particularly 
powerful when the nonlinearity depends on the region in which the argument u  of the 
nonlinearity is located, as in the non-symmetric deadzone.  
 

 
Fig. 4. Fuzzy logic deadzone compensation of a mobile manipulator. 

A deadzone precompensator using engineering experience would be discontinuous and 
depend on the region within which w  occurs. It would be naturally described using the 
rules     

If ( w  is positive ) then ( ˆu w d+= + )      

            If ( w  is negative) then ( ˆu w d−= + ) (23) 

where ˆ ˆ ˆ[ ]Td d d+ −=  is an estimate of the deadzone width parameter vector d . 
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To make this intutive notion mathematically precise for analysis define the membership 
function’s 

0, 0
( )

1, 0
w

X w
w+

<⎧
= ⎨ ≤⎩

  

 
1, 0

( )
0, 0

w
X w

w−

<⎧
= ⎨ ≤⎩

 .  (24) 

One may write the precompensator as  

 Fu w w= +  (25) 

where Fw  is given by the rule base  

If ( ( )w X w+∈ ) then ( ˆ
Fw d+= ) 

      If ( ( )w X w−∈ ) then ( ˆ
Fw d−= ). (26) 

The output of the fuzzy logic system with this rule base is given by  

 
ˆ ˆ( ) ( )

( ) ( )F
d X w d X ww

X w X w
+ + − −

+ −

+
=

+
. (27) 

The estimates d̂+ , d̂− are, respectively, the control representive value of ( )X w+ and ( )X w− . 
This may be written (note ( ) _( ) 1X w X w+ + = ) as  

 ˆ ( )T
Fw d X w=  (28) 

where the fuzzy logic basis function vector given by  

 
( )

( )
( )

X w
X w

X w
+

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (29) 

is easily computed given any value of w . 
It should be noted that the membership functions (24) are the indicator functions and ( )X w  
is similar to the regressor (Tao & Kokotovic, 1992). The composite through from w to τ  of 
the FL compensator plus the deadzone is  

    ( ) ( ) [ ( )].d d F F d FN u N w w w w sat w wτ = = + = + − +  (30) 

The FL compensator may be expressed as follows 

 ˆ ( )T
Fu w w w d X w= + = +   (31) 

where d̂ is estimated deadzone widths. 
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Given the FL compensator with rulebase (26), the throughput of the compensator plus 
deadzone is given by  

 ( )T Tw d X w dτ δ= − +  (32) 

where the deadzone width estimation error is given by  

 ˆd d d= −   (33) 

and the modeling mismatch term δ  is bounded so that | | Mδ δ<  for some scalar Mδ . 

4. FL deadzone compensation of a mobile manipulator  
In this section, FL deadzone compensation and tuning laws will be derived for the stable 
joint space tracking of a mobile manipulator described by (8), (13), and (18). The mobile 
manipulator dynamics is redefined as an error dynamics based on a set of carefully chosen 
Lyapunov functions. FL deadzone compensators are constructed and new learning laws are 
proposed. A proof on the tracking stability of the overall closed loop system and the 
boundedness on FL deadzone estimation errors are provided. The proposed control 
structure is shown in Fig. 4.      
Consider the vehicle dynamics represented by (8) and (13). Tracking control of the steering 
system (8) has been extensively addressed in the literature (Dixon et al., 2000). For example, 
for a wheeled mobile robot with two independent actuated wheels, the kinematic 
parameters in (8) are defined as  

   
cos sin

( ) sin cos
0 1

v

d
S q d

θ θ
θ θ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
v

v
ω
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and v

x
q y

θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (34) 

where ( , )x y  represents the Cartesian coordinates of the cart, θ  its orientation, v  and ω  its 
linear and angular velocities, respectively. Let the reference motion of the vehicle be 
prescribed as  

   
cos 0
sin 0

0 1

r
r

r
r

r

x
v

y
θ
θ

ω
θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (35) 

where 0rv >  and rω  are reference linear and angular velocities, respectively. Stable linear 
and nonlinear velocity feedback laws for (34) can be found in (Kanayama et al., 1990) to 
achieve the asymptotic tracking. For instance, the following feedback velocity input 
guarantees that the position tracking of (35) is asymptotically stable [14]:  

 3 1 1

2 2 3 3

cos
sin

c r
c

c r r r

v v e k e
v

k v e k v eω ω
+⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦
  (36) 

where positive constant 1k , 2k and 3k  are control gains, and the position tracking errors are 
defined as  
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                                                         ( )e vd ve q q= Γ −  

 
1

2

3

cos sin 0
sin cos 0
0 0 1

r

r

r

e x x
e y y
e

θ θ
θ θ

θ θ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (37) 

Choosing the following Lyapunov function can prove the stability tracking system  

 2 2
1 1 1 2 3 3( ) 2 (1 cos )rV k e e k v e= + + − .  (38) 

Differentiating yields 

 1 1 1 1 2 2 3 3 32 ( ) 2 sinrV k e e e e k v e e= + + . (39) 

Given the desired velocity ( )cv t , define now the auxiliary velocity tracking error as 

 c ce v v= − . (40) 

The velocity tracking error is  

 

4

5

3 1 1

2 2 3 3

cos
sin

c
c

c

r

r r r

e v v
e

e w w

v e k e v
k v e k v eω ω

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

+ −⎡ ⎤
= ⎢ ⎥+ + −⎣ ⎦

 (41) 

where 1k , 2k , 3k  are positive constants. 
Substituting the derivative of the position error in (39), we obtain  

 1 1 1 2 2 1 3 1 2 2 1 3 3 2 32 ( cos ) 2 ( sin ) 2 ( )sinr r r rV k e v e v v e k e v e v e k v v eω= − + + − + + −  (42) 

Using (41) and defining 2 1 3( / )rk k k v=  yields 

 2 2 2 2 2 2 2
1 1 1 3 3 1 1 4 3 3 5sin ( ) ( sin )r rV k e k v e k e e k v e e= − − − − − − . (43) 

Differentiating (40), multiplying both sides by 11M and substituting (13) into it yields 

 11 11 1 1 11 11c c d c c vM e C e f M v C vτ τ= − + + + + − . (44) 

Equation (44) represents the vehicle dynamics in terms of tracking errors. 
Let us choose the Lyapunov function as 

  2 11
1
2

T
c cV e M e= . (45) 

Differentiating (45) yields  

 2 11 11
1
2

T T
c c c cV e M e e M e= + . (46) 
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Substituting (44) into (46) we obtain 

 2 1 1 11 11 11 11

1 11 11 1

1{ } ( 2 )
2

{ }

T T
c d c c v c c

T
c c c d v

V e f M v C v e M C e

e f M v C v

τ τ

τ τ

= + + + − + −

= + + + −

. (47) 

Now consider the arm dynamics (18). Let us define the arm error as  

  r rd re q q= −  (48)  
and the tracking error as  

 r rr e e= + Λ   (49) 

where 0Tk k= > . In (49), tracking error r can be regarded as an input to a linear dynamics 
system with state variable re . Therefore, when 0r → , it can guarantee that 0re →  (Lewis et 
al., 1999).  
Differentiating (49) yields 

 r r rd r rr e e q q e= + Λ = − + Λ .  (50) 
Therefore, we have 

 ( )r rd rq q r e= − − Λ  (51) 

 ( )r rd rq q r r e= − + Λ − Λ .   (52) 

The manipulator dynamics (18) can be formulated in terms of the tracking error as 

 22 22 2 2d rM r C r f τ τ= − + + −  (53) 
where the nonlinear manipulator function is 

 2 22 22 21 21 2 2( ) ( )rd r rd r v vf M q e C q e M q C q F G= + Λ + + Λ + + + + .  (54) 

The nonlinear manipulator function 2f  consists of the manipulator dynamics 
( 22 22 2 2( ) ( )rd r rd rM q e C q e F G+ Λ + + Λ + + ) and the dynamics of interaction with the vehicle 
base ( 21 21v vM q C q+ ).  
To design the manipulator torque input, we choose the Lyapunov function as 

 
3 22

1
2

TV r M r= . (55) 

Notice that 22M  is a symmetric positive definite matrix. Differentiating (55) yields 

 

3 22 22

22 2 2 22

2 2 22 22

2 2

1
2

1( )
2

1( ) ( 2 )
2

( )

T T

T T
r d

T T
r d

T
r d

V r M r r M r

r C r f r M r

r f r M C r

r f

τ τ

τ τ

τ τ

= +

= − − + + +

= − + + + −

= − + +

. (56) 
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Let us consider the overall dynamics (5) that combines both the arm and vehicle dynamics. 
Consider the Lyapunov function as  

  4 1
1
2

c cSe Se
V V M

r r
⎛ ⎞ ⎛ ⎞

= + ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  (57) 

In the proposed Lyapunov function 4V , 1V  is used to account for the nonholonomic 
steering system (8), and the second term accounts for the vehicle base and manipulator arm 
dynamics, as well as the dynamic couplings between two.  
From (57) we have 

 

11 12
4 1

12 22

1 11 12 12 22

1 11 12 22

1 11 12 22

1 2 3 12

1
2
1 1 1 1( ) ( ) ( ) ( )
2 2 2 2
1 1( ) ( )
2 2
1 1( )
2 2

( )

c c
T

T T T T T
c c c c

T T T T T
c c c

T T T T
c c c

T T
c

Se M M Se
V V

M Mr r

V Se M Se r M Se Se M r r M r

V e S M S e r M Se r M r

V e M e r M Se r M r

V V V r M Se

⎛ ⎞ ⎛ ⎞⎛ ⎞
= + ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

= + + + +

= + + +

= + + +

= + + +

. (58) 

Differentiating (58) yields 

 4 1 2 3 21{ ( )}T
c

dV V V V r M Se
dt

= + + + . (59) 

Substituting (43), (47), and (56) into (59) yields  

 4 1 11 11 1 2 2 21( ) ( ) { ( )}T T T
c v c c d r d c

dV e f M v C v r f r M Se
dt

τ τ τ τ≤ − + + + + + − + + +  (60) 

where the four terms in (43) are negative.   
From the definition of 1f in (15) and (51), (52) we have 

 
1 12 12 1 1

12 12 1 1

12 12 12 1

( )
{ ( ( ) ( ( )) }

{ ( )( )}

T
r r

T
rd r rd r

T
r

f S M q C q F G
S M q r r e C q r e F G

S M r C M r e f

= + + +

= − + Λ − Λ + − − Λ + +

= − + − Λ − Λ +

 (61) 

where 1 12 12 1 1( )T
rd rdf S M q C q F G= + + + . 

From the definition of 2f  in (9) and (54) we have 

 
2 21 21 22 22 2 2

21 21 21 2

21 21 21 2

( ) { ( ) ( ) }

( ) ( )

( )( ) ( )( )

rd r rd r

c c c c

f M Sv Sv C Sv M q e C q e F G

M S v M S C S v f

M S v e M S C S v e f

= + + + + Λ + + Λ + +

= + + +

= − + + − +

 (62) 

where 2 22 22 2 2( ) ( )rd r rd rf M q e C q e F G= + Λ + + Λ + + . 
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Substituting (61) and (62) into (60) and after some collections of them we have 

 4 11 11 1 2 21

1 2

( ) { ( )}T T T T T
c v c c r c c

T T
c d d

dV e M v C v r e f r f r M Se
dt

e r

τ τ

τ τ

≤ − + + − + + +

+ +
. (63) 

First of all, we carry out the following derivation  

 

1 2 21

1 2 12 12 12

21 21 21 21 21 21

21 21 21 21

1 2 12 12

{ ( )}

( ) { ( )( )}

( )

( ) {( )( )}

(

T T T
c c

T T T
c c r

T
c c c c c c

T T T T
c c c c

T T T
c c r

T

de f r f r M Se
dt

e f r f Se M r C M r e

r M Sv M Se M Sv M Se C Sv C Se

r M Se r M Se r M Se r M Se

e f r f Se C M r e

r

+ +

= + − + − Λ − Λ

+ − + − + −

+ + + +

= + − − Λ − Λ

+ 21 21 21 12

1 2 12 12

21 21 21

)

( ) { ( )}

( )

c c c c

T T T
c c r r

T
c c c

M Sv M Sv C Sv C Se

e f r f Se C e M r e

r M Sv M Sv C Sv

+ + +

= + − − Λ − Λ − Λ

+ + +

 (64) 

where Properties 2 and 3 have been used in the previous derivations. 
Substituting (64) into (63) we obtain 

  

4 11 11 1 2

12 12

21 21 21 1 2

11 11 1 12 12

2 21 21 21 1

( )
( ) { ( )}

( )

[ { ( )}]

( )

T T T T
c v c c r c

T
c r r

T T T
c c c c d d

T T
c v c c r r

T T T
r c c c c d

V e M v C v r e f r f
Se C e M r e

r M Sv M Sv C Sv e r

e M v C v f S C e M r e

r f M Sv M Sv C Sv e r

τ τ

τ τ

τ

τ τ

≤ − + + − + +

+ Λ + Λ − Λ

+ + + + +

= − + + + + Λ + Λ − Λ

+ − + + + + + + 2dτ

.  (65) 

Therefore  

  4 1 2 1 2( ) ( )T T T T
c v r c d dV e r e rτ τ τ τ≤ − + Ψ + − + Ψ + +  (66) 

with unknown nonlinear terms 

 1 11 11 1 12 12{ ( )}T
c c r rM v C v f S C e M r eΨ = + + + Λ + Λ − Λ  (67a) 

 2 2 21 21 21c c cf M Sv M Sv C SvΨ = + + + . (67b) 

In applications the nonlinear robot function 1Ψ  and 2Ψ  is at least partially unknown. In 
standard fashion [Jang & Chung, 2009; Lewis et al., 1999], the estimate 1Ψ̂ , 2Ψ̂  may be 
provided by any means desired. The functional estimation error are defined as 

1 1 1
ˆΨ = Ψ −Ψ  and 2 2 2

ˆΨ = Ψ −Ψ . It is assumed that the functional estimation error satisfies  

 1 1| | ( )M xΨ ≤ Ψ  (68a) 

 2 2| | ( )M xΨ ≤ Ψ   (68b) 
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for some unknown bounded function 1 ( )M xΨ  and 2 ( )M xΨ . 
Therefore, a suitable control input for velocity following is given by the computed torque 
like control 

 1 4
ˆ

v c vw k e γ= Ψ + −  (69a) 

 2 5
ˆ

r rw k r γ= Ψ + −  (69b) 

with 4k  , 5k  are the diagonal positive definite gain matrix.  The robustifying signals ( )v tγ , 
( )r tγ  are required to compensate the unmodeled unstructured disturbances.     

Deadzone compensation is provided using 

 ˆ ( )T
v v v vu w d X w= +  (70a) 

 ˆ ( )T
r r r ru w d X w= +   (70b) 

with ( )vX w  and ( )rX w given by (29), which gives the overall feedforward throughout (32). 
Substituting (69) and (32) into (66) 

 

4 1 2

1 2

1 4 1

2 5 2 1 2

( ( ) ) ( ( ) )

ˆ( ( ) )
ˆ( ( ) )

T T T T T T
c v v v v v r r r r r

T T
c d d

T T T
c c v v v v v

T T T T T
r r r r r c d d

V e w d X w d r w d X w d
e r

e K e d X w d

r K r d X w d e r

δ δ

τ τ

γ δ

γ δ τ τ

≤ − + − + Ψ + − + − + Ψ

+ +

≤ −Ψ − + + − + Ψ

+ −Ψ − + + − + Ψ + +

. (71) 

Let us define  

 1

2

d
D

d

τ
τ

τ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 v

r

d
d

d
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

.   (72) 

Based on the bounds of every element of the vectors and matruces defined above, we may 
show the following properties hold: 

1 2 1 2| || | | |D d d N N Mτ τ τ τ τ τ≤ + ≤ + ≡  

 | || | | |v r vM rM Md d d d d d≤ + ≤ + ≡    (73) 

The next theorem provides an algorithm for tuning the deadzone precompensator. 
Theorem 1: Consider the nonholomic system (13) and (18). Select the tracking control (69) plus 
deadzone compensator (70), where ( )X w is given by (29). Choose the robustifying signal  

     1( ) ( )
| |

c
v M M

c

et
e

γ τ= − Ψ + .  (74a) 

 2( ) ( )
| |r M M

rt
r

γ τ= − Ψ + .  (74b) 

Let the estimated deadzone widths be provided by the FL system tuning algorithm  
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 6
ˆ ˆ( ) | |v v c v cd X w e k d e= −   (75a)  

 6
ˆ ˆ( ) | |r r rd X w r k d r= −   (75b)  

where 6k  is positive definite design parameter. By properly choosing the control gain and 
design parameter, tracking errors of error dynamics described by (8), (44), (53) and the FL 
deadzone estimation error ( , )T T

v rd d d=  evolves practical bounds by the right hand sides of 
(83) and (84) 
Proof)  Select the Lyapunov function candidate as  

 4
1 1( ) ( )
2 2

T T
v v r rV V d d d d= + + . (76) 

Differentiating yields 

 4 ( ) ( )T T
v v r rV V d d d d= + + . (77) 

From (71), (73) and robutifying term (74) it follows that 

 
4 4 1 1 1

5 2 1 2

4 5

ˆ( ( ) ) ( )
ˆ( ( ) ) ( )

( ( ) ) ( ( ) )

T T T
c c v v c v c c v d

T T T
r r r r d

T T T T
c c v v c vM c r r rM

V e k e d X w e e e

r k r d X w r r r

e k e d X w e e r k r d X w r r

δ γ τ

δ γ τ

δ δ

≤ − + − + Ψ −Ψ + +

− + − + Ψ −Ψ + +

≤ − + − − + −

. (78) 

where| |v vMδ δ< , | |r rMδ δ<  for some known positive constants vMδ  and rMδ .  
Using (77), we obtain    

 

4 5

4 5

( ( ) ) ( ( ) )

( ) ( )

( ( ) ) ( ( ) )

T T T T
c c v v c vM c r r rM

T T
v v r r

T T T T
c c v v c vM c v r r rM r

V e k e d X w e e r k r d X w r r

d d d d

e k e d X w e e d r k r d X w r r d

δ δ

δ δ

≤ − + − − + −

+ +

≤ − + − + − + − +

. (79) 

Since ˆd d= − , applying the tuning algorithm (75) yields 

 

4 6

5 6

4 6 5 6

4 6 5

ˆ( ( ) ( ) | |)
ˆ( ( ) ( ) | |)

ˆ ˆ( | |) ( | |)

( ( )| |) (

T T
c c v v c vM c v c v c

T T
r r rM r r

T T T T
c c v vM c v c r rM r

T T T T
c c v vM c v v c r rM

V e k e d X w e e X w e k d e

r k r d X w r r X w r k d r

e k e d e k d e r k r d r k d r

e k e d e k d d e r k r d r

δ

δ

δ δ

δ δ

≤ − + − − +

− + − − +

≤ − + − + − + − +

≤ − + + − − + 6( )| |)r rk d d r+ −

.  (80) 

there results  

 4 6 5 6( | |) ( | |)T T T T
c c v v c v c r r rV e k e d c e k d e r k r d c r k d r≤ − + − − + −   (81) 

with 6v vM vMc k dδ= +  and 6r rM rMc k dδ= + . | |v vMd d≤  and | |r rMd d≤  with known positive 
constants vMd  and rMd . 
Let 4 5min( , )k k k= , ( , )T T

cE e r=  and ( , )v rc c c= , we obtain  
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2

6

2
6

| | | |

| |[ | | | | | | ]

T T TV E kE E c d E k d

E k E c d k d

≤ − + −

≤ − − +
.  (82) 

This is negative as long as the quantity in the brace is positive. To determine conditions for 
this, complete the square to see that V  is negative as long as either  

 
2

6

| |
4

cE
k k

>
⋅ ⋅

 (83) 

or  

  
6

| | cd
k

> .  (84) 

According to the Lyapunov theorem, the tracking error decreases as long as the error is 
bigger than the right-hand side of Eq. (83). This implies Eq. (85) gives a practical bound on 
the tracking error      

 
2

6

| |
4

cE
k k

≤
⋅ ⋅

.  (85) 

◊  
Also, Lyapunov extension shows that the deadzone width bound, | |d , is bounded to a 
neighborhood of the right hand side of Eq. (84). Since a tracking controller, k , is determined 
according to the design of a tracking controller, k  cannot be increased arbitrarily. However, 
large k  may decrease the tracking error bound as long as the kinematic controller and the 
robust term maintain the stability of a control system.        

5. Simulation results 

In this section, we illustrates the effectiveness of a proposed FL deadzone compenation 
method for a mobile manipulator. For computer simulations, we took the vehicle and arm 
parameters as 10[ ]pm Kg= , 1 1[ ]m Kg= , 2 1[ ]m Kg= , 2

1 2 1[ ]wI I I Kg m= = = ⋅ , 25[ ]pI Kg m= ⋅ ,  
1 2 0.05[ ]l l m= = ,  2 0.35[ ]l m= , and 0.05[ ]r m= , 0.001[ ]d m= . The controller gains were 

chosen so that the closed loop system exhibits a critical damping behavior 1 10k = , 2 5k = , 
3 4k = , 4 {40,40}k diag= , 5 {10,10}k diag= , 6 1k = , and {5,5}diagΛ = . The reference points are 

constructed by using the kinematic model (35) and the following velocities, as follows: 

1.0[ /sec]rv m=  

 1 6sin(0.0139 )[deg /sec]r t reeω = − + . (86) 

The reference trajectories fo the arm are 1 ( ) sin(0.0698 )d t tθ =  and 2 ( ) cos(0.0698 )d t tθ = . The 
departure posture vector is ( 5, 5,0 )°− −  and the goal is trajectory following.  Fig. 5 show the 
reference trajectory response of a mobile manipulator. Since the deadzone nonlinearity is 
included in the mobile robot, the performance degraded by the deadzone effects in Fig. 6. 
The deadzone nonlinearity for mobile platform are 0.33d+ =  and 0.3d− = −  for right wheel 
and 0.31d+ =  and 0.3d− = −  for left wheel.  The deadzone nonlinearity for manipulator are 

0.2d+ =  and 0.21d− = −  for arm 1 and 0.19d+ =  and 0.2d− = −  for arm 2. In, Fig. 7, the 
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proposed FL deadzone compensation shows an improvement in trajectory response 
compared with the dynamic controller. The velcocity error, angular velocity error for 
vehicle, and the estimates of deadzone widths are shown in Fig 7(c)-(e). 
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Fig. 5. Response without deadzone nonlinearity of a mobile manipulator (a) vehicle 
trajectory and (b) arm position. 
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Fig. 6. Response with deadzone nonlinearity of a mobile manipulator (a) vehicle trajectory 
and (b) arm position. 
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Fig. 7.(Continued). 
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6. Conclusions 
The FL deadzone conpensation with a linear controller for tracking of a mobile 
manipulators has been developed. In fact, perfect knowledge of the mobile manipulator 
parameters is unattainable, e.g., the deadzone nonlinearity is very difficult to model by 
conventional techniques. To confront this, an FL deadzone compensation with guaranteed 
performance has been derived. The proposed control scheme is shown to be asymptotically 
stable through theoretical proof and simulation with a mobile manipulator. 
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