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Preface

In the recent decades, numerical simulation has become a very important and suc-
cessful approach for solving complex problems in almost all areas of human life. This 
book presents a collection of recent contributions of researchers working in the area 
of numerical simulations. It is aimed to provide new ideas, original results and practi-
cal experiences regarding this highly actual fi eld. The subject is mainly driven by the 
collaboration of scientists working in diff erent disciplines. This interaction can be seen 
both in the presented topics (for example, problems in fl uid dynamics or electromag-
netics) as well as in the particular levels of application (for example, numerical calcula-
tions, modeling or theoretical investigations).

The papers are organized in thematic sections on computational fl uid dynamics (fl ow 
models, complex geometries and turbulence, transport of sediments and contaminants, 
reacting fl ows and combustion). Since cfd-related topics form a considerable part of the 
submitt ed papers, the present fi rst volume is devoted to this area. The second volume is 
thematically more diverse, it covers the areas of the remaining accepted works ranging 
from particle physics and optics, electromagnetics, materials science, electrohydraulic 
systems, and numerical methods up to safety simulation.

In the course of the publishing process it unfortunately came to a diffi  culty in which 
consequence the publishing house was forced to win a new editor. Since the under-
signed editor entered at a later time into the publishing process, he had only a re-
stricted infl uence onto the developing process of book. Nevertheless the editor hopes 
that this book will interest researchers, scientists, engineers and graduate students in 
many disciplines, who make use of mathematical modeling and computer simulation. 
Although it represents only a small sample of the research activity on numerical simu-
lations, the book will certainly serve as a valuable tool for researchers interested in 
gett ing involved in this multidisciplinary fi eld. It will be useful to encourage further 
experimental and theoretical researches in the above mentioned areas of numerical 
simulation.

Lutz Angermann

Institut für Mathematik, Technische Universität Clausthal, 
Erzstraße 1, D-38678 Clausthal-Zellerfeld 

Germany
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Numerical Simulation of the  
Bump-on-Tail Instability 

 Magdi Shoucri 
Institut de recherche Hydro-Québec (IREQ), Varennes, Québec J3X1S1,  

Canada 

1. Introduction 
Wave-particle interaction is among the most important and extensively studied problems in 
plasma physics. Langmuir waves and their Landau damping or growth are fundamental 
examples of wave-particle interaction. The bump-on-tail instability is an example of wave 
growth and is one of the most fundamental and basic instabilities in plasma physics. When 
the bump in the tail of the distribution function presents a positive slope, a wave 
perturbation whose phase velocity lies along the positive slope of the distribution function 
becomes unstable. The bump-on-tail instability has been generally studied analytically and 
numerically under various approximations, either assuming a cold beam, or the presence of 
a single wave, or assuming conditions where the beam density is weak so that the unstable 
wave representing the collective oscillations of the bulk particles exhibits a small growth 
and can be considered as essentially of slowly varying amplitude in an envelope 
approximation (see for instance Umeda et al., 2003, Doveil et al. 2001, and references therein). 
Some early numerical simulations have studied the growth, saturation and stabilization 
mechanism for the beam-plasma instability (Dawson and Shanny, 1968, Denavit and Kruer, 
1971, Joyce et al., 1971, Nührenberg, 1971). Using Eulerian codes for the solution of the 
Vlasov-Poisson system (Cheng and Knorr, 1976, Gagné and Shoucri, 1977), it has been 
possible to present a better picture of the nonlinear evolution of the bump-on-tail instability 
(Shoucri, 1979),  where it has been shown that for a single wave perturbation the initial 
bump in the tail of the distribution is distorted during the instability, and evolves to an 
asymptotic state having another bump in the tail of the spatially averaged distribution 
function, with a minimum of zero slope at the phase velocity of the initially unstable wave 
(in this way the large amplitude wave can oscillate at constant amplitude without growth or 
damping). The phase-space in this case shows in the asymptotic state a Bernstein-Greene-
Kruskal (BGK)  vortex structure traveling at the phase-velocity of the wave (Bernstein et al., 
1957, Bertrand et al., 1988, Buchanan and Dorning, 1995). These results are also confirmed in 
several simulations (see for instance Nakamura and Yabe, 1999, Crouseilles et al., 2009). 
Since the early work of Berk and Roberts, 1967, the existence of steady-state phase-space 
holes in plasmas has been discussed in several publications. A discussion on the formation 
and dynamics of coherent structures involving phase-space holes in plasmas has been 
presented  for instance in the recent works of Schamel, 2000, Eliasson and Shukla, 2006.  
There are of course situations where a single wave theory and a weak beam density do not 
apply. In the present Chapter, we present a study for the long-time evolution of the Vlasov-
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Poisson system for the problem of the bump-on-tail instability, for the case when the beam 
density is about 10% of the total density, which provides a more vigorous beam-plasma 
interaction and important wave-particle and trapped particles effects. In this case the 
instability and trapping oscillations have important feedback effects on the oscillation of the 
bulk. Since the bump in the tail is usually located in the low density region of the 
distribution function, the Eulerian codes, because of their low noise level, allow an accurate 
study of the evolution of the bump, and on the transient dynamics for the formation and 
representation of the traveling BGK structures (for details on the numerical codes see the 
recent articles in Pohn et al., 2005, Shoucri, 2008, 2009). A warm beam is considered, and the 
system length L is greater than the wavelength of the unstable mode λ. In this case growing 
sidebands develop with energy flowing to the longest wavelengths (inverse cascade). This 
inverse cascade is characteristic of 2D systems (Knorr, 1977). Oscillations at frequencies 
below the plasma frequency are associated with the longest wavelengths, and result in 
phase velocities above the initial beam velocity, trapping and accelerating particles to higher 
velocities. The electric energy of the system is reaching in the asymptotic state a steady state 
with constant amplitude modulated by the persistent oscillation of the trapped particles, 
and of particles which are trapped, untrapped and retrapped. A similar problem has been 
recently studied in Shoucri, 2010. In the present chapter, we shall consider a larger 
simulation box, capable of resolving a broader spectrum. Two cases will be studied. A case 
where a single unstable mode is initially excited, and a case where two unstable modes are 
initially excited. Differences in the results between these two cases will be pointed out.  
The transient dynamics of the Vlasov-Poisson system is sensitive to grid size effects (see, for 
instance, Shoucri, 2010, and references therein). Numerical grid size effects and small time-
steps can have important consequences on the number and distribution of the trapped 
particles, on kinetic microscopic processes such as the chaotic trajectories which appear in 
the resonance region at the separatrix of the vortex structures where particles can make 
periodic transitions from trapped to untrapped motion. Usually during the evolution of the 
system, once the microstructure in the phase-space is reaching the mesh size, it is smoothed 
away by numerical diffusion, and is therefore lost. Larger scales appear to be unaffected by 
the small scale diffusivity and appear to be treated with good accuracy. This however has 
consequences on smoothing out information on trapped particles, and modifying some of 
the oscillations associated with these trapped particles, and with particles at the separatrix 
region of the vortex structures which evolve periodically between trapping and untrapping 
states. These trapped particles play an important role in the macroscopic nonlinear 
oscillation and modulation of the asymptotic state, and require a fine resolution phase-space 
grid and a very low noise code to be studied as accurately as possible (Califano and 
Lantano, 1999, Califano et al., 2000, Doveil et al., 2001, Valentini et al., 2005, Shoucri, 2010).  
The transient dynamics of the Vlasov-Poisson system is also sensitive to the initial 
perturbation of the system. Two cases will be considered in this chapter in the context of the 
bump-on-tail instability. A case where a single unstable mode is initially excited, and a case 
where two unstable modes are initially excited. In the first case, the system reaches in a first 
stage a BGK traveling wave, which in this case with L λ>  is only an intermediate state. 
Growing sidebands develop which disrupt the BGK structure and the system evolves in the 
end to a phase-space hole which translates as a cavity-like structure in the density plot. In 
the case where two initially unstable modes are excited, the electric energy decays rapidly 
after the initial growth and the vortices formed initially are unstable, and the phase-space 
evolves rapidly to a structure with a hole. In both cases energy is transferred by inverse 
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cascade to the longest wavelengths available in the system. A more important heating of the 
tail is observed in this second case. 

2. The relevant equations 
The relevant equations are the 1D Vlasov equation for the electron and ion distribution 
functions ( , , )e ef x tυ and ( , , )i if x tυ , coupled to the Poisson equation. These equations are 
written in our normalized units: 

 , , ,

, ,
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Time t is normalized to the inverse electron plasma frequency 1
peω− , velocity is normalized to 

the electron thermal velocity /the e eT mυ =  and length is normalized to the Debye length 
/

eD the peλ υ ω= . In our normalized units, 1em =  and /i i em M M= . Periodic boundary 
conditions are used. These equations are discretized on a grid in phase-space and are solved 
with an Eulerian code, by applying a method of fractional step which has been previously 
presented in the literature (Cheng and Knorr, 1976, Gagné and Shoucri, 1977, Shoucri, 2008, 
2009). The distribution function for a homogeneous electron beam-plasma system, with an 
electron beam drifting with a velocity dυ  relative to a stationary homogeneous plasma is 
given by: 
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The electron beam thermal spread is 0.5thbυ = and the beam velocity is 4.5dυ = . The ion 
distribution function in our normalized units is given by: 

 
2 21 /
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We take for the electron plasma density 0.9pn = and for the electron beam density 0.1bn =  
for a total density of 1. This high beam density will cause a strong beam-plasma instability 
to develop. We take 1.in = , / 1e iT T = , / 1. /1836e im m = . In our normalized 

units i ethi e i
T m

T mυ = . We use a time-step 0.002tΔ = . The length of the system in the 

present simulations is 80x2 / 3L π= = 167.552 . 
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3. Excitation of the mode n=8 with k=0.3 
We perturb the system initially with a perturbation such that: 

  ( , ) ( )(1 cos( ))e e ef x f kxυ υ ε= +  (6) 

with 0.04ε =  and with 2k n
L
π

= , and ( )e ef υ  is given in Eq.(4). We consider the case 

where 0.3k = , and the approximate initial frequency response of the system will be 
2 21 3kω ≈ + , or 1.127ω ≈  (nonlinear solutions can give slightly different results) , with a 

phase velocity of the wave / kω ≈ 3.756 . This phase velocity corresponds to a velocity where 
the initial distribution function in Eq.(4) has a positive slope. Hence the density perturbation in 
Eq.(6) will lead to an instability.  The mode 0.3k =  corresponds to the mode with n=8, in 
which case unstable sidebands can grow (the length of the system is bigger with respect to the 
wavelength of the excited oscillation). We use a space-velocity grid of 1024x2400 for the 
electrons, with extrema in the electron velocity equal to 8.±  The recurrence time in this case is 

2 3140.
k
πτ
υ

= ≈
Δ

We use a space-velocity grid of 1024x800  for the ions. 

 Unstable sidebands are growing from round-off errors. Fig.(1) presents the time evolution 
of the electric energy, showing growth, saturation and trapped particle oscillations until 
around a time t=700. Figs.(2a,b) show the contour plot and a three-dimensional view at 
t=680 of the distribution function showing the formation of a stable structure of eight 
vortices, corresponding to the initially unstable n=8 mode. The frequency spectrum of the 
mode n=8 at this stage of the evolution of the system shows a dominant frequency at 

1.0258ω =  (see Fig.(19b)), corresponding to a phase velocity 3.42υ ≈ . This corresponds to 
the velocity at which the center of the BGK structure of  in Fig.(2a) is traveling. The spatially 
averaged distribution function ( )e eF υ  in Fig.(3) is calculated from:  

 
0

1( ) ( , )
L

e e eF f x dx
L

υ υ= ∫  (7) 

The spatially averaged distribution function at this stage of the evolution has evolved from 
the initial bump-on-tail configuration (full curve in Fig.(3)), to a shape having another 
bump-on-tail configuration, with a minimum at 3.42υ ≈ , which corresponds to the phase 
velocity of the dominant n=8 mode at this stage. So the n=8 mode is reaching at this early 
stage a constant amplitude modulated by the oscillation of the trapped particles (see 
Fig.(19a)), with its phase velocity at the local minimum of the spatially averaged distribution 
function. During this phase of the evolution the spectrum of the n=8 mode in Fig.(19b) 
shows also the presence of a  frequency at 1.3134ω = , which corresponds to a phase 
velocity / 4.378kω = , at the local maximum appearing around 4.4υ ≈  in the spatially 
averaged distribution function in Fig.(3). Above 4.4υ ≈ , the spatially averaged distribution 
function in Fig.(3) shows a small oscillation with a local minimum due to the trapped 
population which is apparent above the vortices in Fig.(2a). Fig.(4a) and Fig.(4b) show 
respectively the electric field and the electron density profiles at t=680. 
Then for 700t >  there is a rapid decrease in the electric energy down to a constant value, 
(see Fig.(1)). This is caused by the growing sidebands who have reached a level where they 
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Fig. 1. Time evolution of the electric field energy 
 
 

  
                                          (a)                                                                             (b) 
Fig. 2. (a) Contour plot of the distribution function, t=680, (b) Three-dimensional view of the 
distribution function, t=680 
interact with the eight vortices BGK structure formed. There is a rapid fusion of the vortices 
into a single vortex, with energy cascading to the longest wavelengths associated with the 
system, a process characteristic of 2D systems (Knorr,1977). There is a heating of the 
distribution function, with an elongation of the tail of the distribution. Figs.(5-7) show the 
sequence of events in the evolution of the phase-space from the eight vortices BGK structure 
of Fig.(2a) to a single hole structure in Fig.(7o). Fig.(5a) shows at t=760 the disruption of the 
symmetry of the eight vortices structure. Some details are interesting. We note in Fig.(5a) 
two small vortices, centered around 30x ≈  and 155x ≈ ,  extending an arm embracing the 
vortex on their right. We magnify in Fig.(5b) the small vortex centered around 30x ≈ . 
Fig.(6a) shows the phase- space at t=780. Between Fig.(5a) and Fig.(6a), there is a time delay 
of 20, in which the structure moves a distance of about 3.42x20 68≈ . The small vortex 
centered at 30x ≈  in Figs.(5a,b) has now moved to the position 98x ≈  in Fig.(6a). 
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Fig. 3. Spatially averaged distribution function at t=0 (full curve), t=660 (dashed curve),  
t=680 (dashed-dotted curve), t=700 (dashed-three-dotted curve) 
 

  
                                            (a)                                                                             (b) 
Fig. 4. (a) Electric field profile at t=680, (b) Electron density profile at t=680    
We show in more details in Fig.(6b) these vortices structure which now extend their arms to 
embrace the neighbouring vortices, both to the right and to the left.  
We present in Fig.(7a-o) the sequence of evolution of the phase-space, leading to the 
formation of a single hole structure in Fig.(7o). Note in Fig.(7g) how the tail of the 
distribution function has shifted to higher velocities. The sequences in Fig.(7h-o) showing 
the fusion of the final two vortices is interesting. Fig.(7i) shows that one of the two holes is 
taking a satellite position with  respect to the other one, and then is elongated to form an 
arm around the central vortex. It appears that the satellite vortex is following a spiral 
structure around the central vortex, possibly following  the separatrix. Fig.(8) shows a 3D 
view of the distribution function at t=2980, corresponding to the results in Fig.(7o). The 
center of the hole in the phase-space is traveling at a velocity around 4.8≈ , which is the 
phase velocity of the dominant modes in Figs.(12-22), as it will be discussed later on. Note 
the difference in the structure of the electron distribution function between Fig.(8) and 
Fig.(2b). In Fig.(8), there is a cavity like structure which extends deep in the bulk and which 
propagates as a solitary like structure in the phase-space at the phase velocity of the hole. 
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                                           (a)                                                                             (b) 
Fig. 5. (a) Contour plot of the distribution function, t=760, (b) same as Fig.5a, figure centered 
at x=39   
 

 
                                          (a)                                                                              (b) 
Fig. 6. (a) Contour plot of the distribution function, t=780, (b) same as Fig.6a, centered at 
x=80     

Figs.(9) shows the spatially averaged distribution function for electrons at 2980t = , 
calculated using Eq.(7). Fig.(10) shows the equivalent plot of the ions calculated from an 
equation equivalent to Eq.(7). Fig.(9) seems to indicate the formation of a plateau. The ion 
distribution function in Fig.(10) is essentially the same as the initial one at 0.t =  In Fig.(11a) 
we plot on a logarithmic scale what appears to be the region of a plateau in Fig.(9). We see in 
Fig.(11a) the distribution function is decaying  slowly, showing an inflexion point around 

3.7υ ≈ , and another one around 4.8υ ≈ . Fig.(11b) shows on a logarithmic scale a plot of the  
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                                           (a)                                                                            (b) 
 
 

  
 

 

                                          (c)                                                                              (d) 
 
Fig. 7. (a) Contour plot of the distribution function, t=800, 
(b) Contour plot of the distribution function, t=1040, 
(c) Contour plot of the distribution function, t=1100,  
(d) Contour plot of the distribution function, t=1120.  
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                                          (e)                                                                             (f) 
 
 

   
 
 

                                          (g)                                                                             (h) 
 
Fig. 7. (e) Contour plot of the distribution function, t=1140,  
(f) Contour plot of the distribution function, t=1400,  
(g) Contour plot of the distribution function, t=1600,  
(h) Contour plot of the distribution function, t=1800.  
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                                           (i)                                                                             (j) 
 
 

   
 
 

                                          (k)                                                                             (l) 
 
Fig. 7. (i) Contour plot of the distribution function, t=1900,  
(j) Contour plot of the distribution function, t=1920,  
(k) Contour plot of the distribution function, t=1940,  
(l) Contour plot of the distribution function, t=1960. 
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                                          (m)                                                                            (n) 

 
 

 
 
 

       (o) 
 
 
Fig. 7. (m) Contour plot of the distribution function, t=2000,  
(n) Contour plot of the distribution function, t=2200,  
(o) Contour plot of the distribution function, t=2980. 
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Fig. 8. Three-dimensional view of the results in Fig.7o. 
 

distribution function in the region of the bulk, showing a small knee around 1.1υ ≈ and 
around 1.3υ ≈ . This corresponds to longitudinal modulations we see in Fig.(8). Fig.(11c) 
shows, on a linear scale, the top of the electron distribution function, which shows a small 
cavity around 0.05υ ≈ − . The acoustic speed in our normalized units is 

/ / /e i e eT M T M = /e iM M 0.023≈ . In the phase-space plot in Fig.(11d) the structure 
around 0.05υ ≈ −  shows six vortices, corresponding to a mode with 0.225k = . 
 
 
 

 
 
 

Fig. 9. Electron distribution function at 2980t = .                  
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Fig. 10. Ion distribution function at 2980t =  

 

 
                                            (a)                                                                            (b) 

 
                                                (c)                                                                           (d) 
Fig. 11. (a) Same as Fig.(9) (concentrates on the tail)  
(b) Same as Fig.(9) (concentrates on the bulk) 
(c) Same as Fig.(9) (concentrates on the top)  
(d) Contour plot for the distribution in Fig.(11c) 
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Figs.(12a-19a,20-22) show the time evolution of the different Fourier modes 2 /k n Lπ=  with 
n =1,2,3,4,5,6,7,8,9,12,16. Fig.(19) shows the initially unstable mode with 0.3k = , 8n = , 
growing then saturating (which corresponds to the eight vortices we see in Fig.(2)), and 
showing trapped particles oscillation. The merging of the vortices in the presence of 
growing sidebands for 700t > is accompanied by an inverse cascade with a transfer of 
energy to longest wavelengths. We see the amplitude of the Fourier mode 0.3k = , 8n =  
decreasing sharply for 700t > . Also the phase velocity of the center of the final hole in 
Fig.(7o) for instance has moved higher and is about 4.8 , due to the acceleration of the 
particles during the merging of the vortices. The frequencies of these longest wavelengths 
are below the plasma frequency. We calculate the frequencies of the different modes by their 
Fourier transform in the steady state at the end of the evolution, from 1 2344t =  to 

2 3000.t = The frequency spectrum of the mode 0.0375k = , 1n =  given in Fig.(12a) is shown 
in Fig.(12b), with a peak at 0.182ω = , which corresponds to a phase velocity / 4.853kω =  
around the center of the vortex in Fig.(7o). We have also in Fig.(12b) two very small peaks at 

0.9875ω =  and 1.0258ω = , which are modulating the amplitude of the mode. The 
frequency spectrum of the mode 0.075k = , 2n = in Fig.(13a) is given in Fig.(13b), which 
shows a peak at 0.3643ω = , corresponding to a phase velocity / 4.857kω = . Another small 
peak is appearing at 1.064ω = . The frequency spectrum of the mode 0.1125k = , 3n = in 
Fig.(14a) is given in Fig.(14b), which shows a peak at 0.5369ω = , corresponding to a phase 
velocity / 4.78kω = . The frequency spectrum of the mode 0.15k = , 4n = in Fig.(15a) is 
given in Fig.(15b), which shows a peak at 0.719ω = , corresponding to a phase 
velocity / 4.793kω = . The frequency spectrum of the mode 0.1875k = , 5n = in Fig.(16a) is 
given in Fig.(16b), which shows a peak at 0.901ω = , corresponding to a phase 
velocity / 4.805kω = . The frequency spectrum of the mode 0.225k = , 6n = in Fig.(17a) is 
given in Fig.(17b), which shows a peak at 1.0833ω = , corresponding to a phase 
velocity / 4.814kω = . The frequency spectrum of the mode 0.2625k = , 7n = in Fig.(18a) is 
given in Fig.(18b), which shows a peak at 1.0546ω = ,  and at 1.256ω = , whose phase 
velocities are / 3.63kω = and / 4.784kω = respectively, corresponding to the two inflexion 
points we see in Fig.(11a) around 3.63υ ≈ and 4.8υ ≈ .  The frequency spectrum of the mode 

0.3k = , 8n =  in Fig.(19a) is given in Fig.(19b) during the growth of the mode from 1 100t =  
to 2 755t = , and in Fig.(19c) at the end from 1 2344t =  to 2 3000.t =  During the first phase of 
the evolution of the mode in Fig.(19b) the dominant peak is at 1.0258ω =  (reaching a peak 
of about 500 ), and other peaks are seen at 0.7382ω = ,  1.112 , 1.313 , 1.7928 . For the 
steady state spectrum in Fig.(19c), the two dominant peaks are at 1.1025ω =  and 1.438ω = , 
whose phase velocities / kω  are respectively at 3.675 and 4.793 , corresponding to the two 
inflexion points we see in Fig.(11a). We present in Figs.(20-22) the time evolution of the 
modes with 0.3375k = , 9n = , 0.45k = , 12n =  and 0.6k = , 16n =  (this last one is the 
harmonic of the mode 8n = in Fig.(19)).  
Figs.(23a,b) and Fig.(24) show respectively the electric field plot, the potential plot and the 
electron density plot at t=2980. Note the rapid variation of the electric field plot at the 
position of the hole in the phase-space in Fig.(7o), and the corresponding peak in the 
potential in Fig.(23b). Note the cavity-like structure at the position of the phase-space hole in 
the electron density plot in Fig.(24). The ions remained essentially immobile, and showed 
some effects during the evolution of the system, immobilizing a very small oscillation which 
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                                               (a)                                                                           (b) 
Fig.12. (a) Time evolution of the Fourier mode k=0.0375  
(b) Spectrum of the Fourier mode k=0.0375 
                    

 
                                               (a)                                                                           (b) 
Fig. 13. (a) Time evolution of the Fourier mode k=0.075  
(b) Spectrum of the Fourier mode k=0.075 
 

 
                                               (a)                                                                           (b) 
Fig.14. (a) Time evolution of the Fourier mode with k=0.1125  
(b) Spectrum of the Fourier mode k=0.112 
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                                               (a)                                                                           (b) 
Fig. 15. (a) Time evolution of the Fourier mode with k=0.15  
(b) Spectrum of the Fourier mode k=0.15 
 

  
                                               (a)                                                                           (b) 
Fig. 16. (a) Time evolution of the Fourier mode with k=0.1875,  
(b) Spectrum of the Fourier mode k=0.1875    
 

   
                                               (a)                                                                           (b) 
Fig. 17. (a) Time evolution of the Fourier mode with k=0.225,  
(b) Spectrum of the Fourier mode k=0.225       
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                                               (a)                                                                           (b) 
Fig. 18. (a) Time evolution of the Fourier mode with k=0.2625, 
(b) Spectrum of the Fourier mode k=0.2625 
 

 
(a) 

 

    
                                         (b)                                                                           (c) 
Fig. 19. (a) Time evolution of the Fourier mode with k=0.3,  
(b) Spectrum of the Fourier mode k=0.3 (from t=100. to t=755.36), 
(c) Spectrum of the Fourier mode k=0.3 (from t=2344 to t=3000) 
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Fig. 20. Time evolution of the Fourier mode with k=0.3375       
          

 
 
Fig. 21. Time evolution of the Fourier mode with k=0.45 
 

 
 
Fig. 22. Time evolution of the Fourier mode with k=0.6  
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                                               (a)                                                                           (b) 
Fig. 23. (a) Electric field profile at t=2980 (b) Potential profile at t=2980. 
 

 
Fig. 24. Electron density profile at t=2980. 
was persistent at the end of the simulation in the tail of the distribution function in Fig.(11a), 
without affecting the shape of the tail at all, especially what appeared to be the two inflexion 
points around 3.7υ ≈ and 4.8υ ≈ . Also the evolution of the fusion of the two holes in 
Figs.(7h-7o) was much slower for the case of immobile ions, (lasting up to t=3000), with 
respect to what we see in the present results in Figs.(7h-7o) where the fusion is completed 
before t=2200. 

4. Excitation of the modes n=7 and n=8 with ka=0.2625  and k=0.3 respectively 
We consider in this section the case when we excite initially two initially unstable modes 

with 2k n
L
π

=  = 0.3 , 8n =  ,  and 0.2625ak =    , 7n = . So the initial electron distribution 

function is given by:  

 ( , ) ( )(1 cos( ) cos( )))e e e a af x f kx k xυ υ ε ε= + +  (7) 
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( )e ef υ is defined in Eq.(4). We use 0.04aε ε= = . The linear solution for the frequency 
associated with the mode 0.3k =  is 2 21 3kω ≈ + , or 1.127ω ≈  , with a phase velocity of the 
wave / 3.756kω ≈ . The linear solution for the frequency associated with the mode 

0.2625ak =  is 1.0985 , with a phase velocity of the wave 1.0985 /0.2625 4.184= . Both phase 
velocities fall on the positive slope of the bump-on-tail distribution function, as can be 
verified from Fig.(3). So both initially excited modes are unstable. 
 

 
Fig. 25. Time evolution of the electric field energy. 
Fig.(25) presents the time evolution of the electric field energy, which contrasts with what is 
presented in Fig.(1). Fig.(25) shows a rapid growth in the linear phase, followed by a rapid 
decay of the electric field energy. The spatially averaged electron distribution function 
shows very rapidly the formation of an elongated tail. We present in Fig.(26a) the spatially 
averaged electron distribution function at 400t = , and in Fig.(26b) we concentrate on the 
region of the tail, where the plot on a logarithmic scale show at this stage of the evolution a 
slowly decaying distribution function. 
We present in Fig.(27a-o) the evolution of the phase-space.  From the early beginning, the 
vortices formed due to the trapping of particles are unstable. Energy flows to the longest 
     

 
                                               (a)                                                                           (b) 

Fig. 26. (a) Spatially averaged distribution function at 400t = ,      
(b) Same as Fig.(26a), concentrating on the tail region.   
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wavelengths, which is characteristic of 2D systems (Knorr,1977). During this evolution the 
center of the vorticies is moving to higher velocities. In Fig.(27d) at 600t = , we have two 
holes left, which then start merging together. In Fig.(27f) at 760t = , one of the two vortices 
starts occupying a satellite position around the other, and then starts spiralling around it, 
leaving in the long run a single vortex (the evolution at this stage is similar to what has been 
presented in the previous section in Figs.(7i-n)).  At 3000t = in Fig.(27o), we show the final 
single vortex, centered around 5.05≈ . Note also in Fig.(27g) the presence of a small vortex 
along the upper boundary. In Figs.(27i-j) this small vortex moves closer to the big vortex, 
and then in Figs.(27k-m) it goes spiraling around the big vortex. Fig.(28) is a 3D plot of the 
hole presented in Fig.(27o). Note the associated cavity structure in the bulk which travels as 
a solitary like structure in the phase-space. In Fig.(29a) we show the spatially averaged 
electron distribution function at 3000t = , and in Fig.(29b) we present on a logarithmic scale 
the same curve, concentrating in the tail region. 
Although the initial evolution of the system is totally different from what we see in the 
previous section, the final result in Fig.(27o) showing a hole in the phase-space is close to 
what has been presented in the previous  section. There are, however, important differences 
between the results in Fig.(27o) and the results in Fig.(7o). The hole in Fig.(27o) is centered 
at a higher velocity than the hole in Fig.(7o). We observe also the plot of the tail in Fig.(29b) 
being shifted to higher velocities than the plot of the tail in Fig.(11a). Indeed, in Fig.(29b) the 
inflexion points are around 4.05υ ≈ and around 5.05υ ≈ , while in Fig.(11a) the inflexion 
points are around 3.7υ ≈ and 4.8υ ≈ . We present in Fig.(30a) the same electron distribution 
function as in Fig.(29a) at 3000t = , concentrating at the top of the distribution function. 
There is a deformation at the top which appears more important than the one at the top of 
Fig.(11d). Also the contour plot in Fig.(30b) at the top of the electron distribution function 
shows a rich collection of small vortices, more important than what we observe in Fig.(11d). 
Fig.(31a) and Fig.(31b) present the electric field and the electron density profiles at 3000t = . 
See in Fig.(31a) the rapid variation of the electric field from a positive to  negative value at 
the position of the phase-space hole in Fig.(27o). See in Fig.(31b)  the cavity structure in the 
density plot at the position of the phase-space hole. The ions showed essentially very small 
variation, and a flat density profile. However, this small variation provides the stable profile 
in Fig.(29). In the absence of the ions, the profile in Fig.(29b) would show a very small 
oscillation. 
Figs.(32-44) present the Fourier modes and their frequency spectra. We note from these 
figures that the initial growth of the longest wavelengths during the process of inverse 
cascade is higher with respect to what we see in Figs(12a-18a) for instance. There is a 
modulation in the asymptotic state which is more important in Figs.(32-44). The frequency 
spectrum is calculated by transforming the different Fourier modes in the last part of the 
simulation from 1 2344t = to 2 3000t = . The frequency spectrum of the mode with 

0.0375k = , 1n =  in Fig.(32a) shows a peak at 0.19175ω = . The phase velocity of this mode 
/ 5.11kω = .Two other small peaks appear in Fig.(32b) at 0.9875ω =  and 1.0258 . The 

frequency spectrum of the mode with 0.075k = , 2n =  in Fig.(33a) has a peak at 0.374ω = , 
corresponding to a phase velocity 5≈ . It has also two small peaks at a frequency 0.9875ω =  
and 1.0738 . The frequency spectrum of the mode with 0.1125k = , 3n =  in Fig.(34a) has a 
peak at  a   frequency 0.5656ω = in Fig.(34b), corresponding to a phase velocity 5.03≈ . It has 
also a small peak at 0.997ω = .  The frequency spectrum of the mode with 0.15k = , 4n =  in 
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                                          (a)                                                                           (b) 
 
 

 
 

                                          (c)                                                                           (d) 
 

Fig. 27. (a) Contour plot of the distribution function, 60t =        
(b) Contour plot of the distribution function, 200t =  
(c) Contour plot of the distribution function, 400t =        
(d) Contour plot of the distribution function, 600t =  
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                                          (e)                                                                           (f) 
 
 

 
 

 

                                          (g)                                                                           (h) 
 
Fig. 27. (e) Contour plot of the distribution function, 720t =         
(f) Contour plot of the distribution function, 760t =     
(g) Contour plot of the distribution function, 780t =         
(h) Contour plot of the distribution function, 800t =  
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                                          (i)                                                                           (j) 
 
 

 
 
 

                                          (k)                                                                           (l) 
 

Fig. 27. (i) Contour plot of the distribution function, 820t =        
(j) Contour plot of the distribution function, 900t =  
(k) Contour plot of the distribution function, 940t =        
(l) Contour plot of the distribution function, 1200t =  
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                                          (m)                                                                           (n)           
 
 

 
 
 

(o) 
 

Fig. 27. (m) Contour plot of the distribution function, 1240t =        
(n) Contour plot of the distribution function, 1300t =   
(o) Contour plot of the distribution function, 3000t =          



 Numerical Simulations - Applications, Examples and Theory 

 

28 

 

 
 

Fig. 28. Same as Fig.(27o), 3D plot at 3000t =      

 

 
       (a)                                                                           (b) 

Fig. 29. (a) Spatially averaged distribution function, 3000t =      
(b) Same as Fig.(29a), concentrating on the tail region. 
 

Fig.(35a) has a peak at a frequency 0.7574ω = in Fig.(35b), corresponding to a phase velocity 
5.05≈ . The frequency spectrum of the mode with 0.1875k = , 5n =  in Fig.(36a) has a peak 

at 0.944ω = in Fig.(36b), corresponding to a phase velocity 5.034≈ . The frequency spectrum 
of the mode with 0.225k = , 6n = in Fig.(37a) has a peak at a frequency 1.1313ω =  in 
Fig.(37b), corresponding to a phase velocity 5.028≈ . It has also peaks at 1.0258ω =  
and 1.256 , which underline the modulation of the mode in Fig.(37a). All the previous modes 
have a phase velocity 5.05≈ , which corresponds to the inflexion point of zero slope we see 
in Fig.(29b). So the dominant frequencies of oscillation of these modes seem to adjust 
themselves in such a way that the phase velocities of these modes would correspond to the 
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                                             (a)                                                                             (b)           
Fig. 30. (a) Same as Fig.(29a) (concentrates on the top)                               
(b) Contour plot for the distribution in Fig.(30a) 
 

  
                                            (a)                                                                             (b)           

Fig. 31. (a) Electric field profile at 3000t = ,                                     
(b) Electron density profile at 3000t =  

 

  
                                             (a)                                                                             (b)           
Fig. 32. (a) Time evolution of the Fourier mode k=0.0375,  
(b) Spectrum of the Fourier mode k=0.0375 
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                                             (a)                                                                             (b)           
Fig. 33. (a) Time evolution of the Fourier mode k=0.075,  
(b) Spectrum of the Fourier mode k=0.075   
 

 
                                             (a)                                                                             (b)           
Fig. 34. (a) Time evolution of the Fourier mode k=0.1125,  
(b) Spectrum of the Fourier mode k=0.1125  
 

   
                                             (a)                                                                             (b)           
Fig. 35. (a) Time evolution of the Fourier mode k=0.15  
(b) Spectrum of the Fourier mode k=0.15   
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                                             (a)                                                                             (b)           
Fig. 36. (a) Time evolution of the Fourier mode k=0.1875,  
(b) Spectrum of the Fourier mode k=0.1875   
 

    
                                             (a)                                                                             (b)           
Fig. 37. (a) Time evolution of the Fourier mode k=0.225,  
(b) Spectrum of the Fourier mode k=0.225   

inflexion point established by the trapped population, to allow the mode to oscillate at a 
constant amplitude. The mode 7n = in Fig.(38a) is one of the two initially unstable modes. 
Fig.(38b) gives the frequency spectrum of this mode in the initial phase of the evolution 
from 1 100t = to 2 755t = , showing a broad spectrum with two dominant peaks at 1.064ω =  
and 1.227 . In the steady state at the end of the simulation, the frequency spectrum of the 
mode with 0.2625k = , 7n =  has a dominant peak at a frequency 1.0642ω =  and a peak at  

1.323ω =  in Fig.(38c),  corresponding to a phase velocity respectively of  4.05≈  and  
5.04≈ . These two velocities correspond to the two inflexion points of zero slope we see in 

Fig.(29b). The mode 8n = in Fig.(39a) is also one of the two initially unstable modes. 
Fig.(39b) gives the frequency spectrum of this mode in the initial phase of the evolution, 
from 1 100t = to 2 755t = , showing a broad spectrum with two dominant peaks at 1.112ω =  
and 1.428 . In the steady state at the end of the simulation, the frequency spectrum of the 
mode with 0.3k = , 8n =  has a peak at a frequency 1.112ω =  and a peak at a frequency 
1.5148  in Fig.(39c), corresponding to a phase velocity respectively of  3.7≈  and  5.05≈ . 
This second velocity corresponds to the inflexion point we see in Fig.(29b). The mode at 

1.112ω =  would correspond to a coupling between the modes 1n = and 7n = (for the 



 Numerical Simulations - Applications, Examples and Theory 

 

32 

wavenumbers 0.0375 + 0.2625 =  0.3 , and for the frequencies 0.182 + 1.0642 = 1.246 ). The 
frequency spectrum of the mode with 0.3375k = , 9n =  in Fig.(40a) has a peak at a 
frequency 1.6969ω =  in Fig.(40b), corresponding to a phase velocity 5.028≈ , which 
corresponds to the inflexion point we see in Fig.(29b). Two small frequency peaks are also 
appearing at 0.6903  and 0.9204 and are also present in Fig.(40b). The frequency spectrum 
of the mode with 0.375k = , 10n =  in Fig.(41a) has a peak at a frequency 1.8887ω =  in 
Fig.(41b), corresponding to a phase velocity 5.036≈ , which corresponds to the inflexion 
point we see in Fig.(29b). The frequency spectrum of the mode with 0.45k = , 12n =  in 
Fig.(42a) has a peak at a frequency 2.26262ω =  in Fig.(42b), corresponding to a phase 
velocity 5.028≈ , which corresponds to the inflexion point we see in Fig.(29b). Finally 
Fig.(43) shows the time evolution of the mode with 0.525k = , 14n =  (the harmonic of the 
mode 7n = in Fig.(38a)), and Fig.(44) shows the time evolution of the mode with 0.6k =  , 

16n =  (the harmonic of the mode 8n = in Fig.(39a)). 
 
 

 
(a) 

 
                                        (b)                                                                            (c) 
Fig. 38. (a) Time evolution of the Fourier mode k=0.2625,   
(b) Spectrum of the Fourier mode k=0.2625 (from   1 100t =  to 2 755t = ),  
(c) Spectrum of the Fourier mode k=0.2625 (from   1 2344t =  to 2 3000t = ) 
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(a) 

  
                                       (b)                                                                              (c) 
Fig. 39. (a) Time evolution of the Fourier mode k=0.3    
(b) Spectrum of the Fourier mode k=0.3 (from   1 100t =  to 2 755t =                                          
(c) Spectrum of the Fourier mode k=0.3 (from   1 2344t =  to 2 3000t = ) 

 

 
                                              (a)                                                                            (b) 
Fig. 40. (a) Time evolution of the Fourier mode k=0.3375,  
(b) Spectrum of the Fourier mode k=0.3375 
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                                               (a)                                                                           (b) 
Fig. 41. (a) Time evolution of the Fourier mode k=0.375,  
(b) Spectrum of the Fourier mode k=0.375    
   

    
                                                 (a)                                                                         (b) 
Fig. 42. (a) Time evolution of the Fourier mode k=0.45,  
(b) Spectrum of the Fourier mode k=0.45   
 

     
 

Fig. 43. Time evolution of the Fourier mode k=0.525                      
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Fig. 44. Time evolution of the Fourier mode k=0.6 

5. Conclusion 
In the present Chapter, we have presented a study for the long-time evolution of the Vlasov-
Poisson system for the case when the beam density is about 10% of the total density, which 
provides a vigorous beam-plasma interaction and an important wave-particle interaction, 
and which results in important trapped particles effects. A warm beam is considered, and 
the length of the system L is larger than the initially unstable wavelength λ , which allows 
the growth of sidebands. A fine resolution grid in the phase-space and a small time-step are 
used to follow the nonlinear dynamics of the trapped particles as accurately as possible. 
Numerical grid size effects and small time-steps can have important consequences on the 
number and distribution of the trapped particles, on the dynamical transitions of the 
Vlasov-Poisson system, and on kinetic microscopic processes such as the chaotic trajectories 
which appear in the resonance region at the separatrix of the vortex structures where 
particles can make transitions from trapped to untrapped and retrapped motion. The 
importance of the microscopic processes for their possible consequences on the macroscopic 
large scale dynamics have been also stressed in several publications (Califano et al., 2000, 
Shoucri, 2010).  
Initial conditions can also have important consequences on the microscopic processes, on 
the dynamical transitions of the Vlasov-Poisson system, and their possible effects on the 
large scale dynamics. Two cases have been considered in this Chapter.  A case where a 
single initially unstable mode is excited, and a case where two initially unstable modes are 
excited. In the first case the evolution of the electric energy shows initially the classical 
behaviour of the growth of the initially unstable wave, followed by the saturation of the 
instability and the formation of BGK vortices in the phase-space, and the electric field is 
oscillating around a constant amplitude, modulated by the trapped particles oscillation. The 
subsequent evolution is dominated by a fusion of the vortices and by an inverse cascade 
where energy flows to the longest wavelengths available in the system, a process 
characteristic of 2D systems (Knorr, 1977). In the second case where two initially unstable 
waves are excited, the initial growth of the electric energy is followed by a rapid decay. This 
is accompanied by the formation of unstable vortex structures. In both cases the system 
evolves towards the formation of a single hole in the phase-space, where the trapped 
particles are accelerated to high velocities. The electron density plot shows the formation of 
a cavity like structure corresponding to the hole in the phase-space (Fig.(24) and (31b)). 



 Numerical Simulations - Applications, Examples and Theory 

 

36 

Oscillation frequencies below the plasma frequency are associated with the longest 
wavelengths. The spatially averaged distribution functions show curves having a tail with a 
slowly decaying slope, and this slope takes the value of zero at the phase velocities of the 
dominant waves (see Fig.(11a) and (29b)). We note that for the second case in Fig.(29b), the 
acceleration of the particles in the tail is higher with respect to the first case in Fig.(11a). The 
low frequencies associated with the dominant longer wavelengths result in higher phase 
velocities of the different modes, which are accelerating trapped particles to higher 
velocities in the tail of the distribution function, with kinetic energies above the initial 
energy of the beam (see the recent work in Sircombe et al., 2006, 2008). The trapped 
accelerated population is adjusting in return in order to provide the distribution function 
with a zero slope at the phase velocities of the waves, allowing the different modes to 
oscillate at a constant amplitude (modulated by the oscillation of the trapped particles). The 
increase in the kinetic energy due to the particles acceleration is equivalent to the decrease in 
the electric energy we see in Fig.(1) and in Fig.(25).  
The problem when several unstable modes are initially excited is certainly of interest. We 
note that when four initially unstable modes in a longer system were excited, the general 
evolution and the final results obtained were close to what we have presented in section 4 
for the case of two unstable modes. Some additional results presented in Ghizzo et al. 1988, 
for this problem have shown a strong acceleration of particles in the case 0.1bn = , in which 
case the tail particles are accelerated considerably to velocities higher than twice the initial 
beam velocity. The distribution function in this case takes the shape of a two-temperature 
Maxwellian distribution function with a high energy tail having a smooth negative slope. 
This result seems to agree with experimental observations from current drive experiments 
using an electron beam injected into the plasma (Advanced Concept Torus ACT-1 device), 
where it was observed that a significant fraction of the beam and background electrons are 
accelerated considerably beyond the initial beam velocity (Okuda et al., 1985). In none of the 
ACT-1 discharges is a distinctive feature of a plateau predicted from quasilinear theory 
apparent in the distribution function. The evolution of the waves amplitude in the results 
reported in Ghizzo et al., 1988,  shows a rapid rise, followed by an abrupt collapse of the 
waves amplitude, the energy being delivered to the accelerated particles. When bn  is 
decreased, the acceleration of the particles is decreased, and when it is reduced to 0.01bn = , 
a quasilinear plateau is formed and the waves amplitude saturate at a constant level. We 
note that when the simulations presented in sections 4  and 5  are repeated with 0.01bn = , 
a quasilinear plateau is formed, without the acceleration we see in sections 4  and 5 . Finally 
we point to the results obtained in Manfredi et al., 1996, with two spatial dimensions and a 
magnetic field, which shows in a bump-on-tail instability a rich variety of physics including 
also the  acceleration of particles to high energies. 
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1. Introduction 
A vacuum electrical discharge goes over three stages: breakdown, a spark, and an arc 
(Mesyats, 2000). The arc stage is the most mysterious form of the vacuum discharge. Since 
the discovery of the vacuum arc, the nature of the physical processes responsible for its 
operation has been debatable. The situation is paradoxical: vacuum arcs are widely used in 
various technologies, namely, in high-current switches, vacuum-arc melting and welding, 
plasma-assisted ion deposition, coating deposition, ion implantation, etc., and, at the same 
time, there is no commonly accepted idea about the mechanism of a vacuum discharge. 
Besides, the pulsed vacuum discharge is now the basic phenomenon harnessed in pulsed 
power and electronics. Pulsed electron beams are used in various fields, in particular for the 
production of braking x-ray pulses (radiography of fast processes, nondestructive testing), 
for the investigation of plasma–beam interactions, and for the production of superpower 
pulsed microwaves (heating of thermonuclear plasmas, long-range radar). It should be 
noted that practically in all cases, the spark (explosive electron emission (EEE)) stage of a 
vacuum discharge is used for the production of electron beams, and explosive-emission 
cathodes today have no alternative as components of pulsed high-current electrophysical 
devices. By the present time, the pulse range with the duration of processes as short as a few 
nanoseconds has been mastered rather well. Note that a way of increasing the power 
dissipated in the load of a high-voltage generator at a given stored energy is to reduce the 
voltage pulse duration. Therefore, in the recent years significant efforts have been made to 
develop high-current pulsed devices operating in the subnanosecond and picosecond ranges 
of voltage pulse durations (Mesyats & Yalandin, 2005). 
It has been revealed in numerous experiments that the fundamental properties of a vacuum 
discharge are entirely determined by the processes that occur in a small brightly luminous 
region at the cathode through which the current transfer between the cathode and the 
electrode gap is realized. This region is termed the cathode spot and it includes the active 
part of the cathode surface heated to temperatures far above the melting point and the 
cathode plasma generated as a result of the material transfer from the active part of the 
cathode in the vacuum gap.  
The existing theoretical models of the cathode spot phenomena can be conventionally 
subdivided into two groups in relation to the mechanism of formation of the conducting 
medium in vacuum. The models of the first group are based on the assumption of thermal 
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evaporation of the cathode material (Boxman et al., 1995; Lyubimov & Rakhovskii, 1978). 
However, this approach does not allow one to interpret well-known experimental data. The 
second-group models suppose explosive generation of the cathode plasma as a result of 
intense heating of microregions of the cathode surface. Theoretical ideas about explosive 
generation of the cathode plasma have been formulated most adequately in the ecton model 
of the cathode spot (Mesyats, 2000). In terms of this concept, all the three stages of a vacuum 
discharge appear explicable on the basis of natural origins. Breakdown and the so-called 
prebreakdown phenomena constitute a process of energy concentration in a microvolume at 
the cathode surface. Once the specific energy stored in a microvolume has become higher 
than a certain limiting value, an explosion begins and the breakdown stage is completed. 
The beginning of an explosion and the appearance of EEE is the onset of the spark stage of 
the discharge. The spark stage involves continuous regeneration of microexplosions by the 
plasma and liquid-metal jets produced by preceding microexplosions. The spark stage 
naturally goes over into the arc stage as the cathode and anode plasmas come together and 
the current rise rate decreases. However, the quantitative description of the cathode 
phenomena in the context of this model has yet been made only based on simplified 
estimating notions. 
Thus, despite the significant advance in the study of some characteristic of cathode spots, a 
commonly accepted model of the cathode spot of a vacuum discharge yet does not exist. 
This is related, first, to the problems of experimental diagnostics of cathode spots in view of 
the extremely small time and space scales of the cathode spot phenomena and of their fast 
and chaotic motion over the cathode surface. Therefore, numerical simulation still remains 
practically a single method allowing one to determine the discharge parameters taking into 
account their space and time dependences. 
The present paper is devoted to a numerical simulation of the prebreakdown phenomena in 
the cathode that take place on the initiation of an electrical discharge in a vacuum gap by 
application of a pulsed high voltage to the electrodes and also to a simulation of the 
processes initiating explosive emission centers on the cathode upon its interaction with the 
cathode spot plasma. Both processes in fact determine the mechanism of generation of the 
conducting medium in the electrode gap; therefore, to study them is of importance for 
constructing a self-consistent model of a vacuum discharge. In the first case, attention is 
mostly given to the subnanosecond range of voltage pulse durations. From the practical 
viewpoint, knowledge of the phenomena occurring on the nanosecond scale would be 
helpful in analyzing the efficiency of operation of explosive emission cathodes in a 
picosecond pulse mode. As for the second problem, the plasma–cathode interaction is the 
dominant process in the mechanism of self-sustainment of a vacuum discharge.  
It is well known that under the conditions of high vacuum and pure electrodes, electrical 
discharge in vacuum is initiated by the current of field electron emission (FEE). According to 
the criterion for pulsed breakdown (Mesyats, 2000), to attain subnanosecond time delays to 
the explosion of a cathode microprotrusion, a field emission current density over 109 A/cm2 
is necessary. It is obvious that at these high field emission current densities, the screening of 
the electric field at the cathode surface by the space charge of emitted electrons substantially 
affects the field strength. It has even been speculated that this effect can have grave 
consequences: it will be impossible to produce current densities which would be high 
enough to achieve subnanosecond explosion delay times. The second section of proposed 
work is devoted to a study of the effect of the space charge of emitted electrons on the 
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electric field strength near the surface of the field emission emitters and a point 
microprotrusion on a metal cathode by using a two-dimensional axisymmetric problem 
statement. Based on the particle-in-cell (PIC) method, a model has been developed and self-
consistent calculations of the electric field strength at the cathode and its field emission 
characteristics has been performed. In the third section a two-dimensional, two-temperature 
model has been developed to describe the prebreakdown phenomena in a cathode 
microprotrusion at picosecond and subnanosecond durations of the applied voltage pulse. 
The simulation procedure includes a particle-in-cell simulation to calculate the self-
consistent electric field at the cathode surface and the field-emission characteristics of the 
cathode. In the fourth section a two-dimensional nonstationary model of the initiation of 
new explosive centers beneath the plasma of a vacuum arc cathode spot has been 
developed. In terms of this model, the plasma density and electron temperature that 
determine the ion current from the plasma to the microprotrusion and the microprotrusion 
geometry were treated as the external parameters of the problem. The process of heating of 
a cathode surface microprotrusion, for which both a surface irregularity resulting from the 
development of a preceding crater and the edge of an active crater, which may be a liquid-
metal jet, can be considered, has been simulated numerically.  

2. PIC simulation of the screening of the electric field at the cathode surface 
under intense field emission 
The fact that the space charge (SC) of the electrons emitted from a metal affects the metal 
field- emission characteristics is now beyond question. The problem was first raised (Stern et 
al., 1929) shortly after the creation of the Fowler–Nordheim (F–N) theory (Fоwler & 
Nordheim, 1928; Nordheim, 1929). However, it became urgent once Dyke and Trolan (Dyke 
& Trolan, 1953) had revealed an appreciable deviation from the F–N law at current densities 
j > 5⋅106 A/cm2, which showed up in a weaker dependence of the emission current on the 
applied potential difference. The authors (Dyke & Trolan, 1953) accounted for the 
nonlinearity of the current-voltage characteristics (CVCs) by the reduction of the electric 
field at the cathode surface due to the presence of a space charge of emitted electrons. In the 
subsequent work (Barbour et al., 1963), they proposed a model of an equivalent planar 
diode (EPD). This model, with properly chosen parameters, allowed one not only to 
describe qualitatively the deviation of a CVC toward the lower currents due to the SC effect, 
but also to obtain a reasonable agreement with experimental data. Therefore, for a long time 
it was considered established, both experimentally and theoretically, that the field-emission 
current density is limited to a level of ∼107 A/cm2 by the emission beam SC. 
However, the problem appears to be not conclusively solved if field emission studies 
involve nanostructured surfaces and emitters where the emission occurs from nanometer 
objects. Investigations of the FEE from specially produced nanometer protrusions (Pavlov et 
al., 1975; Fursey et al., 1998) have shown that linear CVCs can be observed for current 
densities up to ∼1010 A/cm2, which are three orders of magnitude greater than those 
characteristic of conventional metal emitters with a tip radius of ∼10–5÷10–4 cm. Thus, though 
the current density is undoubtedly the determining quantity in the formation of the SC of a 
field emission beam, it is not the only factor responsible for the substantial effect of the SC 
on FEE. This necessitates a more rigorous consideration of this problem by invoking models 
that would describe the formation and spatial relaxation of the SC of an emission beam in a 
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more realistic geometry than this is possible in the context of the EPD model. This problem 
is also important in view of considerable advances in the study of field emission properties 
of various nanostructured surfaces, carbon nanotubes (Guillorn et al., 2004), dielectric and 
semiconductor matrices with conducting inclusions (Forbes, 2001), and Spindt cathodes 
(Spindt, 1968). In high current electronics, these investigations are of interest from the 
viewpoint of evaluating the efficiency of explosive-emission cathodes for the production of 
picosecond electron beams, because to initiate EEE within such short times, rather high FEE 
current densities (∼1010 A/cm2) are necessary (Mesyats & Uimanov, 2008). 
Theoretically, the investigation of the effect of the SC on FEE was practically limited to the 
solution of the one-dimensional Poisson equation for an EPD or for a spherical diode (ESD) 
(see (Shrednik, 1974) and the cited literature). The one-dimensional approach naturally used 
in the previous work considerably moderates computational difficulties, but even in these 
cases, numerical calculations are required. This in the main is due to the nonlinearity of the 
F–N relation, which is used as a boundary condition in the problem statement. However, 
the applicability of a one-dimensional approximation to the actual geometry of a point-
cathode vacuum diode has not been yet strictly substantiated. The only argument in favor of 
the usability of the EPD model advanced by the authors of Ref. (Barbour et al., 1963) is the 
estimate of the parameter of spatial localization of the SC near the emission surface. A 
critical analysis of the use of the EPD and ESD models for the description of the effect of the 
emission beam SC can be found elsewhere (Pavlov, 2004). The EPD model was adapted to 
describe the effect of the SC of emitted electrons on the field strength and current density 
distributions over the emitter surface (Shkuratov et al., 1960 (1995)). A similar approach was 
used with the ESD model (Batrakov et al., 1999). It has been shown (Shkuratov et al., 1960 
(1995); Batrakov et al., 1999) that the SC of an emission beam not only efficiently screens the 
field at the cathode, but also significantly changes its distribution over the surface. However, 
it remains unclear for today whether the use of these quasi-two-dimensional approaches, 
offered largely ad hoc, is adequate. It should be noted that the particle-in-cell method was 
first used for solving the problem under consideration in Ref. (Batrakov et al., 1999). 
However, in our opinion, its capabilities, as applied to solving problems of this type, could 
not be efficiently used in spherical one-dimensional calculations. We were the first to make 
an attempt to solve the problem on the effect of the SC of emitted electrons on the electric 
field strength and on the CVC of the vacuum gap in a two-dimensional axially symmetric 
statement (Uimanov, 2008; Uimanov, 2010). We used the weighed-particle-in-cell method to 
simulate the self-consistent field-emission beam emitted by a microprotrusion on a 
macropoint cathode. The results obtained with the model developed have allowed us to 
analyze both the details of the screening phenomenon and the probable values of fields and 
current densities for the cathode protrusions of micrometer and submicrometer dimensions. 
In the study we present here, we used this model to investigate the external field screening 
not only for macropoint cathodes with microprotrusions, but also for classical point field 
emitters over a rather wide range of the geometric parameters of the cathode. 

2.1 Problem statement and task geometry 
Figure 1 presents the model geometry of the problem. As a whole it is the coaxial diode with 
distance the cathode - anode 1 cm. The cathode is the metal needle with the tip radius rc. 
On the surface of the cathode there is a microprotrusion of height hm, tip radius rm and the 
half-angle of the conical part Θ .  
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This cathode geometry takes into account the two-factor field enhancement at the 
microprotrusion surface which is typical of the electrode systems that were used in the 
experimental studies of EEE performed by now on the subnanosecond scale.  

 

  
Fig. 1. Task geometry. Calculated parameters: rc = 50 μm, hm = 5 μm, rm = 0.1 μm, Θ = 10˚ 

Approximately the factor of electric field enhancement for such geometry is tot c mβ β β= , 
where cβ  is the factor of electric field enhancement of the point cathode, mβ  is the factor of 
the microprotrusion. The large difference in characteristic scales of the microprotrusion and 
all diode is one of the main difficulties of the task. 

2.2 Mathematical model 
The electric field potential u  in the diode is calculated with the Poisson equation: 
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where ρ  is the space charge density of emitted electrons, which was found by the particle-
in-cell method (Hockney & Eastwood, 1988; Birdsall & Langdon, 1985). This equation was 
solved by a set up method up to decision of a stationary solution at the curvilinear 
boundary-fitted grid (see Fig. 2). In our electrostatic PIC simulation, each computer particle 
is a “superparticle” which represents some number of real electrons. The charge of these 
“superparticles” is not constant and it is defined by expression iq j S tp em= Δ Δ , where jem is 
the FEE current density, iSΔ  is the elementary area of the emission surface, tΔ  is time step. 
The particles start at the cathode microprotrusion, as a result of the FEE process. The 
particles are then followed, one after the other, during successive time steps. Their trajectory 
is calculated by Newton’s laws 
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where z0 , r0  and z , r  are the posiyion coordinates before and after tΔ , zv0 , rv0  and zv , rv  
are the velocities before and after tΔ , zE du dz/= −  and rE du dr/= −  are the axial and 
radial electric field, e  and m  are the electron charge and mass, respectively.  
 

 
Fig. 2. Discrete representation of the model geometry with a boundary-fitted grid 

In a typical electrostatic PIC simulation, for each time step: 
1. The charge density r z( , )ρ  is obtained by a bilinear weighting of the particles to the 

spatial curvilinear grid (Seldner & Westermann, 1988). 
2. r z( , )ρ  is used in Poisson’s equation to solve for the electric field E u= −∇ . 
3. zE  and rE  are bilinearly weighted back to each particle position in order to determine 

the force on each particle. 
4. The Newton equations of motion (2) are used to advance the particles to new positions 

and velocities. 
5. The boundaries are checked, and out of bounds particles are removed. 
The FEE current density jem  was assumed to depend on the self-consistent electric field at 
the microprotrusion surface in accordance with Miller–Good (MG) approximation 
(Modinos, 1984): 

 FD
mej d d f D E

hem n em n3
0 0

4 ( ) ( , )
επ ε ε ε ε

∞

= ∫ ∫ , (3) 

where D Eem n( , )ε  is the transparency of the potential barrier, Eem  is the electric field at the 
cathode, k m2( ) / 2ε =  is the electron energy in the metal, k m2

n n( ) / 2ε =  is the energy 
component of an electron in the metal which is “normal to the emission boundary”, h  
( h /2π= ) is the Plank constant. We assume that { }FD F B ef k T 1( ) 1 exp(( ) / )ε ε ε −= + −  is the 
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equilibrium Fermi–Dirac function, where Fε  is the Fermi energy, Bk  is Boltzmann’s 
constant, eT = 300°K is the electron temperature. 
Within the framework of the MG approximation, the expression for the transmission factor 
of a barrier has the form (Modinos, 1984): 
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where L F e E3
em1 2ε ε ϕ= + − , ϕ  is work function, y( )υ  is a function, which is defined 

through eleptic integrals (Modinos, 1984). The rigorous boundary condition on the cathode 
surface (3) is another factor that substantially complicates the solution and restricts the 
choice of the solution technique. 

2.3 Results 
PIC simulations were performed for a copper cathode in the voltage range U = 5÷500 kV. 
The results of the numerical calculation of the FEE characteristics are presented in Fig. 3 
whose geometric parameters are given in Fig. 1. Figure 3 a) gives the results of computation 
for the maximal FEE current density on the microprotrusion tip. Figure 3 b) presents the 
results of the PIC simulations of the total FEE current. 
Figure 4 presents the distributions of the electric field strength a) and field emission current 
density b) over the microprotrusion surface at different voltages. From Fig. 4 it can be seen 
that at jem > 107 A/cm2 the space charge substantially affects both the magnitude of the field 
and its distribution over the surface. Note that if the space charge would not been taken into 
account, the field distribution in Fig. 4 a) would remain constant. Analyzing the curves in 
Fig. 4 b), it can be noted that the screening effect results in increase of the “effective emission 
surface”. 
The results of the numerical calculation of the screening effect of the external electric field by 
the FEE electron space charge are illustrated in Fig. 5. and Fig. 6. The results obtained show 
that in the range of high FEE currents (jem > 109 A/cm2) the self-consistent field strength is in 
fact an order of magnitude lower than its geometric value. Figure 6 presents the respective 
curves for microprotrusions with different tip radii. From this figure it can be seen that a 
decrease in tip radius decreases the screening efficiency. This effect is essentially two-
dimensional in character. Because the space charge is localized within ~10–7 m of the 
emitting surface, the smaller rm, the lesser is portion of the space charge that participates in 
the screening of the external field at the microprotrusion tip.  
For comparison, the dashed curves in Fig. 3, a) and in Fig. 5, a represent the results that we 
have obtained by using a quasi-two-dimensional EPD model (Barbour et al., 1963). 
Analyzing the curves obtained, it can be noted that this model overestimates influence of the 
SC of the FEE electrons. 
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 a) b) 

Fig. 3. Calculated current-voltage characteristics for Cu cathode with work function 4.4 eV: 
a)  the FEE current density on the microprotrusion tip (r = 0): 1 – PIC simulations, 2 – 
numerical calculations within the framework of the EPD model (Barbour et al., 1963); 
b)  PIC simulations of the total FEE current 
 

 
 a) b) 
Fig. 4. Electric field strength a) and field emission current density b) distributions over the 
microprotrusion surface at different voltages (Geometric parameters are given in Fig. 1.):  
1 – 5 kV, Em=1.9·107 V/cm, jm=1.2·10-4 A/cm2;  2 –15 kV, Em=5.6·107 V/cm, jm=2.7·106 
A/cm2;  3 – 20 kV, Em=7.1·107 V/cm, jm=3.4·107 A/cm2;  4 – 50 kV, Em=108 V/cm, jm=6·108 
A/cm2; 5 – 100 kV, Em=1.2·108 V/cm, jm=1.8·109 A/cm2;  6 – 250 kV, Em=1.5·108 V/cm, 
jm=6.2·109 A/cm2 
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Fig. 5. SC-limited self-consistent electric field at the microprotrusion tip versus geometric 
field (without taking into account the space charge effect): 1 – geometric field, 2 – PIC 
simulations, 3 – EPD model (Barbour et al., 1963). Calculated parameters: ϕ = 4.4 eV, rc =50 
μm, hm =5 μm, rm =0.1 μm, Θ =10˚ 

 

 
Fig. 6. SC-limited self-consistent electric field at the microprotrusion tip versus geometric 
field for microprotrusions with different tip radii:  
1 – rm =0.5 μm, 2 – rm =0.1 μm, 3 – rm =0.05 μm. Calculated parameters: ϕ = 4.4 eV, rc =50 μm, 
hm =5 μm, Θ =10˚ 
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2.4 The dimensional effect of the space charge of the emitted electrons on the 
strength of the self-consistent electric field at the cathode surface 
The investigations were performed with the use of above model. The model covers both the 
trajectory part of the problem and the axially symmetric self-consistent solution of the 
Poisson equation for the electric field potential over the entire vacuum gap taking into 
account the SC of emitted electrons. The electron trajectories and the space charge of the 
emission beam are calculated by the particle-in-cell method using a scheme including 
macroparticles of varied charge and algorithms of particle coarsening. Coaxial electrode 
configurations with a point field emitter and the case of emission from a cathode protrusion 
(see Fig. 1), which are inherent in FEE and EEE investigations, were considered. In both 
cases, the axial cathode–anode separation was 1 cm. The Dyke model (Dуke et al., 1953) was 
used for an approximate description of the shape of the point field emitter (see Fig. 7). 
According to this model, the shape of an emitter prepared by electrolytic etching can be 
presented rather precisely by the equipotential surface of an electric field produced by a 
charged orthogonal cone with a sphere on its vertex. The equipotential surface and, hence, 
the shape of the emitter are specified by three parameters: the radius of the emitter tip, 0r , 
the radius of the kernel sphere, a , and the order of the Legendre polynomial, n. If the anode 
is also shaped as an equipotential surface, the solution of the Laplace equation for a system 
of this configuration is well known (Dуke et al., 1953). Though the field is calculated 
numerically in our model, the use of this approach allows one to control the procedure of 
construction of an essentially nonuniform curvilinear computational grid by comparing the 
accuracy of the numerical solution of the Laplace equation with that of the analytic solution. 
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Fig. 7. The shape of model field emitters 

The resulting grid is also used for solving the Poisson equation. The parameters of the field 
emitters that were used in the calculations are given in Table 1. The last column presents the 

0β  factor of the emitter, which is calculated numerically from the relation β =0 0 /E U , 
where 0E  is the field at the tip and U  is the cathode–anode potential difference. 
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N r0⋅10-5, см a⋅10-5, см n 0β , см-1 

FE1 4.0 1.235 0.1 4613 

FE2 1.0 0.524 0.2416 4618 

FE3 0.5 0.25 0.2835 4599 

FE4 0.1 0.02 0.1 8.0⋅104 

FE5 0.01 0.002 0.1 5.7⋅105 

Table 1. Parameters of field emitters 

The field strength on the cathode tip calculated as a function of its “geometric” value gE  
(Laplace field not taking into account the SC of emitted electrons) and the CVC of the 
vacuum gap calculated in terms of F–N coordinates for a set of emitters (FE1 through FE3) 
are shown in Fig. 8 and in Fig. 9, respectively. The emitters of this set are characterized by 
the same 0β . The data of the respective calculations for emitters FE4 through FE6 having the 
same cone angle are presented in Fig. 10 and in Fig. 11. 
The results obtained suggest that the efficiency of the field screening by the SC of the 
emission beam depends, in the main, on the emitter radius (linear dimension of the emission 
area). The smaller the emitter radius, the lower the degree of weakening of the external field 
at the cathode by the SC of emitted electrons. It should be stressed that this refers both to 
point emitters and to cathodes with a protrusion. This dimensional effect shows up in the 
CVC as an increase in current density jс  at which the deviation from the linear F–N 
characteristic is observed. As can be seen from Fig. 9 and Fig. 11, as the emitter radius is 
decreased from 4⋅10–5 to 10–7 cm, jс  increases approximately by two orders of magnitude, 
reaching ~109 A/cm2. The results obtained agree with experimental data for FEE from 
nanometer protrusions (Pavlov et al., 1975; Fursey et al., 1998). 
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Fig. 8. The field strength at the emitter tip as a function of its geometric value for a set of 
emitters with the same 0β  
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Fig. 9. The FEE current density as a function of the applied voltage for a set of emitters with 
the same 0β  
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Fig. 10. The field strength at the emitter tip as a function of its geometric value for a set of 
emitters with the same cone angle 
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Fig. 11. The FEE current density as a function of the applied voltage for a set of emitters with 
the same cone angle 
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In Fig. 8 and Fig. 9, the round markers depict the characteristics under consideration 
calculated with the use of the EPD model for an emitter with 0β = 4.6⋅103 cm–1. As can be 
seen from these figures, good agreement with our results is observed for emitter FE1 with 
radius r0 = 4⋅10–5 cm up to j ~ 5⋅108 A/cm2. Note that the experimental data used in Ref. 
(Barbour et al., 1963) for comparison were limited to current densities even an order of 
magnitude lower. However, the results for more intense emission and, especially, for 
emitters with a smaller radius substantially disagree. Moreover, as emitters FE1 through FE3 
have the same parameter 0β , the use of the EPD model yields one solution for this set, 
notwithstanding that the emitter radius varies within an order of magnitude. Our results 
evidently show a dependence on emitter radius. 

3. Numerical simulation of vacuum prebreakdown phenomena at 
subnanosecond pulse durations 
Considerable advances have recently been achieved in the development of high-current 
pulsed devices operating on the subnanosecond scale (Mesyats & Yalandin, 2005). In devices 
of this type, the electron beam is generally produced with the use of an explosive-emission 
cathode. It should be noted that with the effective duration of the explosive emission 
process equal to several hundreds of picoseconds, the explosion delay time should be at 
least an order of magnitude shorter, namely, some tens or even a few picoseconds. It is well 
known that under the conditions of high vacuum and clean electrodes, explosive electron 
emission is initiated by the current of field electron emission (Mesyats, 2000). The question 
of the FEE properties of metals in strong electric fields still remains open from both the 
theoretical and the experimental viewpoints (Mesyats & Uimanov, 2006). According to the 
criterion for pulsed breakdown to occur (Mesyats, 2000), to attain picosecond explosion 
delay times calls for FEE current densities more than 109–1010 A/cm2. Investigations 
performed on the nanosecond scale have shown that at high FEE current densities the 
electric field strength at the cathode surface is strongly affected by the screening of the 
electric field with the space charge of emitted electrons (Mesyats, 2000). This is indicated by 
the deviation of the experimental current-voltage characteristic from the Fowler–Nordheim 
plot (straight line) in the range of high currents. It was even supposed (Batrakov et al., 1999) 
that the screening effect may have fatal consequences, so that essentially high current 
densities which are required to shorten the explosion delay time to picoseconds or even 
subnanoseconds could not been achieved. 
The aim of this section of this work was to investigate the fast processes of heat release and 
heat transfer that occur in point-shaped microprotrusions of the vacuum-diode cathode within 
the rise time of a subnanosecond high-voltage pulse. To attain this goal, self-consistent 
calculations of the field emission characteristics (the current density and the Nottingham 
energy flux density) were performed taking into account the space charge of emitted electrons 
(see sec. 2). Since the characteristic times of the processes considered were close to the time of 
relaxation of the lattice temperature, a two-temperature formulation was used for the model. 
The current density distribution in a cathode microprotrusion was calculated in view of a finite 
time of penetration of the electromagnetic field into the conductor. 

3.1 Description of the model 
Pre-explosive processes occurring on the nanosecond and, the more so, on the microsecond 
scale, were investigated experimentally and theoretically for rectangular voltage pulses. At 
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present, this approach can hardly be realized experimentally on the subnanosecond scale. In 
the experiments described in the available literature (Mesyats & Yalandin, 2005), the pulse 
shape was near-triangular rather than rectangular with the voltage on the linear section of 
the leading edge rising at ∼1015 V/s. Therefore, in this work the voltage at the electrodes was 
set as a linear function of time, V(t), with dV/dt =1.3⋅1015 V/s. The geometry used in the 
simulation represented a coaxial diode with 1-cm cathode–anode separation. The cathode 
was a needle with the tip radius rc equal to several tens of micrometers. On the cathode 
surface there was a microprotrusion of height hm (a few micrometers), tip radius rm, and 
cone angle Θ (see Fig. 1.). This cathode geometry takes into account the two-factor field 
enhancement at the microprotrusion surface which is typical of the electrode systems that 
were used in the experimental studies of EEE performed by now on the subnanosecond 
scale. 
A two-dimensional two-temperature model which describes the processes of heat release 
due to surface and bulk sources, the energy exchange between the electron subsystem and 
phonons, and the heat transfer by electrons has been developed to investigate the 
prebreakdown phenomena in a cathode microprotrusion for the voltage pulse durations 
lying in the subnanosecond range. The thermal conductivity of the lattice, with the 
characteristic times of the problem <10–11 s, is neglected. 
The electric field potential u  in the diode is calculated with the Poisson equation (1). The 
FEE current density jem  was assumed to depend on the self-consistent electric field at the 
microprotrusion surface in accordance with Miller–Good approximation (3)-(6). The electron 

eT  and phonon pT  temperature fields in the cathode are calculated with the heat conduction 
equations: 

 e e
V e e T e e p

jTC T j T T T
t

2

( ) ( )λ μ α
σ

∂
= ∇ ∇ + − ∇ − −

∂
, (7) 

 pp
V e p

T
C T T

t
( )α

∂
= −

∂
, (8) 

where e
VC  and p

VC are the specific heat of the electrons and phonons, respectively, eλ  is the 
electron thermal conductivity, Tμ is the Thomson factor,σ  is the electric conductivity, j is 
the current density in the cathode, α  is the energy exchange factor between the electron 
subsystem and phonons. 
The boundary condition for equation (7, 8) is given by the resulting heat flux at the cathode 
surface: 

 e e NST qλ− ∇ = ,   p p S
T 0λ ∇ = , (9) 

 N FD F
jmeq d d f D E

h e
em

n em n3
0 0

4 ( ) ( , )
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∞

= −∫ ∫ , (10) 

where Nq  is the surface heat release due to Nottingham effect. The other boundary 
conditions are 
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where T0 =300 K is the initial homogeneous temperature field for t 0= . 
 

 
a) 

 
b) 

Fig. 12. Distributions of the electric field strength (a) and field emission current density (b) 
over the microprotrusion surface at different points in time: 1 – t = 2⋅10–16 s, U = 20 kV, T0 = 
300 K, E0 = 7.3⋅107 V/cm, j0 = 4.5⋅107 A/cm2;  
2 – t = 3.8⋅10–11 s, U = 70.4 kV, T0 = 1300 K, E0 = 1.1⋅108 V/cm, j0 = 1.0⋅109 A/cm2;  
3 – t = 1.0⋅10–10 c, U = 158 kV, T0 = 5300 K, E0 = 1.19⋅108 V/cm, j0 = 3.2⋅109 A/cm2 

The current density in the cathode e ej en v= = c rotB( / 4 )π  is determined through the 
magnetic induction equation: 

 e
B crot v B B
t

2

4πσ
∂ ⎡ ⎤= + Δ⎣ ⎦∂

. (13) 

Here, B  is the magnetic field, e  is the electron charge, en  is the electron density, ev  is the 
hydrodynamical velocity of the electrons, c  is the light velocity. 
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 a) b) 
Fig. 13. Distributions of the current density (a) and electron temperature (b) in the Cu 
microprotrusion for t = 1.0⋅10–10 s, U = 158 kV, T0 = 5300 K, E0 = 1.19⋅108 V/cm,  
j0 = 3.2⋅109 A/cm2. Geometric parameters are given in Fig. 1 

3.2 Results of numerical simulation 
Figure 12 presents the distributions of the electric field strength and field emission current 
density over the microprotrusion surface at different points in time with a linearly 
increasing voltage at the electrodes for a copper cathode whose geometric parameters are 
given in Fig. 1. From Fig. 12 it can be seen that at j0 > 109 A/cm2 the space charge 
substantially affects both the magnitude of the field and its distribution over the surface. 
Note that if the space charge would not been taken into account, the field distribution in Fig. 
12 a would remain constant. Thus, the screening of the external field by the space charge of 
emitted electrons substantially levels off the electric field strength at the microprotrusion tip 
and, accordingly, increases the “effective emission area” (see Fig. 12 b).  
With this current density distribution over the microprotrusion surface, the current density 
is enhanced, as illustrated in Fig. 13 a. Figure 13 b presents the temperature distribution of 
electrons at the microprotrusion for the same point in time. 
The results of a simulation of the microprotrusion heating for different tip radii are given in 
Fig. 14. The time of relaxation of the lattice temperature p p

T VC /τ α=  and electron 
temperature e e

T VC /τ α=  are 48 ps and 0.3 ps, respectively. From Fig. 14 it can be seen that 
thermal instability of the microprotrusion within a time less than (1–2)·10–10 s can develop 
only for rm < 0.1 µm. In this case, the difference in temperature between the electrons and the 
lattice can reach 0.5–1 eV. It should be noted that with the geometric parameters of the 
copper microprotrusion (rm < 1 µm) and the parameters of the pulse used in this simulation 
(dV/dt = 1.3⋅1015 V/s) the effect of a finite time of penetration of the magnetic field in the 
conductor (skin effect), which is responsible for the nonuniform current density distribution 
in the microprotrusion and, hence, for its nonuniform heating, is inappreciable. In order that 
this effect would qualitatively change the spatial distribution of bulk heat sources, shorter 
times of the processes involved are necessary. 
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a) 

 
b) 

Fig. 14. Time dependences of the maximum electron temperature (a) and lattice temperature 
(b) in a microprotrusion for a copper cathode of different geometry with rc = 50 µm, hm = 5 
µm, Θ = 10 deg, and rm = 0.01 µm (1), 0.03 µm (2), 0.05 µm (3), 0.1 µm (4), and 0.5 µm (5). 
dU/dt = 1.3⋅1015 V/s 

4. Initiation of an explosive center beneath the plasma of a vacuum arc 
cathode spot 
Notwithstanding the fact that both the spark and the arc stage of vacuum discharges have 
been in wide practical use for many years, interest in developing theoretical ideas of the 
physical phenomena responsible for the operation of this type of discharge is being 
quickened. In common opinion, the most important and active region in a vacuum 
discharge is the cathode region. It is our belief that the most consistent and comprehensive 
model of a cathode spot is the ecton model (Mesyats, 2000). It is based on the recognition of 
the fundamental role of the microexplosions of cathode regions that give rise to explosive 
electron emission on a short time scale. The birth of such an explosive center – an ecton – is 
accompanied by the destruction of a cathode surface region, where a crater is then formed, 
the appearance of plasma in the electrode gap, and the formation of liquid-metal jets and 
droplets. An ecton, being an individual cell of a cathode spot, has a comparatively short 
lifetime (several tens of nanoseconds) (Mesyats, 2000). Therefore, an important issue in this 
theory is the appearance of new (secondary) explosive centers that would provide for the 
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self-sustaining of a vacuum discharge. According to (Mesyats, 2000), the most probable 
reason for the appearance of a new explosive center immediately in the zone of operation or 
in the vicinity of the previous one is the interaction of a dense plasma with the 
microprotrusions present on the cathode surface or with the liquid-metal jets ejected from 
the crater. These surface microprotrusions can be characterized by a parameter jβ  which is 
equal to the ratio of the microprotrusion surface area to its base area and defines the current 
density enhancement factor. An investigation (Mesyats, 2000) of the development of the 
explosion of such microprotrusions in terms of the effect of enhancement of the current 
density of the ions moving from the plasma to the cathode and in view of the Joule 
mechanism of energy absorption has resulted in the conclusion that for an explosion to 
occur within 10–9 s, it is necessary to have microprotrusions with j

210β ≥ at the ion current 
density ∼107 A⋅cm–2. This work is an extension of the mentioned model and describes the 
formation of secondary ectons upon the interaction of a dense plasma with cathode surface 
microprotrusions. 
In the general case, the charge particle flow that closes onto a microprotrusion consists of 
three components: an ion flow and an electron flow from the plasma and a flow of emission 
electrons (Ecker, 1980; Hantzsche, 1995; Beilis, 1995). Each of these flows carries both an 
electric charge and an energy flux, forming a space charge zone at short distances from the 
cathode surface and giving rise to an electric field Ec at the cathode. In (He & Haug, 1997) 
the initiation of a cathode spot was investigated for the ion current ji and the electric field at 
the cathode Ec specified arbitrarily from a “black box” and with an artificially created 
spatially homogeneous “plasma focus” of radius 10 μm on a plane cathode. It has been 
shown that the cathode heating by incident ions and the enhancement of the electric field Ec 
by the ion space charge reduce the critical field at which the process of thermal run-away 
and overheating below the surface starts developing. It should however be noted that the 
least times of cathode spot initiation obtained in (He & Haug, 1997) are longer than 1 μs. On 
the other hand, according to the ecton model of a cathode spot (Mesyats, 2000) and to the 
experimental data (see, for example (Juttner, 2001)), the cathode spot phenomena have an 
essentially nonstationary and cyclic character with the characteristic time scale ranging 
between 10–9 and 10–8 s. 
Thus the goal of this section is to investigate the formation of secondary explosive centers 
upon the interaction of the plasma of a vacuum arc cathode spot with cathode surface 
microprotrusions (Uimanov, 2003). 

4.1 Description of the model of the Initiation of an explosive center 
The problem statement and task geometry 
Figure 15 presents the model geometry of the problem. The shape of the microprotrusion 
surface is specified by the Gauss function Sz h r d 2exp( ( / ) )= − , where h is the height of the 
microprotrusion, d specifies the base radius rm that is determined for z = 0.1h. We shall 
further characterize the geometry of a microprotrusion by a current density enhancement 
factor j mS r2/β π= , where S is the surface area of the microprotrusion. In terms of this 
model, we assume that over the cathode surface there is a cathode spot plasma with an ion 
density ni and an electron temperature Te at the sheath edge. The quantities ni and Te are the 
problem parameters and, according to (Shmelev & Litvinov, 1998), they depend on the 
distance from the active explosive center. 
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Fig. 15. Task geometry and a schematic description of the 2D model in a cylindrical 
symmetry 
In view of the fact that the width of the space charge layer is much smaller than the 
characteristic dimensions of the microprotrusion, the layer parameters are considered in a 
one-dimensional (local) approximation.  
The temperature field 
The temperature field in the cathode is calculated with the heat conduction equation: 

 p
jT T Tc r

t r r r z z

21ρ λ λ
σ

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
, (14) 

where pc  is the specific heat at constant pressure, λ  is the thermal conductivity, ρ  is the 
mass density, σ  is the electric conductivity, j is the current density in the cathode. The 
parameters pc , λ  and σ  are considered as function of temperature T r z t( , , )  (Zinoviev, 
1989). The boundary condition for equation (14) is given by the resulting heat flux at the 
cathode surface: 

 SST qλ− ∇ = , (15) 

where = +S N iq q q  is the sum of the Nottingham effect Nq  (see eq. 10) and ion impact 
heating iq  (evaporation cooling does not noticeably affect the final results). The other 
boundary conditions are 

 T
r

0λ ∂ =
∂

, for r r0,= →∞ , T T0= , for z →−∞ , (16) 

where 0T =300 K is the initial homogeneous temperature field for 0t = . 
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The Joule heating 
The Ohm’s electric potential U and current density j Uσ= − ∇  in the cathode is determined 
through the continuity equation: 

 U Ur
r r r z z
1 0σ σ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

, (17) 

with boundary condition at the cathode surface:  

 sSU j /σ−∇ = . (18) 

Here s ij j jem= +  is the total current density at the cathode surface, jem  is the electron 
emission current density and ij  is the current density of the ions moving from the plasma to 
the cathode. The other boundary conditions are 

 U
r

0σ ∂
=

∂
, for r r0,= →∞ ,                U 0= , for z →−∞ , (19) 

The plasma-surface interaction 
To calculate ij , it is assumed that the ions are treated as monoenergetic particles, entering 
the sheath edge with Bohm’s velocity and all ions recombine at the cathode surface. Then 
the expression for ij  can be written in the form: 

 e
i i

i

kTj Zen
m

= , (20) 

where Z is the mean ion charge, im  is the ion mass. The power density input into the 
cathode surface from ion impact heating (Mesyats & Uimanov, 2006) is i iq j U= , where 

iZeU ZeV eV Zc emε= + − . Here Vc  is the cathode fall potential, iV  is the averaged ionization 
potential, emε  is the averaged energy per emitted electron. The electron emission 
characteristics emj and ε =em /( / )N emq j e  are calculated numerically in the MG 
approximation (see sec. 2.2 and sec. 3.1). Because of the high temperatures, the temperature 
drift of the chemical potential of the electron system inside the cathode is taken into account 
(see, for example (Klein et al., 1994)). To calculate the electric field at the cathode, the 
Mackeown-like equation is used, taking into account the electron flow from the spot plasma 
to the cathode (Mackeown, 1929; Mesyats & Uimanov, 2006; Beilis, 1995): 
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where TS is the cathode surface temperature. 
In conclusion of this section, we explain in more detail how the model proposed takes into 
account the contribution of the electron flow from the plasma to the cathode. If we assume 
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that the velocity distribution of the plasma electrons at the sheath edge is a Maxwellian one, 
we arrive at the statement that only the electrons whose velocities are higher than 

eeV mc2 /  make a contribution to the current of the electrons ‘counterdiffusing’ from the 
quasineutral plasma to the cathode, epj . According to (Hantzsche, 1995), we have 

( )i e e ej Zen kT m eV kTep c/ 2 exp /π= − − . Then, in view of (20), the ratio of this contribution to 
the ion current density takes the form ( )ep i i e c ej j m m eV kT/ / 2 exp /π= − . For the 
parameters used in this work ( i em m/ ≈ 340, c eeV kT/  = 8), we have ep ij j/ = 4.6⋅10-2. 
Therefore, in the boundary condition Eq. (18), we may neglect the contribution epj  to the 
total current at the surface of the microprotrusion. The small ratio of the electron current to 
the current of the ions arriving at the cathode from the spot plasma permits us to ignore as 
well the energy flux density of these electrons, epq , in the general balance of the surface heat 
sources in the boundary condition Eq. (15). With the parameters used, we have 

ep iq q/ ≈ (0.1÷2)×10-2. Thus, in the case under consideration, the contributions of epj  and epq  
to the current and energy balance at the cathode surface can be neglected. At the same time, 
it should be stressed that the effect of the electron flow from the plasma to the cathode is 
essential in calculating the characteristics of the space charge sheath (see Eq. (21)). If we take 
account of the effect of the space charge of this flow, we obtain that Ec  noticeably decreases. 
This results in a substantial change in the rate of the development of thermal instability 
because of the strong dependence of the emission characteristics on Ec . 
 

Microprotrusion parameters Explosion delay time td, ns 

N h, μm d, μm rm, μm jβ  ji = 5.6⋅1010 A/m2 ji = 1.1⋅1011 A/m2 

1 0.5 0.312 0.5 1.4 - 10 

2 1 0.312 0.5 2.2 - 1.5 

3 1.5 0.312 0.5 3 16.3 0.8 

4 1.75 0.312 0.5 3.52 5.2 0.71 

5 2 0.312 0.5 4 3.55 0.68 

6 3 0.312 0.5 5.9 2.26 0.57 

7 5 0.312 0.5 9.74 1.5 0.33 

Table 2. A set of geometrical parameters of the microprotrusions and the obtained explosion 
delay time 

4.2 Simulation of the microprotrusion heating 
Computations were performed for a copper cathode with the following arc parameters: 

cV =16 V, ieV =18 eV, Z=2. For the initial conditions of the problem, the characteristics of the 
plasma (ni, Te) at the sheath edge and the microprotrusion geometry (h, d) were specified. 
The computations were performed for a set of geometrical parameters of the 
microprotrusions, which are submitted in the Table 2. 
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Fig. 16. Space distribution of temperature and current density modulus: a) t = 0.23·ns, b) t = 
1.9 ns, c) t = 6.2·ns 
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Fig. 17. The temperature evolution of the microprotrusion with jβ  =4. Cathode spot plasma 
parameters: ni =1026 m-3 Te=2 eV ( ji=5.6⋅1010 A/m2). TSmax is the surface maximum 
temperature and TVmax is the bulk maximum temperature that is reached below the surface 
due to emission cooling 
 

 
Fig. 18. The influence of the microprotrusion geometry on the initiation of the explosive stage: 
1 - jβ = 9.74; 2 - jβ  = 5.9; 3 - jβ  = 4; 4 - β j = 3.52; 5 - jβ  = 3. Cathode spot plasma 
parameters: ni =1026 m-3 Te=2 eV ( ji=5.6⋅1010 A/m2 ) 
The computation is performed until the maximum temperature in the protrusion reaches a 
critical temperature Tcr. =8390 K As this happens, the model becomes inoperative, and the 
process goes to the explosive phase of the development of an ecton. 
Figure 16 gives the results of computation for the temperature field and the spatial 
distribution of the current density modulus.  
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The simulation has shown that the heating of a microprotrusion can be subdivided by 
convention into two stages. At the first stage (see Fig. 16 a)), where the cathode is still 
comparatively cold, the surface heating due to ion impact prevails. In this case, the 
microprotrusion behaves as if it were a collecting thermal lens. The Joule heating at this 
stage was inessential . As the temperature reaches ∼3500÷4000 К, the emission current 
density increases substantially and intense surface cooling begins, and this can be associated 
with the onset of the second stage of heating (see Fig. 16 b)). At this point, the current 
density maximum is in the bulk of the microprotrusion and, hence, this is the region where 
intense Joule heat release begins. This region is responsible for the maximum temperature in 
the cathode at any subsequent point in time (see Fig. 16 c). Then the maximum surface 
temperature shifting toward the protrusion base. The current density maximum also tends 
to move to this region since the current "makes attempts" to bypass the high-temperature 
region. After a time, this surface region has the highest surface temperature and emission 
current density. However, the most intense heat release occurs, as earlier, in the 
microprotrusion bulk, and thus a highly overheated region is formed which is surrounded 
by a not so hot surface. Figure 17 presents the time dependence of the temperature being a 
maximum throughout the microprotrusion and for the surface temperature that underlie the 
character of the above process of the heating of a microprotrusion. 
Figure 18 was obtained with the same ion current density, but with different values for jβ  
(the microprotrusion geometry). It clearly shows the development of the thermal run-away 
regime and the initiation of the explosive stage. 
 

 
Fig. 19. Explosion delay time vs the current density enhancement factor jβ  : • - ni=1026 m-3 
Te=2 eV (ji=5.6⋅1010 A/m2 ), ♦ - ni =1.8·1026 m-3 Te=2 eV ( ji=1.1⋅1011 A/m2 ) 
The results of the computations performed are combined in Fig. 19 and Table 2 where the 
explosion delay time td (heating time from 300 K to Tcr) is presented as a function of the 
microprotrusion geometry for a varied plasma density (ion current density). 
It should be stressed that there is a range of comparatively small values of jβ where the 
given mechanism of the formation of secondary ectons can ensure the birth of new cathode 
spot cells upon the interaction of the plasma generated by active cells with cathode surface 
microprotrusions. 
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5. Conclusion 
The effect of the space charge of the emitted electrons on the strength of the self-consistent 
electric field at the surface of a pointed microprotrusion and field emitter has been 
investigated for the first time in the framework of a two-dimensional axisymmetric 
statement of the problem. Based on the particles in cells method, a model has been 
developed and self-consistent calculations of the electric field and of the field emission 
characteristics of the cooper cathode taking into account the space charge of emitted 
electrons have been performed for the range of emitter tip radius from ~10-4 cm to ~1 nm. 
For the geometry under investigation it has been shown that the space-charge screening of 
the external field is substantially less pronounced for emitters whose tip radii are 
comparable to the size of the region where the space charge is mostly localized. As for 
emitters having nanometer tip radii, their CVCs remain linear in the F–N coordinates up to 
FEE current densities of ~109 A/cm2. Despite the significant screening of the external field at 
high FEE current densities, the emission current density for microprotrusions with tip radii 
rm < 0.1 μm can reach ~1010 A/cm2. Based on the criterion for pulsed breakdown (Mesyats, 
2000), it can been shown that, in view of Joule heating, this current density suffices for the 
FEE-to-EEE transition to occur within less than 10–10 s. 
A two-dimensional, two-temperature model has been developed to describe the 
prebreakdown phenomena in a cathode microprotrusion at nanosecond durations of the 
applied voltage pulse. The simulation procedure includes (i) a particle-in-cell simulation to 
calculate the self-consistent electric field at the cathode and the field-emission characteristics 
of the cathode; (ii) calculations of the current density distribution in the cathode 
microprusion in view of a finite time of electromagnetic field penetration in the conductor; 
(iii) calculations of the electron temperature based on the heat equation taking into account 
volumetric (Joule–Thomson effect) and surface (Nottingham effect) heat sources, and (iv) 
calculations of the lattice temperature based on the heat equation taking into account the 
finite time of electron-phonon collisions. A numerical simulation performed for a copper 
cathode for voltage pulses with ~1015 V/s rise rates has demonstrated that (i) the screening 
of the external field by the space charge of emitted electrons has the result that the electric 
field strength levels off approaching to that at the microprotrusion tip, and this gives rise to 
a region inside the microprotrusion where the current density is about twice the maximum 
field emission current density at the tip; (ii) the electron temperature can be greater than the 
lattice temperature by 0.5–1 eV at the onset of the explosive metal-plasma phase transition; 
(iii) with a 5-µm characteristic height of microprotrusions on a point cathode whose radius 
of curvature is 50 µm the field emission-to-explosive emission transition can occur within 
100÷200 ps only for microprotrusions with a tip radius no more than 0.1 μm. 
A two-dimensional nonstationary model of the initiation of new explosive centers beneath 
the plasma of a vacuum arc cathode spot has been developed. In terms of this model, the 
plasma density and electron temperature that determine the ion current from the plasma to 
the microprotrusion and the microprotrusion geometry were treated as the external 
parameters of the problem. The process of heating of a cathode surface microprotrusion, for 
which both a surface irregularity resulting from the development of a preceding crater and 
the edge of an active crater, which may be a liquid-metal jet, can be considered, has been 
simulated numerically. Based on the computation results, one can make the following 
conclusions: 
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i. The heating of a microprotrusion gives rise to a strongly overheated region in the 
protrusion bulk. Hence, an expansion of such a microregion of the cathode, being in an 
extreme state, should be explosive in character. 

ii. Taking into account the ion impact heating and the electric field of the space charge 
layer near the cathode surface ensure the "triggering" heat flux power necessary for the 
development of the Joule heating of the microprotrusion followed by it explosion at 
reasonable values of the ion current (ji <107 A⋅cm-2) and of the geometric parameters of 
the microprotrusion ( jβ < 10). 
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1. Introduction  
The bulk MOSFET scaling has recently encountered significant limitations, mainly related to 
the gate oxide (SiO2) leakage currents (Gusev et al., 2006; Taur et al., 1997), the large increase 
of parasitic short channel effects and the dramatic mobility reduction (Fischetti & Laux, 
2001) due to highly doped Silicon substrates precisely used to reduce these short channel 
effects. Technological solutions have been proposed in order to continue to use the “bulk 
solution” until the 32 nm ITRS node (ITRS, 2009). Most of these solutions envisage the 
introduction of high-permittivity gate dielectric stacks (to reduce the gate leakage, (Gusev et 
al., 2006; Houssa, 2004), midgap metal gate (to suppress the Silicon gate polydepletion-
induced parasitic capacitances) and strained Silicon channel (to increase carrier mobility 
(Rim et al., 1998). However, in parallel to these efforts, alternative solutions to replace the 
conventional bulk MOSFET architecture have been proposed and studied in the recent 
literature. These options are numerous and can be classified in general according to three 
main directions: (i) the use of new materials in the continuity of the “bulk solution”, 
allowing increasing MOSFET performances due to their dielectric properties (permittivity), 
electrostatic immunity (SOI materials), mechanical (strain), or transport (mobility) 
properties; (ii) the complete change of the device architecture (e.g. Multiple-Gate devices, 
Silicon nanowires MOSFET) allowing better electrostatic control, and, as a result, intrinsic 
channels with higher mobilities and currents; (iii) the exploitation of certain new physical 
phenomena that appear at the nanometer scale, such as quantum transport, substrate 
orientation or modifications of the material band structure in devices/wires with nanometer 
dimensions (Haensch et al., 2006; Hiramoto et al., 2006).  
Multiple-Gate nanowire MOS transistors (Fig. 1) are now widely recognized as one of the 
most promising solutions for meeting the roadmap requirements in the deca-nanometer 
scale (Park & Colinge, 2002). A wide variety of architectures, including planar Double-Gate 
(DG) (Frank et al., 1992; Harrison et al, 2004), Vertical Double-Gate, Triple-Gate (Tri-gate) 
(Guarini et al., 2001; Park & Colinge, 2002), FinFET (Choi et al., 2001; Kedzierski et al., 2002), 
Omega-Gate (Ω -Gate) (Park et al., 2001), Pi-Gate (π -Gate) (Yang et al., 2002), ∆-channel SOI 
MOSFET (Jiao & Salama, 2001), DELTA transistor (Hisamoto et al., 1989), Gate-All-Around 
(GAA) (Colinge et al., 1990; Park & Colinge, 2002), Rectangular or Cylindrical nanowires 
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(Jimenez et al., 2004), has been proposed in the literature. These structures exhibit a superior 
control of short channel effects resulting from an enhanced electrostatic coupling between 
the conduction channel and the surrounding gate electrode. It has been shown that the 
electrostatic control is enhanced when increasing the "Equivalent Number of Gates" (EGN) 
from 2 (for Double-Gate devices, Fig. 1) to 4 (for Gate-All-Around devices where the gate 
electrode is wrapped around the entire channel, Fig. 1) (Bescond et al., 2004). 
 

Omega-Gate Gate-All-Around

Triple-Gate

Double-Gate

Single-Gate

EGN

Pi-Gate

 
Fig. 1. Schematic cross-sections of the Multiple-Gate devices classified as a function of the 
“Equivalent Number of Gates” (EGN) 
The scaling of Multiple-Gate MOSFET requires the use of an increasingly thinner Silicon 
film, for which new phenomena have to be taken into account, such as quantum-mechanical 
confinement. These phenomena induce a strong subband splitting and the carrier 
confinement in the narrow potential well formed by the Silicon film (Taur & Ning, 1998). 
Quantum effects sensibly modify the three dimensional (3-D) carrier distribution in the 
channel, the most important effect being the shift of the charge centroid away from the 
interfaces into the Silicon film. The inversion charge and then the drain current are reduced 
in the quantum case with respect to the "classical" case (i.e. without quantum effects). 
Quantum-mechanical confinement is stronger when the film is thinner. It has been shown 
that the energy quantization becomes important for channels below 10 nm thick, for which it 
becomes mandatory to take into account quantum effects in the device simulation (Bescond 
et al., 2004). In Single-Gate or Double-Gate configurations the carriers are confined in a 
single direction (vertically, perpendicular to the gate electrode and to the source-to-drain 
axis). In multiple-gate architectures, and especially in Gate-All-Around devices, the 
quantum-mechanical confinement is stronger because the carrier energy is quantified in two 
directions (vertically but also horizontally, in both directions perpendicular to the gates 
electrodes and to the source-to-drain axis). Then, the carrier confinement and its effects 
(such as the reduction of the total inversion charge) are stronger in Multiple-Gate devices 
with EGN≥3 than for single-gate or double-gate architectures. 
As the MOSFET is scaling down, the sensitivity of integrated circuits to radiation, coming 
from the natural space or present in the terrestrial environment, has been found to seriously 
increase (Baumann, 2005; Dodd, 1996; Dodd & Massengill, 2003; Dodd, 2005). In particular, 
ultra-scaled memory ICs are more sensitive to single-event-upset (SEU) and digital devices 
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are more subjected to digital single-event transient (DSETs). Single-event-effects (SEE) are 
the result of the interaction of highly energetic particles, such as protons, alpha particles, or 
heavy ions, with sensitive regions of a microelectronic device or circuit. These SEE may 
perturb the device/circuit operation (e.g., reverse or flip the data state of a memory cell, 
latch, flip-flop, etc.) or definitively damage the circuit (e.g. gate oxide rupture, destructive 
latch-up events).  
Modeling and simulating the effects of ionizing radiation has long been used for better 
understanding the radiation effects on the operation of devices and circuits. In the last two 
decades, due to substantial progress in simulation codes and computer performances which 
reduce computation times, simulation reached an increased interest. Due to its predictive 
capability, simulation offers the possibility to reduce radiation experiments and to test 
hypothetical devices or conditions, which are not feasible (or not easily measurable) by 
experiments. Physically-based numerical simulation at device-level presently becomes an 
indispensable tool for the analysis of new phenomena specific to short-channel devices 
(non-stationary effects, quantum confinement, quantum transport), and for the study of 
radiation effects in new device architectures (such as multiple-gate, Silicon nanowire 
MOSFET), for which experimental investigation is still limited. In these cases, numerical 
simulation is an ideal investigation tool for providing physical insights and predicting the 
operation of future devices expected for the end of the roadmap. A complete description of 
the modeling and simulation of SEE, including the history and the evolution of this research 
domain, have been presented in the reference survey papers by Dodd (Dodd, 1996; Dodd & 
Massengill, 2003; Dodd, 2005) and Baumann (Baumann, 2005).  
In a previous work (Munteanu et al., 2006), we investigated the impact of the quantum 
effects on the transient response of 50 nm gate length Fully-Depleted (FD) Single-Gate 
MOSFET with 11 nm thick Silicon film. In that work, we found an excellent agreement 
between experimental bipolar gain values (measured by heavy ions experiments) and 
simulated bipolar gain obtained by quantum-mechanical simulation. The results were also 
consistent with experimental data obtained by pulsed laser irradiation performed on 50 nm 
gate length transistors fabricated with the same technology (Ferlet-Cavrois et al., 2005). The 
study presented in (Munteanu et al., 2006) illustrated the importance of taking into account 
quantum effects in the simulation of the device response when submitted to heavy ion 
irradiation. The simulation results also showed that even if the impact of quantum effects 
can be considered as limited in these 11 nm thick FD Single-Gate devices, it will become 
important for thinner films and for double-gate architectures. 
The transient response of Multiple-Gate nanowire MOSFETs under heavy ion irradiation 
has been already addressed (Castellani et al., 2006; Francis et al., 1995), but to the best of our 
knowledge, all the previous studies considered the "classical" approach. In this work we use 
3D quantum numerical simulation for investigating the drain current transient produced by 
the ion strike in Multiple-gate nanowire MOSFETs with ultra-thin channels (≤ 10 nm). We 
firstly consider devices with a gate length of 32 nm and 10 nm-thick Silicon film. For these 
devices we compare the classical and quantum simulation in terms of drain current 
transient induced by the ion strike, carrier density and bipolar amplification. Three different 
Multiple-Gate configurations are considered: Double-Gate, Triple-Gate and Gate-All-
Around. In a second step, the devices scaling is addressed and the impact of the quantum 
effects is analyzed for two cases: (a) 32 nm gate length devices with thinner film (8 nm and 5 
nm) and (b) completely scaled devices with 25 nm gate length (8 nm thick film) and 20 nm 
gate length (5 nm thick film). For each point the classical and the quantum results are 
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compared and the differences between the four architectures from the view-point of the 
devices immunity to heavy ion irradiation are analyzed. 
This chapter is organized as follows: section 2 presents a detailed description of simulated 
devices and section 3 describes the simulation code, including the modelling of quantum 
confinement effects and the simulation of the effects of an ion strike. Section 4 details the 
simulation of transient effects in Multiple-Gate MOSFET submitted to heavy-ion irradiation. 
Static and transient characteristics calculated in both quantum and classical cases are 
presented and compared. Finally, a detailed study concerns the impact of device scaling on 
the transient response to radiation effects.  

2. Simulated devices 
In this work, we simulate square cross-section nanowire Double-Gate, Triple-Gate and Gate-
All-Around MOSFETs with 32 nm, 25 nm and 20 nm physical gate lengths. The description 
of the 3-D architectures considered in the simulation and the definition of their geometrical 
parameters are represented in Fig. 2.  
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Fig. 2. Schematic description of the 3-D simulated Double-Gate, Triple-Gate and Gate-All-
Around structures and their main geometrical parameters considered in this work. The 
Single-Gate structure is also shown for comparison. The devices are classified as a function 
of the "Equivalent Number of Gates" (EGN). The schematic cross-sections in the (y-z) plane 
are also shown. For all the simulated structures, there is no gate overlap with the S/D 
regions and the S/D doping concentration is 1020cm-3. The position of the ion strike is also 
indicated by the arrow; the ion strikes vertically in the middle of the channel (between the 
source and drain region) and in a direction parallel to the y axis. The Silicon substrate was 
simulated for the Triple-Gate structures. All structures have Silicon film with square section 
(tSi=W) 
All devices have been calibrated to fill the ITRS requirements for Low Power Technology in 
terms of drain current in the off-state (IOFF<5×10-3 A/µm) (ITRS, 2009). The Silicon film and 
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the gate oxide have the following dimensions: (a) tSi=W=10 nm and tox=1.2 nm for devices 
with L=32 nm gate length, (b) tSi=W=8 nm and tox=1 nm for devices with L=25 nm and (c) 
tSi=W=5 nm and tox=0.9 nm for devices with L=20 nm. All devices have intrinsic channel and 
mid-gap gate, and the thickness of the buried oxide is 100 nm. The supply voltage is 0.8 V 
for devices with L=32 nm and L=25 nm and 0.7 V for devices with L=20 nm. 

3. Description of the simulation code 
3-D numerical simulations have been performed with both 3-D Sentaurus code (Sentaurus, 
2009) and with our full quantum homemade Fortran code BALMOS3D (Munteanu & 
Autran, 2003). The physical models considered in the Sentaurus code include the SRH and 
Auger recombination models and the Fermi-Dirac carrier statistics.  
Concerning the transport modelling, the drift-diffusion (DD) model was for many years the 
standard level of solid-state device modelling, mainly due to its simple concept and short 
simulation times. This approach is appropriate for devices with large feature lengths. This 
model considers that carrier energy does not exceed the thermal energy and carrier mobility 
is only a local function of the electric field (mobility does not depend on carrier energy). 
These assumptions are acceptable as long as the electric field changes slowly in the active 
area, as is the case for long devices (Munteanu & Autran, 2008). When the device feature 
size is reduced, the electronic transport becomes qualitatively different from the DD model 
since the average carrier velocity does not depend on the local electric field. In short devices 
steep variations of electric field take place in the active area of the devices. Then, non-
stationary phenomena occur following these rapid spatial or temporal changes of high 
electric fields. Since these phenomena play an important role in small devices, new 
advanced transport models become mandatory for accurate transport simulation. The 
hydrodynamic model, obtained by taking the first three moments of the Boltzmann 
Transport Equation (BTE), represents the carrier transport effects in short devices more 
accurately than the DD model. The hydrodynamic model is a macroscopic approximation to 
the BTE taking into account the relaxation effects of energy and momentum. This model 
removes several limiting assumptions of DD: the carrier energy can exceed the thermal 
energy and all physical parameters are energy-dependent (Munteanu & Autran, 2008). In 
this work we use the hydrodynamic model for the transport modelling. Then, both the 
impact ionization and the carrier mobility depend on carrier energy calculated with the 
hydrodynamic model. The mobility model also includes the dependence on the lattice 
temperature and on the channel doping level. The mobility also depends on the doping level 
and the lattice temperature. Quantum confinement effects have been considered in the 
simulation using the Density Gradient model, as explained in section 3.1.  

3.1 Modeling of quantum effects 
The aggressive scaling-down of bulk MOSFETs in the deep submicrometer domain requires 
ultrathin oxides and high channel doping levels for minimizing the drastic increase of short 
channel effects. The direct consequence is a strong increase of the electric field at Si/SiO2 
interface, which creates a sufficiently steep potential well for inducing the quantization of 
carrier energy (Munteanu & Autran, 2008). In bulk architecture, carriers are then confined in 
a vertical direction in a quantum well (formed by the Silicon conduction band bending at 
the interface and the oxide/Silicon conduction band-offset) having feature size close to the 
electron wavelength. This gives rise to a splitting of the energy levels into subbands (two-
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dimensional (2-D) density of states) (Hareland et al., 1998), such that the lowest of the 
allowed energy levels for electrons (resp. for holes) in the well does not coincide with the 
bottom of the conduction band (resp. the top of the valence band). In addition, the total 
density of states in a 2-D system is less than that in a three-dimensional (3-D) (or classical) 
system, especially for low energies. Carriers occupying the lowest energy levels behave like 
quantized carriers while those lying at higher energies, which are not as tightly confined in 
the potential well, can behave like classical (3-D) particles with three degrees of freedom 
(Munteanu & Autran, 2008). As the surface electric field increases, the system becomes more 
quantized as more and more carriers become confined in the potential well. The quantum-
mechanical confinement considerably modifies the carrier distribution in the channel: the 
maximum of the inversion charge is shifted away from the interface into the Silicon film 
(Munteanu & Autran, 2008). Because of the smaller density of states in the 2-D system, the 
total population of carriers will be smaller for the same Fermi level than in the 
corresponding 3-D (or classical) case. This phenomenon affects the net sheet charge of 
carriers in the inversion layer, thus requiring a larger gate voltage in order to populate a 2-D 
inversion layer to have the same number of carriers as the corresponding 3-D system. This 
leads to an increase of the threshold voltage of a MOSFET, which is an important issue, 
especially as the power supply voltages drop to lower levels. The gate capacitance and 
carrier mobility are also modified by quantum effects. These considerations indicate that the 
wave nature of electrons and holes can no longer be neglected in ultra-short devices and 
have to be considered in simulation studies. Quantum confinement becomes also important 
for the device response to single events.  
Various methods have been suggested to model these quantum effects. Among the 
approaches that are compatible with classical device simulators based on the drift-diffusion 
(or hydrodynamic) approach, the physically most accurate method is to include the 
Schrödinger equation into the self-consistent computation of the device characteristics 
(Stern, 1972). However, solving the Schrödinger equation in itself is very much time-
consuming. Various simpler methods have been suggested, such as the Van Dort model or 
the Hansch model. The van Dort model (van Dort, 1994) expresses the quantum effect by an 
apparent band edge shift that is a simple function of the electric field. The model is based on 
the expression for the lowest eigenenergy of a particle in a triangular potential and 
reproduces the characteristics obtained with the Schrödinger equation quite well. However, 
this model does not give the correct charge distribution in the device. The Hansch (Hansch 
et al., 1989] model proposes a quantum correction of the density of states as a function of 
depth below the Si/SiO2 interface. The charge distribution is better reproduced, but the 
model strongly overestimates the impact of quantum effects on the drain current 
characteristics.  
Other alternative to take into account quantum confinement of carriers is the Density-
Gradient model (Ancona & Iafrate, 1989; Grubin et al., 1993; Wettstein & al., 2002), coupled 
with the Drift-Diffusion or the hydrodynamic transport equations. The Density-Gradient 
model considers a modified equation of the electronic density including an additional term 
dependent on the gradient of the carrier density. To include quantization effects in a 
classical device simulation, a simple approach is to introduce an additional potential-like 
quantity Λ in the classical electron density formula, as follows (Sentaurus, 2009): 

 Fn C
C

E En N exp
kT
− − Λ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (1) 
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where n is the electron density, T is the carrier temperature, k is the Boltzmann constant, NC 
is the conduction band density of states, EC is the conduction band energy, and EFn is the 
electron Fermi energy. The impact of the quantum confinement on the carrier density in the 
device can be taken into account by properly modelling the quantity Λ. For the Density 
Gradient model, Λ is given in terms of a partial differential equation: 

 
2 n

6m n
γ ∇

Λ = −  (2) 

where ħ = h/2π is the reduced Planck constant, m is the density of states mass, and γ  is a fit 
factor. An equation similar to (1) applies for the holes density. These new equations for 
electrons and holes density are then used in the self-consistent resolution of the Poisson 
equation and of the transport equation (Drift-Diffusion or hydrodynamic model), as 
explained in (Munteanu & Autran, 2008).  

3.2 Calibration of the simulation code 
It has been shown that the Density Gradient model can accurately account for quantum 
carrier confinement in Single-Gate SOI and Double-Gate devices with an appropriate 
calibration step of the fit factor γ (Wettstein & al., 2002). In this work, we have used the exact 
solution of the Schrödinger –Poisson system of equations (as given by BALMOS3D) for 
calibrating the Density Gradient model.  
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Fig. 3. Calibration of the Density-Gradient model (Sentaurus, 2009) on BALMOS3D. The 
simulated devices are 32 nm gate length Double-Gate MOSFETs with three Silicon 
thicknesses (tSi=10 nm, 8 nm and 5 nm). For better illustration, the figure only shows the 
subthreshold region of the drain current characteristics. VD=0.8 V 

BALMOS3D (Munteanu & Autran, 2003) is a homemade full quantum Fortran simulator, 
which solves self-consistently the Schrödinger equation and the Poisson equations on a 3-D-
grid. The solution of this system of equation is coupled with the Drift-Diffusion transport 
equation in the channel. A finite difference scheme with a non-uniform mesh has been 
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considered on a 3-D domain, which includes the channel, the source and drain regions, the 
gate oxide layers and the gate electrodes. Electric field penetration in the source/drain and 
electron wave-function penetration in the gate oxide can be also taken into account.  
A calibration step of the Density Gradient model on BALMOS3D has been performed on 
each simulated device, for obtaining the fit factor γ. This factor has different values as a 
function of the film thickness and gate length. For each particular device, the drain current 
static characteristics as a function of the gate bias, ID(VG), has been computed with 
BALMOS3D. The same device (with identical geometry) has been implemented in the 3D 
Sentaurus code and its ID(VG) characteristic has been simulated, taken into account the 
Density Gradient model. The fit factor γ has been then finely tuned in order to obtain a 
perfect match between the characteristics calculated with BALMOS3D and that simulated by 
Sentaurus. Figure 3 shows an example of the calibration step on 32 nm gate length Double-
Gate MOSFET with three different Silicon film thicknesses. 

3.3 Modeling the effect of a particle strike 
The physical parameters calibrated previously have been further used in the simulation of 
drain current transients produced by an ion strike on the sensitive regions of the device. The 
drain current transients have been simulated in two cases: the classical case (i.e. without 
quantum effects) and in the quantum case (using Density Gradient model with the fit factor 
γ as calibrated on BALMOS3D). 
The radiation effects have been simulated using the HeavyIon module (Sentaurus, 2009), 
considering an electron-hole pair column centred on the ion track axis to model the ion 
strike. The ion track structure to be used as input in simulation is presently a major issue for 
device simulation. The first representations included a simple cylindrical charge generation 
with a uniform charge distribution and a constant LET along the ion path. However, the real 
ion track structure is radial and varies as the particle passes through the matter. When the 
particle strikes a device, highly energetic primary electrons (called δ-rays) are released. They 
further generate a very large density of electron-hole pairs in a very short time and a very 
small volume around the ion trajectory, referred as the ion track. These carriers are collected 
by both drift and diffusion mechanisms, and are also recombined by different mechanisms 
of direct recombination (radiative, Auger) in the very dense core track, which strongly 
reduces the peak carrier concentration. All these mechanisms modify the track distribution 
both in time and space. As the particle travel through the matter, it loses energy and then 
the δ-rays become less energetic and the electron-hole pairs are generated closer to the ion 
path. Then, the incident particle generates characteristic cone-shaped charge plasma in the 
device (Dodd, 2005).  
The real ion track structure has been calculated using Monte-Carlo methods (Hamm et al., 
1979; Martin et al., 1987; Oldiges et al., 2000). These simulations highlighted important 
differences between the track structure of low-energy and high-energy particles, even if the 
LET is the same (for details see (Dodd et al., 1998; Dodd, 2005)). High-energy particles are 
representative for ions existing in the real space environment, but they are not available in 
typical laboratory SEU measurements (Dodd, 1996). Then the investigation of the effects of 
high-energy particles by simulation represents an interesting opportunity, which may be 
difficult to achieve experimentally. 
Analytical models for ion track structure have been also proposed in the literature and 
implemented in simulation codes. One of the most interesting models is the “non-uniform 
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power law” track model, based on the Katz theory (Kobetich & Katz, 1968) and developed 
by Stapor (Stapor & McDonald, 1988). In this model, the ion track has a radial distribution of 
excess carriers expressed by a power law distribution and allows the charge density to vary 
along the track (Dussault et al., 1993). Other analytical models propose constant radius non-
uniform track or Gaussian distribution non-uniform track.  
In commercial simulation codes, the effect of a particle strike is taken into account as an 
external generation source of carriers. The electron-hole pair generation induced by the 
particle strike is included in the continuity equations via an additional generation rate. This 
radiation-induced generation rate can be connected to the parameters of irradiation, such as 
the particle Linear Energy Transfer (LET). The LET is the energy lost by unit of length (-
dE/dl), which is expressed here in MeV cm²/mg (1pC/µm≈100MeV cm²/mg). The particle 
LET can be converted into an equivalent number of electron-hole pairs by unit of length 
using the mean energy necessary to create an electron-hole pair (Eehp) (Roche, 1999): 

 ehp

ehp

dN 1 dE
dl E dl

=  (3) 

where Nehp is the number of electron-hole pairs created by the particle strike. By associating 
two functions describing the radial and temporal distributions of the created electron-hole 
pairs, the number of electron-hole pairs is included in the continuity equations (Munteanu & 
Autran, 2008) via the following radiation-induced generation rate:  

 ehpdN
G(w,l, t) (l) R(w) T(t)

dl
= ⋅ ⋅  (4) 

where R(w) and T(t) are the functions of radial and temporal distributions of the radiation 
induced pairs, respectively. Equation (4) assumes the following hypothesis: the radial 
distribution function R(w) depends only on the distance traversed by the particle in the 
material and the generation of pairs along the ion path follows the same temporal 
distribution function in any point. Since function G must fill the condition: 

 
2

ehp

w 0 0 t

dN
Gwdwd dt

dl

∞ π ∞

= θ= =−∞

θ =∫ ∫ ∫  (5) 

functions R(w) and T(t) are submitted to the following normalization conditions: 

 
w 0

2 R(w)wdw 1
∞

=

π =∫  (6) 

 
t

T(t)dt 1
∞

=−∞

=∫  (7) 

The ion track models available in commercial simulation codes usually propose a Gaussian 
function for the temporal distribution function T(t): 
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where tC is the characteristic time of the Gaussian function which allows one to adjust the 
pulse duration. The radial distribution function is usually modelled by an exponential 
function or by a Gaussian function: 
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where rC is the characteristic radius of the Gaussian function used to adjust the ion track 
width. Previous works have demonstrated that the different charge generation distributions 
used for the radial ion track does affect the device transient response, but the variation is 
typically limited to ~5% for ion strikes on bulk p-n diodes (Dodd, 2005; Dussault et al., 
1993). Considering a LET which is not constant with depth along the path has a more 
significant impact on the transient response in bulk devices. The key parameters of the 
single event transient (peak current, time to peak and collected charge) have up to 20% 
variation when LET is allowed to vary with depth compared to the case of a constant LET 
(Dussault et al., 1993). Nevertheless, the LET variation with depth has no influence on the 
transient response of actual SOI devices with thin Silicon film. 
In this work, the irradiation track simulated in vertical incidence has a Gaussian shape with 
narrow radius (14 nm) and a Gaussian time dependence, centred on 10 ps and with a 
characteristic width of 2 ps. The ion strikes in the middle of the channel. The deposited 
charge is calculated considering the Gaussian distribution of the ion track and the 3D 
geometry of the Silicon film. The collected charge is given by the integration of the drain 
current over the transient duration and the bipolar amplification is finally calculated as the 
ratio between the collected and deposited charges, as it will be shown in section 4.3. 

4. Simulation of multiple-gate devices 
4.1 Static characteristics 
Figure 4 shows the quantum confinement directions in three different generic 
configurations: Single-Gate, Double-Gate and Gate-All-Around devices. The impact of 
quantum effects on the electron density extracted along a cut-line parallel to the 
confinement directions is also illustrated for the three devices. 
In the Single-Gate devices carriers are confined in a very narrow triangular potential well, 
formed at the Si/SiO2 interface. The quantum carrier density in the y direction is then 
modified as compared to the classical one: the classical electron density is maximal at the 
Si/SiO2 interface, since the quantum density profile show a maximum shifted inside the 
Silicon film at several nanometers depth. Then, the electron density near the interface (as 
well as the total electron charge in the conduction channel) is strongly reduced. In the case 
of a Double-Gate archtecture, the potential well is rectangular and its dimension is now 
controlled by the Silicon film thickness, which becomes a key parameter in the quantum 
effects analysis. Similar to the Single-Gate configuration, the electron density is maximum at 
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the two interfaces in the classical case. In the quantum case, the density profile has two 
maxima situated within the Silicon film at several nanometers depth from each interface. 
Our results are in perfect concordance with (Majkusiak et al., 2002), where quantum effects 
are simulated using the solution of the 1-D Schrödinger equation. The drain current is 
splitted in two separate channels, but they are no more located at the interface as in the 
classical case. Finally, in the Gate-All-Around structure, carriers are confined in a double 
rectangular potential well (along the y and the z directions), which considerably enhances 
the quantum confinement effects. The carrier motion is no more free in the z direction (as is 
the case of the Single-Gate and the Double-Gate devices), but their energy is quantized as in 
the y direction. Both the gate electrode width (W) and the Silicon film thickness control here 
the quantum effects. The quantum electron density in the z direction is no more maximal at 
the interface but has two maxima moved into the Silicon film as for the carrier density in the 
y direction. Then the total inversion charge is lower than in the Double-Gate configuration. 
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Fig. 4. Schematically representation of the quantum-mechanical confinement directions in 
(a) Single-Gate, (b) Double-Gate and (c) Gate-All-Around configurations. The profile of the 
carrier density in a cut-line along the film thickness is also reported for both classical and 
quantum cases: (d) Single-Gate, (e) Double-Gate and (f) Gate-All-Around. VD=VG=0.8 V, 
L=32 nm 

The ID(VG) curves for the different 32 nm Multiple-Gate MOSFET architectures simulated in 
the classical and quantum cases are shown in Fig. 5.  
The results show that increasing the "equivalent number of gates" reduces the off-state 
current (Munteanu et al., 2007) and improves the subthreshold swing S (S = 70 mV/dec for 
Double-Gate, S = 68.5 mV/dec for Triple-Gate and S = 61.5 mV/dec for Gate-All-Around). 
This is due to the better electrostatic control of the gate over the channel that reduces short 
channel effects. At the same time, the on-state current increases with EGN (Fig. 5), due to the 
multiple-channel conduction. As expected, the quantum current is lower than the classical 
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one, because the total inversion charge is reduced in the quantum case. Figure 5 also shows 
that the difference between the classical and the quantum off-state current increases when 
going from Double-Gate to Gate-All-Around device. The ratio between the classical and 
quantum off-state currents is reported in Table 1 for the three considered configurations.  
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Fig. 5. Drain current ID(VG) characteristics in classical and quantum-mechanical cases for 32 
nm Double-Gate, Triple-gate, Ω-Gate and Gate-All-Around architectures (VD=0.8 V). The 
quantum drain current was simulated using the Density-Gradient model calibrated on 
BALMOS3D numerical results 

 

 tSi=W=10 nm 
L=32 nm 

tSi=W=8 nm 
L=25 nm 

tSi=W=5 nm 
L=22 nm 

Double-Gate (EGN=2) 1.91 2.02 3.01 

Triple-Gate (EGN=3) 2.24 2.3 3.66 

Gate-All-Around (EGN=4) 2.36 2.67 4.11 

Table 1. Ratio Ioff_cl/Ioff_q of the off-state currents in classical (Ioff_cl) and quantum 
(Ioff_q) approaches for the three technological nodes studied in this work. The quantum 
drain current has been calculated using the Density Gradient model calibrated on 
BALMOS3D for each configuration. 

We remark that this ratio increases with EGN for a given technology node. This effect can be 
explained by the dimensionality of the confinement. In Double-Gate, carriers are confined in 
one direction (y direction), since in Triple-Gate and Gate-All-Around carriers are confined in 
two directions (y and z), which strongly enhances the energy quantization with respect to 
the Double-Gate case. 
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4.2 Transient simulation results 
The time evolution of the electron density distribution in a vertical cross-section (y-z plane) 
in the middle of the channel is represented in Fig. 6 for three configurations: Double-Gate, 
Tri-Gate and Gate-All-Around. We observe that for all devices the quantum electron charge 
is centred in the middle of the film and the electron density has lower values than in the 
classical case. In off-state bias condition, the carrier conduction in all devices is mainly 
dominated by the volume inversion phenomenon: carriers flow from source to drain over 
the entire Silicon film thickness. In consequence, the off-state current is directly proportional 
to the film thickness. In the quantum case the volume inversion phenomenon is reinforced 
because the quantum carrier density becomes more centred in the middle of the film (Fig. 6). 
This effect is enhanced when EGN increases from 2 (Double-Gate) to 4 (Gate-All-Around), 
as illustrated in Fig. 6. 
 

1.7×1019

2.8×1017

4.5×1015

7.3×1014

1.2×1012

Before
the ion 
strike

t=10ps

t=100ps

Double-Gate Triple-Gate Gate-All-Around

Classical Quantum

Electron density
(cm-3)

Classical Quantum Classical Quantum

 
Fig. 6. Classical and quantum electron density (expressed in cm-3) in a vertical cross-section 
(y-z plane) in the middle of the channel of 32 nm Double-Gate, Triple-Gate and Gate-All-
Around at different times before and after the ion strike. The devices are biased in the off-
state at VG=0 V and VD=0.8 V. The brown regions represent the gate oxide (in Double-Gate 
and Gate-All-Around devices) and the gate and buried oxide in Triple-Gate devices 

The drain current transients produced by the ion strike are illustrated in Fig. 7 for the 
classical case and for a LET value of 1 MeV/(mg/cm2). The four configurations 
corresponding to the 32 nm gate length ITRS LP technology node are simulated in the off-
state. The peak value of the drain current transient is reduced when EGN increases. When 
EGN increases, the channel is better controlled by the gate and the floating body effects are 
strongly reduced. Then the drain current transient tail is shorter when going from Double-
Gate to Gate-All-Around devices. Figure 8 compares the classical and the quantum drain 
current transient for two configurations: Double-Gate and Gate-All-Around devices with 32 
nm gate length. As expected, the peak of the quantum drain current transient is lower than 
the classical one for both configurations, due to the quantum confinement which induces 
lower quantum off-state current.  
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Fig. 7. Drain current transients induced by an ion strike vertically (y direction) in the middle 
of the Silicon film (classical simulation). The ion track generation has a Gaussian shape 
versus time (characteristic time of 2 ps), centred at 10 ps and a LET=1 MeV/(mg/cm2). The 
simulated devices are 32 nm gate length MOSFETs. All devices are off-state biased (VG=0 V, 
VD=0.8 V) 
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Fig. 8. Drain current transients induced by an ion strike vertically (y direction) in the middle 
of the Silicon film. Comparison between classical and quantum simulation in Double-Gate 
and Gate-All-Around MOSFETs. All devices are off-state biased (VG=0 V, VD=0.8 V) 

4.3 Bipolar amplification 
The bipolar amplification is a phenomenon specific to partially-depleted SOI devices and its 
basic mechanism was largely explained and simulated in previous works (Ferlet-Cavrois et 
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al., 2002; Ferlet-Cavrois et al., 2004; Schwank et al., 2003). Bipolar amplification can also 
occur in fully depleted devices, as those studied here.  
The bipolar transistor mechanism in fully depleted devices has been explained in (Brisset et 
al., 1994) using Monte Carlo simulations of 0.25 µm fully depleted SOI transistors: after 
irradiation of a n-channel MOSFET biased in its off state, excess holes are accumulated in 
the channel (mainly near the gate oxide) and lower the potential barrier; then electrons 
diffuse from source to drain to maintain the electrical neutrality. This mechanism is 
comparable to the bipolar transistor effect in partially depleted SOI transistors (Massengill et 
al., 1990). Because bipolar amplification is less important for fully depleted than for partially 
depleted devices, circuits based on fully depleted transistors are less sensitive to single-
event upset than partially depleted circuits (Ferlet-Cavrois et al., 2002).  
The effect of the parasitic bipolar transistor in SOI devices is quantified using the bipolar 
gain, β. The bipolar gain corresponds to the amplification of the deposited charge and is 
given by the ratio between the total collected charge, Qcoll, at the drain electrode and the 
deposited charge, Qdep: 

 coll

dep

Q
Q

β =  (10) 

The total collected charge at drain electrode is given by:  

  coll D
0

Q I dt
∞

= ∫  (11) 

The deposited charge in a SOI device is calculated as a function of the particle LET using the 
following equation (Ferlet-Cavrois, 2004; Munteanu & Autran, 2008): 

 2
dep SiQ [fC] 10.3 LET[MeV /(mg / cm )] t [µm]= × ×  (12) 

where tSi is the Silicon film thickness and 10.3 is a multiplication factor for Silicon calculated 
using the Silicon density and the energy needed for creating an electron-hole pair in Silicon 
(– 3.6 eV) (Ferlet-Cavrois, 2004; Munteanu & Autran, 2008). In this equation a normal 
incident ion strike is considered and the LET is supposed constant along the ion path in the 
active Silicon film. 
The bipolar gain for 32 nm gate length Multiple-Gate devices in both classical and quantum 
cases is shown in Fig. 9 as a function of the LET value. The bipolar amplification decreases 
when increasing EGN due to less floating body effects. However, at high LET (>2 
MeV/(mg/cm2)), the classical bipolar gain becomes the same for all configurations. This can 
be explained by the huge deposited charge by the ion which masks the impact of other 
phenomena such as the electrostatic control by the gate. 
Previous experimental and theoretical studies showed that, generally, fully depleted SOI-
based devices (with either single- or double-gate configuration) present reduced floating 
body effects and then lower bipolar amplification of the collected charge than partially-
depleted SOI devices (Ferlet-Cavrois et al., 2002; Ferlet-Cavrois et al., 2005). In Multiple-Gate 
devices the control of the channel by the gates is naturally reinforced, and reduces even 
more the floating body effects. Then very low values are obtained for the bipolar gain. Our 
results are consistent with simulation data from (Munteanu et al., 2006) and (Castellani et 
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al., 2006), but they are very low compared with those expected by extrapolation from 
simulations in (Dodd et al., 2004). This is probably due to the partially depleted SOI Single-
Gate structures used in (Dodd et al., 2004), whereas ultra-thin fully-depleted devices and 
multiple-gate configurations are considered here. 
The quantum bipolar gain is lower than the classical one, excepted at very high LET (Fig. 9). 
Our results show that two phenomena, with opposite effects on the bipolar gain, are to be 
considered. On one hand, the lower off-state current in the quantum case leads to a lower 
quantum bipolar amplification (Castellani et al., 2006). On the other hand, in the quantum 
case, the electron density is lower leading to slower recombination process (reflected in a 
longer transient tail) and then to a higher collected charge. Depending on the injection 
regime, one phenomenon or the other prevails. At low injection regime, the generated 
charge is not very high and carriers recombine rapidly. Then the bipolar gain follows the 
off-state current behaviour, both being lower for a quantum approach than for a classical 
one. In very high injection conditions, the electron charge in the film is not sufficient to 
recombine the enormous generated charge and then, the recombination process is sensibly 
slower. This has been verified by simulation: the recombination rate in the Silicon film is 
higher in the classical case than in the quantum case. As a consequence, the quantum 
collected charge and the quantum bipolar amplification are higher than in the classical ones. 
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Fig. 9. Simulated classical and quantum bipolar gain as a function of LET in 32 nm gate 
length Multiple-Gate MOSFET. The transistors are biased in the off-state at VG=0 V and 
VD=0.8 V 

5. Device scaling 
The effects of the carrier confinement become more important when the Silicon film is 
thinned because the energy subband splitting is directly proportional with the reverse of the 
square of the potential well dimension (equal to the film thickness). The ratio between the 
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classical and quantum off-state currents, reported in Table 1 as a function of tSi, confirms 
that the quantum confinement is strongly enhanced when the film is thinned down. The 
collected charge and the bipolar gain (shown in Figs. 10(a) and 10(b)) are lower for thinner 
channel, in both quantum and classical cases, because the off-state current decreases with 
the film thickness. The maximal value of the gain is shifted to higher LET values when 
Silicon film thickness decreases. Our results also indicate that, in the quantum approach, the 
difference in the bipolar gain when reducing the film thickness (at the same LET) is lower 
than in the classical case. 
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Fig. 10. Bipolar gain variation when reducing the Silicon film thickness in Gate-All-Around 
MOSFET with 32 nm gate length (the gate width is W=10 nm): (a) classical simulation; (b) 
quantum simulation. The transistors are biased in the off-state at VG=0 V and VD=0.8 V 

The quantum bipolar gain for Multiple-Gate devices scaled down to 20 nm gate length and 5 
nm Silicon film cross-section was also predicted. As shown in Fig. 11, the difference between 
the three architectures is reduced for devices with 20 nm gate lengths compared to those 
with 32 nm and 25 nm gate lengths, due to the very thin square wire cross-section (tSi=W=5 
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nm). When decreasing the cross-section, the influence of the gate configuration is attenuated 
and the values of the bipolar gain for the different structures are almost the same. This 
behaviour can be explained by the fact that, around 5 nm and below, the combination of 
gate electrostatic control and quantum-mechanical confinement leads to similar carrier 
density distributions in the film for all gate configurations (Bescond et al., 2004). At this 
ultimate scale of integration, it should be expected that the sensitivity of all Multiple-Gate 
nanowire architectures (EGN ≥ 2) to heavy ion irradiation sensibly become equivalent. 
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Fig. 11. Bipolar gain calculated in the quantum case for Multiple-Gate nanowire MOSFETs 
with different gate lengths. The dimensions of the Silicon film cross-section are also 
indicated. The ion strikes vertically (parallel to the y direction) in the middle of the film 

6. Conclusion 
In this work we analyzed the impact of quantum confinement on single-event transient 
immunity of several Multiple-Gate architectures. We showed that the 3-D carrier 
distribution is strongly affected by the quantum effects, which not only reduces the drain 
current but also modifies the recombination rate and the charge collection compared to the 
classical case. Increasing the "number of equivalent gates" induces less floating body effects 
and then lowers the bipolar gain. Our simulations also showed that when the Silicon 
channel cross-section is thinned down (around 5nm and below), the bipolar amplification of 
Multiple-Gate nanowire architectures (EGN ≥ 2) sensibly becomes the same mainly due to 
carrier quantum confinement. 
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1. Introduction

Dielectric breakdown in insulating materials is related to fast relaxation of trapped charges
according to (G. Damamme & Reggi, 1997) and is of practical importance since it damages
electronic devices (Levy, 2002). In fact, it is known that the secondary electron emission
yield ( denoted by see ) is one of the key parameters for dielectric materials. Moreover, see
is the driving parameter of electric charging which can lead to electric breakdown. To study
this phenomena, the behaviour of an insulator submitted to an electron beam irradiation is
considered. This has led to a significant number of experimental studies since the discovery
of this phenomena. Although several modelling such as in (I.A.Glavatskikh & Fitting,
2001),(Fitting, 1974) and (H.-J. Fitting & Wild, 1977) are available in literature, they do not
provide a simple method to compute the initial see yield from the penetration depth of the
incident electron beam, and somematerial characteristics. The purpose of the work detailed in
the book chapter is to describe such a simple modelling related to electron/matter interaction
for low values of incident electron beam’s energy and the tight coupling between modelling,
numerical analysis and comparison with some experimental results.
This book chapter presents in a unified manner, published and new results. We focuss
the presentation on our numerical/software approach, and comparison with experimental
results.
In section 2, we propose a new modelling for the initial see yield computation. The main
contribution is that we have reanalyzed from a mathematical point of view the modelling,
stating that there exists a unique solution, which is uniformly bounded and which fulfill
a maximum principle. From a numerical point of view, we have used a classical upwind
finite-volume scheme, and shown the existence, uniqueness and discrete maximum principle
for the discrete numerical solution. Finally a new asymptotic expression for the expression of
see yield for large values of the electron beam energy is presented and discussed.
In section 3, we show that the computation of the initial see yield by a two-fluxes method,
which requires the solution of a set of two coupled differential equations described in section
2, can in fact be reformulated into a single reaction-diffusion problem, which is much easier to
solve from a computational point of view, since a single tri-diagonal matrix has to be inverted.

4
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This appears to be a new result in this field.
In section 4, we present a model which computes the evolution of transient secondary electron
emission yield. It is based upon a set of conservation laws which expresses the trapping
of electrons and holes coupled with the electric field. From a numerical point of view,
we apply a fully implicit scheme and uses a simple, fixed point technique to the solves
the coupled set of discrete equations, and use a refined grid near the interface where the
electron beam penetrates the sample. This enhances the quality of the numerical simulation
and reduces significantly the elapsed computational time compared to Fitting’s works
(I.A.Glavatskikh & Fitting, 2001),(Fitting, 1974) and (H.-J. Fitting & Wild, 1977)¿Q, which is
constrained by the fixed mesh spacing used in the presentation of his modelling. Moreover
our numerical scheme uses the conservative finite-volume method, and we have proved
formally that some discrete maximum principle occur which provides confidence in our
numerical work. Some comparison between numerical computations and experimental work
by G. Moya (IM2MP, Marseille, France) and K. Zarbout (IM2MP, Marseille, France, and
LamaCop, Sfax, Tunisia) are presented.
In section 5, we extend the reformulation of the two-fluxes modelling presented in section 4
into a reaction-diffusion modelling. The main strength of this new approach is the ability to
be extended easily in two spatial dimensions, while it is more difficult to extend in two-spatial
dimensions the two-fluxes approach borrowed from the radiative transfer (?), hence this new
approach seems more promising.
In section 6, we present the main architecture of our numerical software sirena.
We conclude this chapter with section 7, which summarizes the obtained results and draws
some perspective of future work.

2. Initial see computation by a two-fluxes method

This section presents a modelling describing the generation of secondary electrons. The
slowdown of primary electrons creates free electrons/holes pairs. A diffusion movement of
these particles occurs. Some of the secondary electrons generated near the surface could be
emitted when they are not trapped before.

2.1 Mathematical modelling
Let C = {e+, e−}, the charge transport of current fluxes (jc(z))c∈C is described by a
one-dimensional system of coupled linear differential equations along the z-axis. A two-fluxes
method derived from radiative transfert theory is used which splits the electron current je(z)
into forward je+(z) and backward je−(z) contributions such that the algebraic currents verify
je(z) = je+(z)− je−(z). The coupling between je+ (z) and je− (z) fluxes is written and takes
into account diffusion.

−
dje− (z)

dz
+

(
σ
di f f
e− + σabs

e

)
je− (z) = Se (z) + σ

di f f
e+ je+ (z) , (1)

with boundary condition je− (L) = 0, and

dje+ (z)
dz

+
(

σ
di f f
e+ + σabs

e

)
je+ (z) = Se (z) + σ

di f f
e− je− (z) . (2)

with boundary condition je+ (0) = (1− κ) je− (0), where κ ∈ [0,1] is the transmission
coefficient, σabs

e ,σdi f f
e± are respectively absorption and diffusion cross sections. This
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Fig. 1. Scheme of the modelling assuming that there is no backscattered electrons and where
Rp is the penetration thickness and L is the dielectric thickness. The incident electron flux j0
has a kinetic energy Ekin.

mathematical modelling is used to analyse the sensibility of the true secondary electron
emission yield see∗ defined by the expression

see∗ = κ
je− (0)

j0
. (3)

with respect to the relative importance of charges absorption/diffusion inside the material,
where j0 is the current density of primary electrons ( the backscattered electrons being
excluded ) and κ is the transmission coefficient.

2.2 Existence-uniqueness of the formal solution
The following proposition was presented in (Aoufi & Damamme, 2009)

Proposition 2.1 Denoting the constant σc = σabs
e + σ

di f f
c , and under the assumption that

[z �→ Se (z)] is continuous over Ω, then

– the problem has a unique solution (je− (z) , je+ (z)) for z ∈Ω given by the coupled system

je− (z) =
∫ L

z

(
Se (Ekin,u; j0) + σ

di f f
e+ je+ (u)

)
eσe−(z−u)du. (4)

je+ (z) = je+ (0) .e−σe+z +
∫ z

0

(
Se (Ekin,u; j0) + σ

di f f
e− je− (u)

)
eσe+(u−z)du. (5)

– Moreover there exits a constant C
(
‖Se‖L∞(Ω) ,Ekin,L,σabs

e ,σdi f f
c

)
> 0 such that for z ∈Ω

0≤ je−,+ (z)≤ j0.C
(
‖Se‖L∞(Ω) ,Ekin, j0,L,σ

abs
e ,σdi f f

c

)

2.3 Asymptotic expression for the secondary electron emission yield
Proposition 2.2 We define the transfer cross section σtrans

e = σabs
e + σ

di f f
e+ + σ

di f f
e− , Under the

asymption that 1� σabs
e .Rp (Ekin) then

see∗ 	 κ
Se (z= 0,Ekin)

σabs
e

σ∗

σtrans
e

σ∗

(1− κ
2 )σ

abs
e + κ

2 σ∗
. (6)
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where

Δσ
di f f
e = σ

di f f
e+ − σ

di f f
e− , 2σ∗ = Δσ

di f f
e +

√(
4σabs

e σtrans
e +

(
Δσ

di f f
e

)2)
. (7)

Fig.(2) represents a comparison between asymptotic formula given by Eq.(6) and computation
of see yield from Eq.(3). A good agreement is observed for high values of Ekin. Other
computational results are given in (Aoufi & Damamme, n.d.).
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Fig. 2. (a) Comparison between computed and asymptotic expression for see yield in the case

where σ
di f f
e+ = kσ

di f f
e and σ

di f f
e− = k−1σ

di f f
e with k ∈ {1/10,1,10}. (b) Comparison between

numerical values and asymptotic expression of see∗ (Ekin) as a function of Ekin [kev] in both
cases with and without diffusion ( for σ

di f f
c = σ

di f f
c ).

2.4 Numerical scheme
A vertex-centered conservative finite-volume discretization of the governing equation with an
adequate upwind technique is defined. The domain Ω is decomposed into a set of I control
volumes Ωi = [zi,zi+1]with length hi+ 1

2
. The discrete unknown at grid point zi related to jc is

denoted jc|i.

Proposition 2.3 Denoting Si+ 1
2
= Se

(
zi+ 1

2

)
, where zi+ 1

2
= 1

2 (zi + zi+1), then

– the scheme obtained after integrating the forward linear equation over Ωi+ 1
2
is written for each cell

index i,

je+|i+1 − je+|i
hi+ 1

2

+
(

σabs
e + σ

di f f
e+ + σ

di f f
e−

)
. je+|i+1

= Si+ 1
2
+ σ

di f f
e−

(
je−|i+1 + je+|i

)
(8)

– using a similar computation, the scheme for the backward linear equation leads to the discrete
equation

−
je−|i − je−|i−1

hi− 1
2

+
(

σabs
e + σ

di f f
e+ + σ

di f f
e−

)
. je−|i−1

= Si− 1
2
+ σ

di f f
e+

(
je+|i−1 + je−|i

)
. (9)

– The linear system with the discrete unknowns ( je−|i)1≤i≤I+1 , ( je+|i)1≤i≤I+1 has a unique
solution,
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– which verify a discrete maximum principle for a suitable constant C > 0

0≤ je−,+|i ≤ C (10)

2.5 Numerical simulations
Fig.(3) shows that in a suitable normalized representation, the evolution of secondary electron
emission yield has a similar shape for different expressions of the penetration depth radius.
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e .

3. Initial see computation by a reaction-diffusion method

3.1 Mathematical modelling
In order to reformulate Eq.(1)-(2) into a reaction diffusion equation, let us define the number
of free electrons per unit volume ne (z) such that for z ∈ [0,L], vene (z) = je+ (z) + je− (z) with
ve the mean absolute velocity of charge carriers and the overall transfert cross-section σtrans

e

according to σtrans
e = σabs

e + 2σ
di f f
e . After summation and substraction of Eq(1)-(2), and using

the definition of je (z) and ne (z) one obtain that

dje (z)
dz

= 2Se (z)− < σabs
e ve > ne (z) , ve

dne (z)
dz

= −je (z) σtrans
e . (11)

Defining the diffusion coefficient De =
ve

σtrans
e

with respect to the transfer equation leads to

the fact that the current flux je (z) follows a Fick-type law : je (z) = −De
dne (z)
dz

. Pluging this

expression into Eq.(3) leads to the reaction-diffusion equation with Fourier type boundary
conditions

− De
d2ne (z)
dz2

= 2Se (z)− < σabs
e ve > ne (z) (12)

De
dne (0)
dz

=
κ

2− κ
ne (0)ve, (13)

De
dne
dz

(L) = −ne (L)ve (14)
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The reformulation of Eq.(3) in terms of the number of trapped electrons ne (z) is easily
obtained thanks to Eq.(11) and is such that :

see∗ =
κ

2− κ

ne (0)ve
j0

(15)

It is worth mentioning that in the case of electron transport, the velocity ve can be obtained
thanks to the equation 1

2me v2e = Ee where the energy Ee was between 1eV− 3eV, and is related
to value of the gap energy.

3.2 Numerical scheme
A cell-centered finite-volume scheme on a geometrically refined grid near interface z = 0 is
used. We prove the existence and uniqueness of the discrete solution that is computed by
the inversion of a sparse tridiagonal matrix thanks to the classical Thomas algorithm -i.e.
Gauss method for tridiagonal matrices-. We prove a discrete maximum principle, thanks to
the M-matrix property of the tri-diagonal matrix.
We use a classical cell-centered finite volume approximation on computational domain Ω. A
set of non-uniformly spaced grid points (zi)1≤i≤i+1 is given, and is such that z1 = 0 < · · · <
zi < . . .zI+1 = L. We denote by hi the length of control volume Ωi = [zi,zi+1] and ni the mean
of n(z) over control volume Ωi. There are I + 1 nodes, but I control volumes.

Proposition 3.1 The finite-volume discretization of Eq.(14) leads to the following linear system

⎛
⎜⎜⎜⎜⎜⎜⎝

b1 c1
. . .
ai bi ci

. . .
aI bI

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

n1
...
ni
...
nI

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

2h1S1
...
2hiSi
...
2hISI

⎞
⎟⎟⎟⎟⎟⎟⎠

with

a1 = 0, b1 =
De

h1 +
h2
2

+
κ

2− κ
ve+ < σabs

e ve > h1, c1 = −
De

h1 +
h2
2

, (16)

and for i ∈ [1, I − 1]

ai =
De

hi+hi−1
2

, bi = −
De

hi+hi+1
2

+
De

hi+hi−1
2

+ < σabs
e ve > hi, ci = −

De
hi+hi+1

2

, (17)

and

aI = 0, bI = −
De

hI +
hI−1
2

, cI =
De

hI +
hI−1
2

+ ve. (18)

which has a unique positive solution.

The discretization of Eq.(14) over control volume Ωi leads to the following discrete equation
which is specialized if i = 1, or 1< i < I or i = I
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−De
n2 − n1
h1 +

h
2

+
κ

2− κ
n1 ve = 2h1 S1+ < σabs

e ve > n1 h1 (19)

−De
ni+1− ni
hi+hi+1

2

+ De
ni − ni−1
hi+hi−1

2

= 2hi Si+ < σabs
e ve > ni hi (20)

ve nI + De
nI − nI−1

hI +
hI−1
2

= 2hI SI+ < σabs
e ve > nI hI (21)

The matrix of the linear system that is used to compute (ni)1≤i≤I+1 is an M-matrix, since

• bi ≥ 0, ai, ci ≤ 0, bi ≥ |ai|+ |ci| ,

• and 2hi Si ≥ 0.

we conclude that it is invertible and that the unique solution of the linear system is positive.

3.3 Numerical simulations
The evolution of ne(z) is depicted in Fig.(4). It is seen that ne(z) ≥ 0, and that its shape is
closely influenced by the expression used for Se(z).
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Fig. 4. Spatial distribution of ne(z) for various values Ekin.

4. Transient see computation by a two-fluxes method

In section 4, the modelling borrows from Fitting’s papers, the absorption/diffusion
cross-section expressions as a function of electric field. It differs mainly in the governing
set of equations and in the numerical techniques that are used but also in the fact that some
comparison between numerical computations and experimental work are done.

4.1 Mathematical modelling
The mathematical modelling expresses the coupling between electric field with electron/hole
transport and describes the spatial and temporal charge trapping in an insulator submitted
to an electron beam irradiation. The temporal evolution of the secondary electron emission is
computed as a function of global trapped charge. It is given by a set of 7 nonlinear, coupled
equations.
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Fig. 5. Scheme of the modelling where Rp is the penetration depth, φ the diameter of the
irradiated zone and L the dielectric thickness. The incident electron flux j0 has a kinetic
energy Ekin. Scheme of the modelling where Rp(Ekin) is the penetration depth, φ the diameter
of the irradiated zone and L the dielectric thickness. The incident electron flux j0 has a kinetic
energy Ekin. The electron fluxes je−/je+ and the hole fluxes jh−/jh+ are coupled by diffusion.

4.1.1 Purpose of the modelling
The purpose of this modelling is to analyze the evolution of the global trapped charge, per
unit surface, at time t, Qp(t) which is defined by:

Qp(t) =
∫ L

0
ρ(z, t)dz+ |e|ns(t) (22)

and the true secondary electron emission yield see∗(t) expressed as:

see∗(t) = κs (ns(t))
je− (0, t)

j0
(23)

where the expression of κ (ns(t)) is given in the next subsubsection.
The proposed modelling describes the interaction between the number of trapped electrons
nep(z, t) and holes nhp(z, t) with the four current fluxes (jc)c∈C , the current jprim (z) and the
electric field E(z, t).

4.1.2 Governing equation for the saturation effect of the surface trapping sites ns(t)
Defining by Ns the number of trapping surface sites located at the interface z = 0 and by σs
their elementary cross section then the evolution of the number of traps per surface unit at
time t, ns(t) follows the equation

|e|
dns(t)
dt

= je−(0, t) (κ − κs (ns(t))) (24)

where κs (ns(t)) is defined by:

κ(ns(t)) = κ exp (−σs (Ns − ns(t))) (25)

Its contribution is especially important during the initial charge injection phase for an amount
of time driven by the product σs Ns. The initial condition states that there are no surface
trapped charges.
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4.1.3 Governing equation for the electric field E(z, t)
Here we assume that the electric field E(z, t) depends only on the total charge density ρ(z, t)
which is different from the trapped charge density. Using a two-fluxes method it was assumed
that only the trapped charge density contributed to the electric field. The local Maxwell-Gauss
equation writes

∇.E (z, t) =
ρ (z, t)
ε0εr

, (26)

An electrostatic analysis taking into account polarization charges on the interface leads to

E (0, t) = −
1

ε0εr (1+ εr)

1

1+ πφ2/4
L2(1+ε r)

Qp(t)− |e|
ns(t)
ε0εr

. (27)

where the second factor is introduced as corrections due to image charges in the sample
holder.

4.1.4 Governing equation for current fluxes jc (z, t)
The following balance is written

dc
∂jc(z, t)

∂z
+

3

∑
i=1

Wc,i = Sc(z) + σ
di f f
c (E(z, t)) jc(z, t) (28)

where

(a) dc
∂jc(z,t)

∂z is the gradient of forward/backward electron/hole flux,

(b) Wc,1 = σ
di f f
c (E(z, t)) jc(z, t) is the flux loss by diffusion,

(c) Wc,2 =
(
σpc

(
Npc − ncp(z, t)

))
.jc(z, t), is the flux loss by trapping on unoccupied trapping

sites Npc − ncp(z, t),

(d) Wc,2 = σacnĉp(z, t)jc(z, t) is the flux loss by annihilation with trapped charge ĉ,

(e) Sc(z) is a source term for the creation of electrons or holes induced by the slowdown of
primary electrons.

(f) σ
di f f
c (E(z, t)) jc(z, t) is a positive source transport term by diffusion for dual charge of c,

i.e. travelling in the opposite direction.

The boundary conditions are sc sign dependant.

– For backward fluxes je− (z, t) and jh− (z, t), the boundary condition at z = L means that the
bottom of the material has no charge injection: ∀c ∈{e−,h−} : jc (L, t) = 0.

– For forward fluxes, je+ (z, t) and jh+ (z, t), the boundary condition at z = 0 means the
continuity of the hole flux jh+ (0, t) = jh− (0, t), but a discontinuity for the electron flux
je+ (0, t) = (1− κ) .je− (0, t) .

4.1.5 Governing equation for the charge density ρ (z, t)
The temporal variation of the trapped charge density ρ(z, t) follows the conservation law

∂ρ (z, t)
∂t

+∇.j (z, t) = 0, (29)

where the overall current flux of charges j (z, t) is such that

j (z, t) = je− (z, t)− je+ (z, t)− jh− (z, t) + jh+ (z, t)− j0 jprim (z) . (30)
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4.1.6 Governing equation for trapped charge Qp(t)
The temporal evolution of total trapped charge Qp(t) is defined from the total charge density

ρ(z, t) = |e|
(
nep(z, t)− nhp(z, t)

)
(31)

thanks to the equation

dQp(t)
dt

=
∫ L

0

dρ(z, t)
dt

= −je+(L, t) + jh+(L, t) + j0(1− see(t)). (32)

4.1.7 Governing equation for the trapped electrons nep (z, t)
The evolution of the number of trapped electrons nep (z, t) follows the differential equation

|e|
∂nep

∂t
(z, t) = σpe

(
Npe − nep (z, t)

)
(je+ (z, t) + je− (z, t))

−σahnep (z, t) (jh+ (z, t) + jh− (z, t)) (33)

which expresses the balance between

– the number of electrons that are trapped, where σpe is the trapping cross section of the
electrons and Npe is the total number of electrons trapping sites,

σpe
(
Npe − nep (z, t)

)
(je+ (z, t) + je− (z, t)) (34)

– and the number of trapped electrons present in the traps that are annihilated by free holes,
where σah is the annihilation cross section between trapped electrons and free holes.

σahnep (z, t) (jh+ (z, t) + jh− (z, t)) . (35)

The absolute value, |e| of the electron charge in coulomb is introduced to transform the fluxes
(jc (z, t))c∈C expressed in Coulomb into fluxes expressed in carriers numbers.
The initial condition nep (z,0) = 0, means that there are no trapped electrons at the beginning
of charge injection.

Remark 4.1 In order to simplify the notations, we define the total flux jTh,e(z, t) = jh+/e+(z, t) +
jh−/e−(z, t), which is always positive, while the algebraic flux jh,e(z, t) = jh+/e+(z, t)− jh−/e−(z, t)
can be negative. We introduce functions a(z, t) and b(z, t) that are defined by the expressions

a(z, t) =
(

σpe jTe (z, t) + σah j
T
h (z, t)

)
/ |e| ≥ 0,

b(z, t) =
(

σpeNpe jTe (z, t)
)
/ |e| ≥ 0.

then Eq.(33) can be rewritten

∂nep
∂t

(z, t) + a(z, t)nep(z, t) = b(z, t) (36)

A straightforward computation shows that the formal solution of Eq.(33) is given by

nep(z, t) =
∫ t

0
exp

∫ v
t a(z,u)dub(z,v)dv (37)

from which we can infer that nep(z, t) ≥ 0.
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4.1.8 Governing equation for the trapped holes nhp (z, t)
The evolution of the number of trapped holes nhp (z, t) follows the differential equation

|e|
∂nhp

∂t
(z, t) = σph

(
Nph − nhp (z, t)

)
(jh+ (z, t) + jh− (z, t))

−σaenhp (z, t) (je+ (z, t) + je− (z, t)) (38)

which expresses the balance between

– the number of holes that are trapped, where σph is the trapping cross section of the holes
and Nph is the total number of holes trapping sites,

σph

(
Nph − nhp (z, t)

)
(jh+ (z, t) + jh− (z, t)) (39)

– and the number of trapped holes present in the traps that are annihilated by free electrons,
where σae is the annihilation cross section between trapped holes and free electrons.

σaenhp (z, t) (je+ (z, t) + je− (z, t)) (40)

The initial condition nhp (z,0) = 0, means that there are no trapped holes at the beginning of
charge injection.
It is worth mentioning that trapped holes and trapped electrons have the same type of
behaviour, so the governing equations are symmetrical, when one exchanges the index hwith
the index e.

4.2 Numerical scheme
The mathematical modelling expresses the nonlinear coupling between a set of seven
equations with seven unknowns E (z, t), (jc (z, t))c∈C , nep (z, t) and nhp (z, t). A straighforward
computation leads to a formal expression of each unknown as a function of the others
which involves spatial/temporal integrals and stiff exponential functions, but the non-linear
coupling remain. We are therefore led to use a numerical discretization scheme to compute
the solution of this one-dimensional nonlinear initial boundary value problem, expressed in
conservation form.
We present a full implicit conservative finite volume scheme on a non uniform staggered grid
used for the discretization of the governing set of equations on a geometrically refined grid
near the interface z=0. The computational domain is Ω.

– Unknowns that are located at the center of cell Ωi are nep
∣∣k
i , nhp

∣∣∣k
i
, ρ|ki ,

– Unknowns that are located at the edges of cell Ωi are
E|ki,i+1 , je+|

k
i,i+1 , je−|

k
i,i+1 , jh+|

k
i,i+1 , jh−|

k
i,i+1.

We use a backward Euler scheme, with constant time-step Δt, first order accurate in time, for
the temporal discretization, and note tk = k.Δt.

4.2.1 Discretization of the surface trapping sites ns(t) equation
A straightforward computation leads to the discrete equation

nk+1
s − nks

Δt
=

je−|
k+1
1
|e|

(
κ− κs(nk+1

s )
)
. (41)
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The stiffness induced by the exponential term present in κs(nk+1
s ) requires a first order

linearization, hence the iterative solution by a fixed point technique is given by

nk+1,p+1
s − nk,ps

Δt
=

je−|
k+1,p
1
|e|

(κ − wp)) , (42)

wp = κs(n
k+1,p
s ) +

(
nk+1,p+1
s − nk+1,p

s

)
κ′s(n

k+1,p
s ). (43)

Then the value of nk+1,p+1
s is easily determined.

4.2.2 Discretization of the charge density equation
Integrating Eq.(29) over control volume Ωi leads to the discrete equation

hi
(

ρk+1
i − ρki

)
+ Δt

(
jk+1
i+1 − jk+1

i

)
= 0. (44)

A decoupled iterative solution thanks to the fixed point method leads to the computation,
where p is the nonlinear iteration index

ρ
k+1,p+1
i = ρki −

Δt
hi

(
jk+1,p
i+1 − jk+1,p

i

)
. (45)

4.2.3 Discretization of the trapped charge equation
The discretization is straightforward and leads to the equation

Qp
∣∣k+1

− Qp
∣∣k

Δt
= − je+|

k+1
I+1 + jh+|

k+1
I+1 + j0

(
1− seek+1

)
. (46)

A decoupled iterative solution thanks to the fixed point method leads to the computation,
where p is the nonlinear iteration index

Qp
∣∣k+1,p+1

= Qp
∣∣k,p + Δt

(
− je+|

k+1,p
I+1 + jh+|

k+1,p
I+1 + j0

(
1− seek+1,p

))
. (47)

4.2.4 Discretization of the electric field equation
The discretization is straightforward and leads to the equation

Ek+1
i+1 − Ek+1

i =
hiρ

k+1
i

ε0εr
, (48)

Ek+1
1 = −

1
ε0εr (1+ εr)

1

1+ πφ2/4
L2(1+ε r)

Qk+1
p − |e|

nk+1
s

ε0εr
. (49)

A decoupled iterative solution thanks to the fixed point method leads to the computation,
where p is the nonlinear iteration index.

Ek+1,p+1
i+1 = Ek+1

i +
hiρ

k+1,p
i

ε0εr
, (50)

Ek+1,p+1
1 = −

1
ε0εr (1+ εr)

1

1+ πφ2/4
L2(1+ε r)

Qk+1,p
p − |e|

nk+1,p
s

ε0εr
. (51)
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4.2.5 Discretization of the trapped holes’s number equation
In order to simplify the notations all the cross section terms are divided by the factor |e|.

Proposition 4.1 The finite volume discretization of Eq.(38) over control volume Ωi leads to the
discrete equation

nhp
∣∣∣k+1

i
− nhp

∣∣∣k
i

Δt
= σph

(
Nph − nhp

∣∣∣k+1

i

)
jTh
∣∣∣k+1

i
− σae. nhp

∣∣∣k+1

i
. jTe

∣∣∣k+1

i
. (52)

which has a unique solution given by

nhp
∣∣∣k+1

i
=

nhp
∣∣∣k
i
+ Δt.σph.Nph. jTh

∣∣k+1
i

1+ Δt.σph jTh
∣∣k+1
i + Δt.σae jTe

∣∣k+1
i

(53)

for which the discrete maximum principle holds

0≤ nhp
∣∣∣k
i
≤ Nph. (54)

Moreover thanks to the fixed point technique, we have the following nonlinear iteration

nhp
∣∣∣k+1,p+1

i
=

nhp
∣∣∣k
i
+ Δt.σph.Nph. jTh

∣∣k+1,p
i

1+ Δt.σph jTh
∣∣k+1,p
i + Δt.σae jTe

∣∣k+1,p
i

(55)

Let us construct the finite volume discretization. We integrate Eq.(??) over control volume
Ωi × [tk, tk+1] to obtain∫

Ωi

(
nhp(z, t

k+1)− nhp(z, t
k)
)
dz (56)

=
∫ tk+1

tk

(∫
Ωi

σph

(
Nph − nhp (z, t)

)
.jTh (z, t)− σae.nhp (z, t) .j

T
e (z, t)

)
dt

A cell-centered approximation is used for nhp, then

∫
Ωi

(
nhp(z)

k+1 − nhp(z)
k
)
dz = hi

(
nhp

∣∣∣k+1

i
− nhp

∣∣∣k
i

)
. (57)

But a vertex-centered approximation is used for je±,h±(z, t), so we apply a first order
approximation to the integral, i.e. we evaluate the integrand,which is a fonction of je±,h±(z, t)

at z= zi while nhp(z, t) is a constant over Ωi × [tk, tk+1] and equal to nhp
∣∣∣k+1

i
, to obtain

∫ tk+1

tk

(∫
Ωi

σph

(
Nph − nhp (z, t)

)
.jTh (z, t)− σae.nhp (z, t) .j

T
e (z, t)

)
dt

= hiΔt
(

σph

(
Nph − nhp

∣∣∣k+1

i

)
jTh
∣∣∣k+1

i
− σae. nhp

∣∣∣k+1

i
. jTe

∣∣∣k+1

i

)
. (58)

We now prove by induction that the discrete maximum principle holds.
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– For k = 0, thanks to the initial condition, we have ∀i ∈ [1, I], nhp
∣∣∣0
i
= 0 ∈

[
0,Nph

]
, so the

condition is fulfilled.

– For a given time index k, let us assume that nhp
∣∣∣k
i
∈
[
0,Nph

]
. Computation of nhp

∣∣∣k+1

i
is

given by expression

nhp
∣∣∣k+1

i
=

nhp
∣∣∣k
i
+ Δt.σph Nph. jTh

∣∣k+1
i

1+ Δt.σph. jTh
∣∣k+1
i + Δt.σae. jTe

∣∣k+1
i

= α. nhp
∣∣∣k
i
+ β.Nph (59)

where (
1+ Δt.σph. j

T
h

∣∣∣k+1

i
+ Δt.σae. jTe

∣∣∣k+1

i

)
α = 1, (60)(

1+ Δt.σph. j
T
h

∣∣∣k+1

i
+ Δt.σae. jTe

∣∣∣k+1

i

)
β = Δt.σph. j

T
h

∣∣∣k+1

i
. (61)

but α ≥ 0, β ≥ 0, α + β ≤ 1, hence 0 ≤ nhp
∣∣∣k+1

i
≤max

(
nhp

∣∣∣k
i
,Nph

)
= Nph. So the discrete

maximum principle is verified for nhp
∣∣∣k+1

i
.

A similar result can be stated and proved for the discrete approximation of trapped electron’s
equation.

4.3 Numerical simulations
4.3.1 Analysis of the influence of Ekin
In this subsection we investigate the sensibility of Qp(t) and ees(t) with respect to the energy
of the primary electrons. We assume that Npe, Nph and cross sections σae,h are fixed.
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Fig. 6. Evolution of the secondary electron emission ratio as a function of time t, for various
values of Ekin.

The behaviour of see with respect to Ekin is presented in Fig.6 and shows that for small values
of Ekin the ratio starts from a value greater than one and decreases down to one very quickly.
On the other hand for values of Ekin greater than 5 kev, the ratio starts below one, and strictly
increases to the asymptotic value of one.
Spatial profiles of electron current je−,+ (z, t) and holes currents jh−,+ (z, t) are similar in shape
and amplitude, hence we only repesented in Fig.7. je− profiles. It is worth mentioning that
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Fig. 7. Spatial distribution of electron current je−(z, t) over domain [0,L], for various values
of Ekin at times k× 200.10−6, with 0≤ k ≤ 10.

increasing Ekin induces that the maximum of jc (z, t) decreases and the profiles are diffused
pushed towards z= L. This result is correlated with the shape of the source term Se (z) which
varies accordingly when Ekin increases.
Trapped holes nhp(z, t) and trapped electrons nep(z, t) are respectively represented in Fig.9
and Fig.8. The maximum of nep(z, t) is smaller than the maximum of nhp(z, t) for each value
of Ekin and always decreases when Ekin increases while the spatial profiles are smeared out.
The variation of log(ees(Qp)) is represented in Fig.10 and shows a significant difference
depending on the value of Ekin. When Ekin is below 5 kev, a strictly superlinear smooth
decreasing profile is observed. On the other hand when Ekin is higher than 5 kev, the profiles
have a high curvature.
Fig.11 is an enlarged representation of electric field E(z, t). Three different domains can be
observed for each value of Ekin and for each time step. A) a thin boundary layer located near
the interface z = 0 where the E(z, t) is stiff, B) a central part where E(z, t) is oscillating and a
third part near the interface z = L where E(z, t) is flat.

4.3.2 Analysis of the influence of the value of Npe and Nph
In this subsection we assume that the kinetic energy of the incident electron beam is constant
and given the value of 4 kev, and study the influence of Npe, and Nph on the variation of sse(t)
and Qp(t). The trend observed in the numerical simulations appears independent of Ekin.
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As seen on Fig.12, reducing in/dependently Npe and Nph leads to a significant increase of the
secondary electron emission ratio well above 1. On the other hand reducing in/dependently
Npe and Nph leads to a significant decrease of the total trapped charge Qp(t).
The analysis of the evolution of log(ees(Qp(t))) represented in Fig.13 shows that setting Npe
and varying Nph induces that the curves are parallel, but converging to the same point where
Qp = 0. On the other hand, setting Nph and varying Npe above or below the initial value of
Npe leads to a much wider variation of see above or below 1 as seen on Fig.12.
As a conclusion, the most important parameter in these simulations appears to be Npe.

4.3.3 Comparison between numerical computations and experimental results
Preliminary promising results are presented in Fig.14.

5. Transient see computation by a reaction-diffusion method

In section 5, we extend the reformulation of the two-fluxes modelling presented in section
4 into a reaction-diffusion modelling. The main strength of this new approach is the ability
to be extended in two/three spatial dimensions. Moreover, it is more difficult to extend in
two/three-spatial dimensions the two-fluxes approach borrowed from the radiative transfer
(Chandrasekhar 1961), hence this new approach seems more promising.
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5.1 Mathematical Modelling
We present the modelling composed of a set of two, one dimensional reaction-diffusion
equations for electrons/holes coupled with Gauss equation for the electric field and an
equation for trapped electrons/holes evolution.

5.1.1 Governing equation for the electric field E(z, t)
The local conservation equation for the electric field E(z, t) writes

∇.E (z, t) =
ρ (z, t)
ε0εr

(62)

The boundary condition at z = 0, derived from an electrostatic analysis is written

E (0, t) = −
1

ε0εr (1+ εr)

∫ L

0
ρ (z, t)dz (63)

5.1.2 Governing equation for charge density ρ(z, t)
We define the overall current flux jT (z, t) = je (z, t) − jh (z, t) − j0 jprim (z). The conservation
law expressing the evolution of charge density ρ(z, t) is written

∂ρ (z, t)
∂t

+∇.jT (z, t) = 0 (64)

with initial condition ρ (z,0) = 0 expressing the lack of charge.

5.1.3 Governing equations for the number of free charges (nc (z, t))c∈C and current fluxes
jc(z, t)

For charge c, the number of trapped charge, either electrons or holes, nc (z, t) is based on the
following balance equation

∂nc
∂t

(z, t) +∇.jc (z, t) = 2Sc (z)−
(

σabs
c v

)
nc (z, t) (65)

The current flux for charge c jc (z, t) is related to the number of free charges nc (z, t) thanks to
the equation

jc (z, t) = −Dc∇nc (z, t) + nc (z, t) μcscE (z, t) . (66)

106 Numerical Simulations - Applications, Examples and Theory



Two-Fluxes and Reaction-Diffusion Computation
of Initial and Transient Secondary Electron Emission Yield by a Finite Volume Method 19

For a given charge c ∈ C, its sign sc is set to be +1 for the holes and −1 for the electrons and

its mobility is represented by μc ≥ 0. The diffusion coefficient Dc is defined by Dc =
vc

σtrans
c

,

where σtrans
c = σabs

c + 2σ
di f f
c . Hence the partial differential equation related to the evolution of

nc (z, t) is rewritten

∂nc
∂t

(z, t) +∇. (−Dc∇nc (z, t) + nc (z, t) μcscE (z, t)) = 2Sc (z)−
(

σabs
c v

)
nc (z, t) (67)

It is a linear reaction-convection-diffusion equation of parabolic type for unknown nc(z, t),
expressed in conservation form. Two boundary conditions at interfaces z = 0 and z = L must
be given in order for the problem to be well-posed. Following the discussion presented in
Section 3, we use the following conditions that depend on the charge c.

– at z= 0

−De
∂ne (z, t)

∂z
− μene (z, t)E (z, t)

∣∣∣∣
z=0

= −
κ

2− κ
vene (0, t) ,

−Dh
∂nh (z, t)

∂z
+ μhnh (z, t)E (z, t)

∣∣∣∣
z=0

= 0.

– at z= L

−De
∂ne (z, t)

∂z
− μene (z, t)E (z, t)

∣∣∣∣
z=L

= vene (L, t) ,

−Dh
∂nh (z, t)

∂z
+ μhnh (z, t)E (z, t)

∣∣∣∣
z=L

= vh nh (L, t)

5.2 Numerical scheme
We discuss an implicit finite-volume scheme, on a non uniform spatial grid and focus
the analysis on the discrete maximum principle fulfilled by the numerical scheme for
this linear reaction-convection-diffusion equation. The number of free charges nc(z, t) is
positive, a discretization of the equation must give positive values. We know that for
convection diffusion equation, upwind schemes induce artificial numerical diffusion that can
be monitored thanks to the local Peclet number. Moreover a boundary layer characterizes the
modelling. A discrete maximum principle must be verified for the discretization of

∇. (nc(z, t)μcscE(z, t)) (68)

To this end, the finite volume discrete approximation is given by the following expression,
where to simplify the notations, we have defined vc(z, t) = μcscE(z, t),∫

Ωi

∇. (nc(z, t)vc(z, t)) = nk+1
i+ 1

2
vk+1
i+ 1

2
− nk+1

i− 1
2
vk+1
i− 1

2
. (69)

Taking into account the signs of vi+ 1
2
leads to

– if vk+1
i+ 1

2
≥ 0, then nk+1

i+ 1
2
= nk+1

i , while if vk+1
i+ 1

2
≤ 0, then nk+1

i+ 1
2
= nk+1

i+1 .

A discrete maximum principle is then easily established following the method described in
section 3. Work is in progress to analyse the numerical results.
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6. Numerical software sirena

We describe briefly the architecture of our numerical software sirena. It is a toolbox for the
numerical solution either by a two-fluxes method or by a reaction-diffusion method of the
see yield. It is written in C language and consists of distinct modules that compute, the
initial mesh either uniform or geometrically refined near z = 0, and solve the electric field
equation, trapped charge density equation, etc . Several specialized data structures are used.
The visualization is possible thanks to scripts written for gnuplot software but also in VTK
format for the animated visualization of time-dependent quantities. It has been compiled
under windows xp with a free C compiler, DEV-CPP while under linux with gnu gcc. A
typical run with an adequate refined mesh requires less than a minute on a standard laptop.

7. Conclusions and perspectives

In this book chapter, we have presented a modelling for the computation of the initial
and transient true see yield following a traditional two-fluxes approach. We have stressed
the discrete maximum principle property of the conservative finite-volume numerical
discretization presented in this chapter. A new asymptotic expression for the initial true see
yield was presented and discussed.
A new approach, in this field, based on a reaction-diffusion modelling was presented for
both initial and transient computation of true see yield. As in the two-fluxes approach, we
have analyzed the discrete maximum principle properties of the finite-volume discretization
scheme and provided some numerical simulations.
Finally, a numerical software sirena freely available upon request was presented.
In the future, We plan to extend this reaction-diffusion approach in two-spatial dimensions in
order to perform numerical simulations of charge trapping inside the material for focalized
electron beam, because in this case, lateral and longitudinal distributions of electrons/holes
are important. This requires the knowledge for the creation of free electron/holes inside
the sample. There appears to be no expression for such term in the litterature, which
has a pear-like shape according to some monte carlo computations. We plan to use such
computations and curve-fitting in order to obtain a law that will be plugged into the 2D
version of sirena.
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1. Introduction 
Since the first protocol of quantum algorithm was put forth in 1994 (Shor, 1994), quantum 
information processing has been intensively studied (Nielsen & Chuang, 2000).  The 
quantum approach has benefits over the classical optical information processing in areas 
such as prime number factorization (Shor, 1994), data searching (Grover, 1996), and high-
resolution lithography (Boto et al., 2000; Yablonovitch, 1999). Compared to conventional 
cryptography based on public key cryptosystem (RSA cryptosystem) using conventional 
computers, prime number factorization using quantum computers has demonstrated a 
potential for a formidable attack on existing cryptographic systems. Like conventional 
memory which serves in the information processing unit, such as a processing unit together 
with logic gates, quantum memory is also essential to quantum information and 
communications networks. For quantum communications via a classical optical channel, the 
longest communication distance a quantum light can be transmitted is determined by the 
sensitivity of optical detectors and a lossy classical channel such as an optical fibre. Based on 
current technologies, the longest distance a single photon can propagate through an optical 
fibre is about 100 km (Zbinden et al., 1998). This distance should limit applications of 
quantum information especially for long-distance quantum communications. To solve the 
limited photon transmission, a quantum repeater has been introduced for virtually 
unlimited transmission distance (Duan et al., 2001; Jiang et al., 2007; Simon et al., 2007; Waks 
et al., 2002). Quantum memory is an essential element for the entangled photon swapping in 
the quantum repeaters. Because quantum repeaters swap entangled photons shared by 
neighboring remote quantum nodes in a quantum network, and the quantum information 
must be kept coherently through the quantum network, the minimum storage time of 
quantum memory is determined by the longest transmission distance of the lossy optical 
channel. For tranceatlantic quantum communications, roughly a one-second or more storage 
time is required. So far, such a long photon storage has not been demonstrated, where 
conventional quantum memory protocols limit the storage time to spin phase decay time at 
most (≤10-3 second). 
Unlike classical memories, quantum memory must satisfy a coherent process. Since the first 
observation of coherent retrieval of a stored optical pulse in a Bose Einstein condensate 
using slow light (Liu et al., 2001), interest in quantum memories has increased in the last 
decade (Alexander et al., 2006; Afzelius et al., 2010; Chaneliere et al., 2005. Choi et al., 2008; 
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Ham, 1998; Ham 2009a; Ham, 2010a; Hedges et al., 2010; Hetet et al., 2008; Hosseini et al., 
2009; Julsgaard et al., 2004; Kocharovskaya et al., 2001; Kraus et al., 2006; Liu et al., 2001; 
Moiseev & Kroll, 2001; Moiseev et al., 2003; Neumann et al., 2009; Nilsson & Kroll,  2005; 
Sangouard et al., 2007; Turukhin et al., 2002; Van der Wal, et al., 2003). Because temporal 
multimode storage capability is required for the quantum repeaters, a photon echo-type 
protocol has emerged as a best candidate. Unlike a single atom-based quantum memory, 
echo-type quantum memory has the advantage of using an ensemble of atoms, where a 
quantum light is efficiently absorbed by many atoms. This ensemble system also provides 
near perfect storage capability as well as inherent temporal multimode capability. Following 
the first observation of echo-type optical memory in a spin system (Hahn, 1950), photon 
echoes were intensively studied in the 1980s and 1990s for spatiotemporal ultrahigh-speed 
all-optical information processing. Unlike all-optical memories, retrieval efficiency in 
quantum memories must satisfy at least a two thirds level of fidelity. In this chapter photon 
echo type quantum memory protocols are reviewed and compared. The chapter is 
composed of the following sections. In section 2, photon echoes are reviewed as a 
background of modified echo-type quantum memories. Section 3 presents the advantages 
and disadvantages of several modified photon echoes for quantum memory protocols. In 
Section 4, an optical locking technique is introduced for an ultralong photon storage method 
that can be applied to long-distance quantum communications. Section 5 discusses a phase 
matching condition for optical locking applied to different photon echo protocols, solving a 
main drawback in conventional photon echoes. Section 6 presents conclusions. 

2. Review of photon echoes 
Like spin echoes (Hahn, 1950), photon echoes (Kurnit, et al., 1964) use optical 
inhomogeneity of an atomic ensemble. Figure 1 shows numerical simulations of a two-pulse 
photon echo in a two-level atomic system. The first pulse D in Fig. 1(b) interacting with a 
two-level optical system excites atoms onto the excited state |2>. For a visualization 
purpose of maximum coherence, the first pulse D is set at a π/2 pulse area, where the pulse 
area Φ is defined by: ,dtΦ = Ω∫  and Ω is the Rabi frequency. By the interaction of the first 

pulse D, atomic coherence is created between states |1> and |3>. A phase relaxation-
dependent decoherence is inevitable in any optical system. Because the atoms are 
inhomogeneously broadened, randomly detuned atoms from the absorption linecentre 
cause a fast dephasing of sum coherence for the atomic system. Later but before each 
individual atom diphases completely, the second pulse R, whose pulse area is π, interacts 
with all atoms whose sum coherence is washed out, and inverts the system to rephase. The 
rephasing by the second pulse R results in a time reversal process, where initial coherence 
should be retrieved after the same elapse as taken with R. Here, the photon echo as a 
coherent burst has nothing to do with a population transfer process but relates only to 
coherent phase retrieval of all individual atoms. The retrieval efficiency degrades as a 
function of time due to the optical phase decay process as well as to optical population 
decay of the excited atoms. In general, the optical phase decay time in rare-earth doped 
solids is ~0.1 ms, which is too short to quantum repeaters (Macfarlane & Shelby, 1987). 
Another problem of the two-pulse photon echoes is the echo reabsorption by the 
noninteracted (or nonabsorbed) atoms along the propagation direction, common in an 
optical medium governed by Beer’s law, where the number of atoms excited by the light 
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pulse D is exponentially reduced as a function of propagation distance inside the medium 
(Sangouard, N. et al., (2007). Because the retrieval efficiency is defined by the ratio of 
emitted photon echo intensity to the data intensity, an optically dense medium is needed for 
near 100% data photon absorption. This optically thick medium is, however, 
disadvantageous to the echo generation due to echo reabsorption. As a result of 
reabsorption, the observed photon echo efficiency or retrieval efficiency in most rare-earth 
doped solids is less than 1 %. Hence the original photon echo protocols cannot be adapted 
for a quantum memory protocol unless the reabsorption problem is solved. 
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Fig. 1. Two-pulse photon echoes. (a) Energy level diagram interacting with light pulses, (b) 
pulse sequence for (a), (c) and (d) numerical simulations for (b). The pulse area of D and R is 
π/2 and π, respectively. All decay rates are assumed zero for visualization purposes. Optical 
inhomogeneous width Δinh is 680 kHz, where Rabi frequency of each pulse is 1 MHz 

Compared with the two-pulse photon echoes (Kurnit, et al., 1964), a stimulated photon echo 
protocol was introduced to lengthen the storage time (Mossberg, 1982). In the stimulated 
photon echoes, the rephasing pulse R in the two-pulse photon scheme in Fig. 1(b) is divided 
into two π/2 pulses – that is W and R [see Fig. 2(a)]. By the first π/2 pulse, W, the atoms in 
both ground and excited states become spectrally modulated resulting in a spectral grating 
or frequency comb as shown in Fig. 2. Because the spectral modulation results from atom 
population modulation in the frequency domain caused by two consecutive optical pulses, 
D and W, the lifetime of the spectral grating is determined only by atom population decay 
time. Since the ground state population decay time is much longer than the optical 
counterpart, an optical deshelving technique to evacuate the excited atoms to a third state 
has been developed to increase the lifetime of the spectral grating (Mitsunaga & Uesugi, 
1990). Thus, in the stimulated photon echoes, the storage mechanism is free from the optical 
phase decay process, which is the main storage mechanism to the two-pulse photon echoes. 
The third pulse R functions to rephase the coherence half-way stopped by W, resulting in a 
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stimulated echo (not shown). Here, the stimulated echo is a four-wave mixing process in the 
time domain, where R scatters off the spectral grating made by D and W, thus generating a 
time-delayed echo signal as shown in Fig. 3(a). The time delay of the echo from R is exactly 
the same as that between D and W due to the temporal four-wave mixing process. Thus, the 
storage time in the stimulated photon echoes can be eventually lengthened up to the spin 
population decay time, which is several orders of magnitude longer than the optical phase 
decay time (Macfarlane & Shelby, 1987). However, due to the excited state population loss 
during the storage process, the retrieval efficiency of the stimulated photon echoes must be 
less than 50%, which cannot satisfy the minimum fidelity of quantum memories. 
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Fig. 2. Numerical simulations of stimulated photon echo. (a) ~ (d) sum of coherence Imρ13 
and excited state population ρ33, where ρij is a density matrix element defined by ρij=|i><j| 
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Fig. 3. Schematic diagram of (a) a spectral grating by D and W in Fig. 1(b) and (b) a spatial 
grating by two angled light beams k1 and k2 
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In both two-pulse and stimulated photon echoes, spontaneous emission noise due to 
population excitation should be a critical problem in quantum memory applications using 
single photons. The spontaneous emission noise problem, however, can be practically 
removed or alleviated if squeezed light or multiphoton entangled light (Marino et al., 2009) 
is used. Even in single photon-based quantum memory protocols, the spontaneous emission 
decay-caused quantum noise can be practically removed if an ultrashort pulse is used in a 
pencil-like geometry, where the pulse duration is still confined by optical inhomogenous 
width of the optical medium. Although Swiss and Calgary groups jointly criticised that 
photon echoes cannot be used for quantum memories due to the spontaneous emission 
noise, it fails with practical conditions in a rare-earth doped solids (Sangouard, N. et al., 
2010).  
In a rare-earth Pr3+ (0.05 at. %) doped Y2SiO5, which has been used for most modified 
photon echo based quantum memories (Afzelius et al., 2010, Ham, 2010d), total atom 
number per unit volume (cm3) is 4.7x1018 (Maksimov et al., 1969). Either in the two-pulse 
photon echoes or in the stimulated photon echoes, at least one half the ground atoms are 
excited and spontaneously resulting in quantum noise. Thus, it seems obvious to say that 
even one out of 1018 atoms could affect the single photon-based echo signal to destroy the 
quantum fidelity. However, in a pencil-like propagation geometry, whose light cross section 
is 1 mm in diameter, the interaction volume decreases to 10−6 cm3. For a 100 ps data pulse to 
cover a 4 GHz inhomogeneous width of the medium, the temporal ratio of the echo to the 
spontaneous decay time is 10−9. Owing to the symmetry of echo to the data pulse in a virtual 
sphere made by a 10 cm focal length lens, the area ratio for the echo signal to the noise on 
the sphere is 10−5. Thus, the effective number of spontaneously emitted photons affected to 
the echo signal is ~ 0.01. This number is nearly negligible to alter the photon echo fidelity.  

3. Modified photon echoes for quantum memory applications 
3.1 To solve the echo reabsorption problem in two-pulse photon echoes 
Due to Beer’s law, a trade-off exists between echo intensity and data absorption in an 
optically thick medium. If the echo propagation direction can be reversed to trace exactly 
along the data path, then no echo signals from the excited atoms interact with any 
nonexcited atoms due to the backward propagation scheme (Moiseev & Kroll, 2001). This 
idea has been experimentally demonstrated in 2009, where the echo enhancement factor 
even in an optically dilute medium is 15 times (Ham, 2009b). Another modified protocol to 
avoid echo reabsorption in the two-pulse photon echoes has been demonstrated by both a 
Lund group (Nilsson & Kroll, 2005) and Australian groups (Alexander et al., 2006; Hetet et 
al., 2008) using an electrical Stark effect. Instead of using π rephasing optical pulse, a pair of 
electrical stripe lines with opposing current flow spectrally controls the Stark effect, 
resulting in the same effect as the optical π rephsing pulse. Because the Rabi frequency of the 
electrical pulse is limited in most rare-earth doped solids, this electrical Stark method, 
however, limits the inhomogeneous width of atoms. Here, atom spectral width or 
inhomogeneous broadening determines the maximum amount of data, where the inverse of 
the spectral width determines the minimum pulse duration of the data D. Although echo 
efficiency can be maximized using this technique, the photon storage time is still limited by 
the optical phase decay time T2opt (in the order of 100 μs), which cannot satisfy the storage 
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time requirement for quantum repeaters (in the order of seconds) used for long-distance 
quantum communications. 

3.2 To solve short storage time in two-pulse photon echoes 
In a two-level system, the data pulse D excites optical coherence as mentioned in Fig. 1. Due 
to decoherence by optical phase decay time T2opt, however, individually excited coherence 
decreases as time elapses. Compared with optical coherence, spin coherence is much more 
robust, roughly ten times longer than the optical counterpart (Ham et al., 1997). Thus, if the 
optical coherence can be transferred into spin ensembles, longer storage time can be 
obtained (Moiseev & Kroll, 2001; Moiseev et al., 2003). In 1998, spin coherence excitation 
using temporally separated Raman optical pulses was investigated, where optical coherence 
between the optical pulses forming a Raman pulse plays a major role (Ham et al., 1998). The 
optical coherence in a time delayed Raman pulse is determined by inhomogeneous 
broadening of excited atoms. Contrary to general four-wave mixing processes, however, 
rephasing-based coherence transfer such as the stimulated photon echo is free from the 
optical coherence between control pulses. This will be discussed in more detail in Section 4. 

3.3 To solve the spontaneous emission noise problem 
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Fig. 4. Numerical simulations of AFC using five sets of two consecutive pulses. (a) pulse 
sequence, (b) excited state population, and (c) ground state population. Dotted: after the first 
pulse; Red: after the second pulse; Green: after the fourth pulse; Magenta: after the sixth 
pulse; Cyan: after the eight pulse; Black: after the tenth pulse in (a) 

The spontaneous emission noise originates in the excited atoms due to optical population 
decay. Especially for quantum memories, the data pulse D must be weak, where only a 
small number of atoms are excited. By the rephasing pulse R, however, population inversion 
results in potential spontaneous emission noise. To solve this problem, an atomic frequency 
comb (AFC) method was introduced by a Swiss group (de Riedmatten et al., 2008). In AFC, 
the excited atoms are freely removed by a spontaneous emission decay process during atom 
preparation by a long optical train composed of two consecutive weak pulse pairs, as shown 
in Fig. 4(a). By the way, in the stimulated photon echoes, two consecutive optical pulses D 
and W in Fig. 2(a) create a spectral grating on both ground and excited states. If a π/2 optical 
pulse set is used, then ideally the spectral grating forms a 50% duty cycle with an equal 
distribution of atoms [see Fig. 2(d)]. In AFC, many weak-pulse sets accumulate to form one 
spectral grating on top of another to sharpen it, so that the increased finesse can be obtained 
as shown in Fig. 4. At the same time the excited state atoms freely decay down to a third 
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state. Eventually no excited state population remains. Thus, a spontaneous emission-free 
optical system can be achieved. Regarding the spectral grating, the physics of AFC for the 
retrieval process is exactly the same as for the stimulated photon echoes as discussed (Ham, 
2010b). In AFC, however, a trade-off exists between high finesse and optical depth 
regarding enhanced retrieval efficiency. Even though the spectral grating can last up to spin 
population decay time, the storage time in AFC is determined by optical phase decay time 
T2opt (de Riedmatten et al., 2008), which is too short to quantum repeaters. 

3.4 To solve the excited state population loss in stimulated photon echoes 
This subsection somewhat overlaps with the modified two-pulse photon echoes in Section 3.2. 
In stimulated photon echoes, where longer storage time can be achieved, the excited atoms 
contain the same magnitude of coherence as the ground state. To avoid coherence loss due to 
optical population decay during the storage process, the excited atoms must be intentionally 
transferred into a third state for an on-demand halt, such as an auxiliary spin state. The 
coherence transfer technique suggested by the Lund group has been modified to transfer the 
spectrally modulated atoms from the excited state to the auxiliary spin state (Afzelius et al., 
2010; Ham, 2009b). Because spectral grating is free from the optical phase decay process, 
storage time can be lengthened if population decay-caused coherence loss is halted. Unlike 
rephased atoms in the two-pulse photon echoes, the phase decay-dependent coherence loss 
can be frozen in the stimulated photon echoes using spectral grating, explaining why the 
coherence in AFC echoes (Afzelius et al., 2010) and phase locked echoes (Ham, 2009b) are 
degraded by spin dephasing. This will be discussed in more detail in Section 4. 

4. Optical locking 
As discussed in previous sections, a coherence transfer method is used to modify photon 
echoes to lengthen storage time. Here, an auxiliary deshelving pulse set (B1 and B2) is used 
to transfer atom population between the excited state (|3>) and an auxiliary spin state (|2>) 
as shown in Figs. 5(a) and (b). However, the atom population transfer between the optical 
and auxiliary spin states creates a π/2 phase gain, which applies evenly to all individual 
atoms assuming all light pulses are in phase. By a round-trip population transfer (by B1 and 
B2), the total phase gain accumulated becomes π. With the rephasing process serving to give 
a π phase shift to all individual atoms, this population transfer-based π phase gain 
completely washes out the rephasing performed by R leading to no echo generation. To 
avoid the odd phase gain obtained in the coherence transfer process, a phase recovery 
condition was investigated for an optical locking technique by an Inha group, S. Korea 
(Ham, 2009b). To create a multiple 2π phase shift during the coherence transfer process, the 
second deshelving pulse area must be 3π in order to make another round-trip population 
transfer for an additional π phase shift. As a general rule, the phase recovery condition of 
the optical deshelving pulses satisfies the followings (Ham, 2010a): 

 
1 (4 3) ,B n πΦ = −  (1) 

 
2 (4 1) ,πΦ = −B n  (2) 

where n is an integer. Thus, the usage of an identical pulse set (Afzelius et al., 2010; Moiseev 
& Kroll, 2001) brings a contradiction, and violates the rephrasing process for echo 



 Numerical Simulations - Applications, Examples and Theory 

 

116 

generation. The observation of delayed AFC echoes under this contradiction, however, can 
be explained as a result of coherence leakage due to imperfect population transfer in an 
optically dilute sample (Ham, 2010c; Ham, 2010d). The detected delayed echo signals in this 
case may be from the conventional photon echoes or at least mixed echoes. The remnant 
atom-generated echo signals from the excited state due to the imperfect population transfer 
cannot be separated from the delayed echoes (Ham, 2010c).  
 

T

D,W,R

B1 B2E

|1>

|2>

|3>

0 τ T+τ

T

T

D
W

B1 B2
R

Echo

π 3π

1 2 3 4 5

Time (μs)

Im
(ρ

13
)

D

R

Re(ρ13)

d

δ=20 kHz

x10-3

1 2 3
45

W

Im
(ρ

1
3
)

a
b

c

Time (μs)

Im
(ρ

13
)

D

R

Re(ρ13)

d

δ=20 kHz

x10-3

1 2 3
45

W

Im
(ρ

1
3
)

a
b

c

(a) (b)

(c) (d)

 
Fig. 5. Optical locking applied to stimulated photon echo. (a) An energy level diagram 
interacting with optical locking pulses, where D, W, and R represent DATA, WRITE, and 
READ pulses, respectively. (b) Optical pulse sequence for (a). (c) Numerical simulations. 
Red: for (b); Blue: without B1 and B2; Green: for two-pulse photon echo as a reference. (d) 
Bloch vector model without population decay loss. The numbers represent those in (b) 
indicating the phase recovery condition 

In the experimental proofs of optical locking applied to both two-pulse photon echoes and 
stimulated photon echoes, the storage time extension of the photon echoes yields completely 
different results. First, in the two-pulse photon echoes, the storage time extension is 
governed by the overall spin dephasing rate, determined predominantly by spin 
inhomogeneous broadening, which is one tenth of the optical phase decay time (Afzelius et 
al., 2010; Ham, 2009b). As shown in the AFC and the phase locked echoes, this storage time 
extension is too short to solve the optical phase decay time constraint in conventional 
quantum memory protocols. With the stimulated photon echoes, however, the storage time 
extension is greatly increased due to the inherent property of optical phase locking resulting 
from the spectral grating based on population redistribution. The observed storage time 
extension, applying optical locking to the stimulated photon echoes in a rare-earth Pr3+ 
doped Y2SiO5 is five orders of magnitude longer than with the two-pulse photon echoes or 
AFC echoes (Ham, 2010d). 
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5. Phase matching in optical locking 
As discussed in Section 3.1, a backward propagation technique has been introduced to solve 
the echo reabsorption problem. In two-pulse photon echoes using a rephasing halt, the 
phase matching condition for echo signal has nothing to do with the rephasing pulse vector, 
but relates with the data D and the optical locking pulses B1 and B2 (Ham, 2009b). 
Conversely, in the stimulated photon echoes in Section 3.4, the phase matching condition for 
echo signals includes the Data, Write, and Read pulses only, where optical locking pulses do 
not contribute at all to the phase matching condition (Ham, 2010d). From the results of these 
two cases, the important conclusion regarding the phase matching using optical locking is 
that the storage mechanism in each system is completely different. Thus, optical locking can 
result in an immense storage time extension in the stimulated photon echoes. For 
comparison, Fig. 6 represents a schematic of using optical locking pulses to these different 
cases. Only Fig. 6(b) can be applied to any meaningful storage time extension potential for 
quantum repeaters because of long photon storage time.  
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Fig. 6. Schematic diagram for (a) phase locked echo applied to rephased atoms in two-pulse 
photon echoes, and (b) optically locked echo applied to spectral grating in stimulated 
photon echoes. R and R’ represent for rephasing (2π) and READ (π) pulses, respectively 

The physics of photon storage time extension in Fig. 6(b) is atom phase locking. This is 
accomplished by the spectral grating discussed in Fig. 2. This means that the phase 
grating excited by D is fully transferred into population grating by W, so that phase 
dependent decoherence is completely locked. This optical population information is 
coherently transferred into an auxiliary spin state |2> by B1 as optical-spin coherence 
conversion process in Fig. 5. In this stage, the spin dephasing becomes also an 
independent parameter to the coherence. Then, the last-long spin coherence is returned 
into state |3> by B2, and the optical population information is fully recovered into the 
optical phase grating by R’. In the experiment, a Korean group demonstrated one second 
storage time of photon echoes with 50% retrievcal efficiency (Ham, 2010d). Multi-photon 
entangled light or squeezed light could be the best candidate to this method. However, a 
single photon data pulse scheme can also be applied because of extremely low noise by 
the spontaneous emission decay process for a wide bandwidth, pencil-like propagation 
geometry as discussed above. 
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6. Conclusion 
For potential applications of long-distance quantum communications using quantum 
memories, modified photon echo protocols have been reviewed. Although AFC echoes and 
gradient echoes have successfully solved the intrinsically low retrieval efficiency and 
spontaneous emission noise problems in the original photon echoes, the ultrashort photon 
storage time limits the usage to quantum memory applications. Instead, optical locking 
applied to the stimulated photon echoes has been demonstrated to prove ultralong photon 
storage time limited by spin population decay time, which is much longer than the 
minimum required storage time for quantum repeaters. Unlike critical objection by Swiss 
and Calgary group, the intrinsic atom population-caused spontaneous emission noise 
problem in the conventional photon echoes, however, can not be a serious problem due to 
low noise to the echo signal in a wide-bandwidth scheme. The key idea of storage time 
extension is locking phase decay process to the storage mechanism as well as optical-spin 
coherence transfer. 
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1. Introduction 
Nonlinear mode-coupling (NLMC) is a well-established phenomenon which has been both 
experimentally verified (1; 2; 3; 4; 5) and theoretically characterized (6; 7; 8). NLMC has been 
an area of active research in all-optical switching and signal processing applications using 
wave-guide arrays (2; 3; 4; 5), dual-core fibers (1; 6; 7), and fiber arrays (9; 10). Recently, the 
temporal pulse shaping associated with NLMC has been theoretically proposed for the 
passive intensity-discrimination element in a mode-locked fiber laser (11; 12; 13; 14; 15; 16). 
The models derived to characterize the mode-locking consist of two governing equations: 
one for the fiber cavity and a second for the NLMC element (11; 12; 13; 16) (See Fig. 1). 
Although the two discrete components provide accurate physical models for the laser 
cavity, analytic methods for characterizing the underlying laser stability and dynamics is 
often rendered intractable. Thus, it is often helpful to construct an averaged approximation 
to the discrete components model in order to approximate and better understand the mode-
locking behavior. Indeed, this is the essence of Haus’ master mode-locking theory (17). Here, 
we develop an averaged approximation to the discrete laser cavity system based upon 
NLMC and characterize the resulting laser cavity dynamics. The resulting averaged 
equations are the equivalent of a master mode-locking theory for a laser cavity based upon 
nonlinear mode-coupling. 
From an applications point of view, high-power pulsed lasers are an increasingly important 
technological innovation as their conjectured and envisioned applications have grown 
significantly over the past decade. Indeed, this promising photonic technology has a wide 
number of applications ranging from military devices and precision medical surgery to 
optical interconnection networks (17; 18; 19; 20). Such technologies have placed a premium 
on the engineering and optimization of mode-locked laser cavities that produce stable and 
robust high-power pulses. Thus the technological demand for novel techniques for 
producing and stabilizing high-power pulses has pushed mode-locked lasers to the 
forefront of commercially viable, nonlinear photonic devices. The performance of the 
waveguide array mode-locking model developed is optimized so as to produce high-power 
pulses in both the anomalous and normal dispersion regimes. The stability of the mode-
locked solutions are completely characterized as a function of the cavity energy and the 
waveguide array parameters. 
In principle, operation of a mode-locked laser (17; 18) is achieved using an intensity 
discrimination element in a laser cavity with bandwidth limited gain (17). The intensity 
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Fig. 1. Two possible laser cavity configurations which include nonlinear mode-coupling 
from the waveguide array as the mode-locking element. The fiber coupling in and out of the 
waveguide array occurs at the central waveguide as illustrated. Any electromagnetic field 
which is propagated into the neighboring waveguides is ejected (attenuated) from the laser 
cavity. In addition to the basic setup, polarization controllers, isolators, and other 
stabilization mechanisms may be useful or required for successful operation. 

discrimination preferentially attenuates weaker intensity portions of individual pulses or 
electromagnetic energy. This attenuation is compensated by the saturable gain medium (e.g. 
Erbium-doped fiber). Pulse narrowing occurs since the peak of a pulse, for instance, 
experiences a higher net gain per round trip than its lower intensity wings. This pulse 
compression is limited by the bandwidth of the gain medium (typically ≈ 20 – 40 nm (17; 
18)). It is well understood that some form of cavity saturable absorption or intensity 
discrimination is fundamental to producing stable mode-locked pulses in a passive laser 
cavity (17; 19; 23). Such intensity discrimination can be produced by a number of methods 
ranging from placing a linear polarizer in a fiber ring laser (24; 25; 26; 27), using a coupler in 
a figure-eight laser to produce nonlinear interferometry (28; 29; 30; 31), placing a 
semiconductor saturable absorber in a linearcavity configuration (32; 33; 34), or using a 
combination of spectral filtering with polarization filters in a dispersion controlled cavity 
(35; 36; 37; 38). Alternatively, active mode-locking can be used to produce mode-locked 
pulses by directly modulating the output electromagnetic field or using an acousto-optic 
modulator (40; 41). In all these cases, an effective intensity discrimination is generated to 
stabilize and control the mode-locked pulses. A relatively new method for generating 
intensity discrimination in a laser cavity is due to the nonlinear mode-coupling generated in 
a waveguide array (11; 12; 13; 21; 22). Although nonlinear mode-coupling has been 
proposed previously as a theoretical method for producing stable mode-locking (14; 16; 15), 
the waveguide array is the only nonlinear mode-coupling device that has been 
experimentally verified to produce the requisite pulse shaping required for mode-locking 
(42). This intensity discrimination, which is often only a small perturbation to the laser 
cavity dynamics, can be achieved with NLMC due to the well-known discrete self-focusing 
properties of the NLMC element. Indeed, the NLMC dynamics in wave-guide arrays is well-
documented experimentally and provides the motivation for the current work. An overview 
of the techniques and methods which are capable of producing intensity discrimination and 
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mode-locking are reviewed in Refs. (17; 23). Although theoretical models have been 
developed towards understanding the mode-locking dynamics and stability of waveguide 
array based lasers (11; 12; 13; 21; 22), a characterization of its optimal performance and 
ability to generate high peak-power and high-energy pulses has not previously been 
performed. 
Figure 1 illustrates two possible mode-locking configurations in which the waveguide array 
provides the critical effect of intensity discrimination (saturable absorption). In Fig. 1(a) a 
linear cavity configuration is considered whereas in Fig. 1(b) a ring cavity geometry is 
considered. In either case, the waveguide array provides an intensity dependent pulse 
shaping by coupling out low intensity wings to the neighboring waveguides. This low 
intensity field is then ejected from the laser cavity. In contrast, high intensity portions of the 
pulse are retained in the central waveguide due to self-focusing. Thus high intensities are 
only minimally attenuated. This intensity selection mechanism generates the necessary 
pulse shaping for producing stable mode-locked pulse trains. 

2. Governing equations 
In addition to the cavity (fiber) propagation equations, theoretical models are required to 
describe the NLMC element. Although nonlinear mode-coupling can be achieved in at least 
three ways (13) (wave-guide arrays, dual-core fibers, and fiber arrays), we will consider only 
wave-guide arrays since they illustrate all the basic properties of NLMC based mode-
locking. The NLMC models are fundamentally the same, the only difference being in the 
number of modes coupled together. It should be noted that the NLMC theory presented 
here is an idealization of the dynamics of the full Maxwell’s equations. For very short 
temporal pulses (i.e. tens of femtoseconds or less), modifications and corrections to the 
theory may be necessary. 

2.1 Fiber propagation 
The theoretical model for the dynamic evolution of electromagnetic energy in the laser 
cavity is composed of two components: the optical fiber and the NLMC element. The pulse 
propagation in a laser cavity is governed by the interaction of chromatic dispersion, self-
phase modulation, linear attenuation, and bandwidth limited gain. The propagation is given 
by (17) 
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Q represents the electric field envelope normalized by the peak field power 2
0| ,|Q  and 

2 2| | .Q Q dT
∞

−∞
= ∫‖ ‖  Here the variable T represents the physical time in the rest frame of the 

pulse normalized by T0/1.76 where T0=200 fs is the typical full-width at half-maximum of 
the pulse. The variable Z is scaled on the dispersion length 2 2

0 0 0(2 ) /( )( /1.76)Z c D Tπ λ=  
corresponding to an average cavity dispersion 12 ps /km-nm.D≈  This gives the one-soliton 
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peak field power 2
0 0 eff 2 0| | /(4 ).Q A n Zλ π=  Further, n2 = 2.6×10–16 cm2/W is the nonlinear 

coefficient in the fiber, Aeff = 60 μm2 is the effective cross-sectional area, λ0 = 1.55 μm is the 
free-space wavelength, c is the speed of light, and γ = ΓZ0 (Γ = 0.2 dB/km) is the fiber loss. 
The bandwidth limited gain in the fiber is incorporated through the dimensionless 
parameters g and τ = (1/Ω2)(1.76/T0)2. For a gain bandwidth which can vary from 

2
020 40   ,  (2 / )nm cλ π λ λΔ = − Ω = Δ  so that τ ≈ 0.08–0.32. The parameter τ controls the spectral 

gain bandwidth of the mode-locking process, limiting the pulse width. 
It should be noted that a solid-state configuration can also be used to construct the laser 
cavity. As with optical fibers, the solid state components of the laser can be engineered to 
control the various physical effects associated with (1). Given the robustness of the mode-
locking observed, the theoretical and computational predictions considered here are 
expected to hold for the solid-state setup. Indeed, the NLMC acts as an ideal saturable 
absorber and even large perturbations in the cavity parameters (e.g. dispersion-
management, attenuation, polarization rotation, higher-order dispersion, etc.) do not 
destabilize the mode-locking. 

2.2 Nonlinear mode-coupling equations 
The leading-order equations governing the nearest-neighbor coupling of electromagnetic 
energy in the waveguide array is given by (2; 3; 4; 5; 8) 

 2
1 1( ) | | 0 ,n

n n n n
dAi C A A A A
d

β
ξ − ++ + + =  (3) 

where An represents the normalized amplitude in the nth waveguide (n = –N, … ,–1, 0, 1, … , 
N and there are 2N + 1 waveguides). The peak field power is again normalized by 2

0| |Q  as 
in Eq. (1). Here, the variable ξ is scaled by the typical waveguide array length (4) of  

0Z∗ =6 mm. This gives C = c 0Z∗  and β = (γ * 0Z∗ /γ Z0). To make connection with a physically 
realizable waveguide array (5), we take the linear coupling coefficient to be c = 0.82 mm–1 

and the nonlinear self-phase modulation parameter to be γ * = 3.6 m–1W–1. Note that for the 
fiber parameters considered, the nonlinear fiber parameter is γ = 2πn2/(λ0Aeff)=0.0017 m–1W–1. 
These physical values give C = 4.92 and β = 15.1. The periodic waveguide spacing is fixed so 
that the nearest-neighbor linear coupling dominates the interaction between waveguides. 
Over the distances of propagation considered here (e.g. 0Z∗  = 6 mm), dispersion and linear 
attenuation can be ignored in the wave-guide array. 
The values of the linear and nonlinear coupling parameters are based upon recent 
experiment (4). For alternative NLMC devices such as dual-core fibers or fiber arrays, these 
parameters can be changed substantially. Further, in the dual-core fiber case, only two 
wave-guides are coupled together so that the n=0 and n=1 are the only two modes present 
in the dynamic interaction. For fiber arrays, the hexagonal structure of the wave-guides 
couples an individual wave-guide to six of its nearest neighbors. Regardless of these model 
modifications, the basic NLMC dynamics remains qualitatively the same. 

2.3 Mode-locking via NLMC 
The self-focusing property of the wave-guide array is what allows the mode-locking to 
occur. The proto-typical example of the NLMC self-focusing as a function of input intensity 
is illustrated in Fig. 2a which is simulated with 41 (N = 20) waveguides (5) for two different 
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launch powers. For this simulation, light was launched in the center waveguide with initial 
amplitude A0(0) = 1 (top) and A0(0) = 3 (bottom). Lower intensities are clearly diffracted via 
nearest-neighbor coupling whereas the higher intensities remain spatially localized due to 
self-focusing. The spatial self-focusing can be intuitively understood as a consequence of (3) 
being a second-order accurate, finite-difference discretization of the focusing nonlinear 
Schrödinger equation (8). This fundamental behavior has been extensively verified 
experimentally (2; 3; 4; 5). 
When placed within an optical fiber cavity, the pulse shaping associated with Fig. 2a leads 
to robust and stable mode-locking behavior (11; 12; 13). The computational model 
considered in this subsection evolves (1) while periodically applying (3) every round trip of 
the laser cavity (See Fig. 1). The simulations assume a cavity length of 5 m and a gain 
bandwidth of 25 nm (τ ≈ 0.1). The loss parameter is taken to be γ = 0.1 which accounts for 
losses due to the output coupler and fiber attenuation. To account for the significant butt-
coupling losses between the waveguide array and the optical fiber, an additional loss is 
taken at the beginning and end of the waveguide array. 
Figure 2b demonstrates the stable mode-locked pulse formation over 40 round trips of the 
laser cavity starting from noisy initial conditions with a coupling loss in and out of the 
waveguide array of 20% and with a constant gain g0 = 0.7. Due to the excellent intensity 
discrimination properties of the waveguide array, the mode-locked laser converges 
extremely rapidly to the steady-state mode-locked solution. It is this generation of a 
stabilized mode-locked soliton pulse which the averaged model needs to reproduce. Note 
that the gain level g0 has been chosen so that only a single pulse per round trip is supported. 
Further, in Fig. 2b the initial condition is chosen for convenience only. 

  
                                         (a)                                                                           (b) 

Fig. 2. (a) The classic representation of spatial diffraction and confinement of 
electromagnetic energy in a waveguide array considered by Peschel et al. (5). In the top 
figure, the intensity is not strong enough to produce self-focusing and confinement in the 
center waveguide, whereas the bottom figure shows the self-focusing due to the NLMC. 
Note that light was launched in the center waveguide with initial amplitude a0(0) = 1 (top) 
and a0(0) = 3 (bottom). (b) Stable mode-locking using a waveguide array with g0 = 0.7. The 
mode-locking is robust to the specific gain level, cavity parameter changes, and cavity 
perturbations. Here is is assumed that a 20% coupling loss occurs at the input and output of 
the waveguide array due to butt-coupling (See Fig. 1b). 
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3. Pulse-shaping and X-waves in normal dispersion cavities 
To illustrate the pulse shaping properties and the spontaneous formation of an X-wave 
structure in the normal GVD regime (43), we integrate numerically the proposed infinite-
dimensional map by alternating Eqs. (1) and (2) for a length Lf and Eqs. (3) for a length La. 
Thus Q of Eq. (1) becomes A0 in Eq. (3) when entering or leaving the waveguide array. 
Importantly, upon exiting the WGA, the system is strongly perturbed since the energy from 
all the neighboring channels (Ai where i = ±1, 2, 3, ...) are expelled from the laser cavity. 
Nevertheless, we observe the formation of a stable mode-locked pulse which shows the field 
A0 at the output. The white-noise is quickly reshaped (over 10 round trips) into the mode-
locking pulse of interest. Thus the mode-locking pulse acts as a global attractor to the laser 
cavity system. The simulation further implies that the mode-locking behavior is stable in the 
sense of Floquet (50) since it is a periodic solution in the cavity. The spectral shape clearly 
indicates that the mode-locking pulse is highly chirped, in analogy to what is found for 1D 
(no spatial dynamics) solutions of the master mode-locking equations in the normal GVD 
regime (17). 
The overall electromagnetic field actually experiences a strong spatio-temporal reshaping 
per cavity round trip that involves stable coupling of a significant portion of the incoming 
WGA power to neighboring waveguides with nontrivial timing. The input and output time-
domain intensities in all the waveguides, once nonlinear mode-locking has been achieved 
are displayed in Fig. 3. As shown, the interplay of accumulated GVD, discrete diffraction, 
and nonlinearity drives the field into a self-organized nonlinear X-waves, whose main 
signature is a central peak accompanied by pulse splitting occurring in the external 
channels. To show more clearly the X-shape of the mode-locking wave-packet generated at 
the ouput (B) of the waveguide array, Fig. 4 depicts a topographical plot of the time-domain 
(top) of all the waveguides. The distinctive X-wave structure is clearly evident. To lend 
further evidence to the existence of the X-wave structure, we plot the 2D Fourier transform 
of the time-domain. The right panel of Fig. 4 demonstrates that the spectrum is also X-
shaped, as expected for X-waves (45; 46). 
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Fig. 3. Input (A) and output (B) temporal power distribution in the WGA. At the input, 
energy is only launched in the center waveguide (A0), while at the output the energy has 
spontaneously formed into the X-wave configuration involving about eleven guides. Only 
energy in the A0 mode is preserved upon re-entry into the fiber section of the cavity. 
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Fig. 4. Time-domain profiles and its two-dimensional Fourier transform at the output (B) in 
the WGA after steady-state mode-locking has been achieved. The X-wave structure is clearly 
seen in the topographical plot (top) of the output time-domain profiles of Fig. 3. Further, the 
expected wavenumber versus frequency dependence in the X-wave is shown in the Fourier 
domain (bottom). 
 

-20-1001020

0
30

60

0
0.25

0.5

Time TRound Trips

|A
1|

-20-1001020

0
30

60

0
0.25

0.5

Time TRound Trips

|A
3|

-20-1001020

0
30

60

0
0.25

0.5

Time TRound Trips

|A
2|

-15 -10 -5 0 5 10 15
0

0.5
1

1.5
2

Waveguide

Po
w

er

 
Fig. 5. Evolution to the steady-state output (B) in the neighboring waveguides A1, A2, and 
A3. The bottom right graph is a bar graph of the steady-state distribution of energy 

2( | | )jA dT∞
−∞∫  in the waveguides. The symmetry about the center waveguide results from 

the initial condition being applied only in this waveguide. Note the significant re-
distribution of energy in the waveguides. 

To further characterize the mode-locking X-wave dynamics, Fig. 5 illustrates the mode-
locking to the global attractor in the neighboring waveguides A1, A2 and A3. Once again, 
generic white-noise initial data quickly self-organize into the steady-state mode-locking 
pattern. Note the characteristic pulse splitting (dip in the power) in the neighboring 
waveguides. This shows, in part, the generated X-wave structure. The final panel in Fig. 5 
gives the energy 2( | | )jA dT∞

−∞∫  in each of the waveguides and shows that a significant 
portion (more than 50%) of the electromagnetic energy has coupled to the neighboring 
waveguides. This is in sharp contrast to mode-locking with anomalous GVD for which less 
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than 6% is lost to the neighboring waveguides (13) and no stable X-waves are formed. The 
significant loss of energy in the cavity to the neighboring waveguides is compensated by the 
gain section and shows that the laser cavity is a strongly damped-driven system. 

4. Averaged evolution models 
The principle concept behind the averaging method presented here is to derive a single, self-
consistent, and asymptotically correct representation of the dynamics in the laser cavity. In 
order to do so, we require an equation of evolution for each individual wave-guide which 
accounts for both the fiber propagation and wave-guide array coupling. Thus the term 
averaged equations refers to the governing set of equations which account for the average 
effect of dispersion, self-phase modulation, mode-coupling, attenuation, and bandwidth-
limited gain in the wave-guide array based laser cavity configuration of Fig. 1. The 
following important guidelines must be met: 
• Individual wave-guides are subject to chromatic dispersion and self-phase modulation. 
• Coupling between neighboring wave-guides is a linear process with coupling 

coefficient C. 
• The central wave-guide A0 is subject to bandwidth-limited gain given in (1) and (2) 

since this wave-guide is coupled back into the fiber laser cavity. No other wave-guides 
experience gain due to amplification. 

• The wave-guides neighboring the central wave-guide experience large attenuation due 
to the fact that they do not couple back into the laser cavity. 

These simple guidelines, along with the governing equations (1), (2) and (3), allow for an 
asymptotically correct averaged description of the laser cavity dynamics. 
Figure 6 shows a schematic of the averaging process which includes five wave-guides. 
Specifically, each wave-guide Ai is subject to two distinct physical propagation regions: the 
optical fiber region and the wave-guide array region. The period L of the laser cavity 
depicted theoretically in Fig. 6 is established with mirrors as demonstrated in Fig. 1. In the 
averaging process, only the center wave-guide A0 experiences bandwidth-limited gain as 
given by (1) with (2) since this wave-guide contains the only optical fiber which has an 
Erbium doped section of fiber and physically butt-couples in and out of the wave-guide 
array (see Fig. 1). The optical fibers A±1 and A±2 representing the connection between wave-
guide arrays are fictitious and only for averaging purposes. Indeed, as demonstrated in Fig. 
1 the energy in the neighboring wave-guide arrays are allowed to escape the cavity into free-
space. Put another way, one can think of the optical fiber propagation links in A±1 and A±2 
in Fig. 6 as being governed by (1) with large attenuation but no gain, no dispersion, and no 
self-phase modulation. It should be noted that the attenuation in the neighboring wave-
guides A±1 may not be too large since the optical fiber radius is significantly larger than the 
wave-guide array diameters. Thus the butt-coupling process illustrated in Fig. 1b can 
transfer significant energy in A±1 from one round-trip to the next. 
The averaging is then accomplished by applying the principles of the split-step method, or 
Strang splitting, in reverse (44), i.e. we take the evolution for the two components of the 
laser cavity and fuse them into a single governing equation. In its simplest form, the split-
step method decomposes a partial differential equation into two principle operators: 

 1 2( ) ( )A N A N A
Z

∂
= +
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 (4) 
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Fig. 6. Schematic of averaging process. Each wave-guide Ai is subject to two distinct physical 
propagation regions: the optical fiber region and the wave-guide array region. Here the 
period of the laser cavity L is determined by the mirror locations and fiber lengths in Fig. 1. 
The averaging procedure used is equivalent to the split-step method in reverse (44) which 
holds asymptotically for L 1, i.e. a short cavity length. 

where N1 and N2 are in general nonlinear operators which characterize two fundamentally 
different behaviors or phenomena (44). Here, N1 and N2 would represent the optical fiber 
propagation (1) and wave-guide array evolution (3) respectively. The split-step method then 
solves (4) numerically by decomposing it into two pieces over a single forward-step ΔZ 1: 

 1( )A N A
Z

∂
=

∂
 (5a) 

 2( ).A N A
Z

∂
=

∂
 (5b) 

Thus over each step ΔZ, the evolution is separated into two distinct evolution equations. 
Thus to advance the solution, (5a) would be solved for a ΔZ forward-step. The final solution 
of this step would be the initial data for (5b) which would also be advanced ΔZ. The two 
step process (5) is asymptotically equivalent to (4) provided the cavity period L, which is 
effectively ΔZ, is sufficiently small (44). The details of the split-step method and its 
asymptotic validity are outlined by Strang (44) and will not be considered here. In essence, 
the averaged equations account for the average dispersion, self-phase modulation, 
attenuation, gain and coupling which occurs over a single round trip of the laser cavity. 
The only remaining modeling issue is the choice in the number of wave-guides (n = 2N + 1, 
see below (3)) to be considered in the averaged equations. From a practical viewpoint, each 
additional wave-guide considered implies the coupling of the system to another partial 
differential equation. Thus it is beneficial in the model to consider the minimal set of 
coupled equations which allow for the correct mode-locking dynamics. From a physical 
standpoint, the amount of energy in the wave-guides neighboring the central wave-guide is 
only a small fraction of the total cavity energy (13). This suggests that a small number of 
wave-guides can be considered. 

4.1 Average cavity dynamics 
When placed within an optical fiber cavity, the pulse shaping mechanism of the waveguide 
array leads to stable and robust mode-locking (11; 12; 13). In its most simple form, the 
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nonlinear mode-coupling is averaged into the laser cavity dynamics (21). Numerical 
simulations have shown that the fundamental behavior in the laser cavity does not change 
when considering more than five waveguides (21). It is interesting to note that if a three 
waveguide system is considered (one central and a neighboring waveguide on each side), 
mode-locking is not achieved. This can be explained due to the large attenuation required in 
the neighboring waveguides. This attenuation effectively reduces the coupling to the central 
waveguide which is critical for stable and robust mode-locking. Although it is not possible 
to consider the three waveguide model, further simplifications to the five waveguide model 
can be achieved by making use of the symmetric nature of the coupling and lower 
intensities in the neighboring waveguides (22). The resulting approximate evolution 
dynamics describing the waveguide array mode-locking is given by (22) 
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where the v(z, t) and w(z, t) fields model the electromagnetic energy in the neighboring 
channels of the waveguide array. Note that the equations governing these neighboring fields 
are ordinary differential equations. All fiber propagation and gain effects occur in the central 
waveguide. It is this approximate system which will be the basis for our analytic findings. In 
fact, Eq. (6) provides a great deal of analytic insight due to its hyperbolic secant solutions 

 1( , ) sech , iA i zu z t t e θη ω +=  (7) 

where the solution amplitude η, width ω, chirp parameter A, and phase θ satisfy a set of 
nonlinear equations (22). Further, this solution forms from any arbitrary initial condition, 
thus acting as a global attractor to the system. This is in contrast to the master mode-locked 
equation (17) for which initial conditions must be carefully prepared to observe stable 
mode-locking. 
In the anomalous dispersion regime (D = 1 > 0), solitonlike pulses can be formed as a result 
of the balance of anomalous dispersion and positive (i.e. self-focusing) nonlinearity. 
Typically mode-locked fiber lasers operating in the anomalous dispersion regime are limited 
in pulse energy by restrictions among the soliton parameters which is often referred to as 
the soliton area theorem (38). However, ultra-short, nearly transform-limited output pulses 
are desired for many applications. This encourages exploration of possible laser cavity 
configurations that could potentially maximize pulse energy in the anomalous dispersion 
regime. Figure 7 (left panel) shows the typical time- and spectral-domain mode-locking 
dynamics of the waveguide array model (6) in the anomalous dispersion regime. Here the 
equation parameters are β = 8, C = 5, γ 0 = γ 1 = 0, γ 2 = 10, g0 = 1.5, and e0 = 1. Stable and 
robust mode-locking is achieved from initial white-noise after z ~ 100 units. The steady state 
pulse solution has a short pulse duration and is nearly transform-limited, which is in 
agreement with experiments performed in the anomalous dispersion regime (17). 
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Fig. 7. Typical (a) time and (b) spectral mode-locking dynamics of the waveguide array 
mode-locking model Eq. (6) in the anomalous (left) and normal (right) dispersion regime 
from initial white-noise. For anomalous dispersion, the steady state solution is a short, 
nearly transform-limited pulse which acts as an attractor to the mode-locked system. For 
normal dispersion, the steady state solution is a broad, highly-chirped pulse which acts as 
an attractor to the mode-locked system. 
Mode-locking in the normal dispersion regime (D = –1 < 0) relies on non-soliton processes 
and has been shown experimentally to have stable high-chirped, high-energy pulse 
solutions (35; 36). Figure 7 (right panel) shows the typical time and spectral mode-locking 
dynamics of the waveguide array model (6) in the normal dispersion regime. Here the 
equation parameters are β = 1, C = 3, γ 0 = 0, γ 1 = 1, γ 2 = 10, g0 = 10, and e0 = 1. In contrast to 
mode-locking in the anomalous dispersion regime, the mode-locked solution is quickly 
formed from initial white-noise after z ~ 10 units. The mode-locked pulse is broad in the 
time domain and has the squared-off spectral profile characteristic of a highly chirped pulse 
(A  1). These characteristics are in agreement with observed experimental pulse solutions 
in the normal dispersion regime (33; 35; 36). Although these properties make the pulse 
solutions impractical for photonic applications, the potential for high-energy pulses from 
normal dispersion mode-locked lasers has generated a great deal of interest (38; 39; 47; 48). 

5. Optimizing for high-power 
As already demonstrated, the waveguide array provides an ideal intensity discrimination 
effect that generates stable and robust mode-locking in the anomalous and normal 
dispersion regimes. The aim here is to try to optimize (maximize) the energy and peak 
power output of the laser cavity. Intuitively, one can think of simply increasing the pump 
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energy supplied to the erbium amplifier in the laser cavity in order to increase the output 
peak power and energy. However, the mode-locked laser then simply undergoes a 
bifurcation to multi-pulse operation (22). Thus, for high-energy pulses, it becomes 
imperative to understand how to pump more energy into the cavity without inducing a 
multi-pulsing instability. 
In what follows the stability of single pulse per round trip operation in the laser cavity is 
investigated as a function of the physically relevant control parameters. Two specific 
parameters that can be easily engineered are the coupling coefficient C and the loss 
parameter γ 1. Varying these two parameters demonstrates how the output peak power and 
energy can be greatly enhanced in both the normal and anomalous cavity dispersion 
regimes. 
In order to assess the laser performance, the stability of the mode-locked solutions must be 
calculated. A standard way for determining stability is to calculate the spectrum of the 
linearization of the governing equations (6) about the exact mode-locked solution (7) (22; 
49). The spectrum is composed of two components: the radiation modes and eigenvalues. 
The radiation modes are determined by the asymptotic background state where (u,v,w) = (0, 
0,0), whereas the eigenvalues are associated with the shape of the mode-locked solution (7). 
Details of the linear stability calculation and its associated spectrum are given in (22), while 
an explicit representation of the associated eigenvalue problem and its spectral content is 
given in (49). As in (22), a numerical continuation method is used here in conjunction with a 
spectral method for determining the spectrum of the linearized operator to produce both the 
solution curves and their associated stability. Our interest is in simultaneously finding stable 
solution curves and maximizing their associated output peak power and energy as a 
function of the parameters C and γ1. In the normal and anomalous dispersion regimes, stable 
high peak power curves can be generated by increasing the input peak power via g0. For the 
anomalous dispersion regime, while the peak power increase is a marginal ≈20%, the energy 
output can be doubled. For normal dispersion, the peak power increase is four fold with an 
order of magnitude increase in the output energy. These solutions then undergo a Hopf 
bifurcation before producing multi-pulse lasing (22). 
Two types of instabilities are illustrated: (a) the instability of the bottom solution branch 
(dashed in Figs. 8(a)) when below the saddle node bifurcation point, and (b) the onset of the 
Hopf instability that leads to oscillatory, breathing solutions preceding the onset of the 
multi-pulsing instability. As is clearly demonstrated, the small-amplitude pulse below the 
saddle node bifurcation has one unstable eigenvalue whose eigenfunction is of 
approximately the form (7). This eigenfunction grows exponentially until the solution settles 
to the steady-state mode-locked solution. In contrast, the Hopf bifurcation generates two 
unstable modes at a prescribed frequency that leads to pulse oscillations (22). 

5.1 Coupling coefficient C 
To explore the laser cavity performance as a function of the coupling constant C, we 
consider the solution curves and their stability for a number of values of the coupling 
constant. Figure 8 shows the solution curves (η versus g0) for both the anomalous and 
normal dispersion regimes as a function of the increasing coupling constant C. This figure 
demonstrates that an increased coupling constant allows for the possibility of increased 
peak power from the laser cavity. In the case of anomalous mode-locking, the peak power 
increase is only ≈15%, while for normal mode-locking the peak power is nearly doubled by 
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Fig. 8. Bifurcation structure of the mode-locked solution in the (a) anomalous and (b) normal 
dispersion regimes as a function of the coupling parameter C (left) and loss parameter γ1 
(right). The solid lines indicate stable solutions while the dotted lines represent the unstable 
solutions. For both anomalous and normal dispersion, an increase in the coupling constant 
leads to higher peak power pulses. The increase is ≈ 15% for anomalous dispersion and  
≈ 100% for normal dispersion. There is also an optimal loss γ1 for enhancing the output peak 
power by ≈ 25%. The circles approximately represent the highest peak power pulses 
possible for a given coupling or loss constant. The associated stable mode-locked pulse 
profile as a function of C is represented in Fig. 9 and the gain parameter is g0 = 0.8, 4.5 and 7 
for anomalous dispersion and g0 = 19,60 and 100 for normal dispersion. The associated stable 
mode-locked pulse profile as a function of γ1 is represented in Fig. 9 and the gain parameter 
is g0 = 2.1,7 and 4.2 for anomalous dispersion and g0 = 15,30 and 17 for normal dispersion. 

increasing the linear coupling. The steady-state solution profiles are exhibited in Fig. 9 and 
verify the increased peak power associated with the increase in coupling constant C. 
Although the peak power is increased for the output pulse, it comes at the expense of 
requiring to pump the laser cavity with more gain. Although this makes intuitive sense, it 
should be recalled that the peak power and pulse energy levels are being increased without 
the transition to multi-pulse instabilities in the laser cavity. 

5.2 Neighboring waveguide loss γ 1 
To explore the laser cavity performance as a function of the loss constant γ1, we consider the 
solution curves and their stability for a number of values of the loss constant. Figure 8 
shows the solution curves (η versus g0) for both the anomalous and normal dispersion 
regimes as a function of the increasing loss constant γ1. This figure demonstrates that there is 
an optimal amount of loss in the neighboring waveguide that allows for the possibility of 
increased peak power from the laser cavity. In both the anomalous and normal cavities, the 
peak power increase is ≈ 25%. The steady-state solution profiles are exhibited in Fig. 9 and 
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Fig. 9. Stable steady-state output pulse profiles for the (a) anomalous and (b) normal 
dispersion regimes corresponding to the circles in Fig. 8. As the coupling constant C 
increases (left figures), the peak power is increased ≈ 15% for anomalous dispersion and 
 ≈ 100% for normal dispersion. The gain parameter is g0 = 0.8, 4.5 and 7 for anomalous 
dispersion and g0 = 19,60 and 100 for normal dispersion. As the loss constant γ1 increases 
(right figures), the peak power is increased ≈ 25% for both anomalous and normal 
dispersion. The gain parameter is g0 = 2.1,7 and 4.2 for anomalous dispersion and g0 = 15,30 
and 17 for normal dispersion. 

verify the increased peak power associated with the increase in coupling constant γ1. 
Although the peak power is increased for the output pulse, it comes at the expense of 
requiring to pump the laser cavity with more gain. Again recall that the peak power and 
energy levels are being increased without the transition to multi-pulse instabilities in the 
laser cavity. 

5.3 Optimal design 
Combining the above analysis of the mode-locking stability, we generate a three-
dimensional surface representation of the stable mode-locking regimes. Figure 10 
demonstrates the behavior of the stable solution curves as a function of g0 (gain saturation 
parameter) versus C (coupling coefficient) versus 2η2/ω (the pulse energy). Both the 
anomalous and normal dispersion regimes are represented. Unlike Fig. 8, which represent 
the pulse intensities, here the pulse energy is represented and the pulse width parameter 
ω accounted for. Figure 10 (top) illustrates the stable solution curves for anomalous 
dispersion. It is clear that, as g0 and C are increased, higher energy pulses can be achieved.  
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Fig. 10. The energy of stable mode-locked pulses is shown as a function of gain g0 and 
coupling strength C for γ1 = 1.5. Top is for anomalous and bottom is for normal dispersion. 
Note that by judiciously choosing the waveguide parameters, the energy output can be 
doubled in the anomalous regime and increased by an order of magnitude in the normal 
regime. 

Indeed, the energy is nearly doubled for judicious choices of the parameters. Note that, 
although the energy is nearly doubled, the peak power only increases ≈20%. Likewise, Fig. 
10 (bottom) illustrates the stable solution curves for normal dispersion. It is again clear that, 
as g0 and C are increased, higher energy pulses can be achieved. In addition though, for low 
C values, there exists a small region of parameter space where high-energy pulses can be 
generated. However, the low C value, high-energy pulses are tremendously broad in the 
time domain and lose many of the technologically attractive and critical features of ultra-fast 
mode-locking. 

6. Suppression of multi-pulsing for increased pulse energy 
The onset of multi-pulsing as a function of increasing laser cavity energy is a well-known 
physical phenomenon (17; 23) that has been observed in a myriad of theoretical and 
experimental mode-locking studies in both passive and active laser cavities (51; 22; 52; 53; 
54; 55; 56; 57; 58). One of the earliest theoretical descriptions of the multi-pulsing dynamics 
was by Namiki et al. (51) in which energy rate equations were derived for the averaged 
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cavity dynamics. More recently, a full stability analysis of the mode-locking solutions was 
performed showing that the transition dynamics between N and N + 1 pulses in the cavity 
exhibited a more complex and subtle behavior than previously suggested (22). Indeed, the 
theory predicted, and it has been confirmed experimentally since, that near the multi-
pulsing transitions, both periodic and chaotic behavior could be observed as operating states 
of the laser cavity for a narrow range of parameter space (22; 52; 53). Here we generalize the 
energy rate equation approach to waveguide arrays (51) and develop an iterative technique 
that provides a simple geometrical description of the entire multi-pulsing transition 
behavior as a function of increasing cavity energy. The model captures all the key features 
observed in experiment, including the periodic and chaotic mode-locking regions (52), and it 
further provides valuable insight into laser cavity engineering for maximizing performance, 
i.e. enhancing the mode-locked pulse energy. 
The multi-pulsing instability arises from the competition between the laser cavitie’s 
bandwidth constraints and the energy quantization associated with the resulting mode-
locked pulses, i.e. the so-called soliton area theorem (51). Specifically, as the cavity energy is 
increased, the resulting mode-locked pulse has an increasing peak power and spectral 
bandwidth. The increase in the mode-locked spectral bandwidth, however, reaches its limit 
once it is commensurate with the gain bandwidth of the cavity. Further increasing the cavity 
energy pushes the mode-locked pulse to an energetically unfavorable situation where the 
pulse spectrum exceeds the gain bandwidth, thereby incurring a spectral attenuation 
penalty. In contrast, by bifurcating to a two-pulse per round trip configuration, the pulse 
energy is then divided equally among two pulses whose spectral bandwidths are well 
contained within the gain bandwidth window. 

6.1 Multi-pulsing transition 
The basic mode-locking dynamics illustrated in Fig. 7 is altered once the gain parameter g0 is 
increased. In particular, the analysis of the last section suggests that the steady-state pulse 
solution of Fig. 7 first undergoes a Hopf bifurcation before settling to a two pulse per round 
trip configuration. However, between the Hopf bifurcation and the stable two-pulse 
configuration there is a region of chaotic dynamics. Figure 11 shows a series of mode-
locking behaviors which occur between the steady-state one pulse per round trip and the 
two pulses per round trip configurations. The gain values in this case are progressively 
increased from g0 = 2.3 to g0 = 2.75. As the dynamics change from one to two pulses per 
round trip steady-state, oscillatory and chaotic behaviors are observed. To characterize this 
behavior, we consider the gain dynamics g(Z) of Eq. (2) in Fig. 12 which correspond to the 
evolution dynamics shown in Fig. 11. The gain dynamics provides a more easily 
quantifiable way of observing the transition phenomena. 
At a gain value of g0 = 2.3, the stable one-pulse configuration is observed in the top left panel 
of Fig. 11. The detailed evolution of this steady-state mode-locking process is shown in Fig. 
7. The top right panel and middle left panel of Fig. 11 show the dynamics for gain values of 
g0 = 2.35 and g0 =2.5 which are above the predicted threshold for a Hopf bifurcation. The 
resulting mode-locked pulse settles to a breather. Specifically, the amplitude and width 
oscillate in a periodic fashion. The oscillatory behavior is more precisely captured in Fig. 12 
which clearly show the period and strength of oscillations generated in the gain g(Z). Note 
that as the gain is increased further, the oscillations become stronger in amplitude and 
longer in period. To further demonstrate the behavior near the Hopf bifurcation, we 
 



Waveguide Arrays for Optical Pulse-Shaping, Mode-Locking and Beam Combining   

 

137 

-10 -5 0 5 10 0

2000

4000

0

2

4

Z
T

|A
0|

-10 -5 0 5 10 0

2000

4000

0

2

4

Z
T

|A
0|

-10 -5 0 5 10 0

2000

4000

0

2

4

Z
T

|A
0|

-10 -5 0 5 10 0

2000

4000

0

2

4

Z
T

|A
0|

-10 -5 0 5 10 0

2000

4000

0

2

4

Z
T

|A
0|

-10 -5 0 5 10 0

2000

4000

0

2

4

Z
T

|A
0|

 
Fig. 11. Dynamic evolution and associated bifurcation structure of the transition from one 
pulse per round trip to two pulses per round trip. The corresponding values of gain are  
g0 = 2.3, 2.35, 2.5, 2.55, 2.7, and 2.75. For the lowest gain value only a single pulse is present. 
The pulse then becomes a periodic breather before undergoing a ”chaotic” transition 
between a breather and a two-pulse solution. Above a critical value (g0 ≈ 2.75), the two-pulse 
solution is stabilized. The corresponding gain dynamics is given in Fig. 12. 
compute in Fig. 13 the Fourier spectrum of the oscillatory gain dynamics for g0 = 2.35, 2.5 
and 2.55. The dominant wavenumber of the Fourier modes for g0 = 2.35 near onset is 10.07, 
which is in very good agreement with the theoretical prediction of 12.06 derived in Sec. 3.3 
for the Hopf bifurcation. Increasing the gain further leads to an instability of the breather 
solution. The middle right and bottom left panels of Fig. 11, which have gain values of g0 = 
2.55 and g0 = 2.7, illustrate the possible ensuing chaotic dynamics. Specifically, for a gain of 
g0 = 2.55, the mode-locking behavior alternates between the breather and a two pulse per 
round trip state. The alternating between these two states occurs over thousands of units in 
Z. As the gain is further increased, the cavity is largely in the two-pulse per round trip 
operation with an occasional, and brief, switch back to a one-pulse per round trip 
configuration. Figure 12 illustrates the two chaotic behaviors in this case. Note the long 
periods of chaotic behavior for g0 = 2.5 and the short bursts of chaotic behavior for g0 = 2.7. 
Above g0 = 2.75, the solution settles quickly to the two pulse per round trip configuration as 
shown in the bottom right panel of Fig. 11, which is therefore the new steady-state for the 
system. Thus the theoretical predictions of Sec. 3 capture the majority of the transition aside 
from the small window of parameter space for which the chaotic behavior is observed. 
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Fig. 12. Gain dynamics associated with the transition from one pulse per round trip to two 
pulses per round trip for the temporal dynamics given in Fig. 11. The left column is the full 
gain dynamics for Z ∈ [0,4000], while the right column is a detail over Z = 10 or Z = 50 units, 
for values of gain equal to g0 =2.3, 2.35, 2.5, 2.55, 2.7, and 2.75. Initially a single pulse is 
present (top panel), which becomes a periodic breather (following two panels) before 
undergoing a ”chaotic” transition between a breather and a two-pulse solution (following 
two panels) until the two-pulse is stabilized (bottom panel) at g0 ≈ 2.75. 
 

Bistability between the one- and two-pulse solutions in the laser cavity is easily 
demonstrated. The numerical simulations performed for this figure involve first increasing 
and then decreasing the bifurcation parameter g0. Specifically, the initial value of g0 =0.9 is 
chosen so that only the one-pulse solution exists and is stable. The value of g0 is then 
increased to g0 = 2.3 where the one-pulse solution is still stable. Increasing further to g0 = 2.55 
excites the Hopf bifurcation demonstrated in Figs. 11-13. Increasing to g0 = 2.75 shows the 
two-pulse solution to be stable. The parameter g0 is then systematically decreased to g0 = 0.9, 
2.3 and 2.55. Bistability is demonstrated by showing that at g0 = 2.3 and g0 = 2.55 both a one-
pulse and two-pulse solution are stable. Dropping the gain back to g0 = 0.9 reproduces the 
one-pulse solution shown in the top left panel. The top right panel shows the location on the 
solution curves (circles) where the one- and two-pulse solutions are both stable. It should be 
noted that the harmonic mode-locking is not just bistable. Rather, for a given value of the 
gain parameter g0, it may be possible to have one-, two-, three-, four- or more pulse 
solutions all simultaneously stable. The most energetically favorable of these solution 
branches is the global-attractor of white-noise initial data. 
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Fig. 13. Fourier spectrum of gain dynamics oscillations as a function of wavenumber. The 
last Z = 51.15 units (which gives 1024 data points) are selected to construct the time series of 
the gain dynamics and its Fourier transform minus its average. This is done for the data in 
Figs. 11 and 12 for g0 = 2.35, 2.5 and 2.55. 

6.2 Saturating gain dynamics 
We will make the same assumptions as those laid out in Namiki et al. (51) and will simply 
consider a model for the saturating gain as well as the nonlinear cavity losses. The two 
primary components of loss and gain are included. The saturating gain dynamics results in 
the following differential equation for the gain (17; 23; 51): 

 0

11 /
j

jN
j satj

dE g E
dZ E E

=

=
+ ∑

 (8) 

where Ej is the energy of the jth pulse (j = 1, 2, … N), g0 measures the gain pumping strength, 
and Esat is the saturation energy of the cavity. The total gain in the cavity can be controlled 
by adjusting the parameters g0 or Esat. In what follows here, the cavity energy will be 
increased by simply increasing the cavity saturation parameter Esat. This increase in cavity 
gain can equivalently be controlled by adjusting g0. These are generic physical parameters 
that are common to all laser cavities, but which can vary significantly from one cavity 
design to another. The parameter N is the number of potential pulses in the cavity (22). The 
mode-locked pulses are assumed to be identical as observed in both theory and experiment 
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(51; 22; 52; 53; 54; 55; 56; 57; 58). This parameter, which is critical in the following analysis, 
helps capture the saturation energy received by each individual pulse. 

6.3 Nonlinear loss (saturable absorption) 
The nonlinear loss in the cavity, i.e. the saturable absorption or saturation fluency curve, 
will be modeled by a simple transmission function: 

 ( ) .out in inE T E E=  (9) 

The actual form of the transmission function T(Ein) can vary significantly from experiment to 
experiment, especially for very high input energies. For instance, for mode-locking using 
nonlinear polarization rotation, the resulting transmission curve is known to generate a 
periodic structure at higher intensities. Alternatively, an idealized saturation fluency curve 
can be modified at high energies due to higher-order physical effects. As an example, in 
mode-locked cavities using wageguide arrays (22), the saturation fluency curve can turn 
over at high energies due to the effects of 3-photon absorption, for instance. Consider the 
rather generic saturation curve as displayed in Fig. 14. This shows the ratio of output to 
input energy as a function of the input energy. It is assumed, for illustrate purposes, that 
some higher-order nonlinear effects cause the saturation curve to turn over at high energies. 
This curve describes the nonlinear losses in the cavity as a function of increasing input 
energy for N mode-locked pulses. Also plotted in Fig. 14 is the analytically calculated 
terminus point which gives a threshold value for multi-pulsing operation. This line is 
calculated as follows: the amount of energy, Ethresh, needed to support an individual mode-
locked pulse can be computed. Above a certain input energy, the excess amount of energy 
above that supporting the N pulses exceeds Ethresh. Thus any perturbation to the laser cavity 
can generate an addition pulse, giving a total of N + 1 pulses. This calculation, when going 
from N = 0 to N = 1, gives the self-starting threshold for mode-locking (51). 

6.4 Iterative cavity dynamics 
The generic loss curve along with the saturable gain as a function of the number of pulses Eq. 
(8) are the only two elements required to completely characterize the multi-pulsing transition 
dynamics and bifurcation. When considering the laser cavity, the alternating action of 
saturating gain and nonlinear loss produce an iteration map for which only pulses whose loss 
and gain balance are stabilized in the cavity. Specifically, the output of the gain is the input of 
the nonlinear loss and vice-versa. This is much like the logistic equation iterative mapping for 
which a rich set of dynamics can be observed with a simple nonlinearity (59; 60). Indeed, the 
behavior of the multi-pulsing system is qualitatively similar to the logistic map with steady-
state, periodic and chaotic behavior all potentially observed in practice. 
In addition to the connection with the logistic equation framework, two additional features are 
particular to our problem formulation. First, we have multiple branches of stable solutions, i.e. 
the 1-pulse, 2-pulse, 3-pulse, etc. Second the loss curve terminates due to the loss curve 
exceeding the threshold energy. Exhibited in this model are the input and output relationships 
for the gain and loss elements. Three gain curves are illustrated for Eq. (8) with N = 1, N = 2 
and N = 3. These correspond to the 1-pulse, 2-pulse and 3-pulse per round trip solutions 
respectively. These curves intersect the loss curve that has been terminated at the threshold 
value. The intersection of the loss curve with a gain curve represents the mode-locked 
solutions. These two curves are the ones on which the iteration procedure occurs (59; 60). 
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Fig. 14. (right) Nonlinear loss and saturating gain curves for a 1-pulse, 2-pulse and 3-pulse 
per round trip configuration. The intersection of the gain and loss curves represents the 
mode-locked solution states of interest. As the cavity energy is increased, the gain curves 
shift to the right. The 1-pulse solution first experiences periodic and chaotic behavior before 
ceasing to exist beyond the threshold point indicated by the right most bold circle. The 
solution then jumps to the next most energetically favorable configuration of 2-pulses per 
round trip. (Left) Iteration map dynamics for the nonlinear loss and saturating gain. Shown 
is the total cavity energy Eout (top panel) and the individual pulse energy E1 (bottom panel) 
as a function of the cavity saturation energy Esat. The transition dynamics between multi-
pulse operation produces a discrete jump in the cavity energy. In this case, both periodic 
and chaotic dynamics are observed preceding the multi-pulsing transition. This is consistent 
with recent theoretical and experimental findings (22; 52). 

Figure 14 (left) gives a quantitative description of the multi-pulsing phenomenon. 
Specifically, the nonlinear loss curve along with the gain curves of the 1-pulse, 2-pulse and 
3-pulse mode-locked solutions are given along with the threshold point as before. As the 
cavity energy is increased through an increasing value of Esat. The 1-pulse solution becomes 
unstable to the 2-pulse solution as expected. In this case, the computed threshold value does 
extend down the loss curve to where the periodic and chaotic branches of solutions occur, 
thus allowing for the observation of periodic and chaotic dynamics. The multi-pulsing 
bifurcation occurs as depicted in Fig. 14 (right). The total cavity energy along with the a 
single pulse’s energy is depicted as a function of increasing gain. For this case, which is only 
a slight modification of the previous dynamics, the solution first undergoes a Hopf 
bifurcation to a periodic solution. Through a process of period doubling reminiscent of the 
logistic map (59; 60), the solution goes chaotic before eventually transitioning to the 2-pulse 
per solution branch. This process repeats itself with the transition from N to N + 1 pulses 
generating periodic and then chaotic behavior before the transition is complete. This curve is 
in complete agreement with recent experimental and theoretical findings (22; 52), thus 
validating the predicted dynamics. 
The multi-pulsing instability ultimately is detrimental or undesirable for many applications 
where high-energy pulses are desired. Indeed, instead of achieving high-energy pulses as a 
consequence of increasing pump power, a multi-pulsing configuration is achieved with 
many pulses all of low energy. However, with the simple model presented here, it is easy to 
see that the laser cavity dynamics can be engineered simply by modifying the nonlinear loss 
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curve. Of course, modification of the loss curve is trivial do to in theory, but may be difficult 
to achieve in practice. Regardless, the potential for enhanced performance suggests that 
experimental modification of the nonlinear losses merit serious consideration and effort for 
the WGA. This essentially can circumvent the limitations on pulse energy imposed by the 
multi-pulsing instability. Thus the quantitative WGA cavity model can be used to pursue a 
more careful study of the nonlinear loss curves generated from physically realistic cavity 
parameters. Specific interest is in engineering the curve to increase performance before 
multi-pulsing occurs. 

7. Beam combining with WGAs 
Beam combining technologies are of increasing interest due to their ability to produce 
ultrahigh power and energy laser sources with standard, easy-to-implement fiber optic 
based laser cavities. The beam combining philosophy mitigates the nonlinear penalties (i.e. 
the multi-pulsing instability) that are incurred when attempting to achieve high power. By 
combining a large array of relatively low power cavities, each of which individually does 
not incur a nonlinear penalty, a high-power laser output can be produced. However, in 
order to be an effective technique, the laser beams need to be locked in phase. This has 
recently been accomplished in both active and passive continuous wave lasers (61; 62; 63; 64; 
65). Indeed, a thorough review of the state of the field is in the 2009 special issue (61). 
The waveguide array considered here is an ideal device for beam combining of pulsed, 
mode-locked lasers. Indeed, the nonlinear mode-coupling provided by the waveguide can 
be used to either combine mode-locked pulses directly in the waveguide, or combine laser 
cavities externally be running pulses through the WGA. Using the averaged cavity 
dynamics model (6), a generalized two-cavity model can be considered. Specifically, two 
linearly coupled cavities (6) are considered where the saturating gain in each cavity is 
independent of the other cavity. Interestingly enough, the two cavities shown in Fig. 15 can 
be engineered to be quite different by using different fiber segments and properties. Thus 
the dispersion, nonlinearity, gain, gain bandwidth and loss can lead to an unbalanced 
cavity. Alternatively, identical cavities can be constructed so that all the parameters (γ1, β,D, 
e0, g0j ,C,τ) are approximately the same. Evidence for the ability of the cavity to beam 
combine pulses locked in time and phase is provided by Fig. 16. These are unpublished 
simulations which have only recently demonstrated the cavities ability to self-lock two 
cavities. The simulation parameters are D =1,C =1.23, and β = 7.3. Given how well the 
simulations have thus far proven to model the experimentally realizable cavity, it is 
expected that this highly promising result can be used as the basis for a pulsed, beam 
combining technology. Alternatively, the beam combining can be performed directly in the 
WGA itself in an appropriate parameter regime as demonstrated in Fig. 17. The parameters 
for the combining case are D = 0.5,C = 2.46 and β = 7.3, so that the coupling is relatively 
stronger then the time and phase locking considered in Fig. 16. In either configuration, the 
WGA can be used as an effective pulse combining technology. Engineering the cavity by 
changing key parameters such as the coupling allows us flexibility and full control of either 
post-cavity beam combining or intra-cavity beam combining. Such simulations, which 
represent recent state-of-the-art findings, are the first of their kind anywhere to demonstrate 
passive pulse combining. It clearly demonstrates the unique and promising role of WGA 
and supports the need for the current grant to explore such novel concepts and issues in 
mode-locking. 
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Fig. 15. Prototype for a mode-locked beam combining laser cavity. The WGA passively locks 
pulses in time and phase. 

 
Fig. 16. Field intensities in the waveguide array for two identical initial pulses with a time-
delay and a phase difference of π/8 (left), and the difference in pulse locations as a function 
of z (right). The pulses are attracted to each other as the system evolves. 

 
Fig. 17. Field intensitities in the waveguide for two identical pulses. Due to the relatively high 
coupling strength, the pulses are attracted towards each other across waveguides, eventually 
forming a single larger pulse. Note that by changing the initial separation of the pulses as well 
as the relative size of each pulse, the final location of the combined pulse can be controlled. 
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8. Conclusions 
In conclusion, we have provided an extensive study of the robust and stable mode-locking 
that can be achieved by using the nonlinear mode-coupling in a waveguide array as the 
intensity discrimination (saturable absorption) element in a laser cavity. Indeed, the spatial 
self-focusing behavior which arises from the nonlinear mode-coupling of this mode-locking 
element gives the ideal intensity discrimination (or saturable absorption) required for 
temporal pulse shaping and mode-locking. Extensive numerical simulations of the laser 
cavity with a waveguide array show a remarkably robust mode-locking behavior. 
Specifically, the cavity parameters can be modified significantly, the coupling losses can be 
increased, and the gain model altered, and yet the mode-locking persists for a sufficiently 
high value of g0. This demonstrates, in theory, the promising technological implementation 
of this device in an experiment. Here, the robust behavior as a function of the physical 
parameters is specifically investigated towards producing high peak-power and high-
energy mode-locked pulses in both the normal and anomalous dispersion regimes. 
In practice, the technology and components to construct a mode-locked laser based upon a 
waveguide array are available (5). An advantage of this technology is the short, nonlinear 
interaction region and robust intensity-discrimination (saturable absorption) provided by 
the waveguide array. The results here also suggest how the waveguide array spacing and 
waveguide array losses should be engineered so as to maximize the output intensity (peak 
power) and energy. Indeed, the theoretical framework established here provides solution 
curves and their stability as a function of the key parameters C and γ1. These curves can be 
directly related to the design and optimization of laser cavities. A clear trend in anomalous 
mode-locking, normal mode-locking and spectrally filtered normal mode-locking is the 
increase in peak power and energy for the coupling coefficient C. For anomalous mode-
locking this increase is only ≈25%, due to the soliton area theorem and the onset of multi-
pulse instabilities. However, the pulse energy can be nearly doubled. For normal cavity 
fibers with or without filtering, the peak power increase can be four-fold with appropriate 
engineering, and the energy increase can be an order of magnitude. Thus the theory 
presented provides a critical design component for a physically realizable laser cavity based 
upon the waveguide array. 
In the laser cavities proposed, index-matching materials, tapered couplers, polarization 
controllers and isolators may be useful and necessary to help further stabilize the 
theoretically idealized dynamics in the waveguide array model (6) presented here. Further, 
fiber tapering or free-space optics may be helpful to circumvent the losses incurred from 
coupling. Regardless, the theoretical results demonstrate that a mode-locked laser cavity 
operating by the nonlinear mode-coupling generated in a waveguide array is an excellent 
candidate for a compact, robust, cheap, and reliable high-energy pulse source based upon 
the union of the emerging technology of waveguide arrays with traditional fiber optical 
engineering. 
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1. Introduction  
Biomedical engineering can be defined as a part of the engineering domain that aims at 
better understanding biological systems and proposing new tools for diagnosis and 
therapeutic purposes. Among the activities of the biomedical field, one is dedicated to the 
analysis of the very small blood vessels (microcirculation). The study of the latter is 
important for diagnosis and follow-up of pathologies among which we can find diabetes. 
This chapter deals with Monte Carlo simulations applied to the microcirculation domain.  
The microcirculation comprises the blood vessels of the most peripheral part of the vascular 
tree. Microcirculation includes capillaries, arterioles (small arteries), venules (small veins), 
and arteriovenous anastomosis (shunting vessels). In what follows, only skin 
microcirculation will be studied. Skin microcirculation is an important and complex system 
for thermoregulation, skin metabolism, and transcutaneous penetration. The monitoring of 
skin microcirculation can be useful to assess and to better understand skin physiology and 
diseases.  
The skin microvascular network corresponds to different compartments. Thus, the 
epidermis is the top layer of the skin. Epidermis is avascular. Below the epidermis, the 
dermal papillae contains the capillaries. The latter are responsible for the exchange of 
oxygen and metabolites with the surrounding tissues. Therefore, the blood perfusion 
through capillaries corresponds to the nutritive blood flow. The deeper dermal structures 
contain the arterioles, venules, and shunting vessels. These vessels feed and drain the 
capillary network and aim at maintaining an adequate body temperature.  
In order to monitor microvascular blood flow, the laser Doppler flowmetry (LDF) technique 
has been proposed in the 1970s (for a review see for example Öberg, 1990; Humeau et al., 
2007; Rajan et al., 2009; Cal et al., 2010). LDF allows a non-invasive and real time monitoring 



 Numerical Simulations - Applications, Examples and Theory 

 

150 

of the blood perfusion with a minimal influence in the parameters under study. It is 
applicable in experimental and in clinical settings.  
In the LDF technique, a coherent light is brought to impinge on the tissues under study, 
generally through an optical fibre. The photons are scattered by the moving objects (mainly 
red blood cells) and by static structures. Scattering in moving objects modifies the direction 
and frequency of the photons according to the Doppler principle. Scattering in static 
structures only affects the direction of the photons. The remitted light is brought through 
another optical fibre to a photodetector where optical mixing of light shifted and unshifted 
in frequency gives rise to a stochastic photocurrent. The power spectral density of the latter 
depends on the number of red blood cells and their shape and velocity distribution within 
the scattering volume. The zero order moment scales with the concentration of moving red 
blood cells, provided the red blood cells concentration in tissue is low. The first moment of 
the photocurrent power spectrum scales with the product of the red blood cells 
concentration and average velocity (Bonner & Nossal, 1981). 
In most LDF devices, the light source is a laser diode having a wavelength of 780 nm. 
However, other wavelengths can be used (450-800 nm). Within the visible range, the longer 
the wavelength, the deeper the transmission in tissue. In the range 600 to 1200 nm, the light 
penetrates deeply into tissue because of lower scattering and absorption coefficients. Very 
often the light is brought to and from the tissues under study by optical fibres. In the probe 
tip, the fibres are generally positioned with a core centre spacing of 250 to 500 µm. The 
photons migrate in the tissue in random pathways from the transmitting to the receiving 
fibres. When the distance between the fibre tips increases, the average path length of the 
detected photons increases, as well as the measurement depth (Jakobsson & Nilsson, 1993). 
Moreover, the average path length of the photons and the measurement depth depend on 
the optical properties of the tissue. Therefore, no comparison of perfusion values is possible 
between organs. That is why no absolute units are possible when using LDF. 
The product of the average speed and concentration of moving blood cells in the scattering 
volume corresponds to the LDF signal and is generally referred as perfusion (see an 
example of LDF signal in Figure 1). Microvascular blood perfusion varies with time and 
from place to place (temporal and spatial variability). Therefore, and when using laser 
Doppler flowmeters based on optical fibres and thus for which the sampling volume is 
rather small, differences in perfusion readings appear when recording LDF signals from 
adjacent sites. This constitutes one of the main limitations of the LDF technique. Laser 
Doppler imagers have emerged providing a monitoring of the perfusion in two dimensions. 
LDF can be used in experimental investigations and in clinical trials. Many organs can be 
investigated with the LDF technique: kidney, liver, intestines, brain, skin. Moreover, the 
clinical applications are numerous: diabetes microangiopathy, flap monitoring, peripheral 
vascular disease, plastic surgery, Raynaud’s phenomenon, thermal injury (see for example 
Ray et al., 1999; Humeau et al., 2004; Ziegler et al., 2004; Yamamoto-Suganuma & Aso, 2009; 
Merz et al., 2010; Smit et al., 2010). 
Due to the poor predictability of tissue perfusion for given location and time, LDF signals 
are rarely recorded in basal conditions. Instead, stimuli are often provoked and responses 
are studied to reveal possible malfunctioning of the microcirculation. All in all, the main 
advantages of the LDF technique are the following: non-invasiveness, continuous 
recordings, easy to use, strong theoretical basis. By contrast, the main drawbacks of the 
technique are: no absolute calibration, no possibility to distinguish between 
nutritive (capillary) perfusion and global tissue perfusion, no comparison possible between 
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Fig. 1. Skin LDF signal recorded on the finger of a healthy subject at rest. 

organs due to the variations of the photon path lengths because of the different optical 
properties of the tissues, variation between different individuals and in the same site in the 
same individual after hours, days or weeks. 
In order to better understand microvascular perfusion and LDF signals, and to improve 
laser Doppler flowmeters, numerical simulations of LDF signals have now become 
necessary. Numerical simulations of LDF signals can be performed with Monte Carlo 
methods. The latter rely on computational algorithms using repeated random sampling to 
compute the simulated results. 

2. Monte Carlo simulations 
2.1 Introduction 
In Monte-Carlo simulations, light transport in tissue is described in the form of separate 
photons travelling through the sample. On its way, the photon might be scattered at (or in) 
particles, by which the direction of the photon is changed, or the photon is absorbed. The 
scattering phenomenon will be determined by suitable angle-dependent scattering 
functions. When a boundary between two layers, or between the sample and the 
surrounding medium, or between an internal structure and the surrounding layer, is 
encountered, the photon might be reflected or refracted. This is determined by the well-
known Fresnel relations. In between these events, the photon will propagate, and the optical 
mean free path in that part of the sample will determine the length of the propagation path. 
The actual length of the contributions to the path, the angles of scattering, the choice 
between scattering and absorption, and between reflection and refraction, are determined 
by random number-based decisions. 
Some extra features can be applied to the photons. For instance, photons can be thought of 
as scattering at particles at rest or at moving particles. This effect will cause a Doppler shift 
in the frequency of the photons, which can be registered. Afterwards from the Doppler shift 
distribution of all suitably detected photons the frequency power distribution can be 
derived. Several models are present for this velocity shift: unidirectional or random flow, 
various flow profiles and so on. Another option is to use as the light source not a beam 
impinging from the outside world, but a photon absorption distribution inside the sample. 
In this way, fluorescence or Raman scattering can be mimicked. When recording the path of 
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the photons through the sample, one might deduce the path length distribution, and from 
that the time-of-flight distribution. The latter can be used to predict the distributions of 
phase delays and modulation depths encountered when performing frequency-modulation 
experiments. 
Further, the distribution of positions where photons were absorbed can be used as the 
distribution of sources for calculating the photoacoustic response, to be detected using 
suitable detector elements (or groups of elements, to take interference effects into account) at 
the surface of the sample. 
To start simulating the photon transport, following preparations are needed (see 
www.demul.net/frits): 
- Definition of types of particles (optical properties, concentrations, velocities, etc.) 
- Calculation of angle-dependent scattering functions for all types of particles 
- Definition of the light source, either a pencil beam or a broad divergent beam or an 

internal source 
- Definition of the sample system, consisting of one or more layers with different 

contents, with different optical characteristics and velocity profiles; the sample may 
contain “objects”: (arrays of) cylinders, spheres, cones, rectangular blocks, and mirrors. 
See Figure 2 

- Definition of the detection system, consisting of a poly-element detection window, and 
of its numerical aperture 

 

 
Fig. 2. Structure plot of a two-layer system with a horizontal cylindrical tube, filled with 
various concentrations of scattering/absorbing particles. Laser light (here pencil beam) 
injected along Z-axis. 
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- Definition of the calculation mode: e.g. reflection or transmission, or absorption, or a 
combination of those 

- Extra features, to follow the simulations, like LDF, photoacoustics and frequency 
modulation 

These points will be detailed below. A computer package to carry these simulations is 
available (see the site www.demul.net/frits). All the processes that are presented in this 
section are dealt with in this computer package. The physical mathematics behind it and 
detailed explanations can be found in de Mul (1995, 2004) and the site www.demul.net/frits 

2.2 Transport algorithms 
In order to describe the transport of photons through the sample, one needs algorithms for 
the various events that the photon may encounter. Those are: scattering or absorption, 
reflection or refraction at boundaries, and detection. In addition, a mechanism accounting 
for the destruction of irrelevant photons (e.g. photons that have travelled extremely far from 
the detection window) should be available. 
There are two basic algorithms for handling non-zero absorption in layers or particles. 
Frequently the probability of absorption is taken into account as a “weight factor” for the 
photon. The cumulative effect of applying these subsequent factors at each scattering event 
will reduce its overall weight in calculating averages of relevant variables (such as intensity) 
over a set of emerged photons. An example is the work of Wang & Jacques (1993). An 
advantage is that no photons will be lost by absorption, which can be of importance when 
the absorption is relatively strong. 
Another algorithm does not make use of weight factors, but applies a “sudden death”-
method: the photon is considered to be completely absorbed at once, and will thus be 
removed from the calculation process. This method might be a bit more time consuming, 
especially when absorption is not very low in a relative sense, but it offers the advantage to 
study the positions where the photons actually are absorbed. In this way extra features like 
photoacoustics or fluorescence response can be studied. In view of this option, we have 
chosen for the second method (see the site www.demul.net/frits).  

2.3 Propagation 
The average translation distance L for a photon in a layer or object with scattering particles 
of varying type, in the case of no absorption, is determined by the inverse of the effective 
scattering coefficient, which is the sum of the products of the concentrations and scattering 
cross sections of all types of particles in that layer or object. Now we can deduce the 
expression for the actual path length Δp: 

 )1ln(.=Δ RLp - , (1) 

where R is a random number (0 ≤ R < 1), used for the probability fs (0 < fs ≤ 1) to arrive at a 
path length Δp: 

 fs = 1-exp(-Δp/L). (2) 

However, this path might end prematurely when a boundary at an interface is met. In this 
case the path will partially stretch out into the medium at the other side of the interface. 
When dealing with this part of the path, it should be kept in mind that it has to be corrected 
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in length according to the mean free path for the photons in the two media. See below for a 
full account. 
Now the probability fa for absorption by the medium l (layer or block) before the photon has 
reached the end of path Δpeff ( ≤ Δp) can be defined as: 

 )Δ.exp(1= effaa pμf - , (3) 

where µa is the absorption coefficient. 
By choosing a fresh random number, the probability for absorption on the effective path can 
be calculated. 
Absorption in the system may have two origins, first taking place within the particles 
themselves, and secondly the absorption by the medium itself. Together with scattering, this 
leads to an “average translation length” and an “average absorption length” for the 
medium. 
In a previous paper (Kolinko, 1997) we discussed two equivalent algorithms to determine 
the remaining path length after crossing an interface.  
Figure 3 presents a view of a running simulation in a sample with two layers and two 
objects. 
 

 
Fig. 3. Running graphics of the simulation process of the structure of Fig. 2. View in YZ-plane. 
Photons entering around position (0,0,0). The tube (X-direction) and sphere can be seen. 

2.4 Scattering 
The probability of scattering to the direction given by the angles θ and ϕ is described by the 
scattering function p(θ,ϕ). This function is normalized in such a way that the total scattering 
over the whole 4π solid angle is unity (Figure 4): 
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Fig. 4. Basic scattering geometry in the “scattering system” (subscript s). The incoming and 
scattered wavevectors are denoted by k0 and ks respectively. | k | = 2π/λ, with  
λ = λvacuum / n  (n = refractive index of the medium). 

 
2

0 0

. ( , )sin 1d d p
π π

ϕ θ θ ϕ θ =∫ ∫ . (4) 

For the scattering function, several models are available: Dipole- or Rayleigh-scattering, 
Rayleigh-Gans scattering, Mie scattering, isotropic or peaked-forward scattering. These 
scattering functions have been described in many textbooks. We refer here to the standard 
books of Van de Hulst (1957, 1981). Also models of Henyey and Greenstein (1941) and 
others are used (see below). 
The method of determining the scattering angles θ and ϕ is: 
- For the azimuthal angle ϕ : .2Rϕ π=  
- For the polar angle θ a normalised cumulative function of the scattering function is used, 

with values between 0 and 1, and by choosing R, the corresponding θ  is calculated 
In case polarization effects have to be taken into account, the choice of the angles θ and ϕ  is 
coupled to the polarization state of the photon.  

2.5 Boundaries 
Since the program (see www.demul.net/frits) allows for insertion of special structures and 
objects, like tubes, spheres, mirrors and cones in the layer system, we have to deal with 
boundaries at flat surfaces (like those between layers) and at curved surfaces. 
For flat surfaces, parallel to the layer surface (i.e. perpendicular to the Z-axis), the calculation 
of reflection or refraction angles is according to Snell’s law. The fraction of reflected light is 
given by the Fresnel relations. 
For curved surfaces, or flat surfaces not perpendicular to the Z-axis, the construction of local 
coordinate frames, along the local normal vector, is necessary, which implies foregoing and 
subsequent coordinate rotations from the laboratory system to the local system and back. 
In de Mul (2004, see also www.demul.net/frits) the boundary expressions are derived for 
following curved surfaces (if applicable, with flat end surfaces at top and bottom): 
- Cylinders (parallel to the layer surface, and parallel to the Z-axis, and oblique) 
- Arrays of cylinders (linear or two-dimensional) 
- Spheres, and two-dimensional arrays of spheres 
- Rectangular blocks 

Zs 

Xs 

Ys 

θ 

ϕ 

k0 

ks 
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- Mirrors  (parallel to the layer surface, and parallel to the Z-axis, and oblique) 
- (half) toruses 
Objects can stretch over layer boundaries. In all cases, carefully the path of a photon has to 
be followed. Is the photon reflected or refracted, how far does it propagate in the new 
medium, is there another object within the object, will absorption take place before a 
scattering event, and (in case of arrays of objects) will the photon propagate from one 
member of the array set to another?  

2.6 Scattering functions 
Here we will only mention the expressions for the most commonly used scattering 
functions. For further study, see Van de Hulst (1957, 1980) or the full report (de Mul, 2004, 
or website). Important parameters are µs, µ’s, and µa, the scattering coefficient, the reduced 
scattering coefficient and the absorption coefficient, respectively, all expressed in mm-1, with 
µs and µ’s connected by µ’s = µs (1-g), g being the averaged scattering polar angle: g = <cosθ>. 
For tissue, typical µs-values are 10-200 mm-1 and with typical g-values of 0.90-0.99 this leads 
to typical µ’s - values of 1-2 mm-1. 
- Dipolar (Rayleigh) 
With dipolar scattering, the particles are assumed to be so small that light scattered from 
different oscillating electrical dipoles in the particles will not lead to phase differences upon 
arrival at the point of detection (Van de Hulst, 1957, 1980). Using standard electromagnetic 
dipole radiation theory, or a standard Green’s functions approach, we may derive for the 
intensities I// and I⊥ , proportional to the squares of the field strengths (I = ½cεmE2), thus: 
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For natural light the total intensity is given by: 
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- Rayleigh-Gans 
When particles grow larger, the phase differences of scattered waves arriving at the 
detection point from different source points in the scattering medium, cannot be neglected 
any more. For small differences in the dielectric constant between particles and surrounding 
medium, the intensity I will be proportional to:  
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The phase-difference δ  is given by k• (r-rO), where r and rO are the position vectors from the 
scattering volume element under consideration and the origin in the sample.   
- Mie 
In principle, the rigorous scattering theory, as developed by Mie (see ref. in Van de Hulst, 
1957, 1981), presents analytical expressions for all kind of particles. It departs from the 
Maxwell equations and solves the scalar part of the wave equation, taking boundary 
conditions into account. This leads to complicated expressions for the components of Van de 
Hulst’s scattering matrix, which are only tractable when treated numerically. See Figure 5 
for an example. 
 

 
Fig. 5. Example of a MIE-file. Scattering function according to the Mie-formalism (weight 
1.0) + Henyey-Greenstein with g=0.80 (weight 0.1). 
- Henyey-Greenstein 
The scattering function of Henyey & Greenstein (1941) originates from the astronomical 
field, to calculate the scattering by cosmic particle clouds. Since it can be written in a closed 
analytical form, it can be used as a fast replacement for the Mie-functions. The function 
reads: 
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where g is the averaged cosine of the polar angle θ of the scattering events. This function is 
normalised to unity upon integration over 4π solid angle. It only describes the angle-
dependent behaviour of the scattering. The calculation of the scattering cross section has to 
be done by other means. One option is to insert the total scattering cross section as obtained 
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by Mie-scattering (or another approach, if applicable) as a separate factor in the Henyey-
Greenstein expression. 
- Other functions 
Other scattering functions are: isotropic scattering, peaked forward, or Gegenbauer (which 
is an extension of a Henyey-Greenstein-function). We will not deal with those here. 

2.7 Light sources 
For the injection of photons, one can imagine various mechanisms. Most general is the 
pencil beam, entering from the top. However, other beam profiles can be used as well. In de 
Mul (2004, see web site) several options are implemented: pencil beams (perpendicular and 
oblique), divergent beams, broad parallel beams, ring-shaped beams, isotropic injection and 
internal point sources (one point or distributed).  
Distributed internal sources can be used in simulating Raman or fluorescence scattering, 
consisting of (1) a simulation of absorptions, and (2) injection of new photons from the 
positions of absorption.  

2.8 Detection 
We may distinguish between external detection (at the top or bottom of the sample system: 
“reflection” or “transmission”, or at an internal layer or object boundary) or internal 
detection (upon an absorption event). In this way, the scattering inside a sphere (a human 
head?) can be detected. 

2.9 Photon path tracking 
The tracking of the path of the photon, i.e. recording the coordinates of the scattering events 
and of the intersections with interfaces, can easily result in enormous files. With a scattering 
coefficient μs of about 10-20 mm-1 and a g-factor (average of the cosines of the polar 
scattering angles) of about 0.80 – 0.90, in each mm of the path about 1/μs ≈ 10 scattering 
events will take place. However, due to the large g-factor, the scattering will be 
predominantly in forward direction and it will only be after about 1/μ’s ≈ 1 mm that the 
direction of the photon can be considered as randomised. Therefore, in those cases it is 
better to register only part of the events, namely those at intervals of 1/ μ’s = 1 mm, which 
will decrease the storage space to 144 Mbytes per simulation. 
Therefore, the program offers the options of recording the paths at intervals of 1/μs or 
1/μ’s (see www.demul.net/frits). 
Photons originating from a pencil beam and emerging at equal distances d from the point of 
injection but at different positions on that ring are equivalent. However, visualisation of 
those tracks will end up in an un-untwinable bunch. Therefore, to clarify viewing we may 
rotate the whole paths around the axis of the pencil beam to such an orientation as if the 
photons all emerged at the same position on the ring, e.g. the crossing point with the X-axis.  
See Figure 6 for an example of the path tracking method. 

2.10 Special Features: laser Doppler flowmetry 
Some special features are incorporated in the program (available at www.demul.net/frits). 
LDF is the oldest feature, built in from the beginning of the development of the program, 
and meant to support measurements of laser Doppler perfusion flowmetry in tissue.  
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Fig. 6. Photon path tracking: photon “bananas” arising by scattering from beam entrance 
point to exit area (between 5 and 6 mm). For clarity, all photon paths were rotated 
afterwards as if the photons had emerged on the +X-axis. 

Photoacoustics has been added to simulate the acoustic response to pulsed light. Frequency 
modulation is a modality adding extra information using path length-dependent phase 
delay information.  Here we only deal shortly with LDF. 
As mentioned previously, LDF makes use of the Doppler effect encountered with scattering 
of photons in particles when those particles are moving. The principles are shown in 
Figure 7. Using the definitions of the variables given in that Figure, the Doppler frequency is 
given by: 

 ( )0D sω = − •k k v , (10) 

and with: 

 1
22 .sinkδ θ=k , (11) 

we find: 

 1
2sin .cosD

kvf θ α
π

= . (12) 

When applied to tissue, frequently the angles θ and α might be considered randomised. This 
is due to three reasons: 
- Preceding scattering by non-moving particles might cause the direction of the photons 

to be randomised upon encountering moving particles 
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Fig. 7. Principles of LDF. The particle has a velocity v. Vectors k0 and ks denote the incoming 
and scattered light wave vectors, and δk is the difference vector. 

- Most important moving particles are blood cells in capillaries. Due to the (more or less) 
random orientation of the capillaries the velocities will have random directions 

- Travelling from injection point to detection point, in general the photons will encounter 
many Doppler scattering effects, with random velocities and orientations 

All three effects will broaden the Doppler frequency distribution, which ideally would 
consist of one single peak, to a smooth distribution as in Figure 8. This means that it is not 
possible to measure the local velocity, but we only may extract information about the 
averaged velocity over the measuring volume. The averaging concerns the three effects 
mentioned above. 
There are two options to record these LDF-spectra: homodyne and heterodyne, depending 
on the relative amount of non-shifted light impinging on the detector. The first is the mutual 
electronic mixing of the Doppler-shifted signals, and the second is the mixing of those 
signals including mixing with non-shifted light, which can be overwhelmingly present. The 
resulting frequency and power spectra (which is the autocorrelation function of the 
frequency spectrum) will look as sketched in Figure 8.  
 

 
Fig. 8. Homodyne and heterodyne frequency spectra f (ω) and power spectra S(ω). Normally 
the heterodyne peak is much higher than the signals at non-zero frequencies. 

To characterize the frequency spectra use is made of moments of the power spectrum S(ω), 
defined as: 
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The zeroth moment is the area under the power spectrum itself, and can be considered as 
proportional to the concentration of moving particles in the measuring volume. Bonner & 
Nossal (1981) showed that the first moment M1 is proportional to the averaged flow, while 
the ratio of the reduced moment M1’= M1 / M0 will be proportional to the averaged velocity. 
Analogously, the reduced moment M2’= M2 / M0 2 will be proportional to the average of the 
velocity-squared. 

3. Monte Carlo simulations applied to the microcirculation domain 
Monte Carlo simulations have been used since the early nineties to provide a better 
understanding on LDF measurements. At the beginning, LDF signals were simulated using 
very simple single layer flow models. Later, complex physical models constructed with the 
purpose to validate and calibrate laser Doppler flowmeters were proposed. LDF signals 
were generally simulated in models mimicking the skin and then compared with real data 
recorded in skin.  
Monte Carlo simulations allow studying the influence of tissue parameters (as optical 
properties and blood velocities) as well as probe configurations and laser light wavelengths 
on LDF signals. Monte Carlo simulations have already provided information 1) on the blood 
microcirculatory flow depth measurements in skin (non-invasive measurements) or in other 
organs (invasive measurements), 2) on the determination of the photon path length, 3) on 
the dependence of LDF signal on multiple scattering, and 4) on the prediction of the speed 
distributions of moving particles.  
In the LDF domain, Monte Carlo simulations were used, for the first time, by Jentink et 
al. (1990). It was the first time that the frequency shifts, due to the moving particles, were 
included in light propagation simulations in scattering and absorbing media.  Monte Carlo 
simulations were used to study the influence of the optical probe configuration and the 
multiple scattering of photons by moving particles in living tissues. A very simple flow 
model, consisting of a homogeneous slab with spheres acting as scatterers, has been used. 
The spheres were moving in random directions, which permitted the simulation of different 
velocity distributions. The velocity angular distribution was modelled with Mie formula. 
Light absorption was taken into account by including a constant probability with two terms, 
one due to the absorption by the spheres, and a smaller one which represented the 
absorption between spheres. Ring shaped detectors were attached in a concentric 
arrangement around the light beam and heterodyne detection was assumed. Homodyne 
detection was ignored. It was observed that, with the increase of source-detector distance, 
the sampling volume increased whereas the intensity of the signal decreased (Jentink et al., 
1990). Therefore, the authors suggested the use of different source-detector separations in 
order to differentiate perfusion in different skin layers. The limited computational speed 
available in the early nineties was a serious limitation for the first studies using Monte Carlo 
simulations. 
A more complex skin tissue model, consisting of three different homogeneous 
layers (epidermis with 0.1 mm thickness, dermis-1 with 0.2 mm thickness, and dermis-2 
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with 200 mm thickness) was used in Monte Carlo simulations by Koelink et al. (1994). The 
goal was to determine the sampling volume in LDF measurements using two different 
wavelengths, 633 nm and 800 nm, and two different source-detector separations, 0.1 and 
2 mm. The optical parameters used were 0.015 and 0.01 mm-1 for the absorption coefficients 
for 633 and 800 nm, respectively, for all three layers. The scattering coefficients used were 25 
and 15 mm-1 for epidermis for 633 and 800 nm, respectively. For dermis-1 and dermis-2, 
they were of 11.2 and 6.8 mm-1 for 633 and 800 nm, respectively. The refractive indexes were 
1.5 for epidermis and 1.4 for dermis-1 and for dermis-2. A Henyey-Greenstein phase 
function with an anisotropy factor g equal to 0.85 for static tissue was used. Microcirculation 
was assumed in the two deeper layers with a concentration of 1x104 red blood cells/mm3 in 
both layers, in random directions. A velocity equal to 1 mm/s was simulated in dermis-1, 
whereas for dermis-2 the velocity was equal to 1 or 4 mm/s in different simulations. The 
scattering cross section, σs, of the red blood cells used was equal to 25.4 and 15 µm2 for 633 
and 800 nm, respectively. The absorption cross section, σa, was equal to 0.065 and 0.042 µm2 
for 633 and 800 nm, respectively. For the scattering phase function of red blood cells the 
Rayleigh-Gans phase function was applied with an anisotropy factor g equal to 0.985 and 
0.98 for 633 and 800 nm, respectively (Koelink et al., 1994). The aim of this work was to 
distinguish the superficial from the deeper blood vessels microcirculation. Measurements in 
skin were compared with simulations showing a reasonable agreement (Koelink et al., 1994).  
With the purpose to compare real data and Monte Carlo simulations of flow, de Mul et 
al. (1995) introduced phantoms (physical flow models) in Monte Carlo simulations. The 
Monte Carlo algorithm used is explained in Section 2. Unlike biological tissues, a phantom 
permits the control on LDF measurements of relevant parameters, such as scatterers velocity 
and concentration, optical properties, and so on. Two models were studied: a liquid flow 
model consisting of a set of liquid layers, and a solid model based on gelatine layers, both 
with a concentration of 1.25 to 1.9 x 106 mm-3 of polystyrene spheres acting as scatterers. The 
goal was also to investigate the relationship between source-detector separation and the 
photons sampling depth, for different incident angles of the laser beam. The angular 
scattering distribution for the polystyrene spheres was given by the Mie formulas with an 
anisotropy factor g = 0.91. The scattering and absorption cross section of the spheres were 
set to 5.5 and 0.03 µm2, respectively, at 780 nm. The effects of homodyne and heterodyne 
scattering were also investigated. The comparisons showed reasonable to good agreement 
between simulations and real measurements using the phantom (de Mul et al., 1995). 
A more complex fluid model applied to Monte Carlo simulations was presented by 
Steenbergen & de Mul (1997). In order to study the phantom capability to mimic real tissue, 
the model had optical properties and layered structure similar to those of living tissues. The 
Monte Carlo algorithm used is explained in Section 2. This phantom, consisting of scattering 
and absorbing films separated by matching oil, was used to evaluate the consequences of 
the stratified structure of the phantom in comparison with real tissues, that have no 
mismatching layers. The phantom was modelled as a semi-infinite repetitive laminate of 
scattering and absorbing layers with 0.08 mm thickness separated by a transparent 
colourless layer of resin or oil with 0.005 mm. The laser light source entered the phantom as 
a pencil beam and the scattered light was detected in a concentric region (radius equal to 
2.5 mm) with the pencil beam. Concerning the optical properties, the angular scattering 
function used was the Henyey-Greenstein distribution with an anisotropy factor g = 0.9. The 
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scattering coefficient used was µs = 5, 10, 20 and 40 mm-1 which gave a reduced scattering 
coefficient equal to µ’s = 0.5, 1, 2 and 4 mm-1 respectively. The absorption coefficient used 
was µa = 0.005 mm-1. The refractive index of the phantom matrix was 1.52. The algorithm 
used was similar to the one developed by de Mul et al. (1995). When the photon travelled 
between a transparent layer and a scattering layer, a new path length was determined using 
a random generator (the path length which has been interrupted by the medium boundary 
was disregarded). At the end, the mismatching problems revealed not to being as restrictive 
as it might have been expected (Steenbergen & de Mul, 1997). 
The coherence effects in the detection of Doppler signals have also been investigated with 
Monte Carlo simulations. Measurements in gelatin phantoms with polystyrene scatterers 
was built to mimic skin tissue characteristics and for calibration and standardization of 
perfusion tools (de Mul et al., 1999). Homodyne and heterodyne detection were 
investigated. For the homodyne experiments, a phantom consisting of just one moving layer 
with 11 mm thickness was used. For the heterodyne experiments, the phantom consisted of 
one static and one moving layer with 4 and 11 mm thickness, respectively, with the same 
scatterers concentration. The simulation model consisted of five layers: an air gap between 
probe and first layer, a fixed layer, another air gap between the first and second layer, a 
moving layer, and an absorbing layer. The homodyne simulations did not match the 
corresponding measurements quite properly, showing a too broad Doppler power spectrum 
that was, in part, reduced by the implemented coherence correction (de Mul et al., 1999). 
The influence of the optical properties and the source-detector separation on the sampling 
depth in LDF measurements were also studied using a sophisticated tissue-like 
phantom (Larsson et al., 2002). Monte Carlo simulations mimicking the phantom were used 
to validate the measurements. The tissue phantom and the simulation model consisted of a 
set of parallel static layers (95 µm thickness) with different optical properties, separated by 
rotatable moving layers (20 to 22 µm thickness). A laser source of 632.8 nm was used and the 
backscattered light was guided to the detector by 7 fibres, with a numerical aperture of 0.37 
and a diameter of 230 µm, arranged in a row. Hollow polystyrene microspheres, with a 
diameter of 1 µm, were used as scatterers, and optical absorbers were added to the static 
layers. The phantom had 4 windows, where the probe could be placed, each one with 
different combinations of optical properties (14.66 and 0.212 mm-1, 44.85 and 0.226 mm-1, 
14.8 and 0.0405 mm-1 and 45.55  and 0.0532 mm-1 for µa and µs, respectively). The probability 
distribution of the photon scattering angle was modelled using the Henyey-Greenstein 
phase function with an anisotropy factor g=0.815. Two models were simulated: 1) with one 
single rotating disk having 14.66 and 0.212 mm-1 for µa and µs, respectively, for two different 
velocities (0.7 and 2.2 mm/s); and 2) with the same optical properties as the four windows 
described above, where single moving disks and multiple moving disks at 1 mm/s  
could be modelled. Measured and simulated data showed good correlation and  
the simulations showed that the sampling depth decreases with the increase of µa or µs  
and it increases with the increase of source-detector fibre separation (Larsson et al.,  
2002).  
Other Monte Carlo simulations were used to predict sampling depth of light scattering in 
skin, in different situations. The sampling depth for a laser Doppler perfusion imaging 
system, using a simplified model with a single moving layer, was also analyzed (Rajan et al., 
2008).  
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Other authors investigated the use of a high power laser source (20 mW), with 785 nm laser 
light source and a source-detector distance of 4 mm (Clough et al., 2009).  
Based on Monte Carlo simulations of light propagation, the measurement depth/volume 
was also estimated for various tissues models (muscle, liver, gray matter, white matter, and 
skin). Both probe-based and imaging systems were studied, at the wavelengths of 453 nm, 
633 nm and 780 nm (Fredriksson et al., 2009). Thus, using Monte Carlo simulations, typical 
measurement depths and volumes for simulated perfusion have been presented, for various 
types of biological tissues and system setups. The simulations were not compared with in 
vivo measurements (Fredriksson et al., 2009). 
A skin model, that can be used to estimate skin-like tissue perfusion in absolute units, was 
also presented (Fredriksson et al., 2008). The impact on LDF measurements of parameters 
such as layers thickness, blood concentrations, melanin concentration in epidermis, µa, µs 
and g for blood and skin layers were evaluated with Monte Carlo simulations. The 
simulated spectra generated for 7000 different skin configurations, for two different source-
detector separations (0.25 and 1.2 mm), and a 780 nm laser light source, were compared with 
in vivo data. The goal was to validate the best fit model with the measured spectra. In this 
study, the skin model had 6 layers (epidermis, papillary dermis, superior blood net, reticular 
dermis, inferior blood net, and subcutis). Moreover, different blood concentrations were 
chosen with three representative velocities (0.3, 3.0, and 30 mm/s) in each layer, and with a 
parabolic profile (between 0 and twice the mean velocity of the scattering blood 
component). The simulated source and detector were configured to mimic the probe used. 
The calculated spectra were compared with measurements carried out on the forearm and 
on the finger pulp skin, without heating, and with heat provocations on the forearm skin. At 
each scattering occasion it was decided, based on the concentration of blood, the scattering 
coefficient of the blood and the static matrix, if the photon was to be scattered by the static 
matrix, or by a moving red blood cell, causing Doppler shift. The velocity component (0.3, 3, 
or 30 mm/s) that produced the Doppler shift, in simulations, was randomly chosen based 
on the scatterers concentration. The optical power spectrum for the two source-detector 
separations was calculated. The distribution of accumulated frequency shifts for the 
detected photons and the Doppler power spectrum was also calculated as the 
autocorrelation of the optical power spectrum. For the photon launch, a variance reduction 
method, the implicitly capture, was used. In this method, after the first scattering, the 
photon was splitted into 50 new photons, each one with 1/50 of the weight of the original 
photon and it was scattered in random directions. Then, in the following successive Doppler 
scattering occasions, the photon was splitted again into two new photons, if the total 
frequency shift of the photon exceeded nx10/6 kHz (n=1, 2, …, 6). One photon could thus be 
splitted into, at most, 50x26 = 3200 photons. A good combination of thickness of the model 
and of blood concentrations that produced simulated Doppler power spectra that agreed 
well with measured Doppler power spectra, was found (Fredriksson et al., 2008).  
Methods for photon path length determination in LDF have also been proposed by Monte 
Carlo simulations (Jakobsson & Nilsson, 1993; Nilsson et al., 2002; Larsson et al., 2003; 
Varghese et al., 2007). Thus, Jakobsson & Nilsson (1993) used one-layer models of skin, liver 
and brain tissues to study path length distributions for different probe geometries at a 
wavelength of 633 nm. The 3D pathways of single photons were computed and stored. 
Information as the penetration depth, sampling depth, and total photon path length 



Monte Carlo Methods to Numerically Simulate Signals Reflecting the Microvascular Perfusion   

 

165 

between source and detector were stored. The Henyey-Greenstein phase function was used 
as the density function of the scattering angle. The tissues optical properties µa, µs and g (in 
cm-1 for µa and µs) were respectively set equal to 2, 188 and 0.8 for skin, 2.3, 313 and 0.68 for 
liver, 1.3, 48.8 and 0.96 for brain. For the whole blood (unmodified blood), the values were 
respectively equal to 18, 320 and 0.99. For each distance travelled by a photon, the 
probability of absorption was calculated. If absorption occurred, the photon pathway was 
terminated. Different perfusion profiles were simulated in skin tissues model and the optical 
parameters (µa, µs, g) were changed stepwise, one by one. The influence of different red 
blood cell concentrations, in skin tissue was also simulated.  
Using a one-layer model with a wide range of optical properties, relevant to human skin, the 
average path length for various source detector separations up to 2 mm was simulated, 
using Monte Carlo methods (Nilsson et al., 2002). The Monte Carlo simulation software 
used was developed by de Mul (de Mul et al., 1995). A reference space model built to 
develop path length estimation methods with 144 different sets of optical properties (µa, µs, 
and g) and a validation space model for evaluation of the accuracy of the path length 
estimations methods with 75 different sets of optical properties were defined. Different 
methods for predicting the path length were investigated. A multiple polynomial regression 
method, based on spatially resolved diffuse reflectance, proved to be the most effective in 
predicting the average path length as a function of source-detector separation (Nilsson et al., 
2002).  
Larsson et al. (2003) estimated the photon path length and optical properties for source 
detector separation up to 1.61 mm. They used a simulated model consisting of a semi-
infinite slab, with 100 mm thickness, with a low concentration of moving scatterers and with 
a constant velocity (v = 1 mm/s). de Mul software (de Mul et al., 1995) was used and the 
scattering events were simulated with the modified Henyey-Greenstein phase function for a 
632.8 nm laser source. Four different sets of optical properties were simulated. 
Measurements, in vivo, at different human skin sites and, in vitro, in two phantoms were 
used together with simulations in order to obtain the estimated µa, the estimated reduced 
scattering coefficient µ’s, estimated photon path length and normalized and linearized LDF 
perfusion. The path length estimations were applied for normalization of the estimated 
perfusion, removing its optical properties dependency (Larsson et al., 2003).  
The optical path lengths of shifted and unshifted light, as well as the path length dependent 
Doppler broadening were measured in a two-layer tissue phantom (with a superficial static 
layer of different thickness) with a phase modulated low coherence Mach-Zehnder 
interferometer (Varghese et al., 2007). Validation of the experimentally determined thickness 
of the static layer and the optical path length distributions were done with the Doppler 
Monte Carlo methods. The simulated phantom consisted of a static scattering layer with 
variable thickness (between 0.1 and 0.9 mm), between two static glass layers with 0.15 mm, a 
dynamic layer with 20 mm, and a fifth layer with high absorption characteristics (µa = 
10 mm-1). The static and dynamic scattering layers had the same optical properties as they 
had the same scatterers - polystyrene sphere suspension. The refractive index was 1.33, µa 
and µ’s were set to 0.001 and 2 mm-1, respectively, and g = 0.85 for Henyey-Greenstein 
scattering phase function. The thickness of the static layer was estimated from the minimum 
optical path length of Doppler-shifted light. A good agreement between experimentally 
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determined thickness of the static layer and Monte Carlo simulation was obtained (Varghese 
et al., 2007). The method was able to measure path length resolved information of non-
shifted and shifted Doppler fractions of photons (Varghese et al., 2007). 
Using Monte Carlo simulations, a few authors worked on the prediction of the speed 
distributions of moving particles based on the laser Doppler spectrum 
decomposition (Fredriksson et al., 2006; Larsson & Stromberg, 2006; Liebert et al., 2006). As 
the velocity depends on the dimension of the blood vessels, the prediction of the speed 
distributions could lead, in vivo, to differentiate between capillary and arterial blood flow. 
Various uniform and Gaussian speed distributions of particles, moving in the turbid media, 
were simulated in order to study the relation between the calculated speed distributions of 
moving particles and the simulated distribution using Monte Carlo simulations (Liebert et 
al., 2006). The Henyey-Greenstein phase function was used for the calculations and several 
anisotropy factors of the medium were simulated (Liebert et al., 2006). The optical 
properties, µa, µ’s and refractive index n were set to 0.01 mm-1, 1 mm-1 and 1.4, respectively. 
A laser light source of 780 nm was used. The backscattered photons were collected in 
concentric ringshaped detector at 1 mm from the source and a concentration of 1% of 
moving scatterers was used for simulations. The theoretical background of single and multi-
scattering were presented, but it was validated by Monte Carlo simulations for single-
scattering, only. The calculated speed distribution of moving particles matched with the 
assumed simulated Gaussian distributions of the moving particles speeds (Liebert et al., 
2006).  
An algorithm for velocity resolved perfusion measurements, that characterizes the 
microvascular blood flow in three different velocities, was suggested by Larsson & 
Strömberg (2006). This algorithm was derived by fitting a set of predefined Monte Carlo 
simulated, single velocity spectra, to a measured, multiple velocity LDF spectrum, based on 
single Doppler scattering event. The proposed method yields three concentration 
measurements, each associated with a predefined, physiologically relevant, absolute 
velocity. A perfusion phantom with a microsphere solution (or diluted blood), and with 
single or double-tube flow was used for validation. A parabolic flow profile, with average 
flow velocity equal to the real flow velocity, was simulated using the two phantoms with 
different experimental setups. Mie theory was used for the microspheres scattering angle 
distribution and Gegenbauer kernel phase function was used for blood. This study showed 
that the LDF signal can be separated into, at least, three different velocity regions (Larsson & 
Strömberg, 2006). 
Another method based on Doppler power spectrum decomposition into a number of flow 
velocity components, measured in absolute units (mm/s), was proposed (Fredriksson et al., 
2006). With Monte Carlo simulations, the number of Doppler shifts, and the total Doppler 
shift, were recorded for each detected photon. From the simulated optical Doppler spectrum 
resulting from the detected photons, the Doppler power spectrum was calculated. The shift 
distributions thus obtained were used for measured, and calculated, spectra comparisons. 
With the simulated shift distribution, a Doppler power spectrum was calculated, originating 
from a certain combination of velocity components using a mathematical model. The non 
linear Levenberg-Marquardt optimization method was used to fit the calculated and the 
measured Doppler power spectra, giving the set of velocity components in the measured 
sample. Evaluation of the method was achieved with a multi-tube flow phantom, perfused 
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with polystyrene microspheres infusion, or human blood. The results showed good velocity 
components estimations for low velocities and low concentrations of moving scatterers, but 
the opposite was found for high velocities and high concentrations. The reason for that was 
attributed to the physical characteristics of the phantom used (Fredriksson et al., 2006). 
A recent study (Binzoni et al., 2009) suggested a reinterpretation of the Monte Carlo 
simulation in order to obtain more information, relevant to LDF measurements. The authors 
suggested a method for photo-electric current determination in Monte Carlo simulations 
which will allow that any algorithm used in real LDF instrument could be tested and 
validated.  
Our research group is using Monte Carlo simulations in order to validate a new laser 
Doppler flowmeter prototype for depth flow discrimination in skin. This prototype uses 
different wavelengths (635, 785, and 830 nm) and different source-detector fibre distances (0, 
0.14, 0.25, and 1.2 mm). The prototype is evaluated, in vitro, in a phantom consisting of six 
layers of Teflon® microtubes (with 0.3 and 0.76 mm inner and outer diameter, respectively). 
Skimmed milk is used as the moving fluid (Figueiras et al., 2010). Milk has been chosen 
because it has various components that act as scatterers (carbohydrates, fat, and protein). 
Moreover, it does not sediment like microspheres, and it has similar behaviour to intralipid 
solutions (Waterworth et al., 1995). Finally, milk is easier for handling than blood and, 
besides, it is cheaper. However, as milk is unstable, we use the same solution of milk for one 
day only. Milk is pumped in the microtubes with a motorized syringe with different 
velocities: 1.56, 3.12, 4.68, 6.25, 7.78, and 9.35 mm/s. The prototype will also be evaluated, in 
vivo, in healthy human subjects. Real measurements and simulations will then be compared. 
For the three wavelengths and for the four different source-detector fibre separations, LDF 
simulations are carried out with a skin model similar to the one proposed by Fredriksson et 
al. (2009), and with the phantom. For the skin layers, µa is set equal to 0.15, 0.1, and 
0.0122 mm-1, for 635, 785, and 830 nm, respectively. µs is set equal to 20, 13, and 18 mm-1 for 
635, 785, and 830 nm, respectively. Regarding the blood optical properties, µa is set equal to 
0.34, 0.5, and 0.52 mm-1, for 635, 785, and 830 nm, respectively, and µs is set equal to 16, 13, 
and 11 mm-1 for 635, 785, and 830 nm, respectively. Concerning the phantom simulations 
with a 635 nm laser source, the refractive index for milk is 1.346, µa and µs are 0.00052 and 
52 mm-1, respectively. For the tubes, the refractive index is 1.367, µa and µs are equal to 0.001 
and 167 mm-1, respectively. The software used was developed by de Mul (1995). The mean 
photon Doppler shifted depths obtained for the modelled skin and for the phantom are 
presented in Figure 9. For skin simulations, it can be seen that the mean Doppler-shifted 
photon depth increases with the fibre source-detector separation and with the laser 
wavelength. The results obtained for skin are similar to the ones obtained by Fredriksson et 
al. (2009). The results obtained for the phantom are higher when compared with skin 
simulated results. We can explain these differences by the physical structure of the phantom 
that is different from the physical structure of the skin. Moreover, the phantom optical 
properties are different from the ones of simulated skin. Figure 10 shows a software window 
with the power spectrum obtained in the phantom for a wavelength of 635 nm and for 
different velocities: 7.78 mm/s (light green); 6.25 mm/s (red), 4.68 mm/s (pink); 3.12 mm/s 
(green) and 1.56 mm/s (blue). The spectra were taken with a 1.2 mm source detector 
separation. As it was expected the power spectrum increases with the velocity. 
The mentioned works prove the great importance of Monte Carlo simulations applied to 
LDF measurements.  
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Fig. 9. Mean photon Doppler shifted depths obtained in skin simulations for different 
wavelengths: 635 nm (blue curve) with µa and µs equal to 0.15 and 20 mm-1, respectively for 
skin layers, and with µa and µs equal to 0.34 and 16 mm-1, respectively for blood; 
785 nm (green curve) with µa and µs equal to 0.1 and 13 mm-1, respectively for skin layers, 
and with µa and µs equal to 0.5 and 13 mm-1, respectively for blood; and 830 nm (red curve) 
with µa and µs equal to 0.0122 and 18 mm-1, respectively for skin layers, and with µa and µs 
equal to 0.52 and 11 mm-1, respectively for blood. Phantom simulations are also shown for 
635 nm with milk pumped at 1.56 mm/s with µa and µs equal to 0.00052 and 52 mm-1, 
respectively for milk, and equal to 0.001 and 167 mm-1, respectively for the tubes. Different 
source-detector separations (0, 0.14, 0.25 and 1.2 mm) are used.  
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Fig. 10. Software window (software from de Mul, see www.demul.net/frits) showing the 
power spectrum obtained with a 635 nm laser source, in the phantom, for different velocities 
(light green: 7.78 mm/s; red: 6.25 mm/s, pink: 4. 68 mm/s, green: 3.12 mm/s and blue: 1.56 
mm/s) and for 1.2 mm source-detector separation. 
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1. Introduction

In this paper, mathematical models for the analysis of processes of generation and
resonance scattering of wave packets on a transversely inhomogeneous, isotropic, cubically
polarisable, non-magnetic, linearly polarised (E polarisation) medium with a non-linear,
layered dielectric structure, and methods of their numerical simulation are considered. In
general, electromagnetic waves in a non-linear medium with a cubic polarisability can be
described by an infinite system of non-linear differential equations. In the study of particular
non-linear effects it proves to be possible to restrict the examination to a finite number of
equations, and also to leave certain terms in the representation of the polarisation coefficients,
which characterise the physical problem under investigation.
Here we investigate the situation where the incident field consists of a packet of three waves
oscillating with single, double and triple frequency. An intense field at the basic frequency
leads to the generation of the third harmonic, i.e. of a field at the triple frequency. In this case
it is possible to reduce the mathematical model to a system of two equations, where only the
non-trivial terms in the expansion of the polarisation coefficients are taken into account (see
Angermann & Yatsyk (2010)). The consideration of a weak field at the double frequency or at
both the double and triple frequencies allows to analyse its influence on the generation process
of the third harmonic. In this situation, the mathematical model consists of three differential
equations.
The rigorous formulation finally leads to a system of boundary-value problems
of Sturm-Liouville type, which can be equivalently transformed into a system of
one-dimensional non-linear integral equations (defined along the height of the structure) with
respect to the complex Fourier amplitudes of the scattered fields in the non-linear layer at the
basic and multiple frequencies. In the paper both the variational approach to the approximate
solution of the system of non-linear boundary-value problems of Sturm-Liouville type (based
on the application of a finite element method) and an iterative scheme of the solution of the
system of non-linear integral equations (based on the application of a quadrature rule to each
of the non-linear integral equations) are considered.
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2 Numerical Simulations, Applications, Examples and Theory

The numerical simulation of the generation of the third harmonic and the resonance
scattering problem by excitation by a plane wave packet passing a non-linear three-layered
structure is described. Results of the numerical experiments for the values of the non-linear
dielectric constants depending on the given amplitudes and angles of the incident fields are
presented. Also the obtained diffraction characteristics of the scattered and generated fields
are discussed. The dependence characterising the portion of generated energy in the third
harmonic on the values of the amplitudes of the excitation fields of the non-linear structure
and on the angles of incidence is given. Within the framework of the closed system under
consideration it is shown that the imaginary part of the dielectric constant, determined by the
value of the non-linear part of the polarisation at a frequency of the incident field, characterises
the loss of energy in the non-linear medium which is spent for the generation of the third
harmonic, where the contributions caused be the influence of the weak electromagnetic fields
of diffraction are taken into account.

2. Maxwell equations and wave propagation in non-linear media with cubic
polarisability

Electrodynamical and optical wave phenomena in charge- and current-free media can be
described by the Maxwell equations

∇× E = −1
c

∂B
∂t

, ∇×H =
1
c

∂D
∂t

,

∇ ·D = 0, ∇ · B = 0.
(1)

Here E = E(r, t), H = H(r, t), D = D(r, t) and B = B(r, t) denote the vectors of electric
and magnetic field intensities, electric displacement, and magnetic induction, respectively,
and (r, t) ∈ R3 × (0,∞). The symbol ∇ represents the formal vector of partial derivatives
w.r.t. the spatial variables, i.e. ∇ := (∂/∂x,∂/∂y,∂/∂z)� , where the symbol � denotes the
transposition. In addition, the system (1) is completed by the material equations

D = E + 4πP, B = H + 4πM, (2)

where P and M are the vectors of the polarisation and magnetic moment, respectively. In
general, the polarisation vector P is non-linear with respect to the intensity and non-local both
in time and space.
In the present paper, the non-linear medium under consideration is located in the region Ωcl ,
where Ωcl denotes the closure of the set Ω defined by

Ω := {r = (x,y,z)� ∈R3 : |z| < 2πδ}
for some δ > 0 being fixed. That is, the non-linear medium represents an infinite plate of
thickness 4πδ.
As in the book Akhmediev & Ankevich (2003), the investigations will be restricted to
non-linear media having a spatially non-local response function, i.e. the spatial dispersion
is ignored (cf. Agranovich & Ginzburg (1966)). In this case, the polarisation vector can be
expanded in terms of the electric field intensity as follows:

P = χχχ(1)E + (χχχ(2)E)E + ((χχχ(3)E)E)E + . . . , (3)

where χχχ(1), χχχ(2), χχχ(3) are the media susceptibility tensors of rank one, two and three, with

components {χ
(1)
ij }3

i,j=1, {χ
(2)
ijk }3

i,j,k=1 and {χ
(3)
ijkl}3

i,j,k,l=1, respectively (see Butcher (1965)). In
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the case of media which are invariant under the operations of inversion, reflection and
rotation, in particular of isotropic media, the quadratic term disappears.
It is convenient to split P into its linear and non-linear parts as

P = P(L) + P(NL),

where P(L) := χχχ(1)E. Similarly, with εεε := I + 4πχχχ(1) and D(L) := εεεE, where I denotes the
identity in C3, the displacement field in (2) can be decomposed as

D = D(L) + 4πP(NL). (4)

εεε is the linear term of the permittivity tensor. Furthermore we assume that the media are
non-magnetic, i.e

M = 0, (5)

so that
B = H (6)

by (2). Resolving the equations (1), (4) and (6) with respect to H, a single vector-valued
equation results:

∇2E−∇(∇ · E)− 1
c2

∂2

∂t2 D(L) − 4π

c2
∂2

∂t2 P(NL) = 0. (7)

Equation (7) is of rather general character and is used, together with the material equations
(4), in electrodynamics and optics. In each particular case, specific assumptions are made that
allow to simplify its form. For example, the second term in (7) may be ignored in a number of
cases. One such case is the study of isotropic media considered here, where

εεε = ε(L)I

with a scalar, possibly complex-valued function ε(L). Then

∇ · (εεεE) =∇ε(L) · E + ε(L)∇ · E. (8)

From (1), (4) and (8) we see that

0 =∇ ·D =∇ · (εεεE) + 4π∇ · P(NL) =∇ε(L) · E + ε(L)∇ · E + 4π∇ · P(NL),

hence
∇ · E = − 1

ε(L)
∇ε(L) · E− 4π

ε(L)
∇ · P(NL). (9)

In addition, if the media under consideration are transversely inhomogeneous w.r.t. z, i.e.
ε(L) = ε(L)(z), if the wave is linearly E-polarised, i.e. E = (E1,0,0)�, H = (0, H2, H3)

�, and if
the electric field E is homogeneous w.r.t. the coordinate x, i.e.

E(r, t) = (E1(t;y,z),0,0)�, (10)

then the first term of the r.h.s in (9) vanishes.
For linear media, in particular in R3 \Ωcl , the second term of the r.h.s in (9) is not present. In
the layer medium the expansion (3) together with (10) implies that the vector P(NL) has only
one non-trivial component which is homogeneous w.r.t. x, i.e. P(NL)(r, t) = (P1(t;y,z),0,0)�.
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Then the second term of the r.h.s in (9) vanishes in Ωcl , too. Consequently, the second term in
equation (7) disappears completely, and we arrive at

∇2E− ε(L)

c2
∂2

∂t2 E− 4π

c2
∂2

∂t2 P(NL) = 0, (11)

where ∇2 reduces to the Laplacian w.r.t. y and z, i.e. ∇2 := ∂2/∂y2 + ∂2/∂z2.
In this paper we consider resonance effects caused by the irradiation of a non-linear dielectric
layer by an intense electromagnetic field of the frequency ω, where we also take into
consideration the higher-order harmonics of the electromagnetic field. A mathematical model
for the case of a weakly non-linear Kerr-type dielectric layer can be found in Yatsyk (2007);
Shestopalov & Yatsyk (2007); Kravchenko & Yatsyk (2007).

Fig. 1. The non-linear dielectric layered structure

The stationary problem of the diffraction of a plane electromagnetic wave (with oscillation
frequency ω > 0) on a transversely inhomogeneous, isotropic, non-magnetic, linearly
polarised, dielectric layer filled with a cubically polarisable medium (see Fig. 1) is studied in
the frequency domain (i.e. in the space of the Fourier amplitudes of the electromagnetic field),
taking into account the multiple frequencies sω, s ∈N, of the excitation frequency generated
by non-linear structure, where a time-dependence of the form exp(−isω t) is assumed. The
transition between the time domain and the frequency domain is performed by means of
direct and inverse Fourier transforms:

F̂(r, ω̂) =
∫

R
F(r, t)eiω̂tdt, F(r, t) =

1
2π

∫
R

F̂(r, ω̂)e−iω̂tdω̂ ,

where F is one of the vector fields E or P(NL).
Applying formally the Fourier transform to equation (11), we obtain the following
representation in the frequency domain:

∇2Ê(r, ω̂) +
ε(L)ω̂2

c2 Ê(r, ω̂) +
4πω̂2

c2 P̂(NL)(r, ω̂) = 0. (12)

A stationary (i.e. ∼ exp(−iω̂t)) electromagnetic wave propagating in a weakly non-linear
dielectric structure gives rise to a field containing all frequency harmonics (see Agranovich
& Ginzburg (1966), Vinogradova et al. (1990)). Therefore, the quantities describing the
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electromagnetic field in the time domain subject to equation (11) can be represented as Fourier
series

F(r, t) =
1
2 ∑

n∈Z

F(r,nω)e−inωt, F ∈ {E,P(NL)}. (13)

Applying to (13) the Fourier transform, we obtain

F̂(r, ω̂) =
1
2

∫
R

∑
n∈Z

F(r,nω)e−inωteiω̂tdt =
√

2π

2
F(r,nω)δ(ω̂,nω), F ∈ {E,P(NL)}, (14)

where δ(s, s0) := 1√
2π

∫
R

ei(s−s0)tdt is the Dirac delta-function located at s = s0.
Substituting (14) into (12), we obtain an infinite system of equations with respect to the Fourier
amplitudes of the electric field intensities of the non-linear structure in the frequency domain:

∇2E(r, sω) +
ε(L)(sω)2

c2 E(r, sω) +
4π(sω)2

c2 P(NL)(r, sω) = 0, s ∈Z. (15)

For linear electrodynamic objects, the equations in system (15) are independent.
In a non-linear structure, the presence of the functions P(NL)(r, sω) makes them
coupled since every harmonic depends on a series of E(r, sω). Indeed, consider a
three-component E-polarised electromagnetic field E(r, sω) = (E1(sω;y,z),0,0)�, H(r, sω) =
(0; H2(sω;y,z), H3(sω;y,z))�. Since the field E has only one non-trivial component, the system
(15) reduces to a system of scalar equations with respect to E1:

∇2E1(r, sω) +
ε(L) (sω)2

c2 E1(r, sω) +
4π (sω)2

c2 P(NL)
1 (r, sω) = 0, s ∈N. (16)

In writing equation (16), the property E1(r; jω) = E∗1 (r;−jω) of the Fourier coefficients and the
lack of influence of the static electric field E1(r, sω)|s=0 = 0 on the non-linear structure were
taken into consideration.
We assume that the main contribution to the non-linearity is introduced by the term
P(NL)(r, sω) (cf. Yatsyk (2007), Shestopalov & Yatsyk (2007), Kravchenko & Yatsyk (2007),
Angermann & Yatsyk (2008), Yatsyk (2006), Schürmann et al. (2001), Smirnov et al. (2005),
Serov et al. (2004)). We take only the lowest-order terms in the Taylor series expansion of the

non-linear part P(NL)(r, sω) =
(

P(NL)
1 (r, sω),0,0

)�
of the polarisation vector in the vicinity of

the zero value of the electric field intensity, cf. (3). In this case, the only non-trivial component
of the polarisation vector is determined by susceptibility tensor of the third order χχχ(3), that is
characteristic for a non-linear isotropic medium with cubic polarisability. In the time domain,
this component can be represented in the form (cf. (3) and (13)):

P(NL)
1 (r, t) =

1
2 ∑

s∈Z\{0}
P(NL)

1 (r, sω)e−isωt ·
= χ

(3)
1111E1(r, t)E1(r, t)E1(r, t)

·
=

1
8 ∑{

n,m,p,s∈Z\{0}
n+m+p=s

χ
(3)
1111(sω;nω,mω, pω)E1(r,nω)E1(r,mω)E1(r, pω)e−isωt,

(17)
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where the symbol ·= means that higher-order terms are neglected. Applying to (17) the Fourier
transform with respect to time (14) we obtain an expansion in the frequency domain:

P(NL)
1 (r, sω) =

1
4 ∑{

n,m,p∈Z\{0}
n+m+p=s

χ
(3)
1111(sω;nω,mω, pω)E1(r,nω)E1(r,mω)E1(r, pω)

=
1
4 ∑

j∈N

3χ
(3)
1111(sω; jω,−jω, sω)|E1(r, jω)|2E1(r, sω)

+
1
4 ∑⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n,m,p∈Z\{0}
n �=−m, p=s
m �=−p, n=s
n �=−p, m=s
n+m+p=s

χ
(3)
1111(sω;nω,mω, pω)E1(r,nω)E1(r,mω)E1(r, pω).

(18)

The addends in the first sum of the last representation of P(NL)
1 (r, sω) in (18) are usually called

phase self-modulation (PSM) terms (cf. Akhmediev & Ankevich (2003)). We denote them by

P(FSM)
1 (r, sω). Since the terms in formula (18) contain the factor E1(r, sω), they are responsible

for the variation of the dielectric permittivity of the non-linear medium influenced by a
variation of the amplitude of the field of excitation. We obtained them taking into account
the property of the Fourier coefficients E1(r; jω) = E∗1 (r;−jω), where the factor 3 appears as a
result of permutations {jω,−jω, sω} of the three last parameters in the terms

χ
(3)
1111(sω; jω,−jω, sω).

The addends in the second sum of the last representation of P(NL)
1 (r, sω) in (18) are

responsible for the generation of the multiple harmonics. Some of them generate radiation
at multiple frequencies, others describe the mutual influence of the generated fields at
multiple frequencies on the electromagnetic field being investigated. Moreover, those of
them which clearly depend at the multiple frequency sω on the unknown field of diffraction
induce a complex contribution to the dielectric permittivity of the non-linear medium.

They are denoted by P(GC)
1 (r, sω). The remaining terms of the second sum are denoted by

P(G)
1 (r, sω). They play the role of the sources generating radiation. In summary, we have the

representation

P(NL)
1 (r, sω) = P(FSM)

1 (r, sω) + P(GC)
1 (r, sω) + P(G)

1 (r, sω). (19)

Thus, under the above assumption, the electromagnetic waves in a non-linear medium with
a cubic polarisability are described by an infinite system (16)&(18) of non-linear equations
(Yatsyk (2007), Shestopalov & Yatsyk (2007), Kravchenko & Yatsyk (2007), Angermann &
Yatsyk (2010)). In what follows we will consider the equations in the frequency space taking
into account the relation κ = ω

c .
In the study of particular non-linear effects it proves to be possible to restrict the examination
of the system (16)&(18) to a finite number of equations, and also to leave particular terms in
the representation of the polarisation coefficients, which characterise the physical problem
under investigation. For example, in the analysis of the non-linear effects caused by the
generation of harmonics only at three combined frequencies (i.e., neglecting the influence of
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higher harmonics), it is possible to restrict the investigation to a system of three equations.
Taking into account only the non-trivial terms in the expansion of the polarisation coefficients,
we arrive at the following system:
⎧⎪⎨
⎪⎩

∇2E1(r,κ) + ε(L)κ2E1(r,κ) + 4πκ2P(NL)
1 (r,κ) = 0,

∇2E1(r,2κ) + ε(L)(2κ)2E1(r,2κ) + 4π(2κ)2P(NL)
1 (r,2κ) = 0,

∇2E1(r,3κ) + ε(L)(3κ)2E1(r,3κ) + 4π(3κ)2P(NL)
1 (r,3κ) = 0,

P(NL)
1 (r,nκ) =

3
4

(
χ
(3)
1111(nκ;κ,−κ,nκ)|E1(r,κ)|2 + χ

(3)
1111(nκ;2κ,−2κ,nκ)|E1(r,2κ)|2

+χ
(3)
1111(nκ;3κ,−3κ,nκ)|E1(r,3κ)|2

)
E1(r,nκ)

+δn1
3
4

{
χ
(3)
1111(κ;−κ,−κ,3κ) [E∗1 (r,κ)]2 E1(r,3κ)

+ χ
(3)
1111(κ;2κ,2κ,−3κ)E2

1(r,2κ)E∗1 (r,3κ)
}

+δn2
3
4

χ
(3)
1111(2κ;−2κ,κ,3κ)E∗1 (r,2κ)E1(r,κ)E1(r,3κ)

+δn3

{
1
4

χ
(3)
1111(3κ;κ,κ,κ)E3

1(r,κ) +
3
4

χ
(3)
1111(3κ;2κ,2κ,−κ)E2

1(r,2κ)E∗1 (r,κ)
}

,

n = 1,2,3,
(20)

where δnm denotes Kronecker’s symbol. Using (19), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2E1(r,κ) + ε(L)κ2E1(r,κ) + 4πκ2
(

P(FSM)
1 (r,κ) + P(GC)

1 (r,κ)
)

= −4πκ2P(G)
1 (r,κ),

∇2E1(r,2κ) + ε(L)(2κ)2E1(r,2κ) + 4π(2κ)2
(

P(FSM)
1 (r,2κ) + P(GC)

1 (r,2κ)
)

= 0,

∇2E1(r,3κ) + ε(L)(3κ)2E1r(r,3κ) + 4π(3κ)2P(FSM)
1 (r,3κ)

= −4π(3κ)2P(G)
1 (r,3κ),

P(FSM)
1 (r,nκ) =

3
4
(χ

(3)
1111(nκ;κ,−κ,nκ)|E1(r,κ)|2 + χ

(3)
1111(nκ;2κ,−2κ,nκ)|E1(r,2κ)|2

+χ
(3)
1111(nκ;3κ,−3κ,nκ)|E1(r,3κ)|2)E1(r,nκ), n = 1,2,3,

P(GC)
1 (r,κ) =

3
4

χ
(3)
1111(κ;−κ,−κ,3κ) [E∗1 (r,κ)]2 E1(r,3κ)

=
3
4

χ
(3)
1111(κ;−κ,−κ,3κ)

[
E∗1 (r,κ)

]2

E1(r,κ)
E1(r,3κ)E1(r,κ),

P(G)
1 (r,κ) =

3
4

χ
(3)
1111(κ;2κ,2κ,−3κ)E2

1(r,2κ)E∗1 (r,3κ),

P(GC)
1 (r,2κ) =

3
4

χ
(3)
1111(2κ;−2κ,κ,3κ)E∗1 (r,2κ)E1(r,κ)E1(r,3κ)

=
3
4

χ
(3)
1111(2κ;−2κ,κ,3κ)

E∗1 (r,2κ)

E1(r,2κ)
E1(r,κ)E1(r,3κ)E1(r,2κ),

P(G)
1 (r,3κ) =

3
4

{
1
3

χ
(3)
1111(3κ;κ,κ,κ)E3

1(r,κ) + χ
(3)
1111(3κ;2κ,2κ,−κ)E2

1(r,2κ)E∗1 (r,κ)
}

.

(21)
The analysis of the problem can be significantly simplified by reducing the number of
parameters, i.e. the coefficients of the cubic susceptibility of the non-linear medium. Thus,

181Generation and Resonance Scattering of Waves on Cubically Polarisable Layered Structures



8 Numerical Simulations, Applications, Examples and Theory

by Kleinman’s rule (Kleinman (1962), Miloslavski (2008)),

χ
(3)
1111(nκ;κ,−κ,nκ) = χ

(3)
1111(nκ;2κ,−2κ,nκ) = χ

(3)
1111(nκ;3κ,−3κ,nκ)

= χ
(3)
1111(κ;−κ,−κ,3κ) = χ

(3)
1111(κ;2κ,2κ,−3κ) = χ

(3)
1111(2κ;−2κ,κ,3κ)

= χ
(3)
1111(3κ;κ,κ,κ) = χ

(3)
1111(3κ;2κ,2κ,−κ) =: χ

(3)
1111, n = 1,2,3.

Therefore, the system (21) can be written in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2E1(r,κ) + ε(L)κ2E1(r,κ) + 4πκ2
(

P(FSM)
1 (r,κ) + P(GC)

1 (r,κ)
)

= −4πκ2P(G)
1 (r,κ),

∇2E1(r,2κ) + ε(L)(2κ)2E1(r,2κ) + 4π(2κ)2
(

P(FSM)
1 (r,2κ) + P(GC)

1 (r,2κ)
)

= 0,

∇2E1(r,3κ) + ε(L)(3κ)2E1(r,3κ) + 4π(3κ)2P(FSM)
1 (r,3κ)

= −4π(3κ)2P(G)
1 (r,3κ),

P(FSM)
1 (r,nκ) =

3
4

χ
(3)
1111(|E1(r,κ)|2 + |E1(r,2κ)|2 + |E1(r,3κ)|2)E1(r,nκ), n = 1,2,3,

P(GC)
1 (r,κ) =

3
4

χ
(3)
1111

[
E∗1 (r,κ)

]2

E1(r,κ)
E1(r,3κ)E1(r,κ),

P(G)
1 (r,κ) =

3
4

χ
(3)
1111E2

1(r,2κ)E∗1 (r,3κ),

P(GC)
1 (r,2κ) =

3
4

χ
(3)
1111

E∗1 (r,2κ)

E1(r,2κ)
E1(r,κ)E1(r,3κ)E1(r,2κ), P(G)

1 (r,2κ) := 0,

P(G)
1 (r,3κ), =

3
4

χ
(3)
1111

{
1
3

E3
1(r,κ) + E2

1(r,2κ)E∗1 (r,κ)
}

, P(GC)
1 (r,3κ) := 0.

(22)
The permittivity of the non-linear medium filling a layer (see Fig. 1) can be represented as

εnκ = ε(L) + ε
(NL)
nκ for |z| ≤ 2πδ . (23)

Outside the layer, i.e. for |z|> 2πδ, εnκ = 1. The linear and non-linear terms of the permittivity
of the layer are given by the coefficients at (nκ)2E1(r,nκ) in the second and third addends in
each of the equations of the system, respectively. Thus

ε(L) =
D(L)

1 (r,nκ)

E1(r,nκ)
= 1 + 4πχ

(1)
11 , (24)

where the representations for the linear part of the complex components of the electric

displacement D(L)
1 (r,nκ) = E1(r,nκ) + 4πP(L)

1 (r,nκ) = ε(L)E1(r,nκ) and the polarisation

P(L)
1 (r,nκ) = χ

(1)
11 E1(r,nκ) are taken into account. Similarly, the third term of each equation of

the system makes it possible to write the non-linear component of the permittivity in the form

ε
(NL)
nκ = 4π

P(FSM)
1 (r,nκ) + P(GC)

1 (r,nκ)

E1(r,nκ)
= α(z)

[|E1(r,κ)|2 + |E1(r,2κ)|2 + |E1(r,3κ)|2

+ δn1

[
E∗1 (r,κ)

]2

E1(r,κ)
E1(r,3κ) + δn2

E∗1 (r,2κ)

E1(r,2κ)
E1(r,κ)E1(r,3κ)

]
,

(25)
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where α(z) := 3πχ
(3)
1111(z) is the so-called function of the cubic susceptibility of the non-linear

medium.
For transversely inhomogeneous media (a layer or a layered structure), the linear part ε(L) =

ε(L)(z) = 1 + 4πχ
(1)
11 (z) of the permittivity (cf. (24)) is described by a piecewise smooth or a

piecewise constant function. Similarly, the function of the cubic susceptibility α = α(z) is also
a piecewise smooth or a piecewise constant function. This assumption allows us to investigate
the diffraction characteristics of a non-linear layer and of a layered structure (consisting of a
finite number of non-linear dielectric layers) within one and the same mathematical model.

3. The condition of phase synchronism. Quasi-homogeneous electromagnetic
fields in a transversely inhomogeneous non-linear dielectric layered structure.

The scattered and generated field in a transversely inhomogeneous, non-linear dielectric
layer excited by a plane wave is quasi-homogeneous along the coordinate y, hence it can be
represented as

(C1) E1(r,nκ) =: E1(nκ;y,z) := U(nκ;z)exp(iφnκy), n = 1,2,3.

Here U(nκ;z) and φnκ := nκ sin ϕnκ denote the complex-valued transverse component of the
Fourier amplitude of the electric field and the value of the longitudinal propagation constant
(longitudinal wave-number) at the frequency nκ, respectively, where ϕnκ is the given angle of
incidence of the exciting field of frequency nκ (cf. Fig. 1).
The dielectric permittivities of the layered structure at the multiple frequencies nκ are
determined by the values of the transverse components of the Fourier amplitudes of the
scattered and generated fields, i.e. by the redistribution of energy of the electric fields at
multiple frequencies, where the angles of incidence are given and the non-linear structure
under consideration is transversely inhomogeneous. The condition of the longitudinal
homogeneity (along the coordinate y) of the non-linear dielectric constant of the layered
structure can be written as

ε
(NL)
nκ (z,α(z), E1(r,κ), E1(r,2κ), E1(r,3κ)) = ε

(NL)
nκ (z,α(z),U(κ;z),U(2κ;z),U(3κ;z)). (26)

Using the representation (25) and the conditions (C1), (26), we obtain the following physically
consistent requirement, which we call the condition of the phase synchronism of waves:

(C2) φnκ = nφκ , n = 1,2,3.

Indeed, from (25) and (C1) it follows that

ε
(NL)
nκ = α(z)

[|E1(r,κ)|2 + |E1(r,2κ)|2 + |E1(r,3κ)|2

+ δn1

[
E∗1 (r,κ)

]2

E1(r,κ)
E1(r,3κ) + δn2

E∗1 (r,2κ)

E1(r,2κ)
E1(r,κ)E1(r,3κ)

]
,

= α(z)
[|U(κ;z)|2 + |U(2κ;z)|2 + |U(3κ;z)|2

+ δn1
[U∗(r,κ)]2

U(r,κ)
U(3κ;z)exp{i [−3φκ + φ3κ ]y}

+ δn2
U∗(r,2κ)

U(r,2κ)
U(κ;z)U(3κ;z)exp{i [−2φ2κ + φκ + φ3κ ]y}

]
, n = 1,2,3.

(27)

Therefore the condition (26) is satisfied if{ − 3φκ + φ3κ = 0,
− 2φ2κ + φκ + φ3κ = 0. (28)
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From this system we obtain the condition (C2).
According to (23), (24), (27) and (C2), the permittivity of the non-linear layer can be expressed
as

εnκ(z,α(z), E1(r,κ), E1(r,2κ), E1(r,3κ))
= εnκ(z,α(z),U(κ;z),U(2κ;z),U(3κ;z))
= ε(L)(z) + α(z)

[|U(κ;z)|2 + |U(2κ;z)|2 + |U(3κ;z)|2
+ δn1U∗(κ;z)exp{−2iarg(U(κ;z))}U(3κ;z)
+ δn2 exp{−2iarg(U(2κ;z))}U(κ,z)U(3κ;z)

]
= ε(L)(z) + α(z)

[|U(κ;z)|2 + |U(2κ;z)|2 + |U(3κ;z)|2
+ δn1|U(κ;z)||U(3κ;z)|exp{i [−3arg(U(κ;z))− 3φκy + arg(U(3κ;z)) + φ3κy]}
+ δn2|U(κ;z)||U(3κ;z)|exp{i [−2arg(U(2κ;z))− 2φ2κy + arg(U(κ;z)) + φκy

+ arg(U(3κ;z)) + φ3κy]} ]
= ε(L)(z) + α(z)

[|U(κ;z)|2 + |U(2κ;z)|2 + |U(3κ;z)|2
+ δn1|U(κ;z)||U(3κ;z)|exp{i [−3arg(U(κ;z)) + arg(U(3κ;z))]}
+ δn2|U(κ;z)||U(3κ;z)|exp{i [−2arg(U(2κ;z)) + arg(U(κ;z)) + arg(U(3κ;z))]} ],

n = 1,2,3.
(29)

The investigation of the quasi-homogeneous fields E1(nκ;y,z) (cf. condition (C1)) in a
transversely inhomogeneous non-linear dielectric layer shows that, if the condition of the

phase synchronism (C2) is satisfied, the components of the non-linear polarisation P(G)
1 (r,nκ)

(playing the role of the sources generating radiation in the right-hand sides of the system (22))
satisfy the quasi-homogeneity condition, too. Indeed, using (25) and (C1), the right-hand sides
of the first and third equations of (22) can be rewritten as

−4πκ2P(G)
1 (r,κ) = −α(z)κ2E2

1(r,2κ)E∗1 (r,3κ)
= −α(z)κ2U2(2κ;z)U∗(3κ;z)exp{i [2φ2κ − φ3κ ]y}
= −α(z)κ2U2(2κ;z)U∗(3κ;z)exp(iφκy)

and

−4π(3κ)2P(G)
1 (r,3κ) = −α(z)(3κ)2

{
1
3

E3
1(r,κ) + E2

1(r,2κ)E∗1 (r,κ)
}

= −α(z)(3κ)2
{

1
3

U3(κ;z)exp(3iφκy)

+ U2(2κ;z)U∗(κ;z)exp{i [2φ2κ − φκ ]y}
}

= −α(z)(3κ)2
{

1
3

U3(κ;z) + U2(2κ;z)U∗(κ;z)
}

exp(iφ3κy),

respectively. This shows that the quasi-homogeneity condition for the components of the

non-linear polarisation P(G)
1 (r,nκ) is satisfied.

In the considered case of spatially quasi-homogeneous (along the coordinate y)
electromagnetic fields (C1), the condition of the phase synchronism of waves (C2) reads as

sin ϕnκ = sin ϕκ , n = 1,2,3.

Consequently, the given angle of incidence of a plane wave at the frequency κ coincides with
the possible directions of the angles of incidence of plane waves at the multiple frequencies
nκ. The angles of the wave scattered by the layer are equal to ϕscat

nκ = −ϕnκ in the zone of
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reflection z > 2πδ and ϕscat
nκ = π + ϕnκ and in the zone of transmission of the non-linear layer

z <−2πδ, where all angles are measured counter-clockwise in the (y,z)-plane from the z-axis
(cf. Fig. 1).

4. The diffraction of a packet of plane waves on a non-linear layered dielectric
structure. The third harmonics generation

As a first observation we mention that the effect of a weak quasi-homogeneous
electromagnetic field (C1) on the non-linear dielectric structure such that harmonics at
multiple frequencies are not generated, i.e. E1(r,2κ) = 0 and E1(r,3κ) = 0, reduces to find the
electric field component E1(r,κ) determined by the first equation of the system (22). In this
case, a diffraction problem for a plane wave on a non-linear dielectric layer with a Kerr-type
non-linearity εnκ = ε(L)(z) + α(z)|E1(r,κ)|2 and a vanishing right-hand side is to be solved,
see Yatsyk (2007); Shestopalov & Yatsyk (2007); Kravchenko & Yatsyk (2007); Angermann &
Yatsyk (2008); Yatsyk (2006); Smirnov et al. (2005); Serov et al. (2004).
The generation process of a field at the triple frequency 3κ by the non-linear dielectric structure
is caused by a strong incident electromagnetic field at the frequency κ and can be described
by the first and third equations of the system (22) only. Since the right-hand side of the second
equation in (22) is equal to zero, we may set E1(r,2κ) = 0 corresponding to the homogeneous
boundary condition w.r.t. E1(r,2κ). Therefore the second equation in (22) can be completely
omitted.
A further interesting problem consists in the investigation of the influence of a packet of waves
on the generation of the third harmonic, if a strong incident field at the basic frequency κ and,
in addition, weak incident quasi-homogeneous electromagnetic fields at the double and triple
frequencies 2κ, 3κ (which alone do not generate harmonics at multiple frequencies) excite the
non-linear structure. The system (22) allows to describe the corresponding process of the third
harmonics generation. Namely, if such a wave packet consists of a strong field at the basic
frequency κ and of a weak field at the triple frequency 3κ, then we arrive, as in the situation
described above, at the system (22) with E1(r,2κ) = 0, i.e. it is sufficient to consider the first
and third equations of (22) only. For wave packets consisting of a strong field at the basic
frequency κ and of a weak field at the frequency 2κ, (or of two weak fields at the frequencies
2κ and 3κ) we have to take into account all three equations of system (22). This is caused by
the inhomogeneity of the corresponding diffraction problem, where a weak incident field at
the double frequency 2κ (or two weak fields at the frequencies 2κ and 3κ) excites (resp. excite)
the dielectric medium.
So we consider the problem of diffraction of a packet of plane waves consisting of a strong
field at the frequency κ (which generates a field at the triple frequency 3κ) and of weak fields
at the frequencies 2κ and 3κ (having an impact on the process of third harmonic generation
due to the contribution of weak electromagnetic fields of diffraction){

Einc
1 (r,κ) := Einc

1 (κ;y,z) := ainc
nκ exp

(
i
(
φnκy− Γnκ(z− 2πδ)

))}3

n=1
, z > 2πδ , (30)

with amplitudes ainc
nκ and angles of incidence ϕnκ , |ϕ| < π/2 (cf. Fig. 1), where φnκ :=

nκ sin ϕnκ are the longitudinal propagation constants (longitudinal wave-numbers) and Γnκ :=√
(nκ)2 − φ2

nκ are the transverse propagation constants (transverse wave-numbers).
In this setting, the complex amplitudes of the total fields of diffraction

E1(r,nκ) =: E1(nκ;y,z) := U(nκ;z)exp(iφnκy) := Einc
1 (nκ;y,z) + Escat

1 (nκ;y,z)
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of a plane wave (30) in a non-magnetic, isotropic, linearly polarised

E(r,nκ) = (E1(nκ;y,z),0,0)� ,

H(r,nκ) =

(
0,

1
inωμ0

∂E1(nκ;y,z)
∂z

,− 1
inωμ0

∂E1(nκ;y,z)
∂y

)�

(E-polarisation), transversely inhomogeneous ε(L) = ε(L)(z) = 1 + 4πχ
(1)
11 (z) dielectric layer

(see Fig. 1) with a cubic polarisability P(NL)(r,nκ) = (P(NL)
1 (nκ;y,z),0,0)� of the medium (see

(20)) satisfies the system of equations (cf. (22) – (25))⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇2E1(r,κ) + κ2εκ(z,α(z), E1(r,κ), E1(r,2κ), E1(r,3κ))E1(r,κ)
= −α(z)κ2E2

1(r,2κ)E∗1 (r,3κ),

∇2E1(r,2κ) + (2κ)2ε2κ(z,α(z), E1(r,κ), E1(r,2κ), E1(r,3κ))E1(r,2κ) = 0,

∇2E1(r,3κ) + (3κ)2ε3κ(z,α(z), E1(r,κ), E1(r,2κ), E1(r,3κ))E1(r,3κ)

= −α(z)(3κ)2
{1

3
E3

1(r,κ) + E2
1(r,2κ)E∗1 (r,κ)

}
(31)

together with the following conditions, where Etg(nκ;y,z) and Htg (nκ;y,z) denote
the tangential components of the intensity vectors of the full electromagnetic field
{E(nκ;y,z)}n=1,2,3 , {H(nκ;y,z)}n=1,2,3:

– (C1) E1(nκ;y,z) = U(nκ;z)exp(iφnκy), n = 1,2,3
(the quasi-homogeneity condition w.r.t. the spatial variable y introduced in Section 3),

– (C2) φnκ = nφκ , n = 1,2,3,
(the condition of phase synchronism of waves introduced in Section 3),

– (C3) Etg(nκ;y,z) and Htg(nκ;y,z) (i.e. E1(nκ;y,z) and H2(nκ;y,z)) are continuous at the
boundary layers of the non-linear structure,

– (C4) Escat
1 (nκ;y,z) =

{
ascat

nκ
bscat

nκ

}
exp (i (φnκy± Γnκ(z∓ 2πδ))) , z><± 2πδ , n = 1,2,3

(the radiation condition w.r.t. the scattered field).

The condition (C4) provides a physically consistent behaviour of the energy characteristics
of scattering and guarantees the absence of waves coming from infinity (i.e. z = ±∞), see
Shestopalov & Sirenko (1989). We study the scattering properties of the non-linear layer,
where in (C4) we always have ImΓnκ = 0, ReΓnκ > 0. Note that (C4) is also applicable for
the analysis of the wave-guide properties of the layer, where ImΓnκ > 0, ReΓnκ = 0.
Here and in what follows we use the following notation: (r, t) are dimensionless
spatial-temporal coordinates such that the thickness of the layer is equal to 4πδ. The
time-dependence is determined by the factors exp(−inωt), where ω := κc is the dimensionless
circular frequency and κ is a dimensionless frequency parameter such that κ = ω/c := 2π/λ.
This parameter characterises the ratio of the true thickness h of the layer to the free-space
wavelength λ, i.e. h/λ = 2κδ. c = (ε0μ0)

−1/2 denotes a dimensionless parameter, equal to the
absolute value of the speed of light in the medium containing the layer (Im c = 0). ε0 and μ0
are the material parameters of the medium. The absolute values of the true variables r′, t′,ω′
are given by the formulas r′ = hr/4πδ, t′ = th/4πδ, ω′ = ω4πδ/h.
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The desired solution of the diffraction problem (31), (C1) – (C4) can be represented as follows:

E1(nκ;y,z) = U(nκ;z)exp(iφnκy)

=

⎧⎨
⎩

ainc
nκ exp(i(φnκy− Γnκ(z− 2πδ))) + ascat

nκ exp(i(φnκy + Γnκ(z− 2πδ))), z > 2πδ,
U(nκ;z)exp(iφnκy), |z| ≤ 2πδ,
bscat

nκ exp(i(φnκy− Γnκ(z + 2πδ))), z < −2πδ,
n = 1,2,3.

(32)

Note that depending on the magnitudes of the amplitudes {ainc
κ , ainc

2κ , ainc
3κ } of the packet of

incident plane waves, the amplitudes {ascat
nκ ,bscat

nκ }3
n=1 of the scattered fields can be considered

as the amplitudes of the diffraction field, of the generation field or of the sum of the diffraction
and generation fields. If the components {ainc

κ = ainc(w)
κ , ainc

2κ = ainc(w)
2κ , ainc

3κ = ainc(w)
3κ } of the

packet consist of the amplitudes of weak fields, then {ascat
nκ = adif

nκ ,bscat
nκ = bdif

nκ }3
n=1.

The presence of an amplitude of a strong field at the basic frequency κ in the packet {ainc
κ =

ainc(s)
κ , ainc

2κ = ainc(w)
2κ , ainc

3κ = ainc(w)
3κ } leads to non-trivial right-hand sides in the problem (31),

(C1) – (C4). In this case the analysis of the following situations is of interest (see (32)):⎧⎪⎨
⎪⎩

ainc
κ = ainc(s)

κ �= 0,
ainc

2κ = ainc(w)
2κ := 0,

ainc
3κ = ainc(w)

3κ := 0

⎫⎪⎬
⎪⎭ ⇒

{
ascat

κ = adif
κ , ascat

2κ = 0, ascat
3κ = agen

3κ
bscat

κ = bdif
κ , bscat

2κ = 0, bscat
3κ = bgen

3κ

}
,

⎧⎪⎨
⎪⎩

ainc
κ = ainc(s)

κ �= 0,
ainc

2κ = ainc(w)
2κ := 0,

ainc
3κ = ainc(w)

3κ �= 0

⎫⎪⎬
⎪⎭ ⇒

{
ascat

κ = adif
κ , ascat

2κ = 0, ascat
3κ = adif

3κ + agen
3κ

bscat
κ = bdif

κ , bscat
2κ = 0, bscat

3κ = bdif
3κ + bgen

3κ

}
,

⎧⎪⎨
⎪⎩

ainc
κ = ainc(s)

κ �= 0,
ainc

2κ = ainc(w)
2κ �= 0,

ainc
3κ = ainc(w)

3κ := 0

⎫⎪⎬
⎪⎭ ⇒

{
ascat

κ = adif
κ + agen

κ , ascat
2κ = adif

2κ , ascat
3κ = agen

3κ
bscat

κ = bdif
κ + bgen

κ , bscat
2κ = bdif

2κ , bscat
3κ = bgen

3κ

}
,

⎧⎪⎨
⎪⎩

ainc
κ = ainc(s)

κ �= 0,
ainc

2κ = ainc(w)
2κ �= 0,

ainc
3κ = ainc(w)

3κ �= 0

⎫⎪⎬
⎪⎭ ⇒

{
ascat

κ = adif
κ + agen

κ , ascat
2κ = adif

2κ , ascat
3κ = adif

3κ + agen
3κ

bscat
κ = bdif

κ + bgen
κ , bscat

2κ = bdif
2κ , bscat

3κ = bdif
3κ + bgen

3κ

}
.

The boundary conditions follow from the continuity of the tangential components of the full
fields of diffraction

{
Etg(nκ;y,z)

}
n=1,2,3

{
Htg(nκ;y,z)

}
n=1,2,3 at the boundary z = 2πδ and

z = −2πδ of the non-linear layer (cf. (C3)). According to (C3) and the presentation of the
electrical components of the electromagnetic field (32), at the boundary of the non-linear layer
we obtain:

U(nκ;2πδ) = ascat
nκ + ainc

nκ , U′(nκ;2πδ) = iΓnκ
(
ascat

nκ − ainc
nκ

)
,

U(nκ;−2πδ) = bscat
nκ , U′(nκ;−2πδ) = −iΓnκbscat

nκ , n = 1,2,3,
(33)

where “ ′ ” denotes the differentiation w.r.t. z. Eliminating in (33) the unknown values of
the complex amplitudes

{
ascat

nκ

}
n=1,2,3 ,

{
bscat

nκ

}
n=1,2,3 of the scattered field and taking into

consideration that ainc
nκ = Uinc(nκ;2πδ), we arrive at the desired boundary conditions for the

problem (31), (C1) – (C4):

iΓnκU(nκ;−2πδ) + U′(nκ;−2πδ) = 0,
iΓnκU(nκ;2πδ) − U′(nκ;2πδ) = 2iΓnκ ainc

nκ , n = 1,2,3.
(34)
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Substituting the representation (32) for the desired solution into the system (31), the
resulting system of non-linear ordinary differential equations together with the boundary
conditions (34) forms a semi-linear boundary-value problem of Sturm-Liouville type, see
also Shestopalov & Yatsyk (2010); Yatsyk (2007); Shestopalov & Yatsyk (2007); Angermann
& Yatsyk (2010).

5. The system of non-linear integral equations

Similarly to the results given in Yatsyk (2007); Shestopalov & Yatsyk (2007); Kravchenko &
Yatsyk (2007); Angermann & Yatsyk (2010); Shestopalov & Sirenko (1989), the problem (31),
(C1) – (C4) reduces to finding solutions of one-dimensional non-linear integral equations
(along the height z ∈ (−2πδ,2πδ) of the structure) w.r.t. the components U(nκ;z), n = 1,2,3, of
the fields scattered and generated in the non-linear layer. We give the derivation of this system
of equations in the case of excitation of the non-linear structure by a plane wave packet (30).
The solution of (31), (C1) – (C4) in the whole space Q := {q = (y,z) : |y| < ∞, |z| < ∞} is
obtained using the properties of the canonical Green’s function of the problem (31), (C1)
– (C4) (for the special case εnκ ≡ 1) which is defined, for Y > 0, in the strip Q{Y,∞} :=
{q = (y,z) : |y| < Y, |z| < ∞} ⊂ Q by

G0(nκ;q,q0)

:=
i

4Y
exp{i [φnκ (y− y0) + Γnκ |z− z0|]}/Γnκ

= exp (±iφnκy)
iπ
4Y

∫ ∞

−∞
H(1)

0

(
nκ

√
(y̆− y0)

2 + (z− z0)2
)

exp (∓iφnκ y̆)dy̆,

n = 1,2,3

(35)

(cf. Shestopalov & Sirenko (1989); Sirenko et al. (1985)).
We derive the system of non-linear integral equations by the same classical approach as
described in Smirnov (1981) (see also Shestopalov & Yatsyk (2007)). Denote both the scattered
and the generated full fields of diffraction at each frequency nκ, n = 1,2,3, i.e. the solution of

the problem (31), (C1) – (C4), by E1

(
nκ;q|q=(y,z)

)
= U(nκ;z)exp (iφnκy) (cf. (32)), and write

the system of equations (31) in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(∇2 + κ2)E1(κ;q) = [1− εκ (q,α(q), E1(κ;q), E1(2κ;q), E1(3κ;q))]κ2E1(κ;q)
− α(q)κ2E2

1(2κ;q)E∗1 (3κ;q),(
∇2 + (2κ)2

)
E1(2κ;q) = [1− ε2κ (q,α(q), E1(κ;q), E1(2κ;q), E1(3κ;q))] (2κ)2 E1(2κ;q),(∇2 + (3κ)2)E1(3κ;q) = [1− ε3κ (q,α(q), E1(κ;q), E1(2κ;q), E1(3κ;q))] (3κ)2E1(3κ;q)

− α(q)(3κ)2
{

1
3

E3
1(κ;q) + E2

1(2κ;q)E∗1 (κ;q)
}

,

or, shorter,

(∇2 + (nκ)2)E1(nκ;q) = [1− εnκ (q,α(q), E1(κ;q), E1(2κ;q), E1(3κ;q))] (nκ)2E1(nκ;q)

− δn1α(q)(nκ)2E2
1(2κ;q)E∗1 (3κ;q)

−δn3α(q)(nκ)2
{

1
3

E3
1(κ;q) + E2

1(2κ;q)E∗1 (κ;q)
}

, n = 1,2,3.

(36)
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At the right-hand side of the system of equations (36), the first term outside the layer vanishes,
since, by assumption, the permittivity of the medium in which the non-linear layer is situated
is equal to one, i.e. 1− εnκ (q,α(q), E1(κ;q), E1(2κ;q), E1(3κ;q)) ≡ 0 for |z| > 2πδ.
The excitation field of the non-linear structure can be represented in the form of a packet
of incident plane waves

{
Einc

1 (nκ;q)
}

n=1,2,3 satisfying the condition of phase synchronism,
where

Einc
1 (nκ;q) = ainc

nκ exp{i [φnκy− Γnκ(z− 2πδ)]} , n = 1,2,3. (37)

Furthermore, in the present situation described by the system of equations (36), we assume
that the excitation field Einc

1 (κ;q) of the non-linear structure at the frequency κ is sufficiently
strong (i.e. the amplitude ainc

κ is sufficiently large such that the third harmonic generation
is possible), whereas the amplitudes ainc

2κ , ainc
3κ corresponding to excitation fields Einc

1 (2κ;q),
Einc

1 (3κ;q) at the frequencies 2κ, 3κ, respectively, are selected sufficiently weak such that no
generation of multiple harmonics occurs.
In the whole space, for each frequency nκ, n = 1,2,3, the fields

{
Einc

1 (nκ;q)
}

n=1,2,3 of incident
plane waves satisfy a system of homogeneous Helmholtz equations:(

∇2 + (nκ)2
)

Einc
1 (nκ;q) = 0, q ∈ Q, n = 1,2,3. (38)

For z > 2πδ, the incident fields
{

Einc
1 (nκ;q)

}
n=1,2,3 are fields of plane waves approaching the

layer, while, for z < 2πδ, they move away from the layer and satisfy the radiation condition
(since, in the representation of the fields Einc

1 (nκ;q), n = 1,2,3, the transverse propagation
constants Γnκ > 0, n = 1,2,3 are positive).
Subtracting the incident fields Einc

1 (nκ;q), from the corresponding total fields E1(nκ;q), cf.
(32), we obtain the following equations w.r.t. the scattered fields E1(nκ;q) − Einc

1 (nκ;q) =:
Escat

1 (nκ;q) in the zone of reflection z > 2πδ, the fields E1(nκ;q), |z| ≤ 2πδ, scattered in the
layer and the fields E1(nκ;q) =: Escat

1 (nκ;q), z < 2πδ, passing through the layer:

(∇2 + (nκ)2) [E1(nκ;q) − Einc
1 (nκ;q)

]
= 0, z > 2πδ,(∇2 + (nκ)2)E1(nκ;q) = [1− εnκ (q,α(q), E1(κ;q), E1(2κ;q), E1(3κ;q))] (nκ)2E1(nκ;q)

− δn1α(q)(nκ)2E2
1(2κ;q)E∗1 (3κ;q)

− δn3α(q)(nκ)2
{

1
3 E3

1(κ;q) + E2
1(2κ;q)E∗1 (κ;q)

}
, |z| ≤ 2πδ,(∇2 + (nκ)2)E1(nκ;q) = 0, z < −2πδ, n = 1,2,3.

(39)

Since the canonical Green’s functions satisfy the equations(
∇2 + (nκ)2

)
G0(nκ;q,q0) = −δ(q,q0), n = 1,2,3, (40)

where δ(q,q0) denotes the Dirac delta-function, it is easy to obtain from the above equations
(39), with q replaced by q0, the following system:
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[
E1(nκ;q0)− Einc

1 (nκ;q0)
]∇2G0(nκ;q,q0)− G0(nκ;q,q0)∇2 [E1(nκ;q0)− Einc

1 (nκ;q0)
]

= − [
E1(nκ;q0)− Einc

1 (nκ;q0)
]

δ(q,q0), z > 2πδ,

E1(nκ;q0)∇2G0(nκ;q,q0)− G0(nκ;q,q0)∇2E1(nκ;q0)
= −E1(nκ;q0)δ(q,q0)

− G0(nκ;q,q0) [1− εnκ (q0,α(q0), E1(κ;q0), E1(2κ;q0), E1(3κ;q0))] (nκ)2E1(nκ;q0)
+ δn1G0(nκ;q,q0)α(q)(nκ)2E2

1(2κ;q)E∗1 (3κ;q)
+ δn3G0(nκ;q,q0)α(q)(nκ)2

{
1
3 E3

1(κ;q) + E2
1(2κ;q)E∗1 (κ;q)

}
, |z| ≤ 2πδ,

E1(nκ;q0)∇2G0(nκ;q,q0)− G0(nκ;q,q0)∇2E1(nκ;q0)
= −E1(nκ;q0)δ(q,q0), z < −2πδ, n = 1,2,3.

(41)
Given Y > 0, Z > 2πδ, now we consider in the space Q the rectangular domain

Q{Y,Z} := {q = (y,z) : |y| < Y, |z| < Z} ,

and the subsets

Q{Y,Z}, z>2πδ := {q = (y,z) : |y| < Y, 2πδ < z ≤ Z} ,
Q{Y,Z}, |z|≤2πδ := {q = (y,z) : |y| < Y, |z| ≤ 2πδ} ,
Q{Y,Z}, z<−2πδ := {q = (y,z) : |y| < Y, −Z ≤ z < −2πδ} ,

and make use of Green’s formula.
We also mention that in the case of a non-linear layered structure consisting of a finite
number of layers the applicability of Green’s formula in the region Q{Y,Z}, |z|≤2πδ occupied
by the dielectric follows from the continuity condition (C3) w.r.t. Etg(nκ;q), Htg(nκ;q) at
the boundaries. Indeed, consider a covering of Q{Y,Z} by a finite number of disjoint
rectangles such that the restrictions of εnκ (q0,α(q0), E1(κ;q0), E1(2κ;q0), E1(3κ;q0)) to each
of these rectangles are smooth functions. At the common interfaces of these regions (i.e.
at the boundaries of the separate layers of the structure) due to the continuity of the
components Etg(nκ;q) and Htg(nκ;q) of the electromagnetic field (cf. (C3)), E1(nκ;q) and
∂E1(nκ;q)/∂n are continuous (where n denotes the outward unit normal w.r.t. each of the
regions). Now, by Green’s formula and condition (C3) it is easy to obtain the system of
non-linear integral equations w.r.t. the unknown solutions E1(nκ;q), n = 1,2,3, in the region
Q{Y,Z}, |z|≤2πδ. This system forms an integral representation of the solution in the exterior
Q{Y,Z} \ Q{Y,Z}, |z|≤2πδ of the region occupied by the dielectric layer. Consequently, the
desired functions {E1(nκ;q)}n=1,2,3 , which are twice continuously differentiable both within
(i.e. Q{Y,Z}, |z|≤2πδ) and outside (i.e. Q{Y,Z}, |z|>2πδ) of the region occupied by the dielectric
layer, are continuous and have continuous derivatives throughout the whole region Q{Y,Z} up

to and including the boundary ∂Q{Y,Z}, i.e. E1(nκ;q) ∈ C2
(

Q{Y,Z}
)
∩C1

(
Q{Y,Z}

)
, n = 1,2,3.

The system of non-linear integral equations and the corresponding integral representations
of the desired solution are obtained by applying, in each of the rectangles Q{Y,Z}, z>2πδ,
Q{Y,Z}, |z|≤2πδ, Q{Y,Z}, z<−2πδ, Green’s formula to the functions E1(nκ;q0) − Einc

1 (nκ;q0) =:
Escat

1 (nκ;q0) for q0 ∈ Q{Y,Z}, z>2πδ, E1(nκ;q0) =: Escat
1 (nκ;q0) for q0 ∈ Q{Y,Z}, |z|≤2πδ,

E1(nκ;q0) =: Escat
1 (nκ;q0) for q0 ∈ Q{Y,Z}, z < −2πδ, and G0(nκ;q,q0) for q,q0 ∈ Q{Y,Z}:
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∫∫
Q{Y,Z}, z>2πδ

([
E1 − Einc

1

]
∇2G0 − G0∇2

[
E1 − Einc

1

])
dq0

=
∫

Q{Y,Z}, z>2πδ

([
E1 − Einc

1

] ∂G0
∂n

− G0
∂
[
E1 − Einc

1
]

∂n

)
dq0,

∫∫
Q{Y,Z}, |z|≤2πδ

(
E1∇2G0 − G0∇2E1

)
dq0 =

∫
Q{Y,Z}, |z|≤2πδ

(
E1

∂G0
∂n

− G0
∂E1
∂n

)
dq0,

∫∫
Q{Y,Z}, z<−2πδ

(
E1∇2G0 − G0∇2E1

)
dq0 =

∫
Q{Y,Z}, z<−2πδ

(
E1

∂G0
∂n

− G0
∂E1
∂n

)
dq0, n = 1,2,3.

(42)

Taking into account the relations (41), we get

{
E1(nκ;q)− Einc

1 (nκ;q), q ∈ Q{Y,Z}, z>2πδ

0, q ∈ Q{Y,Z} \ ∂Q{Y,Z}, z>2πδ

}

= −
∫

∂Q{Y,Z}, z>2πδ

([
E1(nκ;q0)− Einc

1 (nκ;q0)
] ∂G0(nκ;q,q0)

∂n

−G0(nκ;q,q0)
∂
[
E1(nκ;q0)− Einc

1 (nκ;q0)
]

∂n

)
dq0,{

E1(nκ;q), q ∈ Q{Y,Z}, |z|≤2πδ

0, q ∈ Q{Y,Z} \Q{Y,Z}, |z|≤2πδ

}

= −(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)×
× [1− εnκ (q0,α(q0), E1(κ;q0), E1(2κ;q0), E1(3κ;q0))]E1(nκ;q0)dq0

+ δn1(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)α(q0)E2
1(2κ;q0)E∗1 (3κ;q0)dq0

+ δn3(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)α(q0)

{
1
3

E3
1(κ;q0) + E2

1(2κ;q0)E∗1 (κ;q0)

}
dq0

−
∫

∂Q{Y,Z}, |z|≤2πδ

(
E1(nκ;q0)

∂G0(nκ;q,q0)

∂n
− G0(nκ;q,q0)

∂E1(nκ;q0)

∂n

)
dq0,{

E1(nκ;q), q ∈ Q{Y,Z}, z<−2πδ

0, q ∈ Q{Y,Z}Q{Y,Z}, z<−2πδ

}

= −
∫

∂Q{Y,Z}, z<−2πδ

(
E1(nκ;q0)

∂G0(nκ;q,q0)

∂n
− G0(nκ;q,q0)

∂E1(nκ;q0)

∂n

)
dq0, n = 1,2,3.

(43)
Suppose q ∈ Q{Y,Z}, |z|≤2πδ, i.e. it lies in a rectangle containing the non-linear structure. Then
the equations of (43) take the form
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0 = −
∫

∂Q{Y,Z}, z>2πδ

([
E1(nκ;q0)− Einc

1 (nκ;q0)
] ∂G0(nκ;q,q0)

∂n

−G0(nκ;q,q0)
∂
[
E1(nκ;q0)− Einc

1 (nκ;q0)
]

∂n

)
dq0,

E1(nκ;q) = −(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)×

× [1− εnκ (q0,α(q0), E1(κ;q0), E1(2κ;q0), E1(3κ;q0))]E1(nκ;q0)dq0

+ δn1(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)α(q0)E2
1(2κ;q0)E∗1 (3κ;q0)dq0

+ δn3(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)α(q0)×

×
{

1
3

E3
1(κ;q0) + E2

1(2κ;q0)E∗1 (κ;q0)

}
dq0

−
∫

∂Q{Y,Z}, |z|≤2πδ

(
E1(nκ;q0)

∂G0(nκ;q,q0)

∂n
− G0(nκ;q,q0)

∂E1(nκ;q0)

∂n

)
dq0,

0 = −
∫

∂Q{Y,Z}, z<−2πδ

(
E1(nκ;q0)

∂G0(nκ;q,q0)

∂n
− G0(nκ;q,q0)

∂E1(nκ;q0)

∂n

)
dq0,

n = 1,2,3.
(44)

If the parameter Z increases to infinity, Z → ∞, the line integrals appearing in the first and
third equations of (44) along the lower [(−Z,−Y), (−Z,Y)] and upper [(Z,Y), (Z,−Y)] parts
of the boundary ∂Q{Y,Z} tend to zero for all n = 1,2,3. This is a consequence of the fact that,
for all frequencies nκ, n = 1,2,3, the reflected field E1(nκ;q)− Einc

1 (nκ;q) =: Escat
1 (nκ;q), given

by the first equation of (44), and the field E1(nκ;q) =: Escat
1 (nκ;q), passing through the layer

and described by the third equation of (44), satisfy the radiation condition (C4), and of the
asymptotic properties of the canonical Green’s function (35). The line integrals along the left
[(−Z,Y), (Z,Y)] and right [(Z,−Y), (−Z,−Y)] sides of the boundary ∂Q{Y,Z} cancel out each
other in all equations of the system (44).
Next we consider the components of the total fields E1(nκ;q) (i.e. Etg(nκ;q) and ∂E1(nκ;q)

∂n ) (i.e.
Htg(nκ;q)) at the common boundaries of neighbouring rectangles. At the upper z = 2πδ and
lower z = −2πδ boundaries of the non-linear medium, they are continuous, cf. the interface
condition (C3). The orientations of the outer normals in the line integrals of the system (44)
(for the first and second equations, and for the second and third equations, for each n = 1,2,3)
at these common boundaries are opposite. Adding all equations of the system (44), we obtain
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E1(nκ;q)

= −(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)×
× [1− εnκ (q0,α(q0), E1(κ;q0), E1(2κ;q0), E1(3κ;q0))]E1(nκ;q0)dq0

+ δn1(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)α(q0)E2
1 (2κ;q0)E∗1 (3κ;q0)dq0

+ δn3(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)α(q0)

{
1
3

E3
1(κ;q0) + E2

1(2κ;q0)E∗1 (κ;q0)

}
dq0

+
∫

∂Q{Y,Z=∞}, z>2πδ

(
E1(nκ;q0)

∂G0(nκ;q,q0)

∂n
− G0(nκ;q,q0)

∂E1(nκ;q0)

∂n

)
dq0,

q ∈ Q{Y,Z}, |z|≤2πδ, n = 1,2,3.

(45)

In the line integrals of equation (45), at each of the frequencies nκ, n = 1,2,3, the integration
runs along the lower boundary ∂Q{Y,Z=∞}, z>2πδ of the half-space Q{Y,Z=∞}, z>2πδ, where the
normal vector n points into the non-linear layer. Changing the orientation of the normal vector
(which is equivalent to changing the sign of the integral) and considering the line integrals as
integrals along the upper boundary ∂Q{Y,Z}, z≤2πδ of the region Q{Y,Z}, z≤2πδ, we get

E1(nκ;q)

= −(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)×
× [1− εnκ (q0,α(q0), E1(κ;q0), E1(2κ;q0), E1(3κ;q0))]E1(nκ;q0)dq0

+ δn1(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)α(q0)E2
1(2κ;q0)E∗1 (3κ;q0)dq0

+ δn3(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)α(q0)

{
1
3

E3
1(κ;q0) + E2

1(2κ;q0)E∗1 (κ;q0)

}
dq0

−
∫

Q{Y,Z}, |z|≤2πδ

(
E1(nκ;q0)

∂G0(nκ;q,q0)

∂n
− G0(nκ;q,q0)

∂E1(nκ;q0)

∂n

)
dq0,

q ∈ Q{Y,Z}, |z|≤2πδ, n = 1,2,3.

(46)

The line integrals in (46) represent the values of the incident fields at the frequencies nκ, n =
1,2,3, in the points q ∈ Q{Y,Z}, |z|≤2πδ:

Einc
1 (nκ;q) = −

∫
Q{Y,Z}, |z|≤2πδ

(
E1(nκ;q0)

∂G0(nκ;q,q0)

∂n
− G0(nκ;q,q0)

∂E1(nκ;q0)

∂n

)
dq0,

q ∈ Q{Y,Z}, |z|≤2πδ, n = 1,2,3.
(47)

Indeed, applying Green’s formula to the functions G(nκ;q,q0) and Einc
1 (nκ;q) in the

region Q{Y,Z}, |z|≤2πδ ∪Q{Y,Z}, z<−2πδ (where q ∈ Q{Y,Z}, |z|≤2πδ ∪Q{Y,Z}, z<−2πδ) and letting
∂Q{Y,Z}, z<−2πδ →−∞, we arrive at (47). Substituting (47) into (46), we obtain the following
system of non-linear integral equations w.r.t. the unknown total diffraction field:
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E1(nκ;q)

= −(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)×
× [1− εnκ (q0,α(q0), E1(κ;q0), E1(2κ;q0), E1(3κ;q0))]E1(nκ;q0)dq0

+ δn1(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)α(q0)E2
1(2κ;q0)E∗1 (3κ;q0)dq0

+ δn3(nκ)2
∫∫

Q{Y,Z}, |z|≤2πδ

G0(nκ;q,q0)α(q0)

{
1
3

E3
1(κ;q0) + E2

1(2κ;q0)E∗1 (κ;q0)

}
dq0

+ Einc
1 (nκ;q), q ∈ Q{Y,Z}, |z|≤2πδ, n = 1,2,3.

Passing in the above equations to the limit Y→∞ (where this procedure is admissible because
of the free choice of the parameter Y and the asymptotic behaviour of the integrands as
O (

Y−1) , see (C1) and (35)) we arrive at a system of non-linear integral equations w.r.t. the
total diffraction fields in the strip Qδ := Q{Y=∞,Z}, |z|≤2πδ = {q = (y,z) : |y| < ∞, |z| ≤ 2πδ}
filled by the non-linear dielectric layer:

E1(nκ;q)

= −(nκ)2
∫∫

Qδ

G0(nκ;q,q0)×
× [1− εnκ (q0,α(q0), E1(κ;q0), E1(2κ;q0), E1(3κ;q0))]E1(nκ;q0)dq0

+ δn1(nκ)2
∫∫

Qδ

G0(nκ;q,q0)α(q0)E2
1(2κ;q0)E∗1 (3κ;q0)dq0

+ δn3(nκ)2
∫∫

Qδ

G0(nκ;q,q0)α(q0)

{
1
3

E3
1(κ;q0) + E2

1(2κ;q0)E∗1 (κ;q0)

}
dq0

+ Einc
1 (nκ;q), q ∈ Qδ, n = 1,2,3.

(48)

The integral representations of the total diffraction fields E1(nκ;q), n = 1,2,3, in the points
q /∈ Qδ located outside the layer can be derived similarly to the approach described above
(see (35) – (48)). For this situation it is sufficient to consider in (43) the points lying above (q ∈
Q{Y=∞,Z=∞}, z>2πδ) and below (q ∈Q{Y=∞,Z=∞}, z<−2πδ) the layer. As a result, we get that the
integral representations (48) are valid for all points in the region q∈Q := Q{Y=∞,Z=∞}, z>2πδ ∪
Qδ ∪Q{Y=∞,Z=∞}, z<−2πδ, that is

E1(nκ;q)

= −(nκ)2
∫∫

Qδ

G0(nκ;q,q0)×
× [1− εnκ (q0,α(q0), E1(κ;q0), E1(2κ;q0), E1(3κ;q0))]E1(nκ;q0)dq0

+ δn1(nκ)2
∫∫

Qδ

G0(nκ;q,q0)α(q0)E2
1(2κ;q0)E∗1 (3κ;q0)dq0

+ δn3(nκ)2
∫∫

Qδ

G0(nκ;q,q0)α(q0)

{
1
3

E3
1(κ;q0) + E2

1(2κ;q0)E∗1 (κ;q0)

}
dq0

+ Einc
1 (nκ;q), q ∈ Q, n = 1,2,3.

(49)

The expressions in (49) form a system of non-linear integral equations in the points q ∈ Qδ.
Provided that a solution of this system exists, it can be substituted into the right-hand side of
(49). In this way we also obtain an integral representation of the total diffraction field at points
located outside the layer, i.e. q ∈ Q{Y=∞,Z=∞}, z>2πδ or q ∈ Q{Y=∞,Z=∞}, z<−2πδ.
Alternatively, the system (49) can be derived by means of an iterative approach developed in
Shestopalov & Sirenko (1989). Schematically it can be represented as follows (see also Yatsyk
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(2007)). In the region Q we construct a sequence
{

E1,p(nκ;q)
}∞

p=0 , n = 1,2,3, of functions
(where each function, starting with the index p = 1, satisfies the conditions (C1) – (C4)) such
that the limit functions E1(nκ;q) = lim

p→∞
E1,p(nκ;q) at the frequencies nκ, n = 1,2,3, satisfy (31),

(C1) – (C4), i.e. (∇2 + (nκ)2)E1,0(nκ;q) = 0,(∇2 + (nκ)2)E1,1(nκ;q)
= [1− εnκ (q,α(q), E1,0(κ;q), E1,0(2κ;q), E1,0(3κ;q))] (nκ)2E1,0(nκ;q)

− δn1α(q)(nκ)2E2
1,0(2κ;q)E∗1,0(3κ;q)

− δn3α(q)(nκ)2
{

1
3 E3

1,0(κ;q) + E2
1,0(2κ;q)E∗1,0(κ;q)

}
, . . . ,(∇2 + (nκ)2) E1,p+1(nκ;q)

=
[
1− εnκ

(
q,α(q), E1,p(κ;q), E1,p(2κ;q), E1,p(3κ;q)

)]
(nκ)2E1,p(nκ;q)

− δn1α(q)(nκ)2E2
1,p(2κ;q)E∗1,p(3κ;q)

− δn3α(q)(nκ)2
{

1
3 E3

1,p(κ;q) + E2
1,p(2κ;q)E∗1,p(κ;q)

}
, . . . ,

n = 1,2,3.

(50)

The system of equations (50) is formally equivalent to the following:

E1,0(nκ;q) := Einc
1 (nκ;q),

E1,1(nκ;q)

= −(nκ)2
∫∫

Qδ

G0(nκ;q,q0)×
× [1− εnκ (q0,α(q0), E1,0(κ;q0), E1,0(2κ;q0), E1,0(3κ;q0))]E1,0(nκ;q0)dq0

+ δn1(nκ)2
∫∫

Qδ

G0(nκ;q,q0)α(q0)E2
1,0(2κ;q0)E∗1,0(3κ;q0)dq0

+ δn3(nκ)2
∫∫

Qδ

G0(nκ;q,q0)α(q0)

{
1
3

E3
1,0(κ;q0) + E2

1,0(2κ;q0)E∗1,0(κ;q0)

}
dq0

+ E1,0(nκ;q), . . . ,
E1,p+1(nκ;q)

= −(nκ)2
∫∫

Qδ

G0(nκ;q,q0)×
× [

1− εnκ
(
q0,α(q0), E1,p(κ;q0), E1,p(2κ;q0), E1,p(3κ;q0)

)]
E1,p(nκ;q0)dq0

+ δn1(nκ)2
∫∫

Qδ

G0(nκ;q,q0)α(q0)E2
1,p(2κ;q0)E∗1,p(3κ;q0)dq0

+ δn3(nκ)2
∫∫

Qδ

G0(nκ;q,q0)α(q0)

{
1
3

E3
1,p(κ;q0) + E2

1,p(2κ;q0)E∗1,p(κ;q0)

}
dq0

+ E1,0(nκ;q), . . . ,
q ∈ Q, n = 1,2,3.

(51)

Letting in (51) p tend to infinity, we obtain (49) – the integral representations of the unknown
diffraction fields in the region Q.
We consider now the variation of the parameter q in the strip occupied by the dielectric layer,
i.e. q ∈ Qδ. Then the representation (49) can be converted into a system of non-linear integral
equations w.r.t. the unknown fields E1(nκ;q), n = 1,2,3, q ∈ Qδ, scattered in the non-linear
structure, see (32). Namely, substituting the representations for the canonical Green’s
functions (35) into (49) and taking into consideration the expressions for the permittivity
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εnκ (q0,α(q0), E1(κ;q0), E1(2κ;q0), E1(3κ;q0)) = εnκ (z0,α(z0),U(κ;z0),U(2κ;z0),U(3κ;z0)) ,

we get the following system w.r.t. the unknown quasi-homogeneous fields

E1

(
nκ;q|q≡(y,z)

)
= U(nκ;z)exp (iφnκy) , n = 1,2,3, |z| ≤ 2πδ:

U(nκ;z)exp (iφnκy)

= − lim
Y→∞

(
i(nκ)2

4YΓnκ
exp(iφnκy)

∫ 2πδ

−2πδ

∫ Y

−Y
exp(iΓnκ |z− z0|) ×

× [1− εnκ (z0,α(z0),U (κ;z0) ,U (2κ;z0) ,U (3κ;z0))]U (nκ;z0)dy0dz0)

+ lim
Y→∞

(
δn1

i(nκ)2

4YΓnκ
exp(iφnκy) ×

×
∫ 2πδ

−2πδ

∫ Y

−Y
exp(iΓnκ |z− z0|)α(z0)U2(2κ;z0)U∗(3κ;z0)dy0dz0

)

+ lim
Y→∞

(
δn3

i(nκ)2

4YΓnκ
exp(iφnκy) ×

×
∫ 2πδ

−2πδ

∫ Y

−Y
exp(iΓnκ |z− z0|)α(z0)

{
1
3

U3(κ;z0)+U2(2κ;z0)U∗(κ;z0)

}
dy0dz0

)
+ Uinc(nκ;z)exp(iφnκy), |z| ≤ 2πδ, n = 1,2,3.

Integrating in the region Qδ w.r.t. the variable y0, we arrive at a system of non-linear Fredholm
integral equations of the second kind w.r.t. the unknown functions U(nκ;z) ∈ L2(−2πδ,2πδ):

U(nκ;z) +
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z− z0|)×

× [1− εnκ (z0, α(z0),U(κ;z0) ,U(2κ;z0) ,U(3κ;z0))]U(nκ;z0)dz0

= δn1
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z− z0|)α(z0)U2(2κ;z0)U∗(3κ;z0)dz0

+ δn3
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z− z0|)α(z0)

{
1
3

U3(κ;z0) + U2(2κ;z0)U∗(κ;z0)

}
dz0

+ Uinc(nκ;z), |z| ≤ 2πδ, n = 1,2,3.
(52)

Here Uinc(nκ;z) = ainc
nκ exp [−iΓnκ(z− 2πδ)] , n = 1,2,3.

The solution of the original problem (31), (C1) – (C4), represented as (32), can be obtained
from (52) using the formulas

U(nκ;2πδ) = ainc
nκ + ascat

nκ , U(nκ;−2πδ) = bscat
nκ , n = 1,2,3, (53)

(cf. (C3)).
The derivation of the system of non-linear integral equations (52) shows that (52) can be
regarded as an integral representation of the desired solution of (31), (C1) – (C4) (i.e. solutions
of the form E1 (nκ;y,z) = U(nκ;z) exp (iφnκy), n = 1,2,3, see (32)) for points located outside
the non-linear layer: {(y,z) : |y| < ∞, |z| > 2πδ} . Indeed, given the solution of non-linear
integral equations (52) in the region |z| ≤ 2πδ, the substitution into the integrals of (52)
leads to explicit expressions of the desired solutions U(nκ;z) for points |z| > 2πδ outside the
non-linear layer at each frequency nκ, n = 1,2,3.
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6. The system of non-linear Sturm-Liouville boundary value problems

The system of non-linear integral equations (52), as well as the problem (31), (C1) – (C4) reduce
to a system of non-linear Sturm-Liouville problems.
Indeed, applying the approach described in Yatsyk (2007), Shestopalov & Yatsyk (2007),
Kravchenko & Yatsyk (2007), Angermann & Yatsyk (2008), we write the system (52) for
arguments z lying in the non-linear layer, i.e. for |z| ≤ 2πδ, in the form

U(nκ;z) +
i(nκ)2

2Γnκ
[F+,nκ(z) + F−,nκ(z)] = (δn1 + δn3)

i(nκ)2

2Γnκ
[P+,nκ(z) + P−,nκ(z)]

+ Uinc(nκ;z), |z| ≤ 2πδ, n = 1,2,3,
(54)

where

F+,nκ(z) :=
∫ z

−2πδ
exp(iΓnκ(z− z0))×

× [1− εnκ(z0,α(z0),U(κ;z0),U(2κ;z0),U(3κ;z0))]U(nκ;z0) dz0,

F−,nκ(z) :=
∫ 2πδ

z
exp (−iΓnκ(z− z0))×

× [1− εnκ(z0,α(z0),U(κ;z0),U(2κ;z0),U(3κ;z0))]U(nκ;z0) dz0,
n = 1,2,3,

and

P+,κ(z) :=
∫ z

−2πδ
exp (iΓκ(z− z0))α(z0)U2(2κ;z0)U∗(3κ;z0)dz0,

P−,κ(z) :=
∫ 2πδ

z
exp (−iΓκ(z− z0))α(z0)U2(2κ;z0)U∗(3κ;z0)dz0,

P+,3κ(z) :=
∫ z

−2πδ
exp (iΓ3κ(z− z0))α(z0)

{
1
3

U3(κ;z0) + U2(2κ;z0)U∗(κ;z0)

}
dz0,

P−,3κ(z) :=
∫ 2πδ

z
exp (−iΓ3κ(z− z0))α(z0)

{
1
3

U3(κ;z0) + U2(2κ;z0)U∗(κ;z0)

}
dz0.

The integrands and their partial derivatives w.r.t. z are continuous on the set−2πδ≤ z≤ 2πδ,
−2πδ≤ z0≤ 2πδ. Therefore we may differentiate w.r.t. the argument z by means of the Leibniz
rule. Differentiating (54) twice w.r.t. z, we obtain the following system of integro-differential
equations:

d2

dz2 U(nκ;z) +
i(nκ)2

2Γnκ

[
F′′+,nκ(z) + F′′−,nκ(z)

]
= (δn1 + δn3)

i(nκ)2

2Γnκ

[
P′′+,nκ(z) + P′′−,nκ(z)

]− Γ2
nκUinc(nκ;z), |z| ≤ 2πδ, n = 1,2,3.

(55)
Because of

F′′+,nκ(z) + F′′−,nκ(z) = iΓnκ
[
F′+,nκ(z)− F′−,nκ(z)

]
, n = 1,2,3,

P′′+,nκ(z) + P′′−,nκ(z) = iΓnκ
[
P′+,nκ(z)− P′−,nκ(z)

]
, n = 1,3,

where
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F′+,nκ(z) = iΓnκ F+,nκ(z) + [1− εnκ(z,α(z),U(κ;z),U(2κ;z),U(3κ;z))]U(nκ;z),
F′−,nκ(z) = −iΓnκ F−,nκ(z)− [1− εnκ(z,α(z),U(κ;z),U(2κ;z),U(3κ;z))]U(nκ;z),

n = 1,2,3,
P′+,κ(z) = iΓκ P+,κ(z) + α(z)U2(2κ;z)U∗(3κ;z),
P′−,κ(z) = −iΓκ P−,κ(z)− α(z)U2(2κ;z)U∗(3κ;z),

P′+,3κ(z) = iΓ3κ P+,3κ(z) + α(z)
{

1
3

U3(κ;z) + U2(2κ;z)U∗(κ;z)
}

,

P′−,3κ(z) = −iΓ3κ P−,3κ(z)− α(z)
{

1
3

U3(κ;z) + U2(2κ;z)U∗(κ;z)
}

,

(56)

we see that

F′+,nκ(z)− F′−,nκ(z) = iΓnκ [F+,nκ(z) + F−,nκ(z)]
+ 2 [1− εnκ(z,α(z),U(κ;z),U(2κ;z),U(3κ;z))]U(nκ;z),

n = 1,2,3,
P′+,κ(z)− P′−,κ(z) = iΓκ [P+,κ(z) + P−,κ(z)] + 2α(z)U2(2κ;z)U∗(3κ;z),

P′+,3κ(z)− P′−,3κ(z) = iΓ3κ [P+,3κ(z) + P−,3κ(z)] + 2α(z)
{

1
3

U3(κ;z) + U2(2κ;z)U∗(κ;z)
}

.

Consequently, the system (55) takes the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2

dz2 U(nκ;z)− Γnκ
i(nκ)2

2
[F+,nκ(z) + F−,nκ(z)]

− (nκ)2 [1− εnκ(z,α(z),U(κ;z),U(2κ;z),U(3κ;z))]U(nκ;z)

= −(δn1 + δn3)
i(nκ)2

2
Γnκ [P+,nκ(z) + P−,nκ(z)]

− (nκ)2α(z)
(

δn1U2(2κ;z)U∗(3κ;z) + δn3

{
1
3

U3(κ;z) + U2(2κ;z)U∗(κ;z)
})

− Γ2
nκUinc(nκ;z), |z| ≤ 2πδ, n = 1,2,3.

Making use of the integral representations of the desired solution {U(nκ;z)}n=1,2,3 given
by (54), the elimination of the integral terms results in the following system of non-linear
second-order ordinary differential equations of Sturm-Liouville type:

d2

dz2 U(nκ;z) +
{

Γ2
nκ − (nκ)2 [1− εnκ(z,α(z),U(κ;z),U(2κ;z),U(3κ;z))]

}
U(nκ;z)

= −(nκ)2α(z)
(

δn1U2(2κ;z)U∗(3κ;z) + δn3

{
1
3

U3(κ;z) + U2(2κ;z)U∗(κ;z)
})

,

|z| ≤ 2πδ, n = 1,2,3.

(57)

The boundary conditions at z = ±2πδ for each of the equations from system (57) are derived
from those first-order integro-differential equations, which are obtained by differentiating the
integral equations (54) w.r.t. the argument z, i.e.

d
dz

U(nκ;z) +
i(nκ)2

2Γnκ

[
F′+,nκ(z) + F′−,nκ(z)

]
= (δn1 + δn3)

i(nκ)2

2Γnκ

[
P′+,nκ(z) + P′−,nκ(z)

]− iΓnκUinc(nκ;z), |z| ≤ 2πδ, n = 1,2,3.
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Because of

F′+,nκ(z) + F′−,nκ(z) = iΓnκ [F+,nκ(z)− F−,nκ(z)] , n = 1,2,3,
P′+,nκ(z) + P′−,nκ(z) = iΓnκ [P+,nκ(z)− P−,nκ(z)] , n = 1,3,

(cf. (56)) we get

d
dz

U(nκ;z) +
i(nκ)2

2Γnκ
iΓnκ [F+,nκ(z)− F−,nκ(z)]

= (δn1 + δn3)
i(nκ)2

2Γnκ
iΓnκ [P+,nκ(z)− P−,nκ(z)]− iΓnκUinc(nκ;z), |z| ≤ 2πδ, n = 1,2,3.

(58)
Accordingly, at the boundary z = ±2πδ the system of integro-differential and integral
equations (58), (54) can be represented as

d
dz

U
(

nκ;
{

2πδ
−2πδ

})
+

i(nκ)2

2Γnκ
iΓnκ

[{
F+,nκ(2πδ)

0

}
−
{

0
F−,nκ (−2πδ)

}]

= (δn1 + δn3)
i(nκ)2

2Γnκ
iΓnκ

[{
P+,nκ(2πδ)

0

}
−
{

0
P−,nκ (−2πδ)

}]
− iΓnκUinc

(
nκ;

{
2πδ
−2πδ

})
,

n = 1,2,3,

and

U
(

nκ;
{

2πδ
−2πδ

})
+

i(nκ)2

2Γnκ

[{
F+,nκ(2πδ)

0

}
−
{

0
F−,nκ (−2πδ)

}]

= (δn1 + δn3)
i(nκ)2

2Γnκ

[{
P+,nκ(2πδ)

0

}
−
{

0
P−,nκ (−2πδ)

}]
+ Uinc

(
nκ;

{
2πδ
−2πδ

})
,

n = 1,2,3.

Eliminating from both equations the terms containing the integrals, we obtain the boundary
conditions of third kind:

iΓnκU (nκ;2πδ)− d
dz

U (nκ;2πδ) = 2iΓnκUinc(nκ;2πδ),

iΓnκU (nκ;−2πδ) +
d
dz

U (nκ;−2πδ) = 0, n = 1,2,3.
(59)

Therefore, the system of non-linear integral equations (54) (or (52)) according to (57) and (59)
is reduced to an equivalent system of non-linear Sturm-Liouville boundary value problems:

d2

dz2 U(nκ;z) +
{

Γ2
nκ − (nκ)2 [1− εnκ(z,α(z),U(κ;z),U(2κ;z),U(3κ;z))]

}
U(nκ;z)

= −(nκ)2α(z)
(

δn1U2(2κ;z)U∗(3κ;z) + δn3

{
1
3

U3(κ;z) + U2(2κ;z)U∗(κ;z)
})

,

|z| ≤ 2πδ,

iΓnκU (nκ;−2πδ) +
d
dz

U (nκ;−2πδ) = 0,

iΓnκU (nκ;2πδ)− d
dz

U (nκ;2πδ) = 2iΓnκUinc(nκ;2πδ),

n = 1,2,3.

(60)

We recall that the boundary problem (60) on the interval |z| ≤ 2πδ can also be obtained
by starting from the original problem (31), (C1) – (C4) and the representation of the
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desired diffraction field (32), as shown at the end of Section 4. The system of non-linear
ordinary differential equations of Sturm-Liouville type follows directly from substituting the
representations (32) for the desired solutions, i.e. {E1(nκ;y,z) = U(nκ;z)exp (iφnκy)}n=1,2,3

for |z| ≤ 2πδ, into the system of equations (31), using the relations Γ2
nκ = (nκ)2−φ2

nκ , n = 1,2,3,
for the longitudinal and transverse propagation constants. The boundary conditions follow
from the continuity condition (C3) of the tangential components of the full field of diffraction{

Etg(nκ;y,z)
}

n=1,3

{
Htg(nκ;y,z)

}
n=1,3 at the boundary z = ±2πδ of the non-linear layer:

U(nκ;2πδ) = ascat
nκ + ainc

nκ ,
d
dz

U(nκ;2πδ) = iΓnκ
(
ascat

nκ − ainc
nκ

)
,

U(nκ;−2πδ) = bscat
nκ ,

d
dz

U(nκ;−2πδ) = −iΓnκbscat
nκ , n = 1,2,3.

(61)

Eliminating in (61) the unknown values of the complex amplitudes
{

ascat
nκ

}
n=1,2,3 ,{

bscat
nκ

}
n=1,2,3 of the scattered field at the boundary z = ±2πδ and taking into consideration

that ainc
nκ = Uinc(nκ;2πδ), we arrive at the same boundary conditions as in problem (60).

Thus we have established the equivalence of the non-linear problem (31), (C1) – (C4), of the
system of non-linear integral equations (52) and of the system of non-linear boundary-value
problems of Sturm-Liouville type (60) (cf. Angermann & Yatsyk (2010), Shestopalov & Yatsyk
(2007)).

7. Numerical solution of the non-linear boundary value problem by the finite
element method

Using the results given in Angermann & Yatsyk (2008), Angermann & Yatsyk (2010), we can
apply the finite element method (FEM) to obtain an approximate solution of the non-linear
boundary value problem (60). Let

U(z) :=

⎛
⎝ U(κ;z)

U(2κ;z)
U(3κ;z)

⎞
⎠ ,

F (z,U) :=

⎛
⎜⎜⎜⎜⎜⎝

{
Γ2

κ − κ2 [1− εκ(z,α(z),U(κ;z),U(2κ;z),U(3κ;z))]
}

U(κ;z)
+ α(z)κ2U2(2κ;z)U∗(3κ;z){

Γ2
2κ − (2κ)2 [1− ε2κ(z,α(z),U(κ;z),U(2κ;z),U(3κ;z))]

}
U(2κ;z){

Γ2
3κ − (3κ)2 [1− ε3κ(z,α(z),U(κ;z),U(2κ;z),U(3κ;z))]

}
U(3κ;z)

+ α(z)(3κ)2
{

1
3 U3(κ;z) + U2(2κ;z)U∗(κ;z)

}

⎞
⎟⎟⎟⎟⎟⎠ .

Then the system of differential equations in (60) takes the form

−U′′(z) = F (z,U(z)) , z ∈ I := (−2πδ,2πδ) . (62)

The boundary conditions in (60) can be written as

U′ (−2πδ) = −iGU (−2πδ) ,
U′(2πδ) = iGU(2πδ)− 2iGainc,

(63)

where

G :=

⎛
⎝Γκ 0 0

0 Γ2κ 0
0 0 Γ3κ

⎞
⎠ and ainc :=

⎛
⎝ainc

κ

ainc
2κ

ainc
3κ

⎞
⎠ .
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Taking an arbitrary complex-valued vector function v : [−2πδ,2πδ] → C3, v =

⎛
⎝v1

v2
v3

⎞
⎠,

multiplying the vector differential equation (62) by the complex conjugate v∗ and integrating
w.r.t. z over the interval I , we arrive at the equation

−
∫
I

U′′ · v∗ dz =
∫
I

F (z,U) · v∗ dz .

Integrating the left-hand side of this equation by parts and using the boundary conditions
(63), we obtain:

−∫
I U′′ · v∗ dz =

∫
I U′ · v∗ dz− (U′ · v∗) (2πδ) + (U′ · v∗) (−2πδ)

=
∫
I U′ · v∗′dz− i [((GU) · v∗) (2πδ) + ((GU) · v∗) (−2πδ)]
+ 2i(Gainc) · v∗(2πδ).

Now we consider the complex Sobolev space H1(I) consisting of functions with values in
C, which, together with their weak derivatives belong to L2(I). For w,v ∈ [

H1(I)]3 , we
introduce the following forms:

a (w,v) :=
∫
I w′ · v∗′dz− i [((Gw) · v∗) (2πδ) + ((Gw) · v∗) (−2πδ)] ,

b (w,v) :=
∫
I F (z,w) · v∗dz− 2i(Gainc) · v∗(2πδ).

So we arrive at the following weak formulation of boundary value problem (60):

Find U ∈ [
H1(I)]3 such that

a (U,v) = b (U,v) ∀v ∈
[

H1(I)
]3

. (64)

Based on the variational equation (64), we obtain the numerical method. We consider N nodes
{zi}N

i=1 such that −2πδ =: z1 < z2 < . . . < zN−1 < zN := 2πδ, and define the intervals Ii :=
(zi,zi+1) with the lengths hi := zi+1 − zi and the parameter h := maxi∈{1,...,N−1} hi. Then, for
i ∈ {1, . . . , N} we introduce the basis functions ψi : [−2πδ,2πδ]→R by the formula

ψi(z) :=

⎧⎨
⎩
(z− zi−1)/h i−1, z ∈ Ii−1 and i ≥ 2,
(zi+1 − z)/hi, z ∈ Ii and i ≤ N − 1,

0, otherwise

and the corresponding space Vh :=
{

vh = ∑
N
i=1 λiψi : λi ∈ C

}
(defined by a set of all linear

combinations of the basis functions). It is well-known that Vh ⊂ H1(I) (cf. Samarskij & Gulin
(2003)). Therefore the following discrete finite element formulation of the problem (64) is
well-defined (see Angermann & Yatsyk (2008), Samarskij & Gulin (2003)):

Find Uh ⊂ V3
h such that

a(Uh,vh) = bh(Uh,vh) ∀vh :=

⎛
⎝vh1

vh2
vh3

⎞
⎠ ∈ V3

h . (65)

The non-linear discrete form bh is a slight modification of the right-hand side b of the problem
(64) defined as follows:

bh(wh,vh) :=
∫
I

[
F(L)

h (z,wh) + F(NL)
h (z,wh)

]
· v∗hdz− 2i(Gainc) · v∗h(2πδ),
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where

F(L)
h (z,wh) :=

⎛
⎜⎝{Γ2

κ − κ2(1− ε(L))} w1
{Γ2

2κ − (2κ)2(1− ε(L))} w2
{Γ2

3κ − (3κ)2(1− ε(L))} w3

⎞
⎟⎠ ,

F(NL)
h (z,wh) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

κ2 ∑
N
i=1

[
ε
(NL)
κ (zi, α(zi),w1i,w2i,w3i)w1i

+ α(zi)w2
2iw

∗
3i
]

ψi

(2κ)2 ∑
N
i=1 ε

(NL)
2κ (zi, α(zi),w1i,w2i,w3i)w2i ψi

(3κ)2 ∑
N
i=1

[
ε
(NL)
3κ (zi, α(zi),w1i,w2i,w3i)w3i

+ α(zi)
{

1
3 w3

1i + w2
2iw

∗
1i

}]
ψi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

In fact, the problem (65) reduces to solving a non-linear system of algebraic equations w.r.t.
3N complex scalars.
As in Angermann & Yatsyk (2008) the weak formulation (64) and the discrete formulation
(65) can be used to prove, under certain assumptions, the existence and uniqueness of the
solutions U ∈ [

H1(I)]3 and Uh ∈ V3
h , respectively. Furthermore, the convergence of the finite

element solution to the weak solution can be established.

8. Third harmonic generation and resonant scattering of a strong electromagnetic
field by the non-linear structure. A numerical algorithm for solving systems of
non-linear integral equations

Consider the excitation of the non-linear structure by a strong electromagnetic field at the
basic frequency κ only (see (30)), i.e.

{Einc
1 (κ;q) �= 0, Einc

1 (2κ;q) = 0, Einc
1 (3κ;q) = 0}, where {ainc

κ �= 0, ainc
2κ = ainc

3κ = 0}.

In this case, the number of equations in the system of non-linear boundary-value problems
(31), (C1) – (C4) and in the equivalent system of Sturm-Liouville problems (60), and the
number of non-linear integral equations in the system (52) can be reduced (cf. Angermann
& Yatsyk (2010)). As noted above, the second equation in each of the systems (31), (60) and
(52), corresponding to a problem at the double frequency 2κ with a trivial right-hand side,
can be eliminated by setting E1(r,2κ) := 0. The dielectric permittivity of the non-linear layer
depends on the component U(κ;z) of the scattered field and on the component U(3κ;z) of the
generated field, i.e. the expression (29) simplifies to

εnκ (z,α(z), E1(r,κ),0, E1(r,3κ)) = εnκ (z,α(z),U(κ;z),U(3κ;z))
=: ε(L)(z) + ε

(NL
nκ (α(z),U(κ;z),U(3κ;z))

= ε(L)(z) + α(z)
[|U(κ;z)|2 + |U(3κ;z)|2]

+ δn,1α(z)|U(κ;z)||U(3κ;z)|exp [i{−3argU(κ;z) + argU(3κ;z)}] , n = 1,3.

(66)

Now we discuss the numerical realisation of the approach based on the non-linear integral
equations (52). In the case under consideration, the problem is reduced to finding solutions
to one-dimensional non-linear integral equations (along the height z ∈ [−2πδ,2πδ] of the
structure) w.r.t. the components U(nκ;z), U(3nκ;z):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(κ;z) +
iκ2

2Γκ

∫ 2πδ

−2πδ
exp(iΓκ |z− z0|) [1− εκ (z0,α(z0),U(κ;z0),U(3κ;z0))]U(κ;z0)dz0

= Uinc(κ;z), |z| ≤ 2πδ,

U(3κ;z) +
i(3κ)2

2Γ3κ

∫ 2πδ

−2πδ
exp(iΓ3κ |z− z0|) [1− ε3κ(z0,α(z0),U(κ;z0),U(3κ;z0))]U(3κ;z0)dz0

=
i(3κ)2

6Γ3κ

∫ 2πδ

−2πδ
exp(iΓ3κ |z− z0|)α(z0)U3(κ;z0)dz0, |z| ≤ 2πδ,

(67)
where Uinc(κ;z) = ainc

κ exp [−iΓκ(z− 2πδ)] .
The desired solution of the diffraction problem (31), (C1) – (C4) can be represented as follows
(cf. (32)):

E1(nκ;y,z) = U(nκ;z)exp(iφnκy)

=

⎧⎨
⎩

δn1ainc
nκ exp(i(φnκy− Γnκ(z− 2πδ))) + ascat

nκ exp(i(φnκy + Γnκ(z− 2πδ))), z > 2πδ,
U(nκ;z)exp(iφnκy), |z| ≤ 2πδ,
bscat

nκ exp(i(φnκy− Γnκ(z + 2πδ))), z < −2πδ,
n = 1,3,

(68)
where U(κ;z), U(3κ;z), |z| ≤ 2πδ, are the solutions of the system (67). According to (53) we
determine the values of complex amplitudes

{
ascat

nκ ,bscat
nκ : n = 1,3

}
in (68) for the scattered

and generated fields by means of the formulas

U(nκ;2πδ) = δn1ainc
nκ + ascat

nκ , U(nκ;−2πδ) = bscat
nκ , n = 1,3. (69)

The solution of the system of non-linear integral equations (67) can be approximated
numerically by the help of an iterative method. The proposed algorithm is based on the
application of a quadrature rule to each of the non-linear integral equations of the system (67).
The resulting system of complex non-linear inhomogeneous algebraic equations is solved by
a block-iterative method, cf. Yatsyk (September 21-24, 2009), Yatsyk (June 21-26, 2010).
Thus, using Simpson’s quadrature rule, the system of non-linear integral equations (67)
reduces to a system of non-linear algebraic equations of the second kind:{

(I− Bκ(Uκ ,U3κ))Uκ = Uinc
κ ,

(I− B3κ(Uκ ,U3κ))U3κ = C3κ (Uκ) ,
(70)

where, as in Section 7, {zi}N
i=1 is a discrete set of nodes −2πδ =: z1 < z2 < ... < zn < ... < zN =:

2πδ.
Upκ := {Un(pκ)}N

n=1 ≈ {U (pκ;zn)}N
n=1 denotes the vector of the unknown approximate

solution values corresponding to the frequencies pκ, p = 1,3. The matrices are of the form

Bpκ(Uκ ,U3κ) = {AmKnm(pκ,Uκ ,U3κ)}N
n,m=1

with entries

Knm(pκ,Uκ ,U3κ) := − i(pκ)2

2Γpκ
exp

(
iΓpκ |zn − zm|

)[
1−

{
ε(L)(zm)

+ α(zm)
(|Um(κ)|2 + |Um(3κ)|2

+ δp1 |Um(κ)| |Um(3κ)| exp{i [−3argUm(κ) + argUm(3κ)]})}] .
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The numbers Am are the coefficients determined by the quadrature rule, I := {δnm}N
n,m=1 is

the identity matrix, and δnm is Kronecker’s symbol.
The right-hand side of (70) is defined by

Uinc
κ :=

{
ainc

κ exp [−iΓκ(zn − 2πδ)]
}N

n=1 ,

C3κ (Uκ) :=

{
i(3κ)2

6 Γ3κ

N

∑
m=1

Am exp (iΓ3κ |zn − zm|)α (zm)U3
m(κ)

}N

n=1

.

Given a relative error tolerance ξ > 0, the approximate solution of (70) is obtained by means
of the following iterative method:

⎧⎪⎪⎨
⎪⎪⎩

{[
I− Bκ

(
U(s−1)

κ ,U(S3q)
3κ

)]
U(s)

κ = Uinc
κ

}Sq : ‖U
(Sq )
κ −U

(Sq−1)
κ ‖/‖U

(Sq )
κ ‖<ξ

s=1{[
I− B3κ

(
U(Sq)

κ ,U(s−1)
3κ

)]
U(s)

3κ = C3κ

(
U(Sq)

κ

)}S3q : ‖U
(S3q )
3κ −U

(S3q−1)
3κ ‖/‖U

(S3q )
3κ ‖<ξ

s=1

⎫⎪⎪⎬
⎪⎪⎭

Q

q=1

, (71)

where the terminating index Q ∈N is defined by the requirement

max
{
‖U(Q)

κ −U(Q−1)
κ ‖/‖U(Q)

κ ‖,‖U(Q)
3κ −U(Q−1)

3κ ‖/‖U(Q)
3κ ‖

}
< ξ.

We mention that, as in Yatsyk (2006), Shestopalov & Yatsyk (2007), a sufficient condition
for convergence of the iterative process (71) can be derived. Similarly, under appropriate
assumptions, a condition for existence and uniqueness of the solution of the problem can be
obtained.

9. Numerical analysis. Resonant scattering of waves and the generation of the
third harmonic

We consider a non-linear dielectric layered structure (see Fig. 1), the dielectric permittivity

εnκ(z,α(z),U(κ;z),U(3κ;z)) = ε(L) + ε
(NL)
nκ

of which is given by (29), where

{
ε(L)(z),α(z)

}
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
ε(L) = 16, α = α1

}
,{

ε(L) = 64, α = α2

}
,{

ε(L) = 16, α = α3

}
,

z ∈ [−2πδ,z1 = −2πδ/3)
z ∈ [z1 = −2πδ/3, z2 = 2πδ/3]
z ∈ (z2 = 2πδ/3, 2πδ]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

α1 = α3 = 0.01, α2 =−0.01, δ = 0.5. The excitation frequency is given by κ = 0.25, and the angle
of incidence of the plane wave at the basic frequency κ is ϕκ ∈ [0◦,90◦).
By Wnκ = |ascat

nκ |2 + |bscat
nκ |2 we denote the total energy of the scattered and generated fields

at the frequencies nκ, n = 1,3. Thus Wκ is the total energy scattered at the frequency κ of
excitation, and W3κ is the total energy generated at the frequency 3κ. Fig. 2 (left) shows the
dependence of W3κ/Wκ on the angle of incidence ϕκ and on the amplitude ainc

κ of the incident
field. It describes the portion of energy generated in the third harmonic by the non-linear
layer when a plane wave with angle of incidence ϕκ and amplitude ainc

κ is passing the layer.
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Fig. 2. The portion of energy generated in the third harmonic (left) and some graphs
describing the properties of the structure at ainc

κ = 38 and ϕκ = 0◦ (right): #1 . . . ε(L), #2 . . .
|U(κ;z)|, #3 . . . |U(3κ;z)|, #4 . . . Re(εκ), #5 . . . Im(εκ), #6 . . . Re(ε3κ), #7 . . . Im(ε3κ) ≡ 0

In particular, W3κ/Wκ = 0.132 at ainc
κ = 38, i.e. W3κ amounts to 13.2% of the total energy Wκ

scattered at the frequency of excitation κ.
Fig. 2 (right) shows the absolute values of the amplitudes of the full scattered field (total
diffraction field) |U(κ;z)| at the frequency of excitation κ (graph #2) and of the generated
field |U(3κ;z)| at the frequency 3κ (graph #3). The values |U(κ;z)| and |U(3κ;z)| are given
in the non-linear layered structure (|z| ≤ 2πδ) and outside it (i.e. in the zones of reflection
z > 2πδ and transmission z < −2πδ). Fig. 2 (right) also displays some graphs characterising
the scattering and generation properties of the non-linear structure. Graph #1 illustrates the
value of the linear part ε(L) of the permittivity of the non-linear layered structure. Graphs #4
and #5 show the real and imaginary part of the permittivity at the frequency of excitation,
while graphs #6 and #7 display the corresponding values at the generation frequency.
Figs. 3, 4 and 5 show the numerical results obtained for the scattered and the generated fields
and for the non-linear dielectric permittivity in dependence on the amplitude ainc

κ at normal
incidence ϕκ = 0◦ of the plane wave.
Fig. 3 shows the graphs of |Uκ

[
ainc

κ ,z
] | and |U3κ

[
ainc

κ ,z
] | demonstrating the behaviour of

the scattered and the generated fields, |U(κ;z)| and |U(3κ;z)|, in the non-linear layered

Fig. 3. Graphs of the scattered and generated fields in the non-linear layered structure for
ϕκ = 0◦: |Uκ

[
ainc

κ ,z
] | at κ = 0.25 (left), |U3κ

[
ainc

κ ,z
] | at 3κ = 0.75 (right)
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Fig. 4. Graphs of the permittivity at the frequency of excitation κ = 0.25 at normal incidence
of the plane wave ϕκ = 0◦: Re

(
εκ
[
ainc

κ ,z
])

(left), Im
(
εκ
[
ainc

κ ,z
])

(right)

structure in dependence on an increasing amplitude ainc
κ at normal incidence ϕκ = 0◦ of the

plane wave of the frequency κ = 0.25. According to (66), the non-linear parts ε
(NL)
nκ of the

dielectric permittivity at each frequency κ and 3κ depend on the values Uκ := U(κ;z) and

U3κ := U(3κ;z) of the fields. The variation of the non-linear parts ε
(NL)
nκ of the dielectric

permittivity for an increasing amplitude ainc
κ of the incident field are illustrated by the

behaviour of Re
(
εκ
[
ainc

κ ,z
])

(Fig. 4 (left)) and Im
(
εκ
[
ainc

κ ,z
])

(Fig. 4 (right)) at the frequency
κ, and by ε3κ

[
ainc

κ ,z
]

at the triple frequency 3κ (Fig. 5 (left)).
In Fig. 4 (right) the graph of Im(εκ) for a given amplitude ainc

κ (denoted by Im
(
εκ
[
ainc

κ ,z
])

)
characterises the loss of energy in the non-linear medium (at the frequency of excitation κ)
caused by the generation of the electromagnetic field of the third harmonic (at the frequency

3κ). In our case Im
[
ε(L) (z)

]
= 0 and Im [α (z)] = 0, therefore, according to (66),

Im(εκ) = α(z)|U(κ;z)||U(3κ;z)|Im (exp [i{−3argU(κ;z) + argU(3κ;z)}]) . (72)

Fig. 4 (right) shows that the third harmonic generation is insignificant, i.e. U(3κ;z) ≈ 0, if the
non-linear structure is excited by a weak field (cf. also Figs. 4 (left), 5 and 3). In this case, for
a small value of |ainc

κ | in Fig. 4 (right) we observe a small amplitude of the function Im(εκ),
i.e. |Im(εκ)| ≈ 0. The increase of |ainc

κ | corresponds to a strong field excitation and leads to
the generation of a third harmonic field U(3κ;z). In this case, the variation of the absolute

Fig. 5. Graph of the dielectric permittivity ε3κ

[
ainc

κ ,z
]

at the triple frequency 3κ = 0.75 for
ϕκ = 0◦ (left), behaviour of Re

(
εκ
[
ainc

κ ,z
])− ε3κ

[
ainc

κ ,z
]

(right)
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values |U(κ;z)|, |U(3κ;z)| of the scattered and generated fields increase, see Fig. 3. Fig. 4
(right) shows that the values of Im(εκ) may be positive or negative along the height of the
non-linear layer, i.e. in the interval z ∈ [−2πδ,2πδ]. The zero values of Im(εκ) are determined
by the phase relation between the scattered and the generated fields U(κ;z), U(3κ;z) in the
non-linear layer, see (72),

−3argU(κ;z) + argU(3κ;z) = pπ, p = 0,±1, . . .

We mention that the behaviour of both the quantities Im(εκ) and

Re(εκ)− ε3κ = α(z)|U(κ;z)||U(3κ;z)|Re (exp [i{−3argU(κ;z) + argU(3κ;z)}])
plays a role in the process of third harmonic generation because of the presence of the last
term in (66). Fig. 5 (right) shows the graph describing the behaviour of Re

(
εκ
[
ainc

κ ,z
]) −

ε3κ

[
ainc

κ ,z
]

.
In order to describe the scattering and generation properties of the non-linear structure in the
zones of reflection z > 2πδ and transmission z < −2πδ, we introduce the following notation:

Rnκ := |ascat
nκ |2/|ainc

κ |2 and Tnκ := |bscat
nκ |2/|ainc

κ |2.

The quantities Rnκ , Tnκ represent the portions of energy of the reflected and the transmitted
waves (at the excitation frequency κ), or the portions of energy of the generated waves in the
zones of reflection and transmission (at the frequency 3κ), with respect to the energy of the
incident field (at the frequency κ). We call them reflection, transmission or generation coefficients
of the waves w.r.t. the intensity of the excitation field.
We note that in the considered case of the excitation {ainc

κ �= 0, ainc
2κ = 0, ainc

3κ = 0} and for

non-absorbing media with Im
[
ε(L)(z)

]
= 0, the energy balance equation

Rκ + Tκ + R3κ + T3κ = 1

is satisfied. This equation represents the law of conservation of energy (Shestopalov & Sirenko
(1989), Vainstein (1988)). It can be obtained by writing the energy conservation law for each
frequency κ and 3κ, adding the resulting equations and taking into consideration the fact that
the loss of energy at the frequency κ (spent for the generation of the third harmonic) is equal
to the amount of energy generated at the frequency 3κ.
The scattering and generation properties of the non-linear structure are presented in Figs. 6 – 8.
We consider the following range of parameters of the excitation field: the angle ϕκ ∈ [0◦,90◦),
the amplitude of the incident plane wave ainc

κ ∈ [1,38] at the frequency κ = 0.25. The graphs
show the dynamics of the scattering (Rκ

[
ϕκ , ainc

κ

]
, Tκ

[
ϕκ , ainc

κ

]
, see Fig. 6) and generation

(R3κ

[
ϕκ , ainc

κ

]
, T3κ

[
ϕκ , ainc

κ

]
, see Fig. 7) properties of the structure.

Fig. 8 shows cross sections of the graphs depicted in Figs. 6 – 7 by the planes ϕκ = 0◦ and
ainc

κ = 38. We see that increasing the amplitude of the excitation field of the non-linear layer
leads to the third harmonic generation (Fig. 8 (left)). In the range 29 < ainc

κ ≤ 38 (i.e. right
from the intersection of the graphs #1 and #3 in Fig. 8 (left)) we see that R3κ > Rκ . In this
case, 0.053 < W3κ/Wκ ≤ 0.132, cf. Fig. 2. If 34 < ainc

κ ≤ 38 (i.e. right from the intersection of
the graphs #1 and #4 in Fig. 8 (left)) the field generated at the triple frequency in the zones
of reflection and transmission is stronger than the reflected field at the excitation frequency κ:
R3κ > T3κ > Rκ . Here, 0.088 < W3κ/Wκ ≤ 0.132, cf. Fig. 2.
Fig. 8 (right) shows the dependence of the coefficients of the scattered and generated waves
on the angle of incidence ϕκ ∈ [0◦,90◦) of a plane wave with a constant amplitude ainc

κ = 38
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Fig. 6. The scattering properties of the non-linear structure at the excitation frequency
κ = 0.25: Rκ

[
ϕκ , ainc

κ

]
(left), Tκ

[
ϕκ , ainc

κ

]
(right)

of the incident field. It is seen that an increasing angle ϕκ leads to a weakening of the third
harmonic generation. In the range of angles 0◦ ≤ ϕκ < 21◦ (i.e. left from the intersection of the
graphs #1 and #4 in Fig. 8 (right)) we see that T3κ > Rκ . In this case, 0.125 < W3κ/Wκ ≤ 0.132,
cf. Fig. 2. The value of the coefficient of the third harmonic generation in the zone of reflection
exceeds the value of the reflection coefficient at the excitation frequency, i.e. R3κ > Rκ , in
the range of angles 0◦ ≤ ϕκ < 27◦ (i.e. left from the intersection of the graphs #1 and #3
in Fig. 8 (right)). Here, according to Fig. 2, 0.117 < W3κ/Wκ ≤ 0.132. We mention that, at
the normal incidence ϕκ = 0◦ of a plane wave with amplitude ainc

κ = 38, the coefficients
of generation in the zones of reflection R3κ

[
ϕκ = 0◦, ainc

κ = 38
]
= 0.076 and transmission

T3κ

[
ϕκ = 0◦, ainc

κ = 38
]
= 0.040 reach their maximum values, see Fig.s 7 and 8. In this case,

the coefficients describing the portion of reflected and transmitted waves at the frequency of
excitation κ = 0.25 of the structure take the following values: Rκ

[
ϕκ = 0◦, ainc

κ = 38
]
= 0.017,

Tκ
[
ϕκ = 0◦, ainc

κ = 38
]
= 0.866.

The results shown in Figs. 2 - 8 are obtained by means of the iterative scheme (71). We point
out some features of the numerical realisation of the algorithm (71). Figs. 9 and 10 display
the number Q of iterations of the algorithm (71) that were necessary to obtain the results
(analysis of scattering and generation properties of the non-linear structure) shown in Fig.
8. In Fig. 9 (left) we can see the number of iterations of the algorithm (71) for ϕκ = 0◦, the
range of amplitudes ainc

κ ∈ [0,38] and the range of increments Δainc
κ = 1. Similarly, in Fig. 9

(right), we have the following parameters: ainc
κ = 38, ϕκ ∈ [0◦,90◦) and Δϕκ = 1◦. The results

Fig. 7. Generation properties of the non-linear structure at the frequency of the third
harmonic 3κ = 0.75: R3κ

[
ϕκ , ainc

κ

]
(left), T3κ

[
ϕκ , ainc

κ

]
(right)
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Fig. 8. Scattering and generation properties of the non-linear structure, κ = 0.25, 3κ = 0.75,
for ϕκ = 0◦ (left) and ainc

κ = 38 (right): #1 . . . Rκ , #2 . . . Tκ , #3 . . . R3κ , #4 . . . T3κ

shown in Fig. 9 are also reflected in Fig. 10. Here the dependencies on the portion of the total
energy generated in the third harmonic W3κ/Wκ are presented that characterise the iterative
processes. We see that the number of iterations essentially depends on the energy generated

Fig. 9. The number of iterations of the algorithm in the analysis of the generating and
scattering properties of the non-linear structure (κ = 0.25, 3κ = 0.75): Q|{Δainc

κ =1, ϕκ=0◦} for
Δainc

κ = 1 and ϕκ = 0◦ (left), Q|{Δϕκ=1◦ , ainc
κ =38} for Δϕκ = 1◦ and ainc

κ = 38 (right)

209Generation and Resonance Scattering of Waves on Cubically Polarisable Layered Structures



36 Numerical Simulations, Applications, Examples and Theory

Fig. 10. The number of iterations of the algorithm in the analysis of the generating and
scattering properties of the non-linear structure (κ = 0.25, 3κ = 0.75) in dependence on the
value W3κ/Wκ : Q|{Δainc

κ =1, ϕκ=0◦} for Δainc
κ = 1 and ϕκ = 0◦ (left), Q|{Δϕκ=1◦ , ainc

κ =38} for
Δϕκ = 1◦ and ainc

κ = 38 (right)

in the third harmonic of the field by the non-linear structure.
The numerical results presented above were obtained by the iterative scheme (71) based on
Simpson’s quadrature rule, see Angermann & Yatsyk (2010). In the investigated range of
parameters of the non-linear problem, the dimension of the resulting system of algebraic
equations was N = 501, the relative error of calculations did not exceed ξ = 10−7. Finally,
it should be mentioned that the analysis of the problem (31), (C1) – (C4) can be carried
out by solving the system of non-linear integral equations (52) and (55) as well as by
solving the non-linear boundary value problems of Sturm-Liouville type (60). The numerical
investigation of the non-linear boundary value problems (60) is based on the application of the
finite element method Angermann & Yatsyk (2008), Angermann & Yatsyk (2010) Samarskij &
Gulin (2003).

10. Conclusion

We presented a mathematical model and numerical simulations for the problem of resonance
scattering and generation of harmonics by the diffraction of an incident wave packet by a
non-linear layered cubically polarised structure. This model essentially extends the model
proposed earlier in Yatsyk (September 21-24, 2009), Angermann & Yatsyk (2010), where only
the case of normal incidence of the wave packet has been investigated. The involvment of
the condition of phase synchronism into the boundary conditions of the problem allowed us
to eliminate this restriction. The incident wave packet may fall onto the non-linear layered
structure under an arbitrary angle. The wave packets under consideration consist of a strong
field leading to the generation of waves and of weak fields which do not lead to the generation
of harmonics but have a certain influence on the process of scattering and wave generation
by the non-linear structure. The research was focused on the construction of algorithms for
the analysis of resonant scattering and wave generation by a cubically non-linear layered
structure. Results of calculations of the scattering field of a plane wave including the effect
of the third harmonic generation by the structure were given. In particular, within the
framework of the closed system of boundary value problems under consideration it could
be shown that the imaginary part of the dielectric permittivity, which depends on the value
of the non-linear part of the polarisation at the excitation frequency, characterises the loss
of energy in the non-linear medium (at the frequency of the incident field) caused by to
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the generation of the electromagnetic field of the third harmonic (at the triple frequency).
For a sufficiently strong excitation field, the magnitude of the total energy generated by the
non-linear structure at the triple frequency reaches 13.2 % of the total energy dissipated at the
frequency of excitation. In addition, the paper presented the results describing the scattering
and generation properties of the non-linear layered structure.
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1. Introduction 
The numerical modeling of reflector antennas is a necessary stage of their design. Due to 
numerical modeling dimensions of all antenna elements are defined. The more factors are 
accounted during antenna numerical modeling the more accurately the antenna elements 
dimensions are defined. There are many methods used in the programs of antenna 
numerical modeling: geometric optics method; aperture method; geometric theory method 
of diffraction; physical optics method, integral equations method; finite elements method. 
By now there are many papers in which the different aspects of reflector antenna numerical 
modeling are discussed. For determination of the field antenna reflector in regions of main 
lobe and first side lobes in front semi-space the aperture method is used; for determination 
of the field in full semi-space the physical optics method is used (Chen & Xu, 1990; Charles, 
1975; Rusch, 1974). The geometric theory of diffraction (Narasimhan & Govind, 1991; 
Rahmat-Samii, 1986; Narasimhan et al, 1981) and moment method (Khayatian & Rahmat-
Samii, 1999) are used for determination of the field in back semi-space, for determination of 
field features in front semi-space related with diffraction of the field on the edge of 
paraboloid and hyperboloid surfaces and for modeling the feed-horn. In a number of papers 
different approaches are used for simplification of analytical expressions for calculation of 
antenna fields to reduce a mathematical model of antenna and to simplify modeling 
program (Rahmat-Samii, 1987). A number of works deal with research into the field in near-
field zone (Narasimhan & Christopher, 1984; Fitzgerald, 1972; Houshmand et al., 1988; 
Watson, 1964). But the results are not reduced to numerical data in that volume which is 
necessary for antenna design. The field distribution in near-field zone is described in detail 
for plane aperture at uniform its excitation (Laybros et al., 2005), but for reflector antennas 
such research was not provided. The reflector antenna in receiving mode is not discussed in 
literature, however at designing antenna for radioimaging systems it is necessary to know of 
field distribution in the focal region at receiving of the wave from near-field zone points. 
The issue of isolation of channels in multi-beam reflector antenna at receiving of the wave 
from near-field zone is not analyzed too.  Without analysis of the isolation between channels 
it is impossible to analyze the quality of imaging in radioimaging systems.  
In literature a number of works deal with describing the feed-horns in monopulse reflector 
antennas (Hannan, 1961; Scolnic, 1970). There is a little information on numerical 
characteristics description the regularity in monopulse reflector antenna.  
In the present chapter the mathematical model of the single-reflector paraboloid antenna 
and double-reflector paraboloid Cassegrain antenna is based on physical optics method 
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with the same features in comparison with frequently used models. These features are the 
following:  
а) the feed-horn in the form of the pyramidal horn is not accurate; a limited feed-horn 
aperture dimensions, its depth and influence of these dimensions on distribution of the 
amplitude and phase of the field on the horn aperture are assumed; the feed-horn field is 
determined based on amplitude and phase of the field on the aperture by Kirchgoff integral; 
b) it is supposed  that paraboloid in single-reflector and hyperboloid in double-reflector 
antenna are located on the prefixed distance from feed-horn aperture plane (the 
approximation of the far-field zone is not used); 
c) paraboloid in the double-reflector antenna is located on the unknown distance from 
hyperboloid (the approximation of the far-field zone is used); 
f) in radiation mode, the point, in which the field is defined, is located in any zone of space 
(far-field, intermediate, near-field); in receiving mode the point of spherical wave source is 
located also in any space zone.  
The geometrical theory of diffraction is used only for analysis of the field in back semi space, 
but in the chapter the analysis results are not present. Using of Kirchgoff integral for 
calculation of the field of feed-horn (in radiation mode), waveguide excitation theory (in 
receiving mode) and physical optics method at determination of the field of hyperboloid 
and paraboloid allow to avoid limitations on wave dimensions of the paraboloid. Simulation 
time of problem and needed memory value of computer is less than for universal 
electromagnetic simulation programs such as CST MICROWAVE STUDIO, HFSS, FEKO. 
The modeling accuracy is about the same. 

2. Mathematical model of reflector antenna in radiation and receiving modes 
2.1 Antenna geometry  
The single-reflector and double-reflector Casserrain antenna (reflector is parabolic, sub-
reflector is hyperbolic) are analyzed in this work. The double-reflector antenna within 
coordinate system X,Y,Z and its geometric  dimensions are shown in figure 1. The antenna 
elements involved are: 1 – paraboloid; 2 – hyperboloid; 3 – feed horn; 4 – rectangular 
waveguide. Antenna element dimensions and markings are the following: hF  – phased 
center of feed horn; F –parabolic focus; pD  – parabolic diameter; gD  – hyperboloid 
diameter; PF  – parabolic focus distance; 1gF  – far focus hyperboloid distance; 2gF  – near 
focus hyperboloid distance; 2 maxMθ 2Θ0 – parabolic aperture angle; M – point on parabolic 
surface; MMM ,,R ϕθ RM, θM, φM  – spherical coordinates of M point with respect to parabolic 
focus F.  
The space point P is shown in fig2. It is in this point that the field is determined in this point 
in radiation mode. In receiving mode the EM-field source is located in point P. The position 
of point P is set by spherical coordinates R, θ, φ. The projection of P point on XY-plane  is 
shown in figure 2 as Pxy point with coordinates R, θ, φ. 
The combination of physical optics method (PO) and geometric theory of diffraction (GTD) 
are used in mathematical model of reflector antenna in the radiation mode. The physical 
optics method is used for calculation of field in front semi-space (θ<90°). The GTD method is 
used in mathematical model of reflector antenna for calculation field in back semi-space 
(θ>90°). The point P is located only in front semi-space for receiving mode and antenna is 
analyzed by physical optics method. The theory of waveguide excitation is used for 
calculation of power level on waveguide input. 



Numerical Modeling of Reflector Antennas   

 

215 

 

 
Fig. 1. Double-reflector antenna  

2.2 Single-reflector antenna in radiation mode 
Pyramidal horn is used as feed-horn. The feed horn is executed by rectangular waveguide – 
figure 3. The horn dimensions hh B,A  are aperture dimensions, hR is horn depth. The case 
when polarization plane of feed horn coincides with YZ plane is considered. The dimension 
of waveguide cross section satisfy a uniqueness condition of wave TE10 : a<λ<2a a2a <λ< , 
where λ – wavelength. 
The mathematical model includes the following known equations.  
The complex amplitude of field in a rectangular waveguide at horn input:  

 )a/xcos(EE my π=
•

 (1) 
 

where  a- is the dimension of the wide wall of rectangular waveguide; 
)/( baZPsEm ⋅⋅= - is electric field amplitude in the center of side «a» of the waveguide.  

])2/(1[/120 2aZ λ−επ= - is characteristic impedance of the waveguide; 
ε - is related permittivity of waveguide internal environment. 
Further an approximation is used: the wave in feed horn has spherical wave front. The wave 
source is located in horn vertex – in point O in figure 3. In this wave the field phase Ψ along 
the direction oqR from horn vortex to Q point on aperture Sh is changed according to the 

law: λ/Rπ2 oq=Ψ . The field amplitude is changed proportionally 1/ oqR . As a result of  it 

the distributions of field phases ),( yxsΨ  and field amplitudes ),( yxEs  on the horn aperture 
are calculated by expressions: 
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Fig. 2. Antenna and point P in space. 

 

 
Fig. 3. Rectangular waveguide and feed horn  

 
(0,0)]/λoqRy)(x,oq[R2πy)(x,sΨ −⋅−= ; 

y)(x,oq)/Rhx/A(0,0)cos(πoqRmEy)(x,s =E  (2) 

 

where mE  is amplitude of field in the center of wide waveguide wall; 
 

222
hoq yxR)y.x(R ++= ;  hh A5,0xA5,0 ≤≤− ; 

hh B5,0yB5,0 ≤≤−  
(3) 

 

The field on paraboloid surface is calculated by Kirchhoff integral according to the field on 
aperture. The field is calculated in arbitrary point M having rectangular coordinates 

MMM ZYX ,,  and spherical coordinates MMM ,,R ϕθ  (see fig.1). 
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 dS
R

)ikRiexp(
sin)ηθ(cosφcos)1θcosη(θE

λ2
1iE

QM

QMs

S

MMMMMosM

h

−Ψ
⎥⎦
⎤

⎢⎣
⎡ +−+≈ ∫

→→→
 (4) 

where ss ,E Ψ  are determined by equations (2);  2)Ah2/λ(1η −= ; 1i −= ; k=2π/λ; 

oo
→→
ϕθ ,  are unit vectors of spherical coordinate system MMM ,,R ϕθ ; QMR  is the distance 

from point Q on horn aperture (see fig.3) to point M on the paraboloid surface. This distance 
is expressed in terms of rectangular coordinates of Q, M points in the coordinate system, 
with the geginning being in the point of paraboloid vortex Op (see fig.4). The center of feed-
horn aperture feed-horn (point QS) is shifted from paraboloid focus point (point F) at 

coordinates X,Y,Z  on values hzhyhx D,D,D . This would provides an antenna focusing in 

well known point P of any space zone.  
 

 
Fig. 4. Single-reflector antenna with feed horn 

The expression for RQM results from figure 4 by means of rectangular coordinates of the 
point Q and M in X,Y,Z coordinate system.  
 

2
MQ

2
MQ

2
MQQM )zz()yy()xx(R −+−+−= ,  

xDx hxQ += ;  yDy hyQ += ;  zDz hzQ +=  
(5) 

 
)cos1/(cossinF2x MMMpM θ+ϕθ= ; )cos1/(sinsinF2y MMMpM θ+ϕθ= ; 

[ ])cos1/(cos21Fz MMpM θ+θ−=  (6)

 

The angles MM ϕθ ,  are calculated by coordinates Mx , My , Qx , Qy  using relations: 
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QM
2

QM
2

QMM R/)yy()xx(sin −+−=θ ; 

)yy/()xx(tg QMQMM −−=ϕ  
(7) 

 
The point M on the paraboloid surface is the point of crossing of two line systems, which are 
the paraboloid surface lying in XZ and YZ planes. The distance between lines on coordinates 
X and Y are marked as ΔX and ΔY. The values of ΔX and ΔY are selected according to the 
criterion of convergence of the calculations of side lobe levels and antenna gain, i.e. by 
parameters which are most critical to ΔX/λ and ΔY/λ values. The results of numerical 
modeling show that the ΔX/λ>3 and ΔY/λ>3 are sufficient. 

The vector of the magnetic field MH
→

 in point M and than the vector of surface current 

density are determined in terms of the field ME
→

. In conformity with PO method: 

 zyxMos JJJ]H,n[2J
→→→→→→

++==  (9) 

where zyx J,J,J
→→→

 are components of sJ
→

 vector in rectangular coordinate system  

depending on M point coordinates Mx , My , Mz ; the 
→

on  is a unit vector perpendicular  to 
paraboloid surface in point M.  

The vector potential 
→
A method is used for determination of 

→
E  field of the currents 

zyx J,J,J
→→→

  in the point P (see figures 2, 4): 
 

→→→→→
++=

λ
π

−≈ zx EEyEA60iE ;    dS
R

)ikRexp(JA
MP

MP

S
s

p

−
= ∫

→→
; 

2
PM

2
PM

2
PMMP )zz()yy()xx(R −+−+−=  

(10) 

 
where pS are paraboloid surfaces. 
The rectangular coordinates of P point ppp z,y,x are associated with spherical coordinates  

ϕθ,,R  as: 

 ϕθ= cossinRxP ; ϕθ= sinsinRyP ; θ= cosRzP  (11) 

The vector 
→
E  projections on unit vectors o

→
θ и o

→
ϕ   are determined by expressions:  

 
θ−θϕ+ϕ=θ sinEcos)sinEcosE(E zyx ; 

θϕ+ϕ−=ϕ cos)cosEsinE(E yx  (12) 
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Fig. 5. Spherical coordinates system 

The antenna directivity diagrams ),(F ϕθθ , ),(F ϕθϕ  and antenna gain G are calculated based 
on θE и ϕE   components. 

 s
22

max P60/REG =  (13) 

Where maxE  is the maximum value of the electric field amplitude on sphere R=const; P is 
radiation power. 

2.3 A single-reflector antenna in receiving mode. 
A reflector antenna can receive a spherical wave from any points of far, intermediate and 
near field zones space. Let a spherical wave source be located in the point P shown in fig. 4. 
The amplitude of the wave electric field of is equal iE . It is necessary to calculate power iP  
entering the waveguide. The algorithm of power iP calculation includes the following steps: 
Step 1. The vector of surface current on paraboloid surface is calculated based on the 

spherical wave magnetic field 
→

iH  and the wave propagation direction using the 
formula similar to (9). 

Step 2. The field 
→

sE  in the point Q(xQ, yQ, zQ) on feed horn aperture is calculated by 

components zyx J,J,J
→→→

 of surface current 
→
sj  using the formula similar to (10)  
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Step 3. The amplitude of ТЕ10 wave in the rectangular waveguide is defined by 
→

sE  field. 
This problem is solved by the own wave method using the waveguide excitation 
theory.  

In conformity with this theory the E
→

and H
→

 field in waveguide is presented as the sum of 

the own waveguide waves ν
→
E  and ν

→
H , where ν  is generalized index describing a wave 

type and its propagation direction: 

 ∑
ν

ν
→

ν
→

=
)(

ECE , ∑
ν

ν
→

ν
→

=
)(

HCH  (15) 

 

where νC  is an excitation coefficient related to off-site sources – the density of off-site 

electric current eJ
→

 and magnetic hJ
→

 currents: 
 

 dVHJEJ
N
1C

V

he∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ν−

→→
ν−

→→

ν
ν  (16) 

 

where V  is the volume in which the off-site sources of the field are located; νN  is the 
norm, given by 

 
→

ν
→

ν−
→

ν−
→

ν
→

ν ∫ −= dSm}]H,E[]H,E{[N o
S

 (17) 

 

In equations (14)-(16) the ν
→

ν
→

H,E  are advanced own waves; ν−
→

ν−
→

H,E  are reversed own 

waves; S  is a waveguide cross-section area; om
→

 is a unit vector perpendicular to the 
waveguide cross-section.  
The equations concerned are used for solution of problems of ТЕ10 wave excitation in the 
rectangular waveguide with cross-section dimensions hA  and hB  without accounting 
transformation of the waveguide to aperture horn. It is assumed that other waves except 
ТЕ10 cannot propagate. The integration in (15) is carried out on the horn aperture. On the 

horn aperture the vector 
→
eJ =0, and vector 

→
hJ  is expressed by the field 

→

SE  component 
tangent to horn aperture. The axis of excited waveguide is oriented along the Z-axis. In this 

case the oo zm
→→

= , where 
→
oz  is a unit vector parallel to the Z-axis. The vector 

→
hJ  is 

expressed by the vector 
→

SE   

 ]E,z[J Soh

→→→
−=  (17) 
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Using current formulas for vector components of electrical and magnetic fields of X ТЕ10 
wave, it’s not difficult to deduce a formula for the norm of this wave: 
 

 hh
v

2
m

10h BA
Z
ENN ⋅==ν  (18) 

 

Where 
2

ha

a
v A2

λ1/
ε
μZ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  is characteristic cross-section impedance of the waveguide 

with Ar  and Br  dimensions for ТЕ10 wave; aa με ,  are absolute permittivity and absolute 
permeability of the medium filling the cave of the waveguide; mE  is the amplitude of the 
ТЕ10 wave electrical field in the center of the waveguide cross-section. 
After simple manipulations the formula for the ТЕ10 wave electrical field is as follows, (there 

is only one yE  component for the vector
→
E ) 

 

 ( ) ( ) dydxA/xcos)y,x(E
BA
A/xcosEE
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π
== ∫ ∫

−= −=

 (19) 

 

where )y,x(Esy  is a component of an off-set field (the field of paraboloid) at the horn 
aperture which is tangent to the horn aperture and parallel to the Y-axis. 
The expression for field amplitude maxE in the center of the wide side of the horn for power 
Pr  received by horn results from (19): 
 

 ( ) dydxA/xcos)y,x(E
BA

1E
h
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h

A5,0

A5,0x

B5,0

B5,0y
hpy

hh
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⋅
= ∫ ∫

−= −=

 (20) 

 vhh
2
max Z4/BAEPr ⋅=  (21) 

2.4 Double-reflector Cassegrain antenna in radiation mode 
In fig.6 a paraboloid (1) and a hyperboloid (2) with additional designations are shown, Oq – 
the apex of the paraboloid (1); Oq is the apex of the hyperboloid; F1 and F2 are the near and 
the far foci, N is a point on the hyperboloid surface; R1 is a distance between F1 and N 
points, R2 is a distance between F2 and N points. Focus F of the paraboloid and the nearest 
focus of the hyperboloid coincide. The distant focus of the hyperboloid is agreed with the 
phase center of the horn. To focus the antenna on the given distance we move the feed-horn 
– hyperboloid system along the z-axis by Dz distance, to scan – we rotate the hyperboloid 
around Og point. In figure 6 one of F1-N-M rays is shown as a chain-line.  
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Fig. 6. Paraboloid-hyperboloid system 

The configuration of the hyperboloid may be described with the following formulas:  

 N2g1 θcose1/)e1(FR ⋅−+= ; (22) 

 )θ5,0(tg)1e/()1e()θ5,0(tg NM ⋅⋅−+=  (23) 

where e- is the eccentricity of the hyperboloid (е ≈ 1,2…2) 

 )1F/F/()1F/F(e 2g1g2g1g −+=  (24) 

The sequence of antenna field calculation in the point P(R,θ,φ) is the following: 
1. Using formula (14) makes it possible to determine the electrical field vector 

)Z,Y,X(E NNNN
→

 on the surface of the hyperboloid in the point N and then to calculate 

the vector of the magnetic field strength )Z,Y,X(H NNNN
→

. In formula (4) we substitute 

Mθ  angle for Nθ  angle, QMR  for QNR . The angle  Nθ  is changed in limits 

 maxNN θθ0 ≤≤ . (23) 

The maxNθ  and maxMθ  angles are both performed in formula (23), QNR , is defined by 
formula 5 with substituting MR , Mθ , Mφ  coordinates of point M for coordinates of 
point N in formula (5): 

 
NN1N φcosθcosRX = ;  NN1N φsinθcosRY = ; 

N12g1gpN θcosR)FF(FZ ++−= , (24) 

where Nφ  – an angular coordinate of point N in the XY plane 
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2. Using the formula which is analogous to formula (9) gives a vector of current density 
on the hyperboloid surface  

 NzNyNxNosN JJJ]H,n[2J
→→→→→→

++==  (25) 

3. Knowing sNJ
→

 current we determine the field on the surface of the paraboloid in point 
M. We use the formula given by (10) 
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MNNM )zz()yy()xx(R −+−+−= , 

(26) 

Where gS  is a paraboloid surface. 

4. Using the electrical field vector ME
→

 we determine the magnetic field vector MH
→

 in the 
point M and then we calculate the current on the surface of the paraboloid and the field 
in the point P according to formulas (9)-(12). The formulas involved are used in the 
program for the numerical simulation of different types of reflector antennas as well as 
for researching field characteristics in the near-field region 

3. Results of numerical simulation and its discussion 
3.1 The field distribution in the near-field zone in radiation mode 
The simulation was made for antennas with the paraboloid diameter pD =(10…100)λ and 
different ratio pp D/F . To demonstrate the main principles we took a single reflector 
antenna with λ= 30Dp  and pp D/F =0.5 as an example and studied field distribution in the 
tangent plane (z=const), along the focal axis (z – direction) and depending on the angle θ. 
The calculations were made for the near-field zone, the intermediate zone and the far-field 
zone focusing the antenna into the far-field zone and into the given point of the near-field 
zone. We considered the technology of scanning during focusing the antenna. The sizes of 
the feed-horn Ah, Bh have been chosen to bring the illumination level of the edge of the 
reflector with respect to its center in the E and H planes to about 0.3. It coresponds to the 
maximum antenna gain. All numerical results are given for the plane E. 
The distribution of amplitudes and field-phases along the focal axis (Z-distribution) in the 
near zone is shown in fig.7. The coordinate Z is dependent on the focus point. The antenna 
is focused on the far-field zone. 
It is shown in fig.7 that moving the observation point away from reflector the field 
amplitude oscillates. Monotonous decrease of the field amplitude begins in the point oZ . 
The value of oZ  and the depth of oscillations increase with the rise of λ/Dp . The reason for 
the oscillations is the interference of different Fresnel zones at the reflector aperture. 
The distribution of the field phase along the focal axis is linear (fig. 7b). It indicates that the 
traveling field wave propagates along focal axis. 
The same situation is observed in the back semi-space, but the oscillations have a less depth 
and as the distance from the apex of the paraboloid grows the amplitude decreases 
considerably faster than it happens in the front semi-space.  
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Fig. 7. The field distribution in focal axis direction. 
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Fig. 8. The antennas field distribution on the sphere R=const. 

Neither of amplitude maximum points in figure 7a are an antenna’s focusing points. Under 
a focusing point we mean the point on the sphere, on which the characteristics of 
distribution of the field amplitude in relation to the angle θ are close to the antenna diagram 
in the far zone. To illustrate this in fig.8 field distribution on the surface of the sphere 
R=const for the antenna focused into the far-field zone for distance a) R=200 Dp ( antenna 
diagram); b) R=2.5 Dp; c) R=7.5 Dp (the last two amplitude maximum points are in fig.7) 
For comparison in fig.9 it is shown: 
the field distribution amplitude on the sphere R=2.5Dp in depending on the angle θ focused 
on the distance equal to the radius by shifting the feed-horn along the focal axis on 

hzD =1,5λ (see figure 9 a); 
the field amplitude distribution along the focal axis during such shifting of the feed horn 
(see figure 9 b) 
As can be seen from fig.9 b, the field amplitude considerably increases in the focusing point 
that field distribution depending on the angle θ on the sphere of the antenna, R=2.5Dp 
focused on this distance is close to the antenna diagram in the far–field zone. 
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Fig. 9. Field distribution on sphere R=2.5 Dp and along focal axis in antenna focusing case. 
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Fig. 10. The amplitude and the field phase in the focusing plane Z=const.  

The dependence of the amplitude normalized to the amplitude maximum ( maxE/E ) and 
the field phase from the coordinate Y in the focusing plane Z=2,5 PD  is shown in fig.10. The 
value of Y varied within two paraboloid diameter limits ( pP DYD ≤≤−  ). 

The region in the y-direction where 2/1E/E max >  will be called the focusing zone and it 
will be indicated as 5,0YΔ . The value of 5,0YΔ  increases with growing distance to the 
focusing point and it’s linearly related to the diameter of paraboloid. Analogous patterns 
take place in a double-reflector antenna. 
The field distribution in the near-field zone in a spherical wave receiving mode. 

The field distribution in the focal region of an antenna during receiving a spherical wave 
coming from the near-zone is of interest under optimization of the feed-horn position (or 
several feed-horns in a multi-beam antenna). Further the patterns are demonstrated by the 
example of an antenna with parameters λ= 30Dp , pp D/F =0,5. 
The fig.11  show the field distribution along the focal axis during receiving a spherical wave 
coming from the point situated a) in the far zone ( pD200R = ) b) in the near field zone 
( pD2R = ). The coordinate Z is counted out from paraboloid apex (point PO  in fig. 6.). 
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At decreasing distance to the focusing point the width of the region on the focal plane 
occupied by the main lobe is increasing (fig.11).  
It’s seen that  with fig. 11a the field maximum is located in the paraboloid focus, but with 
figure 11 b the maximum is moved away paraboloid apex from the reflector on 1.41Fp. If the 
phase center of the feed-horn is placed in that point, the antenna will be focused on R=2Dp. 
Fig. 12a depicts the diagram of an antenna focused on the far-field zone at the distance of 
R=2Dp. It’s obvious that differences are discovered only in the side lobe region. 
The diagrams of the antenna focused at distance R=200Dp into radiation mode (solid) and 
receiving mode (Dot) is depicted in fig. 12b. The differences in side lobe region result from 
different calculation methods, described in the mathematical model. 
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Fig. 11. The field amplitude distribution along the focal axis. 
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а)  receiving mode:    b) Far-field zone: 

                                 solid - pD200R = ;    dot - receiving mode; 
                                 dot - pD2R =     solid – radiation mode 

Fig. 12. Antenna diagrams 
Scanning in a single-reflector antenna. Multi-beam reflector antenna. 
Scanning is produced by moving a feed-horn in a plane Z=const and it is used at the 
antenna focusing in far-field or near-field zones. Further peculiarities of scanning process at 
antenna focusing in far-field and near-field zones and features of isolation between channels 
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in a multi-beam antenna in receiving mode of spherical wave from near-field zone point are 
considered. 
Regularities of scanning are demonstrated by the example of the antenna with the following 
parameters: pD =300 mm; pF =150 mm; f=37 GHz ( pD /λ=37). 

The feed horn size Ar, Br are made  to be less optimal according to the criteria of antenna 
gain maximum. This conforms to paraboloid edge illumination level on 10 dB less than in 
the paraboloid center. The optimal horn sizes for ratio pF / pD =0,5 at frequency 37 GHz are 
the following: hA =9 mm, hB =6 mm, hR =30 mm. The diagrams of the antenna that is 
focused in the far-field zone at the distance R=200 Dp with three values hyD =0; 20 mm; 
40 mm of horn shifting of in the focal plane along Y-axis (see fig.4) are shown in fig. 13. With 
increasing hyD  the main lobe is shifted from the focal axis by the angle mQ , the beam 
width 5,02θ  and side lobes level bmF  are increased too. These regularities are well-known 
for far field zones. These regularities remain when the antenna is focused into the near-field 
zone, but they are quantitatively less expressed. The diagrams with the same parameters 

hyD  for the antenna focused into neat-field zone at the distance R=4 PD  are depicted in fig. 
14. The antenna focusing into this distance is produced by shifting the feed-horn along the 
focal axis at the distance hzD =22 mm (approximately 3λ ). 
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Fig. 13. The antenna diagrams during scanning. The antenna is focused into the far-field zone. 
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Fig. 14. The antenna diagrams during scanning. The antenna is focused into the near-field 
zone at the distance R=4 PD . 
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The differences of antenna diagrams during scanning and focusing in far-field and near-
field zones are illustrated by the following figures. 
In fig. 15 the dependence of main lobe deviation angle from the focal axis ( mQ ) (15-a) and 
the dependence of widening the main lobe (DQ%) from shifting the feed horn along Y-axis 
at focusing into the far-field and near-field zones (15b) shown in fig. 15b. The coefficient of 
widening the main lobe (DQ %) is determined from equation 
DQ%=[ [ ] )0(2/2)0(2100 5,05,05,0 θθ−θ ,  where )0(2 5,0θ is the width of the not shifted main 
lobe.  
From figure 15 it follows, that the angle deviation of the main lobe from the focal axis and 
the coefficient of widening are reduced with reducing distance to the antenna focusing 
point.  
The dependence of the coefficient of increasing of side lobe levels (DF) and reducing 
antenna gain (DG) versus shifting the horn along Y-axis at focusing of antenna in far-field 
and near-field zones are shown in figure 16. The values DF and DG are given from 
DF=Fbm-Fbm(0), where Fbm(0) is a side lobe level with the not deviated main lobe; 
DG=G(0)-G, where G(0) is antenna gain with  not deviated main lobe. 
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Fig. 15. Scanning in a reflector antenna. 
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Fig. 16. Changes of antenna parameters at scanning. 
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From fig. 16 it follows that the effects of increasing the side lobe level and decreasing the 
antenna gain at scanning are reduced with decreasing the distance to the focusing point.  
With increasing hyD  the cubic phase error on the paraboloid aperture increases. This results 
in rapid growth of side lobe levels. Therefore the scanning sector is not great large. It is 
necessary to decrease a cubic phase error for widening a scanning sector. It is can be made 
possible by shifting feed-horn along the focal axis additionally by 0hzD  values. It is 
demonstrated by the example of the multi-beam antenna with parameters: pD  =300mm; pF  
=150mm at frequency 37 GHz. This antenna is focused on the distance pD4R = =1200mm. 
Every beam conforms to one feed-horn in the antenna. The number of feed-horns is 

=hN 30. The feed-horns are located symmetrically in relation to the focal axis. The 
coordinates of feed-horns aperture centers along Y-axis are marked as hynD , on Z-axis – 

hznD are. The feed-horns numbers change from -15 up to 15, 15n15 ≤≤− . The horns with 
the coordinate hynD <0 have numbers 0n15 <≤− , the feed-horns with coordinates Dhym>0 
have numbers 15n0 ≤< . The feed-horns location along Y-, Z-axis and their size are 
optimized to the criteria of minimum of side lobe levels and criteria of nearbouring antenna 
diagram crossing at -3dB level. The antenna diagrams conforming to horns 15n1 ≤≤−  are 
shown in figure. 16. The nearest to focal axis horns have numbers 1n ±= . 
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Fig. 17. The antenna diagrams of multi-beam antenna. 

From fig. 17 it follows, that by optimization of the feed-horns sizes and location the sector 
taken up by beams can be essentially widened in comparison with the sector of scanning.  
Multi-beam reflector antennas are used in radioimaging systems functioning in the passive 
mode. In this mode an antenna receives a signals radiated by some object in the near–field 
or intermediate-field antenna zone. Every reception channel is formed one horn  of the feed-
horn and receives a signal from the element of allowance on the object. The main lobes of 
the antenna diagram of the neighboring channels cross at non-zero level (generally it’s 0.007 
to the maximum). Therefore a signal received from this by the feed-horn of this channel is 
overlapped by adjacent bin signals (i.e. the desired signal is overlapped by interference and 
that leads to image degradation). The level of quality degradation can be evaluated as the 
ratio of the power received from necessary bin on the object to the power received from the 
adjacent bin in this channel.  
 Feed-horn isolation depends on the distance between the aperture centers l; on the 
dimensions of the feed-horn hA , hB , hR ; the dimensions of the paraboloid pD , pF on; 
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frequency f. Further the main principles will be considered an with example of an antenna 
with pD =300mm, pF =150mm and f=37GHz. Antenna diagrams of different channels are 
shown in the fig.17. The example of an amplitude distribution and the field phase 
distribution in the focus plane Z=const for an antenna focused at the distance of R=4 pD  are 
shown in fig. 17.  The spherical wave source point has the following coordinates X=0, Y=0, 
Z=R. Two feed-horns (depicted as two black triangles) with numbers n=1 and n=5 are also 
shown. The dimensions of these feed-horns apertures and the coordinates of their  centers 
after optimization of antenna diagrams are the following: 
Horn 1- hA =10,5 mm; hB =4 mm; hynD =2,5 mm; hznD =22 mm  
Horn 2 – hA =10,5 mm; hB =6 mm; hynD =27,75 mm; hznD =26 mm  
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Fig. 18. the distribution of the field amplitude and field phase in the focusing plane Z=const. 
From fig.18 it follow that in the focusing plane the amplitude distribution and the field 
phase distribution are irregular, therefore as the distance between feed-horns increases the 
excitation amplitude of the feed-horn 2 doesn’t decrease monotonous. Therefore the feed-
horns isolation in a multi-beam changes monotonous with increasing the distance between 
feed-horns. The fig.18 depicts the dependence of the isolation coefficient between feed-horn 
1 and feed-horns 2, 3,..., 15 depending on the feed-horn number in a multi-beam antenna. 
The antenna diagram of this antenna is shown in fig.16. The isolation coefficient is given by: 

 Pn/1Pn1P = , (27) 

Where P1 is the power received by the feed-horn1; Pn is the power received by the n-th 
feed-horn. The antenna receives the wave from the point on the Z-axis distant from the apex 
of the paraboloid at 1200D4R p == mm. 

In fig.19 the similar dependence for an antenna with the feed-horn aperture dimensions and 
the position in the Y and Z-directions aren’t modified according to a criterion of side lobe 
levels minimum; all the feed-horns have the same dimensions ( hA =10,5 mm; hB =4 mm) 
and they are located in the focusing plane Z= hznD = 22mm. The feed-horns are located 
along the Y-axis equidistantly. The distance between the centers of the adjacent feed-horns 
equals 5 mm. At such distance the main lobes of feed-horns 1 and 2 cross each other at the 
level -3dB. The antenna diagrams  conforming to the feed-horns numbered as n=-1…15 are 
shown in fig. 20. 
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From fig.16, 19 and 20 it follows that when the antenna receives a spherical wave from a 
point on the focal plane, the isolation coefficient between the feed-horn in the focusing point 
(the feed-horn 1) and the adjacent (feed-horn 2) is not less than 16-17 dB. The isolation 
coefficient  at the feed-horn 1 with the rest feed-horns is not less than 20dB. If the feed-horns 
location in the focusing plane provides crossing the antenna diagrams at the level of -3dB 
then the level of the side lobes in antenna with the dimensions of the feed-horn corrected in 
the focusing plane and along the focal axis is distinctly lower than in an antenna without the 
dimension correction and positions of the feed-horns. The isolation of the feed horns in 
these two cases doesn’t differ much. 
 

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

P1
/P

n

n

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

P1
/P

n

n
 

               a) with dimension correction  b) without dimension correction 
Fig. 19. The dependence of isolation coefficient on feed-horn number. 
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Fig. 19. The antenna diagram of multi-beam antenna without correction of feed-horns 
dimensions and its location. 
When the antenna receives a spherical wave from the point located at Y ≠ 0 some 
peculiarities occur. It is connected with the fact that the distribution of field amplitude in the 
focusing plane is asymmetrical regarding the maximum. Therefore the isolation coefficient 
between the feed-horn concerned and adjacent feed-horn located to the left and to the right 
from it is different. 
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Monopulse double-reflector Cassegrain antenna. 
Monopulse antennas are designed for forming two differential diagrams and one sum 
diagram. The schemes for construction of monopulse double-reflector antennas (MDA) are 
described in literature. The simplified scheme of a Cassegrain antenna is shown in fig. 22. 
Designations: 1- is paraboloid (reflector); 2 is a hyperboloid (sub-reflector); 3 – is monopulse 
horn. The antenna receives a spherical electromagnetic wave coming from the point P (R,0,f) 
of the far-field zone  with angular coordinates 0, f. On the fig. 22 one beam in the receiving 
mode is depicted in fig. 22 with dotted lines.  
The feed-horn must generate three signals: two differential and one summary. Further the 
numerical modeling results are given and the main principles are described for two types of 
MDA: a) with a feed-horn in the form of 4-horns executed by TE01 wave mode; b) with  a 
multimode feed-horn. The numerical modeling is produced for antennas with paraboloid 
diameters the pD =30λ and the ratio pp D/F =0,4. The diameter of the hyperboloid depends 
on the eccentricity “e” and on the far focal distance Fg1. 
A multimode feed-horn is a pyramidal horns with waves 10TE , 20TE , 11TE , 11TM . The 
scheme of simultaneous excitation of these wave modes though the isolated inputs is 
described in literature. These waves form necessary antenna diagrams: the wave 10TE  form 
summary antenna diagram, the wave 20TE  forms a differential antenna diagram in the 
magnetic plane (H plane); the sum of waves 11TE + 11TM  forms the differential diagrams 
in the electrical plane (E plane). The parameters of the antenna diagram of the sum and 
differential channels depend on the dimensions of the feed-horn cross-section hA , hB  and 
the eccentricity E. 
Further the dependencies of antenna parameters from hA , hB  are analyzed. The numerical 
modeling is produced for antennas with diameters of the paraboloid pD =30λ and the ratio 

pp D/F =0,4.  
The diameter of the hyperboloid depends on the eccentricity E and the distance between 
paraboloid apex and the feed-horn aperture. The hyperboloid must be inscribed in the 
aperture angle of paraboloid, as it is shown in fig. 6. The diameter of the hyperboloid gD  
must not be larger than 0.25 pD  to reduce the shadow effect. Further results of modeling are 
given for the case of H=3λ and gD =0,22 PD  (the eccentricity e=2). For these parameters the 
level of side lobes in the sum channel in E and H planes is equal and it doesn’t exceed -25dB; 
if the condition hA =3,33λ;    hB =2,33λ  ( hA / hB =1,428) is fulfilled. The antenna diagrams 
of the sum channel for the mentioned parameters are shown in fig. 22; in the plane E with a 
thick line and for H plane with a thin line. The hA , hB  values, the diameters of 
hyperboloid gD  and antenna parameters in the summary and differential channels depend 
on the hyperboloid eccentricity. 
The side lobes level and the width of the main lobe of antenna diagram for the summary 
and differential channels depend on hA /λ and hB /λ ratios. With growth of the 
eccentricity the hyperboloid diameter decreases if the condition of equality of the paraboloid 
aperture angles and the hyperboloid aperture angle from the focus of paraboloid (the near 
focus of hyperboloid) is fulfilled. The dependence of the ratio gD / pD  on the eccentricity E 
with hA =3,33λ and hB =2,33λ is shown in fig. 23. This figure also depicts the dependence 
of the antenna efficiency factor (Kef) in the summary channel from the hyperboloid 
eccentricity. The antenna efficiency factor is the value that connects the antenna gain (G), the 
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area of paraboloid aperture (S) and the wavelength. This relation is determined from well-
known formula: 

 2λ/KefSπ4G ⋅⋅= ,  the  4/DπS 2
p= . (28) 

 
Fig. 22. An Cassegrain antenna scheme. 
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Fig. 23. The antenna diagram for the sum     
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Depending on the eccentricity the side lobe of summary and differential channels in the E- 
and H- planes for hA =3,33λ, hB =2,33λ change as it is shown in fig. 24. In our calculation 
we used a lens in the horn to achieve equal phase distribution in the aperture.  
With the growth of the eccentricity the hyperboloid diameter increases. Therefore if the 
values hA , hB  remain the same the horn field level decreases at the edge of hyperboloid 
surface. It leads to reducing the side lobes level and to increasing the main lobe width. At 
the expense of the side lobes reducing the antenna gain increases. At the expense of the 
main lobe extension the antenna gain decreases. 
These two factors lead to the situation when at a certain level of the horn field at the edge of 
the hyprboloid the antenna gain reaches its maximum. In this case the antenna gain is 
maximal. Numerical analysis indicates that the maximum of antenna gain in the summary 
channel is observed when the field level at the edge of the hyperboloid in comparison with 
the center is ≈Δ 0,3. 
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Fig. 24. Side lobe levels versus hyperboloid eccentricity 

The dependence of the efficiency factor and the antenna gain in differential channels on the 
eccentricity is shown on the fig. 24. The maximum of Kef is observed when the level on the 
edge of the aperture in the plane E is ≈Δe 0,4; in the plane H is ≈Δh 0,3. 
From fig. 22 it follows that for reducing of side lobes level in the summary channel it’s 
necessary to increase eccentricity in comparison with e=2 besides side lobes in the summary 
channel in the E- and H-planes are equal. The efficiency factor increases, if E<2.5.  
But then the width of main lobe in the summary channel is increased and the antenna 
efficiency coefficient for the summary channel is decreased. 

4. Conclusion 
In the chapter the mathematical model of a reflector antenna is described with using the 
physical optical method and the waveguide excitation theory. New results of research of 
regularity and parameters of reflector antennas are: 
• The field distribution in a near-field zone in a tangent plane and along a focal axis in 

radiation mode and receiving mode at different wave dimensions of antenna elements; 
in  the receiving mode the antenna is illuminated by a spherical wave from the point 
with known coordinates, located in any space zone; 
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• The isolation between channels in a multi-beam antenna in receiving mode of spherical 
wave, radiated from near-field zone point depending on geometrical parameters of 
antenna elements. 

• Changing diagram parameters of a reflector antenna during scanning and focusing in to 
given distance. 

The results obtained can be used with designing a different purpose antenna. 
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1. Introduction  
Extraction of high-viscosity oil and bitumen is an important practical problem, because the 
reserves of such deposits are significant, and their role in common stocks of organic raw 
materials is constantly increasing. However, on account of the high viscosity of oil, and but 
also because of frequent blockage bottomhole zone due to sediments of colloidal surface-
active components of oil extraction is becomes possible only after preliminary heat 
treatment of the stratum. Traditional methods of thermal treatment - hot steam or hot liquid 
- are in this case ineffective. Moreover, their widespread use may lead to severe 
environmental consequences in the form of violations of the hydrogeological environment.  
One of the promising methods of thermal treatment is an electromagnetic heating of the 
productive layers. Due to deep penetration and the volumetric heat release, and absence of 
coolant, electromagnetic radiation can provide (compared to traditional methods) high 
speed and uniform heating, the possibility of optimal control and automation of 
technological processes, virtually eliminate the harmful effects on the environment. The 
results of laboratory and field trials in Russia (Sayakhov et al., 1970, Makogon et al., 1989, 
Sayakhov et al., 2002)  and practical experience of using this technology on an industrial 
scale in the U.S. and Canada (Da Mata et al., 1997, Vermeulen & McGee, 2000, Sahni et al.,  
2000, Chhetri & Islam, 2008) show perspective utility of this trend. However, the effective 
realization of these opportunities is hindered by the lack of reliable data on the study of heat 
and mass transfer processes in multiphase media, typical for the oil and gas technologies, 
when subjected to these media microwave electromagnetic radiation. The main objective is 
to determine optimal modes of stimulation, namely: the frequency and power of a source of 
microwave radiation, the parameters of the antenna, the possibility of using nonlinear 
properties of the medium to enhance impact on the models as close as possible to real 
conditions.  
In Russia, work on the effects of high frequency electromagnetic radiation on the oil 
reservoir was started in the late 60-ies by a team from Bashkir State University under the 
leadership of F.L. Sayakhov (Sayakhov et al., 1970, Sayakhov et al., 1975). Their industrial-
scale plant was successful tested at Sushuglinsk' and Mordovo-Karmalsk' oilfields. At this 
industrial-scale plant, the electromagnetic energy from the high-frequency generator for the 
feeder (two coaxial tubes) is inserted into the well. The outer sheath of coaxial cable joins the 
casing and the central thread cable - to the tubing at a depth of about 5 meters, so that the 
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upper part of the column and tubing formed the short-circuited line, equal to 1/4 
wavelength. Inside the tubing is submerged rod pump. Casing and tubing are used as a 
coaxial transmission line for supplying a high frequency electromagnetic energy to the 
radiator. The radiator consists of the lower casing and the bottom of the tubing, which 
stands below the casing with 1/4 wavelength (quarter-wave linear radiator). 2.5-inch 
duralumin tubes were used as tubing. A diameter of casing is 9 inches. Insulating washers 
(plastic ring 15 mm thick) placed every 8-10 m along the tubing, were used for insulation of 
tubing from the casing. Generator with an operating frequency of 13.56 MHz and output 
power (under optimal conditions) 63 kW was used as a source of high frequency 
electromagnetic radiation. The average yield before the start of heating was 0.1 m3/day; 
water cut was 30%. As a result of heating at the output power of 20-30 kW steady-state 
temperature set at 110 C after 7 days; yield increased to 0.25 m3/day, i.e. 2,5 times; water cut 
was reduced to 7-8%, i.e. more than 3 times. A well operated with a high yield flow rate for 
17 days after the end of the electromagnetic effects.  
In the U.S.A., research of electromagnetic effects on the oil wells was started in the late 70's. 
These studies culminated in a series of successful tests on the oil fields of the United States 
and Canada, and current technology of high-frequency electromagnetic radiation is reduced 
to a cost-effective and competitive level that allowed to move to its practical use in 
industrial scale. The effect of electromagnetic heating of the near-well zone can be illustrated 
by the tests carried out on the field in Alberta. To assess the effectiveness of the heating for 
this field computer simulations were carried out. The modeling predicted approximately 
twofold increase of well production by electromagnetic effects. The well was drilled in 
January 1986, and in March 1986 started production of oil. Up to the impact well gave about 
6 barrels of oil per day. A month after the start of operation was launched electromagnetic 
heating. A few days later oil production increased and set at about 20 barrels per day, i.e. 
even higher than had been predicted by numerical simulation.  
Successful tests were conducted in several other fields of the United States and Canada (in 
Oklahoma, Utah, Texas, California). Currently in the U.S.A. (New Jersey) the company 
Global Resource Corp. has been successfully working in this area. This company is a 
developer of a patented microwave technology and machinery that extracts oil and 
petroleum products from shale deposits, tar sands, capped oil wells, coals and processed 
materials such as tires and plastics as well as dredged soil from harbors and river bottoms. 
This process produces significantly greater yields and lower costs than are available using 
existing technologies. 
Over the past 10-15 years several reviews of methods of electromagnetic heating for 
enhanced oil recovery (Da Mata et al., 1997, Vermeulen & McGee, 2000, Sahni et al.,  2000, 
Chhetri & Islam, 2008) have been published. 
Theoretical studies of heat and mass transfer in the oil stratum under the influence of high 
frequency electromagnetic radiation were carried out by teams of specialists under the 
leadership of R.I. Nigmatulin and F.P. Sayakhov (Zyunk Ngok Khai et al., 1987, Kislitsyn &  
Nigmatulin, 1990, Sayakhov et al., 1998, Sayakhov et al., 2002, Kovaleva et al., 2004). 
The process of heating and filtration of bitumen in porous medium volume heat source, 
arising due to absorption of energy of electromagnetic waves was studied (Zyunk Ngok 
Khai et al., 1987). One-dimensional problem was solved taking into account the phase 
transition. They found a stationary solution for spherically symmetric source of 
electromagnetic waves and self-similar solution for a cylindrically symmetric source. 
Numerical simulation of the space heating and filtration of oil in the presence of a moving 
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front of melting was performed in the one-dimensional model. Quantitative estimates of the 
size of the heat zone were obtained. It was also pointed out to the danger that the source of 
too much power will cause overheating near wellbore zone. The negative consequences of 
such overheating are the decomposition of oil near the well, the deformation of the skeleton 
of porous rock, the destruction of wells, etc.  
The theoretical study of heat and mass transfer in the oil stratum when it is heated by high-
frequency electromagnetic radiation was performed on one- and two-dimensional models in 
research (Sayakhov et al., 1998, Sayakhov et al., 2002, Kovaleva et al., 2004, Kislitsyn, 1993, 
Kislitsyn, 1996). In these studies, considerable attention was paid to the propagation of 
electromagnetic waves in the oil reservoir and the distribution of the density of volumetric 
volume heat sources. The valuation of efficiency and cost effectiveness of the method in 
terms of energy balance has been made. 
The filtration processes in porous media filled with a solid gas hydrate or liquid, with 
depression and thermal effects (including the electromagnetic heating), which leads to phase 
transitions (gas hydrate decomposition, boiling liquid) were studied in research (Shagapov 
& Syrtlanov, 1994). Optimal regimes of the heating stratum by using high-frequency 
electromagnetic radiation were determined to gas hydration control in the near wellbore 
zone.  
Summarizing this brief review, it should be noted that there are a number of studies which 
examined the processes of heating and filtration of oil in stratums when exposed to high-
frequency electromagnetic field. In these studies important results that may be used to 
estimate the depth and duration of heating and to select the optimal modes of exposure were 
obtained. Overall, however, the problem can not be well studied. In all the works cited above 
the equation for the electromagnetic field with the type of radiating antenna, temperature and 
frequency dependences of dielectric loss tangent of the medium wasn't used. Neglect of these 
circumstances can cause significant inaccuracies, and even erroneous results.  
In this paper we propose a mathematical model closer to the actual conditions that includes 
two-dimensional system of interrelated equations of heat transfer and piezoconductivity, 
supplemented by the equation for the electromagnetic field with the type of radiating 
antenna, temperature and frequency dependence of dielectric loss tangent of the medium. 

2. Model and equations 
Numerical studies were performed with a two-dimensional axisymmetric model, a diagram 
of which is shown in Fig.1. The petroleum stratum 2 is contained between planes 
perpendicular to the z-axis (1 - cap rock, 3 - underlying bedrock). The plate is bounded 
above and below by an infinite medium, the physical characteristics of which (thermal 
conductivity, density, heat capacity) differ from those of the plate. An electromagnetic 
radiation source 4 with an antenna is placed in the well. In this model, the antenna consists 
of a coaxial cable with a ring-shaped slot 7 cut on the outer conductor 6 from the short-
circuited tip (5 - the central conductor of coaxial cable). The isolines of magnetic strength 8 
in the coaxial cable, the petroleum stratum and the adjacent rock are shown in Fig.1. 
Electromagnetic waves propagate in a radial direction about the well; they are absorbed and 
volume heating of the plate and adjacent rock occurs. Because of the heating the viscosity of 
the oil decreases and its flow into the well increases. 
For fixed source power the size of the heated zone depends on the physical parameters of 
the medium and the electromagnetic wave penetration depth. This depth, in turn, depends 
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on the frequency of the radiation and can thus be controlled. For too great penetration 
depths (too low a frequency) the source energy is dissipated in a large region and leaks into 
the adjacent rock without producing the required heating. For too small a penetration depth 
(too high a frequency) intense heating of a small region surrounding the source occurs, a 
high temperature gradient develops, and heat is lost intensely upward and downward 
without providing the required radial heating. In both cases the heated zone is small and 
heating is ineffective. Consequently, there must exist some optimum frequency at which (for 
fixed source power) the most effective heating can be produced. As for source power, within 
the framework of the model used, the higher that power, the higher the well yield, but also 
the higher the heat loss. Therefore the efficiency of heating (ratio of the increase in 
petroleum yield to energy expended) can prove low for too high power level. Moreover, the 
radiated power is limited by the fact that it is undesirable to heat the oil above the 
temperature at which it decomposes. Determination of optimum values for radiation 
frequency and power is the basic task of our numerical modeling. 
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Fig. 1. A diagram of the model: 1 - cap rock; 2 - petroleum stratum; 3 - underlying bedrock; 4 
- an electromagnetic radiation source with an antenna; 5 and 6 - a central conductor and an 
outer conductor of coaxial cable, respectively; 7 - a ring-shaped slot; 8 - isolines of magnetic 
strength 
The model takes advantage of the problem’s rotational symmetry, which allows modeling in 
2D using cylindrical coordinates as indicated in Fig.1. When modeling in 2D, we can select a 
fine mesh and achieve excellent accuracy. The model uses a frequency-domain problem 
formulation with the complex-valued azimuthal component of the magnetic field as the 
unknown. 
The radial and axial extent of the computational domain is in reality larger than indicated in 
Fig.1. This problem does not model the interior of the metallic conductors, and it models 
metallic parts using boundary conditions, setting the tangential component of the electric 
field to zero. 
An electromagnetic wave propagating in a coaxial cable is characterized by transverse 
electromagnetic fields (TEM). Assuming time-harmonic fields with complex amplitudes 
containing the phase information, the appropriate equations are 
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where z  is the direction of propagation, and r ,ϕ , and z  are cylindrical coordinates 
centered on the axis of the coaxial cable. avP is the time-averaged power flow in the cable, 
Z is the wave impedance in the dielectric of the cable, while inr and outr are the dielectric’s 
inner and outer radii, respectively. Further, ω  denotes the angular frequency. The 
propagation constant, k0 , relates to the wavelength in the medium, Λ , as 

 k0
2π

=
Λ

 (4) 

In the stratum, the electric field also has a finite axial component whereas the magnetic field 
is purely in the azimuthal direction. Thus, we can model the antenna using an axisymmetric 
transverse magnetic (TM) formulation. The wave equation then becomes scalar in Hϕ : 
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where rε  is the relative electric permittivity of the stratum; σ  is the conductivity of the 
stratum; rμ  is the relative magnetic permittivity of the stratum. 
The boundary conditions for the metallic surfaces are 

 ( )n E E1 2- 0× = , (6) 

where n is the normal to the surface, the inferior indexes 1 and 2 relate to the stratum and 
the adjacent rock, respectively.  
The feed point is modeled using a port boundary condition with a power level set to several 
tens of kilowatts. This is essentially a first-order low-reflecting boundary condition with an 
input field H 0ϕ : 
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for an input power of avP deduced from the time-average power flow. 
The antenna radiates into the stratum where a damped wave propagates. As we can 
discretize only a finite region, we must truncate the geometry some distance from the 
antenna using a similar absorbing boundary condition without excitation. Apply this 
boundary condition to all exterior boundaries. Finally, apply a symmetry boundary 
condition for boundaries at r 0= : 

 z
r

EE = 0, = 0
r

∂
∂

. (9) 

The volume heat source density is equal to the resistive heat generated by the 
electromagnetic field: 

 ( ) ( )rq r z T t j E E1 *, , , Re
2

σ ωε⎡ ⎤= − ⋅⎢ ⎥⎣ ⎦
, (10) 

where 

 '' ''
0 0 r rσ = ε ωε = ε ωε tgδ, ε = ε - jε , (11) 

where ''ε is the imaginary part of the relative electric permittivity, tgδ  is the dielectric loss 
tangent. 
The heat equation describes the nonstationary heat transfer problem: 

 ( ) ( )1 1
Tcρ + - T + mc v T = q r,z,T,t
t

λ ρ∂
∇ ⋅ ∇ ⋅∇

∂
 (12) 

where T  is the temperature of the medium; c , ρ , λ  are the specific heat capacity, density 
and thermal conductivity of the medium, averaged over all phases (these quantities are 
different in the plate and adjacent rock, and are thus functions of z); 1c , 1ρ  are the heat 
capacity and density of the filtering liquid (petroleum); m  is the porosity coefficient; v  is 
the filtration velocity vector. 
The process of oil filtration is described by equation of piezoconductivity: 

 T

p p

p k Tp
t m t

1 β
β η β

∂ ⎛ ⎞ ∂
= ∇ ⋅ ∇ +⎜ ⎟∂ ∂⎝ ⎠
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where p  is the pressure, k  is the permeability coefficient, η  is the viscosity of the filtering 
liquid (petroleum), pβ is the compressibility coefficient, Tβ is the thermal expansion 
coefficient of the filtering liquid. 
Equations (12) and (13) are interrelated in that Eq. (12) considers convective heat exchange, 
which is dependent on pressure (Darcy's law): 

 kv = - p
η
∇ , (14) 
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while Eq. (13) considers the dependence of the oil viscosity on temperature and its volume 
expansion due to heating. Natural convection in the gravitational field cannot develop 
under the given conditions, since the Rayleigh number 

 T 1β ρ c kRa = g ΔTH 1
μλ

2
1  (15) 

for any reasonable temperature head  ( H is the plate height). 
The process of paraffin melting is accounted for in the following manner. It is assumed that 
the heat capacity  within the stratum exhibits a singularity at the phase transition 
temperature sT : 

 ( ) ( )sc T c L T T0 δ= + −  (16) 

( L  is the latent heat of phase transition and δ  represents the delta function, which in 
numerical calculations is replaced by a "step" of finite width s2ΔT ). Since the heatcapacity 
values for temperatures below and above sT  are different ( c0 and c1 , respectively), we can 
write the function ( )c T  in the form 
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Initial and boundary conditions are as follows: 
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( 0T , 0p  are the initial intraplate temperature and pressure, bp  is the pressure in the well, its 
radius is b ). 
Thus, the model is included in a system of two-dimensional interconnected equations of an 
electromagnetic wave propagating (5), heat transfer (12) and piezoconductivity (13) with 
appropriate boundary and initial conditions (18). The model takes into account phase 
transitions (process of paraffin melting) and temperature dependence of the dielectric loss 
tangent of oil. 
In research (Kislitsyn & Fadeev, 1994) electric permittivity and dielectric loss tangent of 
certain types of high-viscosity oils (including Russian oil) in a wide range of frequencies and 
temperatures have been experimentally obtained. As a result, it was found that the 
dependence of complex permittivity ε  on the frequency ω  for oil is described by the model 
Havriliak-Negami (Havriliak & Negami, 1968): 



 Numerical Simulations - Applications, Examples and Theory 

 

244 

 s
r j

jj
''

1-
00

-- , 0 1; 0 1
1 ( )

γβ

ε ε σε ε ε ε β γ
ωεωτ

∞
∞= = + + ≤ < < ≤

⎡ ⎤+⎣ ⎦
, (19) 

where sε , ε∞  are static and high frequency limits of dielectric permittivity; 0τ is the most 
probable relaxation time of molecules of the dielectric; β , γ are parameters characterizing 
respectively the width and asymmetry of the spectrum of relaxation times of the molecules 
of the dielectric. For  γ = 1, this model goes into Cole-Cole model, and if more and β = 0, 
then the Debye model. 
Sharing in the expression for ε  the real and imaginary parts, we find 
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The temperature dependence of  rε and 2ε  are determined by the temperature dependence 
of the parameters β , γ , 0τ  and σ  model. 
Developed in research (Kislitsyn & Fadeev, 1994) method of processing experimental data 
allowed us to determine with good accuracy the model parameters Havriliak-Negami for 
various high-viscosity oil Tyumen region. The values of parameters allow us to describe the 
behavior of oil in the electromagnetic field in a wide range of frequencies and temperatures, 
in particular the important characteristics as the dielectric loss tangent rtg ''δ ε ε= , which 
affects the distribution of volume heat sources. 
Figure 2 shows the dependence of dielectric loss tangent tgδ  on temperature for oil of 
Russian field for a range of frequencies from 500 MHz to 2.4 GHz. The figure shows that  
with increasing oil temperature from the initial ( T0 = 293 K) to values of 330-360 K in the 
entire frequency range of the radiation the loss tangent increases approximately 1.5-fold, 
and then with further increase of temperature there is a decline of approximately 10 times 
when reaching decomposition temperature of the oil (about 530-550 K). Thus, the 
dependence of loss tangent with temperature for oil is nonlinear ("resonance") character, 
which significantly affects the process of heating oil electromagnetic radiation and should be 
considered when modeling this process. 
Data on the viscosity of the Russian oil deposit depending on the temperature are obtained 
in (Kislitsyn & Fadeev, 1994). This dependence is well approximated by a generalized 
formula Andrade, which was used for modeling: 

 { }sT E R T T( ) exp ( - )ηη η∞= , (24) 
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where η∞ is high-temperature limit of viscosity; Eη is activation energy of viscosity; sT is 
temperature of complete solidification; R is universal gas constant. 
 

 
Fig. 2. The dependence of the dielectric loss tangent on temperature for oil Russian field for 
the frequencies: 1 - 500 MHz, 2 - 1 GHz, 3 - 2,4 GHz 
Simulation of heating stratum was carried out by finite element commercial software 
package COMSOL Multiphysics. A numerical algorithm for the finite element method is 
based on the procedure of minimizing the functional corresponding to the continuous 
problem solved. The result of this procedure is the substitution of the system of partial 
differential equations system of algebraic equations with the coefficients approximating 
functions, which are actually the values of the unknown function at the vertices of the 
subdivision.  
In the present research computational domain task was divided approximately into 40000 
finite elements having the form of triangles. Finite element mesh was nonuniform. 
Concentration of elements was carried out in areas of expected strongest changes in 
temperature and electromagnetic field, i.e. near the radiation source and at the interfaces of 
the stratum-surrounding rock, where the size of finite elements was more than 10 times less 
than the wavelength of the radiation. As the basis functions piecewise-continuous quadratic 
Lagrange polynomials were used. The number of degrees of freedom of the problem was 
still approximately 170000. The numerical integration required to find the elements of the 
Jacobian, was carried out using the Gauss quadrature formula. To solve systems of linear 
algebraic equations was used Gaussian method, adapted to the use of very sparse matrices. 
The relative accuracy of calculations at each step of the iterative process was 0.01. 
Calculations were performed on a computer that has a processor with a clock speed of 3.33 
GHz and 4 GB of RAM. Typical calculation time was approximately 60 hours. 
In this research, a numerical study of electromagnetic heating oil stratum was carried out 
using physical parameters typical for heavy oil of the Russian Tyumen' field: oil density 

0ρ =940 kg/m3, density of the rock stratum 1ρ =2200 kg/m3, density of the surrounding 
rocks 2ρ =1580 kg/m3, volume heat capacity of oil c0 =2310 kJ/(m3·K), average volumetric 
heat capacity of stratum c1 =2310 kJ/(m3·K), volumetric heat capacity of the surrounding 
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rocks c2 =2310 kJ/(m3·K), average thermal conductivity of the stratum 1λ =1,0 W/(m·K), 
thermal conductivity of the surrounding rocks 2λ =2,33 W/(m·K), average porosity of the 
reservoir 32%, melting heat L =160 kJ/kg. The values r T( )ε , T''( )ε , tg T( )δ , ( )Tσ and T( )η , 
as a function of temperature, were determined by the above method. 

2. Results and discussion 
In this research the process of heating of stratum by electromagnetic radiation at frequencies 
f between 500 MHz and 2.4 GHz for 30 days was simulated. Heating time of stratum was 
chosen based on the fact that the typical heating time when using the traditional methods of 
heat treatment ranged from one to several months or even years. As a result of numerical 
study of the model based on equations (5), (12) and (13), supplemented by (10), spatial and 
temporal distribution of electromagnetic field, the volume density of electromagnetic 
energy, heat sources, temperature and viscosity were obtained. Some simulation results are 
shown in Fig. 3-6. 
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Fig. 3. The antenna diagram.  
1 and 3 are top and bottom oil layer 2, 4 is a radiation source; 5 is isoline volume energy 
density of the electromagnetic field; radiation frequency f = 1 GHz and a power of W = 20 
kW; time of heating the stratum is 10 days 

The directivity and depth of penetration of radiation into the stratum can be judged by 
spatial distribution of volume energy density of the electromagnetic field, that is, in fact, this 
distribution characterizes the radiation pattern antenna. Figure 3 (1 and 3 are top and 
bottom oil layer 2, 4 is a radiation source) shows isoline volume energy density of the 
electromagnetic field 5 for the case of heating the stratum within 10 days of radiation source 
frequency f = 1 GHz and a power of W = 20 kW. Isoline 5 corresponds to the value of the 
energy density equal to 65 10−⋅ J/m3. The figure shows that the radiation pattern of antenna 
radiation, being axisymmetric, has a complex spatial distribution of electromagnetic field, its 
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form changes with time of heating stratum due to temperature changes in the electrical 
properties of the medium. By integrating the energy density over the respective volumes 
values of the energy of the electromagnetic field in the stratum and surrounding rocks were 
obtained. Comparison of these values showed that approximately 94% of this energy falls on 
the stratum and only 6% on the surrounding rocks, indicating that sufficient performance 
directional antenna is used.  
The calculations of temperature fields in the oil stratum allowed to determine the maximum 
allowable power source at a given frequency of radiation and the heating time of stratum. 
Power of the radiation source is necessary to limit the value at which the maximum 
temperature of oil, corresponding to the beginning of its thermal decomposition 
(approximately 530-550 K) is reached. Figure 4 shows the results of calculations of 
temperature in the stratum, depending on the radial distance from the source, obtained 
within the proposed model in the cases without (curve 1) and with (curve 2) temperature 
dependence of loss tangent (the radiation frequency f = 1 GHz , source power W = 20 kW, 
heating time 30 days). Thus, accounting of the temperature dependence of loss tangent has a 
significant impact on the calculations of temperature fields near the source of radiation. This 
is due to the fact that with increasing of oil temperature above 420 K, the values of loss 
tangent are considerably smaller (10 times at T = 530 K) than its value at the initial 
temperature of the stratum (Fig. 2), and therefore, in accordance with expression (2), 
decreases in proportion to the density of volume sources of heat, which slows down the 
heating stratum. The results of the calculations showed that when the heating time of 30 
days of stratum and the radiation frequency f = 500 MHz, the maximum permissible power 
source is W = 30 kW, when the radiation frequency f = 1 GHz - W= 20 kW, when the 
radiation frequency f = 2,4 GHz - W= 5 kW. 
 

,m 
 

Fig. 4. The change of temperature in the stratum with the distance from the radiation source: 
without (curve 1) and with (curve 2) temperature dependence of loss tangent (the radiation 
frequency f = 1 GHz , source power W = 20 kW, heating time 30 days) 

Figure 5 shows the isotherms of the temperature field after 10 days after the start of heating 
(source power W=20 kW, the radiation frequency f=1 GHz): curve 1 represents the isotherm 
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of 400 K, curves 2 and 3 are isotherms (323.05 K and 322.95 K), limiting the region of phase 
transition, 4 and 5 are isotherms 300 K and 294 K, respectively. In contrast to [7-9], where the 
phase transition is an infinitely thin front of melting, obtained in this study results indicate 
that under certain conditions, the extended region of phase transition (the area between the 
isotherms 2 and 3 in Figure 5) is formed. The distance at which the melting front moves 
along the axis r, and thus an important parameter of the process of heating - the volume of 
the melting zone - at a fixed heating time depends on the radiation frequency and power 
source. 
 

r, m 

z,m 

1
2 

3 4 5 

 
Fig. 5. The isotherms of the temperature field after 10 days after the start of heating (source 
power W=20 kW, the radiation frequency f=1 GHz): curve 1 represents the isotherm of 400 
K, curves 2 and 3 are isotherms (323.05 K and 322.95 K), limiting the region of phase 
transition, 4 and 5 are isotherms 300 K and 294 K, respectively 

 

 
Fig. 6. Well yield as a function of heating time (frequency 1 GHz,  power of source 30 kW) 
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Heating of oil reduces its viscosity, which, in turn, improves oil withdrawal. From a 
practical viewpoint the most important result of heating is the increase in well yield as 
compared to the yield of "cold" well. Figure 6 shows the dependence of increase in well 
yield as a function of heating time (optimal parameters for the Russian field: frequency 1 
GHz, power of source 30 kW). The figure shows that this mode of heating leads to an 
increase well production by 2,3 times. At the same time energy costs account for about 60 
kilowatt-hours per 1 m3 of additional oil production, which is quite acceptable from a 
practical point of view. 
It has been shown that the efficiency of heating depends significantly on proper choice of 
radiator frequency and power. These results are quite usable from a practical standpoint, 
and the electromagnetic heating method is technically achievable and competitive, for 
example, with the in-situ combustion method. It is shown that high frequency microwave 
heating may be used for stimulating oil production high-viscous, low permeability stratum. 
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1. Introduction 
A fast algorithm for elastic-plastic non-conforming contact simulation is presented in this 
work.  While the elastic response of a material subjected to load application is reversible, 
plasticity theory describes the irreversible behavior of the material in reaction to loading 
beyond the limit of elastic domain.  Therefore, elastic-plastic response of contacting bodies 
to loading beyond yield strength is needed to assess the load-carrying capacity of the 
mechanical contact.     
The modern approach in simulating elastic-plastic contact is based on the algorithm originally 
proposed by Mayeur, (Mayeur, 1996), employing Betti’s reciprocal theorem. Although Mayeur 
developed a model for the three-dimensional problem, numerical implementation was 
restricted to two-dimensional case, due to lack of formulas for the influence coefficients. 
Problem generalization is due to Jacq, (Jacq, 2001), and to Jacq et al. (Jacq et al., 2002), who 
advanced a complete semi-analytical formulation for the three-dimensional elastic-plastic 
contact.  The algorithm was later refined by these authors, (Wang & Keer, 2005), who 
improved the convergence of residual and elastic loops. The main idea of their Fast 
Convergence Method (FCM) is to use the convergence values for the current loop as initial 
guess values for the next loop.  This approach reduces the number of iterations if the 
loading increments are small.   
Nélias, Boucly, and Brunet, (Nélias et al., 2006), further improved the convergence of the 
residual loop.  They assessed plastic strain increment with the aid of a universal algorithm 
for integration of elastoplasticity constitutive equations, originally proposed by Fotiu and 
Nemat-Nasser, (Fotiu & Nemat-Nasser, 1996), as opposed to existing formulation, based on 
Prandtl-Reuss equations, (Jacq, 2001). As stated in (Nélias et al., 2006), this results in a 
decrease of one order of magnitude in the CPU time.  
Influence of a tangential loading in elastic-plastic contact was investigated by Antaluca, 
(Antaluca, 2005).  Kinematic hardening was added by Chen, Wang, Wang, Keer, and Cao, 
(Chen et al.,2008), who advanced a three-dimensional numerical model for simulating the 
repeated rolling or sliding contact of a rigid sphere over an elastic-plastic half-space. 
The efficiency of existing elastic-plastic contact solvers, (Jacq et al., 2002; Wang & Keer, 2005) 
is impaired by two shortcomings.  Firstly, the algorithms are based on several levels of 
iteration, with the innermost level having a slow convergence. Secondly, the effect of a 
three-dimensional distribution in a three-dimensional domain, namely residual stresses 
related to plastic strains, is computed using two-dimensional spectral algorithms. 
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A numerical approach to simulate the elastic-plastic contact, based on Betti’s reciprocal 
theorem, is overviewed in this work. Computation of residual stresses due to plastic strains 
is accelerated by implementing three-dimensional spectral methods, in a hybrid 
convolution-correlation algorithm. Pressure-free surface condition in Chiu’s inclusion 
problem decomposition is imposed with the aid of Boussinesq fundamental solutions and 
superposition principle.  The newly proposed algorithm appears well adapted to numerical 
simulation of elastic-plastic contacts. Fotiu and Nemat-Nasser's universal algorithm is 
employed to derive plastic strain increment. The convergence of the residual part is 
therefore improved dramatically, and computationally intensive residual stress assessment 
is moved to an upper iterative level, allowing for finer resolutions in problem digitization. 

2. Formulation of continuous elastic-plastic contact problem 
Since the works of Mayeur, (Mayeur, 1996), and Jacq, (Jacq, 2001), Betti’s reciprocal theorem 
is used in elastic-plastic contact modeling to assess surface normal displacement and stress 
state in an elastic half-space in the presence of plastic strains.  The basis of Betti’s theorem is 
the equality between the work done by the virtual force through the displacements 
produced by the real force and the work done by the real force through the displacements 
produced by the virtual force.  
According to this formulation, if two independent loads are applied to an elastic body of 
volume Ω  and of boundary Γ , generating two independent states ε σ( , , )u  and ε σ∗ ∗ ∗( , , )u  
with vanishing body forces, and the latter corresponds to a unit load applied along the 
direction of 3x , in a point A  of the boundary (a unit impulse): 

 
( )3 1

1 2

0
∗

−

≠⎧⎪= ⎨
=⎪⎩

, ;
( )

, ,

M A
p M

dx dx M A
 (1) 

the following equation holds: 

 3 33 3 3 3 32μ ε ε∗ ∗ ∗ ∗

Γ Ω

= Γ + Ω∫ ∫( ) ( , ( )) ( ) ( ) ( , ( )) .
C p

p
ijiju A u M p A p M d M M p A d  (2) 

Here, ΓC  is the boundary subdomain with normal tractions 3p  defined, and Ωp  the 
volume subdomain with existing plastic strains ε p , both corresponding to state ε σ( , , )u , μ  
Lamé's constant and M  the integration point.  This point is located within ΓC  in the first 
term of Eq. (2) and within Ωp  in the second.  Consequently, 33 3

∗ ∗( , ( ))u M p A  is the 
displacement in the direction of 3x , and 3 3ε ∗ ∗( , ( ))ij M p A  is the strain tensor induced at point 
M  by the loading described by Eq. (1).  By varying the position of A  on Γ  and by applying 
superposition principle with respect to integration point M , normal displacement in every 
point of the boundary can be assessed. 
The second term in Eq. (2), which is expressed as a volume integral, represents the residual 
part of displacement, namely the deflection that would persist after unloading elastically the 
considered body.  Knowledge of normal residual displacement allows solving the elastic-
plastic contact problem as a purely elastic problem with a modified initial contact geometry.  
A level of iteration, corresponding to solution of elastic contact, is therefore required for the 
mutual adjustment between contact pressure and surface normal displacement. 
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Betti’s reciprocal theorem is also applied to assess stress state in the half-space, in the 
presence of plastic strains. As shown in the following section, knowledge of stress state and 
of hardening state of the elastic-plastic material allows for computation of plastic strain 
increment, when a new loading increment is applied leading to further yielding.  Again, two 
independent loads are considered, leading to two independent states ε σ( , , )u  and 

ε σ∗∗ ∗∗ ∗∗( , , )u , the latter corresponding to a unit load applied along the direction of kx , in a 
point B  inside the half-space:   
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The following equation yields from the general form of Betti’s reciprocal theorem: 

 3 32μ ε ε ∗∗ ∗∗

Ω Γ

= Ω + Γ∫ ∫( ) ( ) ( , ) ( , ) ( ) .
p C

p
k kij kiju B M M B d u M B p M d  (4) 

Here, 3
∗∗( , )ku M B  and ε ∗∗( , )kij M B  are the displacement along direction of  3x  and the  ij  strain 

tensor component respectively, induced at point M  in the half-space by the unit load 
applied at point B  along the direction of  kx .   By varying the position of B  in Ω  and by 
applying superposition principle with respect to integration point M , displacements in 
every point of  the body can be assessed. 
Eq. (4) suggests that stresses have an “elastic” part, σ pr , related to contact pressure 3p , which 
is expressed as a surface integral over ΓC , and a residual part, σ r , expressed as a volume 
integral over plastic region Ωp .  The term “elastic” in the previous statement can be 
misleading, as all stresses are elastic, but σ pr  denotes the part of stresses that would vanish if 
an elastic unloading would occur.  This stresses are related to contact pressure, as opposed to 
residual stresses σ r , which are linked to the plastic region Ωp , and would persist after elastic 
unloading.  If ijkM  is the stiffness tensor from Hooke’s law, the following equations hold: 

 1
2
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⎝ ⎠

, ,( )pr pr pr
ijkij k kM u u ,   3 3

∗∗

Γ
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kku B u M B p M d ,  (5) 
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, ,( ) pr r r
ij ijk k k kM u u ,   2μ ε ε ∗∗

Ω

= Ω∫( ) ( ) ( , )
p

pr
k kijiju B M M B d . (6) 

A single comma in the subscript denotes the derivative with respect to the corresponding 
direction: = ∂ ∂,i j i ju u x .   
Resulting equations (2) and (4) suggest elastic-plastic contact problem split in an “elastic” 
and a residual part.  As shown in the following sections, the elastic part comprises the static 
force equilibrium, interference equation, and complementarity conditions, while the 
residual part expresses the plastic strain increment and plastic zone contribution to surface 
normal displacement and to stress state in the elastic-plastic body.   
However, the two subproblems cannot be solved independently, as residual displacement, 
computed in the residual part, enters interference equation in the elastic part, while contact 



 Numerical Simulations - Applications, Examples and Theory 

 

256 

stress, assessed in the elastic subproblem, is needed to find the plastic strain increment in 
the residual part. 
Analytical resolution of resulting model is available for neither the elastic, nor the residual 
part, as integration domains, namely boundary region with tractions and plastic strain 
volume respectively, not known a priori, are arbitrarily shaped.  Therefore, numerical 
approach is preferred.   
The principle of numerical approach consists in considering continuous distributions as 
piece-wise constant on the cells of a three-dimensional grid imposed in a volume enveloping 
integration domains.  Continuous integration in the analytical model of the elastic-plastic 
contact model is replaced by multi-summation of elementary cells individual contributions.  
As these multi-summation operations are in fact convolution and/or correlation products, 
spectral methods are applied to speed up the computation.  

3. Numerical solution of the elastic part 
The numerical model of the elastic part is obtained from that corresponding to a normal 
elastic contact problem completed with the residual term, which is superimposed into the 
interference equation.  
Numerical resolution of elastic contact problem relies on considering continuous 
distributions as piecewise constant on the elements of a rectangular mesh imposed in the 
common plane of contact and including the contact area.  This approach allows 
transforming the integral contact equation, for which analytical solutions exists only in a 
few cases, in a linear system of equations, having nodal pressure as unknowns. 
Kalker and van Randen, (Kalker & van Randen, 1972), reformulated the elastic contact 
problem as a problem of minimization, where the unknown contact area and pressure 
distribution are those who minimize the total complementary energy, under the restrictions 
that pressure is positive on the contact area and there is no interpenetration. This 
formulation finally reduces to solving a set of equations and inequalities which have to be 
satisfied simultaneously:   

 ω= + −( , ) ( , ) ( , )prh i j hi i j u i j , ∈( , )i j D  (7) 

 0 0= >( , ) , ( , )h i j p i j , ∈( , )i j A  (8) 

 0 0> =( , ) , ( , )h i j p i j , ∈ −( , )i j D A  (9) 

 
∈

Δ =∑
( , )

( , )
i j A

p i j W  (10) 

with: h  – the gap between the deformed contact surfaces; hi  – the initial gap (without 
loading); pru  – the composite displacements of the contact surfaces, due to contact pressure; 
ω  - rigid-body approach; W  –  the load transmitted through contact; A  - digitized contact 
area; D  - digitized computational domain. A set of two integers ( , )i j  is used in the 
numerical model instead of continuous coordinates ix  to denote patch position in the grid. 
This numerical formulation cannot predict singularities in the computed fields, as it 
employs values averaged over the elementary patches, but allows for the use of influence 
coefficients based methods. The most efficient approach in solving the system (7)-(10) 
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employs a modified conjugate gradient method (CGM), originally proposed by Polonsky 
and Keer, (Polonsky & Keer, 1999). This algorithm has two main advantages over other 
minimization methods.  Firstly, convergence is assured, as there is proof of convergence for 
the CGM, and the rate of convergence is superlinear. Theory states, (Shewchuk, 1994), that 
CGM should converge in a number of iterations equal to the number of non-nil unknowns, 
namely the numbers of cells in contact.  In practice, a much faster convergence was observed 
for smooth contact geometries. Secondly, the algorithm allows for imposing additional 
restrictions in the course of CG iterations. This means contact area is iterated during 
pressure correction, based on non-adhesion, Eq. (8), and non-penetration principles, Eq. (9).  
The force balance condition, Eq. (10), is also imposed to correct the pressure distribution.  
This eliminates the need for additional nested loops, which were present in most contact 
solvers prior to this approach. 
Convolution product is used to derive the answer of a linear elastic system subjected to an 
input, when the unit impulse response, also referred to as the Green function, is known.  For 
contact problems, the response of an elastic isotropic half-space to a unit concentrated force 
applied on the boundary is known from the Boussinesq and/or Cerruti fundamental 
solutions.  The product of this solution (or Green function) with a shape function, as defined 
in (Liu et al., 2000), yields the influence coefficient (IC), which expresses contribution of an 
element of the grid into another. Superposition principle is then applied, implying 
summation of individual contributions over all grid elements. This multi-summation 
process, which is in fact a convolution product, is very time-consuming, being of order 

2( )O N  for a grid with N  elementary patches.   
In order to circumvent this limitation, the solution currently applied is to compute the 
convolution in the frequency domain, according to convolution theorem, thus reducing the 
computational effort to ( log )O N N . An important issue when using discrete cyclic 
convolution to assess continuous linear convolution is the periodization of the problem, 
which induce the so called periodicity error, (Liu et al., 2000). If the Green function is known 
in the time-space domain, the Discrete Convolution Fast Fourier Transform (DCFFT) 
technique proposed by these authors, (Liu et al., 2000), eliminates completely the periodicity 
error, as discrete cyclic convolution approaches the linear continuous convolution the way 
quadrature estimates continuous integral. 
The implemented algorithm for solving numerically the elastic contact problem, described 
in detail in (Spinu et al., 2007), can be summarized in the following steps: 
1. Acquire the input: contact geometry, elastic properties of the contacting materials, 

normal load transmitted through contact. 
2. Establish the computational domain, D .  For non-conforming contact problems, Hertz 

contact area usually makes a good guess value. If during pressure iterations, current 
contact area is not kept inside computational domain, namely ⊄( )kA D , the algorithm 
should be restarted with a new D . 

3. Establish grid parameters, based on available computational resources.   
4. Choose the guess value for pressure, 0p( )  and the imposed precision eps  for the 

conjugate gradient iteration. According to (Polonsky & Keer, 1999), the latter should be 
correlated with the number of grids. 

5. Start the conjugate gradient loop. Compute surface normal displacement field as a 
convolution between influence coefficients matrix K  and current pressure p( )k , using 
DCFFT for computational efficiency:  = ⊗u K p( ) ( )k k , where symbol ⊗" "  is used to 
denote two-dimensional discrete cyclic convolution. 
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6. Compute the gap distribution, corresponding to residual in CG formulation, using Eq. 
(7) with a vanishing rigid body approach ω : = +( ) ( )( , ) ( , ) ( , )k kh i j hi i j u i j , ∈( , )i j D . In 
order to compensate for the disregarding of ω  (which is unknown),  h( )k  is normalised 
by its mean value on the current contact area  ( )kA .  

7. Compute the descent direction ( )( , )kd i j  in the CG algorithm. 
8. Compute the length of the step α ( )k  to be made along minimization direction:  

= ⊗t K d( ) ( )k k ,  ( ) 1
α

−
= h d t d( ) ( ) ( ) ( )k k k k .  For consistence with gap correction in step 6, t( )k  

is also normalized by its mean value. 
9. Adjust nodal pressures:  1 α+ = +( ) ( ) ( )( , ) ( , ) ( , )k k kp i j p i j d i j . 
10. Impose complementarity conditions.  Cells with negative pressure are excluded from 

current contact area  ( )kA , and the corresponding nodal pressures are set to zero.  Cells 
with negative gap re-enter ( )kA , and the corresponding pressures are adjusted 
according to step 9. 

11. Verify convergence criterion:  1+ − ≤p p( ) ( )k k eps . 

The model was enhanced to allow for eccentric loading of conforming contacts by these 
authors, (Spinu & Diaconescu, 2008), who imposed an additional Newton-Raphson iterative 
level to allow for rotation of common plane of contact. Later on, Spinu (Spinu, 2008) further 
improved the algorithm, by suppressing the outer iterative level and by imposing a 
correction of tilting angles of contact common plane during CG iterations. 

4. Numerical solution of the residual part 
4.1 Plastic zone contribution to surface displacement 
The residual part is also reformulated numerically, by imposing digitized plastic strain 
distribution and finite load increments.  As the region of plastic strains Ωp  can be arbitrarily 
shaped, the integrals in Eq. (2) can only be computed numerically. The numerical 
formulation is based on dividing Ωp  in a set of N  cuboids of elementary volume Ωc , 
having uniform plastic strains in each elementary cuboid.  Consequently, the continuous 
distribution of εp  in Ωp  is assumed as piece-wise constant and Ωp  is substituted by a set of 
elementary cuboids Ωpn .  With this formulation, the residual displacement can be expressed 
as the sum of contributions of all elementary cuboids in Ωpn : 

 3 3
1

2μ ε ε ∗
= Ω

= ∑ ∫( ) ( ) ( , )
c

N
pr

ijij
k

u A k k A , (11) 

or, by indexing the cuboids with a set of three integers, and by denoting the cuboid sides 
with 1 2Δ Δ,  and 3Δ : 
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The tensor 3ε
∗ , representing strains due to a unit concentrated force applied on surface 

boundary, is known from Boussinesq fundamental solutions, (Boussinesq, 1969), which 
represent, in terms of spectral methods, the corresponding Green functions.  In order to 
compute the influence coefficients, functions iid  are defined as primitives of functions 

3 3 32με μ∗ ∗ ∗= +, ,( )ii i i i iu u  with respect to directions of 1 2,x x  and of 3x , and functions ijd , <i j , 

as primitives of ( )3 3 3 32 2μ ε ε μ∗ ∗ ∗ ∗+ = +, ,( )ij ji i j j iu u  with respect to the same directions.  The 

influence coefficients can then be computed according to the formulas given in (Spinu, 
2009).  
Eq. (12) written with respect to indices of elementary cells takes the following form: 

 ( )3 0 ζξζξε
∈Ω

= − −∑
( , , )

( , , ) ( , , ) , , ,
pn

pr

m n
u i j m n D i m j n  (13) 

with summation over 1 2 3ζ ξ =, , , , ζ ξ≤ .  If expression ( )ζξ − −, ,D i j m n  is used in relation 

(13) instead of ( )ζξ − −, ,D i m j n , namely the point of integration and the point of 
observation are interchanged, Eq. (13) takes the following form: 

 ( )3 0 ζξ ζξε
∈Ω

= − −∑
( , , )

( , , ) , , ( , , ),
pn

pr

m n
u i j D i j m n m n  (14) 

which represents a discrete cyclic convolution with respect to directions of 1x  and of 2x .  
Efficient computation for this product is available through DCFFT, (Liu et al., 2000). 

4.2 Plastic zone contribution to stress state 
The problem of residual stresses due to plastic zone in elastic-plastic contact can be treated 
in the more general frame of the so called “inclusion problem”.  Eigenstrains such as plastic 
strains, misfits strains, thermal expansion or phase transformation, generate a linear elastic 
stress field in an isotropic half-space. Usually, assessment of this field, also referred to as the 
inclusion problem, is performed using a problem decomposition method originally 
suggested by Chiu, (Chiu, 1978). Although inclusion problem has received a great deal of 
attention in the last four decades, (Mura, 1988), closed form solutions exist only in a few 
cases of simple, regular shapes, such as spherical or cuboidal eigenstrains.  In elastic-plastic 
contact modeling, these limiting assumptions are not met, thus imposing the use of 
numerical approach. 
The problem of residual stresses arising in elastic-plastic contact was solved by Mayeur, 
(Mayeur, 1995), for the two-dimensional rough contact. The three-dimensional case was 
solved by Jacq, (Jacq, 2001), using Chiu's problem decomposition, (Chiu, 1978). These 
authors, (Jacq et al., 2002), used two-dimensional fast Fourier transform algorithms to 
efficiently compute the arising convolution products.  Wang and Keer, (Wang & Keer, 2005), 
used a similar approach in studying residual stresses arising in elastic-plastic contact with 
hardening behavior. They stated that two-dimensional DCFFT should be applied in residual 
stress computation. 
An alternative to Chiu's problem decomposition was advanced by Liu and Wang, (Liu & 
Wang, 2005), based on Mindlin and Cheng's results, (Mindlin & Cheng, 1950), involving 
derivatives of four key integrals. They also advanced an efficient algorithm to compute 
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correlation products using convolution theorem, called Discrete Correlation Fast Fourier 
Transform (DCRFFT). 
Jin, Keer, and Wang, (Jin et al., 2008), suggested that, in order to achieve a better 
computational efficiency, convolution and correlation should be used together, in a hybrid 
algorithm.  They presented some comparative results obtained using both two-dimensional 
and three-dimensional spectral algorithms, proving that the latter reduces dramatically the 
CPU time and memory requirements, allowing for finer grids. 
The problem of elastic fields due to arbitrarily shaped inclusions in an elastic half-space was 
also treated by these authors, (Zhou et al., 2009). Although Chiu's problem decomposition is 
employed, influence coefficients for imposing the pressure-free surface condition are not 
derived explicitly, as stresses due to spurious pressure on the boundary are not expressed as 
functions of existing eigenstrains. 
Mura, (Mura, 1968), stated that, in the presence of initial strains, a finite body with a 
traction-free surface can be treated as an infinitely extended body, if equal and opposite 
normal and shear stresses are applied on the boundary, compensating for the ones 
corresponding to the full space solution. Consequently, the method suggested by Chiu, 
(Chiu, 1978) consists in applying superposition principle to elastic states (b), (c), and (d) in 
Fig. 1, whose summation yields the elastic state of the original problem (a).   
Eigenstrains in state (b) are identical to those of the original problem (a), while in state (c), 
the cuboid is the mirror image of the original one with respect to half-space boundary.  
Eigenstrains in state (c) are chosen such as shear tractions induced by states (b) and (c) 
cancel each-other on the half-space boundary: 

 =ε εpm p , except for 13 13ε ε= −pm p , and 23 23ε ε= −pm p , (15) 

leading to a spurious normal traction (or pressure) depicted by state (d). Consequently, in 
order to simulate the traction-free boundary condition, solution of state (d) should be 
extracted from summation of solutions corresponding to states (b) and (c). 
 

 
                 (a)               (b)          (c)   (d) 
Fig. 1. Inclusion problem decomposition:  a. cuboidal inclusion in elastic half-space;  
b. cuboidal inclusion in infinite elastic space;  c. an image counterpart in infinite space;  
d.  a half-space with a pressure distribution 
A uniformly-spaced rectangular grid is established in a cuboidal domain including the 
arbitrarily shaped plastic zone. According to superposition principle, problem solution is 
obtained by superimposing the solution of each cuboidal inclusion.  If the grid is uniformly 
spaced, the number of different influence coefficients to be computed is reduced to the 
number of different distances between cell control points. This allows reformulation of 
multi-summation operation as a discrete convolution, which can be evaluated efficiently in 
the frequency domain, according to convolution and/or correlation theorems. 
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Plastic strains are assumed constant in every elementary cell, but otherwise can vary along 
computational domain.  The solution for a cuboidal inclusion of constant eigenstrains in an 
infinite space, namely the IC, is needed. 
The first closed form solution for the ICs required to assess states (b) and (c) in Fig. 1 was 
advanced by Chiu, (Chiu, 1977).  A Cartesian coordinate system 1 2 3′ ′ ′( , , )x x x  is attached to the 

centre of the cuboid.  In the presence of plastic strains ε p
ij , displacements iu  are related to 

strains by the strain-displacement equations: 

 ( )1
2

ε ε+ = +, ,
pe

ij i j j iij u u , (16) 

where εe  is the elastic component of strains. By substituting ε e
ij  into the constitutive 

equation (Hooke's law), one can find the stresses induced by the eigenstrains ε p
ij .  The 

gradients of displacements needed in Eq. (16) were obtained by Chiu, (Chiu, 1977), using the 
Galerkin vector: 
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where μ  and λ  are Lamé's constants, cm , 1 8= ,m  are the eight vectors linking the corners 
of the cuboid to the observation point, and c( )mD  is a function whose fourth derivates with 
respect to coordinates ′jx  are obtained by circular permutation in one of four categories, 

1111,D , 1112,D , 1122,D  and 1123,D , given in (Chiu, 1977).  Einstein summation convention is 
employed in Eq. (17). 
Summation of elastic fields induced by εp  and εpm  in a coordinate system with the origin 
on the half-space boundary yields the following equation: 
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where 1 2 3( , , )x x x  is the observation point and 1 2 3′ ′ ′( , , )x x x  the source point (the control point 
of the elementary cuboid having uniform plastic strains).   
As all distributions are assumed piece-wise constant, it is convenient to index the collection 
of cuboids by a sequence of three integers ranging from 1 to 1 2,N N  and 3N  respectively, 
with 1 2 3=N N N N , and to express all distributions as functions of these integers instead of 
coordinates.   
After superimposing the individual contributions of all cuboids, Eq. (18) becomes: 
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which expresses the stress field induced in infinite space at cell ( , , )i j k  by all cuboids of 
uniform eigenstrains ( , , )m n  and by their mirror images.   
Based on this development, the spurious normal traction induced on the half-space 
boundary, 33σ −( )half space , needed to solve the state (d) in Fig. 1, can be expressed: 

 

31 2

31 2

3333 33
1 1 1

33
1 1 1

0 ςγ ςγ

ςγ ςγ

σ σ ε

ε

−

= = =

= = =

= = − − − +

− −

∑∑∑

∑∑∑

( ) ( )( , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ),

NN N
half space r space p

m n
NN N

p

m n

i j i j A i j m n m n

A i j m n m n
 (20) 

The stress induced in the half-space by this fictitious traction can then be computed: 
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k
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The influence coefficients ijQ , (Liu and Wang, 2002), result from integration of Boussinesq 

formulas over elementary grid cell with respect to directions of 1x  and 2x .  The product in 
Eq. (21) is a two-dimensional convolution with respect to directions of 1x  and 2x , which 
can be computed efficiently with DCFFT algorithm.   
Finally, the solution for the stress due to arbitrarily shaped eigenstrains in an elastic 
isotropic half-space results from superposition of solutions (19) and (21). 
The two terms in Eq. (19) imply multi-summation over three dimensions, as both source and 
observation domains are three-dimensional.  Computation of these distributions by direct 
multiplication method (DMM) or even by two-dimensional DCFFT is very time-consuming, 
therefore a non-conventional approach is required.  The first term in Eq. (19) is a three-
dimensional convolution, while the second term is a two-dimensional convolution with 
respect to directions of 1x  and 2x  and a one-dimensional correlation with respect to 
direction of 3x .  Liu and Wang, (Liu & Wang, 2005), suggested that correlation theorem, 
together with convolution theorem, could be used together in a hybrid convolution-
correlation multidimensional algorithm.   
In the last decade, spectral methods are intensively used in contact mechanics to rapidly 
evaluate convolution-type products. These authors, (Jacq et al., 2002), applied a two-
dimensional fast Fourier transform algorithm to speed up the computation of convolution 
products arising in Eq. (19). Their approach reduces the computational requirements from 

2 2 2
1 2 3( )O N N N  in DMM to 2

3 1 2 1 2( log )O N N N N N .   
However, using a two-dimensional algorithm to solve a problem which is essentially three-
dimensional is an imperfect solution.  Therefore, in this work, a three-dimensional spectral 
algorithm is implemented, capable of evaluating both convolution and hybrid convolution-
correlation type products in 1 2 3 1 2 3( log )O N N N N N N  operations. The algorithm, originally 
advanced in (Spinu & Diaconescu, 2009), is based on the notorious DCFFT technique (Liu et 
al., 2000).   
If the ICs are known in the time/space domain, this algorithm can evaluate the linear 
convolution by means of a cyclic convolution with no periodicity error.  The concepts of 
"zero-padding" and "wrap-around order", presented in (Liu et al., 2000), can be extended 
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naturally to the three-dimensional case, and applied to compute the first term in the right 
side of Eq. (19).  However, for the second term, due to positioning of the mirror-image 
element relative to global coordinate system (linked to half-space boundary), convolution 
turns to correlation with respect to direction of 3x .  In order to use three-dimensional FFT 
and convolution theorem to evaluate the convolution-correlation product, the following 
algorithm is proposed: 
1. The influence coefficients A  are computed as a three dimensional array of 

1 2 32× ×N N N  elements, using the formulas derived from Eqs. (16) and (17). 
2. The term A  is extended into a 1 2 32 2 2× ×N N N  array by applying zero-padding and 

wrap-around order with respect to directions of 1x  and 2x , as requested by the classic 
DCFFT algorithm. 

3. Plastic strains εp  are inputted as a three-dimensional array of 1 2 3× ×N N N  elements. 
4. The term εp  is extended to a 1 2 32 2 2× ×N N N  array by zero-padding in all directions. 
5. Elements of εp  are rearranged in reversed order with respect to direction of 3x . 
6. The Fourier transforms of A  and εp  are computed by means of a three-dimensional 

FFT algorithm, thus obtaining the complex arrays Â  and ε̂p , where ( ĝ ) is used to 
denote the discrete Fourier transform of any time/space array g . 

7. The spectral array of residual stresses is computed as element-by-element product 
between convolution terms:  σ ε= ⋅( ) ˆ ˆˆ r space pA . 

8. The time/space array of residual stresses is finally obtained by means of an inverse 
discrete Fourier transform: σ σ=( ) ( )ˆ( )r space r spaceIFFT . 

9. The terms in the extended domain are discarded, thus keeping the terms 1 2 3× ×N N N  
of σ ( )r space  as output. 

Domain extension with respect to directions of 1x  and 2x  in step 2 is required by the 
DCFFT technique, and no additional treatment is needed to evaluate the corresponding 
discrete cyclic convolutions.  On the other hand, according to discrete correlation theorem, 
(Press et al., 1992), a correlation product can be evaluated as a convolution between one 
member of the correlation and the complex conjugate of the other.  Therefore, DCFFT can be 
applied with respect to direction of 3x  too, if the second term, namely the plastic strains 
array, is substituted by its complex conjugates in the frequency domain.  The fastest way to 
achieve this is to rearrange the terms of εp , as indicated in step 4.  Indeed, when FFT is 
applied on a series of real terms g , thus obtaining ĝ , one can obtain its complex conjugate 

∗ĝ , simply by reading g  in reversed order.  This remarkable property allows for combining 
convolutions and correlations products with respect to different directions in a hybrid 
algorithm.  By applying three-dimensional FFT, the computational effort for solving the 
inclusion problem in infinite, elastic and isotropic space is reduced considerably, from 

2
3 1 2 1 2( log )O N N N N N  in Jacq’s approach to 1 2 3 1 2 3( log )O N N N N N N  operations for the 

newly proposed algorithm. 
The following step is to compute the stress state induced in the half-space by spurious 
normal traction 33σ −( )half space .  In existing formulations, (Chiu, 1978; Jacq, 2001), this stresses 
are expressed explicitly as functions of plastic strains ε p

ij .  This rigorous formulation results 
in increased model complexity.  It also has the disadvantage of limiting the application of 
spectral methods to two-dimensional case.  However, if the analysis domain is large 
enough, one can assume that the normal traction induced on the half-space boundary 
vanishes outside the computational domain.  Therefore, the corresponding elastic state (d) is 
due to term 33σ −( )half space  alone.  With this assumption, computation of elastic state (d) is 
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reduced to the problem of a stress state induced in an elastic isotropic half-space by an 
arbitrarily, yet known, pressure (or normal traction).  Solution of this problem is readily 
available, as corresponding Green functions are known from Boussinesq fundamental 
solutions.   
The resulting computational advantage is more effective when using the newly proposed 
algorithm as part of an elastic-plastic contact code. Indeed, influence coefficients ijQ  needed 
to assess stresses induced by pressure are shared with the elastic contact code. They are 
computed and stored as a 1 2 3× ×N N N  array. In Jacq’s formulation, 3N  arrays, each having 

1 2 3× ×N N N  terms, are needed, because influence coefficients needed to impose free surface 
relief depend explicitly on both source and computation point depths. This double 
dependence also limit the use of spectral methods to two dimensions, thus being of order 

2
3 1 2 1 2( log )O N N N N N , corresponding to 2

3N  two-dimensional DCFFTs in layers of constant 
depth.   
In the simplified formulation advanced in this paper, as source domain (namely pressure 
domain) is only two-dimensional, as opposed to plastic zone, which is three-dimensional, 
the computational order is decreased to 1 2 3 1 2( log )O N N N N N  operations, corresponding to 

3N  two-dimensional DCFFTs in layers of constant depth. 
The method for imposing the pressure-free condition assumes that spurious normal 
tractions on the half-space boundary vanish outside computational domain. This 
assumption requires a larger computational domain in order to minimize truncation errors.  
When simulating concentrated elastic-plastic contacts, plastic region is usually located 
under the central region of the contact area, occupying a hemispherical domain. Therefore, 
the newly proposed method is well adapted to this kind of problems.   
As inclusion problem has to be solved repeatedly in an elastic-plastic contact simulation, the 
overall computational advantage is remarkable, allowing for finer grids or smaller loading 
steps to reduce discretization error. 

4.3 Plastic strain increment assessment 
According to general theory of plasticity, plastic flow occurrence can be described 
mathematically with the aid of a yield function, assessing the yield locus in the 
multidimensional space of stress tensor components. If von Mises criterion is used to assess 
stress intensity, this function can be expressed as: 

 σ σ= −( ) ( )p p
VM Yf e e , (22) 

where pe  denotes the effective accumulated plastic strain, 2 3ε ε= p pp
ij ije , and σ ( )p

Y e  is the 

yield strength function.  The latter satisfy the relation for the initial yield strength 0σY : 

 00σ σ=( )Y Y . (23) 

For elastic-perfectly plastic materials, relation (23) is verified for any value of pe .  However, 
for metallic materials, more complex models of elastic-plastic behavior are employed, as the 
isotropic, or the kinematic hardening laws.  The isotropic hardening law of Swift, 

 σ = +( ) ( )p p n
Y e B C e , (24) 
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with ,B C  and n  material constants, is used in the current formulation, as it is verified for 
many metallic materials, (El Ghazal, 1999) and, from a numerical point of view, it has the 
advantage of being continuously derivable.  
The following conditions must be met all the time: 

 0 0 0≤ ≥ ⋅ =; ;p pf de f de , (25) 

with 0=f  and 0>pde  corresponding to plastic flow. 
According to flow rule, plastic strain increment can be expressed as: 

 
3

2
δ

ε
δσ σ

= = ijp p p
ij

ij VM

Sfd de de , (26) 

where ijS  denotes the deviatoric stress tensor. 
The algorithm used to derive the plastic strain increment was advanced by Fotiu and 
Nemat-Nasser, who developed a universal algorithm for integration of elastoplasticity 
constitutive equations.  As stated in (Fotiu & Nemat-Nasser, 1996), the algorithm is 
unconditionally stable and accurate even for large load increments, as it takes into account 
the entire non-linear structure of elastoplasticity constitutive equations. These are solved 
iteratively, via Newton-Raphson numerical method, at the end of each loading step.  The 
yield function f  is linearized at the beginning of the load increment, by employing an 
elastic predictor.  This places the predictor (trial) state far outside the yield surface 0=f , 
since elastic-plastic modulus is small compared to the elastic one.  The return path to the 
yield surface is generated by the plastic corrector, via Newton-Raphson iteration.  This 
approach, also referred to as elastic predictor - plastic corrector, is efficient when most of the 
total strain is elastic.  In the fully plastic regime, which occurs usually after the elastic-plastic 
one, the plastic strain is predominant, thus the return path may require numerous iterations.  
Thus, linearization at the beginning of the loading step is performed by a plastic predictor, 
and return path is generated with an elastic corrector. 
A yield occurs when von Misses stress exceeds current yield stress, namely when 0>f .  
The elastic domain expands and/or translates to include the new state, namely to verify 
condition 0=f .  The actual increment of effective accumulated plastic strain should satisfy, 
in the plastic zone, equation of the new yield surface: 

 0δ+ =( )p pf e e . (27) 

Here, δ pe  denotes the finite increment of effective plastic strain, as defined in (Jacq, 2001).  
Relation (27) can be considered as an equation in δ pe , which is solved numerically by 
Newton-Raphson iteration. To this end, yield surface relation is linearized along plastic 
corrector direction: 

 0δ δ
∂

+ = + =
∂

( )( ) ( )
p

p p p p
p

f ef e e f e e
e

, (28) 

yielding the plastic corrector: 
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 δ
σσ

= − =
∂∂ ∂

−
∂ ∂∂

( ) ( )
( ) ( )

p p
p

p p
VMY

p pp

f e f ee
f e e

e ee

. (29) 

For isotropic hardening, the derivate of equivalent von Mises stress with respect to effective 
accumulated plastic strain was derived by Nélias, Boucly and Brunet, (Nélias et al., 2006), 
from the general equations presented in (Fotiu & Nemat-Nasser, 1996) for rate-dependent 
elastoplasticity: 

 3σ∂
= −

∂
VM
p G

e
, (30) 

where G is the shear modulus, or the μ  Lamé’s constant. 
With these results, the following return-mapping algorithm with elastic predictor - plastic 
corrector can be formulated: 
1. Acquire the state at the beginning of the loading step and impose the elastic predictor.  

For elastic-plastic contact problems, this is equivalent to solving an elastic loop without 
imposing any residual displacement increment.  Corresponding parameters are 
identified by an “ a ” superscript, as opposed to a “ b ” superscript, used to denote the 
state at the end of the loading increment: ( )p ae , σ σ=( ) ( )( )a p a

YY e , σ σ σ= +( )( ) ( )pr aa r a
ij ij ij , 

σ ( )a
VM , σ σ= −( ) ( )( ) a aa

VM Yf .  These variables also represent the input for the Newton-
Raphson iteration.  Thus, by using superscripts to denote the Newton-Raphson iteration 
number, 1 =( ) ( )p p ae e , 1σ σ=( ) ( )a

Y Y , 1σ σ=( ) ( )a
ij ij , 1σ σ=( ) ( )a

VM VM , 1 =( ) ( )af f . 

2. Start the Newton-Raphson iteration. Compute the plastic corrector according to 
relations (29) and (30): 

 3δ
⎛ ⎞∂

= +⎜ ⎟⎜ ⎟∂⎝ ⎠

( )
( ) ( )

( )
( )p i

p i i
p i

k ee f G
e

. (31) 

3. Use the plastic corrector to adjust model parameters: 

1 3σ σ δ+ = −( ) ( ) ( )i i p i
VM VM G e ;   1 δ+ = +( ) ( ) ( )p i p i p ie e e ;   1 1σ σ+ +=( ) ( )( )i p i

YY e ;   
1

1 1
1

σ
σ

+
+ =

( )
( ) ( )

( )

i
i VM

ij ij
VM

S S . (32) 

4. Verify if Eq. (27) is verified to the imposed tolerance eps . If condition  

 1 11 σ σ+ ++ = − >( ) ( )( ) i ii
VM Yf eps  (33) 

is satisfied, go to step 2.  If else, convergence is reached, and the state at the end of the 
loading step is described by the newly computed parameters: 1+=( ) ( )p b p ie e , 

1σ σ +=( ) ( )b i
VM VM , 1+=( ) ( )b i

ij ijS S . 
5. Compute the plastic strain increment, according to Eq. (26): 

 ( ) 3

2
δε

σ
= −

( )
( ) ( )

( )

b
ijp p b p a

ij b
VM

S
e e . (34) 
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This increment is used to update the plastic zone.  The residual parts of displacement and of 
stress can then be computed, and superimposed to their elastic counterparts. 

5. Numerical solution of the elastic-plastic contact problem 
Elastic-plastic normal contact problem is solved iteratively based on the relation between 
pressure distribution and plastic strain, until the latter converges. Plastic strain modifies 
contact pressure by superposing induced residual surface displacement into the interference 
equation.  Contact pressure, in its turn, contributes to the subsurface stress state, responsible 
for plastic strain evolution. 
Finally, the algorithm proposed for simulation of elastic-plastic contact with isotropic 
hardening is based on three levels of iteration:   
1. The innermost level, corresponding to the residual part, assesses plastic strain 

increment, based on an algorithm described in the previous section, and the 
contribution of plastic zone to stress state and surface displacement. 

2. The intermediate level adjusts contact pressure and residual displacement in an iterative 
approach specific to elastic contact problems with arbitrarily shaped contact geometry.   

3. The outermost level is related to the fact that, unlike elastic solids, in which the state of 
strain depends on the achieved state of stress only, deformation in a plastic body 
depends on the complete history of loading.  Plasticity is history dependent, namely 
current state depends upon all pre-existing states.  In this level, the load is applied in 
finite increments, starting from an intensity corresponding to elastic domain, until the 
imposed value is reached.  

The algorithm for solving one loading step in the elastic-plastic normal contact problem is 
summarized in Fig. 2.   

 
Fig. 2. Elastic - plastic algorithm 
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Firstly, the elastic problem with modified contact geometry hi  is solved, yielding contact 
area and pressure distribution p . The latter is used to assess elastic displacement field pru  
and stress field σ pr . These terms represent the “elastic” part of displacement and of stress, 
namely that part that is recovered once loading is removed (after contact opening). The 
stresses induced by pressure are used, together with hardening state parameters, in the 
residual subproblem, to assess plastic strain increment and to update the achieved plastic 
zone ε p . Residual parts of displacement, ru , and of stresses, σ r , can then be computed.  As 
opposed to their elastic counterparts, the terms ru  and σ r  express a potential state, that 
would remain after contact unloading, if no plastic flow would occur during load relief.  The 
total displacement can then be computed, +pr ru u , thus imposing a new interference 
equation in the elastic subproblem. These sequences are looped until convergence is 
reached. 
The new algorithm for computation of plastic strain increment improves dramatically the 
speed of convergence for the residual subproblem. The formulation advanced by Jacq, (Jacq, 
2001), based on the Prandtl-Reuss algorithm, implies iteration of a tensorial parameter, 
namely the plastic strain increment, as opposed to the new algorithm, which iterates a 
scalar, namely the increment of effective accumulated plastic strain. Convergence of the 
Newton-Raphson scheme is reached after few iterations. As stated in (Fotiu & Nemat-
Nasser, 1996), the method is accurate even for large loading increments.   
Moreover, Jacq’s algorithm is based on the reciprocal adjustment between plastic strain and 
residual stress increments. Consequently, at every iteration of the residual loop (the 
innermost level of iteration), it is necessary to express the residual stress increment.  Its 
assessment implies superposition, with both source (integration) and observation domains 
three-dimensional. Although three-dimensional spectral methods were implemented to 
speed up the computation, the CPU time and memory requirements remain prohibitively 
high.   
In the new algorithm, residual stresses due to plastic zone needs to be evaluated at every 
iteration of the elastic loop (the intermediate level of iteration), after plastic zone update 
with the new plastic strain increment.  In other words, residual stress assessment is moved 
to an upper iterative level, resulting in increased computational efficiency. Consequently, 
with the same computational effort, a finer grid can be imposed in the numerical 
simulations, thus reducing the discretization error. 

6. Numerical simulations and program validation 
In this section, numerical predictions of the newly proposed algorithm are compared with 
already published results, validating the computer code. The materials of the contacting 
bodies are assumed to be either rigid (R), or elastic (E), or elastic-plastic (EP), having a 
behavior described by a power hardening law (Swift), or elastic-perfectly-plastic (EPP).  
Four types of contacts are considered: R-EP, E-EP, EP-EP with symmetry about the common 
plane of contact and R-EPP. 
Development of plastic region and of residual stresses with application of new loading 
increments is assessed, and contribution of residual state, which superimpose elastic state 
induced by contact pressure, is suggested.   
Algorithm refinements allow for a fine grid, of 120 120 80× ×  elementary cells, to be imposed 
in the computational domain.  
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6.1 R-EP contact 
The contact between a rigid sphere of radius 6105 10−= ⋅R m  and an elastic-plastic half-space 
is simulated, allowing for comparison with results published by Boucly, Nélias, and Green, 
(Boucly et al., 2007).  Elastic half-space parameters are: Young modulus, 2 210=E GPa , 
Poisson's ratio, 2 0 3ν = . .  The hardening law of the elastic-plastic material is chosen as a 
power law (Swift), according to (El Ghazal, 1999), Eq. (24), with pe  the effective 
accumulated plastic strain, expressed in microdeformations, and the following parameters: 

1 280= ,B MPa , 30=C , 0 085= .n .   
The contact is loaded incrementally up to a maximum value of 0 65= .W N , for which the 
purely elastic model (Hertz) predicts a contact radius 6 053μ= .Ha m  and a hertzian pressure 

8 470= ,Hp MPa .   
Dimensionless coordinates are defined as ratios to Ha , =i i Hx x a , and dimensionless 
pressure or stresses as ratios to Hp .  The computational domain is a rectangular cuboid of 
sides 1 2 3= = HL L a , 3 1 6= . HL a , which is dicretized with the following parameters: 

1 2 120= =N N , 3 80=N  elementary grid cells.  Due to the fact that problem is axisymmetric, 
three dimensional distributions are depicted in the plane 2 0=x  only. 
Pressure profiles predicted by the numerical program for six loading levels corresponding 
to elastic-plastic domain are depicted in Fig. 3.  Hertz pressure corresponding to maximum 
load is also plotted for reference. 
 

 
Fig. 3. Pressure profiles in the plane 2 0=x , various loading levels 

Elastic-plastic pressure distributions appear flattened compared to the purely elastic case.  
At the end of the loading loop, a central plateau of uniform pressure can be observed in the 
vicinity of 6 5. Hp .  This limitation of contact pressure results in an increased elastic-plastic 
contact radius, compared to its elastic counterpart, Ha . 
The same distributions were obtained by Jacq et al., (Jacq et al., 2002), by Boucly, Nélias, and 
Green, (Boucly et al., 2007), using load driven (ld) or displacement driven (dd) formulations, 
and also by Benchea and Cretu, (Benchea & Cretu, 2008), using finite element analysis (FEA). 
Initiation of plastic flow occurs on the contact axis, where von Mises equivalent stress firstly 
exceeds initial yield strength. With application of new loading increments, plastic zone 



 Numerical Simulations - Applications, Examples and Theory 

 

270 

expands to a hemispherical domain, Fig. 4, while material hardening state is modified 
according to Eq. (24).   
Toward the end of the loading cycle, the plastic core approach peripherally the free surface, 
enveloping an elastic core.  Evolution of maximum effective accumulated plastic strain with 
loading level is presented in Fig. 5.   
The model assumes elastic and plastic strains are of the same order of magnitude, 
corresponding to elastic-plastic range.  As plastic strains are small, usually less than 2% , 
they can be considered small strains and can be superimposed to their elastic counterparts.  
This approach cannot be applied to larger plastic strains, corresponding to fully plastic 
range, solution of this scenario requiring FEA.   
 

 
Fig. 4. Effective accumulated plastic strain at 0 65= .W N  

 
Fig. 5. Maximum effective accumulated plastic strain versus loading level 
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Plastic strains induce residual stresses, namely elastic stresses that would persist after elastic 
unloading. These stresses superimpose the ones induced by contact pressure. The resulting 
state generates further plastic strain if stress intensity exceeds yield strength. Consequently, 
an accurate estimation of stress field in the elastic-plastic body is essential to plastic strain 
increment prediction.   
Figures 6 and 7 depict distributions of equivalent von Mises contact stress (stress induced by 
contact pressure) and total stress in the elastic-plastic half-space. Residual stress intensity, 
Fig. 8, is one order of magnitude smaller than equivalent contact stress. Comparison of 
distributions depicted in Figs. 6 and 7, using the same scale, suggests that residual stress 
reduces peaks in contact stress intensity, thus making the resulting field more uniform.  This 
behavior is also suggested by the curves traced in Fig. 9. Maximum intensity of contact 
stress increase more rapidly than the maximum of the total field, due to contribution of 
residual stress. Consequently, residual stresses, which represent material response to plastic 
flow, act to impede further plastic yielding.   
 

 
Fig. 6. Von Mises stress induced by contact pressure 
 

 
Fig. 7. Maximum intensities of stress fields versus loading level 
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Fig. 8. Von Mises residual stress 

 

 
Fig. 9. Total (contact and residual) Von Mises stress in the elastic-plastic body 

Profiles of residual prints corresponding to the same six loading levels are depicted in Fig. 
10. These profiles show that residual displacement increase contact conformity in 
investigated non-conforming contact, leading to a more uniform distribution of contact 
pressure.   
The variation of residual print maximum depth with the loading level is presented in Fig. 
11. This curve was also obtained experimentally by El Ghazal, (El Ghazal, 1999), numerically 
by Jacq et al., (Jacq et al., 2002), and using FEA by Benchea and Cretu, (Benchea & Cretu, 
2008). 
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Fig. 10.  Residual print profiles in elastic-plastic spherical contact 

 
Fig. 11. Residual print depth versus loading level 

6.2 E-EP and EP-EP Contact 
Normal residual displacement enters interference equation, by superimposing the 
deflections induced by contact pressure.  When only one of the contacting bodies, let it be 
body (2), is elastic-plastic and the other one, let it be body (1), is elastic, the following 
interference equation can be written by superimposing the residual part of 
displacement 2

3
( )ru , related to development of plastic zone in the elastic-plastic body (2), in 

elastic contact interference relation, Eq. (7):  

 1 2 21 2
3 3 ω++= + + −( ) ( )( )( , ) ( , ) ( , ) ( , ) .pr rh i j hi i j u i j u i j  (35) 
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On the other hand, when contacting bodies are both elastic-plastic, Eq. (35) encloses residual 
displacements of both surfaces, namely 1 2

3
+( )( , )ru i j .  If the hardening behavior or contacting 

bodies is dissimilar, residual displacement should be computed for every body separately.  
The model is simplified considerably if the bodies follow the same hardening law and have 
the same initial contact geometry, because, due to symmetry of the problem about the 
common plane of contact, 1 2

3 3=( ) ( )r ru u .  Consequently, Eq. (35) becomes: 

 1 2 21 2
3 32 ω++= + + −( ) ( )( )( , ) ( , ) ( , ) ( , ) .pr rh i j hi i j u i j u i j  (36) 

To validate Eq. (36), the contact between two spheres of radius 0 015= .R m  is simulated 
numerically, for two different material behaviors: elastic, and elastic-plastic following 
Swift's law, with the following parameters: 945=B MPa , 20=C , 0 121= .n .   
The contact is loaded up to a level of 11 179= ,W N , corresponding to a hertzian pressure 

8=Hp GPa  and to a Hertz contact radius 817μ=Ha m .   
Pressure distributions obtained using Eqs. (35) and (36) respectively, depicted in Fig. 12, 
agree well with already published results, (Boucly et al., 2007). As expected, in the EP-EP 
contact, pressure appears more flattened compared to the E-EP case, due to a more 
pronounced increasing in contact conformity related to doubling of the residual term. 
 
 
 

 
 

 

Fig. 12. Pressure profiles for various material behaviors 

Variations of maximum effective plastic strain with loading level, in the E-EP and in the EP-
EP contact respectively, are depicted in Fig. 13. Intensity of plastic strains in the E-EP contact 
is up to 40%  higher than the one corresponding to the EP-EP scenario.   
Variations of maximum pressure with the loading level in the E-E, the E-EP and the EP-EP 
contact, are depicted in Fig. 14. The curves presented in Figs. 13 and 14 also match well the 
results of Boucly, Nélias, and Green, (Boucly et al., 2007). 
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Fig. 13. Maximum effective accumulated plastic strain versus loading level 
 

 
Fig. 14. Maximum pressure versus loading level 

6.3 R-EPP contact and experimental validation 
As Contact Mechanics uses simplifying assumptions in order to circumvent the 
mathematical complexity of the arising equations, experimental validation is needed to 
verify model viability.  An extended program of experimental research was conducted in 
the Contact Mechanics Laboratory of the University of Suceava, aiming to assess residual 
print parameters in rough elastic-plastic non-conforming contacts.  The stand used for the 
loading experiments was originally designed by Nestor et al., (Nestor et al., 1996).  
Microtopography of deformed surface was scanned with a laser profilometer UBM14.   
Contact between a steel ball, assumed as a rigid indenter, and a lead specimen, simulating 
the elastic-plastic half-space, was loaded up to an equivalent hertzian pressure 
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0 94= .Hp GPa .  The contact was also simulated using the numerical formulation.  As lead is 
best described as an EPP material, a linear hardening law with a very small slope was 
considered in the numerical model.  As stated in (Jacq, 2001), the plastic strain increment is 
undefined when assuming a purely EPP material behavior. 
Residual prints at a hertzian pressure of 0 94. GPa  is depicted in Fig. 15.   
 
 

 
 

Fig. 15. Experimental residual print in R-EPP contact, 0 94= .Hp GPa  

 

 
 

Fig. 16. Residual print depth versus loading level 

Variation of print depth with loading level is presented in Fig. 16.  The agreement between 
the values predicted numerically and those obtained experimentally is considered 
satisfactory, giving the complexity of the phenomena involved.  
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6. Conclusions 
A numerical approach for simulating the elastic-plastic contact with isotropic hardening, 
based on Betti’s reciprocal theorem, is overviewed in this paper.  Problem decomposition, as 
originally suggested by Mayeur and later by Jacq, is employed to assess pressure and plastic 
strain distribution, on three nested iterative levels. 
The newly proposed algorithm has two major advantages over other existing methods.  
Firstly, the plastic strain increment is determined in a fast convergent Newton-Raphson 
procedure which iterates a scalar, namely the effective accumulated plastic strain. The 
method, originally suggested by Fotiu and Nemat-Nasser, employs an elastic predictor, 
which places the trial state outside yield surface, and a plastic corrector, used to derive the 
return path to the yield locus. The algorithm is fast, stable, and accurate even for large 
loading increments. 
An additional advantage arises from moving residual stress computation, which is very 
computationally intensive, to an upper iterative level. 
Secondly, the use of three-dimensional spectral methods for solving the intrinsically three-
dimensional inclusion problem improves dramatically the overall algorithm efficiency.  
Solution is obtained by problem decomposition, following a method originally suggested by 
Chiu.  Subproblem of stresses due to eigenstrains in infinite space is solved using influence 
coefficients also derived by Chiu. Traction-free surface condition is imposed with the aid of 
Boussinesq fundamental solutions, in a simplified formulation, well adapted to elastic-
plastic contact modeling. 
With the newly advanced three-dimensional convolution and convolution-correlation 
hybrid algorithm, based on the DCFFT technique, the computational effort is reduced 
dramatically, allowing for finer grids in problem discretization. 
The newly proposed algorithm was used to simulate, with a high resolution of 120 120 80× ×  
elementary cells, the spherical contact between bodies with various behaviors: R-EP, E-EP, 
EP-EP and R-EPP. 
Elastic-plastic pressure appears flattened compared to the elastic case, due to changes in 
hardening state of the EP material, and in contact conformity due to superposition of 
residual displacement in interference equation. 
Plastic zone, initially occupying a hemispherical region located at hertzian depths, advances 
toward half-space boundary with increased loading, enveloping an elastic core. This 
development is consistent with existing models for the elastic-plastic process, marking the 
passing from elastic-plastic range to fully plastic. 
Residual stress intensity is one order of magnitude smaller than equivalent stresses induced 
by contact pressure.  They contribute to total elastic field by decreasing the peaks in contact 
stress intensity, thus impeding further plastic flow.  
A modified interference equation is used for solving the EP-EP contact with similar 
hardening behavior and symmetry about the common plane of contact. 
Furthermore, residual displacement predicted numerically for the R-EPP contact match well 
print depths obtained experimentally in indentation of a lead specimen, assumed as an EPP 
half-space, with a steel ball assumed as a rigid indenter. 
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1. Introduction 
The need to cope with the new problems which are coupled with progress and its challenges 
has been causing new design and analysis methodologies to appear and develop; thus, 
beside the original concept of a structure subjected to statically applied loads, new criteria 
have been devised and new scenarios analyzed. From fatigue to fracture, vibrations, 
acoustic, thermomechanics, to remember just a few, many new aspects have been studied in 
course of the years, all taking place in connection with the appearance of new technical or 
technological problems, or even with the growing of the consciousness of the relevance of 
such aspects as safety, reliability, maintenance, manufacturing costs and so on. 
One of the problems which in the recent years has been increasingly considered as a 
relevant one is that of the behaviour of structures in the case of impact loading; there are 
many reasons for such a study: for example, the requirement to ensure a never-too-
satisfactory degree of safety for the occupants of cars, trains or even aircrafts in impact 
conditions, preventing any collision with the interiors of the vehicle, is just one case.  
Another case to be mentioned is that connected with mechanical manufacturing or 
assembling, which is often carried out with such an high speed as to induce impulse 
loadings into the involved members; in such cases the aim is to obtain a sound result, even a 
‘robust’ one, in the sense that the same result is to be made as independent as possible from 
the conceivable variations of the input variables, which, in turn, can be only defined on a 
probabilistic basis, due for example to their manufacturing scatter and tolerances. 
Two main aspects arise in such problems, the first being that related to the definition of the 
mechanical properties of the materials; the analysis of members behaviour under impulsive 
loading, for example, requires in general the knowledge of the characteristic curves of 
materials in presence of high strain rates, which is not usually included in the standard tests 
which are carried out, so that new experimental tests have to be devised in order to obtain 
the required items. But at the same time new material families are generated daily, for 
which no test history is available; in the case of plastics and foams, for example, the search 
for a reliable database is often a very hard task, so that the analyst has to become a test 
driver, designing even the test which is the most efficient to obtain effectively the data he 
needs. 
The second problem is the one related to the complication of the geometry and that is 
adding on the complexity of the analysis of the load conditions. In such cases it is just 
natural and obvious to direct the own attention to numerical methods, thanks to the ever-
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increasing capabilities of computers and commercial codes, and, first of all, to Finite Element 
Methods (FEM). 
FEM, as everything else, is no longer what it used to be in the ‘70s, when it could scarcely 
afford to deal with rather easy problems in presence of static conditions, at least from a 
practical point of view and apart from theory. Nowadays there are commercial codes which 
can deal with some millions of degrees of freedom (dof’s) in static as well dynamic load 
conditions. The development of numerical procedures which, applying lagrangian and 
eulerian formulations for finite strains and stresses, allow the analysis of non-linear 
continua, the use of particular routines for time integration and the progress of the theory of 
constitutive law for new materials are just a few of the elements, which not only let today 
researchers investigate rare and particular behaviours of structures, but also allow the birth 
of rather easy-to-use codes which are increasingly adopted in industrial environments. 
Even with such capabilities, the use of the classical “implicit finite element method” 
encounters many difficulties; therefore, one has to use other tools, and first of all the 
“explicit FEM”, which is well fitted to study dynamic events which take place in very short 
time intervals. That doesn’t mean that analysts don’t find relevant difficulties when 
studying the behaviour of structures subjected to impulsive loads; for example, one has 
usually to use very short steps in time integration, which causes such analyses to be very 
time-consuming, even more as one has to overcome serious problems in the treatment of the 
interface elements used to simulate contact and to represent external loads; at last, only first-
order elements (four-node quadrilaterals, eight-node bricks, etc.) are available in the present 
versions of the most popular commercial codes, what requires very fine meshes to model 
the largest part of members and that in turn asks for even shorter time steps. 
In the following sections, after briefly recalling the main aspects of explicit FEM, we 
illustrate some of the problems encountered in the study of relevant cases pertaining to the 
fields of metalformig and manufacturing as well as crashworthiness and biomechanical 
behaviour, all coming from the direct experience of the authors. 

2. Main aspects of explicit FEM 
Finite element equations can be written according to Lagrangian or Eulerian formulations; 
in the former the material is fixed to the finite element mesh which deforms and moves with 
the material; in Eulerian space the finite element mesh is stationary and the “material flows” 
through this mesh, what is well suited for fluid dynamic problems. As most structural 
analysis problems are expressed in Lagrangian space, most commercial codes develop their 
finite element formulation in that space, even if all of them include algorithms based on 
Arbitrary Lagrangian-Eulerian (ALE) formulation to face fluid-like material simulation. 
To solve a problem of a three-dimensional body located in a Lagrangian space, subjected to 
external body forces bi(t) (per unit volume) acting on its whole volume V, traction forces ti(t) 
(per unit area) on a portion of its outer surface St, and prescribed displacements di(t) on the 
surface Sd, one must seek a solution to the equilibrium equation: 

 ij, j i iσ ρb ρx 0+ − =�� ,  (1) 

satisfying the traction boundary conditions over the surface St: 

 ( )ij j iσ n t t= ,   (2) 
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and the displacement boundary conditions over Sd: 

 ( ) ( )i α ix X ,t d t= ,  (3) 

where σij is Cauchy's stress tensor, ρ is the material density, nj is the outward normal unit 
vector to the traction surface St, Xα (α=1,2,3)  and x are the initial and current particle 
coordinates and t is current time. 
These equations state the problem in the so-called “strong form”, which means that they are 
to be satisfied at every point in the body or on its surface; to solve a problem numerically by 
the finite element method, however, it is much more convenient to express equilibrium 
conditions in the “weak form” where the conditions have to be met only in an average or 
integral sense. 
In the weak form equation, we introduce an arbitrary virtual displacement δxi that satisfies 
the displacement boundary condition in Sd. Multiplying equilibrium equation (1) by the 
virtual displacement and integrating over the volume of the body yields: 

 ( )ij, j i i i
V

σ ρb ρx δx dV 0+ − =∫ �� , (4) 

by operating simple substitutions and applying traction boundary condition, eq. (4) can be 
reworked as: 

 
t

i i ij i, j i i i i
V V V S

ρx δx dV σ δx dV ρb δx dV t δx dS 0+ − − =∫ ∫ ∫ ∫��  (5) 

which represents the statement of the principle of virtual work for a general three-
dimensional problem. 
The next step in deriving the finite element equations is spatial discretization. This is 
achieved by superimposing a mesh of finite elements interconnected at nodal points. Then 
shape functions (Nα) are introduced to establish a relationship between the displacements at 
inner points of the elements and those at the nodal points: 

 
n

i α αi
α 1

δx N δx
=

= ∑  (6) 

This task governs all numerical formulations based on the finite element method, whose  
equations are obtained by discretizing the virtual work equation (5) and replacing the 
virtual displacement with eq. (6) between the displacements at inner points in the elements 
and the displacements at the nodal points: 

 
m m t m

M M M M

α β m βi α i m α i m α, j ij m
m 1 m 1 m 1 m 1V V S V

ρN N dV x N ρb dV N t dS N σ dV
= = = =

⎧ ⎫⎪ ⎪ = + −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ∑ ∑∫ ∫ ∫ ∫��  (7) 

where M is  the total number of elements in the system and Vm is the volume of an element. 
In matrix form, eq. (7) becomes: 

 [ ]{ } { }=M x F��  (8) 
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where [M] is the mass matrix, x��  is the acceleration vector, and {F} is the vector summation 
of all the internal and external forces. This is the finite element equation that is to be solved 
at each time step.  
The time interval between two successive instants, tn-1  and tn , is the time step Δtn = tn-tn-1; 
in numerical analysis, integration methods over time are classified according to the structure 
of the time difference equation. The difference formula is called explicit if the equation for 
the function at time step n only involves the derivatives at previous time steps; otherwise it 
is called implicit. Explicit integration methods generally lead to solution schemes which do 
not require the solution of a coupled system of equations, provided that the consistent mass 
matrix is superseded by a lumped mass one, which offers the great advantage to avoid 
solving any system equations when updating the nodal accelerations. 
In computational mechanics and physics, the central difference method is a popular explicit 
method. 
The explicit method, however, is only conditionally stable, i.e. for the solution to be stable, 
the time step has to be so small that information do not propagate across more than one 
element per time step. A typical time step for explicit solutions is in the order of 10-6 
seconds, but it is not unusual to use even shorter steps. This restriction makes the explicit 
method inadequate for long dynamic problems. The advantages of the explicit method are 
that the time integration is easy to implement, the material non-linearity can be cheaply and 
accurately treated, and the computer resources required are small even for large problems. 
These advantages make the explicit method ideal for short-duration nonlinear dynamic 
problems, such as impact and penetration. 
The time step of an explicit analysis is determined as the shortest stable time step in any 
deformable finite element in the mesh. The choice of the time step is a critical one, since a 
large time step can result in an unstable solution, while a small one can make the 
computation inefficient: therefore, an accurate estimation has to be carried out.  
Generally, time steps change with the current time; this is necessary in most practical 
calculations since the stable one will change as the mesh deforms. This aspect can make the 
total runtime unpredictable, even if some “tuning algorithms” implemented in the most 
popular commercial codes try to avoid it; for example, as that change is required if high 
deformations are very localized in the model, one can add some masses to the nodes in the 
deformed area, but not so much to influence the global dynamic behaviour of the structure. 
The same tuning process, which leads to added mass to the initial model in those areas 
where the element size is smaller, can be used to allow an initial time step which is longer 
than the auto-calculated one. As stated above, the critical time step has to be small enough 
such that the stress wave does not travel across more than one element at each time step. 
This is achieved by using the Courant criteria: 

 eΔt l c=  (9) 

where Δte is the auto-calculated critical time step of an element in the model, l is the 
characteristic length, and c is the wave speed. The wave speed, c, can be expressed as: 

 
( )2

Ec
ρ 1 ν

=
−

 (10) 
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where E, ρ and ν are the Young's modulus, density and Poisson’s ratio of the material 
respectively. Therefore, increasing ρ results in an artificial decrease of c and in a parallel 
increase of Δte, without varying the mechanical properties of the material. 
The time step of the system is determined by taking the minimum value over all elements: 

 { }minn 1 1 2 3 MΔt α Δt ,Δt ,Δt , ,Δt+ = ⋅ …  (11) 

where M is the number of elements. For stability reasons, the scale factor α is typically set to 
a value of 0.9 (the default in the most popular commercial code, as for example in the LS-
Dyna® code) or some smaller value. 
Another aspect to be strongly considered when we deal with explicit finite element method 
is the contact definition, which allows to model the interactions between one or more parts 
in a numerical model and which is needed in any large deformation problem. The main 
objective of the contact interfaces is to eliminate any `overlap` or `penetration` between the 
interacting surfaces. Depending on the type of algorithm used to remove the penetration, 
both energy and momentum are preserved. 
The contact algorithms can be mainly classified into two main branches, one using the 
penalty methods, which allow penetration to occur but penalize it by applying surface 
contact force models; the other uses the Lagrange multiplier methods which exactly 
preserve the non-inter-penetration constraint. 
The penalty approach satisfies contact conditions by first detecting the amount of 
penetration and then applying a force to remove them approximately; the accuracy of 
approximate solutions depends strongly on the penalty parameter, which is a kind of 
“stiffness” by which contact surfaces react to the reciprocal penetration. This method is 
widely used in complex three-dimensional contact–impact problems since it is simple to use 
in a finite-element solving system. However, there are no clear rules to choose the penalty 
parameter, as it depends on the particular problem considered. On the other hand, the 
penalty method affects the stability of the explicit analysis, which is only conditionally 
stable, when the penalty parameter reaches a certain value with reference to the real 
stiffness of the material of the interacting surfaces. 
Unlike the penalty method, the Lagrange multiplier method doesn’t use any algorithmic 
parameters and it enforces the zero-penetration condition exactly. Thus, this method can 
give out very accurate displacement fields in the analysis of static contact problems; 
however, for dynamic contact problems it requires the solution of implicit augmented 
systems of equations, which can become computationally very expensive for large problems 
and therefore it is rarely used in solid mechanics field. 
Effectively, a contact is defined by identifying what locations are to be checked for potential 
penetration of a slave node through a master segment. A search for penetrations, using the 
chosen algorithm, is made every time step. In the case of a penalty-based contact, when a 
penetration is found a force proportional to the penetration depth is applied to resist, and 
ultimately to eliminate, the penetration. Rigid bodies may be included in any penalty-based 
contact but if contact force are to be realistically distributed, it is recommended that the 
mesh defining any rigid body are as fine as those of any deformable body. 
Though sometimes it is convenient and effective to define a single contact to handle any 
potential contact situation in a model, it is admissible to define a number whatever of 
contacts in a single model. It is generally recommended that redundant contacts, i.e., two or 
more contacts producing forces due to the same penetration (for example near a corner), are  
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avoided, as this can lead to numerical instabilities. To enable flexibility for the user in 
modelling contact, commercial codes present a number of contact types and a number of 
parameters that control various aspects of the contact treatment. But, as already stated, 
unfortunately, there are no clear rules to choose these parameters, depending from user’s 
experience and, in any case, their values are often obtained by means of trials and error 
iterative procedure. 
Anyway, the best way to start a contact analysis by using a commercial explicit solver is to 
consider default settings for these parameters, even if often non-default values are more 
appropriate, to define the same element characteristic lengths to model interacting surfaces 
and, overall, to avoid initial geometrical  co-penetrations of contact surfaces. 
Thus, the selection of integration time step and of the contact parameters are two important 
aspects to be considered when analysts deal with simulation of the response of structure to 
impulse loading.  
The last important topic examined in the present section and which can result in additional 
CPU costs as compared to a run where default parameters values are used, regards shell 
elements formulation. The most widely adopted shells in commercial codes belong to the 
families of the Hughes-Liu or of the Belytschko-Tsay shell elements. The second one is 
computationally more efficient due to some mathematical simplifications (based on co-
rotational and velocity-strain formulations), but results in some restriction in the 
computation of out of plane deformations. 
But the real problem is that, in order to further reduce CPU time, analysts generally aims to 
use under integrated shell elements (i.e. with a single integration point), and this causes 
another numerical problem, which also arises with under-integrated solid elements. This 
numerical problem concerns the hourglassing energy: single integration point elements can 
shear without introducing any energy, therefore an added “numerical energy” is generated 
to take it into account. High hourglassing energy is often a sign that mesh issues may need 
to be addressed by reducing element size, but the only way to entirely eliminate it is to 
switch to formulations with fully-integrated or selectively reduced integration (S/R) 
elements; unfortunately, this approach is much more time expensive and can  be unstable in 
very large deformation applications, therefore hourglassing energy is generally controlled 
by considering very regular meshes or by considering some corrective algorithms provided 
by commercial explicit solvers. In any case, these algorithms ask for an analysts much 
experienced on their formulation, otherwise other numerical instabilities can arise following 
their use. 

3. Some case studies from manufacturing 
Some case studies are now presented to introduce the capabilities and peculiarities of the 
analysis of structures subjected to impulsive loadings; they are connected with some of the 
relevant problems of manufacturing and will let the reader to grasp the basic difficulties 
encountered, for example, when dealing with contact elements which model interfaces. The 
first one deals with the case of riveted joints and shows how to simulate the riveting 
operation and its influence on the subsequent bulging coming from an axial load, while the 
second one comes from metalforming and deals with the stretch-bending process of an 
aluminium C-shaped beam. 
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3.1 The analysis of the riveting process 
The load transfer mechanism of joints equipped with fasteners has been recognized for a 
long time as one of the main causes which affect both static resistance as well as fatigue life 
of joints; unfortunately, such components, which are often considered as very simple, 
exhibit such a complex behaviour that it is far from being deeply understood and only in 
recent times the coupling of experimental tests with numerical procedures has let 
researchers begin to obtain some knowledge about the effects which come from assuming 
one of the available designs. 
Starting from the very simple hypothesis about load transfer mechanisms which are used in 
the most common and easy cases, a real study of such joints has started just after Second 
World War, mainly because from those years onward the use of bolted or riveted sheets has 
been increasingly spreading and several formulae were developed with various means; also 
in those years the “neutral line method” was introduced to study the behaviour of the whole 
joint, with the consequence that the need of a sound evaluation of fasteners stiffness and 
contribution to the overall behaviour was strictly required. A wide spectrum of results and 
theories have appeared since then, each one with some peculiarities of its own and the 
analysis of bolted and riveted joints appears now as to be analysed by different methods. 
The requirement of a wide range of different studies is to be found in the large number of 
variables which can affect the response of such joints, among which we can quote, from a 
general but not exhaustive standpoint: 
• general parameters: geometry of the joint (single or several rows, simple- or double-lap 

joints, clamping length, fastener geometry); characteristics of the sheets (metallic, non 
metallic, degree of anisotropy, composition of laminae and stacking order for 
laminates); friction between sheets, interlaminar resistance between laminae, possible 
presence of adhesive; 

• parameters for bolted joints: geometry of heads and washers; assembly axial load; 
effective contact area between bolts and holes; fit of bolts in holes; 

• parameters for riveted joints: geometry of head and kind of fastener (solid, blind – or 
cherry – and self-piercing rivets, besides the many types now available); amplitude of 
clearance before assembly; mounting axial load; pressure effects after manufacture. 

From all above it follows that today a great interest is increasingly being devoted to the 
problem of load transfer in riveted joints, but that no exhaustive analysis has been carried 
out insofar: the many papers which deal with such studies, in fact, analyze peculiar aspects 
of such joints, and little efforts have been directed to the connection between riveting 
operation and response of the joint, especially with regard to the behaviour in presence of 
damage. 
Therefore, the activity which we are referring to dealt with modelling of the riveting 
operation, in order to define by numerical methods the influence of the assembly conditions 
and parameters on the residual stress state and to the effective compression zone between 
sheets; another aspect to be investigated was the detection of the relevant parameters of the 
previous operation to be taken into account in the analysis of the joint strength. 
As we wished to analyse the riveting operation and its consequences on the residual stresses 
between plates, the obvious choice was to use a dynamic explicit FEM code, namely Ls-
Dyna®, whose capabilities make it most valuable to model high-speed transients without 
much time consumption.  
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As a drawback, we know that that code is very sensitive to contact problems and that a finer 
mesh requires smaller integration time intervals: therefore the building of a good model, 
parametrically organized in order to make variations of input parameters easy, took a long 
time. The procedure we followed was to use ANSYS® 10.0 PDL (parametric design 
language) capabilities to be coupled with Ls-Dyna solver to obtain a global procedure which 
can be summarized in the following steps: 
• Write a parametric input file for ANSYS PDL, where geometry, behaviour of materials, 

contact surfaces and conditions, load cases were specified; it gives a first approximate 
and partially filled Ls-Dyna input file; 

• Complete the input file for Ls-Dyna, in order to introduce those characteristics and 
instructions which are required, but which are not present in Ansys code, mostly 
control cards and some variations on materials; 

• Solve the model by Ls-Dyna code; 
• Examine the results by Ls-PrePost or by Ansys post-processor module, or by 

Hyperview® software, according to the particular requirements. 
In fig. 1 one can see the basic Ls-Dyna model built for the present analysis, with reference to 
a solid rivet; the model is composed of seven parts, among which one can count three solid 
parts, made of brick elements, and four parts composed by shells: three of these are required 
to represent the contact surface, while the last composes a plane rigid wall that represents 
the riveting apparatus. 
 

 
Fig. 1. The model used to simulate the joint 
 

 
Fig. 2. The model of the rivet 
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A finer mesh – with a 0.2 mm average length – was adopted to model the stem of the rivet 
(fig. 2) and those parts of the sheets which, around the hole and below the rivet head, are 
more interested by high stress gradients; a coarser mesh was then adopted for the other 
zones, as the rivet head and the parts of the sheets which are relatively far from the rivet. 
The whole model was composed, in the basic reference case, of 101,679-109,689 nodes and 
92,416-100,096 brick elements, according to the requirements of single cases, which is quite a 
large number but also in that case runtimes were rather long, as they resulted to be around 
9-10 hours on a common desktop; more complex cases were run on a single blade of an 
available cluster, equipped with 2 Xeon 3.84 GHz - 4 GB RAM - and of course comparatively 
shorter times were obtained. 
The main reason of such times is to be found in the very short time-step to be used for the 
solution, about 1.0E-08 s, because of the small edge length of the elements. 
The solid part of rivet and sheets were modelled following a material 3 from Ls-Dyna 
library, which is well suited to model isotropic and kinematic hardening plasticity, with the 
option of including strain rate effects; values were assigned with reference to 2024 
aluminium alloy; the shells corresponding to the contact surfaces were then modelled with a 
material 9, which is the so-called “null material”, in order to take into account the fact that 
those shells are not a part of the structure, but they are only needed to “soften out” contact 
conditions; for that material shells are completely by-passed in the element stiffness 
processing, but not in the mass processing, implying an added mass, and for that reason one 
has to manually assign penalty coefficients in the input file. Some calibration was required 
to choose the thickness of those elements, looking for a compromise between the influence 
of added mass – which results from too large a thickness – and the negative effect with 
regard to contact, which comes in presence of a thickness too small, as in that case Ls-Dyna 
code doesn’t always detect penetration. 
The punching part was modelled as a rigid material (mat. no. 20 from Ls-Dyna library); such 
a material is very cost effective, as they, too, are completely bypassed in element processing 
and no space is allocated for storing history variables; also, this material is usually adopted 
when dealing with tooling in a forming process, as the tool stiffness is some order larger 
than that of the piece under working. In any case, for contact reasons Ls-Dyna code expects 
to receive material constants, which were assumed to be about ten times those of steel. 
For what concerns the size of the rivet, it was assumed to be a 4.0 mm diameter rivet, with a 
stem at least 8.0 mm long; as required by the general standards, considering the tolerance 
range, the real diameter can vary between 3.94 and 4.04 mm, while the hole diameter is 
between 4.02 and 4.11 mm, resulting in diametral clearances ranging from 0.02 to 0.17 mm; 
three cases were then examined, corresponding to 0.02-0.08-0.17 mm clearances. 
The sheets, also made of aluminium alloy, were considered to range from 1.0 to 4.0 mm 
thickness, given the diameter of the rivet; the extension examined for the sheets was 
assumed to correspond to a half-pitch of the rivets and, in particular, it was assigned to be 
12.5 mm; along the thickness, a variable number of elements could be assigned, but we 
considered it to be the same of the elements spacing along the stem of the rivet: that was 
because contact algorithms give the best results if such spacing is the same on the two sides 
of the contact region. In general, we introduced a 0.2 mm edge length for those elements, 
which resulted in 5 elements along the thickness, but also case of 10 and 20 elements were 
investigated, in order to check the convergence of the solution. 
At last, for what concerns the loads, they were applied imparting an assigned speed to the 
rigid wall, and recovering a posteriori the resulting load; that was because previous 
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experiences suggested not to directly apply forces; besides, all applicable loads accepted by 
Ls-Dyna are body forces, or one concentrated force on a rigid body, or nodal forces or 
pressure on shell elements: the last two choices don’t guarantee the planarity of the loaded 
end after deformation, which can be obtained by applying the load on the tool, but that use 
in past experiences revealed to be rather difficult to be calibrated. 
Therefore, we assumed a hammer speed-time law characterized by a steep rise in about 
0.006 s up to the riveting speed, which remains constant for a convenient time, then 
subduing an inversion also in about 0.006 s after the wanted distance has been covered; 
considering that the available data mention 0.2 s as a typical riveting time, the tool speed has 
been assumed to be 250 mm/s, even if the effects of lower velocities were examined (200, 
150 and 50 mm/s). 
Therefore, summarizing the analyses carried out insofar, the variables assumed were as 
follows: 
• Initial clearance between the rivet stem and the hole; 
• Thickness of the sheets; 
• Speed of the tool. 
The results obtained can be illustrated, first of all, by means of some countour plots, 
beginning from fig. 3 and 4, where the variation of von Mises equivalent stress is illustrated 
for the cases defined above, concerning the clearance amplitude between rivet and hole; it is 
quite evident, indeed, that the general stress state for the max clearance case is well below 
what happens when the gap decreases, also considering the scale max values: the mean 
stress level in sheets increases, as well as the largest absolute values, which can be found in 
correspondence of the folding of the rivet against the edge of the hole. 
 

 
Fig. 3. Von Mises stress during riveting for max clearance 
 

 
Fig. 4. Von Mises stress during riveting for min clearance 
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While the previous results have been illustrated with reference to the time when the largest 
displacement of the rigid wall occurs, others can be best observed considering the final time, 
when the tool has left the rivet and possible stress recovery determined. 
For example, it can be useful to look at the distribution of pressure against the inner surface 
of the hole for the same cases above. The results observed can be summarized considering 
that in presence of the max clearance the rivet can fill the hole completely – and that the 
second sheet is only partially subjected to internal load – and then all the load is absorbed 
from the first edge of the hole, which is therefore overstressed, as a part of the wall doesn’t 
participate to balance load; also the external area of the first sheet interested by the folding 
of the rivet is quite large. 
When clearance reduces it can be observed that gradually all the internal surface of the hole 
comes in contact with the rivet and therefore it can exert a stiffening action on the stem, 
which folds in a lesser degree and therefore can’t transmit a very large load on the edge of 
the hole, as it can be observed in fig. 5 as the volume of the sheet which is subjected to 
significant radial stresses. 
 

 
Fig. 5. Residual pressure for min clearance 

Also the extension of the volume interested by plasticity increases; in particular we obtained 
that in presence of a larger gap only a part of the first sheet is plastically deformed, but, at 
the same time, that the corresponding deformation reaches higher values, all in 
correspondence of the external edge or immediately near to it; as clearance reduces the max 
plastic deformation becomes smaller, but plasticity reaches the edge of the second sheet and 
that effect is still larger in correspondence of the min clearance, where a larger part of the 
second sheet is plastically deformed; at the same time the largest values of the plastic 
deformation in correspondence of the first edge becomes moderately higher for the 
constraint effect exerted by the inner surface of the hole and above noted. 
It is interesting to notice that the compression load is no much altered by varying the 
riveting velocity, as it can be observed from fig. 6 for 1.00 mm thick plates; what is more 
noteworthy is the large decrease from the peak to the residual load, which is, more or less, 
the same for all cases. 
On the other hand, the increase of thickness produces larger compression loads (fig. 7), as it 
was to be expected, because of the larger stiffness of the elements. It must be noted, for 
comparison reasons, that for the plots above the load is the one which acts on the whole 
rivet and not on the quarter model. 
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Fig. 6. Influence of velocity on compression load 
 

 
Fig. 7. Influence of thickness on compression load 

Aiming to evaluate the consequences of the riveting operation on the behaviour of a general 
joint, because of the residual stress state which has been induced in the sheets, the effect of 
an axial load was investigated, considering such high loads as to cause a bulging effect. As a 
first step, using an apparatus (Zwick Roell Z010-10kN) which was available at the 
laboratories of the Second University of Naples, a series of bearing experimental tests 
(ASTM E238-84) have been carried out on a simple aluminium alloy 6xxx T6 holed plate 
(28.5 x 200 x 3 mm3, hole diam. 6 mm), equipped with a 6 mm steel pin (therefore different 
from that for which we presented the results in the previous pages) obtaining the response 
curves shown in Fig. 8. In the same graph numerical results have been illustrated, carried 
out from non linear static FE simulations developed by using ANSYS® ver. 10 code. As it is 
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possible to observe the agreement between numerical and experimental results is very good. 
This experimental activity allowed to setup and develop the FE model (Fig. 9) of each single 
sheet of the joint and, in particular, their elastic-plastic material behaviour.  
 

 
Fig. 8. Results from experimental and numerical bearing tests 
 

 
Fig. 9. FE model of a single joint sheet 

In order to investigate on the influence of the riveting process, the residual stress-strain 
distribution around the hole coming from the riveting process above was transferred to the 
model of the riveted joint (sheets dim. 28.5 x 200 x 1 mm3, hole diam. 6 mm). The transfer 
procedure consisted in the fitting of the deformed rivet into the undeformed sheets and in 
the subsequent recovery of the real interference as a first step of an implicit FE analysis.  
After the riveting effect has been transferred to the joint the sheets were loaded along the 
longitudinal direction and the distribution of Von Mises stress around the hole of one sheet 
of the joint in presence of the maximum value of the axial load value is illustrated in Fig. 10. 
The results in terms of axial load vs. axial displacement have been compared (Fig. 11) with  
 

 
Fig. 10. Bulging of the riveted hole coming from implicit FEM 
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Fig. 11. Effect of the residual stress state on the behaviour of the joint 

those previously obtained from the analysis of the same joint without taking into account 
the riveting effect: it is possible to observe that the riveting operation effects cause a 
reduction of the bearing resistance of the joint of about 10%. On the same plot also the 
results obtained by analysing also the axial loading by means of the explicit codes are 
illustrated: this procedure obviously proved to be very time consuming compared to the use 
of an explicit to implicit scheme, without giving relevant advantages in terms of results and 
therefore it is clear that the explicit-implicit formulation can be adopted for such analyses. 

3.2 A stretch-bending case study 
As it is known, the space frame with the whole load-carrying structure made of aluminium 
alloy is an assessed concept. A feature of this kind of application is that the originally 
straight extrusion of some component must be followed by some plastic forming operations 
in order to obtain the desired shape/curvature. Several types of modified bending processes 
are thus introduced, e.g. press bending, rotary draw bending, stretch bending, etc. 
Typical concerns regarding the industrial use of these methods are the magnitude of the 
tolerances during production and the cross-sectional distortions of the curved specimen. 
The tolerance problem is primarily related to the springback phenomenon: springback is the 
elastic recovery taking place during unloading; the most important cross-sectional 
distortions are local buckling in the compression zone and sagging, which is a curvature-
induced local deformation of the cross-section. 
In-house experience combined with trial-and-error procedures has been the traditional 
solution of the tolerance and distortion challenges in industrial bending. This approach may 
be time consuming and expensive, therefore alternative methods are requested, including 
the use of the numerical simulation by means of finite element method. 
There are several difficulties associated with a numerical simulation of the stretch bending 
of extruded components; the main ones are non-linear material behavior, geometrical non-
linearities, modeling of boundary conditions, contact between die and specimen, springback 
during the unloading phase. Another very complex aspect is the calibration of the numerical 
model as rather few experimental results are available in the literature. In any case, to 
simulate these typologies of phenomena explicit FE algorithms can be certainly considered 
the most suitable, for what concerns both the computational efficiency and the solution 
accuracy; on the other side, implicit FE algorithms can be considered in the most of 
applications more effective in the spring-back phase. 
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The experimental test-case regards a process of stretch-bending of a single frame (3000 mm 
length) of aluminium alloy 7076, whose transversal section is represented in figure 12; 
during the process the ends of the frame are clamped and a tensile force, corresponding to 
the yield force or somewhat higher, is applied to the specimen. Then the frame is bended by 
fitting it around a die (3300 mm radius) with the mandrel fixed and the arms of the machine 
rotating. Stretch bending of the frame has been developed after it has been subjected to a 
quenching treatment. 
 

 
Fig. 12. Transversal section of the bended frame (dimensions are in mm) 

In order to evaluate residual stresses after the stretch bending, experimental hole-drilling 
measurements have been performed in opportune locations on the frame, as showed in 
figure 13, where also the test apparatus is illustrated.  
 

 
Fig. 13. Hole drilling measurement locations and test apparatus 

The developed FE model consists of 743,000 8-noded hexahedral solid elements (3 dof’s per 
node) and 694,000 nodes. Plastic-kinematic behavior is assumed to model mechanical 
material properties (E=74000 MPa, v=0.3, σy=461 MPa, Etan=700MPa). Only half frame has 
been modelled because of the symmetry. Some solid elements fit into the frame section have 
been considered in both the real and the virtual process in order to prevent the sagging 
deformation due to the buckling of the section. 
The stretch bending process has been simulated by considering the mandrel fixed in the 
space and perfectly rigid. The nodes on the transversal section of the frame belonging to the 
symmetry plane are constrained to move only in the symmetry plane; the nodes of the end 
transversal section are rigidly linked to the node of the rigid bar elements representing the 
arms of the bending apparatus, which rotate and push the frame on the mandrel by 
following opportune paths. It should be noted that the frame is initially stretched and then 
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bended. The explicit FE algorithms implemented in the Ls-Dyna® [6] code have been used to 
develop the loading phase of the analysis. 
For what concerns the unloading phase, some attempts have been made to solve it by using 
implicit algorithms of the Ls-Dyna® code, but a lot of convergence problems have been 
arisen due to the large relative displacements between the different elements of the chain; to 
avoid this kind of problems significant model modifications are needed, therefore it has 
been more convenient to simulate the unloading phase by using explicit finite element 
algorithms, by introducing a fictitious damping factor. In figure 14, the kinetic energy of the 
frame vs. process time is showed, where it is possible to individuate the start time of the 
spring-back phase. 
 

 
Fig. 14. Kinetic energy of the frame during stretch-bending 

4. Biomechanical problems in crashworthiness studies 
One of the most relevant issues in today engineering is that related to safety in 
transportation; as it is a common statement that our lines are as safe and able to avoid any 
accident in the highest degree, with respect to the actual design and manufacturing 
procedures, the greatest attention is now being paid to the protection of passengers when 
unfortunately an impact occurs (i.e. to what is today called the “passive safety”). 
In those occasions, indeed, passengers can be injured or even killed because of the high 
decelerations which take place or because they move in the vehicle and impact against the 
structure or even because the deformation of the structure is so severe as to reduce or even 
to cancel the required space of survival. 
That knowledge has brought designers to introduce sacrificial elements in the structures, i.e. 
some elements which adsorb the incoming kinetic energy by deformation and slow down 
decelerations, thus preventing the passengers from severe impacts; in other cases, means 
restraint such seatbelts are provided, in order to avoid undesired or dangerous motions of 
the same travellers. 
The studies of such dangerous events have shown that the impact occurs in a very short 
time (typically, 100-150 ms in the case of cars) which explains the large inertia forces which 
are developed and therefore the analyses have to be carried out in time, i.e. as a transient 
analysis in presence of finite deformations and of highly non-linear and strain rate 
dependent materials. 
As the aim of such studies is to prevent or at least to limit the damage of passengers, it is 
obvious that all results are made available in terms of decelerations and impact forces on 
human bodies, which are to be compared with the respective admissible values, which have 
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been studied for many years now and are rather well assessed. Specialized centres, as NCAP 
in the car field, have defined many biomechanical indexes which can now obtained for a 
given crash scenario from the same numerical analysis of the impact and which can 
immediately compared with known limit values. For example, the most well known index, 
HIC (Head Injury Criterion), evaluates the maximum acceleration level which acts for a 
sufficient time on the neck of a passenger implicated in an accident, according to the 
following expression: 
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where a(t) is the total acceleration of the neck which occurs in the interval t1÷t2, which 
usually is assumed to be 36 ms; as that span is shorter than the crash, a window is moved 
along the time axis up to the point where the largest values of the index are obtained. 
Beside HIC, many other indexes have been defined, as VC (Viscous Criterion ), TTH (Thorax 
Trauma Index ), TI (Tibia Index) and others, all referring to different parts of the human 
body; all results are then combined to assess the safety level of the structure (car, train or 
other) in a particular impact scenario. 
The soundness of a structural design which involves safety issues is assessed on that basis 
and that let us realize the difficulties of the procedure. Beside, one has to realize that the 
characteristics of the adopted materials have to be precisely known for the particular 
accident one has to analyze; that means that the behaviour of the materials has to be 
acquired in the non-linear range, but also in presence of high strain rates. Usually those 
behaviours are not known in advance and therefore specific tests have to be carried out 
before the numerical analysis. 
At last, because of the simplifying hypotheses one introduces inevitably in the numerical 
model, it is necessary to calibrate it with reference to some known beforehand particular 
scenario, to be sure that the behaviour of the material is well modelled.  
It has to be stressed that in the past the main way to obtain reliable results was to carry out 
experimental tests, using anthropomorphic dummies and structures, which suffered such 
damages as to prevent their further use. That way was very time consuming and implied 
such unbearable costs that it couldn’t be performed on a large scale basis, to examine all 
possible cases and to repeat test a sufficient number of times; the consequence was that 
passive safety didn’t advance to high standards. 
When numerical codes improved to such levels as to manage complex analyses evolving in 
time in presence of finite stresses and strains, it was only a matter of time before they began 
to be used to simulate impact scenarios; that has resulted in a better understanding of the 
corresponding problems and in obtaining a much larger number of results, which in turn 
allowed an important level of knowledge to be achieved. 
Therefore, today activity in passive safety studies is mainly performed by simulation 
methods and a much lesser number of experimental tests is carried out than in the past. 
Thus, it is now possible to study very particular and specific cases, but in order to obtain 
reliable results it is quite necessary to calibrate each analysis with experimental tests and to 
comply with codes and standards which were often devised when today computers were 
not yet available. 



 Numerical Simulations - Applications, Examples and Theory 

 

298 

5. Case studies from crashworthiness analyses 
5.1 An example of crashworthiness analysis in the automotive field 
In the first development stages of the numerical analysis of vehicle impacts, with studies 
about the energy absorption capabilities of sacrificial elements and on biomechanical 
damages, some scenarios were introduced and their understanding deepened, as frontal 
impact with or without offset, lateral impact, rollover, pole impact and so on. 
Those cases are now widely assessed and more particular scenarios are being studied, as 
that referring to pedestrian impact or that considering the oblique impact against road 
guardrails; in the present section, however, we introduce a very specific and interesting 
case, as it can be usefully adopted to clarify the degree of accuracy that is required today. 
One of the most interesting cases, indeed, is that referring to the contingency that a 
passenger, because of his motion in the course of an accident, impacts against one of the 
fixtures which define the compartment or the many appliances and gadgets which are fitted 
to its walls or which constitute its structure. 
As the most dangerous case is that when it is the passenger’s head to be involved in such an 
impact, the corresponding study is a very relevant one, as one would have to ensure that 
interior tapestry and its thin foam stuffing, for example, have such energy absorption 
capabilities as to prevent severe damages to the head when coming into contact with the 
metal structure of the compartment. 
As one of the main advantages of numerical simulation is to reduce the number of physical 
tests, it is just natural to try and reproduce the experimental conditions and equipments in 
order to ensure a reliable correlation between the two cases; now, tests are performed on the 
basis of USA CFR (Code of Federal Regulations), which have been more or less included in 
EEVC (European Enhanced Vehicle Safety Committee) standards and therefore one has to 
be sure to comply with them. 
The experimental test of such impact is carried out by simply firing a head-shaped impactor 
against the target in study, hitting it in precisely defined locations along assigned trajectories; 
such an impactor is just the head of a dummy whose characteristics have to be verified 
according very strict standards. For example, the head is to be dropped from a height of 376 
mm on a rigidly supported flat horizontal steel plate, which is 51 mm thick and 508 mm 
square; it has to be suspended in such a way as to prevent lateral accelerations larger than 15g 
to occur and the peak resultant acceleration recorded at the locations of the accelerometers 
mounted in the headform have to be not less than 225g and not larger than 275g (Fig. 15). 
 

 
Fig. 15. Headform test conditions 
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Those standards have hard consequences for the numerical simulations, as one wishes to 
model the headform as an empty shell-like body, in order to save runtime, but it has to 
exhibit a stiffness as well as inertia properties such as to be equivalent to the physical head. 
To respect those conditions and to prevent some wavy dynamic deformations to appear, it 
can be useful to provide the model with a very stiff ring in the rearmost part (Fig. 16). 
 

 
Fig. 16. The stiffened headform 

Furthermore, to save time the simulation can start at the time when the impact begins, 
imparting to the model the same velocity which it would get after falling from the assigned 
height (Fig. 17). After successfully running the model, an acceleration/time plot is obtained, 
where the peak values fall in the expected range (Fig. 18). 
Once the model of the head has been created and calibrated, one has a large number of 
difficulties to take into account; beside dashboard, sun visor, header, seat-belt slit, internal 
handles, there are A- and B-pillars, front header, side rails, and each can be impacted in 
several points in dependence of the initial position of the passenger. CFR and EEVC show 
how to define all such points, by means of rules which take into account the geometry of the 
compartment. 
When one comes to a particular obstacle, one has to consider that it is not an easy, single 
part component; broadly speaking, it is composed by a padding which is mounted on the 
structure with the interposition of a foam stuffing and the padding usually has several ribs 
which stiffen the component and position it exactly on the structure. Moreover, the 
mounting can be obtained by adhesives, clips, rivets or by other means. All that has to be 
 

 
Fig. 17. Imparting an equivalent velocity to the headform 
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Fig. 18. Resultant acceleration in dropping test 
modelled precisely if one wants to get reliable results and beside the modelling elements 
one has to add the interface ones, which are elements such as to take into account the 
contact conditions and to prevent copenetrations between the different bodies. 
The result is that the modelling task is not at all a secondary one, but it requires a long 
labour and great attention, also because of the particular shapes which characterize today 
the various components. 
For example, in Fig. 19 it is shown the case of the simulation of the impact of the headform 
against an upper handle; the use of a code like Ls-Dyna® let the analyst get a complete set of 
results, such as displacements, velocities and accelerations of each element, as well as 
contact and inertia forces, beside the energy involved, subdivided in all relevant parts, as 
kinetic, deformation, and so on. 
 

 
Fig. 19. The impact of the headform against the internal upper handle 

Nevertheless, one has to realize that the obtained results are not so smooth as one could 
guess, because of evaluation and round-off errors, instability of the elements and of the 
numerical procedure, and so on; once grouped in a plot, the result curves show peaks and 
valleys which are meaningless and have to be removed, just as one does when dealing with 
vibration or sound curves; the usual technique is to treat the numerical values with a filter 
(for example, SAE 100 or 180) which makes the plot more intelligible. 



Simulating the Response of  Structures to Impulse Loadings   

 

301 

One of the obtained results, for example, is that shown in Fig. 20, which refers to the 
previous impact case against the handle; four curves are shown, i.e. the experimental one, 
together with ±15% curves, which bound the admissible errors, and that which comes from 
numerical simulations; as it can be observed, the numerical values are all inside the 
admissible range, but for a later time, which comes when the headform has left the obstacle 
and is moving free in the compartment, which is of no interest. 
 

 
Fig. 20. Resultant acceleration for the impact of the headform against the internal upper 
handle 

5.2 Crashworthiness analyses in railways 
The survival of the occupants of a railway vehicle, following an accident, depends 
substantially from three aspects: 
• type and severity of the accident; 
• crash behaviour of the structure as a whole; 
• resulting type and severity of secondary impacts which occur because of the relative 

speed between passengers and interiors. 
The investigation on these aspects, by means of numerical methods, starts from the 
identification and the successive simulation of opportune impact scenarios involving a 
detailed numerical model of the vehicle as a whole. The identification of the most 
representative impact scenarios is taken from the EN15227 standard (Railway applications - 
Crashworthiness requirements for railway vehicle bodies). The simulation of the impact 
scenario provides the evaluation of the deformations suffered from the structure and from 
the interiors and allows the identification of the kinematic and dynamic properties 
necessary to set up the biomechanical analyses. 
Within this work, the overall resistance of the vehicle was considered fixed, as the mean 
objective was the simulation of the biomechanical performances of an interior component 
(hereinafter also called panels), in order to identify its characteristics of passive safety and to 
assess guidelines to improve its design. 
The goal was to set up a hybrid methodology which uses in a combined way FEM to extract 
the effective dynamic and structural behaviour of the interiors, and the multibody method 
(MB) to determine the kinematic of secondary impacts and biomechanical parameters. It has 
to be pointed out that when one is not interested to internal stress and strain states coming 
from a dynamic phenomenon, a different method can be used, the multibody one, which is 
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very fast and efficient and which can be coupled with a FEM analysis when completing the 
study. 
The steps followed to develop this activity are listed below: 
1. obtaining by FEA the "pulse" necessary to initialize the multibody analysis: within this 

phase the dynamic behaviour of the interiors have been also evaluated; 
2. obtaining by MB analysis the kinematic behaviour of passengers; 
3. obtaining contact stiffness of the interiors by local FE analyses, which has been used to 

characterize the stiffness of the panels in the multibody environment;  
4. simulating the secondary impacts in a multibody environment. 
According to the EN15227 standard, the selected collision scenario has been the frontal 
impact between two similar vehicles (Fig. 21) at a speed of 36 km/h; such scenario has been 
modelled and analyzed, by using the explicit finite element code LS-Dyna®, as a collision of 
a single vehicle against a rigid barrier at a speed of 18 km/h. 
 

 
Fig. 21. The FEM model of a train coach 

The first phase of the analysis has regarded the estimation of the deformations of the vehicle 
as a whole, with the aim to evaluate the reduction of the occupants/driver survival space 
and the probable disengagement of the bogie wheels from the rail. Stated the respect of 
these standard requirements, the successive phase has regarded the analysis of the energies 
involved in the phenomenon (Fig. 22); the value of the initial kinetic energy of the vehicle is 
851,250 J, which at the end of the impact is fully converted into internal energy of the 
system. It should be considered that the internal energy includes the elastic energy stored by 
the buffer spring, which is recovered in terms of kinetic energy during the "bounce" of the 
vehicle. As it can be seen in Fig. 22, about 50,000 J are absorbed in the first phase of the 
impact by the buffer; once the buffer spring has been fully compressed, about 600,000 J are 
absorbed by the two absorbers, proportionally to their characteristics. 
The next analyzed resulting parameter is the acceleration, which in this case has been 
evaluated on the “rigid” pin linking the structure to the forward bogie. As it can be seen 
from the plot in the lower left of Fig. 22, which will be the "pulse" for the Multibody 
analysis, during the absorption of the impact energy by the buffer/absorbers group, the 
maximum acceleration value is about 5g, to grow up to about 15g when the frame is 
involved in the collision. 
Finally, it has been evaluated the interface reaction between the vehicle and the barrier (Fig. 
22): it is almost constant, with acceptable maximum value, until the frame is involved in the 
collision. 
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Fig. 22. Pulse evaluation from FEM analysis 

The main objective of the work is to develop a complete multibody model of a critical area 
inside a train unit, including the model of an anthropomorphic dummy, which allows to 
develop fast simulations of secondary impact scenarios from which to obtain biomechanical 
results; moreover, by proceeding in this way, it is also possible to quickly evaluate the 
changes in biomechanical performances of the interiors that characterize different 
configurations (stiffness of the panels, thickness and arrangement of the reinforcement, etc.). 
In order to characterize the contact reaction between the dummy and the interiors in a 
multibody environment, the panels are modelled as rigid bodies, but their impact surfaces 
react to the impact by following an assigned law of the reaction forces vs. displacement 
through the contact surface. This law must be evaluated either by considering experimental 
compression tests of the panel, or by developing a local finite element analysis by modelling 
the real properties of the materials of the panels. 
The advantages in the use of this hybrid methodology are briefly described below:  
• a full multibody model (free from FE surfaces) requires very short calculation time; 
• the multibody model is a very flexible one, in which it is possible to change the 

“response of the material” by acting only on the characteristics of stiffness at the contact 
interface; 

• the change in geometry of the multibody model is very simple and fast. 
In Figs. 23 and 24, we show some images related to the preliminary multibody analysis 
performed by using Madymo® MB commercial code, by considering as perfectly rigid the 
surfaces representing all the components of the considered scenario. This analysis provides 
information about the kinematic of the secondary impacts involving a generic seated 
passenger (Dummy "Hybrid_III_95% ile") and a composite panel positioned in front of him. 
We also introduced the hypothesis that the effective stiffness of the impacted panels doesn’t 
influence the relative kinematic between the panels and the passengers. 
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Fig. 23. 140 ms, the dummy breaks away from the seat; feet are blocked under the step and 
are not able to slide on the floor. 

 

 
Fig. 24. 235 ms: the neck reaches the critical position: this is the maximum deflection 

From this preliminary analysis it was possible to extract information about the exact areas of 
the panels interested from the impact with the passenger; the next step was to develop a 
explicit finite element analysis in order to evaluate the effective “contact stiffness” of these 
areas. 
To evaluate by explicit FE analysis the effective stiffness of the interior panels it is not useful 
to consider a sub-model of the areas of the whole panel interested from the impact, because 
of the effective local stiffness depends on the effective boundary conditions, in terms of type 
and position of the constraint and of the stiffeners positioned beside the panel. 
For what concern the dummy, in the finite element analysis it has been replaced by a series 
of rigid spherical bodies, with an opportune calibrated mass (19 kg for knee and 9.6 for the 
head) and with a specific speed (5 m/s), in order to obtain the same impact energy value. 
The impact areas were chosen considering the kinematic analysis made previously and in 
particular they have been chosen considering the knees and the head impact areas.  
For every collision were considered 4 cases for the knees impacts, and 4 cases for the head 
impacts, two of which are showed in figures 25 and 26. From those analyses it has been 
possible to obtain the effective stiffness of the panels to set up the “contact stiffness” of the 
multibody ones.  
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Fig. 25. Comparison between contact forces in Dyna-Madymo in the head area 
 

 
Fig. 26. Comparison between contact forces in Dyna-Madymo in the area of the SX knee 

The thus obtained contact stiffness was used to characterize the panels and a multibody 
analysis was developed in order to obtain the biomechanical indexes. To evaluate different 
scenarios of secondary impact, some changes to the initial model were considered; the 
changes concern: 
• replacing of the step on the floor by a ramp; 
• changing the position of the seat by the maximum distance from the panel. 
The results obtained from the full multibody analysis are reported in terms of the 
biomechanical indexes characterizing the impact scenarios described in the previous section. 
In Tab. I the biomechanical indexes related to the head are reported; in the last column the 
limit values are illustrated for each index. 
Following the previous analysis it was possible study the ‘best’ configuration of the interiors 
in order to limit damages to passengers during the secondary impact; for example, it was 
possible to confirm that the best configuration was that where the step was no longer 
present and the seat had the maximum distance from the panels. 
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Table I Numerical values of the obtained biomechanical indexes 

5.3 Crashworthiness analyses in aeronautics 
This work deals with a numerical investigation about the most reliable procedure to 
simulate, by finite element method, a sled-test to certificate aeronautical seat. These types of 
tests are mostly characterized by strongly dynamic effects, even if some evaluations about 
structural behaviour under quasi-static load conditions are required to certificate the seat. 
Generally, to develop numerical analyses of dynamic behaviour, explicit finite element 
algorithms are used; to develop quasi-static analyses both explicit and implicit methods 
could be suitable. Comparisons between results carried out by using both the methods have 
been developed, in terms of accuracy of results, calculation time and feasibility of 
preprocessing phase. 
As a reference case we choose an archetype of a passenger seat of an helicopter which is 
comprised in the “Small Rotorcraft” category, as defined by EASA CS-27 standard. The 
numerical simulation refer to the “test 2 AS8049 SAE” which states that the seat (dummy 
included) is subjected at first to a displacement set such as to represent the effect of the 
deformation of the floor, in quasi-static conditions, then an assigned velocity is impressed to 
it and at last it is stopped according to a prescribed deceleration curve. It is then possible to 
identify two distinct phases in the test, the first being characterized by quasi-static 
phenomena (pre-crash) and the second one accompanied by largely dynamical phenomena 
(crash). 
As the advantages of explicit FEM of the crash phase are well known, the attention was 
focused on the analysis methods of quasi-static phenomena which characterize pre-crash 
phase and which in our case are as follows: 
• the introduction of rotation of the seat mounting to simulate the effect of the 

deformation of the aircraft floor; 
• the positioning of the dummy and the simulation of the subsequent crushing of the set 

foam. 
The aim of the whole procedure was to find out the most convenient analysis conditions to 
simulate pre-crash phase, for what refers to reliability of results, computational weight and 
user-friendliness of preprocessing. 
According to AS 8049 SAE standard, a minimum of two dynamical tests is required to 
certificate the seat and the restraining system, which have both to protect the passenger in 
the crash phase. On the present work, the test no. 2 was simulated, which considers that a 
12.8 m/s velocity is impressed to the seat, which is mounted on a sled, after subduing quasi-
static deformations, and which is then stopped in 142 ms, according to a triangular 
deceleration profile. The inertia forces resultant is directed along a 10° direction with respect 
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to the longitudinal axis of the aircraft, because of the presence of the main component, 
which is directed along the longitudinal axis of the aircraft. 
The effect of the floor deformation was simulated by applying assigned rotations to the links 
of the seat to the aircraft structure, which generally occurs through rails which are called 
“seat tracks”. Pitch and roll beam angles, thus simulating the behaviour of the seat-tracks, 
are assumed to be 10°, and their direction is such as to simulate the hardest load condition. 
The two rotations occur in 100 ms each, according two functions whose behaviour can be 
subdivided in three intervals, as follows: 
• increasing velocity according a linear law, from 0 to 2.627 rad/sec; 
• constant velocity, at 2.627 rad/sec; 
• deceleration, according a linear law up to stop. 
The procedure was carried by using the commercial code RADIOSS which let the user 
choose between explicit and implicit integration; that capability was very useful in this case, 
because explicit codes require very long runtimes when analyzing quasi-static conditions. In 
Fig. 27 the results are shown for both explicit and implicit analysis of the connection 
substructure between the seat and the floor, as appearing after a 10° rotation of the junction 
between the right leg and the floor; it can be seen that the results are almost the same for the 
two formulations. 
 

 
Fig. 27. Von Mises stress as obtained through the explicit (left) and implicit (right) methods 

As the object of this paper was the evaluation of the behaviour of the seat, neglecting for the 
time being the analysis of the passenger, the latter could be simulated by means of a 
simplified dummy, which could be a rigid one, without joints, with the whole mass was 
concentrated in its gravity center. A second rigid body was introduced to simulate the 
whole structure of the seat, but for the elements which represent the two cushions; that 
behaviour doesn’t invalidate the procedure and let reduce greatly the subsequent runtimes. 
In the following Fig. 28 we represented the plot of the vertical displacement of the gravity 
center of the dummy and the kinetic energy of the system as functions of time; the max 
displacement (6.36mm) is the same for both formulations (implicit and explicit). 
After the previous analyses, a complete run for the whole certification test was carried out 
through an explicit code. In Fig. 29 we have the plots of energy, velocity and acceleration 
which refer to the master nodes of the rigid elements which simulate the connection 
between the seat and the floor. For what refers to the kinetic energy, we can observe a point 
of discontinuity after 200 ms from the beginning of the test: it corresponds to the separation 
point between the quasi-static phase and that highly dynamic of crash phase. The peak 
value of kinetic energy appears just at the beginning of crash and amounts to 7680 J, i.e. the 
total energy of the whole system, whose mass is 93.75 kg, when its velocity is 12.8 m/s. 
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Fig. 28. Vertical displacement and Energy of the gravity center of the dummy 
 

 
Fig. 29. Velocity and acceleration of the sled, with the absorbed Energy levels 

6. Conclusions 
Today available explicit codes allow the analyst to study very complex structures in 
presence of impulsive loads; the cases considered above show the degree of deepening and 
the accuracy which can be obtained, with a relevant gain in such cases as manufacturing, 
comfort and safety. 
Those advantages are in any case reached through very difficult simulations, as they require 
an accurate modeling, very fine meshes and what is more relevant, a sound knowledge of 
the behaviour of the used materials in very particular conditions and in presence of high 
strain rates. 
The continuous advances of computers and of methods of solution let us forecast in the near 
future a conspicuous progress, at most for what refers to the speed of processors and 
algorithms, what will make possible to perform more simulations, yet reducing the number 
of experimental tests, and to deal with the probabilistic aspects of such load cases. 
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1. Introduction  
The characterization of the mechanical behaviour of structural materials, with the exception 
of material hardness, is a destructive procedure which requires direct extraction of test 
specimens from the component to analyse. Because this component needs to be operative, 
these specimens have to be as small as possible, in order not to affect the behaviour of the 
component and in order to allow easy reparation of the ‘damaged’ component. However, 
tests with miniaturized specimens are not defined in standards. Thus, the results obtained 
with these tests have to be interpreted in order to obtain the actual properties of the 
components from which the specimens have been extracted (Lucas et al., 2002). The small 
punch test (SPT) is very useful in all applications that require the characterization of the 
mechanical behaviour of structural materials or operational components without 
compromising their service (Lucon, 2001), as in the case of nuclear or thermal plants. 
Another application is the study of small testing zones. Thus, this test has been recently 
applied to the mechanical characterization of metallic coatings (Peñuelas et al, 2009) or the 
heat affected zone of welds (Rodriguez et al, 2009), which are practically impossible to 
characterize by means of the conventional mechanical tests. 
Advance constitutive models frequently include parameters that have to be identified 
through numerical simulation of tests and mathematical optimization of variables, because 
they cannot often be directly measured in laboratory. In this paper, an inverse methodology 
for the identification of the mechanical and damage properties of structural steels has been 
developed. Thus, from the load-displacement curves obtained during the non-standard SPT, 
the mechanical and damage properties will be obtained. Moreover, this methodology also 
allows simulating the SP test with numerical methods. 
Structural steels may exhibit creep behaviour and behave according to the Hollomon’s law 
(σ = K·εpn). Besides, ductile fracture of metallic materials involves micro-void nucleation and 
growth, and final coalescence of neighbouring voids to create new surfaces of a macro-crack. 
The ductile failure process for porous materials is often modelled by means of the Gurson 
model (Gurson, 1977), which is one of the most widely known micro-mechanical models for 
ductile fracture, and describes the progressive degradation of material stress capacity. In 
this model, which is a modification of the von Mises one, an elastic–plastic matrix material is 
considered and a new internal variable, the void volume fraction, f, is introduced. Although 
the original Gurson model was later modified by many authors, particularly by Tvergaard 
and Needleman (Tvergaard, 1981; Tvergaard, 1982; Tvergaard & Needleman, 1984), the 
resultant model is not intrinsically able to predict coalescence, and is only capable of 



 Numerical Simulations - Applications, Examples and Theory 

 

312 

simulating micro-void nucleation and growth. This deficiency is solved by introducing an 
empirical void coalescence criterion: coalescence occurs when a critical void volume 
fraction, fc, is reached (Tvergaard, 1982; Koplik & Needleman, 1998; Sun et al. 1992). 
Combining these models, it is possible to simulate the behaviour of materials from the 
elastic behaviour until their total fracture. The macromechanical and micromechanical 
parameters relate with different zones of the load-displacement curve obtained with the 
SPTs. These zones will be described below. 
In the inverse procedure considered here, most data are pseudo-experimental data, that is, 
they are obtained from the numerical simulation of the test for a prescribed set of material 
parameters. Notwithstanding, many real experimental data are also considered in order to 
validate the numerical model and the inverse methodology developed. 

2. Inverse methodology 
The methodology used in this paper is based on inverse methods (Stravroulakis et al., 2003), 
design of experiments (Kuehl, 2000; Montgomery, 1997), numerical simulations of tests, 
least-squares polynomial regression for curve fitting and evolutionary genetic algorithms 
(Deb, 2001; Seshadri, 2006). Inverse problems lead to difficult optimization problems whose 
solutions are not always straightforward with current numerical optimization techniques. 
Therefore, one should consider semi-empirical methods and experimental testing techniques 
as well (Bolzon et al., 1997). Design of experiments (DOE) is the methodology of how to 
conduct and plan experiments in order to extract the maximum amount of information in 
the fewest number of runs. The statistical experiment designs most widely used in 
optimization experiments are termed response surface designs (Myers & Montgmomery, 
1995). In addition to trials at the extreme level settings of the variables, response surface 
designs contain trials in which one or more of the variables is set at the midpoint of the 
study range (other levels in the interior of the range may also be represented). Thus, these 
designs provide information on direct effects, pair wise interaction effects and curvilinear 
variable effects. Properly designed and executed experiments will generate more precise 
data while using substantially fewer experimental runs than alternative approaches. They 
will lead to results that can be interpreted using relatively simple statistical techniques. If 
there are curvilinear effects the factorial design can be expanded to allow estimation of the 
response surface. One way to do this is to add experimental points. The central composed 
design uses the factorial design as the base and adds what are known as star points. Special 
methods are available to calculate these star points, which provide desirable statistical 
properties to the study results. 
In the inverse methodology, for the numerical and experimental tests, the different zones of 
the load-displacement curve have to be fitted. Data fitting is usually done by means of an 
error minimization technique, where the distance between parameterized predictions of the 
mechanical model (parameterized by the unknown parameters) and measurements of the 
corresponding experiment is minimized. This formulation is known as an output error 
minimization procedure for the inverse problem (Stravroulakis et al., 2003). In order to 
choose the best fitting model for all of them, for each fitting model, different statistical 
coefficients have been analysed: 
1. The coefficient of multiple determination, also called proportion of variance explained 

R2, that indicates how much better the function predicts the dependent variable than 



Inverse Methods on Small Punch Tests  

 

313 

just using the mean value of the dependent variable (the closer to 1.0 (100%), the best 
the function predicts the observed data); 

2. The adjusted coefficient of multiple determination Ra2 that is an R2 statistic adjusted for 
the number of parameters in the equation and the number of data observed (the closer 
to 1.0 the best the function predicts the observed data); 

3. The Durbin–Watson statistic, used to detect the presence of autocorrelation in the 
residuals from the regression analyses (a value less than 0.8 usually indicates that 
autocorrelation is likely (autocorrelation should be avoid)); 

4. The t-ratio, that is a measure of the likelihood that the actual value of the parameter is 
not zero (the larger the absolute value of t, the less likely that the actual value of the 
parameter could be zero) and  

5. The prob(t) value that is the probability of obtaining the estimated value of the 
parameter if the actual parameter value is zero (the smaller the value of prob(t), the 
more significant the parameter and the less likely that the actual parameter value is 
zero). 

 

 
Fig. 1. Scheme for the inverse procedure 

Inverse procedure finishes with the determination of the set of variable values that are 
associated to certain target values, obtained from the load-displacement curve of a 
laboratory SPT. That is, it have to be searched the set of variable values that simultaneously 
minimize a certain number of objective functions. This is a multiobjective optimization 
problem that can be solved using different procedures. In this paper, the Pareto front has 
been obtained by means of the evolutionary genetic algorithm NSGA-II (Seshadri, 2006). 
Pareto front produces non-dominated set of solutions with regard to all objectives and all 
solutions on the Pareto front are optimal. Besides, NSGA-II is non-domination based genetic 
algorithm which incorporates elitism (only the best individuals are selected) and that does 
not requires choosing a priori sharing parameters. This algorithm is run in MATLAB. First of 
all the population is initialized based on the problem range and constraints if any. This 
population is sorted based on no domination (an individual is said to dominate another if 
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the objective functions of it, is no worse than the other and at least in one of its objective 
functions it is better than the other). Once the non-dominated sort is complete, a crowding 
distance, that is a measure of how close and individual is to its neighbours, is assigned. 
Parents are selected from the population by using binary tournament selection based on the 
rank and crowding distance. The selected population generates offspring from crossover 
and mutation operators. The population with the current population and current offspring 
is sorted again based on non-domination and only the best N individuals are selected, where 
N is the population size. Fig. 1 shows the scheme for the inverse procedure used for the 
material characterisation. 

3. Small punch test (SPT) 
By virtue of the small size of the specimens required for testing, the Small Punch Test can be 
considered a non-destructive test. Usually, the specimens used for the SPT are square plates 
of 10 × 10 mm2 and just 0.5 mm thickness, although lower or higher thickness can also be 
used. In comparison with other non-destructive techniques such as ultrasonic or magnetic 
techniques and X-Rays, that are based on indirect measures for the determination of the 
above mentioned properties, the SPT allows obtaining directly the main mechanical 
properties of the materials.  
 

Punch

Upper die

Lower die

Fixer

Specimen
Extensometer

Specimen
Punch

Section: 10 x10 mm2

Thickness: t=0.5mm
d=2.5 mm

r=0.5 mm t=4 mm
v=0.2 mm/min

Lower die

Upper die

 
Fig. 2. Dispositive and geometry of the small punch test  

In laboratory, the SPTs have been carried out with a low speed tensile test machine. Test 
consists of fixing the periphery of the specimen, embedding it between two dies (upper and 
lower dies) by means of four screws and a tightening torque of 2 N·m, and then deforming 
the specimen until its fracture by means of a small semi-spherical punch with a head of 2.5 
mm of diameter. The test is speed controlled with a punching speed v = 0.2 mm/min. In this 
way, the specimen is bounded to deform quasi-statically inside a 4 mm diameter hole 
(biaxial expansion) up to failure (Fig. 2). The data sampling rate during the experiment is 20 
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samples/s. Moreover, the test is finalized when load decreases the 50% of the maximum 
load. 
By means of an extensometer, the displacement of the punch is obtained, and after 
correction of the flexibility of the testing device, the displacement of the central point of the 
specimen is calculated. Thus, from test is obtained the characteristic curve of material. This 
curve represents the force exerted from punch against the specimen (i.e. the load reaction) 
versus the displacement of the punch (Fig. 3). In the case of ductile materials, six different 
zones can be distinguished in these load-displacement curves obtained by means of the 
SPTs: zone I (elastic deformation), zone II (elastoplastic transition), zone III (generalized 
plastic deformation), zone IV (plastic instability and fracture initiation), zone V (fracture 
softening zone) and zone VI (final fracture). 
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Fig. 3. Load-displacement curve for the SPT and Finite Element simulation at each zone 

4. Numerical simulation of the SPT 
Different models have been developed in order to reproduce the SPTs by means of 
numerical methods. These models were compared with the aim of choosing the optimum 
model from the point of view of the relation between the precision and the computational 
cost. The numerical simulations have been carried out with the finite element commercial 
code ABAQUS (ABAQUS 6.7, 2008). In order to simulate the fracture behaviour of isotropic 
and anisotropic materials, two different meshes have been used (2D and 3D meshes, 
respectively). As it was pointed out before, the specimens for laboratory are squared 
specimens. However, because the hollow between the die and the specimen is a cylinder, 
the problem can be considered axisymmetric in the isotropic model, and the model can be 
solved by 2D axisymmetric meshes. Besides, for isotropic materials the 3D model has been 
compared with the axisymmetric one (2D) in order to justify the use of the axisymmetric 
model for the sake of simplicity. In the 2D-Axysim model, the specimens were discretised by 
means of an axisymmetric mesh of four-node reduced integration hybrid elements. 
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Notwithstanding, since many structural steels are obtained from lamination processes, they 
exhibit anisotropic behaviour. In these cases, three-dimensional meshes which reproduced a 
quarter of the specimen were used (Fig. 4). Although geometries of Fig. 4 appear to be 
different, the applied boundary conditions allow using both of them for isotropic materials. 
In this figure, upper die is not represented in order to improve the visualization of the 
model. In all cases, die and punch were modelled as rigid bodies. Besides, contact between 
surfaces, quasistatic analysis and large displacements were taken into account. 
 
 
 

symm symm

 
Fig. 4. Axysimmetric and Three-dimensional models used for the simulation of the SPT 

From sensitivity analyses, it is observed that the elastic and elastoplastic transition zones 
(zones I and II of the load-displacement curve) are enough to characterize the 
macromechanical behaviour of steels that exhibit creep behaviour and follow the 
Hollomon’s law (σ=K εnp), whereas the remaining zones allow to characterize the 
micromechanical behaviour of the material and the coefficient of friction to be used in 
simulations. 
In order to choose a value for the coefficient of friction, different simulations of known 
materials have been carried out. A good approximation has been obtained with μ = 0.1, 
which is also an adequate value for steel–steel contact under partial lubrication. In the case 
of tests carried out with no lubrication, better results have been obtained with μ = 0.25–0.35. 
These values have been obtained by comparing the experimental curve for an already 
known material (characterized by means of standard tests) with numerical ones obtained by 
means of the test simulation of this material with different values of coefficient of friction. 
To describe the evolution of void growth and subsequent macroscopic material softening, 
the yield function of Gurson modified by and Tvergaard and Needleman (Tvergaard & 
Needleman, 1984) was used in this work. This modified yield function is defined by an 
expression in the form 

 ( ) ( )
2

* *22
1 3

q 3 q pΦ q,p,σ, f = + 2 q f cosh - - 1 + q f = 0
σ 2 σ

⋅ ⋅⎛ ⎞ ⎛ ⎞⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠
 (1) 
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where σ  is flow stress of the matrix material which relates with the equivalent plastic strain, 
f is the current void volume fraction, p=-σm with σm the macroscopic mean stress and q is 
the macroscopic von Mises effective stress given by 

 ( )ij ij
3q = S S
2
⋅ ⋅  (2) 

where Sij denotes the deviatoric components of the Cauchy stress tensor. Constants q1, q2 
and q3 are fitting parameters introduced by Tvegaard (Tvergaard, 1981; Tvergaard, 1982) to 
provide better agreement with results of detailed unit cell calculations. The modified void 
volume fraction, f*, was introduced by Tvergaard and Needleman (Tvergaard & Needleman, 
1984) to predict the rapid loss in strength that accompanies void coalescence, and is given by 

 
( )

c
* *

u c
c c c

F c

f si f f
f = f - ff + f - f si f > f

f - f

≤⎧
⎪
⎨ ⋅⎪
⎩

, (3) 

where fc is the critical void volume fraction, fF is the void volume fraction at final failure 
which is usually fF=0.15 and f*u=1/q1  is the ultimate void volume fraction. 
The internal variables of the constitutive model are σ   and f. Thus the evolution law for the 
void volume fraction is given in the model by an expression in the form 

 growth nucleationf = f + f  (4) 

The void nucleation law implemented in the current model takes into account nucleation of 
both small and large inclusions. The nucleation of larger inclusions is stress controlled, and 
it is assume that larger inclusions are nucleated at the beginning of the plastic deformation, 
being considered as initial void volume fraction. The nucleation of smaller inclusions is 
strain controlled and, accordingly to Chu and Needleman (Chu & Needleman, 1980) the 
nucleation rate is assume to follow a Gaussian distribution, that is 

 
small particles

p
nucleationf = A ε⋅  (5) 

where pε  is the equivalent plastic strain rate, and 

 
2p

n n

nn

f 1 ε - εA = exp -
2 SS 2 π

⎛ ⎞⎛ ⎞⎜ ⎟⋅ ⋅ ⎜ ⎟⎜ ⎟⋅ ⋅ ⎝ ⎠⎝ ⎠
 (6) 

where Sn is the standard deviation, εn is the mean strain and fn is the void volume fraction of 
nucleating particles. 
The growth rate of the existing voids can expressed as a function of the plastic strain rate in 
the form 

 ( ) p
growth kkf = 1 - f ε⋅ , (7) 

where p
ijε  is the plastic strain rate tensor. 
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5. Model calibration and sensitivity analysis 
Prior to the inverse procedure is the direct adjustment of the numerical simulation and the 
experimental test for a small number of materials previously characterized by standard 
tests. That is the model calibration and it requires the determination of the unknown 
parameters of the model, especially of the ones relevant to defects and damage, by 
comparing the results of the model with experimental measurements. Afterwards, the load-
displacement curves obtained from laboratory SPT and from FE simulation of the test for a 
material previously characterized from standard specimens, are compared. Fig 5 shows the 
qualitative comparison of the experimental and numerical deformation shape and fracture 
zones of the axisymmetric model at the final fracture of the specimen. 
 

 
Fig. 5. Comparison of the experimental and numerical deformation shape and fracture zones 
of a SPT specimen 
 

 
Fig. 6. Comparison of the experimental and numerical deformation shape and fracture zones 
of a notched SPT specimen 

Moreover, Fig. 6 shows the comparison of deformation and overall appearance of the 
fracture zone obtained by a laboratory test and the numerical simulation, for SPT specimen 
with a longitudinal notch. In the case of notched specimens, 3D models has been used. It has 
been found very good correlation between tests and simulations, not only for the un-
notched specimens but  also for the notched specimens. 
After setting the model, and before beginning the process of characterization, it is necessary 
to study which variables influence each of the zones of the load-displacement curve. For this 
purpose, several numerical simulations have been carried out. Fig. 7 shows the material 
parameters (variables to determine) that affect each zone of the load-displacement curve, 
obtained by means of SP tests. 
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Fig. 7. Load-displacement curve of the SPT and parameters that affect each zone 

From sensitivity analyses (±10%), it has been shown that load-displacement curves are very 
sensitive to variations in n and K (along the entire curve) and less sensible to variations in σ0 

(which mainly affects zone II). Moreover, since the SPT specimens reach the elastoplastic 
regime in the early stages of testing, the effect of Young’s modulus is very small, so that E 
can be considered a constant reference value for all materials tested (analysed). Although 
the thickness of the specimen is a variable that has considerable influence on the load-
displacement curve, in order to characterize the material is desirable using constant 
thickness. Therefore in Figure 7 is not shown the variable thickness-of-the-specimen. On the 
other hand, since the database has been obtained from pseudo-experimental data (numerical 
simulations), the technical problem of cutting all the specimens to the same small thickness 
(0.5 mm) is eliminated. Thus, for all simulations has been considered a fixed thickness. 

6. Characterization methodology and results 
As it was pointed out before, prior to the inverse procedure is the model calibration and the 
sensitivity analysis for the main variables. Afterwards, the inverse characterization scheme 
is applied. The complete material characterization requires the determination of a high 
number of parameters: coefficient of friction (μ), Young’s modulus or elastic modulus (E), 
Poisson’s ratio (ν), yield stress (σ0), strain hardening exponent (n), Hollomon’s factor (K), 
fitting parameters introduced by Tvergaard and Needleman for the GTN yield potential (q1, 
q2 and q3), initial void volume fraction (f0), mean strain in the Gaussian distribution of the 
nucleation rate (εn), standard deviation in the Gaussian distribution of the nucleation rate 
(Sn), void volume fraction of nucleating particles in the Gaussian distribution of the 
nucleation rate (fn), critical void volume fraction (fc) and void volume fraction at final failure 
(fF). However, some of them can be obtained from literature or from previous works. This is 
the case for the μ, E, ν, q1, q2, q3, f0, Sn parameters. For metallic materials (structural steels) 
usual values of these constants are: E=2e5 MPa, ν = 0.3, q1 = 1.5, q2 = 1.0, q3 = q12 = 2.25 and 
Sn = 0.01 (small values of Sn relate to quite homogeneous materials). From metallographic 
observation of experimental specimens, the initial porosity has been considered f0 = 0. And 
finally, from previous adjustments μ=0.1. Once the previous parameters are set, the number 
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of parameters to determine has been strongly reduced from 15 to 7: σ0, n, K, εn, fn, fc and fF. 
The first three parameters are macromechanic ones, the rest are micromechanic parameters 
for the damage model.  
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Fig. 8. Comparison of the Load-displacement curves with and without taking into account 
the damage of material 

Since the damage parameters have no influence in the elastic and elastoplastic transition 
zones of the load-displacement curve (zones I and II), is possible to uncouple the 
macromechanical and the micromechanical characterizations. For this reason two different 
phases have been used for the macro- and micromechanical characterizations. First of all, 
the material has been macromechanically characterized by means of the analysis of zones I 
and II of the load-displacement curve. Then, the micromechanical parameters for the 
previously macro-characterized material have been determined using the remaining zones 
of the curve. Figure 8 shows the comparison between two numerical simulations for the 
same material with and without consideration of the damage model. 

6.1 Macromechanical characterization 
All inverse procedure requires a sufficiently large number of experimental data or pseudo-
experimental data (numerical simulations). These data consist on sets of input variables for 
the macromechanical characterization (E, ν, σ0, n, K) and output data obtained from the 
load-displacement curves. As it was pointed out before, the elastic modulus and the 
Poisson’s ratio can be considered forehand known. Thus for a certain fixed values of the 
elastic modulus E = 2e5 MPa and the Poisson’s ratio ν = 0.3, different combinations of (σ0, n, 
K) have to be defined. In this paper, two different types of input variables have been taken 
into account. On the one hand, the design of experiments has been applied in order to define 
a small set of tests to simulate (15 tests). Thus, in order to identify the values of these sets of 
variables to simulate, it has been used design of experiments central composed centred on 
body, based on quadratic response surfaces. On the other hand, a wide battery of numerical 
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simulations (180 simulations) has been used not only to characterize the material 
macromechanically but also to quantify the effect of the simplifications inherent to the 
design of experiments. Besides, this battery is suitable for a wide range of structural steels. 
In both cases, the input variables vary within the following ranges 

 0σ = 200 - 700 MPa, n = 0.1 - 0.3  (8) 

 

0 0

0 0

0 0

0 0

1.5 σ - 3.5 σ if 0.1 n 0.15
2.0 σ - 4.0 σ if 0.15 n 0.2

K =  
2.5 σ - 4.5 σ if 0.2 n 0.25
3.0 σ - 5.0 σ if 0.25 n 0.3

⋅ ⋅ ≤ <⎧
⎪ ⋅ ⋅ ≤ <⎪
⎨ ⋅ ⋅ ≤ <⎪
⎪ ⋅ ⋅ ≤ <⎩

 (9) 

In the case of using the battery of numerical simulations, the maximum variation of (σ0, n) is 
Δ(σ0, n)max=(50 MPa, 0.01). 
In the design of experiments, it was considered a new variable K* in order to correctly define 
the sets of values for simulation. This variable K* varies from 1.5 to 3.5 and is given by 

 *

0

KK = - 0.5 i
σ

⎛ ⎞
⋅⎜ ⎟

⎝ ⎠
 (10) 

where i is defined by 

 

0 if 0.1 n 0.15
1 if 0.15 n 0.2

i =  
2 if 0.2 n 0.25
3 if 0.25 n 0.3

≤ <⎧
⎪ ≤ <⎪
⎨ ≤ <⎪
⎪ ≤ <⎩

 (11) 

The output data were obtained from the curve fitting of zones I and II of the load-
displacement curve in a two stage procedure which consists of: 
1. First, fixing the range of displacement for the analyze. For all the structural steels 

simulated (180 steels with mechanical properties varying within the ranges defined 
before), a displacement value that has been proved to provided good results is 0.3 mm. 

2. Then, adjusting the zone I and part of the zone II with an unique mathematical law. A 
commercial software, DataFit (DataFit 8.2, 2009) has been used for this purpose. The 
best fitting model is chosen by analyzing the different statistical coefficients of the 
different models. From the analysis of the different statistical coefficients of the different 
models, the best fitting model has been chosen. This consists in a exponential law in the 
form y=exp(a+b/x+c·Ln(x)), where y corresponds to load and x correspond to 
displacement. Fig. 9 shows this curve fitting for a generic material. In this way, the three 
output data obtained from each set of input data are the factors a, b, c, which depend on 
the three variables to determine, that is a=a(σ0, n, K), b=b(σ0, n, K) and c=c(σ0, n, K). 

Each of these functions is postulated as a polynomial model (Cuesta et al., 2007), being 
necessary determining its order. The higher this order, the bigger the number of coefficients 
to determine. Thus, in a second-order model the number of coefficients to determine is 10; in 
a third-order model is 20 and in a fourth-order model is 31. By the comparison of the 
numerical results obtained by the method of least-squares, and polynomial regressions of 
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orders two, three and four, it has been chosen to use the following models for the functions 
a,b,c: second-order models in case of using DOE for simulations and third-order models in 
case of using the battery of simulations, since they allow to reach good-enough adjustments 
using a relatively small number of coefficients. Table 1 gives detail of the Ra2 values for each 
function a, b, c obtained with models of different orders. From this table can be observed 
that the adjusted coefficient of multiple determination is much higher for the battery of 
numerical simulations (180 simulations) than for the design of experiments (15 simulations). 
Besides, all the regressions used are very significant and the proportion of variance of a, b, c, 
explained are 99.7%, 95.6% and 98.4%, respectively. 
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Fig. 9. Exponential adjustment of the Load-displacement curve in zone (I+II) until d=0.3 mm 

Moreover, it has been carried out sensitivity analyses within a ±10% variation of the factors 
a, b, c of the exponential law, in order to analyse their effect on the load-displacement curve. 
These analyses show that the influence of the function a on the exponential law is enormous, 
the influence of c is notable and the influence of b is not important. 
 

Design of experiments Battery of numerical simulations 
2ndº order 2nd order 3er order 4th order

a 0.981 0.986 0.997 0.999 
b 0.889 0.934 0.951 0.960 
c 0.907 0.961 0.982 0.987 

Table 1. Ra2. coefficients for functions a, b and c 

In case of using design of experiments, the second order polynomial models for functions a, 
b and c can be write by expressions in the form 

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

2 2 2
0 0 1 0 2 3 11 0 22 33 12 0 13 0

23

g(σ ,n,K) = g + g σ + g n + g K + g σ + g n + g K + g σ n + g σ K +
+ g n K

 (12) 

where g(σ0, n, K) correspond to a=a(σ0, n, K), b=b(σ0, n, K) and c=c (σ0, n, K). 
Similarly, in the case of using the battery of numerical simulations, the third-order 
polynomial models for each function can be expressed in the form 
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⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

2 2 2
0 0 1 0 2 3 11 0 22 33 12 0 13 0

2 2 2 2
23 123 0 112 0 113 0 122 0 223

2 2 3 3 3
133 0 233 111 0 222 333

g(σ ,n,K) = g + g σ + g n + g K + g σ + g n + g K + g σ n + g σ K +
+ g n K + g σ n K + g σ n + g σ K + g σ n + g n K +

g σ K + g n K + g σ + g n + g K

 (13) 

Coefficients bijk have been obtained using the commercial software DataFit with 
regularized input values (σ0, n, K) varying within the range [0, 1]. Values obtained for a 99% 
confidence interval are shown in Table 2. 
 

 a b c 

g0 5.71048018 -0.00829258 0.25978748 
g1 0.00191446 -0.01508759 -0.36809281 
g2 -0.60585504 -0.00051838 -0.0886477 
g3 6.75259819 0.02658378 1.38774367 
g11 1.45337999 -0.00480519 0.33279479 
g22 -0.17753184 -0.0056283 -0.11501128 
g33 -2.88944339 -0.09971593 -1.81039397 
g12 0.00491019 -0.02896433 -0.48577964 
g13 -5.52592006 0.06567327 0.1338645 
g23 -1.12143967 0.04558742 0.55393563 
g123 -5.13987844 -0.06643944 -2.1955321 
g112 1.11391405 0.02857506 0.75839976 
g113 -1.44430745 -0.10182755 -1.94692201 
g122 1.40276526 0.00766641 0.38699445 
g223 -2.58686787 -0.01189609 -0.60625958 
g133 9.53781127 0.14445698 4.01278162 
g233 6.71653262 0.04137906 1.80579095 
g111 -0.47228307 0.01499177 0.10613477 
g222 0.42619501 0.00050424 0.0751837 
g333 -5.67785877 -0.04182362 -1.71486231 

Table 2. gijk. coefficients for the third- order models for functions a, b and c 

Finally, the inverse procedure finishes with the multiobjective optimization. That is, with the 
determination of the set of values (σ0, n, K) that are associated to target values, which were 
obtained from the load-displacement curve of a specific laboratory small punch test. In our 
case, atarget=-6.097034, btarget=0.009365 and ctarget=0.283507. Therefore, it have to be searched 
the set of variable values that simultaneously minimize three target (objective) functions: (a 
− atarget), (b − btarget) and (c − ctarget). This multiobjective optimization problem has been 
solved using the evolutionary genetic algorithm NSGA-II, which has been run in MATLAB 
(MATLAB, 2006). The input arguments for the function nsga_2, are the population size and 
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number of generations. In this paper, the population size has been set to 200 and the number 
of generations has been set to 100. Since the algorithm incorporates elitism, only the best N 
individuals are selected, where N is the population size. The process repeats to generate the 
subsequent generations (100 generations). With this procedure the Pareto front is obtained, 
and it is represented in the space of functions [(a − atarget), (b − btarget),(c − ctarget)]. Fig. 10 
shows the Pareto front in the space of functions for the target values.  
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Fig. 10. Pareto front (Zone I+II) in the space of functions for the target values  

As it was pointed out before, Pareto front produces non-dominated set of solutions with 
regard to all objectives and all solutions on the Pareto front are optimal. Furthermore, 
sensitivity analyses in functions a, b and c has shown that the variable that affects more the 
load-displacement curve (that is, the result) is variable a. As a result, from all the possible 
solutions that form the Pareto front, should be chosen those that show lower values of 
function objective (a − atarget). Fig. 11 shows the Pareto front in the space of solutions for the 
target values. Within this values it has been chosen one in the zone with higher population 
density of the solution space (σ0, n, K), and it has been called the calculated set of variables 
(σ0, n, K)calculated. In order to verify its ‘goodness’, it has been compared with the values of the 
variables (σ0, n, K) obtained by means of standard laboratory tests (traction test), which have 
been called the known values (σ0, n, K)known. 
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Fig. 11. Pareto front in the space of solutions 
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Moreover, the numerical simulation of the resulting values (σ0, n, K)calculated has been carried 
out in order to obtain the a, b, c parameters from the numerical load-displacement curve. 
These values have also been compared with the objective experimental values. Besides, the 
numerical and experimental load-displacement curves and the stress–strain curves have 
been compared too. Very good agreement has been observed in all cases. Table 3 gives detail 
of the comparison between the calculated values (σ0, n, K)calculated and those obtained with 
standard laboratory traction test (σ0, n, K)known. The relative error between the known and 
calculated values are also shown in Table 3. 
 

Calculated 
Known values

Value Error (%)
σ0 291.6 292.3 0.24 
n 0.256 0.2548 0.47 
K 854.5 849.76 0.55 

Table 3. Results obtained and relative error 
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Fig. 12. Pareto front in the space of solutions for another material 

Moreover, in Fig. 11 there are different zones with high population density (solutions). 
Thus, at a slight sought it could be thought that there is no uniqueness in solution, because 
there are different zones in the figure with high population density. This fact is however 
observed in some solutions, but generally it is not a problem, because the ranges of variation 
of variables in the different solutions and their influence on the stress–strain curve is small 
enough to consider that any result is a good one. However, in many other cases there is only 
a single zone with high population density and all values trend to a unique solution (Fig. 12) 

6.2 Micromechanical characterization 
Once the material has been macromechanically characterized, only four of the seven 
parameters to determine (σ0, n, K, εn, fn, fc and fF) are still unknown (εn, fn, fc and fF) and they 
have to be obtain by means of another inverse procedure. The inputs variables for the 
micromechanical characterization are εn, fn, fc and fF. From Fig. 7 it has been shown that the 
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only parameters to identify in zone III are εn and fn. In this zone, central composed 
experiment design centred on faces, based on quadratic response surfaces, has been used to 
identify the values of these sets of variables to simulate and to choose the minimum number 
of sets required. In Zone III, only has been applied design of experiments, since defining 
multiple batteries of simulations for each particular material that it is not known 
beforehand, is not operative. It has been selected 20 sets of variables (20 experiments) 
distributed in order to obtain variable inflation factors greater than one and lower than four. 
In addition, the input variables vary within the following ranges  

 n n= 0.15 - 0.3, f = 0.01 - 0.07ε  (14) 

which are typical ranges for steels (Abendroth and Kuna, 2003). In addition, the maximum 
variation of (εn, fn) is Δ(εn, fn)max=(0.05, 0.015). 
Zone III has been adjusted with a linear law in the form y=l+m·x. Again, the commercial 
software DataFit has been used for this purpose. Now, the two output data obtained from 
each input set are the factors l and m, which depend on the two variables to determine, that 
is l=l(εn, fn) and m=m(εn, fn). Both factors are postulated as second-order polynomial models 
that can be written in the form 

 2 2
n n 0 1 n 2 n 11 n 22 n 12 n ng(ε , f ) = g + g ε + g f + g ε + g f + g ε f⋅ ⋅ ⋅ ⋅ ⋅ ⋅  (15) 

where g(εn, fn) correspond to l=l(εn, fn) and m=m(εn, fn). 
Coefficients gij have been obtained using DataFit with regularized input values (εn, fn) 
varying within the range [−1, 1]. Table 4 gives detail of the values obtained for a 99% 
confidence interval. Both regressions are very significant and the proportion of variance of l 
and m, explained are 99.3%, 99.7%, respectively. From zone III of the load-displacement 
curve of the laboratory small punch test, the target values are ltarget=0.0119 and 
mtarget=0.7909. 
 

 l m 

g0 0.022333 0.774075 
g1 -0.001755 0.011094 
g2 0.029950 -0.051640 
g11 -0.001519 0.001642 
g22 0.000071 0.000086 
g12 -0.00123 0.007788 

Table 4. gij. coefficients for the second- order models for functions l and m 

Again, Pareto front has been obtained by means of the evolutionary genetic algorithm 
NSGA-II run in MATLAB. The Pareto front in the space of functions [(m − mtarget), (l − ltarget)] 
for the target values is shown in Fig. 13. Moreover, Fig. 14 shows the Pareto front in the 
space of solutions (εn, fn). In order to verify its ‘goodness’, the numerical simulation of the 
resulting values (εn, fn)calculated has been carried out in order to obtain the (l, m) parameters 
from the numerical load-displacement curve 
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Fig. 13. Pareto front (Zone III) in the space of functions for the target values  
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Fig. 14. Pareto front (Zone III) in the space of solutions 

 
Calculated 
εn 0.2107 
fn 0.0293 
↓ Target Pareto Error (%)
l 0.0119 0.0119 1.78e-3 
m 0.7909 0.7909 1.45e-4 

Table 5. Results obtained for zone III and relative error 

Table 5 gives detail of these values. This table also shows the relative error of the functions l 
and m with respect to the objective values (l,m)target. Again, very good agreement has been 
observed in all cases. 
Once the parameters εn and fn have been determined a very good agreement between the 
experimental and numerical curves at zones I, II and III has been achieved. However, it is 
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from zone IV where the curves separates from each other due to the accelerating effect on 
the evolution law of the void volume fraction induced from void coalescence, which 
seriously affect the load resistance capacity of the material. The critical void volume fraction 
fc is the only parameter that defines the beginning of coalescence in the material. This value 
can be obtained from the evolution law of the void volume fraction of the specimen at the 
region where failure takes place. The value of fc is the value of porosity (void volume 
fraction) at the instant in which the experimental and numerical curves begin to separate 
from each other, and corresponds to the initiation of Zone IV. For the target material 
(studied material), this separation takes place for a displacement of the punch of 1.32 mm. 
Thus, the corresponding critical void volume fraction obtained is fc=0.07 (Fig. 15). 
After fc has been determined, the void volume fraction keeps on growing up to the 
maximum load point. This maximum marks the beginning of zone V where the load 
carrying capacity decreases drastically. The slope of this zone depends on fF. The value of fF 
can be obtained carrying out several simulations with different values of fF until the best 
agreement in zone V is obtained. For the material studied in this paper (tested by means of 
the SPT), very good agreement between the experimental and numerical curves is achieved 
with fF=0.1. 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5

Displacement (mm)

V
oi

d
vo

lu
m

e
fr

ac
tio

n
(f

)

1.32

0.07

 
Fig. 15. Void volume fraction–displacement curve and onset of void coalescence 

 
σ0 (MPa) n K εn fn fc fF q1 q2 
292.3 0.2548 849.76 0.2107 0.0293 0.07 0.1 1.5 1.0
         
q3 f0 Sn µ E (MPa) ν 
2.25 0 0.01 0.3 200 000 0.3 

Table 6. Complete characterization for the studied material 

Once the macromechanic characterization and the micromechanic characterization have 
been completed, the material is completely characterized. The resulting values for the 
different parameters obtained by means of the methodology presented in this paper for the 
complete characterization of the SP tested material are detailed (Table 6). 
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7. Conclusion 
In this paper has been developed an inverse methodology for the determination of the 
mechanical and damage properties of structural steels that behave according to the 
Hollomon’s law and to the damage model developed by Gurson, Tvergaard and 
Needleman. Most of these parameters have been derived from the load-displacement curve, 
which has been obtained by means of small punch tests. 
This methodology allows:  
1. To characterize not only macromechanically but micromechanically, a wide variety of 

structural steels, combining experimental data and pseudo-experimental data 
(numerical simulations). 

2. Knowing the deformation of specimen while the test is running 
3. To identify the zone of the load-displacement curve that is affected by each variable, 

and to perform sensitivity analyses. 
Moreover, the Pareto front and the evolutionary genetic algorithms allow to obtain, in a 
relative easy way, numerical results that fit with good agreement the experimental results. 
In addition, the best way to tackle the parameter identification problem, seems to be the use 
of a battery of numerical simulations combined with design of experiments. The former has 
to be used for the macromechanical characterization, whereas the later should be used for 
the micromechanical characterization. 
Finally, the inverse methodology shown in this paper, has to be developed for each type of 
material, as well as for each thickness of the specimen and each test temperature. 
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1. Introduction 
Laser shock peening (LSP) is a surface treatment process to improve surface integrity and 
fabricate micro surface structures. The mechanism of LSP is shown in Figure 1. LSP is a cold 
mechanical process where pressure waves caused by expanding plasma plastically deform 
the surface of a material. LSP uses a thin layer of ablative material that is opaque to the laser. 
The opaque ablative material, typically black spray paint or tape, is used as a sacrificial layer 
in the early study by Fairland and Clauer (Fairland & Clauer, 1976). The sacrificial layer also 
minimizes undesirable thermal effects on the surface caused by the laser. The laser partially 
vaporizes the ablative layer to form high pressure plasma. The plasma, confined by a thin 
layer of water film, expands rapidly resulting in a recoiling pressure wave on the order of 
GPa reported by Fairland et al. (Fairland et al., 1972), Fabbro et al. (Fabbro et al., 1990), 
Masse and Barreau (Masse & Barreau, 1995), Berthe et al. (Berthe et al., 1997), Fan et al. (Fan 
et al., 2005), Warren, et al. (Warren et al., 2008), and Caslaru, et al. (Caslaru et al., 2008). The 
pressure wave is the cold mechanical process that plastically deforms the surface. The 
plasma-induced shock pressure on the order of GPa can be much larger than the dynamic 
yield strength of the work material. Once the peak pressure exceeds material yield strength, 
the transient shock pressure causes severe plastic deformation, refined grain size, 
compressive residual stresses, and increased hardness at the surface and in the subsurface.  
As a result, the mechanical properties on the workpiece surface are enhanced to improve the 
performance of fatigue, wear, corrosion and foreign object damage. 
Besides producing favorable surface integrity, LSP can also be used to fabricate various 
micro surface structures such as dent arrays using an automatic x-y positioning system. The 
micro surface structures may have various functions. For example a laser peened dent array 
can act as lubricant reservoirs to reduce coefficient of friction in bearings and to reduce flow 
drag of compressor blades. 
Just due to the transient nature of shocking pressure, real time in-situ measurement of 
laser/material interaction is very challenging. A numerical simulation method may provide 
an ideal tool to shed light on the process mechanics and resultant surface integrity. 
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Fig. 1. Process principle of micro dent fabrication by LSP 

2. State-of-the-art of LSP simulation 
2.1 LSP for enhanced surface integrity 
LSP is a surface treatment process to modify surface properties for improved wear and 
fatigue performance. LSP is primarily conducted on metallic components. The principle of 
LSP is to use a high intensity laser and suitable overlays to generate high pressure shock 
waves on the workpiece surface. 
An increase in fatigue strength is achieved by large magnitudes of compressive residual 
stresses which develop in the subsurface.  The maximum compressive residual stress is 
usually on the surface and decreases with depth. The transient shock waves can also induce 
microstructure changes near the surface and cause high density of dislocations. The 
combined effect of the microstructure changes and dislocation entanglement contribute to 
improved surface properties.   
It has been shown by previous research (Clauer et al., 1983; Clauer & Koucky, 1991; Peyre et 
al., 1996; Vaccari, 1992; Ashley, 1998; Brown, 1998; Banas et al., 1990) that improved fatigue 
life of metallic components such as bearings, gears, shafts, etc can be accomplished by 
inducing compressive residual stress using LSP.  An advantage of LSP is that the affected 
depth is very deep (≈ 1 mm) as compared with other surface treatment processes such as 
conventional shot peening. 
During LSP (Figure 1), the sample surface is first coated with a thin layer of material such as 
black paint which is opaque to the laser beam.  This opaque layer acts as sacrificial material 
and is converted to high pressure plasma as it absorbs energy from a high intensity laser (1-
10 GW/cm2) for very short time durations (< 100 ns).  If the sample surface is also 
submerged in a transparent media such as water, the rapidly expanding plasma cannot 
escape and the resulting shock wave is transmitted into the sample subsurface.  The shock 
pressure can be much larger than the dynamic yield strength of the material (>1 GPa), which 
causes surface plastic deformation and compressive residual stresses which can extend to a 
deep depth (≈ 1 mm) in the subsurface.  Due to the high strains/strain rates that the material 
experiences, there can also be significant microstructure changes thus causing the surface 
properties such as hardness, strength, and fatigue strength to be improved.  Because thermal 
rise in the sample is nearly eliminated by the water overlay, LSP is primarily a cold working 
process. 
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A significant amount of LSP research has been conducted to investigate the surface 
integrity.  Most experimental work has focused on the determination of residual stress 
magnitudes and distributions in the near surface.  The effect of LSP on surface properties 
and fatigue life has been relatively less studied.  The resulting surface integrity can be 
correlated with the LSP process parameters such as laser intensity, laser spot size, peening 
pass, and peening spacing.  The following is a brief overview of previous research results. 
Residual stress can vary with LSP process parameters.  Increasing the laser intensity 
increases both the magnitude and affected depth of compressive stress in the subsurface.  
However, it has been shown that laser intensities greater than a particular threshold serve to 
decrease the surface stress magnitude, but continue to increase the magnitude and affected 
depth in the subsurface (Peyre et al., 1996). This was attributed to expansion release waves 
that are formed due to high energy shock waves. An investigation of laser spot size effect 
showed that energy attenuation is less for larger spot sizes allowing the stress shock wave to 
propagate deeper into the material (Fabbro et al., 1998). Thus larger spot sizes increase the 
depth of plastic deformation. A study of overlapped laser spots (Clauer & Koucky, 1991; 
Peyre et al., 1996; Peyre et al., 1998; Ruschau et al., 1999) showed that the residual stress 
distribution is nearly uniform and is entirely compressive. 
Previous numerical simulations of LSP have been performed to gain better understanding 
of the physical process. Because LSP is a highly transient process, it is difficult (if not 
impossible) to experimentally observe and quantify the stress wave propagation into the 
sample surface. Simulations have been used to aid in determining accurate shock pressure 
models, verify experimental data, and predict residual stress profiles. Zhang et al. (Zhang 
et al., 2004) improved the shock pressure models by Clauer (Clauer & Holbrock, 1981) and 
Fabbro (Fabbro et al., 1990) by accounting for the non-linear mass transfer of LSP. The 
model also accounts for the time dependent radial expansion of plasma for micro sized 
laser peening. Finite element simulations have been performed to verify and predict 
residual stress profiles after LSP (Braisted & Brockman, 1999; Ding, 2003; Zhang & Yao, 
2002). 

2.2 LSP fabrication of micro dent arrays 
The controlled patterning of solid surfaces improves the wear, friction and lubrication 
(Anderson et al., 2007). Micro dents serve as fluid reservoirs that effectively retain lubricant. 
Also micro dents function as traps for wear debris, eliminating a potential plowing effect 
caused by entrapped particles. The long term benefit of surface patterning is to extend the 
life of contacting surfaces. Micro dents on the surface can improve the surface lifetime by a 
factor of ten (Romano et al., 2003). Experimental studies on the effect of dent patterns on 
micro-grooved sapphire discs lead to the conclusion that fabricated micro dents on metallic 
surfaces is a useful method to reduce friction in sliding contact. Manufacturing techniques 
to fabricate micro dents arrays on component surfaces include micro indentation (Nakatsuji 
& Mori, 2001), micro-drilling (Friedrich, 2002), and laser ablation (Etsion, 2005). These 
processes often induce surface damage such as cracks and phase transformation which may 
shorten component life. A new process to make dents while avoid material damage is highly 
needed. When the pressure exceeds the dynamic yield stress in LSP, plastic deformation 
occurs and forms a dent on the surface. LSP is a flexible and economic technique to fabricate 
micro dent arrays on metallic component surfaces using an automatic x-y positioning 
system. 
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2.3 LSP biomaterials 
Biodegradable implants are a relatively new and emerging form of treatment for common 
bone ailments. Biodegradable implants are useful to the healing process due to the ability to 
gradually dissolve and absorb into the human body after implantation. The development of 
biodegradable implants has had a beneficial effect on in-vivo treatment of patients with 
various bone ailments.  
Currently, biodegradable implants are mainly made of polymers, such as poly-L-Lactic acid. 
However, these polymer based implants usually have an unsatisfactory mechanical 
strength.  An alternative to biodegradable polymer implants is permanent metallic implants 
composed of steel or titanium alloys. Permanent metal implants have superior strength 
compared to polymers. As a consequence, metal implants are often too stiff resulting in a 
stress shielding effect that can be damaging to the healing process (Benli et al., 2008; 
Completo et al., 2008; Au et al., 2007; Shi et al., 2007; Isaksson & Lerner, 2003; Nagels et al., 
2003; Gefen, 2002). Stress shielding occurs when bone is shielded by an implant from 
carrying load. As a result, the bone tends to weaken over time resulting in more damage. To 
minimize the effects of stress shielding on the human body while still retaining strength, a 
soft lightweight metal is required.  Therefore, Mg alloys are proposed as an ideal 
biodegradable implant material due to its biocompatibility and superior strength to weight 
ratio compared to that of other biomaterials. 
Magnesium is an element essential to the human body. Intake of a certain amount of 
magnesium (300 ~ 400 mg/day) is normally required for regular metabolic activities (Seiler, 
1987). The direct corrosion product of magnesium, Mg2+, is easily absorbed or consumed by 
the human body (Song, 2007). However, the rapidly generated by-products of magnesium 
corrosion, such as hydrogen gas and hydroxides, are not physiologically favorable. 
Hydrogen evolution and alkalinization resulting from corrosion of Mg are the most critical 
obstacles in using magnesium as an implant material. A straightforward strategy to tackle 
these difficulties is to control the corrosion rate of a biodegradable magnesium implant. The 
adjustment of surface property is one promising solution to control the corrosion rate of Mg 
in human body.  
In this chapter, calcium (Ca) was alloyed with Mg to form a Mg-Ca alloy. It is well known 
that Ca is a major component in human bone and is also essential in chemical signaling with 
cells (Ilich & Kerstetter, 2000). Ca has a low density (1.55 g/cm3) such that when alloyed 
with Mg, the density is similar to that of bone. The Ca in Mg-Ca alloys produces 
hydroxyapatite (HA) as a corrosion product on the surface of the implant. HA mineral is a 
naturally occurring form of calcium apatite with the formula Ca10(PO4)6(OH)2 and has close 
resemblance to the chemical and mineral components of teeth and bone. As a result of this 
similarity it stimulates bone cells to attack the implant surface and make proper bonding 
(Aksakal & Hanyaloglu, 2008), which allows for fractured segments to realign in correct 
anatomical position which is critical to recovery. 
Laser shock peening (LSP) is a promising surface treatment technique to improve the 
surface integrity by imparting compressive residual stresses that are beneficial for 
controlling corrosion of Mg-Ca implants. LSP has been initiated to fabricate an array of 
dents on component surfaces (Warren et al., 2005; Warren & Guo, 2007; Caslaru et al., 2008; 
Sealy & Guo, 2008). Previous finite element analyses (FEA) of LSP investigate individual 
peening of a metal substrate. FEA of single peens neglects the effect of neighboring dents on 
topography, hardness and residual stress. The purpose of this chapter is to determine the 
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effects of sequential peening of Mg-Ca alloy on surface topography as well as predict the 
residual stress profile. Sequential peening experiments and simulations were performed and 
compared to single peening experiments and simulations. 

3. LSP modeling and simulation procedures 
3.1 Modeling of 3D spatial and temporal shock pressure  
Because the laser spot is circular, a two-dimensional finite element simulation can not reflect 
the true nature of LSP.  For this reason a 3D model must be used for realistic simulation of 
the laser induced shock pressure. The simulation mesh is shown in Figure 2. The mesh has 
two regions with different mesh densities. With a high mesh density, the results from a 
simulation converge to a unique solution. As expected, the area where the pressure is 
applied contains a higher mesh density than the outer regions of the model. The dense mesh 
region consists of elements of 1 µm cubes. Micron elements provide a suitable spatial 
resolution of the output variables. 
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Fig. 2. Three-dimensional (3D) FEA simulation of LSP 

The spatial and temporal pressure distribution during LSP is neither uniform nor linear. For 
this reason a subroutine VDLOAD was used to apply the non-uniform shock pressure.  The 
subroutine allows the pressure intensity to vary simultaneously with respect to radial 
distance from the center of the laser spot and elapsed time of the laser pulse.   It works by 
assigning local origins at the center of the desired shock peen locations and calculates the 
radial distance to each node surrounding this new origin from the equation of a circle as  

 ( )( ) ( )( )2 2,1 ,2r curcoord i curcoord i= +  (1) 

where ( ),1curcoord i  and ( ),2curcoord i  are the coordinates in the 1 and 2 directions, 
respectively, for the current node at each time increment of the analysis. 
The pressure as a function of radial distance from the center of the laser spot follows a 
Gaussian distribution (Zhang et al., 2004).  Maximum pressure is located at the center of the 
laser spot and decreases with increasing radial distance from the center. 
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The pressure distribution is also a function of the elapsed time of laser pulse.  The pressure 
is initially zero and reaches a peak value when the elapsed time equals the total pulse time.  
Following the results by Zhang, et al. (Zhang et al., 2004), the pressure versus time can be 
well represented as fourth order polynomials to follow the pressure vs. time relationships 
shown in Figure 3. 
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Fig. 3. Theoretical pressure vs. time curve 

The pressure ( ),P r t  at any point and time can be calculated as  

 ( ) ( )
2

2, exp
2
rP r t P t
R

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (2) 

where ( )P t  is the pressure at time t during the laser pulse interpolated from Figure 3, r  is 
the radial distance from the center of the laser spot in Eq. (1), and R  is the laser spot radius.   

3.2 Modeling of dynamic mechanical behavior 
Due to the extremely high strain rates (> 106 s-1) that occur during LSP, traditional material 
models are not adequate.  For this reason a subroutine VUMAT was used to incorporate the 
plasticity/failure model developed by the internal state variable (ISV) plasticity model 
(Bammann et al., 1993; Bammann et al., 1996). The BCJ constitutive equations can be written 
below. 

 e e e eσ σ W σ σW D I D( ) 2trλ μ= − + = +  (3) 

 e pD D D= −  (4) 

 
{ }p σ α σ αD

σ α
( )

( )sinh
( )
R Y T

f T
V T

⎡ ⎤− − + −
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
    (5) 
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⎡ ⎤

= − +⎢ ⎥
⎢ ⎥⎣ ⎦

  (7) 

The evolution equations (6) and (7) for the internal state variables α  and R  are motivated 
from dislocation mechanics and are in a hardening-minus-recovery format. The kinematic 
hardening internal state variable α  representing directional hardening is related to the 
dislocations in cell interior. The variable captures the softening effect due to unloading, also 
termed as Bauschinger’s effect. The isotropic hardening internal state variable R  is related 
to the dislocations in walls and it captures the continued hardening at large strains. The use 
of internal state variables and the evolution equations enable the prediction of strain rate 
history and temperature history effects. 
The model uses nine temperature dependent functions to describe the inelastic response. 
They can be classified into three basic types: those associated with the initial yield, the 
hardening functions, and the recovery functions. The rate-independent yield stress ( )Y T , 
the rate-dependence of initial yield stress ( )f T , and the magnitude of rate-dependence of 
yield stress ( )V T  are assumed to be of the forms 

 1 2( ) exp( / )V T C C T= −  (8) 

 3 4 19 20( ) exp( / )([1 (tanh( ( )))]/ 2)Y T C C T C C T= + −     (9) 

 5 6( ) exp( / )f T C C T= −  (10) 
 

The three functions of ( )dr T , ( )h T , ( )sr T  describe the tensor or kinematic hardening and 
recovery, which can be thought of as the center of yield surface. The functions of ( )dR T , 

( )H T , and ( )sR T  describe the scalar or isotropic hardening and recovery, which can be 
thought of as the radius of the yield surface.     

 7 8( ) exp( / )dr T C C T= −  (11) 

 9 10( )h T C C T= −   (12) 

 11 12( ) exp( / )sr T C C T= −  (13) 

  13 14( ) exp( / )dR T C C T= −   (14) 

   15 16( )H T C C T= −  (15)  

 17 18( ) exp( / )sR T C C T= −  (16) 
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The material constants ( 1 20C C− ) can be determined by fitting the BCJ model to the 
baseline test data using a non-linear square fitting method. The very short pulse duration 
(< 100 ns) makes the simulation an ideal transient case. For this purpose, Abaqus/Explicit 
(HKS, 2008) was used to implement the simulation scheme.  

4. Simulation case studies 
3D finite element simulation models in peening several engineering materials have been 
developed to investigate transient laser/material interactions at nano timescale during 
peening. Three application case studies in automotive, aerospace, and biomedical industries 
are presented using the developed simulation method.  

4.1 Case 1: LSP simulation of enhancing surface integrity of hardened steel 
The purpose of this case study is to micro laser shock peening hardened AISI 52100 steel (62 
HRc) by varying the laser pulse duration (time elapsed for maximum pressure) for times of 
5, 10, 50, and 100 ns.  For comparative purposes, a conventional material model which uses 
experimental compression stress/strain data and the failure/plasticity model termed the 
ISV model is be used to predict the material behavior.  The results will provide insight into 
the highly transient LSP process and assist in proper selection of experimental parameters 
for control of surface integrity requirements after LSP.  
The fitted material constants are shown in Table 1. The simulation was performed as a single 
pass of laser shock peening with a laser spot radius of 6 µm.  The simulated laser intensity is 
5.5 GW/cm2 which attains a maximum pressure of ≈ 4 GPa.   The laser pulse time was 
varied as 5, 10, 50, and 100 ns in order to test the effect of strain rate on the transient stress 
and strain.   
 

BCJ Parameter Material Constants BCJ Parameter Material Constants 
C1 (MPa) 1.00E+00 C11 (s/MPa) 2.39E-03 
C2 (K) 1.00E+00 C12 (K) 4.00E+02 
C3 (MPa) 2.52E+03 C13 (1/MPa) 5.00E-02 
C4 (K) 5.85E+01 C14 (K) 0.00E+00 
C5 (1/s) 1.00E+00 C15 (MPa) 1.50E+02 
C6 (K) -1.20E+04 C16 (MPa/K) -1.40E+01 
C7 (1/MPa) 4.00E-02 C17 (s/MPa) 2.70E-03 
C8 (K) 0.00E+00 C18 (K) 0.00E+00 
C9 (MPa) 5.60E+03 C19 4.15E-03 
C10 (MPa/K) 9.00E+00 C20 (K) 6.65E+02 

Table 1. ISV material constants of AISI 52100 steel 

The greatest magnitude (stress or strain) during the simulation was retrieved across and 
beneath the laser spot as shown in Figure 4.  This allows direct comparison of various laser 
pulse times on the transient behavior of the material during LSP. For comparative purposes, 
the results are plotted for simulations using the BCJ model and direct data input in table 
format (hereafter “Table”) which use only compression stress/strain data for modeling 
material behavior. 
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Fig. 4. Result path locations 

4.1.1 Stress distributions 
The maximum subsurface normal stress in the peening direction is shown in Figure 5a. The 
maximum stress occurs on the surface for the greater pulse times (50 ns and 100 ns) while it 
occurs in the subsurface (≈ 3.5 µm) for the lower pulse times (5 ns and 10 ns).  This may be 
due to higher strain rates generated by the shorter pulse times.  However, the stress at all 
depths greater than 3.5 µm is more compressive for the shorter pulse durations. It is 
observed that the subsurface stress difference at the same depth can be as much as 750 MPa 
between the shortest and longest laser pulse times.  Another observation is the consistently 
higher stress (at depths > 3.5 µm) predicted by the BCJ model than that for simulations 
using table format.  This is reasonable due to the extremely high strain rates during LSP for 
which there is no experimental data available. At pulse times of 50 ns and 100 ns, the strain 
rate has less influence and the stress distribution curves are nearly identical for the BCJ 
model and table format. 
The maximum normal stress across the specimen surface is shown in Figure 5b.  From the 
figure it is observed that the difference between the experienced surface stress at the laser 
center can be as large as 1.0 GPa by varying the laser pulse time.  However, the difference is 
negligible beyond the diameter of the laser spot (12 µm). 
 

 
Fig. 5. Stress variation (peening direction a) down and  b) across 



 Numerical Simulations - Applications, Examples and Theory 

 

340 

The subsurface von Mises profile is shown in Figure 6a.  The maximum value of von Mises 
stress occurs at a depth of 4.2 µm for all simulation cases.  It is also observed that the stress 
magnitude is inversely proportional to the laser pulse time.  The difference between the 5 ns 
and 10 ns pulse times is, however, much larger (500 MPa) than for the 50 ns and 100 ns cases 
(50 MPa) at the surface showing that the relationship is not linear.  In addition, the variation 
of the stress for the 5 ns and 10 ns pulse is larger than that for the 50 ns and 100 ns pulse 
times when comparing the BCJ model and table format. 
Figure 6b shows the von Mises distribution across the top surface.  The trend is similar to 
that of the transverse normal stress in that the largest magnitude occurs across the entire 
surface by order of decreasing pulse time.  A sharp rise in von Mises stress occurs across a 
diameter of ≈ 24 µm reaching a maximum at the center of the laser spot. The influence of the 
high strain rate induced by the 5 ns pulse is seen by the 30% higher equivalent stress when 
compared to the next pulse time (10ns). 

 

 
Fig. 6. Von mises variation a) down and b) across 

4.1.2 Strain rate  
The maximum strain occurred in the loading direction and is shown in Figure 7a.  For each 
case, the greatest strain magnitude occurred in the subsurface, the depth of which is 
dependent on the pulse duration.  For the 10, 50, and 100 ns cases, the maximum value 
occurred at a depth of ≈ 2.8 µm, while the 5 ns case reached a maximum strain of -1.87×10-2 
at a depth of 4.3 µm.  After the maximum strain is reached, the strain magnitude decreases 
with the highest value occurring at each depth in order of decreasing pulse duration.   

 

 
Fig. 7. Strain variation a) down and b) across 
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The maximum strain in the loading direction across the surface is shown in Figure 7b.  The 
maximum value of -1.4×10-2 was attained for the 5 ns pulse time using the BCJ model.  A ≈ 
7% lower strain was predicted by the table format for each simulation pulse time.  The 
maximum strain attained by the 10, 50, and 100 ns cases was ≈ -1.2×10-2. 

4.1.3 Residual stress 
The predicted residual stresses were obtained from the surface element located at the center 
of the laser spot.  A comparison of the measured and simulated residual stress values are 
shown in Figure 8. Both the predicted and measured residual stresses are compressive, so 
they agree with the nature and trend. There is some discrepancy between the two which 
may be due to several factors that differentiate the experimental procedure from the 
simulation.  In addition to numerical errors, the first is the massive parallel LSP used for the 
experiment which was not accounted for in the benchmark simulation.  The overlaps of 
consecutive laser peenings that occurred in LSP experiments would increase the magnitudes 
of compressive residual stress. The predicted residual stresses from both single and two LSP 
passes are expected to be lower than those from the experiments. The second is that the x-
ray diffraction technique using CrKα radiation actually measures an average residual stress 
in the depth of x-ray penetration (5-10 μm).  In addition, the exact location of residual stress 
measurement with regard to the laser peened zone can not be accurately controlled for the 
experiment. For the measurement itself, the residual stress magnitudes across the peened 
surface are different just due to the nonuniform nature of surface integrity. Unless high 
precision calibration and control can be carried out first, the x-ray and other non-destructive 
measurement methods are only useful for comparative purpose. 
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Fig. 8. Comparison of predicted surface residual stress s11 with measured data 

4.2 Case 2: LSP simulation of fabricating micro dent arrays on titanium surface 
A 3D finite element simulation model was developed to fabricate micro dent arrays on 
titanium Ti-6Al-4V surfaces as shown in Figure 2, for improving tribology performance. Ti-
6Al-4V is a widely used engineering material in aerospace, automotive, and biomedical 



 Numerical Simulations - Applications, Examples and Theory 

 

342 

industries. Micro surface structures of the LSP processed Ti-6Al-4V components is critical 
for product performance. However, the surface deformation and mechanical behavior in 
patterning a Ti-6Al-4V surface has not been well understood. The simulation aims to 
understand the laser/material interaction and the related mechanical phenomena. The 
material constants (C1 – C20) were determined by fitting the ISV model to the baseline test 
data using a non-linear square fitting method.  The fitted material constants are shown in 
Table 2 (Guo et al., 2005). The modulus of elasticity for Ti-6Al-4V is 114 GPa. Poisson’s ratio 
is 0.34 at room temperature. The density is 4430 kg/m3. 
 

ISV 
parameter 

Material 
constants 

ISV 
parameter 

Material 
constants 

C1 (MPa) 1.0 C11 (s/MPa) 205 
C2 (K) 0.2 C12 (K) 0 
C3 (MPa) 1570 C13 (1/MPa) 1.9E-3 
C4 (K) 10 C14 (K) 0 
C5 (1/s) 1.0E-5 C15 (MPa) 619 
C6 (K) 0 C16 (MPa/K) 3.8E-1 
C7 (1/MPa) 7.0E-2 C17 (s/MPa) 5.0E-4 
C8 (K) 0 C18 (K) 0 
C9 (MPa) 1866 C19 1.0992E-3 
C10 (MPa/K) 0.3 C20 (K) 876  

Table 2. ISV material constants of Ti-6Al-4V 

4.2.1 Simulated dent geometry 
Figure 9a depicts the dent profiles for the various pulse times. Each dent was measured 50 
ns after the simulation. Initially, increasing the pulse time leads to an increase in depth. 
However, the 30 ns simulation has the maximum depth at 0.9 µm. The simulations with 
pulse times greater than 30 ns exhibited a decrease in the depth. This suggests there is an 
optimal pulse time which produces the deepest dents given a peak pressure. 
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 (a) constant peak pressure of 4 GPa (b) constant pulse time of 30 ns 
Fig. 9. Simulated dent profiles 

Figure 9b shows the dent profiles as the peak pressure increases. There is a non-linear 
relationship between the dent depth and peak pressure. As the load increases, the depth of the 
dent increases as well. However, the radius of each dent is about 20 microns. A comparison 
between the simulated dent contours and measured ones will be conducted in a future study. 
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4.2.2 Surface material behavior at different peening time 
Material behaviors at the surface are characterized by the stress/strain graphs along the 
peening or depth direction (axis-3). Each stress/strain profile plotted represents the 
maximum transient stress/strain during the peening process. The corresponding radial 
curves are corresponding stress/strain graphs where the maximum occurs along the depth. 
Transient stress profiles: Von Mises stress along the depth is plotted in Figure 10a. In each 
simulation, the maximum von Mises is 1.45 GPa and occurs about 3 µm below the surface 
and gradually decreases to 1.27 GPa. The stress then sharply decreases toward zero as the 
depth increases. Surface material at different peening times experiences similar von Mises 
characteristics but at different depths. Figure 10b shows von Mises profile in the radial 
direction 3 µm in the subsurface. In the radius of 9 µm, the von Mises stress remains greater 
than 1.2 GPa. Then, the stress begins to decrease exponentially. 
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Fig. 10. von Mises stress distributions at different peening time 

Transient strain profiles: The effective plastic strain PEEQ along the depth, Figure 11a, 
exhibits an inverse relationship with the peening time. The plastic strain decreases with the 
increased peening time. However, below the surface that is not the case. The 30 ns peening 
time induces the maximum plastic strain. PEEQ converges to zero at 15 µm to 20 µm in 
subsurface. Figure 11b illustrates the radial profiles of PEEQ which extends 10 µm in the 
radial direction. 
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Fig. 11. Effective plastic strain distributions at different peening time 
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Strain rate profiles: Figure 12a shows the strain rate along the depth for each peening time. 
Material at the 7 ns peening case experiences the largest strain rate at 31×106/s at 3 µm in 
the subsurface. As peening time increases, the strain rate decreases non-linearly. In each 
case, the peak rate occurs at 2 to 3 µm below the surface. Figure 12b shows the radial profiles 
of the strain rate which extends approximately 10 µm from the peening center. The strain 
rate for the 7 ns case converges more rapidly in the radial direction than other cases. 
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Fig. 12. Strain rate distributions at different peening time 

4.2.3 Surface material behavior at different peening pressure 
Transient stress profiles: Von Mises profiles in the depth are plotted in Figure 13a. At peak 
pressures 3 GPa and 4 GPa, the maximum von Mises occurs at 3 µm in the subsurface. As 
peak load increases the maximum von Mises moves toward the surface. It is also observed 
that von Mises profiles overlap at peak pressures 5 GPa and 6 GPa. It implies that increasing 
the peak pressure over 6 GPa will saturate von Mises stress. Initially, the stress gradually 
decreases along the depth. Once it decreases to 1.3 GPa, it rapidly drops and converges 
toward zero. Figure 13b shows the stress along the radial direction. It exhibits a similar 
phenomenon seen in the depth direction. 
 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 10 20 30 40 50

vo
n 

M
is

es
 (G

Pa
)

Depth below surface (microns)

3 GPa
4 GPa
5 GPa
6 GPa

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0 5 10 15 20

vo
n 

M
is

es
 (G

Pa
)

Radial position (microns)

3 GPa

4 GPa

5 GPa

6 GPa

 
Fig. 13. von Mises stress distributions at different peening pressure 

Strain profiles: The equivalent plastic strain in the depth is plotted in Figure 14a. The 
maximum plastic strain at 6 GPa peak pressure is on the surface, while it moves deeper into 
the subsurface as the peak load decreases. For example, it moves to 3 µm deeper for the case of 
3 GPa peak pressure. The corresponding radial profiles for PEEQ are shown in Figure 14b. 
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Fig. 14. Effective plastic strain distributions at different peening pressure 

Strain rate profiles: Figure 15a shows that the maximum strain rate is 226×106/s on the 
surface at 6 GPa peak pressure. As peak pressure decreases, the maximum strain rate moves 
deeper below the surface. In addition, the simulations at peak pressures of 3 GPa and 4 GPa 
experienced much smaller strain rates (< 2×106) on the surface. But the maximum strain 
rates occur at 3 µm in the subsurface. The corresponding radial profiles of the strain rate in 
Figure 15b extend approximately 6 µm from the peening center. 
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Fig. 15. Strain rate distributions at different peening pressure 

4.3 Case 3: LSP simulation of peening biomedical material for enhanced corrosion 
performance 
A 3D semi-infinite model was used to simulate micro scale laser shock peening of 
biodegradable Mg-Ca. The material constants (C1 – C20) of the biomaterial were determined 
by fitting the ISV model to the baseline test data using a non-linear square fitting method 
(Guo et al., 2005).  The fitted material constants are shown in Table 3 (Guo & Salahshoor, 
2010). The modulus of elasticity for Mg-Ca is 45 GPa. Poisson’s ratio is 0.33 at room 
temperature. The density is 1750 kg/m3. 
A series of four simulations were performed in order to simulate sequential LSP. The Mg-Ca 
surface was peened once per simulation. Each simulation is composed of two steps. In the 
first step, the shock pressure is applied on the top surface. Next, the stresses and strains are 
allowed sufficient time to relax so that the solution has time to stabilize. The results from the 
first simulation were imported to the second simulation and so on until the surface was 
peened 4 times. 
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ISV 
parameter 

Material 
constants 

ISV 
parameter 

Material 
constants 

C1 (MPa) 1.0 C11 (s/MPa) 1E-4 

C2 (K) 600 C12 (K) 0 

C3 (MPa) 850 C13 (1/MPa) 0.7 

C4 (K) 20 C14 (K) 100 

C5 (1/s) 1.0E-7 C15 (MPa) 3E4 

C6 (K) 0 C16 (MPa/K) 39 

C7 (1/MPa) 0.1 C17 (s/MPa) 380 

C8 (K) -300 C18 (K) -900 

C9 (MPa) 2500 C19 0.2 

C10 (MPa/K) 0 C20 (K) 312.8 

Table 3. ISV material constants of Mg-Ca alloy 

4.3.1 Simulation scheme 
The 3D model in Figure 16 contains a quarter cylinder of 70,818 C3D8R finite elements and 
3,575 CIN3D8 infinite elements. The quarter cylinder mesh allows for a comprehensive 
analysis of the three dimensional stress and strain behavior below the surface while 
minimizing the computation time. Infinite elements as quiet boundary along the back and 
bottom surfaces were implemented to allow for stress waves to pass through a non-
reflective boundary. 
The mesh has two regions with different mesh densities. As expected, the area where the 
pressure is applied contains a higher mesh density than the outer regions of the model. The 
dense mesh region consists of 30 µm wide cubic elements. Micron level elements provide a 
suitable spatial resolution of the output variables to ensure spatial convergence. 
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Fig. 16. Three-dimensional FEA simulation of LSP 
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The pressure induced by LSP is a function of elapsed time and radial position. A useful 
approximation for P(t) is to assume it follows a 6th order polynomial as shown in Figure 17. 
The generic profile is based on numerous researchers (Berthe et al., 1997; Fabbro et al., 1990; 
Devaux et al., 1993; Wu & Shin, 2005; Zhang et al., 2004) who have measured the P(t) as a 
function of time. The critical components of P(t) are the pulse time and the peak pressure.  
The pressure pulse time typically last 2-3 times longer than the laser pulse (Devaux et al., 
1993; Berthe et al., 1999; Zhang & Yao, 2002). For the purpose of these simulations, the 
pressure pulse was assumed to be 3 times longer than the 7 ns laser pulse. The peak 
pressure for P(t) in water confined regime was estimated by 

 2 2( ) 0.01 ( / ) ( / )
2 3 oP GPa Z g cm s I GW cmα
α

=
+

 (17) 

where P is the peak pressure, Z is combined shock impedance defined by the following Eq. 
(18), Io is the power density given by Eq. (19), and α is a correction factor for the efficiency of 
the interaction (Fabbro et al., 1990; Peyre et al., 1996). Since the ablative material used in 
these experiments was relatively thick and absorbent compared to other materials used in 
literature, α was estimated to be low (0.1) such that the majority of the energy was absorbed 
by the ablative material. ZMgCa is defined as the product of the density and shock velocity 
(ZMgCa=ρMgCaUMgCa). The density of Mg-Ca is 1750 kg/m3 and the shock velocity is 
approximated based on the wave speed of sound through Mg-Ca (≈ 5000 m/s).  ZMgCa and 
Zwater are 8.75x105 and 1.65x105 g/cm2, respectively.  

 2 1 1

MgCa waterZ Z Z
= +  (18) 

 o
P

EI
t A

=  (19) 

where E is the average energy per pulse given as 0.2667 J. tp is the simulated pressure pulse 
time (21ns). A is the cross-sectional area of the generated plasma. The diameter of the 
pressure wave is approximately 250 µm which results in a peak pressure of 5 GPa. 
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Fig. 17. Spatially uniform shock pressure, P(t) 
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In this study, the radial expansion of plasma was taken into account for the following 
reasons. First, the experimental laser spot size is on the order of 100 microns. With such a 
small spot size, the expansion of plasma may not be neglected in the radial direction. 
Furthermore, the experimental ablative layer is not fully vaporized because it is thick and 
absorbs energy well. As a consequence, the pressure wave generated by the plasma has time 
and space to expand in all directions before entering the metal substrate. Radial expansion 
of plasma was modeled by allowing the applied pressure to act perpendicular to the 
deformed surface. Initially the pressure is one dimensional. As deformation occurs, the 
pressure follows the deformed surface resulting in a spherical shape pressure that expands 
in the radial direction. 
Implementing the temporal and spatial shock pressure is very challenging and a user load 
subroutine is therefore required. The user subroutine VDLOAD (Warren et al., 2008) of 
shock pressure has been programmed to apply a non-uniform shock pressure across the top 
surface. The circular pressure was applied in four locations. Figure 18 shows the peening 
distribution along the top surface. The spacing between simulated peens is 800 µm. 
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Fig. 18. Sequence of peening simulations (quarter shown) 

4.3.2  Simulation results 
Material behavior is characterized by stress/strain graphs along the peening or depth 
direction (axis-3 in Figure 18) and radial directions (axis-1&2). Each stress/strain profile 
represents the stabilized residual stress/strain. Residual stress/strain was achieved 30 µs 
after the pressure pulse.  
Dent geometry: Figure 19a depicts the simulated dent profiles for sequential and single LSP. 
The diameter of the simulated dents was 600-700 µm and had a depth of 10 µm. There was a 
negligible effect of neighboring dents on the overall dent depth. However, it was observed 
that neighboring dents do influence the tensile pile up region. The magnitude of the pile up 
increased approximately 50%. It is believed to be due to the radial expansion of neighboring 
peens. Tensile pile up is critical to tribological applications such as implants. A tensile 
region on the surface can drastically affect the wear and fatigue performance of a surface. 
Figure 19b shows the experimental dent profiles for sequential and single LSP. The 
experimental dents also had a diameter between 600-700 µm and a depth of 11µm. Results 
from the experiments confirms the validity of the simulation. Figure 19c and 19d are optical 
images of dents by sequential and single LSP. 
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  (a) Simulated dent profile  (b) Experimental dent profile 

  
 (c) Sequential LSP  (d) Single LSP 
Fig. 19. Simulated and measured dent topography 
Residual stress profiles: The predicted residual von Mises stress and S33 stress along the 
depth direction are shown in Figures 20a and 21a. The von Mises stress penetrated deeper 
into the surface for sequential peening. As expected, sequential peening had a greater effect 
on the surface residual stress since a larger area was exposed to peening. Along the depth 
direction, the residual stress S33 is compressive for approximately 150 µm. The compressed 
region is followed by a tensile region that eventually approaches 0 MPa. The magnitude of 
the compressive residual stress below the surface is 23 MPa. The predicted residual von 
Mises stress and S22 stress along the radial direction are shown in Figures 20b and 21b. 
Single peening neglects the effects from neighboring stress fields on the surface residual 
stress. Future work will include comparing simulated residual stress profiles to 
experimental residual stress. 
 

 
Fig. 20. Residual von Mises stress along depth (a) and radial (b) directions 
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Fig. 21. Residual stress, S33 along depth (a) and S22 along the radial (b) directions 
Strain and strain rate profiles: The plastic strain in the depth and radial directions is shown 
in Figure 22. The plastic strain extended 500 µm below the surface. The residual stress from 
previous peens had a negligible effect on the plastic strain. The maximum plastic strain 
occurred on the top surface and in the center of the dent. The diameter of the plastic zone is 
directly related to the topography of the dent. The peak strain rate in peening direction for 
the simulations was 19 × 106 s-1 in Figure 23. 
This work focuses on the experiment and FEA simulation of LSP MgCa alloy. More 
experimental results are needed to verify the simulation results. Further work is needed to 
demonstrate the effectiveness of the resulting surface by this method in improving surgery 
of bone ailments. 
 

 
Fig. 22. Equivalent plastic strain PEEQ along depth (a) and radial (b) directions 
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Fig. 23. Strain rate on the top surface, ER33 
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5.  Conclusions 
Laser shock peening (LSP) is a surface treatment process to improve surface integrity which 
significantly impacts component performance of fatigue, wear, corrosion, and foreign object 
damage. This chapter provides a state-of-the-art of LSP simulation and discussed the 
challenging issues to simulate a LSP process using finite element method. The new 
contributions of this chapter provide a 3D model of temporal and spatial shock pressure and 
material user subroutine of dynamic mechanical behavior at high strain rates. Three 
simulation case studies in automotive, aerospace, and biomedical industries are presented 
using the developed simulation method. The key results may be summarized as follows. 
• The 3D spatial and temporal peening pressure was modeled using a user subroutine. 
• The dynamic material behavior at high strain rates was modeled using the ISV model. 

Material constants of three types of important engineering materials were obtained. 
• The simulated dent geometry and residual stresses are similar to the measured data. 

This suggests the pressure model used successfully characterized the formation and 
propagation of the pressure wave. 

• The results suggested there is an optimal peening time that produces the deepest dent. 
Pulse time has a significant effect on the strain rate range. 

• The maximum transient stress occurred at a certain peening time.  The stress along the 
radial direction was slightly affected by the peening times. However, the stress along 
the depth and radius were drastically affected by the peek pressures. Increasing the 
peak pressure resulted in larger and shallower maximum stress. 

• Sequential peening affects the dent topography by increasing the size of the tensile pile 
up region. The pile-up region forms from the radial expansion of plasma. It is believed 
to have a great significance on tribological aspects of the biodegradable implant 
material. 

• There was no observed effect on the depth of dents when sequential peening was used 
as opposed to individual peening. 
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1. Introduction 
The essence and complicacy of approach to computer design of an optimal pulsed arc 
welding technology is that programmed periodic action should be developed on the one 
hand to exert its effect on melting and transfer of an electrode metal, and on the other hand, 
to control over the molten pool fluidity, the structural formation of weld and heat-affected 
zone  (HAZ) that appears as result of the weld pool crystallization whilst ensuring stability 
of the pulsed regime in welding in different spatial positions. The results of physical 
simulation and mathematical modelling permit to design optimal algorithms of pulsed 
control of energy parameters of welding - arc current and voltage, arc heated efficiency, 
peak short-circuiting current. The results of computer experiments permit to establish 
pulsed welding controlled parameters - service properties of welded joints (such as the sizes 
of welds and HAZ, quality and strength properties of welded joints) relation. 
The solution of the pulsed arc welding and surfacing processes optimizing problem is a 
matter of great significance because of continuously increasing requirements on quality and 
reliability of welded joints, saving in welding fabrication cost. The construction of welded 
structures has a number of special features. These are associated with the character of 
welding metallurgy and solidification processes in the weld metal, the welded joint heating 
and cooling conditions and others, influenced on the stability of parameters of the complex 
electrodynamics’ system: “power source – electrode – arc – weld pool – welded joint”. It is 
necessary to ensure the regulation of the penetration depth, welding in wider gaps and in 
different spatial positions, joining metals and alloys of dissimilar chemical composition, 
decreasing the degree of splashing of electrode metal, increasing the stability of arc ignition 
and arcing. Arc heating sources energy concentration is unable to solve these technological 
problems including increasing the productivity of welding operations and improving the 
welded joints quality parameters. 
The rate of assembling operations in the construction of pipelines is increased mainly as a 
result of automation of welding non-rotating joints. The main part of the system of 
transmission pipelines in Russia for the transport of natural gas, oil and products of 
processing mainly of the high-pressure type and with a large diameter (1220-1420 mm) has 
been operating for a relatively long period of time: 30% of gas pipelines have been operating 
for more than 20 years and 15% for more than approximately 30 years. In order to maintain 
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the pipelines in good operating condition, it is necessary to carry out either running repairs 
of defective areas with the application of effective and universal technologies, or replace 
defective sections completely in individual long areas. In addition, the expansion of the 
existing network of transmission pipelines, used for the transport of oil and gas to 
neighbouring countries, requires the application of more productive methods of welding 
and technological means for the realization of these methods. 
The advantages of new high-productivity methods of mechanized welding in CO2 and gas 
mixtures and also with self-shielding flux-cored wires include the decrease in the welding 
time of the root and filling layers, decreases in the dimensions of the cross-section of the 
welding gap and, correspondingly, in the volume of deposited metal, and increases in the 
productivity of welding and assembly operations. However, the mechanized welding 
methods also have disadvantages, associated with the presence of defects in welded joints, 
lack of fusion at the edges and between the layers, determined by the instability of the 
welding process, continuous changes of the spatial position of the welding pool and more 
extensive splashing of electrode metal. 
Further progress in welding fabrication ensuring higher rate of assembling and repair, 
lowering of the welding operations cost, while providing the required level of quality and 
service properties of the welded joints, is possible by development of new high-efficient 
adaptive pulsed welding technologies and specialized equipment for their implementation.  
In contrast to the well-known methods of arc welding, including pulsed methods, using 
“rigid” control programmes, the adaptive pulsed processes are based on the correction of 
selected algorithm through feedback channels on the basis of instantaneous values of the 
main energy parameters of the welding process in relation to the condition of the “power 
source  → arc → weld pool → welded joint zone” control object. 
Such parameters as: the arc voltage; duration of typical stages of microcycle - arcing time in 
the pulse, the break with the duration tp; instantaneous and mean values of current; arc 
power in a separate microcycle; melting energy of every electrode metal droplet can be the 
main controlled parameters of adaptive pulsed technological process.   
The adaptive pulsed technological process of welding in comparison with the stationary one 
permits: 
- to control the processes of melting and droplet transfer of electrode metal, the 

solidification in the weld metal in all spatial positions of the weld pool in the range of 
significantly smaller mean values of the main technological parameters; 

- to form a good conditions for transfer of every droplet of electrode metal into the 
molten pool. This makes it possible to reduce sputtering of electrode metal from 20% to 
3% as a result of controlling the energy parameters of the welding; 

- to increase the rate of weld pool solidification in 2 – 3 times as a result of the 
nonstationary energy effect of  heating source on the weld pool with decreasing the 
temperature of molten metal; 

- to decrease the degree of residual strains in the welded structures; 
- to improve the quality of the welded joints and deposited surfaces (to improve the 

formation of the weld in all spatial positions, the structure of the weld metal and HAZ. 
This is determined by the controlled solidification of the weld pool. This is 
accompanied by the intensification of the hydrodynamic processes in the molten pool 
resulting in a more uniform distribution of the alloying elements through the entire 
volume of molten metal and intensive weld pool degassing; 
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- to improve mechanical properties of the welded structures: the size of the HAZ is 
reduced and the structure of the weld metal refined. This is of considerable importance 
for repeated loading. 

The important advantage of pulsed welding is the ability to stabilize the instantaneous 
values of main parameters in the stages of melting and transfer of an electrode metal 
droplet. 

2. Quality of welded joint 
The main problem in welding in different spatial positions of high-quality inspected welded 
structures (joints in transmission pipe-lines, containers for oil and gas, chemical industry, 
boiler and power equipment, components of road-building machinery, equipment in the 
industry of engineering materials), operating under different types of loading at a subzero 
temperature, is to ensure the required quality of root, filling and capping layers and high 
mechanical properties of the welded joint. Up to 90% of defects, detected in the inspection of 
the quality of welded joints, are associated with defects in the root layers of welded joints, 
for example: undercutting, lack of fusion, nonmetallic inclusions or pores. The main reason 
for the formation of these defects, in addition to those associated with low quality of 
preparation, is the disruption of the welding conditions (welding speed, arc voltage, 
current), and that the regimes are not adhered to an optimum values.  
Conventional welding processes can ensure the required quality of welded joints only in the 
case of efficient preparation of the welded joint and with the use of high-quality materials. 
The above disadvantages can be eliminated by providing the welding process energy 
parameters constant in time, or varying them by a certain program. 
 

 
a) 
 

 
b) 

Fig. 1. Oscillograms of current (lower curve) and voltage (upper curve) of: a) unstabilized 
and b) stabilized processes of СО2 welding 
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The pulsed technologies are more efficient from the viewpoint of controlling the formation 
of welded joints in the presence of a large number of perturbing factors (defects in assembly 
of the joints, low quality of electrode materials, changes in the spatial position of the weld 
pool, variation of mains voltage, etc.). These are characterized by a stable penetrating 
capacity of the arc on the level of the instantaneous values of current and voltage with only 
slight dependence on the quality of electrodes. 
Fig. 1 shows oscillograms of the stabilised pulsed arc CO2 welding process using Sv-08G2S 
wire and the conventional process without stabilisation of the energy parameters. 
Primarily, this relates to one-sided pulsed-arc welding of root joints with the formation of 
the reversed bead without any backing strip and welding on reverse side in all spatial 
positions. The welding speed reaches 20 - 30 m/hr, whereas in uphill welding it is no more 
than 5 – 7 m/hr (Saraev & Shpigunova, 2002). 
The technology of pulsed welding in different spatial positions is greatly simplified, the 
required properties and service reliability of welded joints are easily achieved, and the 
quality parameters of the welded joints improve: the size of the HAZ and zone of 
overheating near the surface of weld is reduced and the size of the normalized ferrite grain 
decreases (Fig. 2).  
Transition to the pulsed regime of variation of the energy characteristics in surfacing makes 
it possible to control the processes of solidification in the weld pool and HAZ and decrease 
the degree of burnout of alloying elements from the weld pool. This is determined by the 
restriction of the time during which they are held at the high-temperature of the melt of the 
weld pool and by the increase of the rate of solidification of the weld pool. This is 
accompanied by the intensification of the hydrodynamic processes in the weld pool 
resulting in a more uniform distribution of the alloying elements through the entire volume 
of molten metal. 
The application of adaptive pulsed welding of low-alloy steels results in formation of more 
dispersed and homogeneous structure of welded joint, than in welding by a permanently 
burning arc. The effect takes place in all layers of welded joints: root, facing, filling 
(Shpigunova & Glazunov, 2008 a). 
 

  
 a) b) 

Fig. 2. Structure of the welded joint in: а) stationary and b) pulsed regimes of welding of 
12Х1МФ steel, ×500 
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3. Optimal algorithms of pulsed control of the energy parameters of the 
welding process  
The main purpose of computer aided design of pulsed technology is the development of an 
optimum algorithm of control over all links of technological chain from effective using of 
dynamic properties of power sources and programmed variation of the arc heat output to 
the HAZ microstructure changes, which provide required strength properties of welded 
joints and hard-facing coatings. The complexity of the problem is the necessity of welding 
phenomena studying from the viewpoint of kinetics of melting, thermodynamics, physical 
metallurgy of welding, the theory of heat conduction, hydrodynamics, the plasma theory, 
strength theory. Computer aided design of pulsed arc welding technology permits to solve 
such technical problems as the creation of new materials with preset thermo-mechanical and 
strength properties. 
Extensive use abroad is made of welding with algorithms of pulsed control of the energy 
parameters of the process, as a rule, on the basis of a strictly defined programme. In this 
case, the main energy characteristics of the welding arc are calculated in advance and are set 
in strict accordance with the varied technological parameters (feed rate of electrode wire, 
open circuit voltage of the power source, etc.) These processes, such as: inert gas welding, 
non-consumable-electrode arc welding, plasma-arc welding can be used efficiently in the 
absence of perturbing influences on the object of automatic control. 
The important advantage of pulsed welding is the ability to stabilize the instantaneous 
values of main parameters in the stages of melting and transfer of an electrode metal 
droplet. Such parameters as: the arc voltage; duration of typical stages of micro cycle - 
arcing time in the pulse tpulse, the break with the duration tp; instantaneous and mean values 
of current; arc power in a separate microcycle; melting energy of every electrode metal 
droplet can be the main controlled parameters of adaptive pulsed technological process.  
Adaptive algorithms of pulsed control are corrected, during a technological process, 
through channels of feed backs in relation to the variation of the instantaneous values of the 
main energy characteristics of the welding process (arc current and voltage, peak short-
circuiting current, arc power in a separate microcycle, melting energy of every electrode 
metal droplet). This makes it possible to supply more efficiently the energy required for 
melting and transfer of every droplet of electrode metal, control weld formation, taking into 
account its spatial position, reduce deformation of the welded joint by regulating the heat 
input in the welding and surfacing zone. 
These processes take place with minimum deviations of the instantaneous values of the 
energy characteristics of the process, so that it is possible to calculate with sufficient 
accuracy the moment of separation and transfer of every electrode metal droplet to the 
molten pool and ensure detailed examination of the processes in the "power source - 
electrode - arc - molten pool" electrodynamic system as in a single object of automatic 
control.  
The realization of the algorithms of pulsed control in current welding and surfacing 
equipment is associated with the introduction of additional sections and units into the 
structure of equipment. The units are introduced both into the circuits for controlling the 
output parameters of the power system and directly into the welding circuit (Fig. 3). 
Selection of a specific technical solution depends on solving the technological problems and 
is determined by the frequency range of the algorithms of pulsed control of the energy 
parameters of the welding and surfacing processes. 
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- The following frequency ranges of the algorithms of pulsed control are selected: 
- 5000 ÷ 100 Hz – for increasing the stability of arcing and decreasing the size of 

transferred droplets; 
- 100 ÷ 25 Hz – for controlling the transfer of electrode metal in all spatial positions; 
- 25 ÷ 0,25 Hz – for improving the formation of the welded joint in all spatial positions as 

a result of decreasing the size of the weld pool and increasing the rate of solidification;  
- from 0,25 Hz and lower – for controlling the solidification processes in the weld metal 

and the HAZ (Fig. 2). 
 
a) 

b) 

 

 
Fig. 3. Systems realizing adaptive pulsed technological processes of welding with:  
a) uncontrolled and b) controlled power sources 

The most complicated electrical engineering problem is the development of regulators for 
the frequency range 25 ÷ 5000 Hz. This is associated with the fact that sections of the 
regulator must ensure a very short restoration time of the controlled properties. In practice, 
this approach can be realized by introducing into the structure of the power supply system 
special high-current semiconductor regulators capable of switching large pulsed currents of 
1000 A or even higher (Fig. 3 a). 
Development of regulators in the frequency range 25 ÷ 0,25 Hz and lower is possible on the 
basis of semiconductor elements with low and medium power. As a result of the relatively 
long duration of current pulses, they can be shaped through the channels of phase control of 
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welding rectifiers and through the power circuit of the excitation windings of welding 
generators (Fig. 3 b) (Loos et al., 1998). 
The developed technology of single-sided arc welding of root welds with formation of the 
reversed bead by the modulated current using coated electrodes is based on the special 
algorithm of control over the energy parameters, which permits to form during the 
technological process a condition of the welded zone as the result of pulsed arc action, when 
the components of melted electrode coating are intensively displaced beyond the forming 
permanent joint. Such an approach allows supply the formation of root welds without 
additional backing strips by electrodes of any coating, including the main type, to use 
coated electrodes manufactured in Russia instead of expensive imported electrodes. Well-
known in a world practice the welding technological processes of root welds in condition of 
free formation (without additional backing strips) are based on application of special 
electrodes with a thin coating, that limits the fields of application of the given technologies. 
The proposed technology gives the possibility of downward welding of vertical welds that 
significantly increases the welding speed and simplifies welding technique in various 
spatial positions for a welder of lower qualification.    
A large amount of experience has been accumulated in the last decade with the application 
of mechanized CO2 welding in the production of metal structures in different spatial 
positions. The experience of production trials, however, has revealed a number of 
disadvantages related to defects in welded joints, lacks-of-fusion along the edges and 
between the layers due to instability of the welding process, and continuous change of the 
weld pool position in space. The above disadvantages can be eliminated by providing the 
welding process energy parameters constant in time, or varying them by a certain program. 
The optimal algorithms of control of the energy characteristics of the process, developed by 
computer-aided design methods, and specialized equipment (UDGI-201UKhLZ thyristor 
regulator) permit conducting the technological process of single-sided pulsed arc welding of 
the root welds with reverse bead formation without additional backing or backing run 
welding from the inside in CO2. The using of UDGI-201UKhLZ regulator makes it possible 
to stabilize the welding process as result of fine-droplet transfer of electrode metal into the 
weld pool with the minimum 2 - 3% splashing of electrode metal in the range 70 - 200 A in 
mechanized and automatic welding with electrode wires with a diameter of 0,8 - 1,2 mm; 
simplifies welding technology in all spatial positions in the presence of large variations of 
the gap between the welded edges; increases 3 - 4 times the productivity of welding 
operations as a result of ensuring the possibility of downward welding. The speed of 
downward welding runs into 20 – 30 m/hr and upward welding speed is no more than 5 – 7 
m/hr. The characteristic lack of penetration of downward welding, as a result of the weld 
pool inleakage in traditional CO2 welding methods, is absolutely absent.              
Fig. 4 shows typical oscillograms of such process. The proposed technological process has 
additional regulation parameters: ti – arcing time in the pulse and tp11 – time of the break 
introduced at the moment of rupture of the liquid bridge. These parameters in accordance 
with the adaptation scheme are able to automatically correct the energy parameters of 
welding regime in relation to the perturbing influences so that it is possible to stabilize the 
heating and energy indicators of the process. The stability of such a welding process 
predetermines a stable quality of weld formation which also depends on the short-circuiting 
frequency fs.c., the holding time of the liquid droplet on the electrode tip, the droplets size 
and uniformity of their transfer. 
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Fig. 4. Oscillograms of current I and voltage U of adaptive pulsed arc CO2 welding 

This set of process parameters can be optimized at the stage of technological preparation of 
production, in order to produce a sound welded joint operable under different types of 
loading in cold climate region. The results of research of the developed models of melting 
and metal transfer with systematic short-circuiting of the arc gap during the pulsed welding 
process, using a computer experiment, permits: to evaluate the influence of technological 
and energetic parameters complex of the process on the penetration of the weld metal, the 
shape and sizes of the weld and heat-affected zone; to predict strength properties and 
quality of welded joints (Shpigunova & Saraev 2003). 

4. Mathematical modelling of heat and mass transfer in pulsed arc welding by 
melting electrode 
4.1 Physical simulation of pulsed arc welding with forced short-circuiting of the  
arc gap 
It is necessary to provide complex investigation of the welding arc physics and the 
electromagnetic processes in welding power source. The principle of metal transfer "one 
drop per pulse" is realized in adaptive pulsed arc welding in CO2 medium.  
The block-scheme of the power supply of adaptive pulsed arc welding is shown in Fig. 5. 
The examination will be based on one of the control algorithms examined in (Saraev & 
Shpigunova, 1993). 
The period of arcing in the pulse (Fig. 6) is characterized by rapid melting of the electrode 
tip under the welded component. As a result of the force effect of the arc, the weld pool 
metal is displaced into the tail part and is maintained there throughout the entire melting 
stage. After this period of arcing, the welding current in the pulse is increased in steps to the 
value of the background current. This results in a corresponding decrease in the melting rate 
of the electrode and a weakening of the force effect of the arc on the weld pool which tries at 
this moment to fill the crater formed below the electrode tip in the stage of the current pulse. 
Together with this effect, the electrode metal droplet tries to occupy a position, coaxial with 
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the electrode, mainly as a result of a decrease in force of reactive pressure of release of the 
gas, and also due to the forces of the weight of the droplet and surface tension. 
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Fig. 5. Block-scheme of the power supply of adaptive pulsed-arc welding process 

Forced short circuiting takes place as a result of these counter movements, and the initial 
moment of the short circuit is characterized by an increase in current in the welding circuit 
which increases along an exponent determined mainly by the interactive resistance of the 
smoothing choke coil. With this mechanism of electrode metal transfer, the formation of a 
stable bridge between the electrode and the weld pool is achieved in the first stage of short 
circuiting. This greatly increases the rate of increase of the short circuit current and, at the 
same time, accelerates the formation and fracture of the liquid bridge. In the short circuit 
stage, the transfer of electrode metal into the weld pool is accompanied by an increase in 
voltage (also in the case of the avalanche-like increase of current). This indicates the 
irreversibility of fracture of the bridge, as a result of a stepped decrease in current. 
The entire period of short circuiting is characterized by the fact that the controlling effect in 
acceleration of failure of the bridge is played by the electrodynamic force which tries to 
“squash” the electrode metal along the melting line, separate the electrode metal droplet 
and apply to it the accelerating “pulsed force” for movement in the direction of the weld 
pool.  
The final stage of fracture of the bridge (approximately 10-4 sec prior to the moment of arc 
reignition) is accompanied by the dominant effect of the surface tension force. However, as a 
result of the short duration of the given period, its contribution to the fracture of the liquid 
bridge is negligible. The duration of the break is set either parametrically, or in relation to 
the condition of the arc gap in the given stage.  
After completion of the break, increasing current, the electrode starts melting in the pulse 
current period. Subsequently, the course of the process is identical with that described 
previously.    
Such mechanism of controlled transfer of electrode metal into the weld pool is operating in 
the realization of other adaptive algorithms of the pulsed control of the energy parameters 
of the process. The only difference is that the perturbation effects, determined by the droplet 
transfer of electrode metal and the special features of formation of the weld metal in 
different spatial positions, operate in different stages of the welding microcycle, depending 
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on the variation of the arc gap length at the start of the effect of the pulse current or the 
integrated value of high-voltage in the stage of parametrically specified background period 
up to the moment of fracture of the bridge, or when the force effect of the arc on the weld 
pool in the period of the current pulse is determined in relation to the duration of the break 
prior to a short circuit, indicating the ability of the weld pool during changes of its special 
positions (Saraev, 1994). 
 

 
Fig. 6. Oscillograms of current (upper curve) and voltage (lower curve) and film frames of 
microcycle of CO2 welding with forced short-circuiting of the arc gap 

The results of analyzing the oscillograms and experimental data obtained by high-speed 
filming of pulsed-arc welding process in CO2 with SV08G2S wire ∅ 1,2 mm (Fig. 6) make it 
possible to specify the following main features of the pulsed process and formulate a 
number of assumptions for mathematical modeling of such a process: 
- the molten pool moves with specific periodicity in such a manner that prior to every 

short-circuit, the molten pool occupies the same position in relation to the continuously 
fed electrode. Therefore, in calculations, these movements can be ignored; 

- the break current prior to a short-circuit is low and has no marked effect on melting of 
the electrode in the break period; 

- the break introduced at the moment of arc reignition does not affect the thermal 
processes in the system and, consequently, its effect can be ignored in the calculations;  
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- electrode metal formed at the electrode tip as a result of melting of the continuously fed 
electrode has the form of a spherical segment; 

- thermophysical constants (α,c γm), used in calculations, do not depend on temperature, 
where α is the temperature coefficient of resistance; cγ is the volume heat capacity of 
electrode wire; m is the latent heat of electrode melting which takes into account 
transition from one aggregate state to another; 

- the resistance of electrode extension Re depends on both the temperature to which it is 
preheated Tp and the steel grade. 

Every microcycle Tc consists of the three typical stages (Fig. 6, Fig. 7): 
1. short-circuiting with the  duration ts.c.; 
2. arcing in a pulse with the duration  tpulse; 
3. the break prior to a short-circuit, duration tpause (Ipeak is the peak value of the short circuit 

current).       
The simplified mechanism of droplet formation and electrode metal transfer to the molten 
pool can be described as follows. 
After rupture of a bridge, the energy build-up in the choke coil during a short-circuit 
generates in the arc gap and rapidly melts the electrode. At the initial moment, the melting 
rate of the electrode Ve is higher than the feed rate V. Consequently, the width of the arc gap 
increases. Part of the molten electrode metal, which remains at the end from a previous 
microcycle, rapidly increases in the volume at the start to a hemisphere with the diameter 
2Re and then to a spherical segment with the height h. When welding current is reduced and 
the volume of the spherical segment increase the burn-off rate decreases and the width of 
the arc gap slightly decreases. After completion of the arcing process in the pulse and a 
reduction of welding current to the break current Io, the burn-off rate rapidly decreases and 
the arc gap closes up as a result of continuous electrode feed. A short-circuit takes place, 
during which metal is transferred to the molten pool.  
In accordance with the described mechanism of growth of the electrode metal droplet, the 
volume of the spherical segment in the second period increases at the rate dh/dt in the 
direction of the continuously fed electrode with the speed V. This is accompanied by 
countermovement of the melting line of the electrode with the melting speed Vm. 

4.2 Mathematical modelling of heat and mass transfer in welding with systematic 
short-circuiting of the arc gap 
Taking into account these special features of the pulsed process and the assumptions, a 
cyclogram of welding current I and voltage U, as well as a simplified diagram of growth of 
the droplet of molten electrode metal and the shape of the finite weld are shown in Fig. 7 
and Fig. 8, respectively. 
The object of our research is a mathematical model of melting and transfer of electrode 
metal with systematic short-circuiting of the arc gap in carbon dioxide medium on the base 
of algorithm of control, shown in Fig. 7 (Saraev & Shpigunova, 1993).  
There are a large number of investigations (Dyurgerov, 1974), (Popkov, 1980), (Lebedev, 
1978) which have been carried out to describe mathematically the power source – welding 
arc system in welding with systematic short-circuiting of the arc gap using the mean 
parameters of the conditions. However, they did not reflect the technological stability of the 
process, because a deviation of one of these parameters within the limits of a separate 
microcycle leads to its disruption. In particular, when welding in different spatial positions, 
the deviation resulting in an increase of a specific parameter, such as the peak short-circuit 
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current within the limits of the microcycle, leads to splashing of the metal from the molten 
pool during arc reignition. The variation of electrode stick-out results in a change of the heat 
generated in the stick-out, which in turn affects the energy balance of the arc, etc. In this case, 
the amount of heat generated in the extension may reach 15,6% of the entire arc heat (for low-
carbon electrodes), which is equal to 55% of the heat required for melting the electrode. In 
rapid heating of the electrode with passing current, the burn-off rate of the electrode increases. 
 

 
Fig. 7. The cyclogram of current I and voltage U for the power source – welding arc system 
 

 
Fig. 8. The scheme of growth of a droplet of molten electrode metal and shape of the finite 
weld 
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The temperature distribution along the electrode is defined on the base of solution of heat 
conduction equation in consideration of convective heat exchange to space. Therefore, an 
examination is made of one-dimensional heat propagation in cylindrical electrode bar, fixed in 
current lead tip, within the limits of statement of a problem from (Saraev & Shpigunova, 1993).  
The interval on which a function is defined changes from -L* (L* = const) to L**(t) in axis OX 
(Fig. 8).  
L**(t) - is the length of the unmelted part of the heated electrode extension in moment of time t,  
L* - is the part of electrode with temperature gradient from T (in the point x = 0) to T* (in the 
point x = -L*) and convective heat transfer coefficient α∼. In interval from x = 0 to x = L** the 
arc and passing through the electrode current are a heat sources. There are no internal heat 
sources in interval from x = 0 to x = -L*. 
It is necessary to note the following: the electrode is moving with the speed V (Fig. 8) that means 
position change concerning to the current lead tip and upper boundary. This is equal to the 
regular feed of the "cold" mass. The lower boundary is moving with speed Vg = V – Vm, where 
Vm - the melting speed of lower end of electrode as a result of the heat release from the arc.  
Heat conduction equation is solving within the limits of statement of a problem (Saraev & 
Shpigunova, 1993). It means that the amount of heat flow on the lower boundary of the 
electrode and value of passing through the electrode current are determined by the problem 
solving from paper (Saraev & Shpigunova, 1993) in every time moment. The electrode 
resistance in interval from x = 0 to x = L** and melting speed are determined subject to the 
temperature distribution calculated from the heat problem solution. 

4.3 Heat conduction equation with boundary conditions: 
Thus: 

 ( ) ( ) ( )
2

2
*T I PT T T V T

c x c F c F
∂∂ ∂ λ ρ α ∂γ γ

∂ ∂ ∂ ∂
⎛ ⎞ ⋅ ⋅

⋅ = ⋅ + − ⋅ − − ⋅ ⋅⎜ ⎟
⋅ ⋅⎝ ⎠t x x

  (1)  

Note, that:  
ρ  - specific resistance, 

 ( )1(T ) Tρ ρ α Δ= ∗ + ∗  (2) 

 *T T TΔ = −  (3) 

ρ* - specific resistance at T*,  
*- temperature coefficient of resistance.  
Here: 
t - time,  
γ  - the density of electrode material, 
T - temperature,  
Tm - melting temperature,  
Td - drop temperature,  
λ - thermal conductivity,  
I - current,  
c - specific heat of electrode material,  
- convective heat exchange coefficient,  
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F - cross-section area of electrode,  
P - electrode perimeter.  
The boundary conditions for the short circuit interval and arcing in a pause interval are: 

 ( )T L*,t T *− =  (4) 

 ( )( ) mT  L * * t ,t   T=  (5) 

For the arcing in a pulse interval:  

 ( )T L*,t T *− =  (6) 

  ( )( )T L * * t ,t q
x
∂
∂

= −  (7) 

The amount of heat flow - q on the lower (moving) boundary of solution field get from the 
law of conservation of heat energy (Mathematical Modelling, 1979): 

 1 2 3Q  Q  Q  Q+ − − −= + +   (8) 

Where: Q+ - heat quantity from arc;   
Q1- - heat quantity consumable to electrode melting;  
Q2- - heat quantity consumable to the increase in molten metal temperature from  T = Tm  to 
T = Td;   
Q3- - heat quantity transferred for a depth into metal.  
The complete version of the Eq. 8 is:  

 ( )1e
a d m m

TU I F M C T T V
x

∂
γ λ

∂
−⋅ ⋅ = + ⋅ − ⋅ ⋅ −⎡ ⎤⎣ ⎦   (9) 

Where:  

m mV  dL / dt= ; 

Uae - effective anode voltage,  
M - specific heat of melting. 
Another condition on moving boundary is that its temperature approximately equal to the 
temperature of melting: 

 ( )( ) mT L * * t ,t   T=  (10) 

Let's develop moving differential grid. Melting speed is determined by iterations.  
Discrete analogue of Eq. 1 is developed according to digitization method (Patankar, 1984) 
and “check volumes” method and solved by the run method. 
Therefore, there is the system of differential equations for each interval of microcycle:  
"short circuit" (Fig. 7, Fig. 8): 

 xx s

G

I U R I(t )
t L

∂
∂

−
=  (11) 
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T(x,t) is determined from Eq. 1 for all intervals.  
For "arcing in a pulse":  

  2
2 22

m g b

m

dL (V V ) dt, l l (L h)
dh(t) Vr

dt h r

= − = − +

=
+

    (15) 

 xx ak g s

G

U (U l ) R IdI
dt L

β− + ⋅ − ⋅
=  (16) 

For "pause":   
I = I0,  
h = const,  
tp = lg/V,  

   dL V t= ×   (17) 

Here:  
Uak - anode-cathode voltage,  
β - gradient of voltage of arc column,  
LG - inductance of welding circuit,  
Uxx – open circuit voltage of the power source,  
Rs - resistance of welding circuit,  
r - radius of electrode. 

4.4 Results of computer simulation 
The system of non-linear differential equations for each interval of microcycle is realized by 
means of numerical methods in a computer. To solve a system of non-linear differential 
equations, the authors used an explicit two-step method of the predictor – corrector type of 
the second order of accuracy on smooth functions. Since the model process must be cyclic 
(output parameters of a single microcycle represent input parameters for the next 
microcycle), the problem was solved by an iteration approach. The criterion for convergence 
of the process is the difference ΔI of the values of the current curve on adjacent iterations: ΔI 
≤ 0.01%. Original software for realization of such problems have been developed 
(Shpigunova et al., 2000; Shpigunova & Glazunov, 2008 b).  
The results of numerical solution of the problem give the full information about object of 
control at each time moment: the value of current I(t), arc voltage U(t); the size of the drops 
transferred from the electrode h(t); the preheat temperature of the electrode extension T(L,t); 
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the length of the arc gap lg; the resistance of the unmelted part of the heated electrode 
extension RL, and so on; permit to determine the interrelation between energetic 
characteristics of the pulsed arc welding process (I(t), U(t)), sizes of weld and HAZ (Fig.) 
with the most important regulated technological parameters of the process (V - electrode 
feed rate, L - electrode extension, Uxx - open circuit voltage of the power source, tpulse - arcing 
time in the pulse, tp – time of pause, frequency of transferred droplets of electrode metal) 
and to give the quantitative assessment.  
Fig. 9 shows temperature distribution in electrode with length L (mm) at different time 
moment of microcycle for following values of the thermophysical quantities and parameters 
of the process of CO2 pulsed welding with Sv-08G2S wire: L = 12 mm, tpulse = 10 ms, ts.c = 2.16 
ms, Uxx  = 45 V, V = 0.222 m/sec, β = 3.6 V, LG = 0.00018 H, I0 = 20 A, r = 0.5 mm,  Td = 2673 K, 
Uak = 22 V, c× γ = 5.23×106 J/m3×K,  λ = 39.65 W/m×K, * = 0.003 1/K, = 100 W/m2×K, Rs = 
0.05 Ω.  
Every temperature curve consists of two ranges: range of smooth change of temperature as a 
result of heat release by passing current and range of quick increasing of temperature as a 
result of heat input by arcing. The depth of heat penetration by arc depends on the speed of 
melting front motion very much (Fig. 9).  
Fig. 10 shows melting speed of electrode depending on time moment of microcycle for 
different values of Uxx – open circuit voltage of the power source and V = 0.138 m/sec.  
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Fig. 9. The temperature distribution in electrode extension at different time moment: 1 – t1 = 
2.16 msec; 2 – t2 = 4.66 msec; 3 – t3 = 7.16 msec; 4 – t4 = 9.66 msec; 5 – t5 = 12.16 msec 
The examined pulsed technological process is characterised by the fact that its parameters 
can be regulated over a wider range than the stationary process. This is possible because, in 
addition to the generally accepted regulation parameters of the welding process (open 
circuit voltage of the power source Uo.c., electrode feed rate V, electrode extension lb), there 
is an another parameter: arcing time in the pulse which, combined with the general 
parameters, makes it possible to control the dimensions of the transfer droplets and their 
frequency. In addition, the regulating capacity of the power source – welding arc system is 
controlling the welding process and compensating different perturbing influences on the 
regulation object, i.e. the arc. 
For example, when the electrode extension is varied in the range 8 ÷ 20 mm, the temperature 
to which the electrode extension is heated rapidly increases. This may be compensated by a 
corresponding increase of the arcing time in the pulse. It is thus possible to stabilize the 
mean value of welding current and, consequently, the electrode burnoff rate. 
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Fig. 10. Dependence of melting speed on time of microcycle at different values of open 
circuit voltage of the power   source: 1 – Uxx = 45 V; 2 – Uxx = 40 V; 3 – Uxx = 35 V 
Important technological parameters of the welding process are the frequency of transferred 
droplets of electrode metal and their volume, which determine to a large extent the required 
geometrical dimensions of the weld. These parameters can also be mutually compensated in 
accordance with the required ranges.  
For example, an increase of the electrode extension reduces the frequency of short-circuits 
and increases the volume of molten electrode metal within the limits of a separate 
microcycle. These parameters can be maintained in the required ranges by reducing the 
arcing time in the pulse. This increases the frequency of short-circuiting and reduces the 
volume of molten metal (Fig. 11, Fig. 12).  
 

 
Fig. 11. Calculated cyclograms of welding current for different values of electrode feed rate 
V and correlative weld shape (H, E, G) for every complex of technological parameters of 
pulsed arc welding. Uo.c. = 41 V, tpulse = 7.5 ms, L = 12 mm, V = 0.110 ÷ 0.220 m/sec, I0 = 30 A 
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This approach makes it possible to calculate the cyclograms of welding current as a result of 
computer experiments for wide range of values of regulated technological parameters for 
the CO2 pulsed welding with Sv-08G2S wire: d = 0.8 ÷ 1.2 mm, L = 8 ÷ 12 mm, tpulse = 5 ÷ 18 
ms, ts.c = 2.16 ms, Uxx  = 35 ÷ 45 V, V = 0.111 ÷ 0.222 m/sec (Fig. 11).  
An increase of the electrode feed rate increases the frequency of short-circuits at almost 
constant instantaneous values of current in both in the short-circuit range and the arcing 
time range in the pulse. This results in a higher stability of the welding process, as well as 
constant dimensions of the transferred droplets of electrode metal irrespective of the spatial 
position of the molten pool. This is of considerable importance for maintaining stable 
parameters of the welding process.  
 

 

 
Fig. 12. Dependence of frequency of short-circuits fs.c. on electrode extension Lb at different 
values of electrode feed rate V (Uo.c. = 35 V, tpulse = 5 ms) and correlative weld sizes (H, E, G) 
for different complex of regulated technological parameters of pulsed arc welding (fs.c., Lb, V) 
Fig. 12 shows the dependence of frequency of short-circuits fs.c. on electrode extension Lb at 
different values of the electrode feed rate V for open circuit voltage of the power source Uo.c. 

= 35 V, pulse time tpulse = 5 ms and the dependence of weld shape (H – penetration depth, E 
– weld width, G – throat) on complex of technological parameters of CO2-shielded pulsed-
arc welding (weld shape 1, 2, 3 correlate to complex of technological parameters 1, 2, 3). 
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Fig. 13. Dependence of HAZ width on time of pulse (ti) and time of pause (tp) in pulsed arc 
welding:  
               a) by modulated current - experimental results for Imean = 120 A:  
               1 - stationary arc; 
               2 – ti – var, tp = 0.3 sec;  
               3 – tp – var, ti = 0.3 sec. 
               b) pulsed arc welding in CO2 of low carbonaceous steel – computer experiment 
(721o C isotherm) 

4.5 Control of weld formation 
During designing of optimum algorithm of control over pulsed regime of welding there is 
need to choose such combination of welding parameters (automatic welding, 
semiautomatic, submerged arc welding, and welding in an atmosphere of shielding gases): 
Ua, I(t), j - current density in electrode, v - welding speed, chemical compositions (the 
marks), granulation of flux, type of the current, its polarities which provide formation of the 
joints with proper sizes, shape and quality with high operating strength. The sizes - depth of 
penetration H (Fig. 12), breadth of weld E, height of deposited bead G, and shape of weld 
are determined by quantity of the heat transferred to the article and by the character of its 
introduction. Under the effect of high-speed heat source the penetration area (the area 
restricted by the isotherm of melting Tm):  

1
p p

m

F Q
E c Tγ

=
⋅ ⋅ ⋅

 

0 24 a
p

. I(t ) UQ
v

η⋅ ⋅ ⋅
=  

Here:  
Qp = Q/v,  
Q - arc power,  
η - effective efficiency of arc.  
Using of typical coefficients: ψp = E/H coefficient of penetration form, ψf = E/G coefficient 
of strengthening form and constants: A, K , μ - obtaining from experiments for low-alloyed 
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steel and low-carbon steel during the welding in CO2 medium by electrode wire Sv-08G2S 
and Sv-08GS gives the possibility to apply the equations connecting typical sizes of weld 
and energetic characteristics:  

p pH A Q / ψ= ⋅  

19 0 01 a
p p

d Uk( , I ) , E H
I

ψ ψ⋅
= − = ⋅  

Where d – is the diameter of electrode.  
During hard-facing or welding of butt joints without edge level with zero clearance the 
deposited metal is in the form of the bead above the sheet's surface, therefore G = Fn/ μ*E, 
where μ - is the coefficient of bead completeness, Fn - the area of cross-section of deposited 
bead. 
Using of this dependencies for research of the  effect of the main technological and 
additional regulated parameters:  Uo.c., Ip, lb, V, ti, fs.c., tp, h on the sizes  of the given welded 
joint during welding and hard-facing on the base of computer experiment for wide range of 
values of technological and energy parameters of welding regime (Fig. 12) it is possible to 
design optimum regime, which provide required relationships of geometric sizes of the 
weld ψp, ψf for the given type of the welded joint, which characterize its technological and 
operating strength.  
So, in automatic and semiautomatic welding with ψp < 0.8 the joints inclined to the hot crack 
formation are produced, with ψp > 4 - too wide welds with small  penetration depth, what is 
inefficient from the viewpoint of arc power using and the result is deformation increasing. 
For the well formed welds the optimum range of values is ψf = 7 - 10. The narrow and high 
welds with small ψf do not have smooth connection with basic metal and have dissatisfied 
ability to work under variable loads. The large values ψf correspond to wide and low 
strengthening, what is undesirable because of decreasing of weld section in comparison 
with basic metal section because of the vibrations of molten pool level.    

5. Conclusion 
The results of analyzing the cyclograms of welding current and oscillograms show that they 
qualitatively coincide. The deviation of the calculated instantaneous values of welding 
current from the experimental data does not exceed 10%. This convergence level makes it 
possible to recommend the proposed mathematical model and original software for it 
numerical realization for examining actual pulsed technological processes. 
The proposed mathematical model of melting and transfer of electrode metal in welding 
with systematic short-circuits of the arc gap and original software for it realization takes into 
account the heat generation in the electrode extension (heat conduction and convective heat 
exchange to space).  
The action of heat processes in electrode on speed of electrode melting and amount of 
transferred molten metal, the nature of formation and transfer of every electrode metal 
droplet, and the state of the arc gap on the level of instantaneous values in limits of 
mathematical model (Saraev & Shpigunova, 1993) have been investigated.  
There is most difference in temperature distribution, melting speed and sizes of transferred 
electrode metal droplet from paper (Saraev & Shpigunova, 1993) near the melting front or in 
time moment  t = t0 + ts.c.. 
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The area of a solution existence for the proposed model is bigger than for model (Saraev & 
Shpigunova, 1993). 
The developed approach permits on the basis of numerical realization of developed models 
to solve the inverse problem - to design optimum algorithms of control over the system 
“power source – arc – weld pool” in pulsed welding process, to determine optimum 
complex of values of regulated parameters depending on solving of technological problem, 
such as: decreasing of molten metal sputtering, improvement dynamic properties of power 
sources, the formation of weld with preset sizes and service properties.  
This set of pulsed process parameters can be optimizing at the stage of technological 
preparation of production, in order to produce a sound welded joint operable under 
different types of loading. 
The results of researching of the developed mathematical models of melting and metal 
transfer with systematic short-circuiting of the arc gap during the pulsed welding process, 
using a computer experiments, permits: to evaluate the influence of technological and 
energetic parameters complex of the process on the penetration of the weld metal, the shape 
and sizes of the weld and heat-affected zone. 
Using these mathematical models permit to reduce the volume of experiments, aimed at 
developing pulsed conditions and to predict the strength properties, quality, reliability and 
operating longevity of welded joints. 
Physics-mechanical and chemical processes of the formation of primary crystalline structure 
of weld and HAZ are multiple and difficult to simulation. There are a large number of 
accompanying factors which in particular cases may be a cause for control over welded joint 
strength in welding technology. The thermo-capillary convection applies to this class of 
phenomena. It leads to effect of irregular distribution of impurity concentration in melt that 
entails a change of crystallization front and affects the formation of structure of welded 
joint. Also it is necessary to examine the diffusive mechanism of impurity migration and the 
kinetics of polymorphous transformation. 
The developed methodology of computer aided design of advanced technologies, which 
suppose the creation of integral model of adaptive pulsed process of welding and hard-
facing; modeling; original software; adaptive algorithms of pulsed control and special 
equipment are most effectively used for defectless welding of root joints with the formation 
of the reversed bead in all spatial positions without any additional backing strip and 
welding on the reverse side by electrodes of different types. 
The use of specialized equipment for developed pulsed methods of welding makes it 
possible to stabilize the welding processes as a result of fine-droplet transfer of electrode 
metal into the weld pool with the minimum (2 - 3%) splashing of electrode metal in the 
range 70-200 A in mechanized and automatic welding with electrode wires with a diameter 
of 0.8 – 1.2 mm; ensure guaranteed high-strength properties of important welded joints to be 
subjected to 100% inspection; simplifies welding technology in all spatial positions in the 
presence of large variations of the gap between the welded edges; increases 3 – 4 times the 
productivity of welding operations as a result of ensuring the possibility of downhill 
welding.   
The regions of application of advanced pulsed welding technologies are: the welding of 
root, filling and facing layers of ship structures in different spatial positions and butt joints 
in the processing and transmission pipelines with a diameter of 32 – 1420 mm; boiler and 
power equipment for important applications, welding robotic technological systems for 
engineering companies. 
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1. Introduction 
The mathematical modelling of different processes and events may be reduced, in most 
cases, to formulation of boundary-value problems for defined systems of differential 
equations. Series of statements and approximate methods for solving of such equations were 
developed by many authors. The most development have obtained variation methods, 
direct methods of mathematical physics and integral equation methods. These methods 
have specific capabilities and peculiarities, expanded class of observed problems, but were 
not completely eliminated most of principal contradictions. Nowadays, the most challenging 
method is finite element method (FEM). It has reached so high stage of development and 
popularity that can be no doubts of existence another approach competitive in capabilities 
and simplicity of realization (Segal et al., 1981; Wagoner & Chenot, 2001). 
The advantages of finite element method are free selection of nodal points, arbitrary shape 
of region and boundary conditions, simplicity of generalization for different models of 
bodies and problems of any dimensionality, natural accounting the non-uniformity of 
properties and other local effects, using of standard programs for a whole class of problems. 
A finite element method is well grounded, the equivalence of its different forms to 
differential and variation formulations and, also, to special cases of Ritz method, Bubnov-
Galerkin method and least-squares method established (Zienkiewicz & Taylor, 2000). 
The first step of numerical solution is discretization of medium that allows reducing the 
problems with infinite number of degrees of freedom typical to continuous approach, to 
problems with finite number of unknown variables. Usually, discretization is including 
selection of certain number of nodal points with following implementation of two types of 
variables – nodal variables and special functions that are approximating the distributions of 
target parameters inside elements. In such case, the independent parameters are the nodal 
variables and distributions of target parameters that are determined by them (Zienkiewicz & 
Taylor, 2000).  
During finite element approximation the integration procedure is replaced by more simple 
algebraic operators expressed through nodal variables by summation on elements. Partial 
differential equations are replaced by system of algebraic equations written for sequence of 
nodes and special functions by functions for finite number of nodal variables. The 
subsequent calculation of target values and determination of parameters of state may be 
executed by standard methods of numerical analysis. The general requirements for selection 
of finite elements and approximating functions are determined by convergence criterions of 
FEM (Zienkiewicz & Taylor, 2000). 
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The implementations of FEM to solving of technological tasks of plasticity theory and 
modelling of physical and mechanical properties associated with metal forming processes 
are described below. Large deformations specific for such processes are leading to changing 
the geometry of region and properties of material. In these cases most of peculiarities of 
plastic state that produce difficulties of numerical solution are appeared (Petrosjan, 1988; 
Wagoner & Chenot, 2001). 

2. Solving of the non-stationary nonlinear coupled thermal-structural 
problem by finite element method 
The behaviour of powder porous bodies at plastic deformation and high temperatures is 
characterizing by substantial non-uniformity that makes necessary application of numerical 
methods (Petrosjan, 1988). Nonlinear character of deformation and substantial non-
uniformity of deformed state in combination with large temperature gradients are leading to 
the necessity of solving a non-stationary nonlinear coupled thermal-structural problem. The 
matter of this problem is that forming process of detail depends not only from degree of 
deformation and strain rate but, also, from temperatures which continuously changing by 
nonlinear laws (Wagoner & Chenot, 2001; Hallquist, 2006; Ryabicheva & Usatyuk, 2006). 
The sequence of solving of non-stationary nonlinear coupled thermal-structural problem 
consists of the followings steps: problem formulation, discretization scheme, computational 
procedure and computer visualization of results. 
The eight node linear tetrahedron-shaped element has used for analysis of stress-strain state, 
temperature distributions and physico-mechanical properties. The fundamental idea is that 
five nodal points of element have common coordinates and each projection of their 
displacement is described by one equation (Hallquist, 2006). According to (Segal et al., 1981), 
a minimum of functional is corresponding to actual velocity field: 

 
k

ij ij i i
V S

J e dV p v dS,= σ −∫∫∫ ∫∫   (2.1) 

where ij ij, eσ  - are stress tensor and strain rate tensor; 
 ip  - are pressures applied on external border; 
 iν  - are velocities of displacements of points under the action of external forces; 
 V  - is volume of body; 
 kS - is surface of body. 
During a finite-element approximation integration is replaced by summing up on elements 
and minimization of function (4.1) results in the system of equations: 

 [K]{ X } = {p},  (2.2) 

where [K] = [ K(X, X ) ] - is global stiffness matrix of system; 
 {p} - are column-matrices of nodal velocities and forces. 
Dependences between nodal velocities and strain rates and, also, stresses into element are 
looking like (Segal et al., 1981): 

 { }( ) [ ]{ }( ) { } [ ]{ }e e e ee B , K .= ν σ = ν   (2.3) 
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Matrices [B] and [K] are determined by standard technique. The dependence between 
stresses and strain rates, determined by matrix [D], obtained using the following relation 
(Skorokhod, 1973; Segal et al., 1981; Shtern et al., 1982): 

 ij ij ij
1e e ,
3

⎡ ⎤⎛ ⎞σ = β φ + ψ − φ δ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
  (2.4) 

where 0
2 2

1
e

− θτ
β =

φγ + ψ
; 

 θ - is porosity of material; 

 ,φ ψ  - are porosity functions (Shtern et al., 1982): 2(1 ) ,φ = − θ  
32 (1 )

3
− θ

ψ =
θ

; 

 τ0 - is ultimate intensity of deviatoric stresses for basic material of porous body. 
The visco-plastic medium investigated during plastic deformation at high temperatures 
according to recommendations of Kachanov L.M. (Kachanov, 1969). A substantial metal 
flow is typical for visco-plastic medium at the certain load and flow velocity depends on 
viscosity of medium. In case of axis-symmetrical problem (Zienkiewicz & Taylor, 2000; 
Wagoner & Chenot, 2001): 

 

4 2 2 0
3 3 3

2 4 2 0
3 3 3
2 2 4[D] 0
3 3 3

0 0 0 2

⎡ ⎤φ + ψ ψ − φ ψ − φ⎢ ⎥
⎢ ⎥
⎢ ⎥ψ − φ φ + ψ ψ − φ⎢ ⎥
⎢ ⎥

= ⎢ ⎥ψ − φ ψ − φ φ + ψ
⎢ ⎥
⎢ ⎥φ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.  (2.5) 

The kinetic equation of porosity changing in visco-plastic area looks like (Shtern et al., 1982): 

  d H(1 ) ,
dt T

⎛ ⎞θ φ σ σ
= − θ +⎜ ⎟ψ ψ⎝ ⎠

  (2.6) 

where H - is intensity of shear strain rate; 
 σ  - is current normal stress; 

1/2
' '
ij ij

1T
2

⎛ ⎞= σ σ⎜ ⎟
⎝ ⎠

- is shear stress intensity. 

Beginning of plastic flow corresponds to implementation of condition (Shtern et al., 1982): 

 2 2 2
sf T 0,≡ ψ + φσ − σ =   (2.7) 

where sσ  - is yield stress at linear tension ( )s s3σ = Γ . 
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System of equations (2.2) is algebraically nonlinear relatively to { X } and in relation to {X} it 
is a system of differential equations. The step-by-step loading method has used for its 
integration. In such case the displacement of deforming element is divided on the row of 
steps with value hΔ . A nonlinear algebraic equations system (2.2) is solving during each of 
steps for determination of { X }. The values equal to product of time step to average velocity 
between respective load steps are added to coordinates on previous time step for 
determination of nodal coordinates. 
In case of time step size is quite small, the velocity distribution allows to define coordinates 
and deformation of nodal points at the end of step (Zienkiewicz & Taylor, 2000): 

 
( ) ( ) ( )
( ) ( ) ( )

i i i

ij ij ij

x t t x t V t t,
t t t t t.

Δ Δ

Δ Δ

+ = +

ε + = ε + ε
  (2.8) 

Changes of shape and properties of material are calculating in such way and attained 
accuracy is usually sufficient for practical purposes.  
The important feature of plastic deformation dependences is that they are not dependent 
directly on time. Therefore, a displacement of deforming element may be an internal time of 
system. An iteration process proceeds to stopping of change { X } and {X} with given 
accuracy. Changing of temperatures on the section of sample at high temperature 
deformation has determined using the heat conductivity law for each element. 
Thus on each load step the analysis of interaction of contact surfaces for elements inside a 
sample or in contact with surface of instrument was executed, because contact interaction 
allows determination of heat conductivity only for inner and contacting elements (Segal et 
al., 1981; Wagoner & Chenot, 2001; Hallquist, 2006; Ryabicheva & Usatyuk, 2006). 
The Fourier differential equation was implemented for heat conductivity analysis (Wagoner 
& Chenot, 2001; Ryabicheva & Usatyuk, 2006): 

 
2 2 2

T 2 2 2
T T T Tk dV C dV

x y z
⎛ ⎞∂ ∂ ∂ ∂

+ + = ρ⎜ ⎟
∂ ∂ ∂ ∂τ⎝ ⎠

,  (2.9) 

where  Tk  – is total coefficient of heat conductivity; 
 C  – is specific heat capacity; 
 ρ  – is density of material; 
 T  – is temperature, К; 
 τ  – is time of load step. 
A minimum of heat conductivity functional is corresponding to each loading step (Wagoner 
& Chenot, 2001; Ryabicheva & Usatyuk, 2006): 

 
2 2 2

T 2 2 2
V

T T TQ k dV
x y z

⎛ ⎞∂ ∂ ∂
= + +⎜ ⎟

∂ ∂ ∂⎝ ⎠
∫∫∫ , (2.10) 

where Tk – is total coefficient of heat conductivity. 
Integration of functional (2.10) is replaced by summing up on elements. A time step should 
be selected small enough in order to ensure homogeneous distribution of temperature and 
stationary heat transfer inside all elements. Solving of algebraic equation systems has 
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performed by Gauss method. A maximal change of parameters in any of elements should 
not exceed some value stipulated by strength properties of material. 
Thus, the minimization procedure of functionals (2.1) and (2.10) for non-stationary, 
nonlinear and non-isothermal processes of deformation of powder porous body consists of 
solving of linear algebraic equation systems with verification of convergence criterion. The 
indicated procedure is repeating on each time step for all sequential stages of calculation.  
The LS-DYNA 971 solver has used for solving the above mentioned problems. 

3. Mathematical modeling and forecasting of mechanical properties  
of single- and multi-component powder materials 
3.1 Mathematical model 
The mathematical model of material that proposed for modelling of physico-mechanical 
properties of porous body is presented by system of constitutive equations that are 
describing physical and mechanical properties of components. 
The finite elements that describe different components of materials are placed in a common 
mesh. It allows the possibility of taking into account interactions between components. The 
input data are volume fractions of components, their property in compact state, and also 
specified value of porosity. The elasto-plastic model of material is applied to all 
components. The independent parameters are nodal displacements (Segal et al., 1981). 
The strain intensities iε  and strain rates iε  inside each element are defined through 
projections of nodal displacements onto the coordinate axes (Segal et al., 1981): 
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ε = .  (2.11) 

where  λ  – is the node number; 
 N  – is the number of nodes in a finite element; 

xuλ , yuλ , zuλ  – are projections of nodal displacements onto the coordinate axes; 

ixε , iyε , izε  – relative deformations of finite element onto the coordinate axes. 

Taking into account the thermo-mechanical coefficients, the Cowper and Symonds equation 
for stress intensity σi inside a finite element looks like (Hallquist, 2006): 

 
1
pi

i 0 i1 ( E )
C

⎡ ⎤ε⎛ ⎞⎢ ⎥σ = + σ + β ε⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
.  (2.12) 

where  0σ – is the initial yield stress of a component; 
  E – is the Young modulus; 

tk k kυ εβ = – is the hardening coefficient of component; 
 C , p  – are arbitrary constants. 
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From the condition of equality of resultant displacements follows that after meshing of finite 
elements with different properties to common mesh, values of stress intensity, deformation 
intensity and strain rate at neighbour elements describing different components of material 
will be different. It means that values of σ, ε, E, Poisson's ratio v and density ρ in the given 
area of sample may be expressed in the following way (Ryabicheva & Usatyuk, 2007): 
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where n  – is the number of finite elements in a given area; 
 εxy, εz – are the radial and axial deformations; 
 m – is the number of components in the material; 
 δi – is the volume fraction of component. 
It is significant that in the proposed model porosity is described as a component of powder 
material and zero-elements are used for its modelling. The volume fraction of zero-elements 
is equal to given porosity of the material. 

3.2 Initial data 
The distributions of stress intensity, degree of deformation, strain rate, temperature and 
density at the deforming process, estimation of quality of manufactured items have been 
performed during mathematical modelling of extrusion of rod-shaped billet with 
predetermined complex of mechanical properties. 
The porous fibrous sample with density 8.75 g/cm3 obtained by pressing of copper fibres 
with diameter 0.8-1.3 mm and 6-12 mm length have used as initial billet. The finite element 
model of extrusion of porous fibrous pressing is presented on Fig. 3.1, a. A cylindrical 
graphite press-washer 2 for filling out the cavity of working part of matrix 4 at the end of 
extrusion was placed between punch 1 and initial billet 3 for removing finished product 
from a matrix without butt-end (Fig. 3.1, b). 
 

 

 
a) b) 

Fig. 3.1. The finite element model of extrusion: a - is the initial position; b – is the operation-
terminating position: 1 - is the upper puncheon; 2 - is the press-washer; 3 - is the initial 
pressing; 4 - is the matrix; 5- is the bandage; 6- is the lower plate 
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The temperature on the beginning of extrusion is 9200С, friction coefficient is 0.15. The 
diameter of porous fibrous pressing is 23.7 mm, height - 30 mm. The density of graphite 
press-washer is 2.2 g/cm3. The diameter of calibrating hole in the matrix was equal to 
12.9 mm, 9.1 mm and 6 mm, the reduction ratio was 3.6, 7.3 and 16.8, respectively. A 
detailed analysis of stress-strain state was performed in three sections passing through the 
beginning (Fig. 3.2, section 1-1), middle part of deformation zone (Fig. 3.2, section 2-2) and 
output of matrix 4 (Fig. 3.2, section 3-3). 
 

 
Fig. 3.2. The investigated sections 

3.3 Modelling of stress-strain state and distribution of temperatures during extrusion 
The stress-strain state picture is almost the same with all reduction ratio investigated, 
however, at λ = 16.8 the values of stress intensity and hydrostatic pressure are much higher 
then at λ = 3.6 and 7.3 (Fig. 3.3, a, b). In such conditions the distribution of stress intensity by 
section of pressing from axis to wall of matrix is more uniform. Its maximal value 145 MPa 
was reached at the output of deformation zone near the wall of matrix. The existence of 
gradients of additional stresses, tensile stresses near the walls of matrix and compression 
stresses in the inner layers of metal leads to complex character of hydrostatic pressure 
changing by section of billet. The value of hydrostatic pressure has grown up and become 
1380 MPa (Fig. 3.3, b). 
Obviously, the maximal point at radius of billet r = 2 - 4 mm is corresponding to beginning 
formation of flow-through flaw in the billet, that is well concordant with one of basic laws of 
metal forming theory about the flow of metal in the direction of least resistance – by the axis 
of matrix and, also, corresponding to distribution of strain intensity (Fig. 3.3, d).  
The presence of tensile deformations in central part of sample ensures larger value of strain 
intensity that diminishing to the walls of matrix due to the influence of friction. Increasing 
of longitudinal tensile normal stresses from axis to wall of matrix causes decreasing of 
transversal layers thickness near the wall and their thickening at the central area of billet. 
The strain rate intensity in sections 1-1 and 2-2 has conditioned by proximity of certain 
volumes to elastic zones of cylindrical segment of container and calibrating segment of 
matrix. It should be noted that difference between strain rates in sections 2-2 and 3-3 
becoming lower with growing of reduction ratio that testifies increasing of stiffness of 
stress-strain state while increasing of reduction ratio. 
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a)                                                      b) 

 
c) 

 

 
d) 

Fig. 3.3. The distribution of stress intensity (a), hydrostatic pressure (b), strain intensity (c), 
strain rate intensity (d) at λ=16.8: 1– is the section 1–1; 2– is the section 2–2; 3 – is the section 
3–3 
Computer modelling of stress-strain state during extrusion of fibrous pressing is 
corresponding to results of analysis of common scheme of changing the coordinate grid by 
its state in the beginning, middle and the end of deformation zone in experimental 
investigation (Fig. 3.4). 
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a) 
 

 
b) 

 

Fig. 3.4. The distribution of strain intensity (а) and strain rate intensity (b) by sections:  
1 – is the section 1–1; 2 – is the section 2-2; 3 – is the section 3-3 
The maximum values and most uniform distribution of strain intensity and strain rate 
intensity have reached at section 3-3 that ensures production of sample of given diameter. 
The distributions of temperatures for all of three reduction ratios into investigated sections 
are similar (Fig. 3.4). 
It should be noted that temperature goes down in section 1-1 only in the 3 mm layer of 
pressing due to heat transfer to the matrix at all of three reduction ratios. However, the 
temperature decreases more intensively to 650 ºC at λ = 16.8 (Fig. 3.5). Decreasing of 
temperature in the centre of deformation zone (section 2-2) goes more intensively due to 
growth of reduction ratio that is related to increasing of contact area of pressing with walls 
of matrix. The most rapidly it appears in section 3-3 when at the small diameter of article 
happens sharp falling of temperature by whole section. The reasons of such temperature 
changes are heat conductivity processes in layers of pressing at extrusion and between 
pressing and walls of matrix. 
The distribution of density at different reduction ratios is presented on Fig. 3.6. The density 
is falling down while increasing the distance from centre of sample to circumference of the 
sample. Specifically, at λ = 3.6 the density fell to 8.70 g/cm3, at λ = 7.3 to 8.87 g/cm3. The 
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density is slightly decreasing to 8.93 g/cm3 at λ = 16.8 and almost constant by section of 
sample. 
The shear stress intensity, that is growing up while increasing of reduction ratio, have 
defined for estimating the consolidation of fibres at current density of samples (Fig. 3.7).  
 
 

 
a) 

 

 
b) 

 

 
c) 

Fig. 3.5. The distributions of temperatures by sections of billet during extrusion: λ = 3.6 (a), 
λ = 7.3 (b), λ = 16.8 (c): 1 – is the section 1–1; 2 – is the section 2–2; 3 – is the section 3–3 
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A comparison of shear stress intensity performed with critical shear stress τcr determined by 
formula: 

 T
cr 3

σ
τ = , (3.1) 

where Tσ  - is the yield stress at given temperature and strain rate conditions. 
It should be noted that at λ = 3.6 the intensity of shear stress is lower than critical shear 
stress, at λ = 7.3 the value of τ is a bit lower than τcr that testifies to incomplete consolidation 
of fibres, and at λ = 16.8 its value much higher than τcr. A high hydrostatic pressure within 
1000-1380 MPa at the reduction ratio λ = 16.8 ensures full consolidation of fibres at extrusion 
and production of nonporous fully consolidated material that meeting the requirements of 
standard. These data have been verified by mechanical properties of material obtained 
experimentally. 
 
 

 
Fig. 3.6. Distributions of density by sections of copper sample: 1 - λ=3.6; 2 - λ=7.3; 3 - λ=16.8 

 
 

 
Fig. 3.7. Shear stress intensity: 1 – λ = 3.6; 2 – λ = 7.3; 3 – λ = 16.8; 4 – is a critical shear stress 

Thus, modelling of direct extrusion of initial fibrous pressing with the density of 8.75 g/cm3 
has shown that density conformed to density of compact material obtained at the reduction 
ratio 16.8 ensuring complete consolidation of fibres. However, finite element simulation 
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allowed identifying defects of material flow similar to experimental results (Fig. 3.8). It has 
established that flow-through flaw appears on upper end of sample at all reduction ratios. 
 
 

    
 a) b) 
Fig. 3.8. The flow-through flaw on after end (a) and loosening on exposed face (b) of samples 
obtained from fibrous pressing 
Evolution of flow-through flaw at the reduction ratio 16.8 is presented on Fig. 3.9. The flow-
through flaw does not appear during the initial stages of deformation (Fig. 3.9, a, b) while 
metal did not fill in the working segment of matrix. A flow-through flaw nucleates at 
transferring of metal to deformation zone into the centre of pressing (Fig. 3.9, c). A slight 
increasing of hydrostatic pressure on its edges observed. A flow-through flaw spreads deep 
into billet by the end of extrusion (fig. of a 3.9, d, e) and its depth lsk is depending on the 
reduction ratio. 
 
 

 

 
   

 a) b) c)  d) e) 
Fig. 3.9. The evolution of flow-through flaw: a, b, c, d – are the finite element simulation 
results ; e – is the photo of upper part of sample with a flow-through flaw: 1 – is the press-
washer, 2 – is the porous fibrous pressing 
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The highest depth of flow-through flaw of 35 mm was reached at extrusion with λ = 16.8 
(Fig. 3.10, a) and its volume was about 350 mm3. The maximal volume of flow-through 
flawVsk obtained at λ = 3.6 (Fig. 3.10, a) and its depth was minimal, 12-15 mm. 
A comparison of theoretical and approximate experimental dependences of depth of flow-
through flaw lsk (Fig. 3.10) and height of loosening from the other end of sample hraz 
(Fig. 3.11) from value of λ has shown that lsk and hraz are significantly growing while 
increasing of λ that diminishes useful length of sample l pr : 

 pr pr
0 sk razl l l h= − − , (3.2) 

where pr
0l - is the general length of rod. 

 

   
 a) b) 
Fig. 3.10. The maximal depth and volume of flow-through flaw: a- is the dependence lsk(λ); 
b- is the dependence Vsk(λ): 1- are theoretical dependences; 2- are experimental dependences 
 

 
Fig. 3.11. The loosening height: 1 – is the theoretical dependence; 2 – is the experimental 
dependence 
The shape of curves (Fig. 3.10, 3.11) indicates on possibility of their approximation by 
dependences that are taking into account an influence of non-uniformity of stress-strain 
state on the volume of flow-through flaw. The effective method of flow-through flaw 
removal is implementation of billet with compensator (Fig. 3.12). The followings empiric 
formulas for determination of compensator dimensions have obtained using processing of 
experimental data by a least-squares method and simulation results: 
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 hsf = 2ξλhpr,   rsf = (1.0-1.7ξλ)Dpr, (3.3) 

where ξ - is the coefficient of non-uniformity of deformation (for copper fibres ξ = 1.02–1.17); 
 hsf - is the height of compensator; 
 rsf - is the radius of sphere of compensator; 
Dpr, hpr  - are diameter and height of pressing. 
Thus, the stress-strain state at direct extrusion of fibrous pressing is fully determined by 
reduction ratio. At the reduction ratio λ = 16.8 was produced a compact copper material due 
to shear stress value exceeding the critical shear stress at high hydrostatic pressure within 
1050-1380 MPa that indicates to complete consolidation of fibres. The conditions of 
temperatures distribution by section of pressing are most hard at λ = 16.8 because of 
diminishing size of deformation zone and increasing the heat emission to the instrument.  
 

   
 a) b) 
Fig. 3.12. The draft of axial section of fibrous pressing with compensator (a) and photo (b) 

The dependences for dimensions of defects (flow-through flaw and loosening) in the sample 
from deforming conditions have been determined. The analytical dependences for 
dimensions of initial pressing with compensator taking into account a volume of flow-
through flaw were obtained and comparing with experimental dependences provided. The 
results of different methods are corresponding to each other with error less than 10%. 

3.4 Modelling of extrusion of porous fibrous pressing with compensator 
The investigation of stress-strain state at direct extrusion of porous fibrous pressing with 
spherical compensator, the reduction ratio λ = 16.8. The finite element model of extrusion of 
fibrous pressing with compensator is presented on Fig. 3.13. The height of compensator was 
accepted of 5 mm. 
 

 

 
a) b) 

Fig. 3.13. The finite element model of extrusion of fibrous pressing with compensator: 
a- is the beginning of extrusion; b- is the end of extrusion: 1- is the upper puncheon; 2- is the 
press-washer; 3- is the initial pressing; 4- is the matrix; 5- is the bandage; 6- is the lower plate 
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The analysis of distributions of stress intensity and hydrostatic pressure (Fig. 3.14) has 
shown that type of curves remains analogical to dependences presented on Fig. 3.3. The 
presence of compensator on pressing provided increasing of stress intensity and hydrostatic 
pressure in sections 1-1 and 2-2. The hydrostatic pressure in section 3-3 became lower. 
 

    
 a)  b) 
 

 
c) 

 

 
d) 

Fig. 3.14. The distribution of stress intensity (a), hydrostatic pressure (b), strain intensity (c), 
strain rate intensity (d) at extrusion with λ = 16.8: 1– is the section 1-1; 2 - is the section 2-2; 3 
- is the section 3-3 
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There are no inflection points on curves corresponding to beginning formation of flow-
through flaw (Shtern et al., 1982; Ryabicheva & Usatyuk, 2006). The distribution of 
hydrostatic pressure on the section of sample is more uniform. Obviously, the presence of 
compensator did not exert influence on shear stress intensity. The intensity of deformations 
is considerably growing in sections 1-1 and 2-2 in the places adjoining to compensator, 
especially on the axis of pressing (Fig. 3.14, c). The intensity of strain rate was considerably 
increased too (Fig. 3.14, d). 
Thus, the presence of compensator, located on the axis of pressing, resulted to increase of 
stress intensity and deformations intensity and ensured the removal of flow-through flaw.  
It has established that deformation takes place more intensively in the area of compensator 
due to the primary contact of pressing has carried out with press-washer and then with 
other surface. 

3.5 Investigation of plasticity resource 
Solving the technological problems of production of fibrous materials coupled with 
investigation of plasticity resource that is changing under the influence of temperature and 
strain rate conditions of deformation and is one of criteria for estimation of quality of wares 
during finite element modelling of direct extrusion of porous fibrous pressings. 
The criteria for estimating of plasticity resource were offered on the basis of stress tensor 
invariants according to (Ogorodnikov et al., 2005). The quantitative relation between 
ultimate deformation and parameters of stress-strain state is a diagram of plasticity. In such 
case stiffness of the stress-strain state described by Lode coefficient ηl and exerts influence 
on plasticity: 

 1 2 3
l

i

σ + σ + σ
η =

σ
. (3.4) 

The type of stress-strain state is determined by the Nadai-Lode stress parameter μσ that 
allows estimating an influence of middle main stress on plasticity (Ogorodnikov et al., 2005): 

 2 1 3

1 3

2
σ

σ − σ − σ
μ =

σ − σ
. (3.5) 

In such case the measure of plasticity is ultimate deformation that may be determined for 
any deformed material from a diagram of plasticity built using results of three tests – 
tension, compression and torsion (Ogorodnikov et al., 2005).  
These above mentioned parameters are taking into account of hydrostatic pressure exerting 
the influence on plasticity, and stress intensity that are determining the plastic flow of 
material and, also, characterizing the stiffness of stress-strain state. However they are not 
taking into account the influence of the third invariant of stress tensor. 
In the papers (Ogorodnikov et al., 2005; Ogorodnikov et al., 2007) have proposed to 
construct the diagram of plasticity as a surface of ultimate deformations in space of 
dimensionless parameters ηl and μσ - ep(ηl, μσ) for investigation of plasticity resource at the 
volumetric stress-strain state. During construction of such diagrams the type of loading 
trajectories and ultimate deformations are simply defined by a deformation scheme and are 
not depend on properties of material. Therefore, a general view of plasticity resource 
criterion is presented by following expression (Ogorodnikov et al., 2005): 
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ie n 1

i
in

р l0

eΨ n de 1
e ( , )

−

σ

= ≤
η μ∫ , (3.6) 

 

where eP – is the ultimate deformation at fracture, 
 ei – is the intensity of deformations, 
 eP(ηl, μσ) – is the surface of ultimate deformations, 

l

i

dn 1 0.2arctg
de

⎛ ⎞η
= + ⎜ ⎟

⎝ ⎠
 – is the index that takes into account a character of plasticity changing 

depends on stiffness of stress-strain state. 
In the paper (Ogorodnikov et al., 2005) the following dependence was proposed for 
approximation of surfaces of ultimate deformations: 

 ( ) ( )P l
P l 2

1 2

e 0,0 exp( b )
e ,

1σ
σ σ

− η
η μ =

+ λ μ + λ μ
, (3.7) 

where p
1

p

e ( 1,0)
ln

e (0,0)
⎛ ⎞−

λ = ⎜ ⎟⎜ ⎟
⎝ ⎠

, p
2

p

e (0,1)
ln

e (0,0)
⎛ ⎞

λ = ⎜ ⎟⎜ ⎟
⎝ ⎠

, 1 2b = λ − λ - are approximation coefficients; 

eP (0,0)  - is the ultimate deformation at torsion test; 
eP (-1,0) - is the ultimate deformation at compression test; 
eP (0,1)  - is the ultimate deformation at tension test. 
The following values of ultimate deformations were determined by the results of mechanical 
tests on torsion, compression and tension of material obtained by hot extrusion of fibrous 
pressing (Fig. 3.15): eP (0,0) = 0.62; eP(-1,0) = 0.83; eP(0,1) = 0.75. The strain rate was 0.1 min-1 
according to GOST 1497-84. 
Construction of surface of ultimate deformations using expression (3.7) makes necessary 
implementation of strain rate coefficient Eλ that is taking into account the difference in strain 
rates at mechanical tests and hot extrusion: 

 test
def

Eλ
ε

=
ε

, (3.8) 

where testε  - is the strain rate at the mechanical tests; 
 defε  - is the average strain rate in the process of direct extrusion. 
After substitution of formula (3.8) to the expression (3.7) obtained: 
 

 p
1

p

e ( 1,0)
E ln

e (0,0)λ
⎛ ⎞−
⎜ ⎟λ =
⎜ ⎟
⎝ ⎠

, p
2

p

e (0,1)
E ln

e (0,0)λ
⎛ ⎞
⎜ ⎟λ =
⎜ ⎟
⎝ ⎠

. (3.9) 

Therefore, λ1 = 1.93.10-5, λ2 = 1.27.10-5, b = 0.1. 
Substituting values from (3.9) to (3.7) having the following expression: 
 

 ( )P l 5 5 2
0.62exp( 0.1 )e ,

1 1.93 10 1.27 10σ − −
σ σ

− η
η μ =

+ ⋅ μ + ⋅ μ
. (3.10) 
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 a)   b) c) 

Fig. 3.15. Flow curves:  a – at torsion; b – at compression; c – at tension 
The dependence of Lode coefficient from intensity of deformations may be obtained by 
numerical differentiation of (3.4) by ei for any point of fibrous pressing, if ηl(ei) at interval 
[0, eP] continuously differentiable and integrable. This dependence is velocity of changing 
the stiffness of stress-strain state at hot extrusion and may be decomposed into the 
trigonometric series that looks like: 

 l 0
k i k i

k 1i

d a a cos(e ) b sin(e )
de 2

∞

=

η
= + +∑ , (3.11) 

where 0a ,
ie

k l i i i
i 0

1a (e )cos(k e )de
e

= η π∫ ,
ie

k l i i i
i 0

1b (e )sin(k e )de
e

= η π∫ – are coefficients. 

In the initial moment at ie = 0, l i(e )η  = 0 and l

i

d
de
η =0, therefore 0a = 0 and series (3.11) for 

the copper porous fibrous pressing may be written in the following way: 

 l
k i k i

k 1i

d a cos(e ) b sin(e )
de

∞

=

η
= +∑ . (3.12) 

After substitution of expressions (3.10), (3.11) and (3.12) to (3.6), it looks like: 
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where k i k i
k 1

n 1 0.2arctg a cos(e ) b sin(e )
∞

=

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
∑ . 

Analytical integration of expression (3.13) for obtaining the expression that characterizing a 
plasticity resource of material at any point of fibrous pressing during passing through the 
deformation zone is impossible. Numeral integration of expression (3.13) has performed by 
computer using Mathcad 12. Integration results are presented on Fig. 3.16, curve 1.  
Decomposition of function (3.13) in a power-law series have done for saving of 
computational resources while investigation of plasticity resource in points of fibrous 
pressing: 

 
2 3 4 5 6 7
i i i i i i

i
ae ae ae ae ae aeae ...
2! 3! 4! 5! 6! 7!

Ψ = + − + − + − + , (3.14) 
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where a – is the coefficient of power-law series. 
During extrusion of porous fibrous pressing a = 0.02, then, substituting a in (3.14), 
calculating factorials and limited to the first seven terms of series having the following 
expression: 

 
2 3 4 5 6 7
i i i i i i

i
0.02e 0.02e 0.02e 0.02e 0.02e 0.02e0.02e

2 6 24 120 720 5040
Ψ = + + + + + + .     (3.15) 

The results of determination of plasticity resource by formula (3.15) are presented at 
Fig. 3.16, curve 2. The investigation of plasticity resource performed for points located on 
the axis of pressing while passing through the deformation zone at the reduction ratio 
λ = 16.8 shown that for the given deformation conditions the value of λ = 16.8 is ultimate 
because of providing the complete consolidation of fibres and exhausting of more then a 
half of plasticity resource Ψ = 0.55–0.62 < 1. Consequently, improving of extrusion 
productivity by increasing of deforming velocity over 0.5 m/s is not possible. A surface that 
characterizing intensity of deformations of points of fibrous pressing at hot extrusion 
ei(ηl, μσ) does not intersect the surface of ultimate deformations ep(ηl, μσ) (Fig. 3.17) 
described by expression (3.13). 
 

 
Fig. 3.16. Determination of plasticity resource of points on the axis of fibrous pressing:  
1 – obtained by numerical integration of expression (3.13); 2 – according to formula (3.15) 
 

 
Fig. 3.17. Surfaces of deformations: 1 - is the surface of ultimate deformations; 2 - is the 
surface of deformations intensity 

Comparing values of plasticity resource obtained by numerical integration of expression 
(3.13) and by using formula (3.15) has shown that they corresponding to each other with 
relative error 7-11%. 
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3.6 Modelling of physico-mechanical properties of single-component fibrous material  
Finite element modelling of compression test for estimating of physical and mechanical 
properties of single-component copper fibrous material has been performed. 
The initial data are physical and mechanical properties of compact material and value of 
initial porosity (Table 3.1). 
 

Component Density,
kg/m3 

Initial 
porosity, %

Young 
modulus, MPa

Poisson's 
ratio 

Yield stress, 
MPa 

Ultimate 
stress, MPa 

Copper 8940 21 1.20.105 0.33 120 220 

Table 3.1. Initial data 

 
The production 

technique 
Ultimate 

stress, MPa
Yield stress, 

MPa 

Relative 
elongation, δ ,%

Contraction 
ratio, ψ ,% 

Hardness, 
НВ 

Hot stamping of 
fibrous pressings, 
cold deforming, 

annealing 

218.7 45.7 37.5 40.5 55-60 

Table 3.2. Mechanical properties of copper fibrous pressing 

 

Material 
Kind 

of 
data 

Porosity,
% 

Density, 
kg/m3

Young 
modulus,

MPa 

Poisson's
ratio 

Relative 
elongation,

δ , % 

Yield 
stress, 
MPa 

Ultimate 
stress, 
MPa 

S 5 8490 1.1.105 0.45 38 240 360 
Copper 

E 3 8670 1.2.105 0.41 40 255 380 

S – are simulation results; E – are experimental results. 

Table 3.3. Calculated and experimental properties of copper fibrous material after extrusion 

3.7 Modelling of physico-mechanical properties of multi-component powder material 
Production of antifriction materials with given properties makes necessary investigation the 
influence of temperature, degree of deformation and strain rate at densification of 
heterogeneous powder material. The basis of materials observed in this investigation is 
copper powder obtained from wastes of copper current conductors and ligature is nickel 
powder produced by recycling of wastes from cadmium-nickel batteries. 
The initial data for determination of properties of multi-component copper-based porous 
powder material are presented in Table 3.4. The finite element model of the multi-
component material, the analytical model of compression test and distribution of density are 
presented on Fig. 3.18, a. 
The technology for production of samples consists of the following operations: moulding of 
powder mixture, sintering at 950 0С into the synthesis-gas medium for 3.5 hours (the gas 
composition is 72% Н2, 21% СО, 5.5% СО2, 1.5% Н2О), repeated moulding up to porosity 10, 
20 and 30 %, homogenizing annealing into the synthesis-gas medium at 960 0С for 1 hour, 
hardening in water (Ryabicheva et al., 2008). 
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N Component Volume 
fraction, %

Density, 
kg/m3 

Young’s 
modulus, MPa

Poisson’s 
ratio 

Yield 
stress, MPa 

Ultimate 
stress, MPa 

1 Copper 70-90 8940 1.20.105 0.33 120 220 

2 Nickel 10–30 8897 2.03.105 0.31 210 450 

3 Cobalt 5 8900 2.09.105 0.31 200 350 

4 Iron 2 7850 2.10.105 0.28 200 280 

5 Manganese 1 7470 1.98.105 0.22 210 430 

6 Titanium 3 4505 1.10.105 0.34 160 530 

7 Graphite 1 1800 0.85.105 0.43 100 120 

8 Porosity 10–30 0 0.00 1.00 0 0 

Table 3.4. The components of multi-component material and their initial properties 

The densification process of multi-component powder materials at elevated temperatures is 
going with shifting of elementary volumes of porous body mainly on phases interface 
boundaries or «soft» phase. The elements of hard phase are acting like dense bodies. 
Complex composition of ligature makes an influence on the deforming process. A graphite, 
for example, does not interacts with copper, remains at free state and may be a hard 
lubricant on the one part and stress concentrator on the other part diminishing strength and 
plasticity of antifriction material (Tumilovich et al., 1992; Ryabicheva et al., 2008). 
Investigation the influence of degree of deformation and strain rate on densification of 
heterogeneous powder material at the elevated temperature interval has shown that density 
is growing the more intensively the higher is strain rate, while increasing the degree of 
deformation. The most intensive deformation of metal is taking place in deformation zone 
located in the central part of sample. When stress intensity in hard phase reached the yield 
stress, the deformation embracing the whole volume of sample. The hardness is higher in 
zones of higher deformation due to hardening (Ryabicheva et al., 2008). 
Metal particles in peripheral ring zone are moving at the radial direction. The shear tensile 
stresses are arising in it. The hardness is growing while shifting away from periphery of 
sample that densificating considerably less and is a place of formation of first cracks while 
reaching the ultimate degree of deformation. The central part of sample is densificating 
most intensively at the expense of compression stresses and peripheral part less intensively 
due to metal flow in the radial direction. The condition of reaching the ultimate density is 
ultimate degree of deformation (Krashchenko & Statsenko, 1981; Ryabicheva et al., 2008). 
A transverse flow of metal in the volume of central part have begun after reaching of 
ultimate degree of deformation and peripheral part is densificating at the expense of central 
part that becoming smaller. It is impossible to reach full densification in such conditions 
because of fracturing a surface of sample (Ryabicheva et al., 2008). 
It is well-known that higher density of powder material may be reached at higher strain 
rates and equal degrees of deformation. It has been established experimentally that density 
of samples is growing up to ultimate while increasing the degree of deformation (Fig. 3.10), 
and density obtained at strain rate 10 s-1 is higher then density of samples upset at strain rate 
0.1 s-1 at the same degrees of deformation (Ryabicheva et al., 2008). 
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The initial data for determination of properties of multi-component copper-based porous 
powder material are presented in Table 3.4. The finite element model of the multi-
component material, the analytical model of compression test and distribution of density are 
presented on Fig. 3.18, a. 
 

   
 a) b) 

Fig. 3.18. The finite element model of the multi-component material, analytical model,  
density distribution (а), stress-strain dependences (b): 1 – is material 1; 2 – is material 2;  
3 – is material 3:  – are simulation results;  – are experimental results 
 

Volume 
fraction, %

Material 
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D
en
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, 
kg

/m
3  Young’s 

modulus, 
MPa 

Poisson’s
ratio 

Ultimate
strain, %

Yield 
stress, 
MPa 

Ultimate 
stress, 
MPa 

S 10 8046 1.53.105 0.42 34 320 430 
Material 1 90 10 

E 8 8110 1.65.105 0.40 36 340 460 
S 20 7152 8.75.104 0.38 30 280 370 

Material 2 80 20 
E 17 7350 9.15.104 0.35 33 300 390 
S 30 6560 5.86.104 0.35 30 250 300 

Material 3 70 30 
E 32 6245 5.56.104 0.31 28 230 270 

S – are simulation results; E – are experimental results. 

Table 3.5. Properties of multi-component copper-based powder materials 
The laboratory experiments of compression tests are planned and carried out on the basis of 
numerical simulation results. The stress-strain dependences are drawn using the simulation 
and experimental results that are in concordance (Fig. 3.18, b). The relative inaccuracy of 
mathematical and experimental investigation of properties does not exceed 10%. 
It has established that highest level of mechanical properties is shown by material 1 due to 
its lowest porosity. The material 3 has lowest mechanical properties (Table 3.5) because of 
highest porosity and, moreover, interparticle cracks may appear on copper-nickel 
boundaries due to significant difference of their strength properties. Thus, decreasing of 
porosity on 20% promotes to increasing of strength properties on 40%. 
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4. Conclusion 
It has established that stress-strain state and temperature fields at extrusion of fibrous 
pressing are fully determined by the reduction ratio. A compact copper material was 
produced at the reduction ratio λ=16.8 and high hydrostatic pressure within 1050-1380 MPa. 
The shear stress value exceeded the critical shear stress that indicates on complete 
consolidation of fibres. 
Conditions of formation of defects during extrusion of fibrous pressing have determined. 
The analytical dependences for determining dimensions of initial pressing with a 
compensator with taking into account dimensions of defects have proposed.  
The presence of compensator located on the axis of pressing led to increasing of stress 
intensity and intensity of deformations and ensured defects’ removal. It has established that 
near compensator deformation is taking place more intensively due to the primary contact 
of pressing has carried out with press-washer and then with other surface.  
Investigation of plasticity resource of points located on the axis of pressing while passing 
through the deformation zone at the reduction ratio λ = 16.8 shown that for the given 
deformation conditions the value of λ = 16.8 is ultimate because of providing the complete 
consolidation of fibres and exhausting of more then a half of plasticity resource 
Ψ = 0.55-0.62 < 1. Consequently, improving of extrusion productivity by increasing of 
deforming velocity over 0.5 m/s is not possible.  
A surface that characterizing intensity of deformations of points of fibrous pressing at hot 
extrusion ei(ηl, μσ) does not intersect the surface of ultimate deformations ep(ηl, μσ). 
The technique for finite element modelling of physical and mechanical properties of single-
component fibrous material with taking into account properties of fibres’ material in 
compact state and deforming conditions that allows defining conditions of complete 
consolidation of fibres at the deforming process using the stress-strain state analysis results 
of fibrous pressing at the deforming process has been developed. 
The technique for modelling of physical and mechanical properties of multi-component 
powder materials using a finite element method on the basis of physical and mechanical 
properties of initial components while accounting deforming conditions has been 
developed. The distribution of density of multi-component powder material in the volume 
of sample obtained.  
The influence of nickel content and porosity value on mechanical properties of material has 
been established. Increasing of nickel content leads to enhancing of strength properties. The 
content of other components and their influence on properties was accounted by interaction 
of finite elements. Growth of porosity leads to decreasing of mechanical properties. The 
results of modelling physical and mechanical properties of multi-component powder 
materials are well concordant with the results of the laboratory experiments. 
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1. Introduction 
Ceramics is one of the oldest artificial materials in the world. As a key process of 
ceramics manufacture, the sintering process, which belongs to the heat engineering 
technology, can directly influence the quality, yield and cost of ceramic products. Based 
on the computer, simulation and artificial intelligence technology, the intelligent 
ceramics sintering can be realized with the research of CAS (Computer-Aided Sintering). 
CAS technology is a development tendency of the ceramics manufacture combined with 
heat engineering technology, because with it not only the sintering quality and yield of 
ceramics products can be improved but also the energy consume can be decreased. 
Associated with the application of simulation technology, the topics about CAS are 
discussed as follows: 
Basic concept of CAS 
Method of search for geometric heat centroidal point (GHCP) using of simulation 
technology 
Simulation temperature field evolution of ceramics body adopting ANN (Artificial Neural 
Network) technology 
Simulative analysis about stress filed of ceramics body 
Appropriate processes of ceramics sintering based simulation technology  
The ceramic is widely adopted due to its unique and excellent characters. The requirement 
of the sintering product quality is very high because of its difficult-to-cut character. The 
factors which influence the quality of the sintering product include not only the roughcast 
but also the change event of the temperature distribution in roughcast. From another point 
of view, the factors include the sintering curve. The traditional sintering curve was defined 
all by the people’s experience. The waste of resource is not obvious when the small ceramic 
product is developed by experimentation. However, the large structure parts like missile 
spinner fail to sinter once, a huge economic loss will come to being. And from the view of 
environmental protection and the resources reasonable use, this traditional method is also 
unsuitable for present industrial development. So, in order to set the sintering curve 
scientifically, the change event of the temperature distribution in roughcast should be 
studied and the rule has to be found out (Zeng & Zhang, 1994; Zhao, 1993; Jeong & Auh, 
2000). This paper mainly introduces CAS, researches for GHCP on simple shape ceramic 
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body and complex shape ceramic body using of simulation technology, Simulates 
temperature field evolution of ceramics body during sintering adopting ANN technology, 
simulates the stress field of ceramic body during sintering and discusses the appreciate 
process of ceramic sintering. 

2. Important 
Neural network has been developed rapidly in recent years. Following the development of 
large scale integrated circuits and computer technology revolution, complex and time-
consuming operation has no longer been the main issue to researchers. So far, dozens of 
neural network models have been produced which broadly divided into two categories: 
feed forward network and feedback network. BP algorithm is the most important and 
common learning algorithm of feed forward network. 
Present, neural network has been applied to various fields and achieved very exciting 
advances in many ways, such as intelligence control, system identification, pattern 
recognition, computer vision, self-adaptive filtering and signal processing, nonlinear 
optimization, automatic target recognition, continuous voice recognition, sonar signal 
processing, knowledge processing, sensing technology, robot technology etc. Neural 
network has been applied to ceramic industry by more and more scientific and technical 
personnel recently. 
Ming Li etc. use neural network with single hidden layer to simulate the temperature 
distribution of burner nozzle. In this paper, fuel pressure, atomizing wind pressure and 
combustion-supporting wind pressure are the input parameters and the average 
combustion temperature is the output. Intrinsic relationship between the input and 
output has been set by neural network with single hidden layer which can be fast mapped 
between them. The network exercised 5770 times by nine sets of data has been tested. The 
relative error is less than 0.9%, maximum absolute error is 7.44°C. This Indicates that 
using artificial neural networks to simulate the temperature distribution of burner nozzle 
is feasible. 
Basing on systematic analysis, Guolin Hu, Minhua Luo selected nine identification 
parameters including the heat insulation time, the average of high temperature section 
and the heating rate of various stages and built a BP network model to train. 20 samples 
have been identified using the decided identification model and the accuracy of 
recognition is 90%.It is shown that the porcelain brick sintering condition can be 
identified by BP model. 
Lingke Zeng, Minhua Luo etc. utilized the mixture ratio and the sintering properties of TZP 
to train the BP network, and then the performance parameters such as volume density, 
relative density, linear shrinkage rate of the sintering pattern were predicted. The deviation 
between the predictive value and the true is very small. 
The application of neural network in the ceramic industry is just started, but very successful, 
especially for the identification, forecast of material properties, analysis and prediction of 
ceramic material defects and prediction of the dynamic temperature field etc. Further 
application of neural network in the ceramic industry will be realized. For instance, neural 
network can be used in temperature field analysis of a ceramic body during the sintering 
process which is not mentioned in literatures nowadays. 
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year author content 

1976 Jinxue Gao A model of tunnel kiln 

1979 D.P.Shelley Structure design of periodic kiln walls using 
computer simulation 

1981 B.г.Aббакумов A combustion mathematic model of sintering 
zone in tunnel kiln 

1982 Zhenqun Liu, Lingke Zeng A tunnel kiln mathematic model based on the 
calculation of parking stall 

1982 Duan Song Design and operation improvement of tunnel 
kiln using computer simulation 

1993 Lingke Zeng, Gongyuan Zhang Dynamic measuring of surface temperature 
field of ceramic body during the firing process 

1994 Lingke Zeng, Gongyuan Zhang 
3D finite element analysis of temperature and 

thermal stress fields of ceramic body in 
sintering course 

1997 Chuangliang Chen, Lingke Zeng, Simulation of periodic kiln walls temperature 
field 

1997 Ming Li 
Simulation and study on the temperature 

distribution of furnace burner using neural 
network 

1998 Guolin Hu, Minhua Luo 
Prediction of the porcelain brick sintering 

condition under various sintering temperature 
curve using the BP network 

2002 Lingke Zeng, Minhua Luo 
Prediction of the product performance under 

different formula and sintering conditions 
using neural network 

Table 1. Research situation of ceramic kilns in recent years 

3. Information 
3.1 Basic concept of CAS 
CAS (Computer-Aided Sintering) is used establish of mathematic models of sintering 
process and simulating this process by computer, finite element analysis and artificial 
intelligence technology. The temperature and thermal stress distribution fields in the inner 
of the product under some sintering condition can be required by simulation of the sintering 
process. So the rational sintering process can be designed to control the temperature and the 
thermal stress of the sintering process by the simulation results. Naturally the deformation 
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and cracks during sintering process reduce and the quality of the sintering product 
improves. 

3.2 Method of search for geometric heat centroidal point (GHCP) using of simulation 
technology 
3.2.1 Research for GHCP on simple shape ceramic body 
In order to search for geometric heat centroidal point, temperature distribution of ceramic 
roughcast is analyzed with ANSYS. The shape of the ceramic roughcast is supposed to be 
square. Temperature load is applied according to the sintering curve (Hong & Hu, 1992). 
Temperature rise rate k whose unit is °C/s is denoted by the slope angle α of the sintering 
curve (tanα=k). The 45° sintering curve means that the temperature rise rate is 1°C/s. The 
initial sintering temperature is 0 °C and the max one is 3600 °C. When reaching the max 
sintering temperature, the roughcast is cooled according to the same temperature change 
rate. Taking the 30° sintering curve as example, simulation of the temperature distribution 
of ceramic sintering with ANSYS is shown as Fig.1. 
 

     
 (a) 30° sintering curve  (b) Temperature distribution at 7000s 

Fig. 1. Simulation of the temperature distribution of ceramic sintering 

 

     
 (a) The location of the selected no  (b) Temperature variation curves of A, B, C, D 
Fig. 2. Four representative nodes and their temperature variation curves 
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The temperature of every node at each time can be got. Four representative nodes are 
selected and shown as Fig.2. Temperature difference between node A and D is much larger 
than that between node B and C. So node A and D whose temperatures are taken into 
consideration mostly are selected as geometric heat centroidal points of the square ceramic 
roughcast. 

3.2.2 Research for GHCP on complex shape ceramic body 
The complex shape ceramic body is shown in Fig.3 (a). This problem belongs to transient 
thermodynamic issue. Based on its symmetry, a quarter of the ceramic body is used to build 
a finite element model which is shown in Fig.3 (b). 
The temperature load is applied according to the sintering curve whose slope angle is 45° 
shown in Fig.4(a). Temperature distribution map at different time points are illustrated in 
Fig5. The value of temperature increases from blue to red. It can be seen from these pictures 
that the location of geometric heat centroidal point (GHCP) is at notes O, P and Q shown in 
Fig.4 (b). 
 

          
 (a) The complex shape ceramic body  (b) The finite element model 
Fig. 3. The complex shape ceramic body and its finite element model  

 

        
 (a) The 45° sintering curve   (b) The location of nodes O, P Q  

Fig. 4. The sintering curve and the location of nodes O, P, Q 

Q

O 

P 



 Numerical Simulations - Applications, Examples and Theory 

 

406 

     
 (a) Temperature distribution at 500s   (b) Temperature distribution at 3800s 

     
 (c) Temperature distribution at 7000s  (d) Temperature distribution at 8500s 
Fig. 5. The temperature distribution map 

3.3 Simulation of temperature field evolution of ceramics body adopting ANN 
(Artificial Neural Network) technology 
BP network has a strong non-linear mapping ability and a flexible structure. In this paper, a 
non-linear function f: yn×un×n→ ý is confirmed to simulate the temperature distribution of 
ceramic sintering. The following equation having the non-linear mapping relationship is 
realized by the BP neural network. 
In equation (1), ý is the output of the BP neural network, y is the temperature distribution 
data of the ceramic GHCP analyzed with ANSYS and also the input of the BP neural 
network, u is the time series of the input parameter, p is the number of the input parameter. 
This BP neural network is a series-parallel model. 

 ý(k+d)=Nf(y(k),…y(k-n+1),u1(k-1),… u1(k-n+1),…,up(k),…up(k-n+1))   (1) 

The BP neural network is trained by the monitoring way. The input sample of the neural 
network is very important during training. The result analyzed with ANSYS is used as input 
sample to train the network in this paper. Ceramic sintering under linear sintering curves 
with ten different slopes from 5 to 85°has been analyzed with ANSYS. The analyzed data 
has been used as the training sample of the neural network. The temperature distribution of 
the ceramic GHCP A and D analyzed with ANSYS is shown as Fig.6. 
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(a) Temperature distribution of the ceramic 

HGCP A and D analyzed under 
30°sintering curves 

(b) Temperature distribution of the ceramic 
HGCP A and D analyzed under 

60°sintering curves 

Fig. 6. Input sample of the BP neural network 

During training BP neural network, there usually happens platform phenomenon, which is 
false saturation and makes BP neural network constringe slowly. The reason of appearance 
of platform phenomenon is: When all of the neuron input attains saturation area, the 
derivative of the saturated non-linear neuron function approaches zero, which causes 
weight and valve value can not update effectively. For the sake of reduction or elimination 
of the Platform phenomenon, neural network has been analyzed and adjusted according to 
following several aspects (Li, 1996; Xie & Yin, 2003). 
The sample value is normalized into range from 0.1 to 0.9 by equation (2). Where xi is 
normalized sample value. xmin and xmax express the minimum and maximum value of xi, 
respectively. 

 max min

max min max min

0.8 0.1 0.9
i i

x xx x
x x x x

−
= ⋅ +

− −
 (2) 

The preliminary weight value is set up randomly in the training process of the BP neural 
network. In order to rapidly constringe of the neural network training process and reduce 
Platform phenomenon, the preliminary exciting value is selected within ±0.01 in this paper. 
Sigmoid function including logarithm function, hyperbolic-tangent function and so on is 
adopted widely in BP neural network. In this BP neural network, hyperbolic-tangent 
function is used as the neuron function in hidden layer, and the linear function is used as 
neuron function in out-put layer.  
The topology of the entire neural network plays a key role. The node number of the input 
layer and the output layer is easily ascertained by the number of input parameter and 
output parameter. Thus, the neuron number of the hidden layer is the key to determine the 
topology of the neural network. If the neuron number of the hidden layer is too small, it will 
seriously affect the approximation ability of the neural network. If the neuron number of the 
hidden layer is excessive, it will aggravate the burthen of the neural network. The neuron 
number of the hidden layer is selected 80 in this study. 
Dynamic study rate η is adopted to accelerate the BP neural network convergence. The 
dynamic coefficient mc make the weight value use the trained information. In training 
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process, the weight value varies toward the last adjusted result. Selecting optimum study 
rate η and dynamic efficient mc will accelerate BP neural network convergence and decrease 
platform phenomenon. When the study rate is 0.075, the neural network converges fastest, 
and the training time is least. The bigger the dynamic efficient mc is, the higher the 
convergence speed of the neural network is. If the dynamic efficient mc is too big, it will 
make the convergence of the neural network unsteady and the kinds of instable factors will 
increase, too. As a result, the local convergence usually happens in training network. When 
the trained results differ little at different dynamic efficient, the smaller dynamic efficient mc 
is selected. 
The trained neural network is tested by the sample analyzed with ANSYS under non-linear 
sintering curve. The input sample of the test and the tested result is shown as Fig.7. The 
biggest error is within 5°C. So the temperature difference of the ceramic HGCP can be 
forecasted fast by the trained BP neural network (Liu et al., 2010). 
 

     
Fig. 7. Testing the BP neural network 

3.4 Simulative analysis about stress filed of ceramics body 
 

Temperature 
(ºC) 

Density 
(kg/m3) 

Specific heat 
(J/kg ºC) 

Thermal conductivity 
(W/mºC) 

<900 1800-0.22T 836.8+0.263T 0.71+1.03*10-3T 
900～1200 382.5+1.355T 836.8+0.263T 0.88+1.22*10-3T 

Table 2. Material properties of ceramic 

 
Elastic modulus 

E(Gpa) 
Poisson's ratio 

μ 
Linear expansion coefficient 

α1 (m/mºC) 
200 0.3 1.3×10-6 

Table 3. Material properties of ceramic 

The shape and model of the ceramic body are described at 3.2. The values of the thermal 
conductivity, specific heat and density are shown in Tab.2, and the elastic modulus, 
poisson's ratio, linear expansion coefficient shown in Tab.3. 
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3.4.1 Stress analysis of the traditional sintering curve 
 

     
 (a) Traditional 45°sintering curve  (b) Stress distribution map at 1120s 
Fig. 8. Simulation of the stress distribution of ceramic sintering 

 

 
Fig. 9. The location of node E 

Since the tensile stress is the main reason of product destruction during ceramic sintering, 
the first principal stress is elected as the basis for analysis. The temperature load is applied 
according to the sintering curve whose slope angle is 45° shown in Fig.8 (a). when the 
outside body temperature rises to 1120 degrees, The stress distribution is illustrated in Fig. 8 
(b). The maximal stress value appears at node E which is not the maximal temperature 
difference node A and D. The node E is illustrated in Fig.9. The stress change at node E 
during the whole sintering process is illustrated in Fig.10 (a). The maximum stress at node E 
appears twice respectively at 1120s and 4440s which are exactly the two time points of the 
maximum temperature difference. When temperature distribution is uneven the thermal 
stress appears in older to maintain the continuity of displacement. It is shown that the basic 
cause of thermal stress is temperature variation. 
The maximal tensile stress is 0.975165E09Pa at 1120s which is the finish time of heating and 
also the start time of the first temperature holding, and 0.104123E10Pa at 8440s which is the 
finish time of cooling and also the start time of the second temperature holding. This 
indicates that more temperature variation during heating or cooling will cause larger 

E
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temperature difference between A node and D node, and then the holding make the 
temperature difference tend to be uniform. It is shown that the change process of stress 
illustrated in Fig.10 (a) is firstly from zero to the peak in heating time, from the the peak to 
zero in the first holding time, secondly from zero to the peak in cooling time, from the the 
peak to zero in the second holding time. The two peak pressure points are points M and N, 
respectively corresponding to m and n in Fig.10 (b) 
The higher the temperature difference the higher the stress. The more the alternate changing 
times of extreme pressure the poorer ceramic quality Cracks. All that causes deformation 
and other defects at node E. 
 

     
 (a) The stress curve  (b) The temperature difference curve 
Fig. 10. The stress curve and the temperature difference curve 

3.4.2 Stress analysis of variable slope curve 
The temperature load is applied according to the sintering curve whose slope angle is 
variable shown in Fig11 (a). The temperature difference variation curve between node A 
and node D gotten after thermal analysis by indirect method is illustrated in Fig.11 (b). The 
stress distribution map at 8109s and the stress variation curve at node E during the whole 
sintering process are shown in Fig.12. 
 

    
 (a) Sintering curve with variable slope angle  (b) temperature difference variation curve 
Fig. 11. The sintering curve and The temperature difference curve 
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 (a)The stress variation curve at node E (b)The stress distribution map at 8109s 
Fig. 12. The stress distribution map at 8109s and variation curve at node E 

It can be seen from the charts that there is not significant temperature insulation process and 
temperature difference changes slightly. During the whole sintering process only one 
pressure peak whose value is 0.278387E+09Pa appears at 8109s during cooling at node E. 
Sintering curve with variable slope being adopted, the maximum stress is 26.7% of 
conventional sintering curve, however, the time expended is 95.5%. During the whole 
sintering process, the pressure peak appears only once during cooling when the ceramic 
body is still in the plastic deformation stage. So the damage caused by stress is very small. 
The conclusions can be drawn from the above analysis: for simple symmetrical ceramic 
body, adopting variable slope sintering curve is more reasonable, safer and more effective 
than the traditional fixed-slope curve. 

3.5 Appropriate processes of ceramics sintering based simulation technology 
There is an appropriate processes during ceramic sintering. Temperature variation of GHCP 
under different sintering process reveals this mystery. The temperature variation curves of 
node A and D under both the linear firing curves and step firing curves with slope angles of 
30°, 45°, 60° are shown in Fig.13~15. The temperature difference curves between node A and 
D are shown in Fig.13~15, too (Zhang et al., 2008). 
The max value appears at the second wave crest of the temperature difference curve in 
firing process under the step sintering curve in Fig.13~15. In Fig.13, the heat preservation is 
applied at the time of the temperature difference curve approaching the platform area. By 
now the reduction of the max temperature difference is very small, only 2.06%. In Fig.14, the 
heat preservation is applied at the time of the temperature difference curve just leaving the 
overlap area. The reduction of the max temperature difference increases slightly, about 
8.42%. In Fig.15, the heat preservation is applied at the time of the temperature difference 
curve being at the overlap area. The reduction of the max temperature difference achieves 
about 17.3%. 
The result indicates that: the max temperature difference can not be reduced effectively by 
joining the heat preservation process at any time; the max temperature difference can be 
reduced effectively when the heat preservation process is applied at the time of the 
temperature difference curve being at the overlap area; the effect is worse when the curve is 
near the platform area. So it is necessary to analyze the temperature difference curve for 
choosing the heat preservation time properly. 
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 (a) 30° linear sintering curve   (b) 30° step sintering curve 

Fig. 13. The effect comparison of 30° linear sintering curve and step sintering curve 

 

     
 (a) 45° linear sintering curve (b) 45° step sintering curve 

Fig. 14. The effect comparison of 45° linear sintering curve and step sintering curve 

 

     
 (a) 60° linear sintering curve  (b) 60° step sintering curve 

Fig. 15. The effect comparison of 60° linear sintering curve and step sintering curve 
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Slope angle of 
sintering curve 

Linear sintering 
curve 

Step sintering 
curve Reduction 

30° 883.6 °C 865.43 °C 2.06% 

45° 1472.3 °C 1348.3 °C 8.42% 

60° 2220.9 °C 1836.6 °C 17.3% 

Table 4. The max temperature difference in ceramic roughcast under different sintering 
curves 

4. Conclusion 
1. The trained BP neural network has certain precision and can be used to simulate the 

changing temperature distribution of the ceramic sintering. 
2. The temperature difference of the ceramic HGCP can be forecasted fast by the trained 

BP neural network. The forecasted results can be used to precisely control the process of 
the ceramic sintering. 

3. The slope of temperature difference curve changes from a max value to zero. When 
the slope of the firing curve increases, the max temperature difference increases very 
fast. There are overlap area and platform area in all the temperature difference 
curves. All the temperature difference curves change from overlap area to platform 
area. 

4. The max temperature difference can not be reduced effectively by joining the heat 
preservation process at any time. The max temperature difference can be reduced 
effectively by applying the heat preservation process at the time of the temperature 
difference curve being at the overlap area. The effect is worse when the temperature 
difference curve approaches the platform area. It is necessary to analyze the 
temperature difference curve for choosing the heat preservation time properly. 
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1. Introduction  
Atmospheric pressure plasma spraying is widely used to produce various coatings, 
especially hard ceramic coatings for wear and corrosion protection and thermal barrier 
function, porous catalytic coatings for environment control and protection, hydrophobic 
coatings, etc. The plasma spraying process uses a DC electric arc to generate a jet of high 
temperature ionized plasma gas, which acts as the spraying heat source. The sprayed 
material, in powder form, is carried into the plasma jet where it is heated, partially or fully 
melted and propelled towards the substrate.  The properties of the produced coating are 
dependent on the feedstock material, the thermal spray process and application parameters, 
and post treatment of the coating. However, the influence of flow and particle temperature 
and velocity on coatings characteristics, its adherence to the substrate, reproducibility of its 
properties and quality is not clearly established [Fouchais et al., 2006]. Generally, to 
correlate coating properties to flow parameters and particle in-flight characteristics 
experimental procedure is used. To monitoring the whole plasma spraying process (plasma 
jet generation, powder injection, formation of the coating) same techniques, as plasma 
computer tomography (PCT), particle shape imaging (PST), particle flux imaging (PFI) 
[Landes, 2006] are used. Such techniques are expensive and complicate for use in industry. 
Numerical investigations of plasma spray process generally is focused on investigation of 
heat transfer between plasma jet and surface [Garbero et al., 2006], substrate temperature 
influence on coatings morphology, adhesion, chemical processes between substrate material 
and deposited material [Yeh, 2006, Kersten et al., 2001].   
In this paper, by means of Jets&Poudres software [Delluc et al., 2003], a numerical 
simulation of interaction of plasma jet and dispersed particles was investigated. Simulation 
results were compared with experimental data. 

2. Methodology 
Numerical research of two-phase high temperature jet was carried out using 
“Jets&Poudres” software [Delluc et al., 2003], created on the basis of General Mixing 
(Genmix) software improved by using thermodynamic and transport properties closely 
related to the local temperature and composition of the plasma. For a particle in a plasma 
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jet, two characteristics are studied: motion (trajectory, velocity) and thermal evolution 
(temperature, physical state, heat flux). Thermodynamic and transport properties of the 
gases are obtained from the T&TWinner database [http://ttwinner.free.fr]. The coating 
material particle characteristics are also available as a data base. Calculations are carried out 
for air plasma at atmospheric pressure flowing from jet reactor exhaust nozzle to 
substratum. When the parameters of plasma jet are achieved as desirable, hard spherical 
dispersed particles are injected into the flow. Performing modeling and calculating the 
deformations of the plasma jet thermo fields are disregarded, inlet profiles of temperature and 
velocity are rectangular shaped and correspond to estimated experimental data [Kezelis et al., 
1996]. Plasma jet flows in one direction and the flow is stable, without recirculation and 
diffusion effects. The numerical simulation results were compared with experimental data. 
Experimental plasma spraying system [Valincius et al., 2003] consists of linear DC plasma 
generator (PG) 30 – 40 kW of power with hot cathode and step-formed anode, 
plasmachemical reactor, systems of power supply and regulation, PG cooling, feeding and 
dosing. The operational characteristics of plasma generator are represented in [Valincius et 
al., 2004]. 
 

Regime I II III 
P, kW 49 49 49 
G, gs-1 5,5 5,5 5,5 
G(H2), gs-1 0 0.1 0,15 
T, K 2700 3400 3770 
X, mm 70 70 70 
V, m/s 1000 1400 1580 

Table 1. Plasma spraying regimes for Al2O3 films deposition 

During plasma spraying experiments the operating conditions of plasma torch were 
maintained constant. The capacity of plasma torch, total mass flow of air, cooling water and 
it temperature were measured and from this data plasma jet temperature calculated (see 
Table 1.). Injection of hydrogen was used to vary outlet plasma jet temperature and velocity, 
while plasma torch parameter was stable. Powder injection was provided into reactor, 
which was connected directly to plasma torch anode. Micrographs of the Al2O3 powder and 
sprayed films morphologies were collected using a scanning electron microscope and 
optical microscope. The spayed particles were collected into distilled water.  
These granules can be industrially used as high temperature insulating material. Other 
primary data (determined by experiments) are as follows: flow outlet nozzle diameter d = 
10-2 m; the diameter of particles 50 - 70 µm; the exhaust jet is surrounded by air of 
unrestricted space. The computing domain is a cylinder-shaped space covered with a set of 
meshes of a grid. The diameter of the computing domain is 200 mm and the total number of 
variable size geometrical grids is approximately 300000. This is described in detail in 
[Valinciute, 2007]. 

3. Results 
After mixing with plasma jet, solid particles need some time to heat and at the start their 
temperature is lower than the temperature of plasma gas. Particles are small-sized and 
quickly heat up; they are heated in plasma jet by convection, whereas inside particles the 
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heat is transferred by conduction. As it can be seen from Fig. 1(a), the temperature of 
dispersed particles near substratum surface exceeds average temperature of gas jet and is 
1200 – 1600 K.  
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Fig. 1. Distribution of temperatures (a) and velocities (b) of Al2O3 particles and plasma jet 
determined by measurements along the spraying distance. 1, 2 show plasma jet 
experimental and numerical simulation results respectively, 3, 4 and 5 represent particles of 
75, 50 and 35 µm in diameter respectively. x/d is a dimensionless distance 
As can be seen from Fig. 1b, velocity of dispersed particles near the covering surface exceeds 
average gas jet velocity and depending on the sizes of particle reaches 150 – 320 m·s-1.  The 
smallest particles achieve higher speed than bigger ones, so, the deciding factor of velocity 
changes is a resistance force. The velocity of particles stabilizes at x/d = 7 and then the size 
of particles almost has no significant influence. The surface of substratum at the distance 
x/d = 8 – 12 will be hit stable force by the jet stream and the value of kinetic energy is 
ultimate. Figure 2 represents the proportional distribution of plasma jet and dispersed 
ceramic particles temperatures, measured or calculated by different authors [Delluc et al., 
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2005, Klocker et al., 2001]. The trajectories of plasma flow are very similar and have a near 
agreement. Some differences at the end of travel distance can be observed. Disagreement 
occurs due to different experimental set-up operating conditions, numerical simulation 
options, and plasma spraying process regimes.  
 

 
Fig. 2. Nondimensional distributions of plasma temperature (1 - calculated with 
“Jets&Poudres” by other authors [Delluc et al., 2005], 3 - our experimental research, 4 -
calculated with “Jets&Poudres”, 6 - calculated by other authors using other numerical models 
[Klocker et al., 2001]) and ceramic 50 µm particles' temperature (2 calculated with 
“Jets&Poudres” by other authors [Delluc et al., 2005], 5 - our calculation with “Jets&Poudres”) 
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Fig. 3. Variation of Reynolds number along spraying distance 

Variation of curve Reynolds number (Re) along flow axis is presented in Fig. 3. In our case, 
for the regime I in Table 1 the value of Re varies from 2 to 12. The largest value of Re is 
found near the outlet. Since jet mixes with the ambient air and is interrupted, flow becomes 

T 

x/d
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unstable. On further gas in the jet cools down and slightly stabilizes itself. At a distance x/d 
= 3 from exhaust nozzle, Re value slightly increases since in this period the jet is slightly 
disturbed. At this moment a very intensive melting of particles occurs and recirculation 
zone appears. At x/d = 8 – 9 from exhaust nozzle a particle does not melt and flow 
stabilizes, whereas Re number obtains a steady value.  
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Fig. 4. Dependence of melting degree of 50 μm Al2O3 particle from spraying distance 
 

a b c 

Fig. 5. SEM micrographs of initial powder (a) and after passing through the plasma jet: (b) at 
x/d = 35-40 mm outlet form nozzle, (c) the granules produced at x/d = 10 from outlet 
nozzle 
Intensity of particle’s melting (Y, %) in jet depending on travel distance along the flow axis is 
presented in Fig. 4. The interaction between high temperature jet and injected particles begins 
immediately. The particle, injected into plasma jet, passes three main flow zones until it 
reaches a fixed substratum: heating of the particle, its melting, and stable flow. As can be seen 
from results, initial heating period of the particle continues to x/d = 2.7 – 3. During this time 
the largest part of plasma energy is used for heating the particle. When particle is heated up, it 
begins to melt due to physical and chemical conversions inside it. Temperature of particle 
gradually rises and melting rapidly proceeds. The most rapid melting occurs at distance x/d = 
3 – 8 from exhaust nozzle and this is the second melting zone of particle. The practical usability 
of calculation results has been verified by comparing the simulation data with experiments 



 Numerical Simulations - Applications, Examples and Theory 

 

420 

[Valatkevicius et al., 2003, Brinkiene et al., 2005]. Morphologies of plasma-sprayed Al2O3 
powders during the II regime (Table 1) are shown in Fig. 5. As observed by scanning electron 
microscopy, the initial powder is in the form of agglomerates with wide size distribution. To 
determine the melting degree, shape, and size of sprayed particles, they have been collected 
into distilled water at different distances from outlet nozzle. After passing x/d = 3.5 - 4, the 
particles appear partially melted (Fig. 5(b)). During the melting of initial particles of 100 µm in 
diameter the plasma spray pyrolysis process occurred. Dispersed particles of Al2O3 injected 
into arc column showed a very fast bulk melting and then very fast particle surface cooling. 
Further from plasma torch nozzle to the substratum the particles turn into very large granules 
with the diameter of 150 - 200 µm (Fig. 5(c)). When the coatings are produced, particles resolve 
into small fragments on their way and splash on the surface of substratum. Sharp edges of 
particles become round and the surface of coating becomes fine and smooth (Fig. 6). Applying 
the I regime of plasma generator (see Table 1) and regulating the working gas flow, PG arc 
current, spray distance, and at initial diameter of 30 - 50 µm of dispersed particles, the porous 
coatings with large free surface for catalytic application (Fig. 6(c, d)) are obtained. Applying 
the III regime, dense thin films for protective purposes could be deposited (Fig. 6(a, b)). In the 
latter case the plasma spray pyrolysis effect has occurred and initial dispersed particles have 
broken up into a large amount of fragments. Consequently the grains of plasma sprayed 
coatings were smaller than 5 µm. 
 

  
 a)  c) 

  
 b)   d) 
Fig. 6. SEM micrographs of dense and porous plasma sprayed alumina coatings: (a, c) 
surface morphology, (b, d) cross-section pictures 
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4. Conclusions 
Plasma spraying technology at atmospheric pressure offers the possibility to obtain 
microsized particles, granules, and coatings from inorganic metal oxides with controlled 
characteristics for special application. Plasma jet.particle interaction lasts for about 1.2 ms 
and strongly depends on jet temperature, velocity, and particle's mass. 
While moving in a jet, the ceramic particle is heated, melted, and splats on the substratum. 
The most intense melting of particles occurs at x/d = 3.8 from exhaust nozzle. 
Velocity of the particle near the substrate exceeds average plasma jet velocity and 
depending on the diameter of particle reaches up to 150 - 320 ms-1. At x/d = 8 - 12 from 
exhaust nozzle the dispersed particles' flow is steady, whereas the value of kinetic energy is 
ultimate. 
The numerical calculation data shows that the applied numerical model of two-phase high 
temperature jet calculation is in good agreement with experimental data and could be used 
to determine the optimal plasma spray parameters for coatings with desirable 
characteristics. The grain size of plasma sprayed coatings is smaller than 5 µm. 
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1. Introduction   
Electro hydraulic servo systems are complex technical entities that involve both phenomena 
of fluid mechanics, and phenomena specific to control processes with feedback. Due to the 
complexity of these interactions, the optimal design goal is achieved by an iterative process,   
using some dedicated software. To obtain the required performance the use of mathematical 
modeling and numerical simulation of these systems is always very effective. In any optimal 
synthesis process of an electro hydraulic control systems, the analysis of the stablity is an 
important stage. Several methods are used to provide a good stability for such type of systems: 
the increase of the dead band of the control valves, the use of some additional feedback, the 
decrease of the flow gain of the control valve around the hydraulic null point etc. 
Numerical simulation of the dynamic systems allows gathering of necessary information 
about their behaviour based on a mathematical models that describe those systems. 
Obtaining of mathematical models as close as posible to the physical phenomena that are to 
be reproduced or impoved is helpful in making decisions for optimization. The most recent 
tendences in this field regard novel concepts, such as co-simulation and real time 
simulation. 
This chapter presents two different examples of developing a numerical co-simulation 
environment, based on two software packages: AMESim (LMS IMAGINE SA, 2009) and 
LabVIEW (National Instruments, 2009). The most important parameters investigated are the 
following: 
a. the influence of the variable area gradient of an electrohydraulic flow amplifier on the 

stability reserves of a electro hydraulic servomecahnism (a. Ion Guta et al., 2010); 
b. a hybrid solution of modeling / simulation of a hydrostatic transmission with mixed 

control (b. Ion Guta et al., 2010). 
By means of AMESim software a model of an electrohydraulic servomechanism was 
developed, while analysis of data collected as a result of simulations in AMESim was 
performed by means of virtual instrumentation, using LabVIEW software. The real time use 
of these two simulation / programming environments can lead to the development of 
advanced modeling / simulation networks of complex fluid systems controlled by digital 
hardware, useful for optimal system design. 
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2. The stability of electrohydraulic servomechanisms developed with 
electrohydraulic amplifiers of variable area gradient   
2.1 Mathematical modeling of electrohydraulic servomechanism 
Mathematical model of an electrohydraulic servomechanism with position response 
comprises the following equations (Vasiliu & Vasiliu, 2005): Equation  of slide valve 
displacement; Equation  of position transducer; Equation  of electronic comparator; 
Continuity equation of subsystem directional control valve-hydraulic cylinder; Equation  of 
current generator of proportional compensator; Motion equation of hydraulic cylinder’s 
piston; Characteristic of directional control valve with variable area gradient. 
The power stage of this valve is represented by an adjustment directional control valve, with 
4 ways and 3 positions, with closed critical center. For a directional control valve with 
variable area gradient, fig.1, we hold: 
Geometrical characteristics of unit sleeve – slide valve: D=2R – diameter of main slide valve;  
d = 2r - diameter of  circular distribution window; a – width of rectangular distribution 
windows; b – lenght of rectangular distribution windows.  
The following notations are introduced: 
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Law of variation of drainage area, depending on stroke of slide valve, is:  
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Fig. 1. Slide valve of directional control valve with variable area gradient 

Slide valve of directional control valve with variable area gradient (Bosch Rexroth Group) is 
shown in fig.1, while variation of area of directional control valve’s holes – in fig. 2. Zone I, fig. 



Numerical Simulation - a Design Tool for Electro Hydraulic Servo Systems 

 

427 

2, is the area where drainage takes place through rectangular windows (around null), while 
zone II corresponds to drainage through the two distribution windows, respectively with 
rectangular area and quasi-elliptical area, resulted from intersection of two cylindrical bodies. 
 

 
Fig. 2. Variation of area of holes, depending on relative displacement between slide valve 
and sleeve 

Characteristics of stationary mode of  directional control valve is: 
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For the two operation zones, flow can be calculated with the following relations: 
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Flow amplification factor depends on operation zone: 
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Coefficient flow-pressure can be calculated with the following relations:  
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Equation  of slide valve displacement:   
Flow control valve can be considered a delay factor of first rank: 

 ( )
( )
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x s K
i s T s 1
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+

  (7) 

Or 

 ( ) ( ) ( )s xiT sx s x s K i s+ =  (8) 

The following differential equation results:  

 ( )s xi
dxT x K i t
dt

+ =  (9)   

Ts – time constant of directional control valve. 
Equation  of position transducer: 

 T TU K y=   (10) 

KT- is the constant of transducer, [V/m] 
y – displacement of piston of hydraulic cylinder    
Equation  of electronic comparator: 

 TU U0ε = −   (11) 

ε  - adjustment error. 
Equation  of current generator of proportional compensator:  

 iei K ε=   (12) 

Kie [A/V] –conversion factor    
Continuity equation of subsystem directional control valve-hydraulic cylinder: 

 p
p l

h

A
Q A y K P P

R

2

= + +  (13) 

Ap  -piston area; 
Kl  -  coefficient of drainage between hydraulic cylinder’s chambers;   
Rh  - hydraulic rigidity of double-effect hydraulic cylinder 
Motion equation of hydraulic cylinder’s piston  
Pressure force Fp must overcome elastic force Fe , dissipation factor (the dumper) Fa , friction 
force, Ff and  inertial force, so: 

 c p a e fm y F F F F= − − −  (14) 

Where, 

 p pF A P=   (15) 



Numerical Simulation - a Design Tool for Electro Hydraulic Servo Systems 

 

429 

 a fF K v= ⋅   (16) 

 ( )( ) ( )e e e e e eF K K y y K y y1 2 0 02 2= + + = +   (17) 

For friction force between piston and cylinder a static component Ffs and a viscous one Ffv 
are both considered: 

 fs fsF F signy0=   (18) 

 fv fvF K y=   (19) 

2.2 Numerical co-simulation. Identification of a linearized model  
Identification aims at determining static and dynamic characteristics of  processes. By 
identification it is understood the procedure of determining a system based on one input 
and one output, in case of SISO systems (single input - single output), so that it is 
equivalent, in a certain way, to the tested system.  
Identification of parameters of mathematical model based on experimental data implies four 
stages: acquisition of input/output data; choosing structure of the model; estimation of 
parameters of the model; validation of the identified model (validation of structure and 
value of parameters) (Calinoiu et al., 1998). 
For the analyzed case we used identification procedures of ARX models (functions which 
use the method of least squares) in LabVIEW. ARX models have the following structure:  

 A(q)y(t)=B(q)u(t-nk)+e(t)  (20) 

The identified models were the basic elements of the study, with their support Bode 
diagrams and transfer loci of the analyzed process are drawn.  
Study of stability of automatic electro hydraulic systems can be performed based on 
algebraic criterion Routh - Hurwitz, which has only one condition for stability or on Nyquist 
criterion, which allows in addition analysis of stability reserves (Catana et al., 1996). 
Transfer locus of open circuit system looks like in fig. 3. Necessary and sufficient condition 
for closed circuit system to be stable is that the hodograph of linear model not surround the 
critical point (-1, j0) in the complex plane when the frequency belongs to the interval (0, ∞). 
Stability reserve of the system can be evaluated by two characteristic sizes: the amplitude 
edge (stability reserve in modulus) and the phase edge (stability reserve in phase). 
 

 
Fig. 3. Transfer locus of servo mechanism 
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Fig. 4. Co-simulation network of analyzed servo mechanism  

In fig.4 can be noticed the co-simulation network of the analyzed system. Numerical model 
developed in the AMESim allows analysis of behaviour over time of the examined system. 
Based on response to various excitation signals can be identified, by means of the model 
developed in LabVIEW, mathematical linearized model of the system, based on which can 
be performed system stability analysis. 
To study system stability the transfer locus of servo mechanism was used by means of 
Nyquist outline analysis. The exchange of information between submodel of dynamic 
system of servo mechanism, developed in AMESim and compensator submodel, 
implemented in LabVIEW, can be achieved by shared access to a specific memory area if the 
networks run on the same system or by a communication channel TCP / IP if the networks 
run on two different systems.  
Architecture of the process is master / slave type, the integration step is determined by the 
master system.    
 Co-simulation network, fig.4, is made of: the group of oil supply under constant pressure 
(constant speed electric motor, volumetric pump, normally closed valve); electro-hydraulic 
directional control valve with variable area gradient; linear hydraulic motor with double 
effect and double rod; inertial load; displacement transducer for slide valve of distributor; 
displacement transducer for the hydraulic cylinder rod; control software interface, analysis 
and interpretation of data, developed in LabVIEW.  
The calculations were performed for these data: m_load = 100 Kg, p_supply = 160 bar, 
cylinder_stroke = 300 mm, d_cylinder = 26 mm, d_rod = 12 mm, anchor rigididity = 2.1 · 107 
N/m, damping coefficient = 4000 Ns/m.         
The model was excited with signals type white noise. To establish the transfer locus, the 
model was examined in open loop, after drawing features we also developed chart of 
response over time to step closed-loop signals. ARX models identified were determined for 
each operating mode. Results of co-simulation are presented in figures 5, 6, 7, 8 and 9. 
Discret mathematical models identified for open-loop system with: (a) – directional control 
valve without variable area gradient, (b)- directional control valve with variable area 
gradient: 

 (a) 

 (b) 
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a) with constant area gradient 

 
b) with variable area gradient 

Fig. 5. Response over time of the servo mechanism to control signal of type white noise 
  

    
 a) with constant area gradient  b) with variable area gradient 

Fig. 6. Bode diagram of the servo mechanism in open loop    
 

   
 a) with constant area gradient b) with variable area gradient 
Fig. 7. Hodograph of open-loop system 
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a) with constant area gradient 

 
b) with variable area gradient 

Fig. 8. Response over time of system in loop of response to control signal of type white noise     
 

     
 a) with constant area gradient b) with variable area gradient 
Fig. 9. Bode diagram of the servo mechanism in closed loop      
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Discret mathematical models identified for closed-loop system with: (a) – directional control 
valve without variable area gradient, (b)- directional control valve with variable area 
gradient: 

 (a) 

 (b) 

3. Optimization of hydrostatic transmissions by means of virtual 
instrumentation technique 
3.1 Problem formulation   
The analyzed hydrostatic transmission, of mixed adjustment, with single consumer of type 
adjustable rotary volumetric motor, according to the basic model in fig.10, includes: 
- in its primary sector: a MOOG servopump, place 1, with radial pistons and integrated 

electronics, with three loops of adjustment, that is in flow, in pressure, in flow and 
pressure, with capacity of 32 cm3/rev, rotary speed of 1450 rev/min, control voltage of 
0...10V, flow of 0...46 l/min; an electric motor for servopump actuation, of constant 
rotary speed, place 2; a pressure limiting valve, place 3; a flow transducer, place 4; and a 
pressure transducer, place 5.  

- in its secodary sector: a BOSCH servo motor type EP2, place 7, with axial pistons, tilted 
block and integrated electronics, with minimum capacity of  7 cm3/rev at control 
voltage of 200 mA and maximum capacity of  28 cm3/rev at control voltage of 800 mA, 
at supply voltage of  24Vd.c.; a torque transducer place 8; a speed transducer, place 9; 
an axial piston pump, with tilted block and fixed capacity place 10, to simulate the load 
of hydraulic servo motor; two pressure transducers, place 11 and place 13; four way-
valves, place 12, fitted on suction / repression side of load pump; a pressure adjustment 
valve, with electric control, place 14, for adjusting load  of hydraulic servo motor. 

- a PXI-NATIONAL INSTRUMENTS block, place 6, which provides a virtual interface of 
the adjustment process of capacity of the adjustable volumetric machines (LabVIEW / 
PXI).   
For this hydrostatic transmission we have developed a physical laboratory model, 
according to fig.11 and fig.12; a numerical simulation network in AMESim, according to 
fig.13; a virtual interface for the adjustment model of transmission, according to fig.14 
and a web interface for the adjustment model of transmission, according to fig.15.  

By means of the adjustment model of hydrostatic transmission with mixed adjustment the 
following items were highlighted: 
- by means of co-simulation AMESim-LabVIEW: demonstration, on the physical 

laboratory model, of primary (pump), secondary (motor) and mixed (pump and motor) 
adjustments, specific to hydrostatic transmissions (Popescu et al., 2010); demonstration, 
on the physical laboratory model, of the advantages, in terms of energy, of hydrostatic 
transmissions with adjustable pumps in their primary sector over those with fixed 
pumps in their primary sector (b. Drumea et al., 2010). 

- by means of simulation models in AMESim: optimization of the adjustment model of 
a hydrostatic transmission with mixed adjustment in order to reduce variation of the 
rotary speed of volumetric motor within its secondary sector, in accordance with 
variation of its load. 
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Fig. 10. Basic model of a hydrostatic transmission with mixed adjustment 

 

 
Fig. 11. MOOG servopump, type RKP-D,  within the primary sector 
 

 
Fig. 12. Bosch servo motor, type EP2, within the secondary sector 
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Fig. 13. Simulation network in AMESim of a hydrostatic transmission with mixed 
adjustment 

 
Fig. 14. Virtual interface of the adjustment model (LabVIEW / PXI) 
 

 
Fig. 15. Web interface of the adjustment model (LabVIEW / PXI) 
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3.2 Demonstration of adjustment of capacity at adjustable volumetric machines 
We have traced the response of the adjustment system of transmission, that actuates upon 
the servomechanism which adjusts the capacity of the pump within the primary sector or 
upon the servomechanism which adjusts the capacity of the motor within the secondary 
sector, to rotational speed step type signal imposed to the volumetric motor within the 
secondary sector. Within the adjustment model we have preset the rotational speed 
threshold of 320 r.p.m, below which the adjustment of transmission is performed upon the 
pump (primary adjustment) and above which the adjustment of transmission is performed 
upon the motor (secondary adjustment). 
Dynamic characteristics of the system were raised, which highlight: 
- the influence of a rotational speed step type signal of 312 rpm imposed to the hydraulic 

motor within the secondary sector, upon the adjustment drive of capacity of the 
adjustable pump, with and without erorr compensation, according to fig.16; 

- the influence of a rotational speed step type signal of 410 rpm imposed to the hydraulic 
motor within the secondary sector, upon the adjustment drive of capacity of the 
adjustable pump, with and without erorr compensation, according to fig.17;   

- the influence of rotational speed step type mixed signals of 308 rpm, respectively 408 
rpm, imposed to the adjustable hydraulic motor within the secondary sector, upon the 
adjustment drive of capacity of the adjustable pump, respectively  of the adjustable 
motor, with and without erorr compensation, according to fig.18. 

 

 
Fig. 16. Response of the adjustment system of rotational speed of  hydraulic motor to step 
type excitation signal – pump capacity drive  
 

 
Fig. 17. Response of the adjustment system of rotational speed of  hydraulic motor to step 
type excitation signal – motor capacity drive 
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Fig. 18. Response of the adjustment system of rotational speed of  hydraulic motor to mixed 
step type excitation signal – pump and motor capacity drive 

3.3 Numerical simulation of radial piston pump MOOG type RKP-D 
Simulation model developed for the analysis of volumetric pump in fig.19, is shown in 
fig.20 (a. Drumea et al., 2010). It includes: the hydraulic servomechanism for prescribing the 
position of the adjustment ring; a module for calculating the relative position of small 
pistons as against to their angular position and the ordered eccentricity; the two small radial 
pistons of the pump; the distribution unit, controlled by the angular position of small 
pistons and the geometrical characteristics of the distribution flange. 
By means of the modeling network developed, dynamic characteristics of the servo motor 
that adjusts capacity of the analyzed radial piston pump were determined, figures 5 and 6. 
The model was excited with control signals (prescribing of eccentricity of the flow 
adjustment / control ring), triangular, sinusoidal and rectangular signals, of various 
amplitudes and frequencies. Obtained results are compared, simulated and experimentally 
shown. Simulation model has been "tuned" as a result of the comparative analysis between 
simulated and experimental response for a better accuracy of results (Popescu et al., 2010). 
 

 
Fig. 19. Servo pump MOOG type RKP-D; cross-section 
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Fig. 20. Servo pump MOOG type RKP –D; numerical simulation model 

In figures 21 and 22 curve 1 represents the control signal, curve 2 - response of 
servomechanism that adjusts capacity, obtained through numerical simulation, and curve 3 - 
response of servomechanism that adjusts capacity, obtained on an experimental basis. 
 

   
a) 

  
b) 

Fig. 21. Response of the adjustment servomechanism to control triangular, (a) and 
sinusoidal, (b) signals (f=0.1 Hz) 
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Fig. 22. Response of the adjustment servomechanism to a control rectangular signal (f=1 Hz) 

3.4 Demonstration of advantages in terms of energy of hydrostatic transmissions with 
adjustable pumps in their primary sector 
Two variants of adjusting the flow within the primary sector of a hydrostatic transmission 
were tested in comparison, according to fig.23. 
- variant (a), where capacity of the pump within the primary sector is set, while flow 

adjustment is performed by means of an adjustable throttle (Popescu et al., 2009). In this 
case, the extra flow is discharged at the tank through a normally closed pressure valve; 

- variant (b), where in the primary sector a hydraulic servopump with adjustable 
capacity is used. 

In both variants, tests were performed for a constant load of 20 Nm at the shaft of hydraulic 
motor within the secondary sector of transmission. 
After calibrating the adjustment model of mixed adjustment transmission, process carried 
out by means of the numerical simulation network, the motor within the secondary sector 
was set on maximum capacity and the two flow adjustments systems for the pump in the 
primary sector were analyzed comparatively (b. Drumea et al., 2010). Tests were performed 
for a 20 Nm load at the shaft of the motor within secondary sector of transmission.  
Experimentally, systems were excited cyclically, with or without energy efficiency, with 
step-type control signals of rotational speed (500 rpm), fig.24, and ramp-type signals, fig.25. 
We recorded evolution over time of rotational speed of the hydraulic motor shaft, fig.24 (a), 
fig.25 (a) and pressures within primary hydraulic circuit, fig.24 (b), fig.25 (b). 
The two systems for adjusting the flow within the primary sector of transmission have been 
excited with a control signal of the speed of hydraulic motor within the secondary sector, 
corresponding to a specific preset profile. 
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Fig. 23. Variants of adjusting the flow within the primary sector of a hydrostatic 
transmission 
 

  
 a) b) 
Fig. 24. a) Variation of rotational speed of hydraulic motor within secondary sector to a step 
type excitation signal of flow adjustment systems within the primary sector, b) Variation of 
pressure along the primary circuit to a step type excitation signal of flow adjustment 
systems within the primary sector   
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 a) b) 
Fig. 25. a)  Variation of rotational speed of hydraulic motor within the secondary sector to a 
ramp type excitation signal of flow adjustment systems within the primary sector, b) 
Variation of pressure along the primary circuit to a ramp type excitation signal of flow 
adjustment systems within the primary sector   
We have recorded the pressures within the circuit, fig.26 (blue- variation of rotational speed 
of hydraulic motor; brown- variation of the supply voltage of hydraulic motor in an energy-
efficient system; red- variation of the supply voltage of hydraulic motor in an energy-
inefficient system). 
In fig.27, after calculation of hydraulic power used by the pump within the primary sector 
(P=Q*p), we have traced evolution over time of this power for the two flow adjustment 
systems, without (brown) and with (blue) energy efficiency. 
The obtained data were integrated numerically in order to result the evolution of the 
consumed energy, fig.28 (brown- energy-inefficient system, blue- energy-efficient system). 
Area of the surface defined by the two curves represents the energy savings. 
 

 
Fig. 26. Variation of pressure along the primary circuit of hydraulic transmission,  at control 
signal with preset profile for rotational speed of the motor within the secondary sector 
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Fig. 27. Variation of the hydraulic power used by the pump within the primary sector of 
transmission, at control signal with preset profile for rotational speed of the motor within 
the secondary sector 
 

 
Fig. 28. Variation of energy used by the pump within the primary sector of transmission, at 
control signal with preset profile for rotational speed of the motor within the secondary 
sector 

3.5 Optimization of the adjustment model of a hydraulic transmission with secondary 
adjustment 
We aimed to optimize the adjustment model of a hydraulic transmission with secondary 
adjustment, derived from the hydraulic transmission with mixed adjustment. Optimization 
is performed in view of two goals: to reduce the variation range of rotational speed of the 
motor within the secondary sector, caused by variation of its load, and to reduce the extra 
flow discharged through the valve of the pump within the primary sector of transmission. 
A pre-step in optimizing the adjustment model of hydrostatic transmission is represented by 
optimization of the simulation model in AMESim of transmission. In order to achive this, 
three variants of simulation models were developed: 
- variant (a), according to fig.29: hydraulic transmission with secondary adjustment, with 

fixed pump and variable motor, with compensator type P (proportional) in the 
adjustment loop of rotational speed; 

- variant (b), according to fig.30: hydraulic transmission with secondary adjustment, with 
fixed pump and variable motor, with compensator type PID (proportional, integrative, 
derivative) in the adjustment loop of rotational speed; 
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- variant (c), according to fig.31: hydraulic transmission with secondary adjustment, with 
adjustable pump equipped with pressure regulator and variable motor, with 
compensator type P (proportional) in the adjustment loop of rotational speed. 

 

 
Fig. 29. Simulation model in AMESim – hydrostatic transmission with secondary 
adjustment: variant (a) 
 

 
Fig. 30. Simulation model in AMESim – hydrostatic transmission with secondary 
adjustment: variant (b) 
 

 
Fig. 31. Simulation model in AMESim – hydrostatic transmission with secondary 
adjustment: variant (c) 
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For the three simulation models the proportional pressure valve, associated with the fixed 
pump for simulation of the load of the servo motor witin the secondary sector of hydrostatic 
transmission, is excited with a rectangular signal. We traced variation over time of the 
rotational speed of hydraulic servo motor, caused by variation of its load. Simulation model 
– variant (c) is run simultaneously for three maximum values of the capacity of hydraulic 
servo motor. Obtained results are presented in fig.32, fig.33 and fig.34. 
 

 
Fig. 32. Variation of rotational speed of hydraulic motor-variant (a) 
 

 
Fig. 33.  Variation of rotational speed of hydraulic motor- variant (b) 
 

  
Fig. 34. Variation of rotational speed of hydraulic motor- variant (c) 



Numerical Simulation - a Design Tool for Electro Hydraulic Servo Systems 

 

445 

4. Conclusions  
Obtaining mathematical models, as close as possible to physical phenomena which are 
intended to be replicated or improved, help us in deciding how to optimize them. The 
introduction of computers in monitoring and controlling processes caused changes in 
technological systems. With support from the methods for identification of processes and 
from the power of numerical computing equipment, researchers and designers can shorten 
the period for development of applications in various fields by generating a solution as close 
as possible to reality, since the design stage. 

4.1 Conclusions 
As you can see from the diagrams of the transfer locus of servo mechanism (fig.7), its 
stability reserve increases along with decreasing amplification factor in flow of directional 
control valve around the null.  
It can be noted that the amplification margin increases by about 15 percent when using 
directional control valve with variable area gradient, approaching the value 0.75, which is 
considered optimal in the literature (Vasiliu & Vasiliu, 2005). 
Authors of this paper consider interesting the approach to simulate the method of enlarging 
the stability reserve by reducing the amplification factor around null and conditioning the 
control signal of distributing electromagnet to "trace" area profile of a slide valve 
"geometrically" shaped. 
The advantages of using this method are: reduced cost of execution of slide valves, 
possibility to upgrade for systems without variable area gradient, improvement of 
performance of servo systems. 

4.2 Conclusions 
The adjustment model of a hydrostatic transmission, developed through technique of co-
simulation AMESim/ LabVIEW, enables virtual and experimental analysis of phenomena 
specific to fluid power installations. 
The web adjustment model of the hydrostatic transmission enables access to the drives and 
results of tests carried upon the physical laboratory model also for the persons outside the 
laboratory. 
The adjustment model of a hydrostatic transmission with mixed adjustment enables remote 
control upon the parameters of hydraulic motor, depending on the actuation on hydraulic 
servomechanisms that adjust capacities of adjustable volumetric machines within the 
primary and secondary sectors. 
The developed adjustment model highlights the advantages in terms of energy of hydraulic 
transmissions with servopumps within their primary sector over transmissions with fixed 
pumps within their primary sector. 
By means of successive simulations in AMESim, on three simulation models equivalent to 
the physic laboratory model, a hydraulic transmission with secodary adjustment was 
optimized, in terms of energy consumption and functional performances. 
Optimal version of the simulation model, variant (c), represents the basis for optimization of 
the adjustment model for hydraulic transmissions with secodary adjustment, derived from 
the hydraulic transmission with mixed adjustment. In this variant of simulation the 
variation range of rotational speed of the hydraulic motor within the secondary sector, in 
conditions of variation of its load after a rectangular signal, is minimum, while through the 
pressure valve of the pump within the primary sector the extra flow is null. 
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1. Introduction   
Water and energy are key component of almost all human activities. Water supply is vital to 
feeding the growing world population, to production of mat natural systems on which life 
on earth relies. In the context of erial goods which cause rising of living standards and to 
maintaining the integrity of world water crisis, more and more governments have begun to 
develop new policies for future, aiming at rationalization and efficiency of water 
consumption. 
Maximum reduction of waste and undue loss of water is an important objective in the 
management of water resources. In this sense any valuable technical solution that helps 
achieve these goals, especially at the large water consumers, deserves to be implemented.  
To illustrate this, we propose the use of the automated land leveling systems, tracing a laser 
reference plane, as a method of reducing water losses in two activity areas: crop irrigation 
and construction of earth dams in hydropower stations. In the last decade, these works are 
performed with leveling machines equipped with laser modular systems manufactured by 
companies like TOPCON from Japan or APACHE and SPECTRA PRECISION from USA. 
In the first kind of activity, the solution ensures equal conditions, in terms of water 
consumption, for all plants on agricultural land, watered by natural way - rainfalls, or 
artificially - by irrigation systems. This solution prevents areas of "pools" of water on 
agricultural land, and providing deviations from the reference plane of max. ± 2 cm by only 
2 passes of the leveling machine (rough, and smoothing leveling) eliminates soil loosening 
works, which are necessary after conventional leveling.  
In the second case, the method ensures optimal thickness, depending on the type of 
compression equipment, of the earth layers deposited when constructing dam body, with 
maximum deviations of ± 2 cm over the entire surface of the deposited layer. This type of 
smoothing performed before the compaction of each layer of soil deposited in the dam 
body, ensures a uniform degree of compaction of the dam, fig.1. Homogeneity of dam 
compaction is a measure for reducing seepage through the dam and pronounced 
settlements of the top, causing possible overflowing of water above the top of the dam, fig.2. 
Laser modulation systems are not included in the standard facilities, not even in the latest 
modern leveling machines, fig.3. They can be installed on any hydraulically actuated 
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leveling machine, regardless of its wear or origin. The laser modular system includes a laser 
emission module, a laser receiver module, an electronic block and an electro hydraulic servo 
system (distribution block). Starting in 2008, the mounting on leveling equipment and the 
service of TOPCON laser modular equipment is performed in Europe by the representatives 
of Geodis Brno, Geodis Slovakia, Geodis Geodis Ro and Geodis Austria. These distributors 
are companies that get the laser and electronic modules from TOPCON, and the electro-
hydraulic components from different suppliers. 
 

 
Fig. 1. Main section through an earth dam 
 

 
Fig. 2. Example of  water flood over a dam January the 1st 2006 Sherman Island 
 

 
Fig. 3. Laser controlled electro hydraulic leveling machine (courtesy New Holland) 

The wide diversity of the fluid power systems used on leveling machinery, supplied by 
various manufacturers, and with different degree of wear, represents factors that leads to 
extension of mounting period of a modular laser system type TOPCON on a leveling 
machine.   
This chapter presents the structure, performance, and the optimal synthesis by numerical 
simulation of a testing bench designed for TOPCON laser modular systems, which 
reproduce the operating conditions of the systems set up on the real leveling machines. The 
device was developed by the aid of a numerical simulation model built in AMESim, is an 
electro hydraulic servomechanism of position control with feedback by laser. This 
servomechanism contains two internal control loops for position control: the first loop 
appears at the level of a servomechanism that simulates the profile of uneven soil, and the 
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second control loop appears at the level of a tracing servomechanism with laser reference. 
Dynamic performance obtained by numerical simulation and experimental identification of 
a TOPCON laser modular system, are in good agreement with those obtained by 
comparative testing of the same system mounted on a motor grader, in actual operation 
(Popescu et al., 2008, 2009). 
The testing bench developed by INOE 2000-IHP Bucharest, allows the laboratory tuning  
always needed to be made in order to fit the parameters of laser modular system with the 
parameters of machine on which are to be mounted. If some malfunction occurs in operation 
of the machine equipped with a laser modular system, using the testing device one can 
detect which component of the system no longer provides the functional parameters (laser 
emitter, laser receiver, electrohydraulic block or electronic block). 

2. Laser modular systems made for equipping the ground leveling 
installations 
The leveling technology which uses laser, fig.4, implies a leveling performed by a complex 
installation, equipped with laser controlled modular system, which is able to perform work 
from 2 passes, a rough leveling and a fine one at finish, with deviations from the reference 
plane of max. 2,5 cm on the entire leveled surface with a significant reduction of the 
tracking, transposition and materialization process during the leveling work. 
The modular mechatronic system with laser, electronic and electrohydraulic components, 
which allows reaching this leveling technology may be mounted on any land leveling 
equipment whose work bodies, scoops or blades are hydraulically powered. It is conceived 
as an additional option of the land leveling equipment, which offers to it the possibility of 
leveling land automatically, without any human error occurrence in what regards precision. 
 

a) 
 

b) 

Fig. 4. The laser leveling technology: a) mounting the laser modules transmitter and 
receiver;   b) automatic leveling after an optical leveling plan PON performed 
simultaneously by 6 land leveling equipments UTN 

In the classic acception land leveling controlled by laser systems implies a modular system 
with the following structure. 
a. The laser transmitter placed in the center of the surface to be leveled above a point with 

a known quote mark, on a tripod which may be adjusted vertically, emitting a laser 
beam in its rotation movement. This generates the laser reference plane or the optical 
refence plane (with programming options for the longitudinal and transversal slope in 
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the forward direction) which the work body of the equipment will follow during 
leveling. After setting the slope needed at leveling, the laser transmitter positions itself 
automatically. 

b. The laser receiver, whose support is connected to the work body of the land leveling 
equipment, intercepts the laser fascicle generated by the laser transmitter and sends 
altimetric information, namely the position of the work body accountable to the laser 
reference plane, to an electronic control and monitoring module, placed in the cabin of 
the land leveling equipment. 

c. The electronic monitoring and control module which conects and amplifies the laser 
information received, compares it with a prescribed dimension specific for the leveling 
quote value, finds the error and emits a prompt for cancelling error, towards an 
electrohydraulic drive system. 

d. The electrohydraulic system controlled by the electronic module has the role of driving 
the hydraulic cylinders of the blade for maintaining the work body in the leveling plane 
set by the leveling project, plane which is parallel with the laser reference plane. In fig.5. 
are presented two types of land leveling machines equipped with modular systems. 

 

  
a) b) c) 

Fig. 5. Leveller (a) and  autograder (b) equipped with laser controlled modular systems (c) 

3. Simulating the real operational conditions of the laser module by an 
original test bench 
In fig.6-a is shown the laboratory test bench which simulates the real behavior of the 
TOPCON laser controlled modular system purposefully created for equipping the 
automatic land leveling machines in horizontal plane (Popescu et al., 2008). Fig.6-b shows 
the mode of equalization of the device with the simulation model from AMESim. 
On the rod of the upper hydraulic cylinder is fixed the laser receiver which may move by 
the action of the upper cylinder or of the bottom cylinder or of both.  
The device for testing the laser controlled equipment includes 2 electro hydraulic 
servomechanisms that simulate the real behavior of the upward downward hydraulic 
cylinders of the blade of the land leveling machine, and the second - the profile of the land 
to be levelled.  
The first servomechanism contains a hydraulic cylinder similar with that mounted on the 
machine, supplied from the hydraulic delivery block TOPCON depending on the level of 
detection of the laser reference plane, generated by a rotary laser transmitter TOPCON. 
The second servomechanism consists of a hydraulic servocylinder controlled by a 
proportional valve with integrated electronics, by means of a data aquisiton board, a PC and 
the data aquisition software TEST POINT produced by Capital Corporation from USA. 
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The TOPCON electronic block receives electric signal from the laser receiver, placed on the 
rod of the upper cylinder of the device. The signal size varies depending on the level of 
detection of the optical reference plane, generated by the rotary laser transmitter; the input 
sent to the proportional valve of the TOPCON hydraulic kit is proportional with the 
detection level. According to this prompt the rod of the bottom cylinder pulls or pushes the 
body of the  upper cylinder in reverse direction to that of deplacement of the cylinder rod. 
The upper cylinder is controlled in close loop by means of a servocontroller; a signal 
generator simulates various profiles for the uneven land. The two inductive transducers of 
linear deplacement of the cylinders are connected by means of a data acquisition board to a 
PC using TEST POINT DAS. 
 

   
                    a)                                                                      b) 

Fig. 6. Test bench for testing the TOPCON laser controlled modular system: a) general 
overview;  b)  the test bench versus AMESIM simulation model 

4. Basic mathematical model of the test bench components 
A deep understanding of the upper phisical performance needs at least a mathematical 
modeling and simulation of an electro hydraulic servomechanism.  
The simplest nonlinear realistic mathematical model of such a system contains the following 
equations (Vasiliu &Vasiliu, 2005): 
a. The steady-state characteristics of the servovalve main stage (four way, critical centre, 

spool valve): 

 ( ) ( ) S
SV d

p PQ x p c A x,
ρ
−

=  (1) 
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Here x is the spool displacement from the neutral position; P - pressure difference 
between the ports of the hydraulic cylinder; A(x) – metering ports surface; cd – 
discharge coefficient of the metering ports; pS  - supply pressure (a constant). The above 
relation can be written in the form 

 ( )SV d s S S Qx SQ x P c d x p P p K x P p, / 1 / 1 /π ρ= − = −   (2) 

where 

 Qx d s SK c d p /π ρ=   (3) 

is the "flow valve gain". 
b. The spool motion equation. The servovalves manufacturers specify for each device the 

transfer functions adequate to slow, normal and high-speed control process. For slow 
control process, the servovalve can be regarded as a proportional device, having a 
single constant - the displacement-current (voltage) gain: 

 xi
x

xK
i 0

∂
∂ =

=  (4) 

Hence the spool motion follows the input current, i without any lag: 

 xix K i=   (5) 

For normal control process, a servovalve can be regarded as a first order lag device:  

 ( )
( )

xi

SV

x s K
i s T s 1

=
+

  (6) 

The corresponding differential equation is:   

 ( )SV xi
dxT x K i t
dt

+ =   (7) 

Here TSV is the servovalve time constant. For high speed control process, we have to 
consider the servovalve as a second order lag device: 

 ( )
( ) ( )

xi

n n

x s K
i s s s2/ 2 / 1ω ζ ω

=
+ +

  (8) 

where nω  is the natural frequency and ζ  - damping coefficient.  
c. The position transducer equation. The modern inductive position transducers together 

with their amplifiers behave as first order lag devices; they have a very small time 
constant, which can be neglected for industrial electro hydraulic control process: 

 T TU K y=   (9) 

where KT is the transducer constant, and y – piston displacement from the null position.   
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d. The error compensator equation. This stage computes the following error, ε as a 
difference between the input signal, Ui and the position transducer output, UT , and 
applies the PID control algorithm to find the solenoid control voltage, Uc : 

 Uc(s) = ε(s)KP[1+1/(sTi) + sTd/(τs + 1)]   (10) 

e. The servocontroller current generator equation. The current generator of the servo-
controller is so fast than it can be regarded as a proportional device: 

 Cii K U=  (11) 

where iK [A/V] is the "medium" conversion factor.  
f. The continuity equation. This equation offers the connection between the servovalve 

flow and the derivative of the pressure drop across the hydraulic cylinder: 

 p
SV p l

h

A
Q A y K P P

R

2

= + +   (12) 

where Ap is the piston area; Kl - leakage coefficient between the motor chambers; Rh  - 
hydraulic stiffness of the motor: 

 22 e
h p

t

R Aε
=

V
  (13) 

Here eε  is the equivalent bulk modulus of the oil and tV - the total volume of the oil 
from the hydraulic motor and the connections.     

g. The piston motion equation. The pressure force Fp has to cover the load force, usually 
modelled by a spring force Fe , the inertia of all the moving parts, me and the friction 
force, Ff  with different components: 

 e p e fm y F F F= − −  (14) 
where  

 p pF A P=  (15) 

 ( )( ) ( )e e e e e eF K K y y K y y1 2 0 1 02 2= + + = +   (16) 

The friction force has mainly a static component, Ffs and a viscous one, Ffv: 

 fs fsF F signy0=   (17) 

 fv fvF K y=   (18) 

The main non-linearity in the above mathematical modeling is included in the 
servovalve main stage. A linear solution can be obtained using a linear form of the 
steady-state characteristics of the servovalve main stage, 

 SV Qx QPQ K x K P= −   (19) 
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The results supplied by the linear model are useful for estimating the stability only. For high 
amplitude input signals the designer has to use the numerical simulation. Some simulation 
languages are widely used for practical purposes. Two of them are available for any 
engineering activity: SIMULINK (The Math Works Inc., 2007) and AMESIM (LMS Imagine, 
2009). The „building“ of a simulation network in SIMULINK needs a lot of work for using 
general purpose „icons“, but the toolboxes devoted to sistems synthesis are very effective. 
The fig. 7 contains the simulation network of the above electro hydraulic servomechanism.  
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Fig. 7. Simulation network of an electro hydraulic servomechanism in SIMULINK 
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Fig. 8. Small input step response of an electro hydraulic servomechanism simulated  by 
SIMULINK for three values of TSV: 0.01 s, 0.02 s, and 0.05 s 

Figure 8 presents the response of the servomechanism for small step inputs, and three 
values of the servovalve time constant, TSV. Using a high speeed servovalve one can obtain 
an overall small time constant of about 0.045 s. The increase of the servovalve time constant 
spoils the system dynamic performance and can generate steady state oscillations. A long 
series of experiments were performed by (Calinoiu, Vasiliu & Vasiliu, 1998) in order to find 
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the difference between the theoretical dynamic behaviour and the real one for a 
servomechanism using a Bosch NG10 direct drive servovalve (DDV). There is a good 
agreement between the simulated and measured results, the time constant having 
practically the same value for both cases. The Bode diagram (fig. 9) shows a good dynamics 
even for a high spring load. On the same diagram the transfer function identified by 
IDENTIFICATION TOOLBOX from MATLAB is specified. The computed transfer function 
and the measured one are nearly the same.  
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Fig. 9. Bode diagram of an electro hydraulic servomechanism (identification by MATLAB) 

The simulation model of the test bench can be assemblied by two SIMULINK models as in 
fig. 7, but the capabilities of AMESIM are very useful for the quick design and optimization. 

5. AMESIM design facilities 
5.1 Overview  
Many different modeling and simulation software packages were created to perform studies 
in the fields of automobile, aerospace, robotics, offshore and general hydraulics engineering 
but none offered the full range of capabilities needed. There were deficiencies in the 
numerical capabilities, in the graphical interface and in the general modeling concept. The 
AMESim package was developed to overcome these limitations by Michel Lebrun and 
Claude Richards from Societe Imagine (FRANCE), starting from 1988. This section gives a 
description of the technical features, which were central objectives in the design of the 
software, and some examples of typical applications.   
The main aim of the AMESim is “To create Good Models without Writing a Single Line of 
Code” (Lebrun & Richards, 1997). An important prerequisite of the basic element library is 
the creation of extremely well tested, reliable and reusable submodels that a user can 
employ with complete confidence (LMS IMAGINE SA, 2009). The writer of the basic 
element library must be competent in all the modeling skills. However, the user of the basic 
element library is relieved of the need to write code and formulate the mathematics. 
Understanding of the details of the physics is not needed but decision on assumption is 
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necessary which imply some knowledge of physics. Understanding of the engineering 
system and an ability to interpret results is still important. Experience in training design 
office staff to use of the basic element library suggests that it is learnt very rapidly.  
AMESim is using the multiport approach. In the signal port approach of a numerical 
simulation environment, a single value or an array of values are transferred from one 
component block to another in a single direction. This is fine when the physical engineering 
system behaves in the same way such as with a control system. However, problems arise 
when power is transmitted. This is because modeling of components that transmit power 
leads to a requirement to exchange information between components in both directions. In 
order to use a signal port approach in this situation, two connections must be made between 
the components where physically there is only one. This leads to a great complexity of 
connections and means that even very simple models involving power transmission appear 
complex and unnatural. In contrast to the signal port approach, with the multiport 
approach, a connection between two components allows information to flow in both 
directions. This makes the system diagram much closer to the physical system.  

5.2 Numerical performance 
The analysis of the steady state and dynamic behavior of an engineering system leads to a 
mathematical model of the system. This is in the form of algebraic, ordinary differential and 
partial differential equations. More recently, differentialalgebraic equations are also used to 
model the system. The role of simulation software is to provide an environment in which 
this model can be solved efficiently. For models with large numbers of partial differential 
equations, there are specialist packages such as those for computation fluid dynamics. Such 
software is used for detailed analysis of individual components of a system. However, it is 
often necessary to simulate a completely engineering system or a subsystem of it. The 
concept of the virtual prototype, in which physical prototypes are replaced by mathematical 
computer models, makes simulation of this type vital. In this case, it is normal to reduce any 
partial differential equations to ordinary differential equations. This leads to models with 
either ordinary differential equations (odes) or differential algebraic equations (daes). Many 
general and specialized simulation software packages are available for solving such systems 
of equations. Models arising from engineering systems vary greatly in their character. Thus 
the equations of the model can be: linear, non-linear, numerically stiff i.e. with very small 
time constants compared with the overall simulation period, oscillatory, continuous, 
discontinuous. A large variety of numerical integration methods can be employed to solve 
such problems. Traditionally the user of simulation software is presented with a menu of 
typically seven methods from which a choice must be made.   

5.3 Direct access graphical user interface 
Many older simulation packages were developed before modern graphical user interfaces 
were available. The only graphical facilities provided were for producing simple plots of 
results. The suppliers of these packages have had to introduce new graphical preprocessing 
facilities to build the system. More modern software has been designed from the start with a 
full graphical user interface. Whenever possible, icons for components were based on 
internationally recognized standard symbols. Thus for hydraulic systems icons are based on 
CETOPS symbols. Where there are no such standardized symbols, icons are constructed 
which can be instantly recognized by engineers working in the field.   
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Throughout the simulation, process the system diagram is displayed. Thus for example 
when parameters are changed for a particular component, the user points at the icon in 
question and clicks the mouse button. This produces a menu of items that may be changed. 
Similarly to plot graphs of results, the user points at the component and clicks the mouse 
button to produce a menu of items associated with the component that may be plotted.   
The possibility of quick high level technical developments as ABS, EBS, common rail 
multipoint injection systems, electro hydraulic automatic transmissions, self tuning 
hydraulic and pneumatic suspensions, hydraulic power steering, fly-by-wire systems and 
many others (Mare & Cregut, 2001). Companies like AEROSPATIALE, MATRA, BOSCH, 
FERRARI, DAIMLER-CRIYSLER, GENERAL MOTORS, etc. are currently using this 
modeling and simulation software for future developments. Academic training programs 
are now developed in different countries, for teaching the software in the terminal years 
(Vasiliu & Vasiliu, 2005), and for applied researches (Vasiliu, et al., 2003). 

6. Numerical simulation and experimental identification of the laser 
controlled modular system by AMESim 
6.1 Modelling the test bench  
For the numerical simulation of the laser controlled modular system it was used the 
simulation in AMESim, namely the model shown in fig.10. All the components of the 
simulation model are based on mathematical models of differential equations, validated by 
practice and the method of numeric integration of the differential equations is chosen 
automatically. If the model is not correct or the inner and outer parameters are not properly 
determined, the program does not work, cause the system of differential equations is 
incompatible or undetermined. 
 

 
a) 

 
b) 

Fig. 10. Model of simulation in AMESim for a TOPCON laser controlled modular system 
mounted on a testing device: a) simulation model; b) model components 
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The simulation model represents an electrohydraulic servomechanism for adjusting the 
position with laser reaction. It includes 2 inner adjustment loops and an outer loop. The first 
inner loop is set at the level of the hydraulic servomechanism of simulation for uneven land 
which is excited at entry with rectangular, sinusoidal signals, constant and variable. The 
second inner loop is set at the level of the servomechanism of monitoring with laser control 
which is similar to the TOPCON laser controlled modular system. The outer loop of 
regulation is done between the exit of the first servomechanism and the entry of the second. 

6.2 Numerical simulation experiments    
In fig.11…17 are shown some of the significant numeric simulations. In fig.11 the 
servomechanism generating profiles of the uneven land receives a rectangular input with an 
amplitude of 0,14 m and a frequency of 0,05 Hz in a range of 50 s. The red curve 1 represents 
the desplacement of the rod of the generator servocylinder [m], and the green curve 2 
represents the rod deplacement of the monitoring servocylinder rod and the body of the 
generator servocylinder [m]. 
 

 
Fig. 11. The answer of the laser monitoring servomechanism at exciting the servomechanism 
which generates profile with rectangular signal 

By the algebraic sum of the graphics from fig.11 results the curve 3 from fig.12. In the 
terminology related to the operation of automatic land leveling after an horizontal plane 
curve 3 represents the deviations of the profile of the levelled land from the optical 
horizontal reference plane. These are present only in the zone of stage jumping last 2 s and 
have a max.value of 0,01 m. 
In fig.13 the servomechanism generating the profile of uneven land is excited with a 
constant sinusoidal signal with an amplitude of 0,14 m and a frequency of 0,05 Hz lasting 50 
s. The meaning of the curves 1 and 2 is the same with that from fig.11. 
By the algebraic sum of the graphics from fig.13 it results the curve 3 from fig.14 with the 
same meaning as that from fig.12. The errors are negligible with max.values below 0,002 m. 
In fig.15. is shown a method for emitting in AMESim a sinusoidal signal with variable 
amplitude and frequency: over the sinusoidal signal with variable frequency and constant 
amplitude is superposed a ramp signal after this the 2 signals being composed. For the 
component signals there is a model in AMESim but for the composed signal not. 



Applications of the Electrohydraulic Servomechanisms in Management of Water Resources 

 

459 

 
Fig. 12. Deviation profile of the leveled land from the optical reference plane 
 

 
Fig. 13. The answer of the laser monitoring mechanism for a constant sinusoidal input 
 

 
Fig. 14. Deviation profile leveled land from the optical reference plane 
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Fig. 15. The formation of a sinusoidal imput signal with variable frequency and amplitude 

The meaning of the curves from fig.15. is the following: 1- sinusoidal signal with variable 
frequency, max. frequency 0,5 Hz and amplitude 0,1 m; 2 – ramp signal; 3- sinusoidal signal 
with variable frequency and amplitude. 
 

 
Fig. 16. The answer of the laser monitoring servomechanism at exciting the servomechanism 
generator of profile with variable sinusoidal signal 
 

 
Fig. 17. Deviation leveled land profile from the optical reference plane 
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In fig.16 the servomechanism generator of uneven land profile is excited with a variable 
sinusoidal signal of the shape shown in fig.15 with an amplitude of 0,14 m and a frequency 
of 0,05 Hz lasting 50 s. The meaning of the curves 1 and 2 is the same like that shown in 
fig.11. By the algebraic sum of the graphics from fig.16 it results the curve 3 from fig.17 with 
the same meaning like that presented in fig.12. The errors are negligeable with frequencies 
below 0,8 Hz and a max.value of the deviation of 0,004 m. 

6.3 Fine tuning the parameters of PID controller  
The modern fluid control systems are using hybrid tuning alghoritms as Fuzzy - PID error 
compensators (Popescu et al., 2009). The high degree of nonlinearity of these systems leads 
to the wide use of modeling and simulation techniques for obtaining the tuninig parameters 
by a virtual testing system. This testing manner offers a strong costs cut, and a useful 
reduction of the real experimental test. After 20 years of intensive development of the 
symbol libraries in different engineering fields, AMEsim became an efficient tool for solving 
different applications of the fluid control systems. The case presented in this paper intends 
to offer a model of developping new applications of the electro hydraulic systems by this 
tool. The authors created both the laboratory model of the electro hydraulic control system, 
and the real system set up on a modern ground leveling machine. The comparison between 
the static and dynamic performances of the real system is found in good agreement.   
To tune a controller means to find the parameters of an given structure, of a settled degree, 
so that to achieve from the resulted system a behavior as close as possible to the desired one. 
In practice the most frequently used regulators are of type P, PI, PD and PID which calculate 
the u(t) command according to the following relations: (1), for a P: regulator: proportional; (2), 
for a PI: compensator proportional, integral; (3), for a PD: regulator proportional, derivative; 
(4), for a PID regulator proportional, integral, derivative, where: KP – constant of the 
proportional part (gain), KI – constant of the integral part, KD – constant of the derivative part.  

 . Pu t K t( ) ( )ε= ⋅ .   (20)  

 P Iu t K t K t dt( ) ( ) ( )ε ε= ⋅ + ⋅ ∫   (21) 

 P D
d tu t K t K

dt
( )( ) ( ) εε= ⋅ +    (22) 

 . P I D
d tu t K t K t dt K

dt
( )( ) ( ) ( ) εε ε= ⋅ + ⋅ +∫ .  (23) 

PID type controllers are used for the error signal in hydraulic rapid servomechanisms. 
Component P amplifies the error, develops a higher-speed system, but it can’t cancel the 
stationary error; component I removes the stationary error, but it destabilizes the system, 
while component D stabilizes the system. The last generation of control algorithms are 
based on the real time simulation of the systems. 
The simulation model in AMESim (fig.10a) represents a hydraulic servomechanism for 
position control with one external feedback by laser and two internal feedbacks, arising at 
the level of the two included servomechanisms, as follows. The upper servomechanism, that 
simulates the profile of the uneven land, and the lower servomechanism, a tracing one, that 
actuates the blade of the levelling machine in a vertical plane. 
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Fig. 18. The response of the tracing servocylinder  when the servocylinder that simulates the 
land profile is excited by a rectangular signal 

 

 
Fig. 19. The maximum value of the deviation of the leveled land from the optical reference 
plane 

The hydraulic servo cylinder of the upper servomechanism has a mobile body, while the 
one of the lower servomechanism has a fix body. The first internal feedback loop arises 
between the displacement transducer of the cylinder with mobile body and the upper 
comparator of the simulation model. The second internal feedback loop arises between the 
displacement transducer of the cylinder with fix body and the internal comparator of the 
simulation model. The external feedback loop arises between the displacement transducer 
placed in the upper side of the model and the comparator placed in its lower side. The 
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above configuration can be a fair representation of the true system, included in the frame of 
the levelling machine. The servomechanism that simulates the profile of the uneven land is 
excited by a rectangular signal with amplitude of 0.140 m and frequency of 0.025 Hz. In 
fig.18 three curves are set: curve1 – variation of displacement over time of the servocylinder 
that simulates the profile of the uneven land; curve2 - variation of displacement over time of 
the tracing servocylinder, that actuates the blade of the navvy machine in vertical plane; 
curve3 – the amount of the two displacement values, which is the variation over time of the 
deviation of the uneven land from the optical reference plane.  
 In these conditions the maximum value of the deviation of the leveled land from the optical 
reference plane is 0.01m, fig. 19. 

6.3.1 Optimizing parameter KP 
Running the application in AMESim is repeated, this time canceling parameters KI  and KD 
and selecting five values for parameter KP, according to the settings in "Batch Control 
Parameter Setup" box, fig. 20. 
 
 

 
Fig. 20. Setting values for parameter KP 

 
 

 
Fig. 21. Influence of the variation of parameter KP upon the dynamics of the tracing 
servomechanism 
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In "Plot manager" box, there are shown the curves resulted when running the application in 
Batch mode, corresponding to five different values of parameter KP. These curves represent: 
curve1...curve5 – variation over time of the displacement of the servocylinder that simulates 
the profile of the uneven land; curve 6...curve 10 - variation over time of the displacement of 
the servocylinder that actuates the blade of the navvy machine; curve11...curve15 - variation 
over time of the deviation of the leveled land from the optical reference plane. In fig. 21 is 
shown the influence that the variation of the parameter KP has upon the dynamics of the 
tracing servomechanism when exciting the servomechanism that simulates the profile of the 
uneven land by a rectangular signal with amplitude of 0.140 m and frequency of 0.025 Hz.  
In fig. 22 is shown one detail of the variation over time of the amount of the displacement 
values of the two servocylinders, when applying the settings in fig. 20. One can notice an 
increasing dynamics of the tracing servocylinder, in accordance with the increase of the 
value of parameter KP. 
 
 

 
Fig. 22. Variation in the deviation of the profile of leveled land from the reference plane, 
depending on variation of parameter KP 

6.3.2 Optimizing parameter KI 
Running the application in AMESim is repeated, this time canceling parameters KP  and KD 
and selecting five values for parameter KI, according to the settings in "Batch Control 
Parameter Setup" box.  In fig. 23 is shown the influence that the variation of parameter KI 
has upon the dynamics of the tracing servomechanism when exciting the servomechanism 
that simulates the profile of the uneven land by a rectangular signal with amplitude of 0.140 
m and frequency of 0.025 Hz. In fig. 24 is shown one detail of the variation over time of the 
amount of the displacement values of the two servocylinders, when applying the settings 
KI=0.5; KI=1; KI=2; KI=4; KI=8. One can notice that the stationary error in the tracing 
servomechanism is removed faster at a higher value of parameter KI. 
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Fig. 23. Influence of the variation of parameter KI  upon the dynamics of the tracing 
servomechanism 

 

 
Fig. 24. Variation in the deviation of the profile of leveled land from the reference plane, 
depending on variation of parameter KI. 

6.3.3 Optimizing parameter KD 
Running the application in AMESim is repeated, this time setting parameters KP=1 ; KI =0.5 
and selecting five values for parameter KD, according to the settings in "Batch Control 
Parameter Setup" box. In fig. 25 is shown the influence that the variation of parameter KD 
has upon the dynamics of the tracing servomechanism when exciting the servomechanism 
that simulates the profile of the uneven land by a rectangular signal with amplitude of 0.140 
m and frequency of 0.025 Hz. In fig. 26 is shown one detail of the variation over time of the 
amount of the displacement values of the two servocylinders, when applying the settings 
KD=0.1; KD=0.2; KD=0.4; KD=0.8; KD=1.2. One can notice that the stabilization in the tracing 
servomechanism is attained faster at a lower value of parameter KD. 
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Fig. 25. Influence of the variation of parameter KD upon the dynamics of the tracing 
servomechanism 
 

 
Fig. 26. Variation in the deviation of the profile of leveled land from the reference plane, 
depending on variation of parameter KD 

6.3.4 Optimizing global parameter K(KP , KI , KD) 
Running the application in AMESim is repeated, this time selecting five set of values for 
parameters KP  , KI and KD , according to the settings in "Batch Control Parameter Setup" box.   
In fig. 27 is shown the influence that the variation of parameter K(KP , KI , KD) has upon the 
dynamics of the tracing servomechanism when exciting the servomechanism that simulates 
the profile of the uneven land by a rectangular signal with amplitude of 0.140 m and 
frequency of 0.025 Hz. 
In fig. 28 is shown one detail of the variation over time of the amount of the displacement 
values of the two servocylinders, when applying the settings: K1(15, 8, 0.1); K2(10, 4, 0.2); 
K3(5, 2, 0.4); K4(2.5, 1, 0.8); K5(1, 0.5, 1.2). One can notice that the optimal dynamics and 
stability of the tracing servomechanism is obtained when PID controller has the global 
parameter K1(15, 8 ,0.1), where: KP =15 , KI =8 and KD =0.1. 
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Fig. 27. Influence of the variation of parameter K(KP  , KI , KD)  upon the dynamics of the 
tracing servomechanism 

 

 
Fig. 28. Variation in the deviation of the profile of leveled land from the reference plane, 
depending on variation of parameter K(KP  , KI , KD ) 

6.4. Experimental identification  
The results of the experimental identification of the TOPCON laser controlled modular 
system mounted on test devices are shown in fig. 29…32. 
In fig. 29-a is shown the dynamics of the laser control hydraulic monitoring system when at 
the input of the hydraulic mechanism generator of uneven land profiles is applied a 
constant sinusoidal signal with a frequency of 0,025 Hz and an amplitude of 0,072 m. The 
test duration was 50 s and it proved a proper dynamic of deplacement of the monitoring 
servosystem (in red) towards the generator of uneven land profile (in black) 
The graphics from fig. 29-b was obtained by repeating the test with the same frequency of 
the sinusoidal signal of excitation 0,025 Hz but with a higher amplitude 0,080 m. The test 
took 46 s and the results show a proper behavior of the monitoring servomechanism with 
laser control. 
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                        a)                                                                             b) 

Fig. 29. The answer of the laser monitoring mechanism at the excitation of the 
servomechanism generator by a constant sine input 

In fig.30-a is shown the dynamic of the monitoring hydraulic servosystem with laser control, 
when at the entry of the hydraulic servosystem generating uneven land profiles it is applied 
a constant triangle signal with a frequency of 0,025 Hz and an amplitude of 0,060 m which 
takes 63 s. The test proves the proper work of the laser controlled servomechanism. 
In fig. 30-b is shown the dynamic of the hydraulic servosystem with laser control when at 
the entry of the hydraulic servomechanism generator of uneven land profiles is applied a 
constant rectangular signal with a frequency of 0,025 Hz and an amplitude of 0,105 m. The 
test took 51 s. 
 

   
                           a)                                                                            b) 

Fig. 30. The answer of the laser control monitoring mechanism at the excitation of the 
servomechanism generator of profile with: a) triangle input; b) rectangular input 

At all tests presented above  in fig. 29, and fig. 30 the  inductive transducers of lineary 
displacement of the hydraulic cylinders were set in such a way that the 2 graphics are 
superposed for noticing easily the dynamic behavior of the hydraulic servomechanism with 
laser control. 
For the test from fig. 31 which uses as excitation signal a constant sine one the inductive 
transducers of linear displacement of the hydraulic cylinders was set so that they can offer 
information regarding the real direction of displacement of the cylinders. 
In fig. 31 is shown the dynamic of the hydraulic system with laser control when at the entry 
of the hydraulic mechanism generator of uneven land profiles is applied a constant 
sinusoidal signal with a frequency of 0,020 Hz and an amplitude of 0,120 m. The test took 
115 min. 
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Fig. 31. The answer of the laser monitoring servomechanism at the excitation of the 
servomechanism generator of profiles with constant sinusoidal signal 

In fig. 32 is shown the dynamic of the hydraulic monitoring system with laser control at the 
excitation of the mechanism generator of variable sine signal with a frequency of 
0,010…0,100 Hz and an amplitude of 0,115…0,034 m. The test took 694 s. 
 

 
Fig. 32. The answer of the laser monitoring servomechanism at the excitation of the 
servomechanism generator of profiles with variable sinusoidal signal 
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Sistematic simulations gave the optimal parameters of the PID controller: KP =15, KI =8 s, 
and KD =0.1 s (fig.33). The minimum value of the deviation of the leveled land from the 
optical reference plane is less than 0.004 m (fig. 34). This value is 2.5 times lower than the 
one resulted from the first running of the simulation model (fig. 17). 
 

 
Fig. 33.  Setting optimal parameters for a PID controller 

 

 
Fig. 34. Maximum optimized value of the deviation of the leveled land from the optical 
reference plane 
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7. Conclusions  
The laser leveling of the land layers laid down when making a dam or a land dikes from the 
hydropower stations represents a safe and efficient solution for providing optimum breadth 
with maximum errors of about 2,5 cm on the entire surface of the laid layer. This kind of 
leveling performed before compaction of each land layer provide a proper and homogenous 
density of the dam and represents the optimum solution for reducing infiltrations and 
avoiding the falling of the crowning which may lead to water flood like is shown in fig.2. 
The laser controlled modular systems like TOPCON or similar ones are not standard 
facilities in civil engineering companies not even for the most modern land leveling 
machines, but they can be mounted on any kind of hydraulic powdered land leveling 
machine, no matter of the degree of wear or origin. 
The set up of these kind of equipments with laser control systems like TOPCON which 
appeared in the last decade in Romania is performed by specific trained personnel, and not 
by the manufacturers of the leveling machines. 
The steady state characteristics and dynamic performance obtained by a TOPCON laser 
controlled modular system, set up on an autograder performing an automatic leveling, and 
the ones supplied by an original test bench are at least comparable. 
The original test bench designed and tested at INOE 2000-IHP from Bucharest allows  the 
preliminar tuning of the laser controlled modular system for a given machine which will be 
turned into an automatic leveling equipment. 
The test bench can be also used as a debugger for the leveling machines equipped with laser 
controlled modular systems as a fault detection tool. The special skilled staff can identify the 
component which does not provide anymore the required operational parameters: the laser 
transmitter, the laser receiver, the hydraulic block or the electronic block. 
All the design parameters of the test bench were found by the aid of the numerical 
simulations performed with AMESIM. The facilities offered by this software for the 
engineering activities are turning this software into a real design tool. A lot of technical 
fields are developing high performance equipments, like speed governors for modern 
hydraulic turbines (Vasiliu et al., 2003), thrust vector actuators for aerospace control (Mare 
and Cregut, 2001), heavy load dynamic testing machines (Vasiliu and Vasiliu, 2004). Special 
tools as “activity index” for enhancing the synthesis process of the hybrid digital electro 
hydraulic control systems were developed by SOCIETE IMAGINE SA. The Real Time 
Simulation facilities of AMESIM widely extended the field of applications for this software 
(Vasiliu & Vasiliu, 2005).       
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1. Introduction    

Simulation of physical systems often requires the solution of a system of ordinary 
differential equations, in the form of an initial-value problem. Usually, a Runge-Kutta 
method is used to solve such a system numerically. Recently, we examined how the 
computational efficiency of a Runge-Kutta method could be improved through the 
mechanism of the RKrGLm algorithm, in the context of global error control via reintegration 
(Prentice, 2009). The RKrGLm method for solving the d-dimensional system 

 ( ) ( )0 0,           dy f x y y x y a x b
dx

= = ≤ ≤  (1.1) 

is based on an explicit Runge-Kutta method of order r (RKr), and m-point Gauss-Legendre 
quadrature (GLm). The method has a global error of order 1r + , which is the same order as 
the local order of the underlying RKr method, provided that r  and m  are chosen such that 

1 2r m+ ≤  (Prentice, 2008). Of course, any method designed for solving IVPs must facilitate 
local error control. In this paper we describe an effective algorithm for controlling the local 
relative error in RKrGLm. 

2. Terminology and relevant concepts 

In this section we describe terminology and concepts relevant to the paper, including a brief 
description of the RKrGLm method. Note that, throughout this paper, overbar, as in v , 
indicates an 1d× vector, and caret, as in mM , denotes an d d× matrix. 

2.1 Explicit Runge-Kutta methods 
We denote an explicit RK method for solving (1.1) by 

 ( )1 ,i i i i iw w h F x y+ = +  (2.1) 

where 1i i ih x x+≡ −  is a stepsize, iw  denotes the numerical approximation to ( )iy x , and 
( ),F x y  is a function associated with the particular RK method (indeed, ( ),F x y  could be 

regarded as the function that defines the method). 
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2.2 Local and global errors 
We define the global error in any numerical solution at ix  by 

 i i iw yΔ ≡ −  (2.2) 

and, specifically, the RK local error at ix  by 

 ( )1 1 1 1,i i i i i iy h F x y yε − − − −⎡ ⎤≡ + −⎣ ⎦  (2.3) 

In the above, 1iy −  and iy  are the true solutions at 1ix − and ix , respectively. Note that the 
true value 1iy −  is used in the bracketed term in (2.3). 
Note also that for the derivative ( )' ,y f x y=  we have 

 ( ) ( ) ( ) m ( ), , , ,i i i i i i i y i ii
f x w f x y f x y f x ϑ= + Δ = + Δ  (2.4) 

In the above we use the symbol iϑ  in m ( ),y i i ixf ϑ Δ  simply to denote an appropriate set of 
constants such that m ( ),y i i ixf ϑ Δ  is the residual term in the first-order Taylor expansion  
of ( ),i i if x y + Δ . Furthermore, myf  is the Jacobian 

 m

1 1

1

1

d

y

d d

d

f f
y y

f
f f
y y

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥=
⎢ ⎥
∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎣ ⎦

"

# % #

"

 (2.5) 

where { }1 2, , , df f f…  are the components of f , and d  is the dimension of the system (1.1). 
Clearly, a global error of iΔ  in iw  implies an error of ( )iO Δ  in the derivative ( ),i if x w . 

2.3 Gauss-Legendre quadrature 
Gauss-Legendre quadrature on ,u v⎡ ⎤⎣ ⎦  with m nodes is given by (Kincaid & Cheney, 2002) 

 ( ) ( ) ( )2 1

1

, ,
m

m
i i

v

u
i

i

f x y dx h C f x y O h +

=

= +∑∫  (2.6) 

where the nodes ix  are the roots of the Legendre polynomial of degree m on ,u v⎡ ⎤⎣ ⎦ . Here, h 
is the average separation of the nodes on ,u v⎡ ⎤⎣ ⎦ , a notation we will adopt from now on, and 
the iC  are appropriate weights. The average node separation h on ,u v⎡ ⎤⎣ ⎦  is defined by 

 .
1

v uh
m
−

≡
+

 (2.7) 

The nodes on [ 1,1]− , denoted ix� , are mapped to corresponding nodes ix  on ,u v⎡ ⎤⎣ ⎦  via 

 1 ( ) ,
2i ix v u x u v= − + +⎡ ⎤⎣ ⎦�  (2.8) 
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and the weights iC  are constants on any interval of integration. We have referred to the 
interval [ 1,1]−  above because the nodes ix�  on this interval are extensively tabulated. 

2.4 The RKrGLm algorithm 
We briefly describe the general RKrGLm algorithm on the interval ,a b⎡ ⎤⎣ ⎦ , with reference to 
Figure 1.  
 

a= x0 x1 xm xp

R K G L

. . .

R K G L

xp+ 1 x2pxp+ m. . .

H 1 H 2

b.   .   .

 
Fig. 1.  Schematic depiction of the RKrGLm algorithm. 

Subdivide ,a b⎡ ⎤⎣ ⎦  into N subintervals jH . At the RK nodes on jH  we use RKr: 

 ( ) ( ) ( ){ }1 ,      1 , , 1 1 .i i i i iw w h F x w i j p j p m+ = + ∈ − − + −…  (2.9) 

At the GL nodes we use m-point GL quadrature: 

 ( ) ( )1
1

, .
m

p i i p i pp
i

w w h C f x wμ μ μμ + ++
=

= + ∑  (2.10) 

where 0,1,2,μ = … . Note that 1p m≡ + . 
The GL component is motivated by 
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 (2.11) 

The RKrGLm algorithm has been shown to be consistent, convergent and zero-stable 
(Prentice, 2008). 

2.5 Local error at the GL nodes 
The local error at the GL nodes is defined in a similar way to that for an RK method: 
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We remind the reader that in RKrGLm we choose r and m such that 1 2r m+ ≤ , which 
ensures that RKrGLm has a global error of ( )1rO h +  (Prentice, 2008). 

2.6 Implementation of RKrGLm 
There are a few points regarding the implementation of RKrGLm that need to be discussed: 
a. If we merely sample the solutions at the GL nodes, treating the computations at the RK 

nodes as if they were the stages of an ordinary RK method, then RKrGLm would be 
reduced to an inefficient one-step method. This is not the intention behind the 
development of RKrGLm; rather, RKrGLm represents an attempt to improve the 
efficiency of any RKr method, simply by replacing the computation at every (m + 1)th 
node by a quadrature formula which does not require evaluation of any of the stages in 
the underlying RKr method. 

b. Of course, it is clear from the above that on H1 the RK nodes are required to be 
consistent with the nodes necessary for GL quadrature. If, however, the RK nodes are 
located differently (as would be required by a local error control mechanism, for 
example) then it is a simple matter to construct a Hermite interpolating polynomial of 
degree 2 1m +  (which has an error of order 2 2m + ) using the solutions at the nodes 

0 }, ,{ mx x… . Then, assuming 0x  maps to 1−  and mx  maps to the largest Legendre 
polynomial root x on [ 1,1]− , the position of the other nodes * *

1 1, ,{ }mx x −…  suitable for 
GL quadrature may be determined, and the Hermite polynomial may be used to find 
approximate solutions of order 1r +  at these nodes, thus facilitating the GL component 
of RKrGLm. A similar procedure is carried out on the next subinterval 1H , and so on. 
Indeed, we will see that the Hermite polynomial described here will play an important 
role in our error control process, and is described in more detail in the next subsection. 

c. If the underlying RKr method possesses a continuous extension it would not be 
necessary to construct the Hermite polynomial described above. However, there is no 
guarantee that a continuous extension of appropriate order (at least 2 1m + ) will be 
available, and it is generally true that determining a continuous extension for a RK 
method requires additional stages in the RK method, which would most likely 
compromise the gain in efficiency offered by RKrGLm. Note that the construction of the 
Hermite polynomial only requires one additional evaluation of ( , )f x y , at mx . 

2.7 The Hermite interpolating polynomial 
If the data { }, , : 0, ,i i ix y y i m′ = …  are available, then a polynomial ( )PH x , of degree at most 
2 1m + , with the interpolatory properties 

     ( ) ( ) P i i P i iH x y H x y′ ′= =  (2.13) 

for each i, may be constructed. If the nodes ix  are distinct, then ( )PH x  is unique. This 
approximating polynomial is known as the Hermite interpolating polynomial (Burden & 
Faires, 2001) and has an approximation error given by 

 
( )( )

( ) ( )
(2 2)

2

0

( ) ( )
2 2 !

m m

P i
i

y x
y x H x x x

m
ξ+

=

− = −
+ ∏  (2.14) 
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where 0 ( ) mx x xξ< < . If h is the average separation of the nodes on 0 , mx x⎡ ⎤⎣ ⎦ , it is possible to 
write i ix x hσ− = , where iσ  is a suitable constant, and hence 

 2 2( ) ( ) ( ).m
Py x H x O h +− =  (2.15) 

The algorithm for determining the coefficients of HP(x) is linear, as in 

 1−=c A b  (2.16) 

where c  is a vector of the coefficients of ( )PH x , A  is the relevant interpolation matrix, and 
b  is a vector containing iy  and iy′ . The details of these terms need not concern us here; 
rather, if an error ( )O Δ  exists in each of iy  and iy′ , then an error of ( )O Δ  will exist in each 
component of c . Moreover, since ( )PH x  is linear in its coefficients, then an error of ( )O Δ  
will also exist in any computed value of ( )PH x . Consequently, we may write 

 2 2( ) ( ) ( ) ( )m
Py x H x O h O+− = + Δ  (2.17) 

where the ( )O Δ  term arises from errors in iy  and iy′ . We have assumed, of course, that the 
errors in iy  and iy′  are of the same order, which is the situation that we will encounter later.  

3. Local error control in RKrGLm 
3.1 The order of the tandem method 
The idea behind the use of a tandem method is that it must be of sufficiently high order such 
that, relative to the approximate solution generated by RKrGLm, the tandem method yields 
a solution that may be assumed to be essentially exact. This solution is propagated in both 
RKrGLm and the tandem method itself, and the difference between the two solutions is 
taken as an estimate of the local error in RKrGLm. This amounts to so-called local 
extrapolation and is not dissimilar in spirit to error estimation techniques employed using 
Runge-Kutta embedded pairs (Hairer et al., 2000; Butcher, 2003). Generally speaking, 
though, the tandem method is not embedded. 
To decide on an appropriate order for the tandem method we consider the local error at the 
GL nodes 
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where ( ),tw •  is the solution from the tandem method at ( )x • , and ( ),t•Δ  is the global error in 
( ),tw • . Expanding the term in the sum in a Taylor series gives 
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and so 

 
( ) ( )

( ) ( )
m

, , 1 ,

, , ,1 1 ,

1

1

   ,

( , )

p t i i p i p t p t

p t i y i p i p t i p tp

m

i

p t

m

i

w h C f x w w

h C f x

μ μ μ μ

μ μ μ μμ με ζ

+ + +

+ + ++

=

+
=

+ −

⎛ ⎞
⎜ ⎟= + Δ − Δ − Δ
⎜ ⎟
⎝ ⎠

∑

∑
 (3.3) 

where ,i p tμζ +  is analogous to iϑ  in (2.4). The sum on the RHS of (3.3) is of higher order 

than ( ), 1 ,p t p tμ μ+Δ − Δ , because of the multiplication by h, and since we cannot expect, in 

general, that ( ), 1 , 0p t p tμ μ+Δ Δ =− , the term in parentheses must be ( )qO h , where q is the 

global order of the tandem method. Since ( ) ( )2 1
1

m
p O hμε +

+ =  in the RKrGLm method, we 

require 2 1q m> +  in order for 

 ( ) ( ) ( ), ,
1

1 , 1,p t i i p i p t p t p

m

i

w h C f x w wμ μ μ μ με+ +
=

+ ++ − ≈∑  (3.4) 

to be a good (and asymptotically ( )0h →  correct) estimate for the local error in RKrGLm. 
The first two terms on the LHS of (3.4) arise from RKrGLm with the tandem solution as 
input, while ( )1 ,p tw μ+  is the tandem solution at ( )1 px μ+ . 
The implication, then, is that the tandem method must have a global order of at least 
2 2m + , which implies 2q r> + , since we already have 1 2r m+ =  in RKrGLm. We 
acknowledge that our choice of q differs from conventional wisdom (which would choose 

1q r> +  so that the local order of the tandem method is one greater than the RK local 
order), but it is clear from (3.3) that the propagation of the tandem solution requires the 
global order of the tandem method to be greater than the order of ( )1 pμε + . Of course, at the 
RK nodes the local order is 1r + , so the tandem method with global order 2q r> +  is more 
than suitable at these nodes. 

3.2 The error control algorithm 
We describe the error control algorithm on the first subinterval 1 0[ ( ), ]pH x a x= =  (see Figure 
1). The same procedure is then repeated on subsequent subintervals. 
Solutions 1,rw  and 1,qw  are obtained at 1x  using RKr and RKq, respectively. We assume 

 1
1, 1 1 0 1, 1,

r
r r qw y L h w w+− = −≈  (3.5) 

where 0 1 0h x x≡ −  and 1L  is a vector of local error coefficients (we will discuss the choice of 
a value for 0h  later). The exponent of 1r +  indicates the order of the local error in RKr. We 
find the maximum value of 

 1, , 1, ,1, , 1,

1, 1, ,
    1, ,r i q ir i i

i q i

w ww y
i d

y w
−−

≈ = …  (3.6) 
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where the index i refers to the components of the indicated vectors (so 1, ,r iw  is the ith 
component of 1,rw , etc). Call this maximum 1M  and say it occurs for i k= . Hence, 

 1, , 1, ,
1

1, ,

r k q k

q k

w w
M

w
−

=  (3.7) 

is the largest relative error in the components of 1,rw . Note that k may vary from node to 
node, but at any particular node we will always intend for k to denote the maximum value 
of (3.6). We now demand that 

 1 1, , 1, , 1, ,      R r k q k R q kM w w wδ δ≤ ⇒ − ≤  (3.8) 

where Rδ  is a user-defined relative tolerance. If this inequality is violated we find a new 
stepsize *

0h  such that 

 ( )
1

1 11, ,* *
0 1, 0 1, ,

1,
0.9         

r rR q k
k R q k

k

w
h L h w

L

δ
δ

+ +⎛ ⎞ ⎛ ⎞⎜ ⎟= ⇒ <⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (3.9) 

where 1,kL  is the kth component of 1L , and then we find new solutions 1,rw  and 1,qw  
using *

0h  ( 1L  is determined from (3.5)). The factor 0.9 in (3.9) is a safety factor allowing for 
the fact that 1,qw  is not truly exact. To cater for the possibility that any component of 1,qw  
is close to zero we actually demand 

 { }1, , 1, , 1, ,max ,r k q k A R q kw w wδ δ− ≤  (3.10) 

 

where Aδ  is a user-defined absolute tolerance. We then set *
1 0h h=  and proceed to the node 

2x , where the error control process is repeated, and similarly for 3x  up to mx . The process 
of recalculating a solution using a new stepsize is known as a step rejection. 
In the event that the condition in (3.10) is satisfied, we still calculate a new stepsize *

0h  
(which would now be larger than 0h ) and set *

1 0h h= , on the assumption that if *
0h  satisfies 

(3.10) at 1x , then it will do so at 2x  as well (however, we also place an upper limit on *
0h  of 

02h , although the choice of the factor two here is somewhat arbitrary). In the worst-case 
scenario we would find that 1h  is too large and a new, smaller value *

1h  must be used. The 
exception occurs when 1, , 1, , 0r k q kw w− = . In this case we simply set 1 02h h=  and proceed 
to 2x . 
The above is nothing more than well-known local relative error control in an explicit RK 
method using local extrapolation. It is at the GL node px  that the algorithm deviates from 
the norm. A step-by-step description of the procedure at px  follows: 
1. Once error control at { }1 2, , , mx x x…  has been effected (which necessarily defines the 

positions of { }1 2, , , mx x x…  due to stepsize modifications that may have occurred), the 
location of px  must be determined such that the local relative error at px  is less than 

{ }, ,max ,A R p q kwδ δ , in which k has the meaning discussed earlier. 
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2. To this end, we utilize the map (2.8), demanding that ( )0x u=  corresponds to 1−  on the 

interval 1,1−⎡ ⎤⎣ ⎦ , and mx  corresponds to the largest root mx�  of the mth-degree Legendre 

polynomial in 1,1−⎡ ⎤⎣ ⎦ . This allows ( )px v=  to be found, where px  corresponds to 1 on 

1,1−⎡ ⎤⎣ ⎦ , and so new nodes { }* * *
1 2 1, , , mx x x −…  can be determined such that 

{ }* * *
1 2 1, , , ,m mx x x x−…  are consistent with the GL quadrature nodes on 0 , px x⎡ ⎤

⎣ ⎦ . 

3. We wish to perform GL quadrature, using the nodes { }* * *
1 2 1, , , ,m mx x x x−… , on 0 , px x⎡ ⎤

⎣ ⎦ , 

but we do not have the approximate solutions { }* *
1, 1,, ,q m qw w −…  at { }* * *

1 2 1, , , mx x x −… . 

4. Hence, we construct the Hermite interpolating polynomial ( )PH x  on 0 , mx x⎡ ⎤⎣ ⎦  using 

the original nodes { }1 2, , , mx x x…  and the solutions that have been obtained at these 

nodes; of course, the derivative of ( )y x  at these nodes is given by ( ),f x y . Note that a 
Hermite polynomial must be constructed for each of the s components of the system, so 
if 1d > , ( )PH x  is actually a 1d×  vector of Hermite polynomials. 

5. We use the qth-order solutions that are available, so that we expect the approximation 

error in each ( )PH x  to be ( )qO h , as shown in (2.4) and (2.17). 

6. The solutions { }* *
1, 1,, ,q m qw w −…  at { }* * *

1 2 1, , , mx x x −…  are then obtained from 

( ) ( ){ }* *
1 1, ,P P mH x H x −… . 

7. GL quadrature then gives pw  with local error ( )2 1mO h + , as per (2.12). 

8. The tandem method RKq is used to find ,p qw , and ,p p qw w−  is then used for error 

control: 

a.  we know that the local error in pw  is ( )2 1mO h + , where h here is the average node 

separation on 0 , px x⎡ ⎤
⎣ ⎦ ; 

b. if the local error is too large then a new average node separation *h  is determined; 
using *h , a new position for px , denoted *

px , is found from * *
0px x ph= + ; 

c. if *
p mx x> , we redefine the nodes { }* * *

1 2 1, , , ,m mx x x x−… , find qth-order solutions at 

these new nodes using ( )PH x , and then find solutions at *
px  using GL quadrature 

and RKq; 
d. if *

p mx x≤ , we reject the GL step since there is now no point in finding a solution at 
*
px . 

9. After all this, the node *
px  or mx  (if *

p mx x≤ ) defines the endpoint of the subinterval 
1H ; the stepsize h is set equal to the largest separation of the nodes on 1H , and the 
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entire error control procedure is implemented on the next subinterval 2H . Note also 
that it is the qth-order solution at the endpoint of 1H  that is propagated in the RK 
solution at the next node. 

3.3 Initial stepsize 
To find a stepsize 0h  to begin the calculation process, we assume that the local error 
coefficient 1, 1kL =  and then find 0h  from 

 { }( )
1

1
0 0,max , r

A R kh yδ δ +=  (3.11) 

Solutions obtained with RKr and RKq using this stepsize then enable a new, possibly larger, 
0h  to be determined, and it is this new 0h  that is used to find the solutions 1,rw  and 1,qw  

at the node 1x . 

3.4 Final node 
We keep track of the nodes that evolve from the stepsize adjustments, until the end of the 
interval of integration b has been exceeded. We then backtrack to the node on ,a b⎡ ⎤⎣ ⎦  closest 
to b (call it 1fx − ), determine the stepsize 1 1f fh b x− −≡ − , and then find ,b rw  and ,b qw , the 
numerical solutions at b using RKr and RKq, with 1fh − , 1fx −  and 1,f qw −  as input for both 
RKr and RKq. This completes the error control procedure. 

4. Comments on embedded RK methods and continuous extensions 
Our intention has been to develop an effective local error control algorithm for RKrGLm, 
and we believe that the above-mentioned algorithm achieves this objective. Moreover, the 
algorithm is general in the choice of RKr and RKq. These two methods could be entirely 
independent of each other, or they could constitute an embedded pair, as in RK(r,q). This 
latter choice would require fewer stage evaluations at each RK node, and so would be more 
efficient than if RKr and RKq were independent. Nevertheless, the use of an embedded pair 
is not necessary for the proper functioning of our error control algorithm. 
The option of constructing ( )PH x  using the nodes 1 2 1{ , , , }m p p px x x x− −= …  for error control 
at 2px  (as opposed to using 2 1{ , , }p px x −… ) is worth considering. Such a polynomial, 
together with the Hermite polynomial constructed on 0 1{ , , , }mx x x… , forms a piecewise 
continuous approximation to ( )y x  on 0 2 1[ , ]px x − . Of course, this process is repeated at the 
nodes 2 2 1 3 1{ , , , }p p px x x+ −… , and so on. In this way the Hermite polynomials, which must be 
constructed out of necessity for error control purposes, become a piecewise continuous (and 
smooth) extension of the approximate discrete solution. Such an extension is not constructed 
a posteriori; rather, it is constructed on each subinterval iH  as the RKrGLm algorithm 
proceeds, and so may be used for event trapping. 

5. Numerical examples 
We will use RK5GL3 to demonstrate the error control algorithm. In RK5GL3 we have 

5, 3r m= =  so that the tandem method must be an eighth-order RK method, which we 
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denote RK8. The RK5 method in RK5GL3 is due to Fehlberg (Hairer et al., 2000), as is RK8 
(Hairer et al., 2000; Butcher, 2003). 
By way of example, we solve 

 2
2

1' 2
1

y y
x

= −
+

 (5.1) 

on 0,5⎡ ⎤⎣ ⎦  with ( )0 0y = , and 

 ' 1
4 20
y yy ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (5.2) 

on 0,30⎡ ⎤⎣ ⎦  with ( )0 1y = . The first of these has a unimodal solution on the indicated interval, 
and we will refer to it as IVP1. The second problem is one of the test problems used by Hull 
et al (Hull et al., 1972), and we will refer to it as IVP2. These problems have solutions 
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( )

2
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IVP1:     
1

20IVP2:     
1 19 x

xy x
x

y x
e−

=
+

=
+

 (5.3) 

In Table 1 we show the results of implementing our local error control algorithm in solving 
both test problems. The absolute tolerance Aδ  was always 1010− , except for IVP1 with 

1010Rδ
−= , for which 1210Aδ

−=  was used. 
 

IVP1      
Rδ  410−  610− 810− 1010−

RK step rejections 2 2 0 2 
GL step rejections 2 5 10 19 
nodes 12 20 37 79 
RKGL subintervals 4 6 12 25 
     
IVP2     

Rδ  410−  610− 810− 1010−

RK step rejections 2 2 4 5 
GL step rejections 2 3 5 9 
nodes 10 19 39 87 
RKGL subintervals 3 6 11 24 

Table 1. Performance data for error control algorithm applied to IVP1 and IVP2. 

In this table, RK step rejections is the number of times a smaller stepsize had to be determined 
at the RK nodes; GL step rejections is the number of times that 4 3x x∗ ≤ , as described in the 
previous section; nodes is the total number of nodes used on the interval of integration, 
including the initial node 0x ; and RKGL subintervals is the total number of subintervals iH  
used on the interval of integration. It is clear that as Rδ  is decreased so the number of nodes 
and RKGL subintervals increases (consistent with a decreasing stepsize), and so there is 
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more chance of step rejections. There are not many RK step rejections for either problem. 
When 1010Rδ

−=  the GL step rejections for IVP1 are 19 out a possible 25 (almost 80%), but 
for IVP2 the GL step rejections number only about 38%). In both cases the GL step rejections 
arise as a result of relatively large local error coefficients at the GL nodes, which necessarily 
lead to relatively small values of h, the average node separation, so that the situation *

4 3x x≤  
is quite likely to occur. 
Figures 2 and 3 show the RK5GL3 local error for IVP1 and IVP2. The curve labelled tolerance 
in each figure is R iyδ , which is the upper limit placed on the local error. 
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Fig. 2.  RKGL local error for IVP1, with 610Rδ

−= . 
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Fig. 3.  RKGL local error for IVP2, with 810Rδ
−= . 

In Figure 2 we have used 610Rδ
−= , and in Figure 3 we have used 810Rδ

−= . It is clear that 
in both cases the tolerance has been satisfied, and the error control algorithm has been 
successful. In Figure 4, for interest's sake, we show the stepsize variation as function of node 
index (#) for these two problems. 
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Fig. 4.  Stepsize h vs node index (#) for IVP1 and IVP2. 

To demonstrate error control in a system, we use RK5GL3 to solve 

 

( ) ( )

1 2
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 (5.4) 

on 0,3⎡ ⎤⎣ ⎦ . The solution to this system, denoted SYS1, is 
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= −

= +

 (5.5) 

The performance table for RK5GL3 local error control applied to this problem is shown in 
Table 2. 
 

SYS1      
Rδ  410−  610− 810− 1010−

RK step rejections 3 5 6 9 
GL step rejections 3 4 8 8 
nodes 10 25 52 115 
RKGL subintervals 3 7 15 31 

Table 2. Performance data for error control algorithm applied to SYS1. 

The performance is similar to that shown in Table 1. In all calculations reflected in Table 2, 
we have used 1210Aδ

−= . The error in the components y1 and y2 of SYS1 is shown in Figures 
5 and 6. 
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Fig. 5. Error in component y1 of SYS1. 
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Fig. 6. Error in component y2 of SYS1. 

7. Conclusion and scope for further research 
We have developed an effective algorithm for controlling the local relative error in RKrGLm, 
with 1r m+ ≤ . The algorithm utilizes a tandem RK method of order 3r + , at least. A few 
numerical examples have demonstrated the effectiveness of the error control procedure. 

7.1 Further research 
Although the algorithm is effective, it is somewhat inefficient, as evidenced by the large 
number of step rejections shown in the tables. Ways to improve efficiency might include : 
a. The use of an embedded RK pair, such as DOPRI853 (Dormand & Prince, 1980), to 

reduce the total number of RK stage evaluations, 
b. Using a high order RKGL method as the tandem method, since the RKGL methods 

were originally designed to improve RK efficiency, 
c. Error control per subinterval Hj, rather than per node, which might require 

reintegration on each subinterval, 
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d. Optimal stepsize adjustment, so that stepsizes that are smaller than necessary are not 
used. Smaller stepsizes implies more nodes, which implies greater computational effort. 
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1. Introduction 
The goal of current research is analysis of the effectiveness of application of semi-statistical 
method to the issues, which come up in computational and engineering practice. 
The main advantages of this method are the possibility to optimize nodes on the domain of 
integration (which makes the work of calculator a lot easier), and also to control the 
accuracy of computations with the help of sample variance. Besides this, to improve the 
accuracy you can calculate an average solution by statistically independent estimations, 
acquired at a small number of integration nodes. A less attractive feature of this method is a 
low rate of convergence, which is relevant to all statistic methods. 
The reason for this research has become a quite successful application of semi-statistical 
method to the test tasks [1, 2, 3]. The problem of plane lattice cascade flow with ideal 
incompressible fluid was chosen for simulation. With the help of semi-statistical method 
quite precise results have been achieved with the lattices, parameters of which were taken 
from engineering practice. These results were compared with the solutions from other 
computational methods. 
Attempts to accelerate the rate of convergence brought to modernization of the method 
(deleting of spikes in average sum). As a result, in all the considered issues solutions with 
satisfactory precision were received, adaptive algorithm of lattice optimization was 
“putting” the nodes on the domain of integration in accordance with the theoretical 
considerations. However, in some cases the solution made by the semi-statistical method 
turned out to be longer, than when using deterministic methods, which is caused by 
imperfection of software implementation and also with the necessity to look for the new 
ways to accelerate rate of convergence for semi-statistical method, in particular, 
optimization mechanism. 

2. Short scheme of semi-statical method 
With semi-statistical method integral equations of the following kind can be solved: 

 
S

x K x y y dy f x( ) ( , ) ( ) ( )ϕ λ ϕ− =∫  (1) 
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where S – smooth  (m-1)-dimensional surface in Rm,  
x S∈  , y S∈ , Rλ ∈ ,  
K - kernel of equation, f - known function, φ- unknown function. This algorithm is described 
in detail in [1]. Let us shortly take a look at the scheme of its application in general case. 
a. With the help of random number generator on the surface S.  N - number of 

independent points x1, x2, …xN   (vectors) is created with a arbitrary probability density 
p(x)  (random integration grid). 

b. These points are placed one by one in (1),  N  equations of the kind given below are 
received: 

 i i i
S

x K x y y dy f x( ) ( , ) ( ) ( )ϕ λ ϕ− =∫ , (i=1,2,…,N) (2) 

c. Integrals in (2) are substituted with the sums by the Monte-Carlo method [1, 2] 
and a system of linear algebraic equations appears 

 
N

i j
i j i

j j
j i

K x x
f x

N p x1

( , )
( )

1 ( )
λϕ ϕ

=
≠

− =
− ∑  (3) 

Here {φi}  (i=1,2,…,N) vector of unknown variables of the system (3). Having solved (3),   
φi take for approximated value  φ(xi) of the solution of integral equation (1) 
correspondingly. Approximated value φ(x) x S∀ ∈  is defined by “retracing” with the 
following algorithm:  
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i i

K x xx f x
N p x1
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≈ + ∑  (4) 

The bigger is N the more precisely integrals in (2) are approximated by the finite sum in (3), 
which means that we can suppose, that by incrementing value of N is possible to minimize 
calculating error of approximation of φi from (3)  and  φ(x)  from (4) in a way that 
computation precision requires. As the number of thrown points is sometimes not enough to 
reach predefined precision (this number can’t be enlarged infinitively as there is no 
possibility to solve to large equation systems), it is recommended to compute m times with 
N of thrown points, and then to average the results. This technique gives almost the same 
result if we would throw N×m points, because random points in different iterations are 
statistically independent. 
d. You can get an estimated value of optimal density of integration nodes by formula [1] 

by means of approximated solution φ(x). 
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Having generated the points with the density popt(y), received from (5) by approximated 
values φi, we can get a more precise solution of the equation (1). After that with this 
equation and by means of (5) we can calculate again (more precise) value of optimal density. 
The process can be repeated till the density stops changing. This is the main sense of 
adaptive algorithm of choosing an optimal density. 

3. Statement of the problem of blade cascade flow 
A plane lattice with the increment t (Fig. 1) is given, on which from the infinity under the 
angle β1 a potential flow of ideal fluid is leaking, coming out from a lattice under the angle 
β2. The task is to find an absolute value of a normed speed of the flow on the edging of the 
profiles. 
 

 
Fig. 1. Lattice of the profiles.  w  is a vector of the flow speed,  t is an increment of the lattice, 
β1 is and input angle of the flow, β2 is and output angle of the flow, L is a contour of the 
blade profile 
This task comes [5] to the solution of integral equation of the following kind: 

 ( ) ( ) ( )
L

w s K s l w l dl b s
L
1( ) ,⎛ ⎞+ − ⋅ =⎜ ⎟

⎝ ⎠∫ , (6) 

where w(s)– normed speed of the flow; 
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∂∂
= − ⋅ − ⋅ + +

∂ ∂
. 

Here s and l are values of the arch in different points of profile’s edges, arches are counted 
from the middle of exiting border of the profile in the positive direction (counterclockwise); 
x(l), y(l) are the coordinates of the profile’s point with the length of the arch l; L is a contour 
of the blade profile; L is the length of the contour of the blade profile. 

The direction of the unit tangent vector yx
s s

, ∂∂⎧ ⎫
⎨ ⎬
∂ ∂⎩ ⎭

 is chosen in a way that the tracking of the 

contour would be made counterclockwise. As opposed to [5], in this research front side of 
the lattice is orientated not along the abscises axis, but along the ordinate axis. Besides that, 
in [5] the speed is normed so that the flow expense of the fluid on the output would be 
unitary, and in this research the speed is normed so that the absolute value of speed vector 
on the outcome of the lattice would be unitary. This is achieved by multiplication of the 
speed, received after solving equations (1) and sin(β2). Exactly the second norm rate setting 
is applied in the computational program of the Ural Polytechnic Institute (UPI),  where the 
computations were made with the method of rectangles with the optimal setting of the 
integration nodes [2, 6] The solutions, received in this program, have been chosen for the 
comparison in this research. 

4. Scheme of application of semi-statical method to the problem of blade 
cascade flow 
4.1 Main formulas  
In this task contour L acts as a surface S, and an integral equation (6) with an unknown 
function w(s) is solved. If by wk(s) we define an average solution after k iterations, and by 
Wk(s) - value received on the integration with the number k after solving integral equation 
(1) on the N number of generated points, then we’ll have 

 ( ) ( )
k

k k
m

w s W s
N 1

1
=

= ⋅∑  (7) 

Selective standard deviation on the iteration with the number  k is computated with the 
formula: 

 ( ) ( )
k

k l
l

s D s
k2

1

1δ
=

= ⋅∑ ,  (8) 

where Dl–selective dispersion in the end of one iteration with the number l; 
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Here l1, l2, …,lN    are random points on the segment [0, 2π], thrown on the iteration number 
k, N- a number of points in each iteration (in given below computational calculations is 
similar for all iterations), s-point of observation. Values of w(lm) are received as a result of 
approximated solution of integral equation (1) at the interation number k- of the method. 
Computational practice has shown that deviation (calculating error) do not go behind the 
limits of standard deviation multiplied by three and, as usual, are within the boundaries of 
standard confidential (95%) interval. 
 

 
Fig. 2. Points, where the speed is calculated in computational examples – 50 equi-spaced 
points on the back and on the trough 
Analytic definition of the blade contour     
Integral equation (6) on the smooth contour L is of fredgolm type and has a unique solution 
[5]. Kernel of the equation (6) in case of two times differentiated contour can be considered 
continuous, as it has a removable singularity when s=l [5]. In this research, however, 
contour is defined by a spline curve, first derivative of which has jumps in the finite set of 
points. This circumstance leads to the jumps of the kernel in the break points of the first 
derivative, which doesn’t however influence the quality of computations. Besides that, the 
spline can always be approximated by a segment of Fourier row and the task can be solved 
on the infinitely derivated contour, as shown in [6]. 
Both approaches were tested, and the solutions made on a spline and on a segment of 
Fourier row were not considerably different. Semi-statical method was applied to the 
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equation (1) in accordance with the general scheme, which is described in detail in [3], 
without any additional preparation of regularization type. Values of the speed were 
calculated in 100 points of edging, 50 equal-spaced points on the trough and on the back 
correspondingly (Fig. 2). After that they were multiplied by sin(β2), the result was compared 
to the solution, received by means of method of rectangles at the same contour. Both results 
were compared that to the one given by the UPI program. In the UPI program the contour is 
defined a little bit different, which causes insignificant divergences, which can be seen of the 
diagrams in the section of the results of computational modeling. 

4.2 Computation algorithm and optimization.     
The calculating was made iteratively. On each iteration a special number of random points 
on the segment [0, 2π] was generated with the density, which was calculated by the results 
of previous iterations (adaptive algorithm). On the first iterations points were generated 
with uniform density on the segment [0, 2π], which means approximately uniform 
distribution of the points on the contour of the blade, the results were defining more 
precisely by iterations, and approximated solution after iteration number i was considered 
to be arithmetic average of the solutions, received during previous iterations. 
With the help of this approximated solution optimal density was calculated, using the 
method, described in [1]. Here algorithm is more economical, than described in [1], as it uses 
a more precise approximation to the right decision. As the computational practice has 
proved, on the strongly stretched contours on some iterations very strong spikes are 
possible, which are not smoothed by approximation even with the big number of iterations. 
However, it turned out that if the solution is very imprecise, than selective dispersions are 
also big in the check points, which are calculated during the work of the program. 
We can introduce a constraint which will trace summands with a very big dispersion. In the 
current research the program is composed in a way that approximation is made not on all 
iterations, but only in those where relevant computational error, defined by the selective 
dispersion, is not bigger that 100 percent. Other solutions received on other iterations 
(usually not more than one percent from total number with the exclusion of the points close 
to edgings), are considered as spikes and are not included into the approximated finite sum. 
In case of much stretched working blade this improvement gives an undoubted advantage 
in the quality of computations.  
With the help of semi-statistical method values of the speed were calculated in 150 points, 
distributed on the contour of the blade with an equal increment defined by the parameter u 
(which means practically equal increment on the arch length), and the values of the speed in 
checkpoints (which are distributed in the contour not evenly) were calculated with the help 
of interpolation. Selective dispersion is used as an index of precision of current 
approximation. It turned out that computer spends the most of time to calculating values of 
the kernel in the generated points, that’s why the issue of decreasing number of generated 
points but saving precision of computation at the same time is important. In semi-statistical 
methods this can be achieved by optimization of the net of integration. 

5. Results of computational modeling 
To continue, let us introduce some denominations. On all the figures from 3 to 5 variable m 
stands for the number of point of observation, wm is the speed in the point number m, 
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calculated by means of semi-statistical method, w1m is the speed in point number m, 
calculated by means of method of rectangles, w2m is the speed in point number m, calculated 
by means of UPI program, │wm−w1m│is absolute deviation (calculation error) of calculation 
of the speed in point number m by means of semi-statistical method in comparison to the 
method of rectangles. Phrase “speed, calculated by means of semi-statistical method 
(4*400)” will mean that for calculation 4 iterations of semi-statistical method were made, 
with 400 points generated in every iteration. 
Next (Fig. 3 – Fig. 5) the results of computational modeling are shown.  
 

 
Fig. 3. Results of computational modeling on blade: 

a) Speed graph, calculated by means of method of rectangles and speed graph 
calculated by means of UPI program 
b) Speed graph, calculated by means of semi-statistical method (150*400) and speed 
graph, calculated by means of method of rectangles 
c) Absolute deviation graph of calculation of the speed by means of semi- statistical 
method (150*400) in comparison to the method of rectangles 

From given above examples (Fig.3) it is evident, that semi-statistical method commutated 
the speed with a good precision in all the points of contour, except for some points in the 
edgings, which are not important for practical issues. 

6. Analysis of effectiveness of density adaptation 
It was very interesting to investigate, how adaptive algorithm works when choosing optimal 
density. It appears that the points become denser on the edgings and on the back, which 
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means exactly the same places of profile, where the quality of computation is very bad 
during first iterations.  
This is illustrated by the Fig. 4. 
 

 
Fig. 4. 

a) Histogram of optimal density after 2 iterations on the blade; 
b) Speed graph calculated of the speed by means of semi-statistical method (2 
iterations 400 points each) and speed graph calculated by means of method of 
rectangles. 
c) With the symbol “× ” borders of intervals from histogram on the Fig.3 a) are 
marked; numbers 1,2,…10 are the numbers of these intervals. Bold points are 
checkpoints (marked every 10 points starting with first); numbers 1,11,21,…92 – 
numbers of these points 

On the Fig. 5 the results of computations on blade are shown, received after five iterations 
using adaptive algorithm for choice of optimal density and the results, received after five 
iterations with even distribution of generated points. It is easy to see that with the same 
number of generated points the results of adaptive algorithm are more precise. 
From the Fig. 5 it is clear that using adaptive algorithm makes standard mean-square 
distance lower in shorter period, that with even distribution. It allows reducing the number 
of thrown points which is necessary to achieve predefined precision. 
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Fig. 5. Results of computational modeling on blade: 

a) Speed graph, calculated by means of semi-statical method (5*400) and speed graph, 
with the use of adaptive algorithm, calculated by means of method of rectangles 
b) Speed graph, calculated by means of semi-statical method (5*400) and speed graph, 
without the use of adaptive algorithm, calculated by means of method of rectangles 

7. Conclusions 
To sum up the results of computational modeling, following conclusions can be drawn: 
a. By means of semi-statical method quite precise results can be achieved solving the 

problem of potential lattice cascade flow. 
b. In accordance with theoretical computations adaptive algorithm works for optimization 

of nodes on the domain of integration. It fastens convergence, reducing selective 
dispersion. 

c. However in strongly-stretched areas convergence rate is not very fast. The problem of 
fastening the rate of convergence, which is necessary to make semi-statical method 
successive in case of strongly-stretched areas and make it competitive to deterministic 
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methods in calculation speed, is still important. One of the ways to solve this problem 
is, evidently, improvement of the adaptive algorithm of optimization. 
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1. Introduction  
Existing commercial nuclear power plants (NPPs) have obtained excellent and outstanding 
performance records over the past decade. Nevertheless, even though the high safety level 
already achieved could be maintained without investing new exhaustive research efforts, 
anticipation of further tighter requirements for even higher standard levels should be made, 
which implies preparedness for new research. Accordingly, in the near and intermediate 
future, research will conceivably focus on new emerging trends as a result of further desire 
to reduce the current uncertainties for better economics and improved safety of the current 
reactors and requirements of the new reactor designs.  
As it has been usual in the past, the research will continue serving the short-term needs of 
the end-users (regulatory bodies, utilities and vendors) which mainly focus on both 
emerging and pending issues, but it will also contribute to addressing the long-term safety 
needs or the questions arising from the changes in plant designs and operating modes, and 
to preparing the emergence of new concepts. The sensibility of the stakeholders for a 
continuous enhancement of safety, mainly when dealing with the advanced and innovative 
concepts, will entail the development of reactor concepts able to intrinsically prevent severe 
accidents from occurring, and, should that not be possible, reduce either their probability or 
the level of expected consequences on the environment and the populations. That should be 
done in first priority by design, and not necessarily by improvements or the addition of 
safety systems.  
Such anticipatory research will involve new generation simulation tools and innovative 
experimental programs, to be carried out both in the research facilities currently in 
operation throughout the world and in new dedicated mock-ups supported by suitable 
laboratory infrastructures. Enhanced or complementary data banks to be generated and 
further investigations on human and organizational factors will be the primary research 
activities, from which the end users will definitely profit.  
In addition, significant efforts should be devoted to get the maximum benefit from the 
computation tools already available and start preparing their improvements as well by 
taking advantage from the development and availability of new computation techniques, 
such as advanced numerical simulation. 
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Their applicability should be extended to all types of current and future water cooled 
reactors and validated under the conditions of new designs. Such an "extrapolation" of the 
already gathered knowledge in the field of Light Water Reactors (LWRs) would maximize 
benefit from the work already done and could save some major efforts in the future.  

2. Numerical simulation in the current nuclear safety context 
In a context of a worldwide renaissance of nuclear energy, the most important pending 
milestones for the Generation II reactors are the periodic safety review (every ten years in 
France), which include safety reassessments, as well as the demand for long-term operation 
of the plants - far beyond their original design lifetime -. Additionally, the safety assessment 
for Generation III and III+ reactors under construction must be carried out and the safety 
demonstration for future highly innovative Generation IV (GEN IV) reactors accurately 
prepared. 
On the other hand, over the past decade, considerable progress has been made in the 
domain of numerical simulation in many fields of endeavor.  
In this challenging context, the following two main questions are raised: 
• Could the safety demonstration of current and future power plants benefit from the 

progress currently made in numerical simulation? 
• Does the safety demonstration of GEN IV concepts require a breakthrough in terms of 

numerical simulation? 
This chapter is intended to address both questions and provide with preliminary elements 
of answer. In its first part, through some selected examples, it illustrates the development 
perspectives for the computation tools that are currently adopted in the safety 
demonstration of nuclear power plants, and wonders about the future contribution to these 
tools of the progress made in advanced numerical simulation. In its second part, for a 
selected sample of GEN IV concepts, it investigates the directions the modeling efforts 
(including advanced simulation ones) could and/or should be orientated towards. 
At least two ways for progress (which are not mutually exclusive) are identified in the 
development of computation tools already adopted or to be adopted for current reactor 
concept design and safety studies: 
- The first one relies on a progressive sophistication of the physical models, the codes 

adopted for Loss Of Coolant Accidents (LOCA) transient studies providing a wide field 
of application. 

- The second one holds on advanced detailed modeling. It includes: 
• The investigation of phenomena at a physical scale significantly smaller than for 

the current generation of safety codes. It may contribute, through the so-called 
multi-scale approaches, to improving the macroscopic models (as it is presently the 
case for the fuel), and/or, whenever possible, to replacing them. A pertinent 
example in the field of severe accidents is the current use of Computational Fluid 
Dynamics (CFD) codes to investigate the risk of hydrogen explosion in the 
containment. 

• The coupling of different physical fields. Pertinent examples can be found in the 
domain of reactivity accidents, including dilution accidents: for these transients, 
such as un-borated water injection at shutdown, more accurate methodologies are 
now under development, they allow coupling different fields contributing to the 
power excursion (neutronics, fuel thermal-mechanical and thermal-hydraulics).  



Advanced Numerical Simulation for the Safety Demonstration of Nuclear Power Plants 

 

503 

As far as the GEN IV concepts are concerned, today in France only 3 out of the 6 concepts 
proposed by the GEN IV International Forum (GIF) are currently considered:  
• The Sodium Fast Reactor (SFR) that benefits from significant industrial and operating 

experience in several countries, including France;  
• The Gas Fast Reactor (GFR) that possesses a very high potential in terms of uranium 

sparing, incineration, transmutation and heat production; 
• The High or Very High Temperature Reactor (HTR/VHTR) that is the most likely 

concept to be inherently safe and multi-use and benefits from a first industrial 
experience in several countries. 

Each of these concepts, according to its physical features and operating mode, engenders 
specific needs in terms of development and assessment of computation tools. Nevertheless, 
several major trends can be mentioned as relevant to the safety demonstration and widely 
independent from the design. At the present and first stage of IRSN’s investigation, 5 main 
issues have been pointed out: the consistence and robustness of neutronics design, the 
demonstration of the actual capacity to passively and safely evacuate the residual power,  
the fuel integrity, the quantification of activated fission products that might be released to 
the environment in case of accidental situations, the inquiry upon the significant reduction 
of a likelihood of severe core damage, particularly the prevention of the “design basis” 
conditions from degenerating into severe accidents.  
All of them could benefit from the current progress in advanced simulation. The chapter 
accurately investigates the potential contribution of progress in numerical simulation, and 
more specifically the advanced one, to the above-mentioned safety issues.  

3. Current practice of advanced numerical simulation in nuclear safety 
Before addressing the numerical simulation for the safety demonstration of GEN IV 
concepts, it is worthwhile presenting a quick overview of the present status concerning the 
use of advanced numerical simulation techniques in current nuclear safety analysis. This 
status has already been discussed and elaborated in specific seminars and workshops,  e.g. 
the meeting organized by OECD and IAEA (OECD IAEA, 2002) for CFD, as well as in a 
previous IRSN’s paper (Livolant, et al. 2003). 
In the following, some LWRs safety related topics are addressed such as: Primary circuit 
thermal-hydraulics and LOCA, Fuel behavior in Design Basis Accident (DBA), Coupled 
phenomena in DBA, Severe accidents (SA), and Use of CFD codes in other accidents.  

3.1 Primary circuit thermal-hydraulics and Loss Of Coolant Accidents (LOCA)  
A key safety problem in LWRs is guaranteeing the coolability of the fuel in any normal 
operation, incidental and accidental condition, including the worst case of a pipe rupture. 
The development of codes able to treat the problem with some realism started in the early 
70s. At that time, the main challenge was calculating the behavior of a steam-water flow in a 
hot pressurized circuit, with a breach into the containment building.  
Today, various code systems are internationally available. Their physical models are based 
on experimentally-supported reasonable assumptions on the steam and water flows as well 
as their mutual interactions. The circuits are represented assembling together 1D pipe 
elements, 0D volumes, and, whenever possible, 3D components. In the past, intensive 
experimental programs to validate these codes have been carried out either on the system 
loops or on components mock-ups. As a consequence, a sufficient and convenient 



 Numerical Simulations - Applications, Examples and Theory 

 

504 

confidence level exists in their results, at least when they are used within their validation 
domain and by skilled users.  
The calculation results significantly improve the safety analysis and the probabilistic risk 
analysis. The existing codes are able to offer a satisfactory answer for the reactors in 
operation and even for the next generation of evolutionary water reactors (GEN-III). The 
lasting requirements for improvement mainly concern their robustness, reliability and user 
friendliness. 
However, the confidence in the results of these codes widely relies on their experimental 
validation. Extrapolation to situations out of the validation domain may provide doubtful 
and sometimes even erroneous results. So, for both design and safety reasons, in presence of 
significant design and operation changes, it would be worth improving the existing 
modeling. An international consensus exists on the interest to keep maintaining an R&D 
activity aimed at achieving that objective.  
In the medium term (5 to 10 years), the two-fluid models are expected to improve with 
extension to fields like droplets, and incorporation of transport equations for the interfacial 
area, and the 3D modeling should be extended as far as possible. This strategy is likely to 
sustain a process of progressive improvement, without any significant breakthrough. 
Meanwhile, the increasing computer efficiency should allow using refined meshing and 
capturing smaller scale phenomena, provided that convenient models are made available. In 
this regard, it is worth recalling that the study of non-azimuthal cold shocks on reactor 
vessel of the first generation French Pressurized Water Reactors (PWR) (900 MWe) has been 
performed by the French Utility (EDF - Electricité de France) with CFD codes.  Nevertheless, 
conventional system and component codes are likely to remain the basic tools for long, 
while benefiting from the development of the more refined approaches derived from CFD 
codes and Direct Numerical Simulation (DNS). 
CFD codes will allow zooming on specific zones of a circuit or may be used as a powerful 
investigation tool to derive new closure relationships for more macroscopic approaches, 
thereby reducing the need for expensive experimental programs. Coupling between CFD 
and system codes may also be an efficient way to improve the description of small-scale 
phenomena while maintaining computer costs and time consumption at reasonably low 
levels.  
Once the underway developments are available, the DNS codes will be adopted to search 
for a better understanding of small scale physical processes and derive new and more 
accurate models for averaged approaches.  
In conclusion, the strategy for preparing the next generation of thermal-hydraulic tools 
consists in improving the capabilities of system and component codes by developing new 
models while extending CFD codes capabilities to all flow regimes and improving DNS 
techniques. Nevertheless, the concern for the uncertainties in CFD simulations is still to be 
addressed. 

3.2 Fuel behavior in DBA 
A major safety concern in LWRs is the possible failure of core fuel rods during transients, 
such as a LOCA or a RIA (Reactivity Initiated Accident, which can be initiated for example 
by an uncontrolled control rod withdrawal). Such failures can modify the core geometry and 
reduce its coolability; they can also engender the ejection of fuel fragments (and 
consequently radioactivity) in the reactor primary circuit. During the 60s and in the early 
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70s, several experimental programs were carried out, which provided information about 
fuel rods behavior. The results were used to develop and assess RIA and LOCA fuel codes. 
At that time, the fuel was pure UOX (Uranium Oxide) and the burn-up was limited to 
40GWd/kg; data for low burn-up had been included in data bases for code assessment, and 
it was believed that some extrapolation in burn-up was acceptable. By the mid-1980s, 
however, significant changes in the pellet microstructure and clad mechanical properties 
were observed in experiments carried out with fuel at higher burn-up and MOX (Mixed 
Oxide, i.e. containing both Uranium Oxide and Plutonium Oxide).  
Those observations provided evidence that the fuel thermal-mechanical behavior is strongly 
dependent on the fuel type (UOX, MOX, etc.) and the cladding material, and that 
extrapolation was not always appropriate. Thus, a large number of experimental and 
analytical programs were initiated to check the fuel behavior and model the effects of the 
higher burn-up of fuel elements proposed by fuel designers, mainly under RIA and LOCA 
conditions. 
Fuel codes for RIA analysis include models, correlations, and properties for cladding plastic 
stress-strain behavior at high temperatures, effects of annealing, behavior of oxides and 
hydrides during temperature ramps, phase changes, and large cladding deformations such 
as ballooning. The mechanical description of cladding should preferentially be 2-
dimensional, but models of lower dimension are used as well; moreover, it generally 
includes a failure model. These codes also include fuel pellets thermal-mechanical models 
that may interact with fission gas models.  
The mechanical models of pellets are generally mono-dimensional. Special care is to be paid 
to the modeling of the so-called pellet RIM-zone (i.e. the very external boundary of it where 
most of nuclear interactions currently occur) and the MOX due to its heterogeneous nature 
(the MOX grains – of quite large size - are dispersed in a UOX very thin matrix).  
Fuel codes for LOCA analysis usually adopt built-in heat transfer correlations (cladding to 
coolant), a constant or dynamic gap conductance model, and average values for thermal 
conductivity and heat capacity. As regards clad thermal-mechanical aspects, these codes 
typically describe ballooning and include burst and oxidation models. Although simpler in 
the practice, the LOCA fuel models take into account high burn-up effects and thermal-
mechanical characteristics of different types of fuel elements. New specific developments 
are underway to treat fuel relocation, an important phenomenon recently highlighted in the 
framework of the OECD-Halden program (OECD/NEA, 2003).  
DRACCAR is currently developed at IRSN for the simulation of the thermal-mechanical 
behavior of a rod bundle under LOCA conditions, with a 3D multi-rod description (Figure 
1). The objectives are to simulate mechanical and thermal interactions between rods, to 
evaluate the blockage ratio, as well as the structure embrittlement and the coolability of the 
fuel assembly. The reflooding phase of a fuel rod assembly during a LOCA transient can be 
calculated when DRACCAR is coupled with a suitable thermal-hydraulics code. The models 
are applicable to any kind of fuel (UO2, MOX …), cladding (Zircaloy 4, Zirlo, M5 …), core 
loading and management (burn-up …) and types of water-cooled reactor (PWR, Boiling 
Water Reactor or BWR, …). It is also applicable to fuel handling or spent fuel pool draining 
accidents. A version for GEN IV SFR is planned. The flexibility of the DRACCAR code 
allows to model from one single rod to a fuel assembly. Each structure is in mechanical and 
thermal interaction with others, including contacts between fuel rods and eventually with 
guide tubes. Each rod has a 3D description and is coupled with a sub-channel thermal-
hydraulics. The code uses 3D non structured meshing to describe the fuel assembly.  
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Fig. 1. Bundle deformation obtained during Phebus LOCA tests (run 215), 5 x 5 rod bundle; 
experimental results and DRACCAR simulation 

Even if a limited number of model improvements are still judged necessary in the fuel 
codes, it is widely agreed that these developments could be achieved without any major 
breakthrough; however, it is to be mentioned that in order to improve the physical basis of 
models and consequently to give some confidence in extrapolations (beyond the domain 
covered by experimental results) the fuel models are more and more often backed up by the 
above-mentioned multi-scale approach. 

 

 
Fig. 2. The SCANAIR computation principle 
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A typical application of such an approach can be found in the work carried out at IRSN to 
improve the modeling of the Zircaloy clad behavior. This entails modeling cladding 
behavior on a micro-scale that represents the structures composing the cladding. In this 
case, the characteristic size is set by the thickness of the zirconium hydride disks (form in 
which the hydrogen diffused in the cladding precipitates). As the structure is subdivided 
into elementary units, behavior laws have to be established for each one of them. 
Homogenization methods were used to determine the current volume behavior of the 
material.  
These improvements were undertaken to develop an anisotropic elastoplastic behavior 
model for hydride Zircaloy that may be used at macro-scale in current RIA fuel codes such 
as SCANAIR developed by IRSN in the framework of a collaboration with EDF, and 
globally assessed on CABRI REP-Na (Papin et al., 2007) and NSRR (Suzuki et al., 2006) in-
pile or integral experiments. 
SCANAIR is a thermo-mechanical code simulating a fuel rod surrounded by coolant that 
undergoes an RIA (Figure 2). The SCANAIR code couples three modules: the first one 
calculates fission gas migration and release into the rod gap, the second one deals with 
mechanics (it calculates the stresses and strains in the fuel and in the cladding) and the third 
one evaluates the fuel, cladding and coolant temperatures. 
The use of multi-scale approaches should increase the confidence in the extrapolations from 
experimental conditions to reactor ones. It should also contribute to optimizing the 
definition of the experimental programs and decreasing their global cost; nevertheless, the 
necessity of code assessment against so-called “integral” experiments (i.e. experiments 
involving all the major phenomena that could occur in reactor conditions) will remain to 
verify the consistency of the different models (in particular models that have been 
independently derived by multi-scale approaches) and check that there is no important 
omission. 
 

 
Fig. 3. Principle of the multiscale cohesive-volumetric approach for the study of the overall 
elastoplastic and damageable behavior of a functionally graded material 
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In the recent years, a new approach has been developed to predict the ductile fracture of 
heterogeneous materials during transient loadings. This approach is based on the so-called 
cohesive volumetric finite element (CVFE) method in the periodic homogenization 
framework (Perales et al., 2008). The coupling of this numerical approach to some analytical 
homogenization models allows predicting the behavior of heterogeneous materials from 
elasticity to ductile damage up to failure.  
The framework of this coupling has been applied to a material from the nuclear industry: 
the highly irradiated Zircaloy cladding. This application illustrates a coupled approach 
where the overall hardening behavior of a composite material (as elastoplasticity) is 
incorporated into the bulk behavior and the overall softening behavior (as damage and 
fracture) is incorporated into some cohesive zone models. 
The highly irradiated Zircaloy cladding is a functionally graded material composed of a 
metal matrix and aligned brittle hydride inclusions (Figure 3). The overall elastoplastic and 
damageable behavior of this material is obtained using the CVFE method where both the 
mean volumetric and cohesive properties arise from homogenization techniques at the 
micro-scale. The volumetric hardening behavior is obtained adopting a homogenization 
model based on a variational approach, and the cohesive softening behavior comes from a 
periodic CVFE modeling (Perales et al., 2006). 

3.3 Coupled phenomena in DBA 
Compliance with safety criteria in DBA and, more generally, in any operation, incidental 
and accidental circumstance of the reactor life requires the development of neutronics, fuel 
thermal-mechanical and thermal-hydraulics models. In principle, these three fields should 
be accounted for simultaneously because: 
• The neutron cross-sections depend on the fuel temperature and the moderator density; 
• The fuel temperature depends on the fuel element geometry, the neutronics power and 

the thermal exchange with the moderator fluid; 
• The thermal-hydraulics depends on the fuel element geometry, the “source term” 

corresponding to the power released by convection and by γ radiation. 
Up to now, due to the heaviness and complexity of computations, the methods adopted in 
the safety analysis have assumed these three fields as more or less decoupled. The major 
disadvantage of this assumption is the impossibility to accurately compute the pin-wise 
power distribution of the core. Thus, power peaking factors are adopted for design and 
safety analysis. Whereas they are evaluated in steady-state conditions, they are used for 
transient studies adding some corrections to ensure conservatism. 
Incorporating full three-dimensional (3D) models of the core in the system transient codes 
enables the interactions between the core behavior and the plant dynamics to be accounted 
for in a more consistent way. Recent progress in computer technology has been achieved in 
the development of coupled thermal-hydraulics, fuel thermo-mechanical behavior, neutron 
kinetics and system codes.  
Developments of several multi-physics code systems are currently underway, among which 
the NURESIM platform being developed in the frame of the 6th Framework R&D program of 
the European Commission and the HEMERA (Highly Evolutionary Methods for Extensive 
Reactor Analyses) coupled chain, developed jointly by IRSN and CEA (Figure 4). The 
HEMERA chain (Bruna et al., 2007) features are intended to allow performing more accurate 
calculations for the safety assessment of the thermal nuclear reactors in operation, in 
association with uncertainty and sensitivity studies and penalization techniques. 
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The HEMERA computation chain is a fully coupled 3D code system developed jointly by 
IRSN and CEA. It comprises the CRONOS neutronics code, the FLICA thermal-hydraulics 
code and the CATHARE system code. The ISAS supervisor manages the coupling. The 
nuclear data (neutron cross-sections) are provided to HEMERA by the APOLLO-2 code. 
HEMERA allows performing coupled (neutronics/thermal-hydraulics) calculations.  
 

 
Fig. 4. The HEMERA computation chain  

Accident analyses should demonstrate compliance with safety criteria. As far as the 
simulation of transients is concerned, the traditional French approach compels adopting the 
most penalizing initiators, so that neutronics, thermal and thermal-hydraulics calculations 
have to be either externally or internally coupled. HEMERA provides this coupling 
internally through the multi-level and multi-dimensional models which have been 
implemented to account for neutronics, core thermal-hydraulics, fuel thermal analysis and 
system thermal-hydraulics phenomena with best estimate and/or conservative assumptions 
(Clergeau et al. 2010).   

3.4 Severe accidents 
Historically, for a long time the LOCA has been considered as the maximum credible 
accident in LWRs.  Accordingly, their main safety design features have been defined to 
prevent it or, at least, to limit its consequences, through keeping the core geometry coolable 
as long as possible, and strictly limiting the fission products release to the environment.  
However, since the 70s, and mainly as a consequence of the TMI2 accident, it was 
internationally agreed that it is necessary to account for accidental situations in which the 
core cooling cannot be guaranteed.  
Should it be the case, the loss of core coolability engenders a chained sequence of physical 
phenomena which can end up in core meltdown and the dispersion of contaminants into the 
environment and the ground. A typical sequence can be as follows: the fuel cladding is 
oxidized by the steam, which generates hydrogen in the containment; the cladding loses its 
integrity, and a large part of the fission products is released into the vessel and, through the 
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circuit and the breach, reaches  the containment; the cladding and the fuel lose their 
geometrical integrity, disaggregate and fall down to  a colder region  of the core, so that 
molten “corium” (mixture of core molten materials) is contained inside a solidified crucible; 
the crucible breaks and the corium falls down into  the vessel bottom; if no extra cooling is 
available after a time, the vessel bottom breaks and the corium falls down and spreads over 
the basemat of the containment; depending on the chemical, geometrical and thermal 
conditions, the corium can be either confined and cooled down in the containment, or 
erodes the basemat and flows down to the ground; the hydrogen in the containment could 
generate severe damage if its concentration is such that it can cause either detonation or fast 
deflagration (suitable devices which ignite it as soon as it expands can be added to prevent 
and mitigate such events); eventually, in case of loss of integrity of the containment, the 
fission products may be released to the environment, the rate of released radioactivity 
depending on all the physical-chemical processes that may affect the fission products in the 
reactor circuits and containment. 
All the phenomena involved in a severe accident scenario being very complex and quite 
coupled, a great difficulty for modeling arises from the lack of precise knowledge of the 
laws governing them, notably the dynamics of the great number of physical-chemical 
reactions.  
Suitable integral codes have been developed in recent years to perform realistic studies on 
the accidental scenarios, also - at least partially - accounting for their probabilistic aspects. A 
typical example of such move is the ASTEC code (Van Dorsselaere  et al., March 2009), 
jointly developed by IRSN and GRS (Gesellschaft für Anlagen- und Reaktorsicherheit mbH), 
and assessed by 30 organizations in the framework of the SARNET Network of Excellence 
dedicated to Severe Accidents (Micaelli et al., 2005) and backed by the European 
Commission in the 6th and 7th Framework Programs. The code is now considered as the 
European reference for severe accident analysis.  
Such integral codes describe all the physical phenomena governing the reactor behavior, in 
space and time, from the core melting up to the possible release of contaminants to the 
environment, as well as the behavior of all safety systems and of the operators’ procedures 
(see the scheme of ASTEC code in Figure 5). They must be (relatively) fast running to enable 
sufficient number of simulations of different scenarios to be performed, accompanied by 
studies on the uncertainties and on potential cliff-effects. In most codes, the structure is 
modular enough in order to make easier the validation process, for instance applying only a 
limited set of modules on experiments devoted to a few physical phenomena (see Fig. 5 for 
the modular structure of the ASTEC code). As the integral code approaches emphasize the 
overall plant response, interactions and feedback between separate phenomena occurring at 
the same time play an important role: e.g. fluid flows, heat transfers, phase changes 
(melting, freezing, vaporization) and chemical reactions. Another important feature of such 
codes is that they gather very diverse scientific domains like thermal-hydraulics, chemistry, 
mechanics of solid structures, neutronics, etc.  
Each phenomenon is represented through simplified models, often empirically adjusted on 
experiments. These codes are globally assessed on integral tests such as those carried out 
within the PHEBUS FP programs (Clément et al., 2003). Some specific parts of the accident 
are addressed via the so-called mechanistic codes, which model the local equations more 
precisely, with a much refined geometrical description. Such codes calculate the behavior of 
both the core during the degradation process and the corium molten pool in the bottom of 
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the vessel and in the cavity, as well as the steam and hydrogen distribution in the reactor 
containment.  
 

 
Fig. 5. The ASTEC integral code for simulation of severe accidents   

The majority of these codes is still making strong approximations on the geometry of the 
core and its evolution during the degradation process, and remains very sensitive to the 
physical-chemical uncertainties, due to the large number of components in interaction and 
the very high temperature. Such insufficient  mastering of the uncertainties, which is at least 
partially due to the poor knowledge of the behavior and properties of the materials, does 
not encourage going through further development of very detailed models considering that 
the outcome of the development efforts should show up quite low.  
Nevertheless, selected efforts could be devoted to improving the computation features of the 
transient parts where the geometry-related effects are widely dominant on the physical 
uncertainties. In such situations, CFD codes can give interesting results, and in fact they are 
becoming more and more widely used in problems like the hydrogen repartition and 
combustion in the containment (TONUS code jointly developed by CEA and IRSN (Bielert 
et al., 2001)) or the corium pool behavior in the vessel bottom, or the corium spreading and 
solidification process out of the vessel (CROCO code developed by IRSN (Gastaldo et al., 
2006)).  
The multi-scale approach has tentatively been adopted at IRSN to investigate the physical 
phenomena in the regions where the solid particles form a porous bed of debris (Fichot et 
al., 2006) and where the molten materials build up and accumulate, forming a molten pool 
(Roux et al. 2006). The progression and growth of the molten pool is a major threat for the 
vessel wall and, therefore, an important source of concern for the safety experts. One of the 
most efficient ways to stop its growth is to re-flood it with water but this process involves 
complex steam and water flows through the porous debris bed. It also forms a solidification 
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front at the edges of the molten pool where coupled heat transfer and material transport 
engender major modeling difficulties which challenge the validity of simple models. 
The details of the processes (steam and water flow in porous debris and solidification of 
molten mixtures) should be studied numerically at a small scale; models suitable for 
implementation in industrial codes could then be derived thanks to a volume averaging 
method (Fichot et al., 2006; Roux et al., 2006). As previously mentioned in section 3.2, such 
an approach does not exempt from validating the codes against experiments that involve 
simultaneously all the phenomena contributing to the process to be modeled. For this 
reason, in the framework of SARNET, IRSN and partner organizations are building an 
experimental program that addresses the issue of debris bed quenching by water injection 
(Van Dorsselaere et al., October 2006). 

3.5 Use of CFD codes for other accident studies 
Some transients, even if not explicitly included in the set of severe accident initiators, may 
have important safety consequences and must therefore be studied very carefully. That is 
the case for the reactivity swing resulting from the injection of clear water into a core at 
shutdown for reloading. The core is under-critical in these conditions, due to the huge 
soluble boron poisoning of the water. The injection of clear water generates a RIA–type 
transient and the core can go back critical quite quickly (and, maybe, even prompt-critical, 
depending on the clear-water injection amount and location). Immediately, the power of the 
core begins to increase and it still does until the Doppler feedback is able to shut the reactor 
down. Then, the cooling-down can start a reactivity-driven oscillation.  
Past studies showed that such situations, due to operation and maintenance errors, may be 
quite likely and significantly contribute to the risk space. Operating procedures were 
modified to reduce the probability of such events, and probabilistic safety analyses were 
performed to evaluate their consequences. Nevertheless, they remain a major safety issue 
and have to be conveniently addressed through computation. 
A typical event of this kind is as follows: one of the loops of the reactor provides pure water 
and the other loops provide water with normal boron concentration level. The main 
modeling problem is to evaluate the map of boron concentration at the core entry, 
accounting for the fact that the flow entering into the vessel is highly turbulent, and there 
are many obstacles opposing the flow, such as tubes and plates in the vessel bottom. A 
neutron dynamics code can then calculate the core power distribution and evolution with 
time. Calculations of that kind are already performed with CFD computer codes. To gain 
full confidence and access to fully realistic results, they need improvements in turbulence 
models and geometrical modeling, which implies the use of high computing power.  
Other studies of operational transient adopt CFD techniques to complement the usual tools 
and obtain a more precise description of local and complex phenomena such as the flow 
stratification in pipes and tees, the cold plumes touching hot walls, the impinging jets with 
temperature differences and the pressurized thermal shocks. 

4. Advanced numerical simulation and safety demonstration of GEN IV 
concepts 
Specific needs in terms of development and assessment of advanced computation tools 
could show up for each GEN IV design, depending on its physical features and operating 
mode. Nevertheless, several trends can be pointed out as relevant to the safety 
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demonstration and widely independent from the design. They would claim a major effort of 
computer code development and assessment, which should impulse new experimental 
programs. 
As mentioned above, particular care is paid in this paper to three out of the six GEN IV 
concepts:  
• The SFR that can benefit from a significant experience in France, Great-Britain, Japan, 

Russia (and some other countries of the former USSR) and the USA, 
• The GFR that presents a very high potential in terms of uranium sparing, incineration, 

transmutation and heat production; however, even if the concept principles are not new 
in Europe or in the USA, no GFR has ever been built in the world,  

• The HTR/VHTR that can benefit from a first experience in Germany, Great-Britain, 
China, Japan and the USA. 

At the present stage of the investigation of the 3 above-mentioned concepts, five main issues 
have been retained by IRSN as major ones:  
• The consistence and robustness of neutronics design of such systems, the behavior of 

which is quite different from current PWRs and conventional experimental facilities, 
due to an increased coupling among neutron and temperature fields, the new design of 
the core, with heterogeneities, an advanced fuel technology, and a very different 
operation mode; 

• The demonstration of the actual capacity of such systems to passively and safely 
evacuate the residual power, in any circumstance; 

• The features of reactor fuel, with specific emphasis on its transient behavior, mainly as 
regards either the TRISO particle for HTRs/VHTRs or the advanced carbide and nitrite 
fuels for fast neutron reactors; 

• The features of the source term produced by the migration of activated fission products 
inside the reactors and likely to be released to the environment in case of accidental 
situations; 

• The inquiry upon either the significant reduction or the risk of a generalized and severe 
damage of the core, which founds the whole safety approach for these plants. 

All these issues are widely addressed in the SRA (Strategic Research Agenda) of the 
European SNETP Sustainable Nuclear Energy Technology Platform (Bruna et al., 2009) and 
in several connected presentations and articles, such as (Bruna, 2008). They will not be 
investigated here. In the following, only the computation-related aspect will be discussed, 
mainly in the perspective of the improvements expected from either an extended use or the 
adoption of the CFD methodologies.  
All these fields claim for a new effort in R&D. In order to achieve an optimum management 
of the resources, a priority scale is to be established in agreement with the technological 
choices and the objective dictated by each country’s policies. In the following, we shortly 
assess each of them before focusing on specific needs for the safety demonstration of the 
systems which are most likely to be constructed in a relatively near future. It is remembered, 
for completeness sake, that numerical simulation for the development of specific non 
destructive examination methods is not addressed in this chapter. 

4.1 Reactor physics and core design 
GEN IV reactors are very different from each other as regards neutron design, core physics 
and operating mode. They span a very large spectrum of configurations, including small 
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and large size cores, fast-neutron and moderated ones, gas, water and liquid metal cooled 
systems, each one matching more or less completely and comprehensively the general 
objectives of GEN IV. Sustainability and actinide transmutation are the most affordable 
goals for systems with fast neutron flux, such as SFRs and GFRs. On the contrary, graphite-
moderated gas-cooled thermal-flux reactors, such HTRs and VHTRs, are most likely to be 
inherently safe and to allow a diversified energy production (electricity, but also industrial 
steam and hydrogen).  
In addition to the overall design, the core size and the operating modes, the fuel, the 
materials for internals and vessel, the coolant features generate specific problems which 
must be assessed in computations. Moreover, a strong coupling among neutron and 
temperature fields can show up in large-size systems. Simulation challenges can be 
sharpened by the coupling with conventional energy production systems, which can 
propagate instability and perturbation to the reactors, through the intermediate heat 
exchanger. 
Accordingly, the requirements in terms of simulation for core physics and operation studies 
would be quite different. A sometimes massive heterogeneity in space and energy and the 
mutual interactions between the neutron and temperature fields claim for new and enlarged 
3D capabilities, and an increased coupling for design and normal operation calculations.  
Integrated systems permitting a full description of coupled neutronics, thermal and 
mechanical transients, such as the SIMMER III/IV code (Tobita et al., 2006), should be very 
useful for safety studies of strongly coupled, fast-kinetics systems, such as SFR and GFR 
systems. On the other hand, for HTR and VHTR systems, due to the strong dependence of 
the core equilibrium on the temperatures, focus should be put on bulk codes enabling a full 
coupling among the core and the reflector temperature and neutron fields. 
Moreover, specific needs exist for SFRs, which mainly concern the risk of a generalized and 
severe damage of the core, due to either reactivity-driven transients, such as the coolant 
void (mainly the sodium), or mechanically-initiated transients, such as the blockage of a 
coolant in a subassembly. 
Last but not least, a major safety concern for PBMR (Peddle Bed Modular Reactor) type 
reactors (particular type of HTR) is the confidence in the evaluation of power peak within 
an heterogeneous core, where neither the local composition nor the lattice is precisely 
known during reactor operation, due to the stochastic distribution of the pebbles and the 
wide burn-up spread among them. Specific developments are needed, which involve a 
massive use of probabilistic techniques and a careful appreciation of uncertainties. All these 
items claim for a strong R&D effort devoted both to code development, qualification and 
validation and to measurement campaigns in ad hoc mock-up experiments.  
So as to manage resources as best as possible, a priority scale must be established in 
agreement with the political and technological choices: emphasis should be put on each item 
according to its relevance to the safety demonstration of the forerunning concepts likely to 
be industrialized in a near future.  

4.2 Residual power evacuation 
For GEN IV concepts as for many other existing ones, the verification of the sufficient 
cooling of the core in various accidental situations is one of the most important tasks of the 
safety analysis. Such verification should be supported by the numerical simulation of two 
processes:  
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• Fuel cooling by liquid (e.g. sodium) or gas (e.g. helium) natural convection and heat 
radiation; 

• Heat evacuation by water safety circuits. 
The difficulty will of course depend on the design (complexity, safety margins, etc.). 
However, we could reasonably consider that already existing tools like thermal-hydraulics 
system codes (already developed for light water reactors) and CFD codes for more local 
evaluation (with radiation models) should be sufficient. Adequate design-oriented 
experiments will surely have to be performed in order to assess the codes validity for some 
specificity of the circuits, but this will remain in a strict continuation of current actions 
aiming at improving capabilities of thermal-hydraulics codes and extending CFD use in 
reactor safety analysis.  

4.3 Fuel integrity 
As already mentioned, the integrity of reactor fuel will be an important issue for GEN IV 
concepts. The challenge will be comparable to that encountered with current generation 
ones. With a view to enforcing the demonstration of the robustness of the fuel and its 
resistance to the operation and accidental transients, improvements and adjustments will 
have to be made in computation tools and devoted experimental programs developed for 
physical assessment and qualification needs. According to the fuel features and design, it is 
straightforward that such updating and experiments should be reactor concept-oriented. 
The larger effort is foreseeable for HTR/VHTR concepts which, despite their ancient design, 
have accumulated a quite limited operating experience and, far more, for GFRs, the fuel 
design of which is new (and is an essential source for performance improvement in terms of 
both operation and safety, through the achievement of ISO-generation conditions) and does 
not benefit from any operation feedback. 
However, the simulation strategy should be the same as for the current reactor generations: 
simplified models shall be derived for industrial and well assessed simulation tools and the 
derivation of these models shall be backed up by a multi-scale approach. It could be 
recommended to put in place such a strategy as soon as possible in order to more efficiently 
define the experiments against which the elementary and global assessment of models will 
be performed. 

4.4 Fission products release 
All the phenomena involved in the transfer of fission products from the fuel elements to the 
containment and from the containment to the environment are very complex. As for the 
current generation of reactors, difficulties come from the great number of involved physical-
chemical reactions that make a detailed mechanistic approach almost impossible.  
Since the risk of a severe accident and of significant fission products release should be 
lowered for GEN IV concepts, it does not appear as a necessity to significantly increase the 
precision we have today when predicting the potential consequences of a severe accident.  
Thus, for this topic, it is not judged necessary, from the safety point of view, to have any 
breakthrough in terms of modeling, apart from the necessity to develop specific models of 
fission products release for some GEN IV fuels (TRISO for HTRs/VHTRs, carbide for SFRs, 
specific fuel for GFRs). Simplified models should be sufficient although they will have to be 
assessed against an appropriate experimental data base including separate effect tests and 
integral effect tests to make sure that no major important phenomenon has been forgotten. 
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However, as for the simulation of severe accidents in the current reactor generation, it could 
be recommended to follow up the current strategy and back up the simplified models by 
detailed models when it is possible.  

4.5 Reduction of the major risk of generalized and severe core damage  
As regards the problem of the exclusion of transients likely to result in core melting, it is 
quite obvious that concepts such as the HTR/VHTR are much more inherently protected 
against high fuel damaging than others, such as the SFR and the GFR, due to a far slower 
kinetics, a wider thermal inertia (due to the huge amount of graphite), a capacity to 
passively evacuate residual heat in almost any circumstance, and a high thermal robustness 
of the fuel particles.  
However, even if the designers’ target is to make a whole core melting or high damaging 
highly hypothetical, a wise strategy would be, in particular for SFRs and GFRs, to 
investigate 
• the mechanisms that could prevent a core local meltdown from degenerating into a 

whole core meltdown, 
• the consequences of a whole core meltdown on containment integrity (including the 

release of radioactive elements into the environment). 
Codes based on simplified models have been developed and used for the previous 
generations of reactors (LWRs and SFRs). Appropriate experimental programs have been 
initiated in the 80s to assess these models. The question of the adequacy of these codes and 
of their assessment for GEN IV concepts can be considered as an open one. It is likely that 
codes already developed for previous generations of SFRs will be applicable to GEN IV 
SFRs, provided some complementary developments and assessment are done (the 
demonstration on core re-criticality risk was not easy and will not be easier for GEN IV, the 
demonstration of corium retention, etc.).  
The adaptation of LWR codes to HTR/VHTR concepts seems possible although, as the core 
materials are significantly different, all the elementary models will have to be revised and 
reassessed against a new and appropriate experimental data base. 
Phenomena involved in a severe accident are and will remain very complex due to the tight 
coupling among several phenomena that intervene as driving ones at different instants of 
the transients: multiphase flows, heat and mass transfers, thermo-chemistry, mechanic 
resistance of metallic structures, material melting and freezing, core physics and neutron 
kinetics, etc. 
This complexity makes it nearly impossible to envisage in the coming twenty years any 
revolution in the numerical simulation of these accidents and the conclusions of  section 3.4 
for LWRs should be considered valid for GEN IV concept severe accidents: the use of 
advanced numerical simulation could be introduced by CFD or DNS computation in 
realistic geometries, for calculation of basic averaged values or limited parts of the accident, 
in support to “integral” codes based on simplified models such as those adopted for the 
current generations of severe accident codes. 

5. Conclusion 
Almost all the codes developed during the last twenty-year period for the analysis of the 
safety problems of nuclear reactors in operation adopt simplified geometry descriptions and 
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quite simple physical models, stressing the major physical phenomena in some detail only, 
and either addressing in a quite approximate way or even neglecting the minor ones, as it is 
the case for the LWR LOCA codes.  
That is undoubtedly a drawback to be overcome from the performance point of view since it 
implies the adoption of operating and safety margins at any stage of the reactor design and 
operation. Nevertheless, no major changes are expected in the near future as far as the safety 
analysis of current reactors is concerned, mainly because the computation systems currently 
in use benefits from a large validation against a set of diversified and extended experimental 
results. Moreover, the industrial safety applications need to rely on methods agreed by the 
safety expert organizations. Quite a long time is therefore generally needed before the 
advanced methods developed by researchers can be adopted in practice to address actual 
safety cases.  
Advanced simulation is undoubtedly able to provide extended capability to calculate local 
parameters and, accordingly, it allows deeper insights in many problems, contributes to a 
better understanding of the physics, and thus leads to more reliable designs, reduced costs 
and/or more precisely quantified safety margins. For system analysis, advanced simulation 
has thus a complementary role to play in nuclear safety applications in combination with 
system codes, particularly in those areas where multi-dimensional aspects are relevant. 
Moreover, combined applications, supported by proper experiments may guarantee a more 
precise evaluation of safety margins.  
Single-phase CFD applications are already reasonably mature although some models (e.g. 
turbulence and combustion)   need improvements. Two-phase and multi-phase CFD 
modeling still require considerable research efforts even though some aspects may be 
already reasonably well addressed through the advanced models. In addition, a lot of work 
in terms of experimentation, model development and assessment has still to be done before 
practical applications in nuclear safety studies can be made. Thus, as far as the current 
reactor safety analysis is concerned, the adoption of CFD techniques should mostly be 
limited to achieving a more detailed understanding of the physical phenomena and 
supporting the methodology currently in use rather than to supporting the development of 
fully new computation systems. 
Multi-scale techniques are more and more used to consolidate the physical bases of 
simplified models. The use of these techniques allows progressing more rapidly in the 
understanding of physical processes and contributes to optimizing experimental programs. 
However, these techniques are applicable for a limited number of phenomena; they provide 
models that shall be globally assessed against integral experiments. 
On the other hand, as for incoming GEN IV concepts, even if it is assumed that the 
development pace of computing power keeps constant, due to the complexity of the 
phenomena and the wideness of the investigation fields, a significant breakthrough in the 
development of computational tools dedicated to the safety demonstration seems quite 
unlikely in the short term (roughly within 10 to 15 years).  
Moreover, the preliminary studies of some of these concepts now underway allow believing 
that there is no specific need for profound modifications to the current code development 
and assessment strategies. The key element will remain the adequate validation of the 
computation chains against appropriate analytical and integral tests, which means in fine 
uncertainty and design margins. 
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Accordingly, it seems likely that large improvements of computation tools, including an 
extensive adoption of CFD methodologies, are scheduled for the intermediate future (within 
the next 25 years).  
Nevertheless, it is likely that the use of advanced modeling will be extended and reinforced 
for GEN IV fields of endeavor, alongside with the expansion of the application for current 
reactors. 
The most challenging issues in the methodology to GEN IV computation should be: 
• The extended adoption of CFD techniques for single-phase application, addressing core 

cooling in particular, with the support of some specific experimentation assessing 
models and calculation methodologies; 

• The development of multi-physics computational tools with a tight coupling among 
core physics, fuel thermal-hydraulics and thermo-mechanics, as well as systems 
description; 

• The increase in the predictability of fuel codes for fuel integrity issues. To comply with 
the expected continuous process of fuel improvement, this should be backed by the 
development of a multi-scale strategy (already initiated for LWR fuel) and supported 
by a suitable experimental activity as well;  

• The achievement, in the severe accident and source term evaluation issues, of a 
modeling level close to that achieved for LWRs, for which the advanced modeling is 
only seen as a support for a better understanding of some physical aspects of involved 
phenomena. 

As a general conclusion, in the present state of knowledge, no major breakthroughs seem 
necessary in terms of modeling for reactors in operation, at least whether if it is postulated 
that no significant changes are adopted in their design features and operation. Simplified 
models should still be satisfactory enough, provided that they are validated on appropriate 
and representative experimental data, including results from both analytical and integral 
tests.  
As far as the future GEN IV concepts are concerned, it must be emphasized that the current 
wide effort for updating models should provide opportunity for “boosting” advanced 
numerical simulation that is undoubtedly a source for better understanding of the system 
physics and consequently improving the concept design and future operation. Nevertheless, 
the safety analysis being strictly dependent on reactor design, a further investigation on this 
relevant topic is to be carried out once the main design and operation options for those 
systems is definitely known.  
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