
Advances in Greedy Algorithms 





 

Advances in Greedy Algorithms  
 

Edited by 

Witold Bednorz 

 
I-Tech  



IV        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published by In-Teh 
 
 
In-Teh is Croatian branch of I-Tech Education and Publishing KG, Vienna, Austria. 
 
Abstracting and non-profit use of the material is permitted with credit to the source. Statements and 
opinions expressed in the chapters are these of the individual contributors and not necessarily those of 
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the 
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or 
property arising out of the use of any materials, instructions, methods or ideas contained inside. After 
this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in 
any publication of which they are an author or editor, and the make other personal use of the work.  
 
© 2008 In-teh 
www.in-teh.org 
Additional copies can be obtained from:  
publication@ars-journal.com 
 
First published November 2008 
Printed in Croatia 
 
 
 
A catalogue record for this book is available from the University Library Rijeka under no. 120115050 
Advances in Greedy Algorithms, Edited by Witold Bednorz  
               p.  cm. 
      ISBN 978-953-7619-27-5  
       1. Advances in Greedy Algorithms, Witold Bednorz 



 
 
 
 
 
 
 
 

 

Preface 
 

The greedy algorithm is one of the simplest approaches to solve the optizmization 
problem in which we want to determine the global optimum of a given function by a 
sequence of steps where at each stage we can make a choice among a class of possible 
decisions. In the greedy method the choice of the optimal decision is made on the 
information at hand without worrying about the effect these decisions may have in the 
future. Greedy algorithms are easy to invent, easy to implement and most of the time quite 
efficient. However there are many problems that cannot be solved correctly by the greedy 
approach. The common example of the greedy concept is the problem of ‘Making Change’ 
in which we want to make a change of a given amount using the minimum number of US 
coins. We can use five different values: dollars (100 cents), quarters (25 cents), dimes (10 
cents), nickels (5 cents) and pennies (1 cent). The greedy algorithm is to take the largest 
possible amount of coins of a given value starting from the highest one (100 cents). It is easy 
to see that the greedy strategy is optimal in this setting, indeed for proving this it suffices to 
use the induction principle which works well because in each step either the procedure has 
ended or there is at least one coin we can use of the actual value. It means that the problem 
has a certain optimal substructure, which makes the greedy algorithm effective. However a 
slight modification of ‘Making Change’, e.g. where one value is missing, may turn the 
greedy strategy to be the worst choice. Therefore there are obvious limits for using the 
greedy method: whenever there is no optimal substructure of the problem we cannot hope 
that the greedy algorithm will work. On the other hand there is a lot of problems where the 
greedy strategy works unexpectedly well and the purpose of this book is to communicate 
various results in this area. The key point is the simplicity of the approach which makes the 
greedy algorithm a natural first choice to analyze the given problem. In this book there are 
discussed several algorithmic questions in: biology, combinatorics, networking, scheduling 
or even pure mathematics, where the greedy algorithm can be used to produce the optimal 
or nearly optimal answer. 

The book was written in 2008 by the numerous authors who contributed the publication 
by presenting their researches in a form of a self-contained chapters. The idea was to 
coordinate the international project where specialists all over the world can share their 
knowledge on the greedy algorithms theory. Each chapter comprises a separate study on 
some optimization problem giving both an introductory look into the theory the problem 
comes from and some new developments invented by author(s). Usually some elementary 
knowledge is assumed, yet all the required facts are quoted mostly in examples, remarks or 
theorems. The publication may be useful for all graduates and undergraduates interested in 
the algorithmic theory with the focus on the greedy approach and applications of this 



VI        

method to various concrete examples. Most of scientists involved in the project are young at 
the full strength of their career, hence the presented content is fresh and acquaints with the 
new directions where the theory of greedy algorithms evolves to. 

On the behalf of authors I would like to acknowledge all who made the publication 
possible, in particular to Vedran Kordic who coordinated this huge project. Many thanks 
also for those who helped in the manuscripts preparation making useful suggestions and 
finding errors. 

  
November 2008 

Editor 

Witold Bednorz 
Warsaw, 
 Poland,   



 
 
 
 
 
 
 
 

 

Contents 
 

 Preface V 
   

1. A Greedy Algorithm with Forward-Looking Strategy 001 
 Mao Chen  
   

2. A Greedy Scheme for Designing Delay Monitoring Systems  
of IP Networks 

017 

 Yigal Bejerano and Rajeev Rastogi  
   

3. A Multilevel Greedy Algorithm for the Satisfiability Problem 039 
 Noureddine Bouhmala and Xing Cai  
   

4. A Multi-start Local Search Approach to the Multiple Container  
Loading Problem 

055 

 Shigeyuki Takahara  
   

5. A Partition-Based Suffix Tree Construction and Its Applications 69 
 Hongwei Huo and Vojislav Stojkovic  
   

6. Bayesian Framework for State Estimation and Robot Behaviour 
Selection in Dynamic Environments 

85 

 Georgios Lidoris, Dirk Wollherr and Martin Buss  
   

7. Efficient Multi-User Parallel Greedy Bit-Loading Algorithm with  
Fairness Control For DMT Systems 

103 

 Cajetan M. Akujuobi and Jie Shen  
   

8. Energy Efficient Greedy Approach for Sensor Networks 131 
 Razia Haider and Dr. Muhammad Younus Javed  
   

9. Enhancing Greedy Policy Techniques for Complex  
Cost-Sensitive Problems 

151 

 Camelia Vidrighin Bratu and Rodica Potolea  



VIII        

10. Greedy Algorithm: Exploring Potential of Link Adaptation Technique  
in Wideband Wireless Communication Systems 

169 

 Mingyu Zhou, Lihua Li, Yi Wang and Ping Zhang  
   

11. Greedy Algorithms for Mapping onto a Coarse-grained  
Reconfigurable Fabric 

193 

 Colin J. Ihrig, Mustafa Baz, Justin Stander, Raymond R. Hoare, Bryan A. Norman, 
Oleg Prokopyev, Brady Hunsaker and Alex K. Jones 

 

   
12. Greedy Algorithms for Spectrum Management in OFDM Cognitive 

Systems - Applications to Video Streaming and Wireless Sensor Networks 
223 

 Joumana Farah and François Marx  
   

13. Greedy Algorithms in Survivable Optical Networks 245 
 Xiaofei Cheng  

   
14. Greedy Algorithms to Determine Stable Paths and Trees  

in Mobile Ad hoc Networks 
253 

 Natarajan Meghanathan  
   

15. Greedy Anti-Void Forwarding Strategies for Wireless Sensor Networks 273 
 Wen-Jiunn Liu and Kai-Ten Feng  

   
16. Greedy Like Algorithms for the Traveling Salesman  

and Multidimensional Assignment Problems 
291 

 Gregory Gutin and Daniel Karapetyan  
   

17. Greedy Methods in Plume Detection, Localization and Tracking 305 
 Huimin Chen  
   

18. Greedy Type Bases in Banach Spaces 325 
 Witold Bednorz  

   
19. Hardware-oriented Ant Colony Optimization Considering  

Intensification and Diversification 
359 

 Masaya Yoshikawa  
   

20. Heuristic Algorithms for Solving Bounded Diameter Minimum Spanning 
Tree Problem and Its Application to Genetic Algorithm Development 

369 

 Nguyen Duc Nghia and Huynh Thi Thanh Binh  
   

21. Opportunistic Scheduling for Next Generation Wireless  
Local Area Networks 

387 

 Ertuğrul Necdet Çiftçioğlu and Özgür Gürbüz  



      IX 

22. Parallel Greedy Approximation on Large-Scale Combinatorial Auctions 411 
 Naoki Fukuta and Takayuki Ito  
   

23. Parallel Search Strategies for TSPs using a Greedy Genetic Algorithm 431 
 Yingzi Wei and Kanfeng Gu  
   

24. Provably-Efficient Online Adaptive Scheduling of Parallel Jobs  
Based on Simple Greedy Rules 

439 

 Yuxiong He  and Wen-Jing Hsu  
   

25. Quasi-Concave Functions and Greedy Algorithms 461 
 Yulia Kempner, Vadim E. Levit and Ilya Muchnik  
   

26. Semantic Matchmaking Algorithms 481 
 Umesh Bellur and Harin Vadodaria  
   

27. Solving Inter-AS Bandwidth Guaranteed Provisioning Problems  
with Greedy Heuristics 

503 

 Kin-Hon Ho, Ning Wang and George Pavlou  
   

28. Solving the High School Scheduling Problem Modelled  
with Constraints Satisfaction using Hybrid Heuristic Algorithms 

529 

 Ivan Chorbev, Suzana Loskovska, Ivica Dimitrovski and Dragan Mihajlov  
   

29. Toward Improving b-Coloring based Clustering  
using a Greedy re-Coloring Algorithm 

553 

 Tetsuya Yoshida, Haytham Elghazel, Véronique Deslandres,  
Mohand-Said Hacid and Alain Dussauchoy 

 

   
30. WDM Optical Networks Planning using Greedy Algorithms 569 

 Nina Skorin-Kapov  





1 

A Greedy Algorithm with  
Forward-Looking Strategy 

Mao Chen 
Engineering Research Center for Educational Information Technology,  

Huazhong Normal University,  
China 

1. Introduction 
The greedy method is a well-known technique for solving various problems so as to 
optimize (minimize or maximize) specific objective functions. As pointed by Dechter et al 
[1], greedy method is a controlled search strategy that selects the next state to achieve the 
largest possible improvement in the value of some measure which may or may not be the 
objective function. In recent years, many modern algorithms or heuristics have been 
introduced in the literature, and many types of improved greedy algorithms have been 
proposed. In fact, the core of many Meta-heuristic such as simulated annealing and genetic 
algorithms are based on greedy strategy.  
“The one with maximum benefit from multiple choices is selected” is the basic idea of 
greedy method. A greedy method arrives at a solution by making a sequence of choices, 
each of which simply looks the best at the moment. We refer to the resulting algorithm by 
this principle the basic greedy (BG) algorithm, the details of which can be described as 
follow: 
Procedure BG (partial solution S, sub-problem P) 

Begin 
        generate all candidate choices as list L for current sub-problem P; 
        while (L is not empty OR other finish condition is not met) 
                    compute the fitness value of each choice in L; 
                    modify S and P by taking the choice with highest fitness value;  
                    update L according to S and P; 
        end while; 
        return the quality of the resulting complete solution; 
End. 
 

For an optimization problem, what remains is called a sub-problem after making one or 
several steps of greedy choice. For problem or sub-problem P, let S be the partial solution, 
and L be the list of candidate choices at the current moment.  
To order or prioritize the choices, some evaluation criteria are used to express the fitness 
value. According to the BG algorithm, the candidate choice with the highest fitness value is 
selected, and the partial solution is updated accordingly. This procedure repeated step by 
step until a resulting complete solution is obtained. 



 Advances in Greedy Algorithms 

 

2 

The representation of the BG algorithm can be illustrated by a search tree as shown in Fig.1. 
Each node in the search tree corresponds to a partial solution, and a line between two nodes 
represents the decision to add a candidate choice to the existing partial solution. 
Consequently, leaf nodes at the end of tree correspond to complete solutions.  
In Fig.1, the black circle at level 1 denotes an initial partial solution. At level 2, there are four 
candidate choices for current partial solution, which denotes by four nodes. In order to 
select the best node, promise of each node should be determined. After some evaluation 
function has been employed, the second node with highest benefit (the circle in gray at level 
2) is selected. Then, the partial solution and sub-problem are updated accordingly. 
 

 
Fig. 1. Representation of basic greedy algorithm 
Two important features of greedy method make it so popular are simple implementation and 
efficiency. Simple as it is, BG algorithm is highly efficient and sometimes it can produce an 
optimal solution for some optimization problem. For example, for problems such as activity-
selection problem, fractional knapsack problem and minimum spanning trees problem, BG 
algorithm can obtain optimal solution by making a series of greedy choice. For these problems 
that the BG algorithm can obtain optimal solution, there is something in common: the optimal 
solution to the problem contains within it optimal solutions to sub-problems. 
However, for other optimization problems that do not exhibit such property, the BG 
algorithm will not lead to optimal solution. Especially for the combinatorial optimization 
problems or NP-hard problem, the solution by BG algorithm is far away from satisfactory.  



A Greedy Algorithm with Forward-Looking Strategy 

 

3 

In BG algorithm, we make whatever choice seems best at the moment and then turn to solve 
the sub-problem arising after the choice is made. That is to say, the benefit is only locally 
evaluated. Consequently, even though we select the best at each step, we still missed the 
optimal solution. Just liking playing chess, a player who is focused entirely on immediate 
advantage is easy to be defeated, the player who can think several step ahead will win with 
more opportunity. 
In this chapter, a novel greedy algorithm is introduced in detail, which is of some degree of 
forward-looking. In this algorithm, all the choices at the moment are evaluated more 
globally before the best one is selected. The greedy idea and enumeration strategy are both 
reflected in this algorithm, and we can adjust the enumeration degree so we can balance the 
efficiency and speed of algorithm.  

2. Greedy Algorithm with forward-looking search strategy 
To evaluate the benefit of a candidate choice more globally, an improved greedy algorithm 
with forward-looking search strategy (FG algorithm) was proposed by Huang et al [2], 
which was first proposed for tackling packing problem. It is a kind of growth algorithm and 
it is efficient for problem that can be divided into a series of sub-problems.  
In FG algorithm, the promise of a candidate choice is evaluated not only by the current 
circumstance, but more globally by considering the quality of the complete solution that can 
be obtained from the partial solution represented by the node. The idea of FG algorithm can 
be illustrated by Fig.2: 
 

 
Fig. 2. Representation of greedy algorithm with forward-looking strategy 



 Advances in Greedy Algorithms 

 

4 

As shown in Fig.2 (a), there are four nodes at level 2 for the initial partial solution. We do 
not evaluate the promise of each node at once at the moment. Conversely, we tentatively 
update the initial partial solution by take the choices at level 2 respectively. For each node at 
level 2 (i.e., each partial solution at level 2), its benefit is evaluated by the quality of the 
complete solution resulted from it according to BG algorithm. From the complete solution 
with maximum quality, we backtrack it to the partial solution and definitely take this step. 
In other words, the node that corresponds to the complete solution with maximum quality 
(the gray circle in Fig.2 (a)) is selected as the partial solution. Then the search progresses to 
level 3. Level by level, this process is repeated until a complete solution is obtained.  
After testing the global benefit of each node at current level, the one with great prospect will 
be selected. This idea can be referred as forward-looking, or backtracking. More formally, 
the procedure above can be described as follows:  
Procedure FG (problem P) 

Begin 
        generate the initial partial solution S, and update P to a sub-problem; 
        generate all current candidate choice as a list L; 
        while (L is not empty AND finish condition is not met) 
                    max⇐ 0 
                    for each choice c in L 
                              compute the global benefit: GloableBenefit (c, S, P); 
                              update max with the benefit;       
                    end for;    
                    modify S by selecting the choice that the global benefit equal to max; 
                    update P and L; 
         end while; 
End. 
 

As shown in the above algorithm, in order to more globally evaluate the benefit of a choice 
and to overcome the limit of BG algorithm, we compute the benefit of a choice using BG 

itself in the procedure GlobalBenefit to obtain the so-called FG algorithm. 
Similarly to BG algorithm, we start from the initial partial solution and repeat the above 
procedure until a complete solution is reached. Note that if there are several complete 
solutions with the same maximum benefit, we will select the first one to break the tie.  
The global benefit of each candidate choice is described as: 
Procedure GlobalBenefit (choice c, partial solution S, sub-problem P) 

Begin 
         let S’and P’ be copies of S and P; 
         modify S’and P’ by taking the choice c; 
         return BG(S, P); 
End. 
 

Given a copy S’ of the partial solution and a copy P’of sub-problem, then we update S’by 
taking the choice c. For the resulted partial solution and sub-problem, we use BG algorithm 
to obtain the quality of the complete solution.  
It should be noted that Procedure FG only gives one initial partial solution. For some 
problems, there may be several choices for the initial partial solution. Similarly, the 



A Greedy Algorithm with Forward-Looking Strategy 

 

5 

Procedure globalBenefit() is implemented for the initial partial solutions respectively, and the 
one with maximum benefit should be selected.  

3. Improved version of FG algorithm 
3.1 Filtering mechanism  
For some problems, the number of nodes is rather large at each level of search. Therefore, a 
filtering mechanism is proposed to reduce the computational burden. During filtering some 
nodes will not be given chance to be evaluated globally and be discarded permanently based 
on their local evaluation value. Only the remaining nodes are subject to global evaluation. 
 

 
Fig. 3. Representation of filtering mechanism 

As shown in Fig.3, there are 7 nodes at level 2. Firstly, the benefit of each node is locally 
evaluated. Then, only the promising nodes whose local benefit is larger than a given 
threshold parameterτ will be globally evaluated. The FG algorithm can be modified as 
FGFM algorithm: 



 Advances in Greedy Algorithms 

 

6 

Procedure FGFM (problem P) 

Begin 
         generate the initial partial solution S, update P to a sub-problem; 
         generate all current candidate choice as a list L; 
         while (L is not empty AND finish condition is not met) 
                     max⇐ 0 
                      for each choice c in L 
                                   if (local benefit > parameterτ ) 

               compute the global benefit: GloableBenefit (c, S, P); 
                                              update max with global benefit;     
                                   end if;   
                      end for;    
                      modify S by selecting the choice that the global benefit equal to max; 
                      update P and L; 
           end while; 
End. 
 

Obviously, the threshold parameterτ is used to control the trade-off between the quality of 
the result and the computational time. Ifτ is set to be large enough, algorithm FGFM turns 
to be a BG algorithm; Ifτ is set to be small enough, algorithm FGFM turns to be a FG 
algorithm. 

3.2 Multiple level enumerations 
In the FG algorithm, the benefit of a node is globally evaluated by the quality of 
corresponding complete solution, which is resulted from the node level by level according 
to the BG algorithm.  In order to further improve the quality of the solution, the forward-
looking strategy can be applied to several levels. 
This multi-level enumeration can be illustrated by Fig.4. For the initial partial solution, there 
are three candidate choices at level 2. From each node at level 2, there are several branches 
at level 3. Then we use procedure GlobalBenefit () to evaluate the global benefit of each nodes 
at level 3. That is to say, the three nodes at level 2 have several global benefits. We will 
choose the highest one as its global benefit. Afterwards, the one with the maximum global 
benefit from the three nodes at level 2 are selected as the partial solution. 
If the number of enumeration levels is equal to (last level number - current level number-1) 
for each node, the search tree will become a complete enumeration tree, the corresponding 
solution of which will surely be optimal solution. However, the computational time 
complexity is unacceptable. Usually, the number of enumeration levels ranges from 1 to 4. 
Obviously, the filtering mechanism and multi-level enumeration strategy are the means to 
control the trade-off between solution quality and runtime effort.  

4. Applications 
FG algorithm has been successfully applied to job shop scheduling problem [3], circle 
packing problem [2, 4] and rectangular packing problem [5]. In this section, the two-
dimensional (2D) rectangle packing problem and its corresponding bounded enumeration 
algorithm is presented. 



A Greedy Algorithm with Forward-Looking Strategy 

 

7 

...... .....................

backtracking

 
Fig. 4. The multi-level enumeration strategy 

4.1 Problem definition 
The 2D rectangular packing problem has been widely studied in recent decades, as it has 
numerous applications in the cutting and packing industry, e.g. wood, glass and cloth 
industries, newspapers paging, VLSI floor planning and so on, with different applications 
incorporating different constraints and objectives. 
We consider the following rectangular packing problem: given a rectangular empty 
container with fixed width and infinite height and a set of rectangles with various sizes, the 
rectangle packing problem is to pack each rectangle into the container such that no two 
rectangles overlap and the used height of the container is minimized. From this 
optimization problem, an associated decision problem can be formally stated as follows: 
Given a rectangular board with given width W and given height H, and n rectangles with 
length li and width wi, 1≤ i≤ n, take the origin of the two-dimensional Cartesian coordinate 
system at the bottom-left corner of the container (see Fig.5). The aim of this problem is to 
determine if there exist a solution composed of n sets of quadruples 11 11 12 12{ , , , }x y x y ,…, 

1 1 2 2{ , , , }n n n nx y x y , where ( 1 1,i ix y ) denotes the bottom-left corner coordinates of rectangle i, 
and ( 2 2,i ix y ) denotes the top-right corner coordinates of rectangle i. For all 1≤ i≤ n, the 
coordinates of rectangle i satisfy the following conditions: 
1. xi2−xi1 = li  ∧  yi2−yi1 = wi  or  xi2−xi1 = wi  ∧  yi2−yi1 = li; 



 Advances in Greedy Algorithms 

 

8 

2. For all 1≤ i, j≤ n, j ≠ i, rectangle i and j cannot overlap, i.e., one of the following 
condition should be met: xi1≥ xj2  or  xj1≥ xi2  or  yi1≥ yj2  or  yj1≥ yi2; 

3. 0≤ xi1, xi2≤ W  and  0≤ yi1, yi2≤ H. 
In our packing process, each rectangle is free to rotate and its orientation θ can be 0 (for “not 
rotated”) or 1 (for “rotated by π/2”). It is noted that the orthogonal rectangular packing 
problems denote that the packing process has to ensure the edges of each rectangle are 
parallel to the x- and y-axis, respectively. 
Obviously, if we can find an efficient algorithm to solve this decision problem, we can then 
solve the original optimization problem by using some search strategies. For example, we 
first apply dichotomous search to get rapidly a “good enough” upper bound for the height, 
then from this upper bound we gradually reduce it until the algorithm no longer finds a 
successful solution. The final upper bound is then taken as the minimal height of the 
container obtained by the algorithm. In the following discussion, we will only concentrate 
on the decision problem of fixed container. 

O

(xi2,yi2)

y

(xi1,yi1) x

Ri

 
Fig. 5. Cartesian coordinate system 

4.2 Preliminary 
Definition Configuration. A configuration C is a pattern (layout) where m ( 0 m n≤ < ) 
rectangles have been already packed inside the container without overlap, and n−m 
rectangles remain to be packed into the container.  
A configuration is said to be successful if m=n, i.e., all the rectangles have been placed inside 
the container without overlapping. A configuration is said to be failure if m<n and none of 
the rectangles outside the container can be packed into the container without overlapping. A 
configuration is said final if it is either a successful configuration or a failure configuration. 
Definition Candidate corner-occupying action. Given a configuration with m rectangles 
packed, there may be many empty corners formed by the previously packed rectangles and 
the four sides of the container. Let rectangle i be the current rectangle to be packed, a 
candidate corner-occupying action (CCOA) is the placement of rectangle i at an empty 
corner in the container so that rectangle i touches the two items forming the corner and does 



A Greedy Algorithm with Forward-Looking Strategy 

 

9 

not overlap other previously packed rectangles (an item may be a rectangle or one of the 
four sides of the container). Note that the two items are not necessarily touching each other. 
Obviously, the rectangle to be packed has two possible orientation choices at each empty 
corner, that is, the rectangle can be placed with its longer side laid horizontally or vertically. 
A CCOA can be represented by a quadri-tuple (i, x, y, θ), where (x, y) is the coordinate of the 
bottom-left corner of the suggested location of rectangle i and θ is the corresponding 
orientation. 
 

R1 R4

R3

R2

2

3

51

4

 
Fig. 6.  Candidate corner-occupying action for rectangle R4 

Under current configuration, there may be several candidate packing positions for the 
current rectangle to be packed. At the configuration in Fig.6, three rectangles R1, R2 and R3 
are already placed in the container. There are totally 5 empty corners to pack rectangle R4, 
and R4 can be packed at any one of them with two possible orientations. As a result, there 
are 10 CCOAs for R4.  

In order to prioritize the candidate packing choices, we need a concept that expresses the 
fitness value of a CCOA. Here, we introduce the quantified measure λ , called degree to 
evaluate the fitness value of a CCOA. Before presenting the definition of degree, we first 
introduce the definition of minimal distance between rectangles as follows. 
 

R1

R2 R3

 
Fig. 7.  Illustration of distance 

Definition Minimal distance between rectangles. Let i and j be two rectangles already placed in 
the container, and (xi, yi), (xj, yj) are the coordinates of arbitrary point on rectangle i and j, 
respectively. The minimal distance dij between i and j is:    



 Advances in Greedy Algorithms 

 

10 

2 2min{ ( ) ( ) }ij i j i jd x x y y= − + −   

In Fig.7, R3 is packed on the position occupying the corner formed by the upper side and the 
right side of the container. As shown in Fig.7, the minimal distance between R3 and R1, and 
the minimal distance between R3 and R2 are illustrated, respectively.  
Definition Degree of CCOA. Let M be the set of rectangles already placed in the container. 
Rectangle i is the current rectangle to be packed, (i, x, y, θ) is one of the CCOAs for rectangle 
i. If corner-occupying action (i, x, y, θ) places rectangle i at a corner formed by two items 
(rectangle or side of the container) u and v, the degreeλ of the corner-occupying action (i, x, 
y, θ) is defined as: 

min1 ( )
2

i iw ldλ
+

= − /                                            

where wi and li are the width and the length of rectangle i, and dmin is the minimal distance 
from rectangle i to other rectangles in M and sides of the container (excluding u and v), that 
is,  

                min 1 2 3 4min{  | { , , , }, , }ijd d j M s s s s j u v= ∈ ≠∪                      

where s1, s2, s3 and s4 are the four sides of the container. 
It is clear that if a corner-occupying action place rectangle i at a position very close to the 
previously packed rectangles, the corresponding degree will be very high. Note that, if 
rectangle i can be packed by a CCOA at a corner in the container and touches more than two 
items, then dmin=0 and λ =1; otherwiseλ <1. The degree of a corner-occupying action 
describes how the placed rectangle is close to the already existing pattern. Thus, we use it as 
the benefit of a packing step.  
Intuitively, since one should place a rectangle as close as possible to the already existing 
pattern, it seems quite natural that the CCOA with the highest degree will be selected first to 
pack the rectangle into the container. We call this principle the highest degree first (HDF) 
rule. It is just the simple application of BG algorithm. 

4.3 The basic algorithm: A0 
Based on the HDF rule and BG algorithm, A0 is described as follows: 
Procedure A0 (C, L) 
Begin 
     while (L is not empty)  
           for each CCOA in L 
                       calculate the degree;    
            end for;     
            select the CCOA (i, x, y, θ) with the highest degree;  
            modify C by placing rectangle i at (x, y) with orientationθ;  
            modify L according to the new configuration C; 
    end while; 
    return C; 
End. 



A Greedy Algorithm with Forward-Looking Strategy 

 

11 

At each iteration, a set of CCOAs for each of the unpacked rectangles is generated under 
current configuration C. Then the CCOAs for all the unpacked rectangles outside the 
container are gathered as a list L. A0 calculates the degree of each CCOA in L and selects the 
CCOA (i, x, y,θ) with the highest degreeλ , and place rectangle i at (x, y) with orientationθ. 
After placing rectangle i, the list L is modified as follows: 
1.  Remove all the CCOAs involving rectangle i; 
2.  Remove all infeasible CCOAs. A CCOA becomes infeasible because the involved 

rectangle would overlap rectangle i if it was placed; 
3.  Re-calculate the degreeλ of the remaining CCOAs; 
4.  If a rectangle outside the container can be placed inside the container without overlap 

so that it touches rectangle i and a rectangle inside the container or the side of the 
container, create a new CCOA and put it into L, and compute the degreeλ of the new 
CCOA.  

If none of the rectangles outside the container can be packed into the container without 
overlap (L is empty) at certain iteration, A0 stops with failure (returns a failure 
configuration). If all rectangles are packed in the container without overlap, A0 stops with 
success (returns a successful configuration).  
It should be pointed out that if there are several CCOAs with the same highest degree, we 
will select one that packs the corresponding rectangle closest to the bottom left corner of the 
container.   
A0 is a fast algorithm. However, given a configuration, A0 only considers the relation 
between the rectangles already inside the container and the rectangle to be packed. It 
doesn’t examine the relation between the rectangles outside the container. In order to more 
globally evaluate the benefit of a CCOA and to overcome the limit of A0, we compute the 
benefit of a CCOA using A0 itself in the procedure BenefitA1 to obtain our main packing 
algorithm called A1.  

4.4 The greedy algorithm with forward-looking strategy: A1 
Based on current configuration C, CCOAs for all unpacked rectangles are gathered as a list 
L. For each CCOA (i, x, y, θ ) in L, the procedure BenefitA1 is designed to evaluate its benefit 
more globally. 

Procedure BenefitA1 (i, x, y, θ, C, L) 
Begin 
       let C’and L’be copies of C and L; 
       modify C’by placing rectangle i at (x, y) with orientationθ, and modify L’; 
       C’= A0 (C’,L’); 
       if (C’is a successful configuration)  
              Return C’; 
       else  

              Return density (C’); 
       end if-else 
End. 
 

Given a copy C’ of the current configuration C and a CCOA (i, x, y, θ) in L, BenefitA1 begins 
by packing rectangle i in the container at (x, y) with orientationθand call A0 to reach a final 
configuration. If A0 stops with success then BenefitA1 returns a successful configuration, 



 Advances in Greedy Algorithms 

 

12 

otherwise BenefitA1 returns the density (the ratio of the total area of the rectangles inside the 
container to the area of the container) of a failure configuration as the benefit of the CCOA 
(i, x, y, θ). In this manner, BenefitA1 evaluates all existing CCOAs in L. 
Now, using the procedure BenefitA1, the benefit of a CCOA is measured by the density of a 
failure configuration. The main algorithm A1 is presented as follow: 
Procedure A1 ( ) 
Begin 
        generate the initial configuration C; 
        generate the initial CCOA list L; 
        while (L is not empty)  
                    maximum benefit ← 0 
                    for each CCOA (i, x, y,θ ) in L 
                              d= BenefitA1 (i, x, y,θ , C, L); 
                              if (d is a successful configuration) 
                                        stop with success; 
                              else 
                                        update the maximum benefit with d; 
                              end if-else; 
                    end for; 

                    select the CCOA ( *i , *x , *y , *θ ) with the maximum benefit; 

                    modify C by placing rectangle *i at ( *x , *y ) with orientation *θ ; 
                    modify L according to the new configuration C; 
        end while; 
        stop with failure 
End. 
 

Similarly, A1 selects the CCOA with the maximum benefit and packs the corresponding 
rectangle into the container by this CCOA at each iteration. If there are several CCOAs with 
the maximum benefit, we select one that packs the corresponding rectangle closest to the 
bottom left corner of the container. 

4.5 Computational complexity 
We analysis the complexity of A1 in the worst case, that is, when it cannot find successful 
configuration, and discuss the real computational cost to find a successful configuration.  
A0 is clearly polynomial. Since every pair of rectangles or sides in the container can give a 
possible CCOA for a rectangle outside the container, the length of L is bounded by 
O(m2(n−m)), if m rectangles are already placed in the container. For each CCOA in L, dmin is 
calculated using the dmin in the last iteration in O(1) time. The creation of new CCOAs and 
the calculus of their degree is also bounded by O(m2(n−m)) since there are at most 
O(m(n−m)) new CCOAs (a rectangle might form a corner position with each rectangle in the 
container and each side of the container). So the time complexity of A0 is bounded by O(n4).  
A1 uses a powerful search strategy in which the consequence of each CCOA is evaluated by 
applying BenefitA1 in full, which allows us to examine the relation between all rectangles 
(inside and outside the container). Note that the benefit of a CCOA is measured by the 



A Greedy Algorithm with Forward-Looking Strategy 

 

13 

density of a final configuration, which means that we should apply BenefitA1 though to the 
end each time. At every iteration of A1, BenefitA1 uses a O(n4) procedure to evaluate all 
O(m2(n−m)) CCOAs, therefore, the complexity of A1 is bounded by O(n8). 
It should be pointed out that the above upper bounds of the time complexity of A0 and A1 
are just rough estimations, because most corner positions are infeasible to place any 
rectangle outside the container, and the real number of CCOAs in a configuration is thus 
much smaller than the theoretical upper bound O(m2(n−m)).  
The real computational cost of A0 and A1 to find a successful configuration is much smaller 
than the above upper bound. When a successful configuration is found, BenefitA1 does not 
continue to try other CCOAs, nor A1 to exhaust the search space. In fact, every call to A0 in 
BenefitA1 may lead to a successful configuration and then stops the execution at once. Then, 
the real computational cost of A1 essentially depends on the real number of CCOAs in a 
configuration and the distribution of successful configurations. If the container height is not 
close to the optimal one, there exists many successful configurations, and A1 can quickly 
find such one. However, if the container height is very close to the optimal one, few 
successful configurations exist in the search space, and then A1 may need to spend more 
time to find a successful configuration in this case.  

4.6 Computational results  
The set of tests is done using the Hopper and Turton instances [6]. There are 21 different sized 
test instances ranging from 16 to 197 items, and the optimal packing solutions of these test 
instances are all known (see Table 1). We implemented A1 in C on a 2.4 GHz PC with 512 MB 
memory. As shown in Table 1, A1 generates optimal solutions for 8 of the 21 instances; for the 
remaining 13 instances, the optimum is missed in each case by a single length unit.  
To evaluate the performance of the algorithm, we compare A1 with two best meta-heuristic 
(SA+BLF) in [6], HR [7], LFFT [8] and SPGAL [9]. The quality of a solution is measured by 
the percentage gap, i.e., the relative distance of the solution lU to the optimum length lOpt. 
The gap is computed as (lU − lOpt)/lOpt. The indicated gaps for the seven classes are 
averaged over the respective three instances. As shown in Table 2, the gaps of A1 ranges 
form 0.0% to 1.64% with the average gap 0.72, whereas the average gap of the two meta-
heuristics and HR are 4.6%, 4.0% and 3.97%, respectively. Obviously, A1 considerably 
outperforms these algorithms in terms of packing density. Compared with two other 
methods, the average gap of A1 is lower than that of LFFT, however, the average gap of A1 is 
slightly higher than that of SPGAL. 
As shown in Table 2, with the increasing of the number of rectangles, the running time of 
the two meta-heuristics and LFFT increases rather fast. HR is a fast algorithm, whose time 
complexity is only O(n3) [7]. Unfortunately, the running time of each instance for SPGAL is 
not reported in the literature. The mean time of all test instances for SPGAL is 139 seconds, 
which is acceptable in practical applications. It can be seen that A1 is also a fast algorithm. 
Even for the problem instances of larger size, A1 can yield solutions of high density within 
short running time. 
It has shown from Table 2 that the running time of A1 does not consistently accord with its 
theoretical time complexity. For example, the average time of C3 is 1.71 seconds, while the 
average time of C4 and C5 are both within 0.5 seconds. As pointed out in the time 
complexity analysis, once A0 finds a successful solution, the calculation of A1 will terminate. 
Actually, the average time complexity is much smaller than the theoretical upper bound. 



 Advances in Greedy Algorithms 

 

14 

Test instance 
Class / 
subclass 

No. of 
pieces 

Object 
dimensions

Optimal 
height 

Minimum 
Height by A1

% of 
unpacked 

area 

CPU time 
(s) 

 C11 16 20×20 20 20 0.00 0.37 
C1 C12 17 20×20 20 20 0.00 0.50 

 C13 16 20×20 20 20 0.00 0.23 
 C21 25 15×40 15 15 0.00 0.59 

C2 C22 25 15×40 15 15 0.00 0.44 
 C23 25 15×40 15 15 0.00 0.79 
 C31 28 30×60 30 30 0.00 3.67 

C3 C32 29 30×60 30 30 0.00 1.44 
 C33 28 30×60 30 31 3.23 0.03 
 C41 49 60×60 60 61 1.64 0.22 

C4 C42 49 60×60 60 61 1.64 0.13 
 C43 49 60×60 60 61 1.64 0.11 
 C51 73 90×60 90 91 1.09 0.34 

C5 C52 73 90×60 90 91 1.09 0.33 
 C53 73 90×60 90 91 1.09 0.52 
 C61 97 120×80 120 121 0.83 8.73 

C6 C62 97 120×80 120 121 0.83 0.73 
 C63 97 120×80 120 121 0.83 2.49 
 C71 196 240×160 240 241 0.41 51.73 

C7 C72 197 240×160 240 241 0.41 37.53 
 C73 196 240×160 240 241 0.41 45.81 

Table 1. Computational results of our algorithm for the test instances from Hopper and 
Turton instances 

SA+BLF1 HR2 LFFT3 SPGAL4 A15 

Class Gap Time Gap Time Gap Time Gap Time 
(s) Gap Time 

C1 4.0 42 8.33 0 0.0 1 1.7 − 0.00 0.37 
C2 6.0 144 4.45 0 0.0 1 0.0 − 0.00 0.61 
C3 5.0 240 6.67 0.03 1.0 2 2.2 − 1.07 1.71 
C4 3.0 1980 2.22 0.14 2.0 15 0.0 − 1.64 0.15 
C5 3.0 6900 1.85 0.69 1.0 31 0.0 − 1.09 0.40 
C6 3.0 22920 2.5 2.21 1.0 92 0.3 − 0.83 3.98 
C7 4.0 250800 1.8 36.07 1.0 2150 0.3 − 0.41 45.02 

Average 
gap (%) 

 
4.0 

 
3.97 

 
0.86 

 
0.64 

 
0.72 

Table 2. The gaps (%) and the running time (seconds) for meta-heuristics, HR, LFFT, SPGAL 
and A1 

1 PC with a Pentium Pro 200MHz processor and 65MB memory [11]. 
2 Dell GX260 with a 2.4 GHz CPU [15]. 
3 PC with a Pentium 4 1.8GHz processor and 256 MB memory [14]. 
4 The machine is 2GHz Pentium [16]. 
5 2.4 GHz PC with 512 MB memory. 



A Greedy Algorithm with Forward-Looking Strategy 

 

15 

 
Fig. 8. Packing result of C31 

 
Fig. 9. Packing result of C73 

In addition, we give the packing results on test instances C31 and C73 for A1 in Fig.8~Fig.9. 
Here, the packing result of C31 is of optimal height, and the height C73 are only one length 
unit higher than the optimal height 

5. Conclusion 
The algorithm introduced in this chapter is a growth algorithm. Growth algorithm is a 
feasible approach for combinatorial optimization problems, which can be solved step by 
step. After one step is taken, the original problem becomes a sub-problem. In this way, the 
problem can be solved recursively. For the growth algorithm, the difficulty lies in that for a 
sub-problem, there are several candidate choices for current step. Then, how to select the 
most promising one is the core of growth algorithm. 
By basic greedy algorithm, we use some concept to compute the fitness value of candidate 
choice, then, we select one with highest value. The value or fitness is described by quantified 
measure. The evaluation criterion can be local or global. In this chapter, a novel greedy 



 Advances in Greedy Algorithms 

 

16 

algorithm with forward-looking strategy is introduced, the core of which can more globally 
evaluate a partial solution. 
For different problems, this algorithm can be modified accordingly. This chapter gave two 
new versions. One is of filtering mechanism, i.e., only part of the candidate choices with 
higher local benefit will be globally evaluated. A threshold parameter is set to allow the 
trade-off between solution quality and runtime effort to be controlled. The higher the 
threshold parameter, the faster the search will be finished., and the lower threshold 
parameter, the more high-quality solution may be expected. The other version of the greedy 
algorithm is multi-level enumerations, that is, a choice is more globally evaluated. 
This greedy algorithm has been successfully used to solve rectangle packing problem, circle 
packing problem and job-shop problem. Similarly, it can also be applied to other 
optimization problems.  

6. Reference 
[1] A. Dechter, R. Dechter. On the greedy solution of ordering problems. ORSA Journal on 

Computing, 1989, 1: 181-189 
[2] W.Q. Huang, Y Li, S Gerard, et al. A “learning from human” heuristic for solving unequal 

circle packing problem. Proceedings of the First International Workshop on 
Heuristics, Beijing, China, 2002, 39-45.  

[3] Z. Huang, W.Q. Huang. A heuristic algorithm for job shop scheduling. Computer 
Engineering & Appliances (in Chinese), 2004, 26: 25-27 

[4] W.Q. Huang, Y. Li, H. Akeb, et al. Greedy algorithms for packing unequal circles into a 
rectangular container. Journal of the Operational Research Society, 2005, 56: 539-548 

[5] M. Chen, W.Q. Huang. A two-level search algorithm for 2D rectangular packing 
problem. Computers & Industrial Engineering, 2007, 53: 123-136 

[6] E. Hopper, B.Turton, An empirical investigation of meta-heuristic and heuristic 
algorithms for a 2D packing problem. European J. Oper. Res, 128 (2001): 34-57 

[7] D.F. Zhang, Y. Kang, A.S. Deng. A new heuristic recursive algorithm for the strip 
rectangular packing problem. Computers & Operational Research. 33 (2006): 2209-
2217 

[8] Y.L. Wu, C.K. Chan. On improved least flexibility first heuristics superior for packing 
and stock cutting problems. Proceedings for Stochastic Algorithms: Foundations 
and Applications, SAGA 2005, Moscow, 2005, 70-81 

[9] A. Bortfeldt. A genetic algorithm for the two-dimensional strip packing problem with 
rectangular pieces. European Journal of Operational Research. 172 (2006): 814-837 



2 

A Greedy Scheme for Designing Delay 
Monitoring Systems of IP Networks 

Yigal Bejerano1 and Rajeev Rastogi2  
1Bell Laboratories, Alcatel-Lucent,  

2Yahoo-Inc, 
1USA  
2India 

1. Introduction 
The demand for sophisticated tools for monitoring network utilization and performance has 
been growing rapidly as Internet Service Providers (ISPs) offer their customers more services 
that require quality of service (QoS) guarantees and as ISP networks become increasingly 
complex. Tools for monitoring link delays and faults in an IP network are critical for numerous 
important network management tasks, including providing QoS guarantees to end 
applications (e.g., voice over IP), traffic engineering, ensuring service level agreement (SLA) 
compliance, fault and congestion detection and performance debugging. Consequently, there 
has been a recent flurry of both research and industrial activity in the area of developing novel 
tools and infrastructures for measuring network parameters. 
Existing network monitoring tools can be divided into two categories. Node-oriented tools 
collect monitoring information from network devices (routers, switches and hosts) using 
SNMP/RMON probes [1] or the Cisco NetFlow tool [2]. These are useful for collecting 
statistical and billing information, and for measuring the performance of individual network 
devices (e.g., link bandwidth usage). However, in addition to the need for monitoring 
agents to be installed at every device, these tools cannot monitor network parameters that 
involve several components, like link or end-to-end path latency. The second category 
contains path-oriented tools for connectivity and latency measurement like ping, 
traceroute [3], skitter [4] and tools for bandwidth measurement such as pathchar 
[5], Bing [6], Cprobe [7], Nettimer [8] and pathrate [9]. As an example, skitter 
sends a sequence of probe messages to a set of destinations and measures the latency of a 
link as the difference in the round-trip times of the two probes to the endpoints of the link. 
A benefit of path-oriented tools is that they do not require special monitoring agents to be 
run at each node. However, a node with such a path-oriented monitoring tool, termed a 
monitoring station, is able to measure latencies and monitor faults for only a limited set of 
links in the node's routing tree, e.g., its shortest path tree (SPT). Thus, monitoring stations 
need to be deployed at a few strategic points in the ISP or Enterprise IP network so as to 
maximize network coverage, while minimizing hardware and software infrastructure cost, 
as well as maintenance cost for the stations. Consequently, any monitoring system needs to 
satisfy two basic requirements. 



 Advances in Greedy Algorithms 

 

18 

1. Coverage - The system should accurately monitor all the links and paths in the network. 
2. Efficiency - The systems should minimize the overhead imposed by monitoring on the 

underlying production network. 
The chapter proposes an efficient two-phased approach for fully and efficiently monitoring 
the latencies of links and paths using path-oriented tools. Our scheme ensures complete 
coverage of measurements by selecting monitoring stations such that each network link is in 
the routing trees of some monitoring station. It also reduces the monitoring overhead which 
consists of two costs: the infrastructure and maintenance cost associated with the 
monitoring stations, as well as the additional network traffic due to probe packets. 
Minimizing the latter is especially important when information is collected frequently in 
order to continuously monitor the state and evolution of the network. In the first phase, the 
scheme addresses the station selection problem. This phase seeks for the locations of a minimal 
set of monitoring stations that are capable to perform all the required monitoring tasks, such 
as monitoring the delay of all the network links. Subsequently, in the second phase, the 
scheme deals with the probe assignment problem, which computes a minimal set of probe 
messages transmitted by each station for satisfying the monitoring requirements. 
Although, the chapter focuses primarily on delay monitoring, the presented approach is 
more generally applicable and can also be used for other management tasks. We consider 
two variants of monitoring systems. A link monitoring (LM) system that guarantees that very 
link is monitored by a monitoring station. Such system is useful for delay monitoring, 
bottleneck links detection and fault isolation, as demonstrated in [10]. A path monitoring 
(PM) system that ensures the coverage of every routing path between any pair of nodes by a 
single station, which provides accurate delay monitoring. 
For link monitoring we show that the problem of computing the minimum set of stations 
whose routing trees (e.g, its shortest path trees), cover all network links is NP-hard. 
Consequently, we map the station selection problem to the set cover problem [11], and we 
use a polynomial-time greedy algorithm that yields a solution within a logarithmic factor of 
the optimal one. For the probe assignment problem, we show that computing the optimal 
probe set for monitoring the latency of all the network links is also NP-hard. To this 
problem, we devise a polynomial-time greedy algorithm that computes a set of probes 
whose cost is within an factor of 2 of the optimal solution. Then, we extend our scheme to 
path monitoring. Initially, we show that even when the number of monitoring stations is 
small (in our example only two monitoring stations) every pair of adjacent links along a 
given routing path may be monitored by two different monitoring stations. This raises the 
need for a path monitoring system in which every path is monitored by a single station. For 
station selection we devise a set-cover-based greedy heuristic that computes solutions with 
logarithmic approximation ratio. Then, we propose a greed algorithm for probe assignment 
and leave the problem of constructing an efficient algorithm with low approximation ratio 
for future work. 
The chapter is organized as follows. It starts with a brief survey of related work in Section 2. 
Section 3 presents the network model and a description of the network monitoring 
framework is given in Section 4. Section 5 describes our link monitoring system and Section 
6 extends our scheme to path monitoring. Section 7 provides simulation results that 
demonstrate the efficiency of our scheme for link monitoring and Section 8 concludes the 
chapter. 



A Greedy Scheme for Designing Delay Monitoring Systems of IP Networks 

 

19 

2. Related work 
The need for low-overhead network monitoring techniques has gained significant attention 
in the recent years and below we provide the most relevant studies to this chapter. The 
network proximity service project, SONAR [12], suggests to add a new client/server service 
that enables hosts to obtain fast estimations of their distance from different locations in the 
Internet. However, the problem of acquiring the latency information is not addressed. The 
IDmaps [13] project produces “latency maps” of the internet using special measurement 
servers called tracers that continuously probe each other to determine their distance. These 
times are subsequently used to approximate the latency of arbitrary network paths. 
Different methods for distributing tracers in the internet are described in [14], one of which 
is to place them such that the distance of each network node to the closest tracer is 
minimized. A drawback of the IDMaps approach is that latency measurements may not be 
accurate. Essentially, due to the small number of paths actually monitored, it is possible for 
errors to be introduced when round-trip times between tracers are used to approximate 
arbitrary path latencies. In [15], Breitbart et al. propose a monitoring scheme where a single 
network operations center (NOC) performs all the required measurements. In order to monitor 
links not in its routing tree, the NOC uses the IP source routing option to explicitly route 
probe packets along these links. The technique of using source routing for determining the 
probe routes has been used by other proposals as well for both fault detection [16] and delay 
monitoring [17]. Unfortunately, due to security problems, many routers frequently disable 
the IP source routing option. Further, routers usually process IP options separately in their 
CPU, which in addition to adversely impacting their performance, also causes packets to 
suffer unknown delays. Consequently, approaches that rely on explicitly routed probe 
packets for delay and fault monitoring may not be feasible in today's ISP and Enterprise 
environments. Another delay monitoring approach was presented by Shavit et al. in [18]. 
They propose to solve a linear system of equations to compute delays for smaller path 
segments from a given a set of end-to-end delay measurements for paths in the network. 
The problem of station placement for delay monitoring has been addressed by several 
studies. In [19], Adler et al. focus on the problem of determining the minimum cost set of 
multicast trees that cover links of interest in a network, which is similar to the station 
selection problem tackled in this chapter. The two-phase scheme of station placement and 
probe assignment have been proposed in [10]. In this work, Bejerano and Rastogi show a 
combined approach for minimizing the cost of both the monitoring stations as well as the 
probe messages. Moreover, they extend their scheme for delay monitoring and fault 
isolation in the presence of multiple failures. In [20] Breitbart et al. consider two variants of 
the station placement problem assuming that the routing tree of the nodes are their shortest 
path trees (SPTs). In the first variant, termed A-Problem, the routing trees of a node may be 
any one of its SPT, while in the second variant, called E-Problem, the routing tree of a node 
can be selected among all the possible SPTs for minimizing the monitoring overhead. For 
both variant they have shown that the problems are NP-hard and they provided 
approximation algorithms. In [21] Nguyen and Thiran developed a technique for locating 
multiple failures in IP networks using active measurement. They also proposed a two-
phased approach, but unlike the work in [10], they optimize first the probe selection and 
only then they compute the location of a minimal set of monitoring stations that can 
generate these probes. Moreover, by using techniques from a max-plus algebra theory, they 
show that the optimal set of probes can be determined in polynomial time. In [22], Suh et al. 



 Advances in Greedy Algorithms 

 

20 

propose a scheme for cost-effective placement of monitoring stations for passive monitoring 
of IP flows and controlling their sampling rate. Recently, Cantieni et al. [23], reformulate the 
monitoring placement problem. They assume that every node may be a monitoring station 
at any given time and then they ask the question which monitors should be activated and 
what should be their sampling to achieve a given measurement task? To this problem they 
provide optimal solution. 

3. Network model 
We model the Service Provider or Enterprise IP network by an undirected graph G(V,E), 
where the graph nodes, V, denote the network routers and the edges, E, represent the 
communication links connecting them. The number of nodes and edges is denoted by │V│ 
and │E│, respectively. Further, we use Ps,t to denote the path traversed by an IP packet from 
a source node s to a destination node t. In our model, we assume that packets are forwarded 
using standard IP forwarding, that is, each node relies exclusively on the destination 
address in the packet to determine the next hop. Thus, for every node x ∈ Ps,t, Px,t is included 
in Ps,t. In addition, we also assume that Ps,t  is the routing path in the opposite direction from 
node t to node s. This, in turn, implies that for every node x ∈ Ps,t, Ps,x is a prefix of Ps,t. As a 
consequence, it follows that for every node s ∈ V , the subgraph obtained by merging all the 
paths Ps,t, for every t ∈ V , must have a tree topology. We refer to this tree for node s as the 
routing tree (RT) of node s and denote it by Ts. Note that tree Ts defines the routing paths 
from node s to all the other nodes in V and vice versa. 
Observe that for a Service Provider network consisting of a single OSPF area, the RT Ts of 
node s is its shortest path tree (SPT). However, for networks consisting of multiple OSPF 
areas or autonomous systems (that exchange routing information using BGP), packets 
between nodes may not necessarily follow shortest paths. In practice, the topology of RTs 
can be calculated by querying the routing tables of nodes. In our solution, the routing tree of 
node s may be its SPT but this is not an essential requirement. 
We associate a positive cost cu,v with sending a message between any pair of nodes u, v ∈ V . 
For every intermediate node w ∈ Pu,v both cu,w and cv,w are at most cu,v and cu,w + cv,w ≥ cu,v. 
Typical examples of this cost model are the fixed cost, where all messages have the same 
cost, and hop count, where the message cost is the number of hops in its route. 

4. Network monitoring framework 
In this section, we describe our methodology for complete IP network monitoring using 
path-oriented tools. Our primary focus is the measurement of round-trip latency of network 
links and paths. However, our methodology is also applicable for a wide range of 
monitoring tasks, like fault and bottleneck link detection, as presented in [10]. For 
monitoring the round-trip delay of a link e ∈ E, a node s ∈ V such that e belongs to s's RT 
(that is, e ∈ Ts), must be selected as a monitoring station. Node s sends two probe messages1 
to the end-points of e, which travel almost identical routes except for the link e. On receiving 
a probe message, the receiver replies immediately by sending a probe reply message to the 

                                                 
1 The probe messages are implemented by using "ICMP ECHO REQUEST/REPLY" 
messages similar to ping. 



A Greedy Scheme for Designing Delay Monitoring Systems of IP Networks 

 

21 

monitoring station. Thus, the monitoring station s can estimate the round-trip delay of the 
link by measuring the difference in the round-trip times of the two probe messages. 
From the above description, it follows that a monitoring station can only measure the delays 
of links in its RT. Consequently, a monitoring system designated for measuring the delays of 
all network links has to find a set of monitoring stations S ⊆ V and a probe assignment  
A ⊂ S × V. A probe assignment is basically a set of pairs {(s, u)│s ∈ S, u ∈ V} such that each 
pair (s, u) represents a probe message that is sent from the monitoring station s to node u. 
The set S and the probe assignment A are required to satisfy two constraints: 
1. The covering monitoring station set constraint guarantees that all links are covered by the 

RTs of the nodes in S, i.e., s∈S Ts = E. 
2. The covering probe assignment constraint ensures that for every edge e = (u, v) ∈ E, there 

is a node s ∈ S such that e ∈ Ts and A contains the pairs2 (s, u) and (s, v). In other words, 
every link is monitored by at least one monitoring station. 

A pair (S,A) that satisfies the above constraints is referred to as a feasible solution. In instances 
where the monitoring stations are selected from a subset Y ⊂ V , we assume that s∈Y Ts = E 
which guarantees the existence of a feasible solution. 
The overhead of a monitoring system is composed of two components, the overhead of 
installing and maintaining the monitoring stations and the communication cost of sending 
probe messages. In practice, it is preferable to have as few stations as possible since this 
reduces operational costs, and so we adopt a two-phased approach to optimizing 
monitoring overheads. In the first phase, we select an optimal set of monitoring stations, 
while in the second, we compute the optimal probes for the selected stations. Let wv be the 
cost of selecting node v ∈ V as a monitoring station. The optimal station selection S is the one 
that satisfies the covering monitoring station set requirement and minimizes the total cost of 
all the monitoring stations given be the sum Σs∈S ws. After selecting the monitoring stations 
S, the optimal probe assignment A is one that satisfies the covering probe assignment 
constraint and minimizes the total probing cost defined by the sum Σ(s,v)∈  cs,v. Note that 
choosing csv = 1 essentially results in an assignment A with the minimum number of probes, 
while choosing cs,v to be the minimum number of hops between s and v yields a set of probes 
that traverse the fewest possible network links.  
A final component of our monitoring infrastructure is the network operations center (NOC) 
which is responsible for coordinating the actions of the set of monitoring stations S. The 
NOC queries the network nodes to determine their RTs, and subsequently uses these to 
compute a near-optimal set of monitoring stations and a probe assignment for them. In the 
following two sections, we develop approximation algorithms for the station selection and 
probe assignment problems. Section 5 considers the problem of monitoring links, while path 
monitoring is addressed in Section 6. Note that our proposed framework deals only with the 
aspect of efficient collection of monitoring information. It does not deal with the aspects of 
analyzing and distributing this information, which are application-dependent. 

                                                 
2 If one of the end points of e is in S, let say u ∈ S, then A is only required to include the 
probe (u, v). 



 Advances in Greedy Algorithms 

 

22 

5. Link monitoring 
We show in this section that for link monitoring both the station selection and probe 
assignment problems are NP-hard. Then, we present polynomialtime approximation 
algorithms for solving them. For station selection, we develop a ln(│V│)-approximation 
algorithm where the lower bound is 1/2· ln(│V│) and for probe assignment, we present a 2 
approximation algorithm. 

5.1 An efficient station selection algorithm 
The problem addressed here is covering all the graph edges with a small number of RTs, 
and we consider both the un-weighted and the weighted versions of this problem. 
Definition 1 (The Link Monitoring Problem - LM): 
Given a graph G(V,E) and a RT, Tv, for every node v ∈ V, find the smallest set S ⊆ V such 
that v∈S Tv = E.                                                                                                                                     □ 
Definition 2 (The Weighted LM Problem - WLM) : 
Given a graph G(V,E) with a non-negative weight wv and a RT Tv for every node v ∈ V , find 
the set S ⊆ V such that v∈S Tv = E and the sum Σ v∈S wv is minimum.                                        □ 
We show a similarity between the link monitoring problem and the set cover (SC) problem, 
which is a well-known NP-hard problem [24]. An efficient algorithm for solving one of them 
can be also used to efficiently solve the other. Let us recall the SC problem. Consider an 
instance I(Z,Q) of the SC problem, where Z = {z1, z2, … , zm} is a universe of m elements and 
Q = {Q1,Q2, … ,Qn} is a collection of n subsets of Z, (assume that Q∈  Q = Z). The SC 
problem seeks to find the smallest collection of subsets S ⊆ Q such that their union contains 
all the elements in Z, i.e., Q∈  Q = Z. At the weighted version of the CS problem, each one 
of the subsets Q ∈ Q has a cost wQ and the optimal solution is the lowest-cost collection of 
subsets S ⊆ Q, such that their union contains all the elements in Z. For SC problem the 
greedy heuristic [11] is a commonly used approximation algorithm and it achieves a tight 
approximation ratio of ln(k), where k is the size of the biggest set Q ∈ Q. Note that in the 
worst case k = m. 
 

 
Fig. 1. The graph G (I)(V,E) for the given instance of the SC problem. 

5.1.1 Hardness of the LM and WLM problems 
Theorem 1 The LM and WLM problems are NP-hard, even when the routing tree (RT) of each node 
is restricted to be its shortest path tree (SPT). 



A Greedy Scheme for Designing Delay Monitoring Systems of IP Networks 

 

23 

 
Fig. 2. The RTs of nodes r(2), and s1. 
Proof: We show that the LM problem is NP-hard by presenting a polynomial reduction from 
the set cover problem to the LM problem. From this follows that also the WLM problem is 
NP-hard. Consider an instance I(Z,Q) of the SC problem. Our reduction R(I) constructs the 
graph G (I)(V,E) where the RT of each node v ∈ V is also its shortest path tree. For 
determining these RTs, each edge is associated with a weight3, and the graph contains the 
following nodes and edges. For each element zi ∈ Z, it contains two connected nodes ui and 
wi. For each set Qj ∈ Q, we add a node, labeled by sj , and the edges (sj , ui) for each element zi 

∈ Qj . In addition, we use an auxiliary structure, termed an anchor clique x, which is a clique 
with three nodes, labeled by x(1), x(2) and x(3), and only node x(1) has additional incident 
edges. For each element zi ∈ Z, the graph G (I) contains one anchor clique xi whose 
attachment point, , is connected to the nodes ui and wi. The weights of all the edges 
described above is 1. Finally, the graph G (I) contains an additional anchor clique r that is 
connected to the remaining nodes and anchor cliques of the graph, and the weights of these 
edges is 1 + ε. An example of such a graph is depicted in Figure 1 for an instance of the SC 
problem with 3 elements {z1, z2, z3} and two sets Q1 = {z1, z2} and Q2 = {z2, z3}. 
We claim that there is a solution of size k to the given SC problem if and only if there is a 
solution of size k+m+1 to the LM instance defined by the graph G (I)(V,E). We begin by 
showing that if there is a solution to the SC problem of size k then there exists a set S of at 
most k+m+1 stations that covers all the edges in G (I). Let the solution of the SC problem 
consist of the sets . The set S of monitoring stations contains the nodes r(2),  

(for each element zi ∈ Z) and . We show that the set S contains k + m + 1 nodes 
that cover all the graph edges. The tree  covers edges (r(1), r(2)), (r(2), r(3)), all edges (ui, 
r(1)), (wi, r(1)), ( , r(1)), ( , ), ( , ), for each element zi, and the edges (sj , r(1)) for 
every set Qj ∈ Q. An example of such a  is depicted in Figure 2-(a). Similarly, for every zi 

∈ Z, the RT 
 
covers edges ( , ), ( , ), ( , ui) and ( , wi).   also covers 

all edges (sj, ui) for every set Qj that contains element zi, and edges (r(1), r(2)) and (r(1), r(3)). An 
example of the RT  is depicted in Figure 2-(b). Thus, the only remaining uncovered 
edges are (ui, wi), for each element zi. Since , j = 1, … , k, is a solution to the SC problem, 
these edges are covered by the RTs , as depicted in Figure 2- (c). Thus, S is a set of at 
most k +m+ 1 stations that covers all the edges in the graph G (I). 

                                                 
3 These weights do not represent communication costs. 



 Advances in Greedy Algorithms 

 

24 

Next, we show that if there is a set of at most k+m+1 stations that covers all the graph edges 
then there is a solution for the SC problem of size at most k. Note that there needs to be a 
monitoring station in each anchor clique and suppose w.l.o.g that the selected stations are 
r(2) and  for each element zi. None of these m + 1 stations covers edges (ui,wi) for elements 
zi ∈ Z. The other k monitoring stations are placed in the nodes ui,wi and sj. In order to cover 
edge (ui,wi), there needs to have a station at one of the nodes ui, wi or sj for some set Qj 

containing element zi. Also, observe that the RTs of ui and wi cover only edge (ui,wi) for 
element zi and no other element edges. Similarly, the RT of sj covers only edges (ui,wi) for 
elements zi contained in set Qj . Let S be a collection of sets defined as follows. For every 
monitoring station at any node sj add the set Qj ∈ Q to S, and for every monitoring station at 
any node ui or wi we add to S an arbitrary set Qj ∈ Q such that zi ∈ Qj . Since the set of 
monitoring stations cover all the element edges, the collection S covers all the elements of Z, 
and is a solution to the SC problem of size at most k.                                                                     □ 
The above reduction R(I) can be extended to derive a lower bound for the best 
approximation ratio achievable by any algorithm. This reduction and the proof of Theorem 
2 are given in [25]. 
Theorem 2 The lower bound of any approximation algorithm for the LM problem is · ln(│V│). 

5.1.2 A greedy algorithm for the LM and WLM problems 
We turn to present an efficient algorithm for solving the LM and the WLM problems. The 
algorithm maps the given instance of LM or WLM problem to an instance of the SC problem 
and uses a greedy heuristic for solving the SC instance, which achieves a near tight upper 
bound for the LM and WLM problems. 
 

 
Fig. 3. A formal description of the Greedy Heuristic for Set-Cover. 

For a given WLM problem involving the graph G(V,E) we define an instance of the SC 
problem as follows. The set of edges, E, defines the universe of elements, Z. The collection of 
sets Q includes the subsets Qv = {e│e ∈ Tv} for every node v ∈ V, where the weight of each 
subset Qv is equal to wv, the weight of the corresponding node v. The greedy heuristic is an 
iterative algorithm that selects in each iteration the most cost-effective set. Let C ⊆ Z be the 
set of uncovered elements. In addition, let nv = {Qv ∩ C} be the number of uncovered 
elements in the set Qv, for every v ∈ V , at the beginning of each iteration. The algorithm 
works as follows. It initializes C ← Z. Then, in each iteration, it selects the set Qv with the 



A Greedy Scheme for Designing Delay Monitoring Systems of IP Networks 

 

25 

minimum  ratio and removes all its elements from the set C. This step is done until C 
becomes empty. A formal description of the algorithm is presented in Figure 3. 
Theorem 3 The greedy algorithm computes a ln(│V│)-approximation for the LM and WLM 
problems. 
Proof: According to [11], the greedy algorithm is a H(d)-approximation algorithm for the SC 
problem, where d is the size of the biggest subset and  is the harmonic 
sequence. For the LM and WLM problems, every subset includes all the edges of the 
corresponding RT and its size is exactly│V│- 1. Hence, the approximation ratio of the 
greedy algorithm is H(│V│- 1) ≤ ln(│V│). 
Note that the worst-case time complexity of the greedy algorithm can be shown to be 
O(│V│3). 

5.2 An efficient probe assignment algorithm 
Once we have selected a set S of monitoring stations, we need to compute a probe 
assignment A for measuring the latency of the network links. Recall from Section 4 that a 
feasible probe assignment is a set of pairs {(s, u)│s ∈ S, u ∈V}. Each pair (s, u) represents a 
probe message that is sent from station s to node u and for every edge e = (u, v) ∈ E, there is 
a station s ∈ S such that e ∈ Ts and A contains the pairs (s, u) and (s, v). The cost of a probe 
assignment A is COST  = Σ(s,u)∈  cs,u and the optimal probe assignment is the one with the 
minimum cost. 

5.2.1 Hardness of the probe assignment problem 
In the following, we show that computing the optimal probe assignment is NP-hard even if 
we choose all cs,u = 1 that minimizes the number of probes in A. A similar proof can be used 
to show that the problem is NP-hard for the case when cs,u equals the minimum number of 
hops between s and u (this results in a set of probes traversing the fewest possible network 
links).  
 

 
Fig. 4. The RTs of nodes r and u13. 

Theorem 4 Given a set of stations S, the problem of computing the optimal probe assignment is NP-
hard. 
Proof: We show a reduction from the vertex cover (VC) problem [24], which is as follows: 
Given k and a graph  = ( , ), does there exist a subset V’⊆  containing at most k 
vertices such that each edge in  is incident on some node in V’. For a graph , we define 
an instance of the probe assignment problem, and show that there is a vertex cover of size at 
most k for  if and only if there is a feasible probe assignment A with cost no more than 



 Advances in Greedy Algorithms 

 

26 

COST  = 5·│ │+│ │ + k. We assume that all cs,u = 1 (thus, COST  is the number of 
probes in A). 
For a graph , we construct the network graph G(V,E) and a set of stations S for the probe 
assignment problem as follows. In addition to a root node r, the graph G contains, for each 
node  in , four nodes denoted by wi, ui1, ui2 and ui3. These nodes are connected with the 
following edges (wi, r), (wi,ui1), (ui1, ui2), (ui1, ui3) and (ui2, ui3). Also, for edge ( , ) in , we 
add the edge (wi,wj) to G. For instance, the graph G for  containing nodes ,  and , 
and edges ( , ) and ( , ) is shown in Figure 4. The weight of each edge (wi,wj) in G is 
set to 1 + ε, while the remaining edges have a weight of 1. Finally, we assume that there are 
monitoring stations at node r and nodes ui3 for each vertex  ∈ . Figure 4 illustrates the 
RTs of nodes r and u13. Note that edge (wi,wj) is only contained in the RTs of ui3 and uj3, and 
(ui1, ui2) is not contained in the RT of ui3. 
We first show that if there exists a vertex cover V’of size at most k for , then there exists a 
feasible assignment A containing no more than 5·│ │+│ │+ k probes. For measuring the 
latency of the five edges corresponding to  ∈ , A contains five probe messages: (r,wi), (r, 
ui1), (r, ui2), (ui3, ui1) and (ui3, ui2). So (wi,wj) (corresponding to edges ( , ) in ) are the only 
edges in G whose latency still remains to be measured. Since V’ is a vertex cover of , it 
must contain one of  or . Suppose  ∈ V’. Then, A contains the following two probes 
(ui3,wi) and (ui3,wj) for each edge (wi,wj ). Since the probe message (ui3,wi) is common to the 
measurement of all edges (wi,wj) corresponding to edges covered by  ∈ V’ in , and size 
of V’ is at most k, A contains at most 5· │ │+│ │ + k probes. 
We next show that if there exists a feasible probe assignment A containing at most  
5·│  │+│ │+k probes, then there exists a vertex cover of size at most k for . Let V’ 
consist of all nodes  such that A contains the probe (ui3,wi). Since each edge (wi,wj) is in the 
RT of only ui3 or uj3, A must contain one of (ui3,wi) or (uj3,wj ), and thus V’ must be a vertex 
cover of . Further, we can show that V’ contains at most k nodes. Suppose that this is not 
the case and V’ contains more than k nodes. Then, A must contain greater than k probes 
(ui3,wi) for ∈ . Further, in order to measure the latencies of all edges in E, A must contain 
5·│  │+│ │ additional probes. Of these, │ │ are needed for edges (wi,wj ), 3·│ │ for 
edges (ui3, ui1), (ui3, ui2) and (r,wi), and 2·│ │ for edges (ui1, ui2). A contains 2 probe 
messages for each edge (ui1, ui2) because the edge does not belong to the RT of ui3 and thus 2 
probe messages (v, ui2) and (v, ui1), v ≠ ui3 are needed to measure the latency of edge (ui1, ui2). 
This, however, leads to a contradiction since A would contain more than 5·│ │+│ │ + k 
probes. Thus V’ must be a vertex cover of size no greater than k.                                                □ 

5.2.2 Probe assignment algorithms 
We first describe a simple probe assignment algorithm that computes an assignment A whose 
cost is within a factor of 2 of the optimal. Consider a set of monitoring stations S and for 
every edge e ∈ E, let Se = {s│s ∈ S ∧ e ∈ Ts} be the set of stations that can monitor e. For each e 
= (u, v) ∈ E, select the station se ∈ Se for which the cost  is minimum. Then add 
the pairs (se, u) and (se, v) to A. As a result, the returned assignment is, 

 



A Greedy Scheme for Designing Delay Monitoring Systems of IP Networks 

 

27 

Theorem 5 The approximation ratio of the simple probe assignment algorithm is 2. 
Proof: For monitoring the delay of any edge e ∈ E, at least one station s ∈ S must send two 
probe messages, one to each endpoint of e. As a result, in any feasible probe assignment at 
least one probe message can be associated with each edge e. Let it be the message that is sent 
to the farthest endpoint of e from the monitoring station. Let A* be the optimal probe 
assignment and let  be the station that monitors edge e in A*. So, in A*, the cost of 
monitoring edge e = (u, v) is at least max{ ,u, ,v}. Let se be the selected station for 
monitoring edge e in the assignment A returned by the simple probe assignment algorithm. 
se minimizes the cost cs,u + cs,v, for every s ∈ Se. Thus, ,u + ,v ≤ ,u +  ,v ≤ 2· max{ ,u, 

,v}. Thus, COST  ≤ 2· COST *.                                                                                                □ 
Note that the time complexity of the simple probe assignment algorithm can be shown to be 
O(│S│·│V│2). 
Example 1 This example shows that the simple probe assignment algorithm has a tight 
approximation ratio of 2. Suppose that the cost of sending any message is 1 and consider the 
graph depicted in Figure 5. Let the monitoring stations be S = {s1, s2} and consider the 
following message assignment, A, that may be calculated by the simple algorithm. The 
edges (s1, s2), (s1, v1) and (vi, vi+1) of every odd i are assigned to station s1. The edges (s2, v1) 
and (vi, vi+1) of every even i are assigned to station s2. In this message assignment both s1 and 
s2 send probe messages to every node vi and in additional s1 send probe message to s2. 
Hence, COST  = 1 + 2·n. At the optimal assignment, A*, all the edges (vi, vi+1) are assigned 
to a single station either s1 or s2. Here, s1 sends messages to s2 and v1, station s2 also sends 
message to v1, and one message is sent to every node vi, i > 1 either from s1 or s2. Hence, 
COST *= 2 + n, and the limit   
 

 
Fig. 5. An example of a probe assignment that cost twice than the optimal. 

We turn now to describe a greedy probe assignment algorithm that also guarantees a cost 
within a factor of 2 of the optimal, but yields better results than the simple algorithm in the 
average case. It is based on the observation that a pair of probe messages is needed for 
monitoring a link, however, a single message may appear in several such pairs. It attempts 
to maximize the usage of each message for monitoring the delay of several adjacent links. 
This is an iterative algorithm that keeps for each station-edge pair (s, e), e ∈ Ts, the current 
cost, ws,e, of monitoring edge e by station s. At each iteration the algorithm select the pair (s’, 
e’) with the minimal cost and add the required messages to the message assignment A. If 
several pairs have the same cost the one with minimal number of hopes between the station 
and the edge is selected. Probe messages in A are considered as already been paid and the 
algorithm update the cost of monitoring the adjacent edges of e’ by station s’. This operation 
is done until all the edges are monitored. A formal description of the algorithm is given in 
Figure 6, where L is the set of unassigned edges and the initial value of ws,e←cs,u + cs,v, for 
every e = (u, v) ∈ E and s ∈ Se. 



 Advances in Greedy Algorithms 

 

28 

 
Fig. 6. The Greedy Probe Assignment Algorithm. 

Recall that the algorithm assigns links to the monitoring stations from near to far. First it 
assigns to each station its adjacent links. Then it continues by assigning links, which are 
adjacent to the already assigned links. In this way it attempts to avoid the situation where 
two adjacent links, that should be assigned to the same station, eventually are assigned to 
two different monitoring stations. The greedy algorithm yields the optimal probe 
assignment for the graph in Example 1. 
Theorem 6 The approximation ratio of the greedy probe assignment algorithm is 2. 
Proof: Each link e = (u, v) ∈E is monitored by the station that minimize the cost ws,e. This cost 
is at most . As we have shown in Theorem 5 this guarantees a solution 
with in a factor of 2 from the optimal.                                                                                               □ 

6. Path monitoring algorithms 
In this section, we address the problem of designing an accurate path monitoring system that 
guarantees that every routing path is monitored by a single monitoring station. First, we 
present the need for path monitoring and then we provide greedy algorithms for station 
selection and probe assignment. 

6.1 The need for path monitoring 
A delay-monitoring system should be able to provide accurate estimates of the end-to-end 
delay of the routing paths between arbitrary nodes in the network. In the monitoring 
framework described in the previous section, each link is associated with a single 
monitoring station that monitors its delay. Thus, the end-to-end delay of any path can be 
estimated by accumulating the delays of all the links along the path. A drawback of this 
approach is that the accuracy of a path delay estimation decreases as the number of links 
that compose the path increases. A better estimate can be achieved by partitioning each path 
into a few contiguous segments. Each segment is then required to be in the RT of a single 
monitoring station, which estimates its delay by sending two probe messages to the 
segment's end-points. Of course, the best estimate of delay is obtained when every path 
consists of a single segment. Unfortunately, the link monitoring scheme presented in Section 



A Greedy Scheme for Designing Delay Monitoring Systems of IP Networks 

 

29 

5.1 cannot guarantee an upper bound on the number of segments in a path. In fact, this 
number may be as high as the number of links in the path, even when the number of 
monitoring stations is small, as illustrated by the following example. 
Example 2 Consider a graph that consists of a grid of size k × k and two additional nodes, a 
and b, as depicted in Figure 7-(a). The weight of each grid edge is 1 except for edges along 
the main diagonal from node c to d whose weights are 1-ε. Also, the weights of edges 
incident on nodes a and b vary between 1* and k* as shown in Figure 7-(a), where n* = n· (1 - 
ε). Monitoring stations are located at nodes a and b, and their RTs are along their SPTs, as 
shown in Figures 7-(b) and 7-(c), respectively. In this graph, the shortest path from node c to 
d is composed of the edges along the main diagonal of the grid, as shown in Figure 7-(d). 
Note that any pair of adjacent edges along this path are monitored by two different stations. 
Thus, each edge in this path represents a separate segment and the number of segments that 
cover this path is 2 · (k-1), even though the number of stations is only two.                              □ 
In this section, we address the problem of designing an accurate path monitoring system that 
guarantees that every routing path is monitored by a single station. Thus, for every path Pu,v 

there is a monitoring station s ∈ S such that Pu,v ∈ Ts. In such case, the end-to-end delay of 
the path can be estimated by sending at most three probe messages, as described later in 
Sub-Section 6.3. 
 

 
Fig. 7. An example where each edge along a given path is included in a separate segment. 

6.2 An efficient station selection algorithm 
The station selection problem for path monitoring is defined as follows. 
Definition 3 (The Weighted Path Monitoring Problem - WPM): Given a graph G(V,E), with 
a weight wv and a RT Tv for every node v ∈ V , and a routing path Pu,v between any pair of 



 Advances in Greedy Algorithms 

 

30 

nodes u, v ∈ V , find the set S ⊆ V that minimizes the sum Σv∈S wv such that for every pair u, 
v ∈ V there is a station s ∈ S such that Pu,v ⊆ Ts.                                                                               □ 
In the un-weighted version of the WPM problem, termed the path monitoring (PM) problem, 
the weight of every node is 1. 
 

 
Fig. 8. An example of a graph G(V,E) and the corresponding graph G  ( V  , E ). 

Theorem 7 The PM and WPM problems are both NP-Hard. 
Proof: We show that the PM and WPM problems are NP-hard by presenting a polynomial 
reduction from the vertex cover (VC) problem4 to the PM problem. Since the VC problem is a 
well-known NP-complete problem this proves that the PM and the WPM problems are also 
NP-hard. 
Consider the following reduction from the VC problem to the PM problem. For a given 
graph G(V,E) we construct a graph G ( V  , E ) that contains the following nodes and edges. 
V = V  {r1, r2, r3, r4, r5} and the edges E = E {(v, r1)│v ∈ V}  {(r1, r2), (r1, r3), (r1, r4), (r1, r5), 
(r2, r3), (r4, r5)}. The weight of every edge e ∈ E is 3 and the weight of any edge e ∉ E is 2. In 
the following R = {r1, r2, r3, r4, r5}. An example of such graph is given in Figure 8. 
Now we will show that the given VC instance, graph G(V,E), has a solution, S of size k if and 
only if the PM instance, graph G (V , E ) has a solution, S  of size k + 2. In this proof we 
assume without lose of generality that the routing tree (RT) of every node is its shortest path 
tree (SPT). First, let considered the auxiliary structure defined by the nodes in R. The edge 
(r2, r3) is covered only by the SPTs  and . Therefore, one of these nodes must be 
included in S . Similarly, one of the nodes r4 or r5 must be included in S  for covering the 
edge (r4, r5). Suppose without lose of generality that the selected nodes are r2 and r4. 
Let us turn to describe the different SPTs of the nodes in G (V , E ). The SPTs  and  
are very similar. The SPT  contains the edge (r2, r3) and all the incident edges of node r1 

except edge (r1, r3). The SPT  contains the edge (r4, r5) and all the incident edges of node 
r1 except edge (r1, r5). These two SPTs together guarantee that any shortest path that one of 
its end-node is in the set R is covered. They also cover the shortest path between every pair 
of nodes u, v ∈ V such that (u, v) ∉ E. The only shortest paths that are not covered by the 
two SPTs  and  are the one-edge paths defined by E. Let Nv be the set of adjacent 
nodes to node v in the graph G (V , E ). The SPT Tv of every node v ∈ V contains of the set of 
edges, Tv = {(v, u)│u ∈ Nv}  {(r1, u)│u ∉ V  - Nv}. 

                                                 
4 Definition of the vertex cover problem is given in the proof of Theorem 4. 



A Greedy Scheme for Designing Delay Monitoring Systems of IP Networks 

 

31 

Consider a solution S of size k to the VC problem defined by graph G(V,E). Then S  = S  
{r2, r4} is a solution of size k+2 to the corresponding PM instance G (V , E ). At least one end-
point of every edge e ∈ E is a node in S. Therefore, s∈S Ts covers all the paths with only one 
edge between any pairs of nodes in V . The rest of the paths are covered by the SPTs  and 

. Hence, S  is a solution of size k + 2 to the PM problem. 
Let S  be a solution of size k + 2 to the PM problem defined by the graph G (V , E ). Then S 
= S  ∩V is a solution of size at most k to the VC instance G(V,E). The set S  must include at 
least two nodes from the set R. Thus, │S│≤ k. The SPTs of the nodes in R do not contain any 
edge in E. Therefore the edges of E are covered only by SPTs of nodes in S. Since for every 
node v ∈ V holds that Tv ∩ E = {(v, u)│u ∈ Nv – {r1}, The set S is a solution to the instance 
G(V,E) of the given VC problem.                                                                                                       □ 

6.2.1 Lower bounds for the PM and WPM problems 
We now turn our attention to computing the lower bounds on the best approximations for 
the PM and WPM problems. In the sequel, we limit our discussion to cases where 
monitoring stations are selected from a given subset of nodes Y ⊆ V . In our lower bound 
proof, we use a polynomial reduction, , from any instance I(Z,Q) of the SC problem to 
a corresponding PM instance. The graph (V,E) computed by the reduction  
contains the following nodes. The nodes ui and sj for every element zi ∈ Z and set Qj ∈ Q, 
respectively, and three additional nodes u0, t and r. The node u0 corresponds to a dummy 
element z0 that is included in every set Qj ∈ Q, and each one of the nodes t and r is the hub of 
a star that is connected to the rest of the nodes. The weight of all the graph edges is 1. An 
example of such a graph  (V,E) is depicted in Figure 9-(a), for the SC instance with 
four elements {z1, z2, z3, z4} and three sets Q1 = {z1, z2}, Q2 = {z2, z4}, Q3 = {z3, z4}. 
We next describe the routing paths between every pair of nodes, which are along their 
shortest paths. The nodes t and r have a direct edge to every other node. The shortest path 
between every pair of nodes sj and sk is through node t, and between every pair ui and ul, it is 
through node r. Between every pair of nodes sj and ui for a set Qj ∈ Q and an element zi ∈ Z, 
the shortest path traverses through node t if zi ∈ Qj , otherwise it passes through node r. The 
RTs of the various nodes for of the given example above are depicted in Figure 9. Moreover, 
for the proof, let assume that the set of possible monitoring stations is Y = {sj│∀Qj ∈ Q}  {r}. 
Lemma 1 Consider an instance I(Z,Q) of the SC problem and the corresponding graph  (V,E) 
and set Y. Then there is a solution of size k to the SC problem if and only if there is a solution of size  
k + 1 to the corresponding PM problem defined by  (V,E) and Y. 
Proof: Let S be a solution of size k to the given SC instance. Let set  = {sj │Qj ∈ S}  {r}. We 
claim that  is a feasible solution of size k + 1 to the given PM problem. First, observe that  
⊆ Y . Further, the RT Tr covers all the shortest paths that pass through node r. Also, the RT 
of any node sj ∈  for a set Qj ∈ Q covers all the shortest paths between arbitrary pairs of 
nodes sj and sk. Thus, we only need to show that all the shortest paths between pairs of 
nodes sk and ui that pass through node t are also covered. This is satisfied since for every ui, 
there is a Qj ∈ S such that zi ∈ Qj . Thus, sj ∈  and  contains all such paths between ui and 
sk through t. 



 Advances in Greedy Algorithms 

 

32 

 
Fig. 9. The graph  (V,E) and the RTs of the nodes. 

Now consider a solution  of size k + 1 to the PM problem and let S = {Qj │sj ∈ }. We claim 
that S is a solution of size k to the given SC problem. Note that r ∈  for covering all the 
shortest paths between node u0 and any node ui. This is because element z0 is contained in all 
sets of Q and thus edge (u0, r) is not contained in any RT . Hence, S is of size k. The set   

 – {r} covers all the shortest paths that pass through node t. Every element zi ∈ Z appears in 
at least one set Qk ∈ Q. Thus, there is a shortest path through t between every node ui and at 
least one node sk. This path is covered by at least one node sj ∈  for whom the shortest path 
to ui also passes through t. As a result, for every element zi ∈ Z there is a set Qj ∈ S such that 
zi ∈ Qj .                                                                                                                                                    □ 
Theorem 8 The lower bound of any approximation algorithm for the PM and WPM problems is 
ln(│V │).  
Proof: Let J be a bad SC instance with m elements and  subsets, as 
constructed in [26] for proving the ln(m) lower bound for the SC problem. Let (J) be the 
graph calculated by . The lower bound for the PM problem, PM(│V│), satisfies, 

 
The number of nodes in the graph (J) is . Consequently, 
for a large m we assume that │V│  m and thus, PM(│V│) ≥ ln(│V│).                                     □ 



A Greedy Scheme for Designing Delay Monitoring Systems of IP Networks 

 

33 

6.2.2 A greedy algorithm for station selection 
Similar to the WLM problem, an efficient solution to a WPM instance is obtained by 
mapping it to an instance of the CS problem and using the greedy heuristic given in Figure 3 
to solve this problem. Consider a graph G(V,E), a weight wv and an RT Tv for every node v ∈ 
V and let Pu,v be the routing path between any nodes u, v ∈ V. The corresponding SC 
instance in as follows. Every shortest path Pu,v  is represented by an element, denoted by  
[u, v]. Thus, the universe of elements, Z, contains  elements. For every 
node v ∈ V we define a set Qv with weight wv that contains all the routing paths covered by 
the RT of node v, i.e., Qv = {[x, y]│x, y ∈ V, x ∉ y, Px,y ⊆ Tv}. Now consider a feasible solution 
S =  to the defined SC problem. Then, S = {v│Qv ∈ S} defines a feasible 
solution to the WPM problem and for every path Pu,v, u, v ∈ V there is a monitoring station  
s ∈ S such that Pu,v ⊆ Ts. As a result, an efficient solution to the CS problem defines also an 
efficient solution of the WPM problem.  
Theorem 9 The greedy algorithm computes a 2· ln(│V│)-approximation for the PM and WPM 
problems. 
Proof: Similar to the proof of Theorem 3.                                                                                         □ 

6.3 An efficient probe assignment algorithm 
Suppose that the greedy algorithm selects a set of monitoring stations S. A monitoring 
station s ∈ S can monitor any path Pu,v ⊆ Ts by sending at most three probe messages to 
nodes u, v and w, where w ∈ Pu,v is the common ancestor of nodes u, v in the tree Ts. Let 
delay(y, x) be the estimated delay of the path between nodes y and x. Since, s can estimate its 
delay to the nodes u, v and w, the delay of the path Pu,v can be computed as follows: 

 
Theorem 10 Given a set of stations S, the problem of computing the optimal probe assignment is 
NP-hard. 
Proof: We show a similar reduction to the one given in the proof of Theorem 4 from the vertex 
cover (VC) problem. For a given graph  (( ), ), we define an instance of the probe 
assignment problem and show that there exists a vertex cover of size at most k for  if and 
only if there exists a feasible probe assignment A with cost no more than COST  = 2·│ │+ 

2·│ │+ k + 1. We assume that all cs,u = 1 (thus, COST  is the number of probes in A). 
 

 
 

Fig. 10. The RTs of nodes r and u13. 



 Advances in Greedy Algorithms 

 

34 

For a graph , we construct the network graph G(V,E) and set of stations S for the probe 
assignment problem as follows. The graph G contains two root nodes, denoted by r1, r2, and 
for each node  in  it contains two additional nodes denoted by wi and ui. The set E of 
edges of the graph G consists of the following edges. The edge (r1, r2) and for each node  in 
G, the edges (r2,wi) and (wi, ui). Also, for every edge ( , ) in , we add the edge (wi,wj) to 
G. The weight of each edge (wi,wj) in G is set to 1 + ε, while the remaining edges have a 
weight of 1. Finally, we assume that there are monitoring stations at node r1 and nodes ui for 
each vertex  ∈ . For example, consider the graph ( , ) that contains nodes  = { , 

, } and edges ( ) = { , ), ( , )}. Figure 10 shows the corresponding graph G as 
well as the routing trees of the nodes r1 and u1. Note that edge (wi,wj) is only contained in the 
RTs of ui and uj. 
We first show that if there exists a vertex cover V’ of size at most k for , then there exists a 
feasible assignment A containing no more than 2·│ │+ 2·│ │+ k + 1 probes. Recall that 
by sending a single probe from r1 to every other node We can calculate the path delay of 
every path that traverses through node r2 and every sub-paths of these paths. This requires 
2·│ │+1 probes assign to r1. Thus the only paths that are not monitored by r2 are the ones 
that contain an edge (wi,wj ), corresponding to edges ( , ) in . These include the paths 

= {ui,wi,,wj , uj}, = {wi,wj , uj}, = {ui,wi,wj} and = {wi,wj}. Consider such 
path  = {ui,wi,wj , uj}. This path can be monitored only by ui or uj . Let assume without 
the lose of generality that it is monitored by ui. This is done by sending a single probe from 
ui to uj . Similarly the path = {ui,wi,wj} can be monitored by sending a single probe from 
ui to wj . From this follows that 2·│ │ are required for each edge in . Yet, we still need to 
monitor the paths = {wi,wj , uj} and = {wi,wj}. This can be done by sending a single 
message from ui to wi. Recall that this probe message can be used for path monitoring of 
every path  and such that ( , ) in . Since V’ is a vertex cover of , it must 
contain one of  or . Let assume the node . So by selecting node ui as the monitoring 
station of the path  and the corresponding sub-paths that contains the edge (wi,wj), 
only 2·│ │+ k additional probes are required. 
We next show that if there exists a feasible probe assignment A containing at most 2·│ │+ 
2·│ │+ k + 1 probes, then there exists a vertex cover of size at most k for . As mentioned 
above, at least 2·│ │+ 1 probes are required to monitors all the paths that traverse through 
node r2 and any sub path of them. Now, let V’ consists of all nodes  such that A contains 

the probe (ui,wi). Since each edge (wi,wj) is in the RT of only ui or uj, A must contain one of 
(ui,wi) or (uj ,wj ), and thus V’ must be a vertex cover of . Further, we can show that V’ 
contains at most k nodes. Suppose that this is not the case and V’ contains more than k 
nodes. Then, A must contain more than k probes (ui,wi) for ∈ . However, as mentioned 
above at least 2·│ │probes are required to measure any path and one of the paths 

 or . This contradict the assumption that there are 2·│ │+ 2·│ │+ k + 1 
probes.                                                                                                                                                    □ 
Finding a low-cost optimal probe assignment for monitoring path delays is more 
challenging than computing the probe assignment for link monitoring (see Section 5.2). 



A Greedy Scheme for Designing Delay Monitoring Systems of IP Networks 

 

35 

Unlike the link monitoring case, we cannot claim that the optimal solution for path 
monitoring must contain at least one probe for every routing path5, which makes the 
problem for paths more dificult to approximate. We believe that a greedy algorithm similar 
to the one described in Section 5.2 will achieves good results. Yet, finding an algorithm with 
a low approximation ratio is still an open problem. 

7. Experimental results 
In this section, we present experimental results for the number of monitoring stations and 
probe messages required to measure the latency of every link in the network. The 
experiments are based on network topologies generated using the Waxman Model [27], 
which is a popular model used by the networking research community (e.g., [15]). Different 
network topologies are generated by varying three parameters: (1) n, the number of nodes in 
the network graph; (2) α, a parameter that controls the density of short edges in the 
network; and (3) β, a parameter that controls the average node degree. 
For computing the locations of monitoring stations that cover all the links in the network 
graph, we use the greedy algorithm described in Section 5.1.2. These monitoring stations are 
then used to compute probe messages for measuring the latency of every network link using 
the greedy algorithm from Sub-Section 5.2.2. We consider two measures for the cost of a 
probe: cs,v = 1 and cs,v is the number of links in the shortest path between s and v. The former 
optimizes the number of probe messages generated, while the latter optimizes total number 
of links traversed by all the probe messages. 
 

 

 
 

Table 1. Number of Monitoring Stations/Probes, n = 1000, α = 0.2, β ∈ {0.02, 0.05, 0.08, 0.1, 
0.15}. 

Table 1 depicts the results of our experiments for networks containing 1000 nodes. We 
vary the number of edges in the graph by increasing the β parameter and leaving α fixed. 
From the tables, it follows that as the number of edges in the graph increases, we need 
more monitoring stations to cover all the links in the network. However, even for large 
networks, a few monitoring stations suffice for monitoring all the links in the network. 
For instance, for n = 1000 and 2200 edges, only 10 monitoring stations cover all the 
network links. 

                                                 
5 We only know that it must contain one probe for every edge. 



 Advances in Greedy Algorithms 

 

36 

In terms of probe messages, the number of probe messages generated by the greedy 
algorithm closely tracks the number of edges, which is good since this implies a high degree 
of sharing among the probe messages. Note that this is almost optimal since the number of 
probe messages needed to measure all the network links is at least the number of edges in 
the graph. Finally, observe that the average number of links traversed by each probe 
message is fairly low, ranging between 2 and 4 in most cases. 

8. Summary 
This chapter introduces a greedy approach for delay monitoring of IP networks. It proposed 
two-phased monitoring scheme that ensures complete coverage of the network from both 
links and paths point of views, and it minimizes the monitoring overhead on the underlying 
production network. In the first phase it computes the locations of monitoring stations such 
that all network links or paths are covered by the minimal number of stations. Subsequently, 
in the second phase, it computes the minimal set of probe messages to be sent by each 
station such that the latency of every routing path can be measured. Unfortunately, both the 
station selection and the probe assignment problems are NP-hard. However, by using 
greedy approximation algorithms the scheme finds solutions close to the best possible 
approximations to both the station selection and the probe assignment problems. Further, 
the experimental results demonstrate the effectiveness of the presented algorithms for 
accurately monitoring large networks with very few monitoring stations and probe 
messages close to the number of network links. 

9. References 
[1] William Stallings. “SNMP, SNMPv2, SNMPv3, and RMON 1 and 2”. Addison-Wesley 

Longman Inc., 1999. (Third Edition). 
[2] “NetFlow Services and Applications”. Cisco Systems White Paper, 1999. 
[3] S. R. Stevens, “TCP/IP illustrated”, Addison-Wesley Publishing Company, 1994. 
[4] Cooperative Association for Internet Data Analysis (CAIDA). http://www.caida.org/. 
[5] V. Jacobsen. “Pathchar - A Tool to Infer Characteristics of Internet Paths”, April 1997. 

ftp://ftp.ee.lbl.gov/pathchar. 
[6] P. Beyssac, “Bing - Bandwidth Ping”, URL: http://www.freenix.fr/freenix/logiciels/ 

bing.html. 
[7] R. L. Carter and M. E. Crovella. “Server Selection Using Dynamic Path Characterization 

in Wide-Area Networks”, In Proceedings of IEEE INFOCOM'99, Kobe, Japan, April 
1997. 

[8] K. Lai and M. Baker. “Measuring Bandwidth”. In Proceedings of IEEE INFOCOM’99, New 
York City, New York, March 1999. 

[9] C. Dovrolis, P. Ramanathan and D. Moore. “What Do Packet Dispersion Techniques 
Measure?”. In Proceedings of IEEE INFOCOM’2001, Anchorage, Alaska, April 
2001. 



A Greedy Scheme for Designing Delay Monitoring Systems of IP Networks 

 

37 

[10] Y. Bejerano abd R. Rastogi, “Robust monitoring of link delays and faults in IP 
networks”. In Proceedings of the IEEE INFOCOM’2003, San Francisco, CA, USA, 
April 2003. 

[11] V. Chavatel, “A Greedy Heuristic for the Set-Covering Problem”, Math. of Operation 
Research, Vol. 4, No. 3, pp 233-235, 1979. 

[12] K. Moore, “SONAR - A Network Proximity Service, Version 1”. Internet-Draft, 
http://www.netlib.org/utk/projects/sonar/ August 1998. 

[13] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F. Gryniewicz, and Y. Jin, “An Architecture 
for a Global Internet Host Distance Estimation Service”, In Proceedings of IEEE 
INFOCOM'99, New York City, New York, March 1999. 

[14] S. Jamin, C. Jin, Y. Jin, Y. Raz, Y. Shavitt, and L. Zhang, “On the Placement of Internet 
Instrumentation”, In Proceedings of IEEE INFOCOM’2000, Tel Aviv, Israel, March 
2000. 

[15] Y. Breitbart, C-Y. Chan, M. Garofalakis, R. Rastogi and A. Silberschatz, “Efficiently 
Monitoring Bandwidth and Latency in IP Networks”, In Proceedings of the IEEE 
INFOCOM'2000, Tel-Aviv, Israel, March 2000, 

[16] M. Brodie, I. Rish and S. Ma, “Intelligent probing: A cost-effective approach to fault 
diagnosis in computer networks”, In IBM Systems Journal, Vol. 31, No. 3, pp 372-
385, 2002. 

[17] F. Li, M. Thottan, End-to-End Service Quality Measurement Using Source-Routed 
Probes In Proceedings of the IEEE INFOCOM’2006, Barcelona, Spain, April 
2006. 

[18] Y. Shavitt, X. Sun, A. Wool and B. Yener, "Computing the Unmeasured: An Algebraic 
Approach to Internet Mapping", In Proceedings of IEEE INFOCOM'2001, Alaska, 
April 2001. 

[19] M. Adler, T. Bu, R. Sitaraman and D. Towsley, “Tree Layout for Internal Network 
Characterizations in Multicast Networks”, In Proceedings of NGC'01, London, UK, 
November 2001. 

[20] Y. Breitbar, F. Dragan and H. Gobjuka, “ Effective network monitoring”, In Proceedings 
of ICCCN’04, Rosemont, IL, USA, October 2004. 

[21] H. X. Nguyen and P. Thiran, “Active Measurement for Multiple Link Failures Diagnosis 
in IP Networks, In Proceedings of PAM’04, Antibes, France, 2004. 

[22] K. Suh, Y. Guo, J. F. Kurose, D. F. Towsley, Locating network monitors: Complexity, 
heuristics, and coverage, In Proceedings of Infocom’05, Miami, FL, USA, March, 
2004. 

[23] G. R. Cantieni, G. Iannaccone, C. Barakat, C. Diot and P. Thiran, “Reformulating the 
monitor placement problem: optimal network-wide sampling, In Proceedings of 
CoNEXT06, Lisboa, Portugal, December, 2006. 

[24] M. R. Garey and D. S. Johnson. “Computers and Intractability: A Guide to the Theory of 
NP-Completeness”. W.H. Freeman Publishing Company, 1979. 



 Advances in Greedy Algorithms 

 

38 

[25] Y. Bejerano abd R. Rastogi, “Robust monitoring of link delays and faults in IP 
networks”. IEEE/ACM Trans. on Networking, Vol. 14, No. 5, pp 1092-1103, 
2006. 

[26] U. Feige, “A threshold of ln n for approximating set-cover”, Proceedings of the 28th 
Annual ACM Symposium on Theory of Computing, 314-318, 1996. 

[27] B. M. Waxman. “Routing of Multipoint Connections”. IEEE Journal on Selected Areas in 
Communications, 6(9):1617-1622, December 1988. 



3 

A Multilevel Greedy Algorithm for the 
Satisfiability Problem 

Noureddine Bouhmala1 and Xing Cai2 

1Vestfold University College, 
2Simula Research Laboratory,  

Norway 

1. Introduction 
The satisfiability (SAT) problem is known to be NP-complete [3] and plays a central role in 
many domains such as computer-aided design, computing theory, and artificial intelligence. 
Generally, a SAT problem is defined as follows. Given a propositional formula  

with m clauses and n boolean variables, where each variable has value of either True or 
False. Negation of boolean variable xi is denoted by x i. Each clause Cj has the following 
form: 

 
 

where Ij, I j are two sets of literals. The literals in Ij are from a subset of the n boolean 

variables, and the literals in I j are from a subset of the negation of the n boolean variables. 
Moreover, we have I ∩ I j = 0. The task is to determine whether  evaluates to true. Such 
an assignment of the n boolean variables, if it exists, is called a satisfying assignment for  
(and  is called satisfiable). Otherwise  is said to be unsatisfiable. Most SAT solvers use a 
conjunctive normal form (CNF) representation of the formula . In CNF, the formula  is 
represented as a conjunction of clauses, each clause is a disjunction of literals, where a literal 
is a boolean variable or its negation. For example, P ∨ Q is a clause containing the two 
literals P and Q. The clause P ∨ Q is satisfied if either P is true or Q is true. When each clause 
in  contains exactly k literals, the restricted SAT problem is called k-SAT. In the numerical 
experiments of this chapter, we will focus on the 3-SAT problem, where each clause contains 
exactly 3 literals. Since we have two choices for each boolean variable, and taken over n 
variables, the size of the search space S is |S| = 2n. The chapter is organized as follows. In 
Section 2 we review various algorithms for SAT problems. Section 3 explains the basic 
greedy GSAT algorithm. In Section 4, the multilevel paradigm is described. Section 5 
presents the multilevel greedy algorithm. In Section 6, we look at the results from testing the 
new approach on a test suit of problem instances. Finally in Section 7 we give a summary of 
the work. 



 Advances in Greedy Algorithms 

 

40 

2. Methods for SAT 
The SAT problem has been extensively studied due to its simplicity and applicability. The 
simplicity of the problem coupled with its intractability makes it an ideal platform for 
exploring new algorithmic techniques. This has led to the development of many algorithms 
for solving SAT problems which usually fall into two main categories: systematic algorithms 
and local search algorithms. Systematic search algorithms are guaranteed to return a 
solution to a SAT problem if at least one exists or prove it insoluble otherwise. 

2.1 Systematic search algorithms 
The most popular and efficient systematic search algorithms for SAT are based on the Davis-
Putnam (DP) [4] procedure which enumerates all possible variable assignments. This is 
achieved by setting up a binary search tree and proceeding until it either finds a satisfying 
truth assignment or concludes that no such assignment exists. In each recursive call of the 
algorithm the propositional formula  is simplified by unit propagation. A boolean variable 
xi is selected according to a predefined rule among the n boolean variables. Next, find all the 
clauses that include the literal xi and delete it from all these clauses. Let C = {C1,C2, . . . ,Ck} be 
the set of k(<= m) clauses resulting from this process. Similarly, let D = {D1,D2, . . . ,Dr} 
denote the set of r(<= m) clauses resulting from deleting the literal ¯xi. Moreover, let R = 
{R1,R2, . . . ,R(m−k−r)} represent the set of m − k − r clauses that include neither of these two 
literals. Finally, the original propositional formula is reduced to 

 
Note that the propositional formula simpler does not contain the boolean variable xi since 
none of the clauses set C, D and R include xi. If thus an empty clause is obtained, the current 
partial assignment can not be extended to a satisfying one and backtracking is used to 
proceed with the search; if an empty formula is obtained, i.e., all clauses are satisfied, the 
algorithm returns a satisfying assignment. If neither of these two situations occur, an 
unassigned variable is chosen and the algorithm is called recursively after adding a unit 
clause containing this variable and its negation. If all branches are explored and no 
satisfying assignment has been reached, the formula is found to be unsatisfiable. For 
efficiency reasons, the search tree is explored in depth-first search manner. Since we are only 
interested in whether the SAT problem is satisfiable or not, we stop as soon as the first 
solution is found. The size of the search tree depends on the branching rule adopted (how to 
select the branch variable) thereby affecting the overall efficiency of DP. This has led to the 
development of various improved DP variants which differ in the schemes employed to 
maximize the efficiency of unit propagation in their branching rules. 

2.2 Stochastic local search algorithms 
Due to their combinatorial explosion nature, large and complex SAT problems are hard to 
solve using systematic algorithms. One way to overcome the combinatorial explosion is to 
give up completeness. Stochastic local search (SLS) algorithms are techniques which use this 
strategy. SLS algorithms are based on what is perhaps the oldest optimization method: trial 



A Multilevel Greedy Algorithm for the Satisfiability Problem 

 

41 

and error. Typically, they start with an initial assignment of the variables, either randomly or 
heuristically generated. Satisfiability can be formulated as an optimization problem in which 
the goal is to minimize the number of unsatisfied clauses. Thus, the optimum is obtained 
when the value of the objective function equals zero, which means that all clauses are 
satisfied. During each iteration, a new solution is selected from the neighborhood of the 
current one by performing a move. Choosing a good neighborhood and a search method are 
usually guided by intuition, because very little theory is available as a guide. Most SLS 
algorithms use a 1-flip neighborhood relation for which two truth value assignments are 
neighbors if they differ in the truth value of one variable. If the new solution provides a 
better value in light of the objective function, the new solution replaces the current one. The 
search terminates if no better neighbor solution can be found. 
One of the most popular local search methods for solving SAT is GSAT [9]. The GSAT 
algorithm operates by changing a complete assignment of variables into one in which the 
maximum possible number of clauses are satisfied by changing the value of a single 
variable. An extension of GSAT referred as random-walk [10] has been realized with the 
purpose of escaping from local optima. In a random walk step, an unsatisfied clause is 
randomly selected. Then, one of the variables appearing in that clause is flipped, thus 
effectively forcing the selected clause to become satisfied. The main idea is to decide at each 
search step whether to perform a standard GSAT or a random-walk strategy with a 
probability called the walk probability. Another widely used variant of GSAT is the 
WalkSAT algorithm originally introduced in [12]. It first picks randomly an unsatisfied 
clause and then in a second step, one of the variables with the lowest break count appearing 
in the selected clause is randomly selected. The break count of a variable is defined as the 
number of clauses that would be unsatisfied by flipping the chosen variable. If there exists a 
variable with break count equals to zero, this variable is flipped, otherwise the variable with 
minimal break count is selected with a certain probability (noise probability). The choice of 
unsatisfied clauses combined with the randomness in the selection of variables enable 
WalkSAT to avoid local minima and to better explore the search space. 
Recently, new algorithms [12] [13] [14] [15] [16] have emerged using history-based variable 
selection strategy in order to avoid flipping the same variable. Apart from GSAT and its 
variants, several clause weighting based SLS algorithms [17] [18] have been proposed to 
solve SAT problems. The key idea is associate the clauses of the given CNF formula with 
weights. Although these clause weighting SLS algorithms differ in the manner how clause 
weights should be updated (probabilistic or deterministic) they all choose to increase the 
weights of all the unsatisfied clauses as soon as a local minimum is encountered. Clause 
weighting acts as a diversification mechanism rather than a way of escaping local minima. 
Finally, many other SLS algorithms have been applied to SAT. These include techniques 
such as Simulated Annealing [19], Evolutionary Algorithms [20], and Greedy Randomized 
Adaptive Search Procedures [21]. 

3. The GSAT greedy algorithm 
This section is devoted to explaining the GSAT greedy algorithm and one of its variants 
before embedding it into the multilevel paradigm. Basically, the GSAT algorithm begins 
with a randomly generated assignment of the variables, and then uses the steepest descent 



 Advances in Greedy Algorithms 

 

42 

heuristic to find the new truth value assignment which best decreases the number of 
unsatisfied clauses. After a fixed number of moves, the search is restarted from a new 
random assignment. The search continues until a solution is found or a fixed number of 
restart is performed. As with any combinatorial optimization , local minima or plateaus (i.e., 
a set of neighboring states each with an equal number of unsatisfied clauses) in the search 
space are problematic in the application of greedy algorithms. A local minimum is defined 
as a state whose local neighborhood does not include a state that is strictly better. The 
introduction of an element of randomness (e.g., noise) into a local search methods is a 
common practice to increase the success of GSAT and improve its effectiveness through 
diversification [2]. 
 

 
Fig. 1. The GSAT Random Walk Algorithm. 

The algorithm of GSAT Random Walk, which is shown in Figure 1, starts with a randomly 
chosen assignment. Thereafter two possible criteria are used in order to select the variable to 
be flipped. The first criterion uses the notion of a “noise” or walk-step probability to 
randomly select a currently unsatisfied clause and flip one of the variables appearing in it 
also in a random manner. At each walk-step, at least one unsatisfied clause becomes 
satisfied. The other criterion uses a greedy search to choose a random variable from the set 
PossFlips. Each variable in this set, when flipped, can achieve the largest decrease (or the 
least increase) in the total number of unsatisfied clauses. The walk-step strategy may lead to 
an increase in the total number of unsatisfied clauses even if improving flips would have 
been possible. In consequence, the chances of escaping from local minima of the objective 
function are better compared with the basic GSAT [11]. 



A Multilevel Greedy Algorithm for the Satisfiability Problem 

 

43 

4. The multilevel paradigm 
The multilevel paradigm is a simple technique which at its core applies recursive coarsening 
to produce smaller and smaller problems that are easier to solve than the original one. 
Figure 2 shows the generic multilevel paradigm in pseudo-code. The multilevel paradigm 
consists of three phases: coarsening, initial solution, and multilevel refinement. During the 
coarsening phase, a series of smaller problems is constructed by matching pairs of vertices 
of the input original problem in order to form clusters, which define a related coarser 
problem. The coarsening procedure recursively iterates until a sufficiently small problem is 
obtained. Computation of an initial solution is performed on the coarsest level (the smallest 
problem). Finally, the initial solution is projected backward level by level. Each of the finer 
levels receives the preceding solution as its initial assignment and tries to refine it by some 
local search algorithm. A common feature that characterizes multilevel algorithms is that 
any solution in any of the coarsened problems is a legitimate solution to the original 
problem. This is always true as long as the coarsening is achieved in a way that each of the 
coarsened problems retains the original problem’s global structure. 
 

 
Fig. 2. The Multilevel Generic Algorithm. 

The key success behind the efficiency of the multilevel techniques is the use of the multilevel 
paradigm, which offers two main advantages enabling local search techniques to become 
much more powerful in the multilevel context. First, by allowing local search schemes to 
view a cluster of vertices as a single entity, the search becomes restricted to only those 
configurations in the solution space in which the vertices grouped within a cluster are 
assigned the same label. During the refinement phase a local refinement scheme applies a 
local transformation within the neighborhood (i.e., the set of solutions that can be reached 



 Advances in Greedy Algorithms 

 

44 

from the current one) of the current solution to generate a new one. As the size of the 
clusters varies from one level to another, the size of the neighborhood becomes adaptive and 
allows the possibility of exploring different regions in the search space. Second, the ability of 
a refinement algorithm to manipulate clusters of vertices provides the search with an 
efficient mechanism to escape from local minima. 
Multilevel techniques were first introduced when dealing with the graph partitioning 
problem (GPP) [1] [5] [6] [7] [8] [22] and have proved to be effective in producing high 
quality solutions at lower cost than single level techniques. The traveling salesman problem 
(TSP) was the second combinatorial optimization problem to which the multilevel paradigm 
was applied and has clearly shown a clear improvement in the asymptotic convergence of 
the solution quality. Finally, when the multilevel paradigm was applied to the graph 
coloring problem, the results do not seem to be in line with the general trend observed in 
GPP and TSP as its ability to enhance the convergence behaviour of the local search 
algorithms was rather restricted to some problem classes. 

5. A multilevel framework for SAT 
• Coarsening: The original problem P0 is reduced into a sequence of smaller problems P0, 

P2, . . . , Pm. It will require at least O(log n/n’) steps to coarsen an original problem with n 

variables down to n’ variables. Let V v
i  denote the set of variables of Pi that are combined 

to form a single variable v in the coarser problem Pi+1. We will refer to v as a 
multivariable. Starting from the original problem P0, the first coarser problem P1 is 
constructed by matching pairs of variables of P0 into multivariables. The variables in P0 

are visited in a random order. If a variable has not been matched yet, then we randomly 
select another unmatched variable, and a multivariable consisting of these two variables 
is created. Unmatchable variables are simply copied to the coarser level. The new 
multivariables are used to define a new and smaller problem. This coarsening process is 
recursively carried out until the size of the problem reaches some desired threshold. 

• Initial solution: An initial assignment Am of Pm is easily computed using a random 
assignment algorithm, which works by randomly assigning to each multivariable of the 
coarsest problem Pm the value of true or false. 

• Projection: Having optimized the assignment Ak+1 for Pk+1, the assignment must be 
projected back to its parent Pk. Since each multivariable of Pk+1 contains a distinct subset 
of multivariables of Pk, obtaining Ak from Ak+1 is done by simply assigning the set of 

variables V k
v

 the same value as v ∈ Pk+1 (i.e., Ak[u] = Ak+1[v], ∀u ∈V k
v ). 

• Refinement: At each level, the assignment from the previous coarser level is projected 
back to give an initial assignment and further refined. Although Ak+1 is a local minimum 
of Pk+1, the projected assignment Ak may not be at a local optimum with respect to Pk. 
Since Pk is finer, it may still be possible to improve the projected assignment using a 
version of GSAT adapted to the multilevel paradigm. The idea of GSAT refinement as 
shown in Figure 3 is to use the projected assignment of Pk+1 onto Pk as the initial 
assignment of GSAT. Since the projected assignment is already a good one, GSAT will 
hopefully converge quickly to a better assignment. During each level, GSAT is allowed 
to perform MAXFLIPS iterations before moving to a finer level. If a solution is not 



A Multilevel Greedy Algorithm for the Satisfiability Problem 

 

45 

found at the finest level, a new round of coarsening, random initial assignment, and 
refinement is performed. 

 

 
Fig. 3. The GSAT Refinement Algorithm. 

6. Experimental results 
6.1 Benchmark instances 
To illustrate the potential gains offered by the multilevel greedy algorithm, we selected a 
benchmark suite from different domains including benchmark instances of SAT competition 
Beijing held in 1996. These instances are by no means intended to be exhaustive but rather 
as an indication of typical performance behavior. All these benchmark instances are known 
to be hard and difficult to solve and are available from the SATLIB website 
(http://www.informatik.tudarmstadt. de/AI/SATLIB). All the benchmark instances used 
in this section are satisfiable and have been used widely in the literature in order to give an 
overall picture of the performance of different algorithms. Due to the randomization of the 
algorithm, the time required for solving a problem instance varies between different runs. 
Therefore, for each problem instance, we run GSAT and MLVGSAT both 100 times with a 
max-time cutoff parameter set to 300 seconds. All the plots are given in logarithmic scale 
showing the evolution of the solution quality based on averaged results over the 100 runs. 

6.1.1 Random-3-SAT 
Uniform Random-3-SAT is a family of SAT problems obtained by randomly generating 3-
CNF formula in the following way: For an instance with n variables and k clauses, each of 
the k clauses is constructed from 3 literals which are randomly drawn from the 2n possible 
literals (the n variables and their negations), such that each possible literal is selected with 
the same probability of 1/2n. Clauses are not accepted for the construction of the problem 
instance if they contain multiple copies of the same literal or if they are tautological (i.e., 
they contain a variable and its negation as a literal). 

6.1.2 SAT-encoded graph coloring problems 
The graph coloring problem (GCP) is a well-known combinatorial problem from graph 
theory: Given a graph G = (V, E), where V = v1, v2, . . . , vn is the set of vertices and E the set of 



 Advances in Greedy Algorithms 

 

46 

edges connecting the vertices, the goal is to find a coloring C : V → N, such that two vertices 
connected by an edge always have different colors. There are two variants of this problem: 
In the optimization variant, the goal is to find a coloring with a minimal number of colors, 
whereas in the decision variant, the question is to decide whether for a particular number of 
colours, a coloring of the given graph exists. In the context of SAT-encoded graph coloring 
problems, we focus on the decision variant. 

6.1.3 SAT-encoded logistics problems 
In the logistics planning domain, packages have to be moved between different locations in 
different cities. Within cities, packages are carried by trucks while between cities they are 
transported by planes. Both trucks and airplanes are of limited capacity. The problem 
involves 3 operators (load, unload, move) and two state predicates (in, at). The initial and 
goal state specify locations for all packages, trucks, and planes; the plans allow multiple 
actions to be executed simultaneously, as long as no conflicts arise from their preconditions 
and effects. The question in the decision variant is to decide whether a plan of a given length 
exists. SAT-based approaches to logistics planning typically focus on the decision variant. 

6.1.4 SAT-encoded block world planning problems 
The Blocks World is a very well-known problem domain in artificial intelligence research. 
The general scenario in Blocks World Planning comprises a number of blocks and a table. 
The blocks can be piled onto each other, where the down-most block of a pile is always on 
the table. There is only one operator which moves the top block of a pile to the top of 
another pile or onto the table. Given an initial and a goal configuration of blocks, the 
problem is to find a sequence of operators which, when applied to the initial configuration, 
leads to the goal situation. Such a sequence is called a (linear) plan. Blocks can only be 
moved when they are clear, i.e., no other block is piled on top of them, and they can be only 
moved on top of blocks which are clear or onto the table. If these conditions are satisfied, the 
move operator always succeeds. SAT-based approaches to Blocks World Planning typically 
focus on the decision variant where the question is to decide whether a plan of a given 
length exists. 

6.1.5 SAT-encoded quasigroup problems 
A quasigroup is an ordered pair (Q, ·), where Q is a set and · is a binary operation on Q such 
that the equations a · x = b and y · a = b are uniquely solvable for every pair of elements a, b 
in Q. The cardinality of the set Q is called the order of the quasigroup. Let N be the order of 
the quasigroup Q then the multiplication table Q is a table N ×N such that the cell at the 
coordinate (x, y) contains the result of the operation x · y. The multiplication of the 
quasigroup must satisfy a condition that there are no repeated result in each row or column. 
Thus, the multiplication table defines a Latin square. A complete Latin square is a table that 
is filled completely. The problem of finding a complete Latin square can be stated as a 
satisfiability problem. 

6.2 Experimental results 
Figures 4-15 show individual results which appear to follow the same pattern within each 
application domain. Overall, at least for the instances tested here, we observe that the search 



A Multilevel Greedy Algorithm for the Satisfiability Problem 

 

47 

pattern happens in two phases. In the first phase, both MLVGSAT and GSAT behave as a 
hill-climbing method. This phase is short and a large number of the clauses are satisfied. The 
best assignment climbs rapidly at first, and then flattens off as we mount the plateau, 
marking the start of the second phase. The plateau spans a region in the search space where 
flips typically leave the best assignment unchanged. The long plateaus become even more 
pronounced as the number of flips increases, and occurs more specifically in trying to satisfy 
the last few remaining clauses. The transition between two plateaus corresponds to a change 
to the region where a small number of flips gradually improve the score of the current 
solution ending with an improvement of the best assignment. The plateau is rather of short 
length with MLVGSAT compared with that of GSAT. For MLVGSAT the projected solution 
from one level to its finer predecessor offers an elegant mechanism to reduce the length of 
the plateau as it consists of more degrees of freedom that can be used for further improving 
the best solution. The plots show a time overhead for MLVGSAT specially for large 
problems due mainly to data structures settings at each level. We feel that this initial 
overhead, which is a common feature in multilevel implementations is more susceptible to 
further improvements, and will be considerably minimized by a more efficient 
implementation. Comparing GSAT and MLVGSAT for small problems (up to 1500 clauses) 
and as can be seen from the left sides of Figures 6,8, both algorithms seem to be reaching the 
optimal quality solutions. It is not immediately clear which of the two algorithms converges 
more rapidly. This is probably very dependent on the choice of the instances in the test 
suite. For example the run time required by MLVGSAT for solving instance flat100-239 is 
more than 12 times higher than the mean run-time of GSAT (25sec vs 2sec). The situation is 
reversed when solving the instance block-medium (20sec vs 70sec). The difference in 
convergence behavior of the two algorithms becomes more distinctive as the size of the 
problem increases. All the plots show a clear dominance of MLGSAT over GSAT 
throughout the whole run. MLVGSAT shows a better asymptotic convergence (to around 
0.008%−0.1%) in excess of the optimal solution as compared with GSAT which only reach 
around (0.01%- 11%). The performance of MLVGSAT surpasses that of GSAT although few 
of the curves overlay each other closely, MLVGSAT has marginally better asymptotic 
convergence. 
The quality of the solution may vary significantly from run to run on the same problem 
instance due to random initial solutions and subsequent randomized decisions. We choose 
the Wilcoxon Rank test in order to test the level of statistical confidence in differences 
between the mean percentage excess deviation from the solution of the two algorithms. The 
test requires that the absolute values of the differences between the mean percentage excess 
deviation from the solution of the two algorithms are sorted from smallest to largest and 
these differences are ranked according to the absolute magnitude. The sum of the ranks is 
then formed for the negative and positive differences separately. As the size of the trials 
increases, the rank sum statistic becomes normal. If the null hypothesis is true, the sum of 
ranks of the positive differences should be about the same as the sum of the ranks of the 
negative differences. Using two-tailed P value, significance performance difference is 
granted if the Wilcoxon test is significant for P < 0.05. 
Looking at Table 1, we observe that the difference in the mean excess deviation from the 
solution is significant for large problems and remains insignificant for small problems. 



 Advances in Greedy Algorithms 

 

48 

 
Fig. 4. Log-Log plot:Random:(Left ) Evolution of the best solution on a 600 variable problem 
with 2550 clauses (f600.cnf). Along the horizontal axis we give the time in seconds , and 
along the vertical axis the number of unsatisfied clauses. (Right) Evolution of the best 
solution on a 1000 variable problem with 4250 clauses. (f1000.cnf).Horizontal axis gives the 
time in seconds, and the vertical axis shows the number of unsatisfied clauses. 
 

 
Fig. 5. Log-Log plot: Random:Evolution of the best solution on a 2000 variable problem with 
8500 clauses (f2000.cnf). Along the horizontal axis we give the time in seconds , and along 
the vertical axis the number of unsatisfied clauses. 
 

 
Fig. 6. Log-Log plot: SAT-encoded graph coloring:(Left ) Evolution of the best solution on a 
300 variable problem with 1117 clauses (flat100.cnf). Along the horizontal axis we give the 
time in seconds, and along the vertical axis the number of unsatisfied clauses. (Right) 
Evolution of the best solution on a 2125 variable problem with 66272 clauses (g125-17.cnf). 
Horizontal axis gives the time in seconds, and the vertical axis shows the number of 
unsatisfied clauses. 



A Multilevel Greedy Algorithm for the Satisfiability Problem 

 

49 

 
Fig. 7. Log-Log plot: SAT-encoded graph coloring:Evolution of the best solution on a 2250 
variable problem with 70163 clauses (g125-18.cnf). Along the horizontal axis we give the 
time in seconds , and along the vertical axis the number of unsatisfied clauses. 
 

 
 

Fig. 8. SAT-encoded block world:(Left ) Evolution of the best solution on a 116 variable 
problem with 953 clauses (medium.cnf). Along the horizontal axis we give the time in 
seconds , and along the vertical axis the number of unsatisfied clauses. Log-Log plot (Right) 
Evolution of the best solution on a 459 variable problem with 7054 clauses (huge.cnf). 
Horizontal axis gives the time in seconds, and the vertical axis shows the number of 
unsatisfied clauses. 
 

 
Fig. 9. Log-Log plot: SAT-encoded block world:Evolution of the best solution on a 1087 
variable problem with 13772 clauses (bw-largeb.cnf). Along the horizontal axis we give the 
time in seconds, and along the vertical axis the number of unsatisfied clauses. 



 Advances in Greedy Algorithms 

 

50 

 
Fig. 10. Log-Log plot: SAT-encoded Logistics:(Left) Evolution of the best solution on a 843 
variable problem with 7301 clauses (logisticsb.cnf). Along the horizontal axis is the time in 
seconds , and along the vertical axis the number of unsatisfied clauses. (Right) Evolution of 
the best solution on a 1141 variable problem with 10719 clauses (logisticsc.cnf). Horizontal 
axis gives the time in seconds, and the vertical axis shows the number of unsatisfied clauses. 
 

 
Fig. 11. Log-Log plot:SAT-encoded logistics:Evolution of the best solution on a 4713 variable 
problem with 21991 clauses (logisticsd.cnf). Along the horizontal axis we give the time in 
seconds, and along the vertical axis the number of unsatisfied clauses. 
 

 
 

Fig. 12. Log-Log plot:SAT-encoded quasigroup:(Left) Evolution of the best solution on a 129 
variable problem with 21844 clauses (qg6-9.cnf). Along the horizontal axis we give the time 
in seconds , and along the vertical axis the number of unsatisfied clauses.(Right) Evolution 
of the best solution on a 729 variable problem with 28540 clauses (qg5.cnf). Horizontal axis 
gives the time in seconds, and the vertical axis shows the number of unsatisfied clauses. 



A Multilevel Greedy Algorithm for the Satisfiability Problem 

 

51 

 
Fig. 13. Log-Log plot:SAT-encoded quasigroup:Evolution of the best solution on a 512 
variable problem with 148957 clauses (qg1-8.cnf). Along the horizontal axis we give the time 
in seconds , and along the vertical axis the number of unsatisfied clauses. 
 

 
Fig. 14. Log-Log plot:SAT competition Beijing: (Left) Evolution of the best solution on a 410 
variable problem with 24758 clauses (4blockb.cnf). Along the horizontal axis we give the time 
in seconds, and along the vertical axis the number of unsatisfied clauses. (Right) Evolution of 
the best solution on a 8432 variable problem with 31310 clauses (3bitadd-31.cnf). Horizontal 
axis gives the time in seconds, and the vertical axis shows the number of unsatisfied clauses. 
 

 
Fig. 15. Log-Log plot:SAT competition Beijing:(Left) Evolution of the best solution on a 8704 
variable problem with 32316 clauses (3bitadd32.cnf). Along the horizontal axis we give the 
time in seconds, and along the vertical axis the number of unsatisfied clauses. (Right) 
Evolution of the best solution on a 758 variable problem with 47820 clauses (4blocks.cnf). 
Horizontal axis gives the time in seconds, and the vertical axis shows the number of 
unsatisfied clauses. 



 Advances in Greedy Algorithms 

 

52 

 
Table 1. Wilcoxon statistical test. 

7. Conclusions 
In this chapter, we have described and tested a new approach to solving the SAT problem 
based on combining the multilevel paradigm with the GSAT greedy algorithm. The 
resulting MLVGSAT algorithm progressively coarsens the problem, provides an initial 
assignment at the coarsest level, and then iteratively refines it backward level by level. In 
order to get a comprehensive picture of the new algorithm’s performance, we used a 
benchmark set consisting of SAT-encoded problems from various domains. Based on the 
analysis of the results, we observed that within the same computational time, MLVGSAT 
provides higher quality solution compared with that of GSAT. Other conclusions that we 
may draw from the results are that the multilevel paradigm can either speed up GSAT or 
even improve its asymptotic convergence. Results indicated that the larger the instance, the 
higher the difference between the mean percentage excess deviation from the solution. An 
obvious subject for further work would be the use of efficient data structures in order to 
minimize the overhead during the coarsening and refinement phases. It would be of great 
interest to further validate or contradict the conclusions of this work by extending the range 
of problem classes. Finally, obvious subjects for further work include designing different 
coarsening strategies and tuning the refinement process. 

8. References 
[1] S.T. Barnard and H.D. Simon. A fast multilevel implementation of recursive spectral 

bisection for partitioning unstructured problems. Concurrency: Practice and 
Experience, 6(2):101-17, 1994. 



A Multilevel Greedy Algorithm for the Satisfiability Problem 

 

53 

[2] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and 
conceptual comparison. ACM Computing Surveys, 35(3):268-308, 2003. 

[3] S.A. Cook. The complexity of theorem-proving procedures. Proceedings of the Third ACM 
Symposium on Theory of Computing, pages 151-158, 1971. 

[4] M. Davis and H.Putnam. A computing procedure for quantification theory. Journal of the 
ACM, 7:201-215, 1960. 

[5] R. Hadany and D. Harel. A Multilevel-Scale Algorithm for Drawing Graphs Nicely. 
Tech.Rep.CS99-01, Weizmann Inst.Sci, Faculty Maths.Comp.Sci, 1999. 

[6] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In S. 
Karin, editor, Proc.Supercomputing’95, San Diego, 1995. ACM Press, New York. 

[7] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning 
irregular graphs. SIAM J.Sci. Comput., 20(1):359-392, 1998. 

[8] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. 
J.Par.Dist.Comput., 48(1):96-129, 1998. 

[9] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability 
problems. Proceedings of AAA’92, pages 440-446. MIT Press, 1992. 

[10] B. Selman, Henry A. Kautz, and B. Cohen. Noise strategies for improving local search. 
Proceedings of AAAI’94, pages 337-343. MIT Press, 1994. 

[11] B. Selman and H.K. Kautz. Domain-independent extensions to GSAT: Solving large 
structured satisfiability problems. In R. Bajcsy, editor, Proceedings of the international 
Joint Conference on Artificial Intelligence, volume 1, pages 290-295. Morgan Kaufmann 
Publishers Inc., 1993. 

[12] D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local search. 
Proceedings of AAAI’97, pages 321-326. MIT Press, 1997. 

[13] F. Glover. Tabu search – Part I. ORSA Journal on Computing, 1(3):190-206, 1989. 
[14] P. Hansen and B. Jaumand. Algorithms for the maximum satisfiability problem. 

Computing, 44:279-303, 1990. 
[15] I. Gent and T. Walsh. Unsatisfied variables in local search. In J. Hallam, editor, Hybrid 

Problems, Hybrid Solutions, pages 73-85. IOS Press, 1995. 
[16] L.P. Gent and T.Walsh. Towards an understanding of hill-climbing procedures for SAT. 

Proceedings of AAAI’93, pages 28-33. MIT Press, 1993. 
[17] B. Cha and K. Iwama. Performance tests of local search algorithms using new types of 

random CNF formula. Proceedings of IJCAI’95, pages 304-309. Morgan Kaufmann 
Publishers, 1995. 

[18] J. Frank. Learning short-term clause weights for GSAT. Proceedings of IJCAI’97, pages 
384- 389. Morgan Kaufmann Publishers, 1997. 

[19] W.M. Spears. Simulated Annealing for Hard Satisfiability Problems. Technical Report, 
Naval Research Laboratory, Washington D.C., 1993. 

[20] A.E. Eiben and J.K. van der Hauw. Solving 3-SAT with adaptive genetic algorithms. 
Proceedings of the 4th IEEE Conference on Evolutionary Computation, pages 81-86. IEEE 
Press, 1997. 

[21] D.S. Johnson and M.A. Trick, editors. Cliques, Coloring, and Satisfiability, Volume 26 of 
DIMACS Series on Discrete Mathematics and Theoretical Computer Science. American 
Mathematical Society, 1996. 



 Advances in Greedy Algorithms 

 

54 

[22] C. Walshaw and M. Cross. Mesh partitioning: A multilevel balancing and refinement 
algorithm. SIAM J.Sci. Comput., 22(1):63-80, 2000. 



4 

A Multi-start Local Search Approach to the 
Multiple Container Loading Problem 

Shigeyuki Takahara 
Kagawa Prefectural Industrial Technology Center  

Japan 

1. Introduction 
This paper is concerned with the multiple container loading problem with rectangular boxes 
of different sizes and one or more containers, which means that the boxes should be loaded 
into the containers so that the waste space in the containers are minimized or the total value 
of the boxes loaded into the containers is maximized. Several approaches have been taken to 
solve this problem (Ivancic et al., 1989; Mohanty et al., 1994; George, 1996; Bortfeldt, 2000; 
Eley, 2002; Eley, 2003; Takahara, 2005; Takahara, 2006). The aim of this paper is to propose 
an efficient greedy approach for the multiple container loading problem and to contribute to 
develop a load planning software and applications. 
The problem considered in this paper is the three-dimensional packing problem, therefore it 
is known to NP-hard. This implies that no simple algorithm has been found so far. In this 
paper this problem is solved by a relatively simple method using a two-stage strategy. 
Namely, all boxes are numbered and for the sequence of the numbers a greedy algorithm of 
loading boxes into containers is considered. This greedy algorithm is based on first-fit 
concept (Johnson et al., 1974) and determines the arrangement of each box. This algorith try 
to load the boxes all kind of containers and select the best arrangement result. It’s requires a 
box loading sequence and a set of orientation orders of each box type for each container 
type. 
Each box is tried to load according to these dynamic parameters. Moreover, a static 
parameter overhang ratio is introduced here. This is a percentage of the bottom face area of 
the loading box that isn’t supported with other boxes that are below. As shown by Takahara 
(Takahara, 2006), if this parameter is different, the arrangement given this algorithm is 
different in spite of using a same pair of the loading sequence and the orientation orders. 
Some initial pairs of solution, that is a box loading sequence and a set of orientation orders 
of each box type, are selected among some rules, which are given beforehand. This solution 
is altered by using a multi-start local search approach. The local search approach is used to 
find a good pair of solutions that is brought an efficient arrangement by the greedy loading 
algorithm. The arrangement obtained in the iterations is estimated by volume utilization or 
total value of the loaded boxes. 
The effectiveness of the proposed approach is shown by comparing the results obtained 
with the approaches presented by using benchmark problems from the literature. Finally, 
the layout examples by the application using the proposed approach for container loading 
are illustrated. 



 Advances in Greedy Algorithms 

 

56 

2. Problem description 
The multiple container loading problem discussed in this paper is to load a given set of 
several boxes of varying size in one or more different containers so as to minimize the total 
volume of required containers or to maximize the total value of loaded boxes. This problem 
includes two kinds of problem, one is the problem with one container type and the other is 
the problem with different container types. 
Before presenting the problem formulation, some notations used this paper are defined. 
Let n be the number of types of boxes and let P = {1,..., n} . The box, the volume, the value 
per unit volume and the number of a box of type i , i ∈ P , are denoted by bi, vi , ci and mi, 
respectively. Each box of type corresponds to integer i , i ∈ P , and all permutations of the 
numbers ρ ={ σ : σ  (b1,..., bi,..., bn),  i∈ P} are considered. The number of boxes is denoted by 
T , i.e. . 
Let N be the number of types of containers and let Q = {1,..., N}. The container, the volume 
and the number of a container of type h , h ∈ Q, are denoted by Ch, Vh and Mh Thus, if N =1, 
then this problem is the one container type problem. 
The boxes can be rotated. In consequence, up to six different orientations are allowed. Hence 
the rotation variants of a box are indexed from 1 to 6, an orientation order of each box type i 
to load to the container type h is denoted by . If an edge (i.e. length, width or 
height) placed upright, the box of type i can take two orientations among them. Each box of 
type i is tried to load to the container of type h according to this orientation order . Here, a 
set of orientation orders  is considered. 
For each σ ∈ ρ and μ ∈ λ , an algorithm that will be described below is applied, and loading 
positions of boxes are determined. The optimal solution is found by changing this 
permutation and this set of orders. 
Practical constraints which have to be taken into account are load stability, weigh 
distribution, load bearing strength of boxes and so on. In this paper, in order to consider the 
load stability and vary the arrangement, overhang parameter γ is introduced. This is a 
percentage of the bottom face area of the loading box that isn’t supported with other boxes 
that are below. Therefore, a box isn’t allowed to be loaded to the position in which this 
parameter isn’t satisfied. Generally, γ takes the value from 0% to 50%. Suppose that other 
constraints aren’t taken into account here. 
A loading algorithm A and a criterion F must be prepared for solving this multiple container 
loading problem. A is greedy algorithm and determines the arrangement of loading position 
of each box X according to the sequence σ and the set of orientation orders μ within the 
range of γ . This algorithm try to load the boxes to all kind of containers and select the 
container provided the best result. When all boxes are loaded by this algorithm and the 
arrangement is determined, the criterion F can be calculated. The arrangement is estimated 
by volume utilization and the total value of the loaded boxes. If the result required the 
number of container of type h is  and the number of the loaded box of type i is , the 
volume utilization is represented by 

 (1) 

Moreover, the total value of the boxes loaded into the containers is represented by 



A Multi-start Local Search Approach to the Multiple Container Loading Problem 

 

57 

 (2) 

In this paper, the objective is to maximize the volume utilization and the total value of 
loaded boxes. Therefore, the criterion F is denoted by 

 (3) 

where α, β are constant number that depend on the problem. The optimality implies that 
this factor is maximized. Thus, the multiple container loading problem is denoted by 

 (4) 

When the calculation method for F( σ, μ, γ) is specified, the multiple container loading 
problem can be formulated as above combinatorial optimization problem. It naturally is 
adequate to use local search approach to obtain the optimal pair of the box sequence σ and 
the set of orientation orders μ . It is supposed that the overhang parameter γ is given before 
simulation. It should be noticed that the greedy loading algorithm and the multi-start local 
search can separately be considered. 

3. Proposed approach 
3.1 Greedy loading algorithm 
“Wall-building approach (George & Robinson, 1980)” and “Stack-building approach (Gilmore & 
Gomory, 1965)” are well-known as heuristic procedure for loading boxes in container. 
In this paper, first-fit concept is used as basic idea. Therefore, the proposed greedy loading 
algorithm consecutively loads the type of boxes, starting from b1 to the last bn. Since the total 
number of boxes is T, the box (k=1,..,T) is loaded to the position pk in the container. 
Therefore, the arrangement of boxes X is denoted by 

 (5) 

If the box (k=1,..,T) is loaded in the container , h ∈Q, i= 1,..., Mh ,that means ph ∈ . The 
loading position pk is selected from a set of potential loading areas Sk, which consists of the 
container floor and the top surface of the boxes that have been already loaded. Therefore, 
the set of potential loading areas here is 

 (6) 

where gk is the number of potential loading areas after loading k-1 boxes. The potential 
loading area is defined by a base point position, the length and the width. The base point is 
a point near the lower far left corner of the container. For example, in case of k =1, the 
number of potential loading areas is 1 and s1  is the container floor. 
In order to solve this multiple container loading problem, the method can be divided by two 
parts. The first part is single container part, and the other part is different container part. 
The single container part algorithm is to solve single container loading problem. 
The single container part algorithm SCA uses the following steps. 
[Algorithm SCA] 
Step 1: Set the sequence σ = (b1,..., bn), the set of orientation orders 1( ,..., )h h

nr rμ =  and the 
overhang parameter γ for loading boxes; 



 Advances in Greedy Algorithms 

 

58 

decide the set of initial potential loading area S1; 
set i = 1, k = 1, and j = 1 as index for the current box type, the current box, and the 
current orientation, respectively. 

Step 2: If i ≤ n , then take the box of type bi for loading, else stop. 
Step 3: If all boxes of type bi are already loaded, then set i = i +1, j =1 and go to Step 2. 
Step 4: Scan the set of loading area Sk and find the loading position. 

If a position that can be loaded is not found, then go to Step 6. 
Step 5: Load the box on the selected position by Step 4. 

Set k = k +1 and update the set of loading area Sk. 
If the boxes of type bi are remained, then go to Step 2, else go to Step 7. 

Step 6: If j < 6 , then j = j +1 and go to Step 4. 
Step 7: If k ≤ T , then set i = i +1, j =1 and go to Step 2, else stop. 
This algorithm uses the orientation order of each box. The box of type bi is arranged in the 
orientation of  in Step 3. If the current orientation is not permitted, skip Step 3 and go to 
Step 5 to take next orientation that is determined by . Each box has a reference point in any 
of the six orientations. This point is set to the lower far left corner of the box and is used for 
scanning the potential loading areas in Step 4. A position that the box is loaded means a 
position in which the reference point of the box is put. For scanning each potential loading 
area, the reference point is set on the base point and is moved to the direction of the width 
and the length. The potential loading area is examined by the order of Sk, that is, from s1 to 

. The position in which the box can be loaded is where it doesn’t overlap with other boxes 
that are already loaded and the overhang parameter of this box is γ or less. 
The update procedure of the set of potential loading area in Step 5 is as follows: 
1. Update current area 

If the box is loaded to the base point of the selected loading area, the area is deleted. 
When it is loaded to other positions, the area changes the dimension of the length or the 
width, and remains. 

2. Create new loading area 
New loading areas, that is, a top face of the box, a right area of the box and a front area 
of the box, are generated if the container space and the loading area exist. 

3. Combine area 
If the height of the base point of new loading area is same as the height of the base point 
of an existing loading area, and the new area is adjacent to the existing area, they are 
combined into one area. 

4. Sort area 
In order to determine the order by which the loading area is examined, the existing 
loading areas are rearranged. 

Generally, lower and far position in the container is selected as the loading position at first. 
In this paper, therefore the loading areas are sorted into the far lower left order of the base 
point position. Namely, the loading priority is given in the order of a far position, a lower 
position and a left position. 
This algorithm is denoted by SCA( σ, μ, γ, h, i), where h ∈Q, i = 1,...,Mh , and the arrangement 
result of SCA( σ, μ, γ, h, i) is denoted by  . 

 (7) 



A Multi-start Local Search Approach to the Multiple Container Loading Problem 

 

59 

The criterion of this result  is represented by 

 (8) 

where  is the volume of the box , and  is the value of the box . This is a partial 
criterion value. 
The different container part algorithm is to try to load the boxes to all kind of left containers 
so as to determine the type of containers that is used. Therefore the q -th best arrangement 
Rq is denoted by 

 
(9) 

where  is the number of required containers of type h before he q -th arrangement. The 
different container part algorithm DCA uses the following steps. 
[Algorithm DCA] 
Step 1: Set the sequence σ = (b1,..., bn), the set of orientation orders 1( ,..., )h h

nr rμ =  and the 
overhang parameter γ for loading boxes; 
set h = 1 and q =1 as index for the current container type and number of required 
containers. 

Step 2: If h ≤ N , then take the container of type h ∈Q, else go to Step 5 . 
Step 3: If the containers of type h aren’t remained, then set h = h + 1 and go to Step 2. 
Step 4: Solve SCA( σ,  μ,  γ,  h,   +1). 

Set h = h + 1 and go to Step 2. 
Step 5: Select the best result Rq . 

If all boxes are loaded, then set q = qmax  and stop, 
else if q <  Mi set h = 1, q = q +1 and go to Step 2. 
else stop. 

This algorithm is denoted by DCA( σ, μ, γ) and determines the container that loads the boxes 
one by one. This is also greedy algorithm and qmax is the number of required containers of 
this multiple container loading problem. The final arrangement result is represented by 

 (10)

Therefore, the criterion of the result X ( σ, μ, γ) is F( σ, μ, γ). 

3.2 Multi-start local search 
The multi-start local search procedure is used to obtain an optimal pair of the box sequence 
σ and the set of orientation orders μ. This procedure has two phases. First phase is decision 
of initial solutions using heuristics, and second phase is optimization of this solution using 
local search. Let msn be the number of initial solution and let lsn be the iteration number in 
local search. This procedure follows the original local search for each initial solution without 
any interaction among them and the random function is different at each local search. 
At first phase, a good pair as an initial solution is selected. Therefore a heuristic rule that is 
related to decision of the box sequence σ is prepared. Another solution μ is selected at 
random. 



 Advances in Greedy Algorithms 

 

60 

At second phase, an optimal pair is found by using local search. The neighborhood search is 
a fundamental concept of local search. For a given σ, the neighborhood is denoted by Ν1(σ). 
Here, for σ = (b1,...,bn ) , 

 (11)

for all combinations of 1 ≤ k,l ≤ n , k ≠ l and nsb is a neighborhood size. That is, two numbers 
bk ,bl of a permutation σ are taken, and they are exchanged. If nsb = 1 , this neighborhood 
only swap two adjacent numbers. For a given μ, the neighborhood is denoted by Ν2(μ). 
Here, for μ = ( ,..., ), 

 
(12)

for all combinations of 1 ≤ i ≤ n , 1 ≤ h ≤ N , 1 ≤ k,l ≤ 6 , k ≠ l . Thus, one order  of a set of 
orders μ is taken; two numbers  of the selected order are taken, and they are 
exchanged. In this neighborhood, suppose that a neighborhood size nsr is the number of the 
exchange operation. 
The local search in the neighborhood consists of generating a fixed number of pair of 
solutions τ1,...,τlsn in Ν1(σ) and υ1,...,υlsn in Ν2(μ), and finding the best pair of solution  and : 

 (13)

Assume that the pair of j -th initial solutions are denoted by σ j,  μ j, γ j, the optimal solution is 
found by 

 (14)

The method of multi-start local search MSLS are describes as follows. 
[Algorithm MSLS] 
Step 1: Set j =1, i =1. 
Step 2: If j ≤ msn , then set random seed rs j and decide the sequence , the set of orientation 

orders   and the overhang parameter γ j, else stop. 
Step 3: Set σ* = , μ* = . 
Step 4: If i ≤ lsn , then solve DCA( , , γj ), else go to Step 7. 
Step 5: If F (σ *, μ*, γj ) < F ( , , γj ) , then set σ * = , μ* = . 
Step 6: Set i = i + 1and select  ∈Ν1(σ*) and  ∈Ν2(μ*). 

Go back to Step4. 
Step 7: If j =1, then set  =σ * ,  = μ* and  = γj; 

else if F ( , , )<F (σ *, μ*, γj), then  =σ *,  = μ* and  = γj . 
Step 8: Set j = j + 1, i =1 and go to Step 2. 
In this algorithm,  and  ( j =1,...,msn) are initial solutions and optimal arrangement 
result is represented by X( , , ). The j-th local search uses the random seed rsj to 



A Multi-start Local Search Approach to the Multiple Container Loading Problem 

 

61 

determine the initial solution and the next solution in the neighborhood. The move strategy 
of this local search is first admissible move strategy as shown by this algorithm. 

4. Computational experiments 
4.1 Configuration 
The tested method of multi-start local search procedure is shown below. At first phase, only 
one rule is required. The following rules are used to decide an initial solution of  . 
 
 

(R1) Sorting in decreasing order of the box volume v i, i ∈ P. 
(R2) Sorting in decreasing order of the box value ci , i ∈ P. 
 
These rules are used properly by problem type. If the object of the problem is to maximize 
the volume utilization, the rule R1 is used, and if the object of the problem is to maximize 
the total value of the loaded boxes, the rule R2 is used. Therefore the initial solution of box 
sequence is all same at any j, j = 1,..., msn. 
Another initial solution of , which is the order of orientation  for each box 
of type i are selected using a random function initialized random seed rsj. The random 
function used here is linear congruential method. 
The static parameter overhang ratio γ is important factor as shown by Takahara (Takahara, 
2006). However, γ is fixed here for the simplification. 
In order to show the effectiveness of the approach above described, the test cases from the 
literature were taken. Three kinds of test cases, that is the bin packing type multiple 
container loading problem with one container type, the bin packing type multiple container 
loading problem with different container type and the knapsack type multiple container 
loading problem, are taken. 
As the bin packing type multiple container loading problem with one container type, the 47 
examples of Ivancic et al. (Ivancic et al., 1989) are used here. The objective of the problems of 
Ivancic et al. is to find a minimal number of required containers load all given boxes. Each 
problem consists of two to five box types where only one container type is available. The 
problems of Ivancic et al. are denoted by IMM01 to IMM47. 
As the bin packing type multiple container loading problem with different container type, 
the 17 examples of Ivancic et al. (Ivancic et al., 1989) are used here. The objective of these 
problems is to find the arrangement to maximize the volume utilization to load all given 
boxes. The problems of these are denoted by IMM2-01 to IMM2-17. 
In these two bin packing type problems, the constant numbers are α = 1 and β = 0 in the 
criterion (3) and the rule R1 is used to determine the initial solution of box sequence. 
As the knapsack type multiple container loading problem, the 16 examples of Mohanty et al. 
(Mohanty et al., 1994) are used here. The objective of this problem is to maximize the total 
value of the loaded boxes. The problems are denoted by MMI01 to MMI16. In this knapsack 
type problem, the constant numbers are α = 0 and β =1 in the criterion (3) and the rule R2 is 
used to determine the initial solution of box sequence. 
The algorithm was implemented in C using MS Visual C++ 6.0. The results of this approach 
were calculated on Xeon PC with a frequency 3.0GHz and 3GB memory. 



 Advances in Greedy Algorithms 

 

62 

4.2 Comparison with other methods 
In order to show effectiveness of the approach above described, this approach MSLS has 
compared with other approaches. The following approaches were included the results of 
three kinds of test problems: 
 
• IV_1989, a heuristic approach (Ivancic et al., 1989); 
• MO_1994, a heuristic approach (Mohanty et al., 1994); 
• B&R_1995, a heuristic approach (Bischoff & Ratcliff, 1995); 
• BO_2000, a heuristic approach (Bortfeldt, 2000); 
• EL_2002, a tree search approach (Eley, 2002); 
• EL_2003, a bottleneck approach (Eley, 2003); 
• TA_2006, a meta-heuristic approach (Takahara, 2006); 
 

Table 1 presents the results for the 47 IMM problem classes. The parameters that were used 
in MSLS are γ = 50 , msn = 5 , lsn = 500 , nsb = 1 and nsr = 3 . The last column shows the total 
number of required containers. The results show that MSLS could be obtained the minimum 
number of total required containers than any other approach. But the result of the proposed 
approach is same as the result of the SA-Combined of TA_2006. This is because the greedy 
loading algorithm SCA is almost same as the loading algorithm that uses in TA_2006. 
However, the performance of computational time of MSLS has been improved from that of 
TA_2006 by 50%. 
Table 2 shows the results for the 17 examples of three dimensional bin packing problem 
with different container types. The parameters that were used in MSLS are γ = 50 , msn =10 , 
lsn =1000 , nsb = 1 and nsr = 3 . The proposed approach obtained second highest average of 
volume utilization. For the test cases of IMM2-04 and IMM2-17, best arrangements ware 
found among these four methods. Fig.1 shows the best results found by the proposed 
approach. 
Table 3 shows the results for the 16 MMI examples of knapsack type problem. The 
parameters that were used in MSLS are γ = 50 , msn =10 , lsn =1000 , nsb = 2 and nsr = 6 . The 
proposed approach obtained third highest average of volume utilization. For the test cases 
of MMI08 and MMI15, best arrangements ware found among these four methods. Fig.2 
shows the best results found by the proposed approach. 

4.3 Effect of neighborhood size 
The neighborhood sizes, that is nsb and nsr , are key parameters of the proposed approach. 
nsb is the box sequence element ranges that can be exchanged. nsr is the number of iterations 
in which the orientation order elements are exchanged. In order to show the effect of these 
parameters, the following experiments have been done. The other parameters that were 
used here are γ = 50 , msn =10 , lsn =1000 . Table 4 shows the Ivancic et al. with different 
container types test problems results. The value in this table is volume utilization. If the 
neighborhood size nsb grows, the effect of the neighborhood size nsr becomes small. In the 
case of nsr = 3 or nsr = 4 , the better results are obtained. Table 5 shows Mohanty et al. test 
problems results. The value is the percentage of bounds. If the neighborhood size nsb 
becomes small, the effect of the neighborhood size nsr becomes small. In the case of nsr = 5 
or nsr = 6 , the better results are obtained. 



A Multi-start Local Search Approach to the Multiple Container Loading Problem 

 

63 

 
Table 1. Results obtained for the problems from Ivancic et al. with one container type 



 Advances in Greedy Algorithms 

 

64 

 

 
 
Table 2. Results obtained for the problems from Ivancic et al. with different container types 

 

 
 

Fig. 1. Layout results of Ivancic et al. with different container types test problems 



A Multi-start Local Search Approach to the Multiple Container Loading Problem 

 

65 

 

 
 
 
Table 3. Results obtained for the problems from Mohanty et al. 

 
 

 

 
 
 
Fig. 2. Layout results of Mohanty et al. test problems 



 Advances in Greedy Algorithms 

 

66 

 
 

Table 4. Ivancic et al. with different container types test problems results for different 
neighborhood size 
 

 
Table 5. Mohanty et al. test problems results for different neighborhood size 



A Multi-start Local Search Approach to the Multiple Container Loading Problem 

 

67 

5. Conclusion 
The presented multi-start local search approach for the multiple container loading problem 
is suitable for solving various kind of problem, because the proposed approach is based on 
greedy loading algorithm and hardly uses problem-specific operators and heuristic rules. 
Hence it is easy to improve and manage by users. Its good performance and superiority 
compared with the other approaches were shown in the test results. 
In this paper, only the weakly heterogeneous problems are taken. Thus, further studies 
include integration of greedy loading algorithm and multi-start approach, dealing with the 
strongly heterogeneous problems, and development of an efficient container loading 
software. 

6. References 
Bischoff, E. E. & Ratcliff, M. S. W. (1995). Issues in the development of approaches to 

container loading, Omega, 23, pp.377-390. 
Bortfeldt, A. (2000). Eine heuristik für multiple containerladeprobleme, OR Spektrum, 22 

pp.239-262.  
Eley, M. (2002). Solving container loading problems by block arrangement, EJOR, 141, 

pp.393-402. 
Eley, M. (2003). A bottleneck assignment approach to the multiple container loading 

problem, OR Spectrum, 25, pp.45-60. 
George, J. A. & D. F. Robinson, D. F. (1980). A heuristic for packing boxes into a container, 

Computers Opns Res., 7, pp.147-156. 
George, J. A. (1996). Multiple container packing: a case study of pipe packing, Journal of the 

Operational Research Society, 47, pp.1098-1109. 
Gilmore, P. C. & Gomory, R. E. (1965). Multistage cutting stock problems of two and more 

dimensions, Opns Res., 13, pp.94-120. 
Ivancic, N.J., Mathur, K. & Mohanty, B.B. (1989). An integer-programming based heuristic 

approach to the three dimensional packing problem, Journal of Manufacturing and 
Operation Management, 2, pp.268-298. 

Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R. & Graham, R. L. (1974). Worst-case 
performance bounds for simple one-dimensional packing algorithms, SIAM J. 
Comput., 3, pp.299-325. 

Mohanty, B. B., Mathur, K. & Ivancic, N.J. (1994). Value considerations in three-dimensional 
packing – A heuristic procedure using the fractional knapsack problem, EJOR, 74, 
pp.143-151. 

Takahara, S. (2005). Loading problem in multiple containers and pallets using 
strategic search method, Lecture Notes in Artificial Intelligence 3558, pp.448-
456. 



 Advances in Greedy Algorithms 

 

68 

Takahara, S. (2006). A simple meta-heuristic approach for the multiple container loading 
problem, Proceedings of 2006 IEEE International Conference on Systems, Man and 
Cybernetics, pp.2328-2333, Taipei, Taiwan. 



5 

A Partition-Based Suffix Tree Construction  
and Its Applications 

Hongwei Huo1 and Vojislav Stojkovic2 
1 School of Computer Science and Technology, Xidian University, Xi’an  

2 Computer Science Department, Morgan State University, Baltimore 
1China 

2USA 

1. Introduction 
A suffix tree (also called suffix trie, PAT tree or, position tree) is a powerful data structure 
that presents the suffixes of a given string in a way that allows a fast implementation of 
important string operations. The idea behind suffix trees is to assign to each symbol of a 
string an index corresponding to its position in the string. The first symbol in the string will 
have the index 1, the last symbol in the string will have the index n, where n = number of 
symbols in the string. These indexes instead of actual objects are used for the suffix tree 
construction. Suffix trees provide efficient access to all substrings of a string. They are used 
in string processing (such as string search, the longest repeated substring, the longest 
common substring, the longest palindrome, etc), text processing (such as editing, free-text 
search, etc), data compression, data clustering in search machines, etc. 
Suffix trees are important and popular data structures for processing long DNA sequences. 
Suffix trees are often used for efficient solving a variety computational biology and/or 
bioinformatics problems (such as searching for patterns in DNA or protein sequences, exact 
and approximate sequence matching, repeat finding, anchor finding in genome alignment, 
etc).  
A suffix tree displays the internal structure of a string in a deeper way. It can be constructed 
and represented in time and space proportional to the length of a sequence. A suffix tree 
requires affordable amount of memory. It can be fitted completely in the main memory of 
the present desktop computers. The linear construction time and space and the short search 
time are good features of suffix trees. They increase the importance of suffix trees. A suffix 
tree construction process is space demanding and may be a fatal in the case of a suffix tree to 
handle a huge number of long DNA sequences. Increasing the number of sequences to be 
handled, due to random access, causes degrades of the suffix tree construction process 
performance that uses suffix links. Thus, some approaches completely abandon the use of 
suffix link and give up the theoretically superior linear construction time for a quadratic 
time algorithm with better locality of reference.  

2. Previous work 
Weiner [1] gave the first linear time algorithm for suffix tree construction. McCreight [2] 
built a more space efficient algorithm for suffix tree construction in linear time. It has a 



 Advances in Greedy Algorithms 

 

70 

readable account for suffix tree construction while processing a string from right to left. 
Ukkonon [3] developed a conceptually different linear-time algorithm for suffix tree 
construction that includes all advantages of McCreight’s algorithm but also allows a much 
simpler explanation. It is a left-to-right on-line algorithm. Ukkonon’s algorithm maintains at 
each step a suffix tree for a string S, where S is c1 ... ci ... cn, as the index i is increasing from 1 
to n. Many improvements in suffix tree construction have been done during the last 
decades. The early algorithms for suffix tree construction have been focused on developing 
algorithms in linear space. These algorithms are adapted to a small input size and the entire-
complete suffix tree can be constructed in the memory. Unfortunately, these algorithms are 
less space efficient, because they suffer from a poor locality of memory reference. Cache 
processor architectures have a hard job to store memory references in the secondary 
memory. One moment there are too many data to be loaded into the memory that causes the 
missing a lot of cache and more disk swapping. Thus, how to develop a practical algorithm 
for suffix tree construction is still an important problem.  
Suffix trees are not only used in the substring processing problems. They are used also in the 
complex genome-scale computational problems. For example, MUMmer [4, 5] is a system 
for the genome alignment, which uses as its main structure suffix trees to align two closely 
relative genomes. Due to the advantages of suffix trees, MUMmer provides the faster, 
simpler, and more systematic way to solve the hard genome alignment problem. REPuter [6, 
7] is another popular software tool for the efficient computing of exact repeats and 
palindromes in the entire genome. It uses an efficient and compact suffix tree to locate exact 
repeats in linear time and space. 
Although suffix trees have these superior features, they are not widely used in the real 
string processing software. The main reason for that is that the space consumption of a 
suffix tree is still quite large despite the asymptotically linear space [3]. Therefore, several 
researchers/scientists have developed the alternative index structures, which store less 
information than suffix trees, but they are more space efficient [8]. The most known index 
structures are suffix arrays, level compressed tries, suffix binary search trees, [4]. Index 
structures have to be tailed for some string matching problems and cannot be adapted to 
other kinds of problems without loss of performance. Also, the traditional string methods 
cannot be directly used in the DNA sequences because they are too complex to be treated. 
The reducing the space requirement of suffix trees is still an important problem in the 
genome processing.  
In order to overcome these disadvantages, we propose a new algorithm for suffix tree 
construction for DNA sequences based on the partitioning strategies and use of the common 
prefixes to construct the independent subtrees [9]. The experiments show that the proposed 
algorithm is more memory-efficient and it has a better performance on the average running 
time. 

3. Suffix tree 
3.1 Definition 
Definition 1. A suffix tree for a string S of n-characters, where n>=1, is a tree with n leaves 
numbered from 0 to n-1. Each internal node, other than the root, has at least two children. 
Each edge has an edge-label that is a nonempty substring of the string S. All edges exit from 
a same node have edge-labels beginning with different characters.  



A Partition-Based Suffix Tree Construction and Its Applications 

 

71 

The most important characteristic of a suffix tree for a string S is that for each leaf i, where 0 
<= i <= n-1, the concatenation of edge-labels on the path from the root to the leaf i is the ith 
suffix of the string S. The ith suffix of a string S is the suffix of the string S that starts at the 
position i.  
Suffix trees can be constructed in linear time and space [1~3]. Some suffix tree construction 
algorithms that use suffix links require O(n) construction time, where n is the length of a 
string. A suffix link is a link from one internal node to another internal node. Often, leaves 
of a suffix tree are labeled by leaf-labels. A leaf-label is the starting position of the suffix that 
ends at this leaf. 
The Fig. 1 shows the suffix tree for the string S = ATTAGTACA$. The $ character represents 
the end of the string S and it is count as the part of the string S. Dashed lines represent suffix 
links. 
 

 
Fig. 1. The suffix tree for the string S = ATTAGTACA$ 

3.2 Space requirements 
The important characteristic of the suffix tree T for a string S, T(S), is that T(S) can be stored 
in O(n) space, where n is the length of the string S. 
The idea is the following:  
• T(S) has exactly n leaves, where n is the length of the string S.   
• Since each internal node of T(S) is a branching node, T(S) has at most n internal nodes. 
• Since in/at each node, except the root, enters/ends exactly one edge, T(S) has at most 

2n edges.  
• Since each edge-label is a substring of S$, it can be represented in constant space by a 

pair (start, end) points into S$. 

4. Partition-based suffix tree construction 
4.1 Analysis 
If a memory access mechanism has temporal and/or spatial locality features then the 
processor may use one or more caches to speed up access to the memory. Linear time, suffix 
tree construction algorithms, such as McCreight’s algorithm [2] and Ukkonen’s algorithm 

A T T A G T A C A $
0 1 2 3 4 5 6 7 8 9 

GTACA$ 

$

CA$ 
T

A 

A 

$ CA$ GTACA$ TTAGTACA$ 

CA$ 

TAGTACA$ 

GTACA$ 

6 0 3 8 

2 5 

1 
4 

7 

9 



 Advances in Greedy Algorithms 

 

72 

[3], require many random accesses to the memory for suffix trees and links. In Ukkonen’s 
algorithm, cache misses happen, when the algorithm makes a traversal via suffix links to 
reach another new subtree to check its children nodes. Such traversals cause random 
memory accesses at the very distant memory locations. In addition, each memory access 
visits memory with the higher probability because the address space span is too large to fit 
into the memory. 
Kurtz’s algorithm [8, 14], optimizes the space requirements for the McCreight’s algorithm. 
Kurtz’s algorithm divides the internal nodes into large nodes and small nodes to store the 
suffix tree information based on the relation of head position values. During the 
construction of internal nodes, there are many short or long small-large chains, which are 
sequences of small nodes followed by one large node. In a small-large chain, values of head 
position, the depth and suffix link of all small nodes can be derived from the large node at 
the end of chain. Therefore, with the bit optimization technique, Kurtz’s algorithm uses four 
integers for one large node, two integers for one small node and one integer for each leaf 
node. Therefore, what a small-large chain is longer than more space is saved.  
After analyzing, we find that a small-large chain is formed only if all nodes in the chain are 
series of new nodes created consecutively while series of suffixes are added into the suffix 
one by one. 
DNA sequences are not only well known for their repetitive structures but also they are well 
known for their small-sized alphabet sequences that have high possibility of repetition. 
Therefore, applying Kurtz’s algorithm on DNA sequences may not get advantage on small 
nodes but produces more large nodes. 

4.2 Algorithm 
Based on the properties of suffix trees, we can: 
- in advance put together some suffixes of a branching node 
- during the top-down suffix tree construction merge step by step the common prefixes 

of suffixes  
- generate the internal branching nodes with the common prefix such as an edge-label 

and the responding leaf nodes 
- finish the construction of the various branching nodes under the branch. 
We propose the new ST-PTD (Suffix Tree Partition and Top-Down) algorithm for 
construction of a suffix tree for a DNA sequence. The ST-PTD algorithm uses partition and 
top-down techniques. Due to partition, a large input to the suffix tree construction is 
allowable. The construction of each subtree in the memory is independent. 
The ST-PTD algorithm consists of two phases: partition suffixes and subtree construction. 
The algorithm is shown in Fig. 2. 
Algorithm ST-PTD (S, prefixlen)  
// Phase 1: Preprocessing 
1. Scan the string S and partition suffixes based on the first prefixlen symbols of each suffix 
// Phase 2. Construct suffix tree 
2.       for each partition Pi do 
3. R ← sorting(Pi) 
4. do 
5.       if |R| = 1 then 
6.  create a leaf l 



A Partition-Based Suffix Tree Construction and Its Applications 

 

73 

7.  STi ← STi ∪ {l} 
8.             else 
9.  lcp = finding-LCP(R) 
10.  create a branch node in the STi 
11.            add the X to R, X being the set of remaining suffixes from R after splitting 
                               off the longest common prefix 
12.            sorting(R) 
13. while (!empty(R)) 
14.  Merge{STi} 
Fig. 2. The ST-PTD algorithm 

In the preprocessing step, the suffixes of the input string S is partitioned into |∑|prefixlen 
parts, where ∑ is an alphabet and |∑| is the size of the alphabet ∑. In the case of DNA 
sequences ∑ = {A, C, G, T} and |∑| = 4. prefixlen is the depth of partitioning. The partition 
procedure is as follows. First, we scan the input string from left to right. At each index 
position i, the prefixlen subsequent characters are used to determine one of the |∑|prefixlen 
partitions and the index i is then recorded to the calculated partition. At the end of the scan, 
each partition will contain the suffix pointers for suffixes that all have the same prefix of size 
prefixlen. In the case of DNA sequences, we can assume that the internal nodes close to the 
root are highly repetitive and have the small alphabet - we can take value of prefixlen to be 
the log4 (Seqlen–1). However, when the value of prefixlen is large than 7, the running time for 
partition phase for large dataset, such as genome, is costly and can not bring the obvious 
advantages to the algorithm, thus we take the value of prefixlen to be the (log4(Seqlen–1))/2. 
In the suffix tree construction step, for each partition, the algorithm performs an 
independent construction of the respective suffix tree branch. The algorithm does not need 
to start at the root of the suffix tree but directly in the node that is found at some depth. 

4.3 Space requirements 
The space requirement measures how many bytes one character uses on average.  
We use the DNA sequences from the NCBI web site to compare the space requirement of the 
Kurtz’s algorithm [8] with the space requirement of the ST-PTD algorithm. The numbers 
given in the Table 1 refer to the space required for the construction. They do not include the 
n bytes used to store the input string. 
 

Name Length Kurtz’s algorithm The ST-PTD algorithm Saving 
AC008583 122493 12.62 11.79 0.0658 
AC135393 38480 12.39 11.85 0.0436 
BC044746 4897 12.61 11.72 0.0706 

J03071 11427 12.32 13.68 -0.1104 
M13438 2657 12.50 11.59 0.0728 
M26434 56737 12.52 12.03 0.0391 
M64239 94647 12.62 11.72 0.0713 
V00662 16569 12.69 11.74 0.0749 
X14112 152261 12.58 11.87 0.0564 

ecoli 4668239 12.56 11.72 0.0669 
[Average] 516841 12.541 11.971 0.0451 

Table 1. The space requirements of Kurtz’s algorithm and the ST-PTD algorithm 



 Advances in Greedy Algorithms 

 

74 

Table 1 shows the space requirement for each sequence.  
- The first column of the Table 1 contains the names of DNA sequences.  
- The second column of the Table 1 contains the lengths of DNA sequences.  
- The third column of the Table 1 contains the space requirement of Kurtz’ algorithm. 
- The fourth column of the Table 1 contains the space requirement of the ST-PTD 

algorithm. 
- The fifth column of the Table 1 contains the savings. 
The ST-PTD algorithm compared with Kurtz’s algorithm saves about 4.55% in space.  
There is no relationship between space needs and the length of sequence. However, the 
DNA sequence, such as J03071, has a great effect on the space demand. 

4.4 Running time 
Kurtz’s algorithm and the ST-PTD algorithm have been implemented in the C programming 
language and compiled with the GCC compiler. To learn and show the impact of the 
memory on the algorithms, we ran/executed the programs on two different platforms 
config1 and config2. Config1 consisted of the Intel Pentium 4.3 GHZ processor, 512M RAM, 
and the Red Hat Linux 9 operating system. Config2 consisted of the Intel Pentium III 1.3 
GHHZ processor, 128 RAM, and the Fedora 4 operating system.  
The experimental results are shown in Table 2. The running time is in seconds and 
throughout is the ratio of time multiplied by 106 and sequence length. The dark shaded 
areas show the better throughout. ‘-‘ shows the running time more than 1 hour. 
We used in both algorithms arrays as the main data structures to get the higher efficiency in 
time. Unfortunately, arrays limit the size of data they deal with. However, we still used 
arrays, because Kurtz’s algorithm in which we used linked lists to implement DNA 
sequences takes 1176.02 seconds (about 20 minutes) for the sequence B_anthracis_Mslice of 
317k length and over four hours for the sequence ecoil of 4.6M length. 
Although Kurtz’s algorithm requires O(n) time in the worst case and the ST-PTD algorithm 
requires O(n2) time, the ST-PTD algorithm is a little faster than Kurtz’s algorithm on the 
average running time. This shows that the locality of memory reference has the great 
influence on the running time of both algorithms. The partition strategies and the sequence 
structure also had the impact on the performance of both algorithms. For example, the 
difference induced by the unbalanced partitions on the sequence influenza slice is obvious.  
The ST-PTD algorithm has greater advantages on Kurtz’s algorithm for the lower 
configuration due to its partition phase. The partition phase decreases the size of the set of 
problems we are processing so that we can deal with the larger size of data.  
Comparing the running time of both algorithms in different configurations, we can see that 
memory is still one of the bottlenecks affecting the performances of both algorithms. Suffix 
trees are indeed very space greedy. In addition, compared with Kurtz’s algorithm, the ST-
PTD algorithm is easier to understand and implement. Also, the ST-PTD algorithm is easier 
to be parallelized because the construction of each subtree is independent. 

5. Some applications of suffix trees 
5.1 Exact string matching 
The exact string matching problem is: Given a string/sequence S and a pattern string P. Find 
all positions of the pattern P in the string S. 



A Partition-Based Suffix Tree Construction and Its Applications 

 

75 

Config 1 Config 2 
 Kurtz’s 

algorithm 
The ST-PTD 

algorithm 
Kurtz’s 

algorithm 
The ST-PTD 

algorithm 
Sequence Length time tput time tput time tput time tput 

J03071 11427 0.06 5.25 0.10 8.75 0.06 5.25 0.12 10.50 
V00662 16569 0.01 0.60 0.02 1.21 0.01 0.60 0.02 1.21 
AC135393 38480 0.2 5.20 0.94 24.43 0.26 6.76 1.54 40.02 
M26434 56737 0.04 0.71 0.05 0.88 0.06 1.06 0.07 1.23 
M64239 94647 0.07 0.74 0.08 0.85 0.11 1.16 0.12 1.27 
AC008583 122493 0.09 0.73 0.11 0.90 0.14 1.14 0.15 1.22 
X14112 152261 0.11 0.72 0.14 0.92 0.20 1.31 0.21 1.38 
B_anthracis_Mslice 317829 0.34 1.07 0.31 0.98 0.46 1.45 0.45 1.42 
H.sapiens chr.10 
slice1 1119913 1.28 1.14 1.27 1.13 1.59 1.42 2.70 2.41 

H.sapiens chr.10 
slice2 2099930 2.62 1.25 2.53 1.20 3.41 1.62 5.32 2.53 

H.sapiens chr.10 
slice3 3149930 3.98 1.26 3.98 1.26 23.31 7.40 8.45 2.68 

H.sapiens chr.10 
slice4 4199930 5.56 1.32 5.13 1.22 - - 11.74 2.80 

ecoli 4668239 7.19 1.54 5.79 1.24 - - 13.69 2.93 
H.sapiens chr.10 
slice5 4899930 6.25 1.28 6.08 1.24 - - 14.08 2.87 

H.sapiens chr.10 
slice6 5250000 6.62 1.26 7.74 1.47 - - 15.39 2.93 

H.sapiens chr.10 
slice7 5600000 7.03 1.26 7.04 1.26 - - 16.61 2.97 

influenza slice 5918744 5.16 0.87 46.07 7.78 - - 71.15 12.02 
H.sapiens chr.10 
slice8 6019975 7.66 1.27 21.94 3.64 - - 38.44 6.39 

H.sapiens chr.10 
slice9 6300000 8.2 1.30 7.92 1.26 - - 18.78 2.98 

H.sapiens chr.10 
slice10 6999930 9.67 1.38 9.04 1.29 - - 21.30 3.04 

H.sapiens chr.10 
slice11 8400000 10.71 1.28 11.52 1.37 - - 26.55 3.16 

H.sapiens chr.10 
slice12 9100000 12.92 1.42 13.53 1.49 - - 28.65 3.15 

Arabidopsis thaliana 
chr. 4 9835812 44.01 4.47 30.33 3.08 - - - - 

H. sapiens chr. 10 
slice13 10500000 79.13 7.54 25.89 2.47 - - - - 

[Average]  8.42 2.13 7.98 2.02     

Table 2. The running time and throughout of Kurtz’s algorithm and ST-PTD 



 Advances in Greedy Algorithms 

 

76 

The exact string matching problem can be solved using the suffix tree on the following 
elegant way: 
- Construct the suffix tree for the string S, T(S).  
- Traverse – top-down pass through T(S) from the root further into T(S), guided by the 

characters of P, as long as there is a continuation in T(S) that corresponds to the letters 
of P.  

- If this search stops before the end of P is reached, P does not occur in S.  
- If P can be spelled out completely, then P occurs in S. Moreover, the numbers at the 

leaves below the end point of this search tell all the positions in S where P occurs.  
Suppose that S = ATTAGTACA$ is a string. The suffix tree for the string S, T(S), is shown in 
Fig. 1.  
Suppose that P = TAA is a pattern. After reading the first two characters of P, T and A, we 
will arrive to the branching node TA. Because, the edge A is not outgoing from the branch 
node TA, we cannot continue with the matching P against T(S). In other words, P does not 
occur in T(S). Therefore, P is not the substring of S. 
Suppose that P = ATA is a pattern. Follow the first edge from the root to the node A. The 
node A has the edge TTAGTACA$ leading to the leaf 0. The next character to be read in P is 
the last character in P - A. A does not match the next character T of the edge TTAGTACA$. 
Therefore, P does not occur in T(S) that is P is not the substring of S.  
If we can find that P occurs in T(S), then we can also find the positions in S where P occurs. 
Suppose that P = TA is a pattern and assume T(S) of Fig. 1. Following the second edge from 
the root, we will reach to the branching node TA. Therefore, P is the substring of S. The leaf 
numbers in the subtree below the branching node TA are 2 and 5. Therefore, TA starts in S at 
positions 2 and 5.  
The time complexity of this algorithm is as follows. The construction of T(S) takes O(n) time, 
where n is the length of S. The search for occurrences of P takes O(m + z) time, where m is 
the length of P and z is the number of occurrences of P in S. (Note that z can be larger than 
m, but not larger than n.) Hence, the asymptotic time for the complete search is the same as 
for the optimal on-line string matching algorithms such as Boyer-Moore or Knuth-Morris-
Pratt, O(n + m).  

5.2 Exact set matching 
The exact set matching problem is: Given an array of strings/sequences (Sk) = S1, S2, … , Sk and 
a pattern string P. Find all positions of the pattern P in the sequence (Sk). 
The exact set matching problem can be solved using the suffix trees on the following 
straightforward way: 
- Concatenate the strings S1, S2, … , Sk separated by the unique separator symbols $i, 

where i =1, ..., k-1, into the string S, S = S1$1S2$2 … $k-1Sk. 
        The string S is called the generalized string of the strings S1, S2, … , Sk. 
- Construct the suffix tree for the generalized string S, T(S).  
The suffix tree for the generalized string S, T(S), is called the generalized suffix tree for the 
generalized string S. Leaves of the generalized suffix tree are labeled with pairs of the form 
(sequence number, start position). Often, the labels of leaf-edges are cut of after the first 
separator symbol. The pattern search is performed as in the standard suffix tree. Again, the 
pattern search takes O(m + z) time to find all z occurrences of a pattern P of the length m. 
Suppose that S = BABAB$1AAB$2 is a generalized string. The corresponding generalized 
suffix tree is shown in Fig. 2. 



A Partition-Based Suffix Tree Construction and Its Applications 

 

77 

 
 
Fig. 2. The generalized suffix tree for the string S1=BABAB$1 and the string S2=AAB$2. 

The advantage of constructing an index becomes clear when several searches are performed 
on the same string, as the following table shows (z denotes the output size). 
 

-  - search for one pattern 
of length m 

- search for k 
patterns of length 

m 

- on-line algorithms - O(n + m) - O(k(n + m)) 

- suffix-tree algorithm - O(n + m) - O(n + km + z) 

5.3 Minimal unique substrings 
The minimal unique substrings problem is: Given a string S and a constant (a positive integer) l. 
Find - enumerate all substrings u of the string S that satisfy the following properties: 
- u occurs exactly once in S (uniqueness) 
- all proper prefixes of u occur at least twice in S (minimality) 
- the length of u is greater or equal than l.  
Suppose that S = ATTAGTACA$ is a string and l = 2 is a constant. The minimal unique 
substrings of S are TAG and AT (see Fig. 1). The substring ATT, for example, is not the 
minimal unique substring of S, since the proper prefix AT of ATT is already unique, that is 
the minimality condition is not satisfied.  
To solve the minimal unique substrings problem, exploit the following two properties of the 
suffix tree for the string S: 
- if a string w occurs at least twice in the string S, there are at least two suffixes in S for 

which w is a proper prefix. Therefore, in the suffix tree T(S), w corresponds to a path 
ending with an edge to a branching node; 

- if a string w occurs only once in the string S, there is only one suffix in S for which w is a 
prefix. Therefore, in the suffix tree T(S), w corresponds to a path ending with an edge to 
a leaf. 

According to the second property, we can find the unique strings by looking at the paths 
ending on edges to a leaf. So, if we have reached a branching node, say w, then we only have 
to enumerate the leaf edges outgoing from w. Suppose w->y is the edge from the branching 

S = B A B A B $1A A B $2 
   0 1 2 3 4 5 0 1 2 3  $2 B 

$1 

$2 $1 

$2 $1 

$1 

A 

B AB 

AB$1 

AB$2 

AB$1 

(1, 0) (1, 2) 

(1, 4) (2, 2) 

(1, 1) (1, 3) (2, 1) 

(2, 0) 

(1, 5) 
(2, 3) 



 Advances in Greedy Algorithms 

 

78 

node w leading to the leaf y, labeled av where a is the first character on that edge. Then wa 
occurs only once in S, i.e. it is unique. Moreover, w corresponds to the path leading to w and 
by the second property, w occurs at least twice. Finally, we only have to check if the length 
of wa is larger or equal than l.  
The suffix tree based algorithm to solve the minimal unique substrings problem is very 
simple.  
Let us apply the algorithm to the suffix tree of Fig. 1. Assume that l = 2. We can skip the 
root, since it would result in strings, which are too short. Let us consider the branching node 
reached by the edge from the root labeled TA. Then w = TA and with the first character G of 
the label of the second edge we obtain the minimal unique substring TAG. The other 
solution AT can be found by looking at the other branching node reached by the label A 
from the root together with its zero-numbered edge.  
The running time of the minimal unique substrings algorithm is linear in the number of 
nodes and edges in the suffix tree, since we have to visit each of these only once and for each 
we do a constant amount of work. The algorithm runs in linear time since the suffix tree can 
be constructed in linear time and there are O(n) nodes and edges in the suffix tree. This is 
optimal, since the running time is linear in the size of its input.  
The minimal unique substrings problem has applications in primer design. 

5.4 Maximal unique match 
The standard dynamic programming algorithm to compute the optimal alignment of two 
sequences of the length m and the length n requires O(mn) steps. This is too slow for the 
cases when sequences have hundreds of thousands or millions characters.  
There are algorithms that allow aligning of two genomes under the assumption that 
genomes are similar. Genomes are similar if they have long identical subsequences. Identical 
subsequences, called MUMs (Maximal Unique Matches), are almost certainly part of high 
quality and efficient alignment of two genomes. The first step of the maximal unique match 
algorithm is to find MUMs. MUMs are taken as the fixed part of alignment. The remaining 
parts of genomes (the parts not included in MUMs) are aligned with traditional dynamic 
programming methods.  
In this section, we will show how to compute MUMs in linear time. This is very important 
for the applicability of the maximal unique match algorithm, the MUM algorithm. We do 
not consider how to compute the final alignment. 
The maximal unique match problem, the MUM problem, is: Given two sequences S, S’ ∈ ∑∗ (the 
genomes) and a constant (a positive integer) l. Find all subsequences u with the following 
properties: 
- |u| ≥ l. 
- u occurs exactly once in S and exactly once in S’ (uniqueness). 
- for any character a neither ua nor au occurs both in S and in S’ (maximality). 
Suppose that S = CCTTCGT is a string, S’ = CTGTCGT is another string, and l = 2 is a constant. 
There are two maximal unique matches CT and TCGT. Consider an optimal alignment of 
these two sequences (assuming the same costs for insertions, deletions, and replacements): 
CCT-TCGT 
-CTGTCGT 



A Partition-Based Suffix Tree Construction and Its Applications 

 

79 

Clearly, two MUMs CT and TCGT are parts of this alignment.  
To compute MUMs, we first have to construct the suffix tree for the concatenation of the two 
sequences S and S’. To prevent any match that occurs on the borderline between S and S’, 
we put the unique symbol # between S and S’, i.e. we construct the suffix tree for the string 
X, where X = S#S’. A MUM, say u, must occur exactly twice in X, once in S and once in S’. 
Therefore, u corresponds to the path in the suffix tree T(X) ending with an edge to a 
branching node. Since u is the right-maximal by definition (i.e. for any symbol a, ua does not 
occur both in S and in S’), u must even correspond to the branching node. In other words, 
for each MUM u there is the branching node u in the suffix tree for the string X. 
Since u occurs twice in X, there are exactly two leaves in the subtree below u. The subtree 
can contain no branching node, hence there are two leaf edges outgoing from u. One edge 
must lead to the leaf, say v, that corresponds to a suffix starting in S and the other edge must 
lead to the leaf, say w, that corresponds to a suffix starting in S’. For the given branching 
node u, the existence of exactly two such leaf edges can be checked easily. What remains is 
to verify left-maximality, i.e. to check if there is the character a such that au occurs both in S 
and in S’. Suppose that the leaf v has the leaf number i and the leaf w has the leaf number j. 
Then u is left maximal, if and only if i = 0 or Xi-1 ≠ Xj-1. In other words, we only have to look 
at the two positions immediately to the left of two positions in X where u starts. 
 
 

 
 

 

Fig. 3. The suffix tree for CCTTCG#CTGTCG$ without the leaf edges from the root 

Suppose that S = CCTTCG is a string, S’ = CTGTCG is another string, and l = 2 is a constant. 
Consider the suffix tree for the string S#S’. This is shown in Fig. 3. Obviously, the string 
TCG occurs once in S and S’, since there are two corresponding edges from the branching 
node TCG. Comparing the character G and the character T immediately to the left of the 
occurrences of TCG in S and S’ verifies the left maximality. The string CT also occurs once in 
S and once in S’, as verified by the two leaf edges from CT. The left-maximality is obvious, 
since the character C and the character # to the left of the occurrences are different. 

5.5 Maximal repeat 
If a sequence S may be represented by the array S0…Sn-1, then the sequence S is indexed 
from 0 to n-1. If a sequence S is indexed, then a subsequence Si…Sj of the string S may be 
represented by the pair (i, j). A pair (l, r), where l = (i, j) and r = (i’, j’), is a repeat, if i < i’ and 
Si…Sj = Si ’…Sj ’. l is the left instance of the repeat and r is the right instance of the repeat. 

TC G

TG
CTTCG#CTGTCG$ 

#CTGTCG$ $ TCG#CTGTCG$ 
GTCG$ 

#CTGTCG$ TCG$ $ TCG#CTGTCG$ CG 

GTCG$ 

#CTGTCG$ $ 



 Advances in Greedy Algorithms 

 

80 

Note that the left instance of the repeat and the right instance of the repeat may overlap.  
Suppose that S = GAGCTCGAGC is a string. The string S contains the following repeats of 
the length l ≥ 2: 
 

- ((0, 3), (6, 9)) - GAGC 
- ((0, 2), (6, 8)) - GAG 
- ((0, 1), (6, 7)) - GA 
- ((1, 3), (7, 9)) - AGC 
- ((2, 3), (8, 9)) - GC 

 

The example shows that shorter repeats are often contained in longer repeats. To remove 
redundancy, we restrict to maximal repeats. A repeat is the maximal if it is the left maximal 
and the right maximal. These notions are formally defined as follows: The repeat ((i, j), (i’, 
j’)) is the left maximal if and only if i-1 < 0 or Si-1 ≠ Si’-1. The repeat ((i, j), (i’, j’)) is the right 
maximal if and only if j’+1 > n-1 or Sj+1 ≠ Sj’+1.  
From now, we will restrict ourselves to the maximal repeats. All repeats, which are not the 
maximal repeats, can be obtained from the maximal repeats. In the example above, the last 
four repeats can be extended to the left or to the right. Hence, only the first repeat is 
maximal. 
In the following, we will present an algorithm to compute all maximal repeats of a given 
sequence. It works in two phases. In the first phase, the leaves of the suffix tree are 
annotated. In the second phase, the repeats are output while simultaneously the branching 
nodes are annotated.  
We will show how the algorithm to compute all maximal repeats works for the string 
$1GCGC$2GGCG$3. The corresponding suffix tree (with some unimportant edges left out) is 
shown in Fig. 4.  
Suppose that: 
- a string S of the length n over the alphabet ∑ such that the first and the last character of 

S both occur exactly once and  
- the suffix tree for a string S is given (as in Fig. 4).  
 

 
 

Fig. 4. The suffix tree for the string $1GCGC$2GGCG$3. 

C G 

G $3 

C GCG$3 

$2GGCG$3 G 

$3 C$2GGCG$3 

$3 C$2GGCG$3 

$2GGCG$3 

S = $1 G C G C $2 G G C G $3 
   0  1 2 3 4 5 6 7 8 9 0 



A Partition-Based Suffix Tree Construction and Its Applications 

 

81 

We can ignore leaf edges from the root, since the root corresponds to the repeats of the 
length zero, and we are not interested in these.  
In the first phase, the algorithm annotates each leaf of the suffix tree: if v = Si…Sn, then the 
leaf v is annotated by the pair (a, i), where i is the starting position of the suffix v and a = Si-1 
is the character to the immediate left to the position i. (a, i) is the leaf annotation of v and it is 
denoted A(v, Si-1) = {i}. We assume that A(v, c) = φ (the empty set) for all characters c ∈ ∑ 
different from Si-1. This assumption holds in general (also for branching nodes), whenever 
there is no annotation (c, j) for some j. 
The leaf annotation of the suffix tree for the string S in Fig. 4, is shown in Fig. 5.  
Leaf edges from the root are not shown. These edges are not important for the algorithm. 
 
 
 

 
 

Fig. 5. The suffix tree for the string $1GCGC$2GGCG$3 with leaf annotation. 

The leaf annotation gives the character upon which we decide the left-maximality of a 
repeat, plus the position where the repeated string occurs. We have only to combine this 
information at the branching nodes appropriately. This is done in the second phase of the 
algorithm: In a bottom-up traversal, the repeats are output and simultaneously the 
annotation for the branching nodes is computed. A bottom-up traversal means that a 
branching node is visited only after all nodes in the subtree below that node have been 
visited. Each edge, say w → v with a label au, is processed as follows: At first repeats (for w) 
are output by combining the annotation already computed for the node w with the complete 
annotation stored for v (this was already computed due to the bottom-up strategy). In 
particular, we output all pairs ((i, i + q-1), (j, j + q-1)), where 
- q is the depth of node w, i.e. q = |w|, 
- i ∈ A(w, c) and j ∈ A(v, c’) for some characters c ≠ c’, 
- A(w, c) is the annotation already computed for w w.r.t. character c and A(v, c’) is the 

annotation stored for node v w.r.t. character c’. 
The second condition means that only those positions are combined which have different 
characters to the left. It guarantees the left-maximality of repeats. Recall that we consider 

C G 

G $3 

C GCG$3 

$2GGCG$3 G 

$3 C$2GGCG$3 

$3 C$2GGCG$3 

$2GGCG$3 

S = $1 G C G C $2 G G C G $3 
   0  1 2 3 4 5 6 7 8 9 0 

($1, 1) (G, 7) 

(C, 3) 

($2, 6) 

(C, 9) 

(G, 8) (G, 2) 

(G, 4) 



 Advances in Greedy Algorithms 

 

82 

processing the edge w → v with the label au. The annotation already computed for w was 
inherited along edges outgoing from w, which are different from w → v with the label au. 
The first character of the label of an edge, say c, is different from a. Now since w is the 
repeated substring, c and a are characters to the right of w. Consequently only those 
positions are combined which have different characters to the right. In other words, the 
algorithm also guarantees the right maximality of repeats. 
As soon as for the current edge the repeats are output, the algorithm computes the union 
A(w, c) ∪ A(v, c) of all characters c, i.e. the annotation is inherited from the node v to the 
node w. In this way, after processing all edges outgoing from w, this node is annotated by 
the set of positions where w occurs, and this set is divided into (possibly empty) disjoint 
subsets A(w, c1),…, A(w, cr), where ∑ ={c1,…,cr}. 
Fig. 6 shows the annotation for a large part of the previous suffix tree and some repeats. The 
bottom up traversal of the suffix tree for the string $1GCGC$2GGCG$3 begins with the node 
GCG of depth 4, before it visits the node GC of depth 2. The maximal repeats for the string 
GC are computed as follows: The algorithm starts by processing the first edge outgoing from 
GC. Since initially, there is no annotation for GC, no repeat is output, and GC is annotated by 
(C, 3). Then the second edge is processed. This means that the annotation ($1, 1) and (G, 7) 
for GCG is combined with the annotation (C, 3). This give repeats ((1, 2), (3, 4)) and ((3, 4), (7, 
8)). The final annotation for GC becomes (C, 3), (G, 7), ($1, 1) which also can be read as A(GC, 
C) = {3}, A(GC, G) = {7}, and A(GC, $1) = {1}.  
 
 

 
 
Fig. 6. The annotation for a large part of the suffix tree of Fig. 5 and some repeats. 

Let us now consider the running time of the maximal repeats algorithm. Traversing the 
suffix tree bottom-up can be done in time linear in the number of nodes. Follow the paths in 
the suffix tree, each node is visited only once. Two operations are performed during the 
traversal: the output of repeats and the combination of annotations. If the annotation for 
each node is stored in linked lists, then the output operation can be implemented such it 
runs in time linear in the number of repeats. Combining annotations only involves linking 

($1, 1) (G, 7) 

(C, 3) 

($2, 6) 

(C, 9) 

S = $1 G C G C $2 G G C G $3 
   0  1 2 3 4 5 6 7 8 9 0 

G 

$3 

C GCG$3 

$2GGCG$3 G 

$3 C$2GGCG$3 $1 
G

1 
7

$1 
C 
G 

1 
3 
7 

((1,3), (7,9)) 

((1,2), (3,4)) ((3, 4), (7, 8)) 

$1 
C 
$2 
G 

1 
3, 9 
6 
7 



A Partition-Based Suffix Tree Construction and Its Applications 

 

83 

lists together. This can be done in time linear in the number of nodes visited during the 
traversal. Recall, that the suffix tree can be constructed in O(n) time. Therefore, the 
algorithm requires O(n + z) time, where n is the length of the input string and z is the 
number of repeats.  
To analyze the space consumption of the maximal repeats algorithm, the annotations for all 
nodes do not have to be stored all at once. As soon as a node and its father have been 
processed, the annotations are no longer needed. The consequence is - the annotation only 
requires O(n) space. Therefore, the space consumption of the algorithm is O(n).  
The maximal repeats algorithm is optimal, since its space and time requirement are linear in 
the size of the input plus the output. 

6. References 
[1] P. Weiner, “Linear Pattern Matching Algorithms,” Proc. 14th IEEE Annual Symp. on 

Switching and Automata Theory, pp1-11, 1973  
[2] E. M. McCreight, “A Space-Economical Suffix Tree Construction Algorithm,”  Journal of 

Algorithms, Vol. 23, No. 2, pp262-272, 1976 
[3] E. Ukkonen, “On-line Construction of Suffix Trees,” Algorithmica, Vol. 14, No. 3, pp249-

260, 1995 
[4] Arthur L. Delcher, Simon Kasif, Robert D. Fleischmann, Jeremy Peterson, Owen White 

and Steven L. Salzberg, “Alignment of whole genomes,” Nucleic Acids Research, Vol. 
27, pp. 2369–2376, 1999 

[5] Aurthur L. Delcher, Adam Phillippy, Jane Carlton and Steven L. Salzberg, “Fast 
algorithms for large-scale genome alignment and comparison,” Nucleic Acids 
Research, Vol. 30, pp. 2478–2483, 2002 

[6] S. Kurtz and Chris Schleiermacher, “REPuter fast computation of maximal repeats in 
complete genomes,” Bioinformatics, Vol. 15, No. 5, pp.426-427, 1999 

[7] Stefan Kurtz, Jomuna V. Choudhuri, Enno Ohlebusch, Chris Schleiermacher, Jens Stoye 
and Robert Giegerich, “REPuter the manifold applications of repeat analysis on a 
genomic,” Nucleic Acids Research, Vol. 29, No.22, pp. 4633–4642, 2002 

[8] Stefan Kurtz, “Reducing the space requirement of suffix trees,” Software Pract. Experience, 
Vol. 29, pp. 1149-1171, 1999 

[9] Hongwei Huo and Vojislav Stojkovic, “A Suffix Tree Construction Algorithm for DNA 
Sequences,” IEEE 7th International Symposium on BioInformatics & 
BioEngineering. Harvard School of Medicine, Boston, MA, October 14-17, Vol. II, 
pp. 1178-1182, 2007. 

[10] Stefan Kurtz, “Foundations of sequence analysis,” lecture notes for a course in the 
winter semester, 2001 

[11] D. E. Knuth, J. H. Morris, and V. B. Pratt, “Fast pattern matching in strings,” SIAM 
Journal on Computing, 1977, Vol. 6, pp. 323-350, 1997 

[12] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communications of the 
ACM, 1977,Vol. 20, pp. 762-772, 1997  

[13] Yun-Ching Chen & Suh-Yin Lee, "Parsimony-spaced suffix trees for DNA sequences," 
ISMSE’03, Nov, pp.250-256, 2003. 



 Advances in Greedy Algorithms 

 

84 

[14] Giegerich, R., Kurtz, S., Stoye, J.,“Efficient implementation of lazy suffix trees,” Soft. 
Pract. Exp. Vol. 33,1035–1049, 2003  

[15] Schurmann, K.-B., Stoye, J.,“Suffix-tree construction and storage with limited main 
memory,” Technical Report 2003-06, 2003, University of Bielefeld, Germany. 

[16] Dan Gusfield, “Algorithms on strings, trees, and sequences,” Cambridge University 
Press, 1997 



6 

Bayesian Framework for State Estimation and 
Robot Behaviour Selection in  

Dynamic Environments 
Georgios Lidoris, Dirk Wollherr and Martin Buss 

Institute of Automatic Control Engineering, Technische Universität München 
D-80290 München, Germany 

 

1. Introduction      
One of the biggest challenges of robotics is to create systems capable of operating efficiently 
and safely in natural, populated environments. This way, robots can evolve from tools 
performing well-defined tasks in structured industrial or laboratory settings, to integral 
parts of our everyday lives. However such systems require complex cognitive capabilities, 
to achieve higher levels of cooperation and interaction with humans, while coping with 
rapidly changing objectives and environments. 
 In order to address these challenges a robot capable of autonomously exploring densely 
populated urban environments, is created within the Autonomous City Explorer (ACE) 
project (Lidoris et al., 2007). To be truly autonomous such a system must be able to create a 
model of its unpredictable dynamic environment based on noisy sensor information and 
reason about it. More specifically, a robot is envisioned that is able to find its way in an 
urban area, without a city map or GPS. In order to find its target, the robot will approach 
pedestrians and ask for directions. 
Due to sensor limitations the robot can observe only a small part of its environment and 
these observations are corrupted by noise. By integrating successive observations a map can 
be created, but since also the motion of the robot is subject to error, the mapping problem 
comprises also a localization problem. This duality constitutes the Simultaneous 
Localization And Mapping (SLAM) problem. In dynamic environments the problem 
becomes more challenging since the presence of moving obstacles can complicate data 
association and lead to incorrect maps. Moving entities must be identified and their future 
position needs to be predicted over a finite time horizon. The autonomous sensory-motor 
system is finally called to make use of its self-acquired uncertain knowledge to decide about 
its actions. 
A Bayesian framework that enables recursive estimation of a dynamic environment model 
and action selection based on these uncertain estimates is introduced. This is presented in 
Section 2. In Section 3, it is shown how existing methods can be combined to produce a 
working implementation of the proposed framework. A Rao-Blackwellized particle filter 
(RBPF) is deployed to address the SLAM problem and combined with recursive conditional 



 Advances in Greedy Algorithms 

 

86 

particle filters in order to track people in the vicinity of the robot. Conditional filters have 
been used in the literature for tracking given an a priori known map. In this paper they are 
modified to be utilized with incrementally constructed maps. This way a complete model of 
dynamic, populated environments can be provided. Estimations serve as the basis for all 
decisions and actions of robots acting in the real world. In Section 4 the behaviours of the 
robot are described. In Section 5 it is shown how these are selected so that uncertainty is 
kept under control and the likelihood of achieving the tasks of the system is increased. In 
highly dynamic environments decision making needs to be performed as soon as possible. 
However, optimal planning is either intractable or requires very long time to be completed 
and since the world is changing constantly, any plan becomes outdated quickly. Therefore 
the proposed behaviour selection scheme is based on greedy optimization algorithms. 
 

 
Fig. 1. The Autonomous City Explorer (ACE) robotic platform 

2. Bayesian framework for state estimation and behaviour selection 
The problem of action selection has been addressed by different researchers in various 
contexts. The reviews of (Tyrrell, 1993) and (Prescott et al., 1999) cover the domains of 
ethology and neuroscience. (Maes, 1989) addresses the problem in the context of artificial 



Bayesian Framework for State Estimation and Robot Behaviour Selection in Dynamic Environments 

 

87 

agents.  In robotics, action selection is related to optimization. Actions are chosen so that the 
utility toward the goal of the robot is maximized. Several solutions have been proposed 
which can be distinguished in many dimensions. For example whether the action selection 
mechanism is competitive or cooperative (Arkin, 1998), or whether it is centralized or 
decentralized (Pirjanian, 1999). Furthermore, explicit action selection mechanisms can be 
incorporated as separate components into an agent architecture (Bryson, 2000). 
Reinforcement learning has been applied to selection between conflicting and 
heterogeneous goals (Humphrys, 1997). A distinction was made between selecting an action 
to accomplish a unique goal and choosing between conflicting goals.  
However, several challenges remain open. Real-world environments involve dynamical 
changes, uncertainty about the state of the robot and about the outcomes of its actions. It is 
not clear how uncertain environment and task knowledge can be effectively expressed and 
how it can be incorporated into an action selection mechanism. Another issue remains 
dealing with the combinatorial complexity of the problem. Agents acting in dynamic 
environments cannot consider every option available to them at every instant in time, since 
decisions need to be made in real-time. Consequently, approximations are required.  
The approach presented in this chapter addresses these challenges. The notion of behavior is 
used, which implies actions that are more complex than simple motor commands. Behaviors 
are predefined combinations of simpler actuator command patterns, that enable the system 
to complete more complex task objectives (Pirjanian, 1999). A Bayesian approach is taken, in 
order to deal with uncertain system state knowledge and uncertain sensory information, 
while selecting the behaviours of the system. The main inspiration is derived from the 
human cognition mechanisms. According to (Körding & Wolpert, 2006), action selection is a 
fundamental decision process for humans. It depends both on the state of body and the 
environment. Since signals in the human sensory and motor systems are corrupted by 
variability or noise, the nervous system needs to estimate these states. It has been shown 
that human behaviour is close to that predicted by Bayesian theory, while solving 
estimation and decision problems.  This theory defines optimal behaviour in a world 
characterized by uncertainty, and provides a coherent way of describing sensory-motor 
processes. 
Bayesian inference also offers several advantages over other methods like Partially 
Observable Markov Decision Processes (POMDPs)  (Littman et al., 1995), which are typically 
used for planning in partially observable uncertain environments. Domain specific 
knowledge can be easily encoded into the system by defining dependences between 
variables, priors over states or conditional probability tables. This knowledge can be 
acquired by learning from an expert or by quantifying the preferences of the system 
designer.  
A relationship is assigned between robot states and robot behaviours, weighted by the state 
estimation uncertainty. Behaviour selection is then performed based on greedy 
optimization. No policy learning is required. This is a major advantage in dynamic 
environments since learning policies can be computationally demanding and policies need 
to be re-learned every time the environment changes. In such domains the system needs to 
be able to decide as soon as possible. There is evidence (Emken et al., 2007) that also humans 
use greedy algorithms for motor adaptation in highly dynamic environments. However, the 



 Advances in Greedy Algorithms 

 

88 

optimality of this approach depends on the quality of the approximation of the true 
distributions. State of the art estimation techniques enable very effective and qualitative 
approximations of arbitrary distributions. In the remainder of this section the proposed 
Bayesian framework is going to be presented in more detail. 

2.1 Bayesian Inference 
In terms of probabilities the domain of the city explorer can be described by the joint 
probability distribution p(St, Bt, Ct, Zt | Ut). This consists of the state of the system and the 
model of the dynamic environment St, the set of behaviors available to the system Bt, a set of 
processed perceptual inputs that are associated with events in the environment and are used 
to trigger behaviors Ct, system observations Zt and control measurements Ut that describe 
the dynamics of the system. In the specific domain, observations are the range 
measurements acquired by the sensors and control measurements are the odometry 
measurements acquired from the mobile robot. The behavior triggering events depend on 
the perceived state of the system and its goals.  The state vector St is defined as 

 },...,,,,{ 21 M
ttttt YYYmXS =  (1) 

where Xt represents the trajectory of the robot, m is a map of the environment and Y1t, 
Y2t,...,YMt the positions of M moving objects present at time t. Capital letters are used 
throughout this chapter to denote the full time history of the quantities from time point 0 to 
time point t, whereas lowercase letters symbolize the quantity only at one time step. For 
example zt would symbolize the sensor measurements acquired only at time step t. 
The joint distribution can be decomposed to simpler distributions by making use of the 
conjunction rule. 

 ∏
=

−−=
t

j
jjjjjjjjjttttt SCBbpSzpUSsppUZCBSp

1
,110 )},|()|(),|({)|,,,(  (2) 

Initial conditions, p(s0, b0, c0, z0, u0), are expressed for simplicity by the term p0. The first term 
in the product represents the dynamic model of the system and it expresses our knowledge 
about how the state variables evolve over time. The second one expresses the likelihood of 
making an observation zt given knowledge of the current state. This is the sensor model or 
perceptual model. The third term constitutes the behaviour model. Behaviour probability 
depends on behaviours selected previously by the robot, on perceptions and the estimated 
state at the current time. 
The complexity of this equation is enormous, since dependence on the whole variable 
history is assumed. In order to simplify it, Bayes filters make use of the Markov assumption. 
Observations zt and control measurements ut are considered to be conditionally 
independent of past measurements and control readings given knowledge of the state st. 
This way the joint distribution is simplified to contain first order dependencies. 

 ∏
=

−−=
t

j
jjjjjjjjjttttt scbbpszpussppUZCBSp

1
,110 )},|()|(),|({)|,,,(  (3) 



Bayesian Framework for State Estimation and Robot Behaviour Selection in Dynamic Environments 

 

89 

As discussed previously, the goal of an autonomous system is to be able to choose its actions 
based only on its perceptions, so that the probability of achieving its goals is maximized. 
This requires the ability to recursively estimate all involved quantities. Using the joint 
distribution described above this is made possible. In the next subsection it will be analyzed 
how this information can be derived, by making use of Bayesian logic. 

2.2 Prediction 
The first step is to update information about the past by using the dynamic model of the 
system, in order to obtain a predictive belief about the current state of the system. After 
applying the Bayes rule and marginalizing irrelevant variables, the following equation is 
acquired. 

 
1

1 1 1 1 1( | , ) ( | , ) ( | , )
t

t t t t t t t t t
s

p s Z U p s s u p s Z U
−

− − − − −∝ ∑  (4) 

More details on the mathematical derivation can be found in (Lidoris et al., 2008). The first 
term of the sum is the system state transition model and the second one is the prior belief 
about the state of the system. Prediction results from a weighted sum over state variables 
that have been estimated at the previous time step. 

2.3 Correction step 
The next step of the estimation procedure is the correction step. Current observations are 
used to correct the predictive belief about the state of the system, resulting to the posterior 
belief p(st|Zt,Ut). During this step, all information available to the system is fused. 

 ∑
−

−∝

1

),|()|(),|( 1
ts

tttttttt UZspszpUZsp  (5) 

 

It can be seen from (5) that the sensor model is used to update the prediction with 
observations. The behaviour of the robot is assumed not to have an influence on the 
correction step. The effect of the decision the robot will take at the current time step about its 
behaviour, will be reflected in the control measurements that are going to be received at the 
next time step. Therefore the behaviour and behaviour trigger variables have been 
integrated out of (5). 

2.4 Estimation of behaviour probabilities 
Finally, the behaviour of the system needs to be selected by using the estimation about the 
state of the system and current observations. That includes calculating the probabilities over 
the whole set of behaviour variables, p(bt|St, Ct, Zt, Ut) for the current time step. The same 
inference rules can be used as before, resulting to the following equation 

 ∑ −−∝

ts
tttttttttttttt UZspscbbpszpUZCSbp ),|(),,|()|(),,|( 11  (6) 

By placing (5) in (6) an expression is acquired which contains the estimated posterior. 



 Advances in Greedy Algorithms 

 

90 

 ∑ −∝

ts
tttttttttttt UZspscbbpUZCSbp ),|(),,|(),,|( 1  (7) 

As mentioned previously, system behaviours are triggered by processed perceptual events. 
These events naturally depend on the state of the system and its environment. Therefore the 
behaviour selection model p(bt|bt-1,ct,st) can be further analyzed to 

 )|(),|(),,|( 11 ttttttttt scpcbbpscbbp −− =  (8) 

and replacing equation (8) to (7) leads to  

 ∑ −∝

ts
ttttttttttttt UZspscpcbbpUZCSbp ),|()|(),|(),,|( 1  (9) 

The behaviour model is weighted by the estimated posterior distribution p(st| Zt, Ut) for all 
possible values of the state variables and the probability of the behaviour triggers. The term 
p(bt|bt-1,ct) expresses the degree of belief that given the current perceptual input the current 
behaviour will lead to the achievement of the system tasks. This probability can be pre-
specified by the system designer or can be acquired by learning. 

3. Uncertainty representation and estimation in unstructured dynamic 
environments 
In the previous section a general Bayesian framework for state estimation and decision 
making has been introduced. In order to be able to use it and create an autonomous robotic 
system, the related probability distributions need to be estimated. How this can be made 
possible, is discussed in this section. The structure of the proposed approach is presented in 
Fig. 2. Whenever new control (e.g. odometry readings) and sensor measurements (e.g. laser 
range measurements) become available to the robot, they are provided as input to a particle 
filter based SLAM algorithm. The result is an initial map of the environment and an estimate 
of the trajectory of the robot. This information is used by a tracking algorithm to obtain a 
model of the dynamic part of the environment. An estimate of the position and velocity of 
all moving entities in the environment is acquired, conditioned on the initial map and 
position of the robot. All this information constitutes the environment model and the 
estimated state vector st. A behaviour selection module makes use of these estimates to infer 
behaviour triggering events ct and select the behaviour bt of the robot. According to the 
selected behaviour, a set of actuator commands is generated which drives the robot toward 
the completion of its goals. In the following subsections each of the components and 
algorithms mentioned here are going to be further analyzed. 

3.1 Simultaneous localization and mapping 
The problem of simultaneous localization and mapping is one of the fundamental problems 
in robotics and has been studied extensively over the last years. It is a complex problem 
because the robot needs a reliable map for localizing itself and for acquiring this map it 
requires an accurate estimate of its location. The most popular approach (Dissanayake et al., 
2002) is based on the Extended Kalman Filter (EKF). This approach is relatively effective 
 



Bayesian Framework for State Estimation and Robot Behaviour Selection in Dynamic Environments 

 

91 

 

 
Fig. 2. Proposed approach for modelling dynamic environments and behaviour selection. 
 since the resulting estimated posterior is fully correlated about landmark maps and robot 
poses. Its disadvantage is that motion model and sensor noise are assumed Gaussian and it 
does not scale well to large maps, since the full correlation matrix is maintained. Another 
well known approach (Thrun et al., 2004) corrects poses based on the inverse of the 
covariance matrix, which is called information matrix and is sparse. Therefore predictions 
and updates can be made in constant time. Particle filters have been applied to solve many 
real world estimation and tracking problems (Doucet et al. 2000), (Murphy, 1999) since they 
provide the means to estimate the posterior over unobservable state variables, from sensor 
measurements. This framework has been extended, in order to approach the SLAM problem 
with landmark maps in (Montemerlo et al., 2002). In (Grisetti et al., 2005) a technique is 
introduced to improve grid-based Rao-Blackwellized SLAM. The approach described here is 
similar to this technique, with the difference that scan-matching is not performed in a per-
particle basis but only before new odometry measurements are used by the filter. 
This approach allows the approximation of arbitrary probability distributions, making it 
more robust to unpredicted events such as small collisions which often occur in challenging 
environments and cannot be modelled. Furthermore it does not rely on predefined feature 
extractors, which would assume that some structures in the environment are known. This 
allows more accurate mapping of unstructured outdoor environments. The only drawback 
is that the approximation quality depends on the number of particles used by the filter. 
More particles result to increased required computational costs. However if the appropriate 
proposal distribution is chosen, the approximation can be kept very accurate even with a 
small number of particles. In the remainder of this section the approach is briefly 
highlighted. 
The idea of Rao-Blackwellization is that it is possible to evaluate (Doucet et al.,2000) some of 
the filtering equations analytically and some others by Monte Carlo sampling. This results in 
estimators with less variance than those obtained by pure Monte Carlo sampling. 



 Advances in Greedy Algorithms 

 

92 

In the context of SLAM the posterior distribution p(Xt, m | Zt, Ut) needs to be estimated. 
Namely the map m and the trajectory Xt of the robot need to be calculated based on the 
observations Zt and the odometry measurements Ut, which are obtained by the robot and its 
sensors. 
The use of the Rao-Blackwellization technique, allows the factorization of the posterior. 

 ),|(),|(),|,( tttttttt ZXmpUZXpUZmXp =  (10) 

The posterior distribution p(Xt|Zt,Ut) can be estimated by sampling, where each particle 
represents a potential trajectory. This is the localization step. Next, the posterior p(m|Xt, Zt) 
over the map can be computed analytically as described in (Moravec, 1989) since the history 
of poses Xt is known. 
An algorithm similar to (Grisetti et al., 2005) is used to estimate the SLAM posterior. Only 
the main differences are highlighted here. Each particle i is weighted according to the 
recursive formula 

 
),,|(

),|(),|(

1

11

tt
i
t

i
t

t
i
t

i
t

i
ttti

t UZXXq
uxxpxmzpw

−

−−=  (11) 

The term p(xit|xit-1,ut-1) is an odometry-based motion model. The motion of the robot in the 
interval (t-1,t] is approximated by a rotation δrot1, a translation δtrans and a second rotation 
δrot2. All rotations and translations are corrupted by noise. An arbitrary error distribution can 
be used to model odometric noise, since particle filters do not require specific assumptions 
about the noise distribution. 
The likelihood of an observation given a global map and a position estimate is denoted as 
p(zt|mt-1,xit). It can be evaluated for each particle by using the particle map constructed so 
far and map correlation. More specifically a local map, milocal(xit, zt) is created for each 
particle i. The correlation to the most actual particle map, mit-1, is evaluated as follows: 

 
∑ ∑
∑

−−

−−
=

yx yx
ii

localyx
ii

yx

ii
localyxyx

ii
yx

mmmm

mmmm

, ,
2

,,
2

,

,,, ,

)()(

))((
ρ  (12) 

Where im  is the average map value at the overlap between the two maps. The observation 
likelihood is proportional to the correlation value. 
An important issue for the performance and the effectiveness of the algorithm is the choice 
of the proposal distribution. Typically the motion model is used, because it is easy to 
compute. In this work, the basis for the proposal distribution is provided by the odometry 
motion model, but is combined with a scan alignment that integrates the newest sensor 
measurements and improves the likelihood of the sampled particles. More specifically, new 
odometry measurements are corrected based on the current laser data and the global map, 
before being used by the motion model, through scan matching. This way information from 
the more accurate range sensors is incorporated. It must be noted here, that this is not 
performed on a per particle basis like in other approaches (Grisetti et al. 2005), since no great 
improvement in the accuracy of the estimator has been observed, compared with the higher 
computational costs involved. 



Bayesian Framework for State Estimation and Robot Behaviour Selection in Dynamic Environments 

 

93 

3.2 Conditional particle filters for tracking 
The methods mentioned above focus on the aspects of state estimation, belief representation 
and belief update in static environments. More specifically, an estimate of the most likely 
trajectory Xt of the robot, relative to an estimated static map, mt, is provided. To estimate the 
full state of the environment as defined by (1), the position of moving objects needs also to 
be estimated. 
Until now, no complete Bayesian framework exists for the dynamic environment mapping 
problem. One of the first attempts was introduced in (Wang et al., 2003). However it is based 
on the restrictive assumption of independence between static and dynamic elements in the 
environment. In (Haehnel et al., 2003) scan registration techniques are used to match raw 
measurement data to estimated occupancy grids in order to solve the data association 
problem and the Expectation-Maximization algorithm is used to create a map of the 
environment. A drawback is that the number of dynamic objects must be known in advance. 
Particle filters have been used to track the state of moving objects in (Montemerlo et al., 
2002). However the static environment is assumed known. Particle filters have also been 
used in (Miller & Campbell, 2007) to solve the data association problem for mapping but 
without considering robot localization. 
A similar approach as in (Montemerlo et al., 2002) is used here, extended to handle 
unknown static maps. The full state vector can then be estimated by conditioning the 
positions of moving objects on the robot trajectory estimate provided by tackling the 
SLAM problem. 

 
1

( | , ) ( , | , ) ( | , , )
M

m
t t t t t t t t t t t

m
p S Z U p X m Z U p Y X Z U

=

= ∏  (13) 

 

Each conditional distribution p(Ytm|Xt,Zt,Ut) is also represented by a set of particles. The 
particles are sampled from the motion model of the moving object. Several dynamics 
models exist, including constant velocity, constant acceleration and more complicated 
switching ones (Wang et al., 2003). Since people move with relatively low speeds and their 
motion can become very unpredictable, a Brownian motion model is an acceptable 
approximation. 
Every particle of each particle filter, ym,it, is weighted according to the measurement 
likelihood. 

 ),|( ,, im
ttt

im
t yxzpw =  (14) 

In order to calculate the likelihood, each sensor reading needs to be associated to a specific 
moving object. However, measurements can be erroneous, objects might be occluded and 
the environment model might not be accurate, therefore leading to false associations. 
Persons are modelled as cylindrical structures during data association of the 2D laser data. 
The radius of the cylinder has been chosen experimentally. A laser measurement is 
associated with a person if its distance from a person position estimate is smaller than a 
maximum gating distance. In this case it is additionally weighted according to its distance 
from the position estimate. Therefore if the gating regions of two persons overlap, the 
person closest to a laser point is associated with it. 



 Advances in Greedy Algorithms 

 

94 

4. Robot behaviour description 
In this section the application of the proposed general Bayesian framework to the 
Autonomous City Explorer (ACE) robot is going to be presented. The set of available 
behaviours consists of Explore, Approach, Reach Goal and Loop Closing. A detailed description 
of each one of them follows. 

4.1 Explore 
The ability to explore its environment in order to find people to interact with and increase 
its map knowledge, is fundamental for the robot. The robot performs greedy optimization in 
order to choose its next goal so that a trade-off is achieved between maximizing its 
information gain and minimizing traveling costs. Given an occupancy grid map, frontier 
regions between known and unknown areas are identified, as described in (Yamauchi, 
1998). The subset of cells of the grid m that belong to a frontier region f, are denoted by mf. 
The expected information gain I(mf,xt) acquired by reaching a frontier region from the 
current robot position xt can be calculated as in (Stachniss et al., 2005).. The traveling costs 
associated with reaching a frontier region, cost(mf,xt), are proportional to the path length to 
it. In order to achieve the aforementioned trade-off, the autonomous explorer chooses its 
next goal, on the frontier region that maximizes the following objective function 

 )},(cos),({maxarg*
tftfmf xmtxmIm

f
α−= . (15) 

The parameter α is used to define how much the path cost should influence the exploration 
process and it can be chosen experimentally. 

4.2 Approach 
In order to interact with a person the robot needs first to approach her. This behaviour 
generates a target within a safety distance to a person. The person nearest to the robot is 
chosen in case more than one person is present simultaneously.  Estimated positions from 
the tracker are used. 

4.3 Reach goal 
If the robot has been instructed a target through interaction, it needs to navigate safely to the 
specified target. An A* based planner is utilized that takes into account the motions of 
moving objects. A more detailed description is given in (Rohrmuller et al., 2007). 

4.4 Loop closing 
As the robot moves, the uncertainty about its position and its map grows constantly, 
therefore increasing the risk of failure. It is necessary for the robot to find opportunities to 
close a loop, therefore correcting its estimates. A way to acquire an estimate for the pose 
uncertainty H(p(Xt|Zt,Ut)) of the robot, is to average over the uncertainty of the different 
poses along the path as in (Stachniss et al., 2005). 
Since the distribution of the particle set can be arbitrary, it is not possible to efficiently 
calculate its entropy. A Gaussian approximation N(μt, Σt) can be computed based on the 
weighted samples with covariance Σt. The entropy can then be calculated only as a function 
of the covariance matrix. Such an approximation is rather conservative but absolutely 



Bayesian Framework for State Estimation and Robot Behaviour Selection in Dynamic Environments 

 

95 

eligible, since a Gaussian probability distribution has higher entropy than any other 
distribution with the same variance. 
In order to detect and close a loop, an approach similar to the one described in (Stachniss et 
al., 2004) is chosen. Together with the occupancy grid map a topological map is 
simultaneously created. This topological map consists of nodes, which represent positions 
visited by the robot. Each of these nodes contains visibility information between itself and 
all other nodes, derived from the associated occupancy grid. For each node the uncertainty 
of the robot Hinit(p(xt | zt, ut)) when it entered the node for the first time is also saved. To 
determine whether or not the robot should activate the loop-closing behaviour the system 
monitors the uncertainty H(p(xt | zt, ut)) about the pose of the robot at the current time step. 
The necessary condition for starting the loop-closing process is that the geometric distance 
of the robot and a node in the map is small, while the graph distance in the topological map 
is large. If such a situation is detected the node is called entry point. Then the robot checks 
the difference between its initial uncertainty at the entry point and its current uncertainty, 
H(p(xt | zt, ut) )- Hinit(p(xt | zt, ut)). If this difference exceeds a threshold then the loop is 
closed. This is done by driving the robot to the nearest neighbour nodes of the entry point in 
the topological map. During this process the pose uncertainty of the vehicle typically 
decreases, because the robot is able to localize itself in the map built so far and unlikely 
particles vanish. 

5. Behaviour selection 
As seen in the previous section, each of the behaviours available to the system has an 
objective which contributes to the achievement of the overall system goal. The robot needs 
to efficiently combine these behaviours by deciding when to activate which one and for how 
long. The proposed behaviour selection scheme is based on (9). This equation can be further 
analyzed by using the results of the state estimation process as summarized in (13). 

 ∑ ∏
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∝
=

−

tx

M

m
ttt

m
ttttttttttttttt UZxypUZmxpxcpcbbpUZCSbp

1
1 ),,|(),|,()|(),|(),,,|(  (16) 

 

It must be noted that the summation is done only over the state of the robot, xt, since both 
the states of the moving objects and the map are conditioned on it. Particle filters have been 
used to approximate the posterior distributions p(xt,mt|Zt ,Ut) and p(ytm|xt,Zt,Ut). Therefore 
they can be approximated according to their particle weights (Arulampalam et al., 2002), 
given in (11) and (14), leading to the following equation: 

 ∑ ∏∑
= = =

−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−∝
N

i

M

m

K

j

jm
t

m
t

jm
t

i
tt

i
ttttttttttt yywxxwxcpcbbpUZCSbp

1 1 1

,,
1 )()()|(),|(),,,|( δδ  (17) 

 

δ is the Dirac delta function, N is the number of particles used by the Rao-Blackwellized 
SLAM algorithm, M is the number of persons tracked by the robot and K is the number of 
particles of each conditional particle filter. After the probability of each behaviour is 
calculated, the behaviour with the maximum posterior probability is chosen. 



 Advances in Greedy Algorithms 

 

96 

 ),,,|(maxarg*
tttttbt UZCSbpb

t
=  (18) 

 

Greedy optimization of task completion probability is performed. The order of calculation 
for this equation is O(NMK), which is significantly lower than the complexity of existing 
methods for action selection under uncertainty, like POMDPs, that typically have 
complexity exponential to the number of states. This allows the system to take decisions 
more often, in order to cope with fast changes and the occurrence of unpredictable events in 
the environment. The behaviour selection scheme is described in the next section in more 
detail. 

5.1 Behaviour selection model 
The term p(bt|bt-1,ct)p(ct|xt) in equation (18) is the behaviour model and it plays a crucial role 
in the optimality of the  behaviour selection. It depends on the previous behaviour of the 
robot, the perceptual events that activate system behaviours and the estimated system state. 
This model supplies an expert opinion on the applicability of each behaviour at the present 
situation, indicating if it is completely forbidden, rather unwise, or recommended. This is 
done according to the information available to the system. 
The results of state estimation are used to evaluate if behaviour triggering events have 
occurred and how certain their existence is. During this step the term p(ct|xt) in (16) is 
calculated. Triggers and behaviours can have high, medium, low probability or be inactive. 
These values are predefined in this implementation and encode the goals of the system. 
They can also be acquired by letting a human operator decide about which behaviour the 
robot should choose, according to the situation. These decisions are then modelled to 
probability distributions. Bayesian decision theory and decision modelling provide the 
theoretical background to achieve that. Interesting works in this direction are (Ahmed & 
Campbell, 2008) and (Hy et al., 2004). 
Three triggers exist that are used to calculate the probabilities of the behaviour model. These 
are: 
• The existence of a person in the vicinity of the robot denoted by person. If a person has 

been detected then this trigger is activated. Its probability, p(person|xt), increases as the 
robot comes closer to a person. 

• The existence of a goal for the robot to reach, which is given through interaction with 
people, denoted by goal. The probability p(goal|xt) increases as the distance of the given 
target from the current most likely, estimated robot position decreases. 

• The existence of a loop closing opportunity, loop. It depends as explained in Section 4.4 
on the existence of an entry point for loop closing and the difference between current 
position uncertainty and the initial position uncertainty at the entry point. The 
probability p(loop|st) increases as the difference in uncertainty from the current position 
to the initial uncertainty at the entry point position becomes larger. 

It remains now to explain how p(bt|bt-1,ct) is constructed. At each time step the robot knows its 
previous behaviour bt-1 and the triggers that are active. Using Table 1, behaviours are proposed 
as recommended and are assigned high probability. The rest of the behaviours that are 
possible receive lower recommendations and some are prohibited (denoted by "-" in the table). 
For example, if the previous behaviour of the robot, bt-1, was Loop Closing, the trigger loop has 
probability low and the robot has no goal assigned, then the most recommended behaviour for 
the current time step, bt, will be Explore. No other behaviour is possible. 



Bayesian Framework for State Estimation and Robot Behaviour Selection in Dynamic Environments 

 

97 

 

bt-1 
bt 

Explore Loop 
Closing 

Approach Reach 
Goal 

Explore ¬person p(loop|xt)<medium 
& ¬goal 

¬person || 
p(person|xt)<medium

p(goal|xt)<medium 

Loop Closing p(loop|xt)>medium p(loop|xt)>low - p(loop|xt)>medium 
Approach person - p(person|xt)<high ¬goal & person 

Reach Goal - p(loop|xt)<medium 
& goal 

Goal Goal 

Table I. Behaviour Selection Model 

A recommended behaviour is assigned high probability value and all other possible 
behaviours a low value. Finally values are normalized. If only one behaviour is possible as in 
the example given, then it receives a probability of 1. This way, p(bt|bt-1,ct,st) is acquired and 
is used to calculate the behaviour that maximizes (15).  

6. Results 
In order to evaluate the performance of the proposed behaviour selection mechanism, 
experiments were carried out. The robot was called to find its way to a given room of the 
third floor of our institute, without any prior knowledge of the environment. The floor plan 
as well as the starting position of the robot and the given target room is shown in Fig. 3. The 
robot must interact with people in order to ask for directions.  
 

 
Fig. 3. Ground truth map of the third floor of the Institute of Automatic Control 
Engineering, Munich is illustrated. The robot starts without map knowledge and is required 
to reach the depicted final target location, which is acquired by interaction with humans. 

All algorithms described in this paper have been implemented in C++ and have been tested 
on-line on the robot, using an AMD Athlon Dual Core 3800+ processor and 4GB of RAM. 
For the Rao-Blackwellized particle filter 200 particles were used and the conditional particle 
filters for people tracking used 30 particles each. Behaviour selection was performed at 1Hz. 
The SLAM and tracking module was running at 2Hz and the path planner at 1Hz. It has 
been found experimentally that at this frequency the tracker can track up to 15 moving 
objects. 



 Advances in Greedy Algorithms 

 

98 

In Fig. 4 the decisions taken by the robot in different situations during the experiment are 
illustrated. At first the robot decides to explore in order to acquire information about where 
the target room is. Two persons are detected and the robot decides to approach the one 
nearest to it in order to interact with. A goal position is acquired in the form of a waypoint 
"10m in the x direction and 3m in the y direction". The robot decides to reach this goal. After 
the intermediate goal is reached, a decision is made to explore in order to acquire new 
direction instructions. Another person is approached and new instructions are given which 
this time will lead to the final goal. As the robot moves its uncertainty grows. At some point 
an opportunity to close a loop is recognized. Therefore the robot decides to change its 
behaviour to Loop Closing, in order to reduce its uncertainty. After the loop is closed, the 
robot reaches its final goal. 
 

 
Fig. 4. The robot is called to find its way to a given goal, without prior map knowledge. All 
information is extracted by interaction. The decisions of the behaviour selection scheme are 



Bayesian Framework for State Estimation and Robot Behaviour Selection in Dynamic Environments 

 

99 

shown in different situations. (a) The robot starts without any prior map information and 
decides to explore in order to find persons to interact with. (b) Two persons are found and 
the robot chooses the one closest to it in order to interact. (c) A goal was given to the robot 
by the first interaction and was reached by the robot. Now it chooses to explore in order to 
find a person to acquire a new target. (d) The robot has a target but its position uncertainty 
is high. It detects an opportunity to close a loop and decides to do so. (e) The robot reaches 
its final goal. 
By taking uncertainty into account in action selection, the robot can anticipate unforeseen 
situations and increase the likelihood of achieving its goal. In Fig. 5 the overall uncertainty 
of the robot during this experiment is illustrated by the red line. The uncertainty of the robot 
trajectory when it reaches the target directly, without being controlled by the proposed 
scheme, is illustrated by the blue dashed line. It can be seen that at the early phases of the 
experiment the uncertainty of the system is larger with the proposed scheme, since the robot 
drives more complex trajectories in order to approach people, but it is not critical. At some 
point it decides to close the loop and its uncertainty is reduced notably. When it reaches its 
final goal the overall system uncertainty is much lower than without behaviour selection. 
Lower uncertainty is equivalent to safer navigation and increased task completion 
likelihood. 
The presented system is capable of deciding when it should pursuit its given target, in 
which situation interaction with humans is needed in order to acquire new target 
information and finally when its overall uncertainty has reached a critical point. In this last 
case it tries to reduce it by taking actions that improve its state estimates. 
 
 

 
 
Fig. 5. Trajectory uncertainty as it evolves with the time. With red the uncertainty of the 
robot is illustrated, while it is controlled with the proposed behaviour selection scheme. The 
uncertainty of the robot trajectory when it reaches the target directly, without being 
controlled by the proposed scheme, is illustrated with blue dashed line. 



 Advances in Greedy Algorithms 

 

100 

7. Conclusion 
In this Chapter a probabilistic framework has been introduced, that enables recursive 
estimation of a dynamic environment model and action selection based on these uncertain 
estimates. The proposed approach addresses two of the main open challenges of action 
selection. Uncertain knowledge is expressed by probability distributions and is utilized as a 
basis for all decisions taken from the system. At the same time the complexity of the 
proposed action selection mechanism is kept lower than of most state-of-the-art algorithms.  
The probability distributions of all associated uncertain quantities are approximated 
effectively and no restrictive assumptions are made regarding their form. More specifically, 
a Rao-Blackwellized particle filter (RBPF) has been deployed to address the SLAM problem 
and conditional particle filters have been modified to be utilized with incrementally 
constructed maps for tracking people in the vicinity of the robot. This way a complete model 
of dynamic, populated environments is provided. The computational costs depend only on 
the required approximation accuracy and can be defined according to the requirements of 
the application domain.  
The estimated uncertain quantities are used for coordinating the behaviours of the robot so 
that uncertainty is kept under control and the likelihood of achieving its goals is increased. 
A greedy optimization algorithm is used for behaviour selection, which is computationally 
inexpensive. Therefore the robot can decide quickly in order to cope with its rapidly 
changing environment. The decisions taken may not be optimal in the sense of POMDP 
policies, but are always responding to the current state of the environment and are goal 
oriented. The goals of the system are expressed by the behaviour selection model. 
Results from the implementation of all proposed algorithms on the ACE robotic platform 
demonstrate the efficiency of the approach. The robot can decide when to pursue its given 
goal or when to interact with people in order to get more target information. If its 
uncertainty becomes large, it takes actions that improve its state estimates. It is shown that 
overall system uncertainty is kept low even if the robot is called to complete complex tasks.  
Human decision making capabilities are remarkable. Therefore, future work will focus on 
learning the behaviour selection model from data provided by a human expert. This way the 
quality of the decisions taken by the system can be improved. Formal evaluation criteria for 
action selection mechanisms need to be developed. This is challenging since such criteria 
must consider many conflicting requirements and since in almost every study different 
physical robots are used in variable experimental conditions. Finally, more experiments are 
going to be conducted in unstructured, outdoor, dynamic environments. 

8. Acknowledgements 
This work is supported in part within the DFG excellence initiative research cluster 
Cognition for Technical Systems -- CoTeSys, see also www.cotesys.org.  

9. References 
Ahmed, N.; Campbell, M. (2008). Multimodal Operator Decision Models. IEEE American 

Control Conference (ACC), Seattle, USA. 
Arkin, R.C. (1998). Social behavior. Behavior-Based Robotics, MIT Press, Cambridge, MA. 



Bayesian Framework for State Estimation and Robot Behaviour Selection in Dynamic Environments 

 

101 

Arulampalam, S.; Maskell, S.; Gordon, N.; Clapp, T. (2002). A Tutorial on Particle Filters for 
On-line Non-linear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal 
Processing, 50, p. 174-188. 

Bryson, J.J.; Stein, L.A. (2000). Architectures and Idioms: Making Progress in Agent Design. 
In: The Seventh International Workshop on Agent Theories, Architectures and Languages. 
Springer. 

Dissanayake, G.; Newman, P.; Clark, S.; Durrant-Whyte, H.; Csorba, M. (2001). A Solution to 
the Simultaneous Localization and Map Building (SLAM) Problem. IEEE 
Transactions on Robotics and Automation, 17(3), p. 229-241. 

Doucet, A.; de Freitas, J. F. G.; Gordon, N. J. (2000). Sequential Monte Carlo Methods in 
Practice. Springer-Verlag, New York. 

Emken, J. L.; Benitez, R.; Sideris, A.; Bobrow J. E.; Reinkensmeyer D.J. (2007). Motor 
Adaptation as Greedy Optimization of Error and Effort. Journal of Neurophysiology. 
p. 3997-4006. 

Grisetti, G.; Stachniss, C.; Burgard, W. (2005). Improving Grid-based SLAM with Rao-
Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling 
International Conference of Robotics and Automation (ICRA), Barcelona, Spain. 

Hähnel, D.; Triebel, R.; Burgard, W.; Thrun, S. (2003). Map Building with Mobile Robots in 
Dynamic Environments. Proceedings of the IEEE Intl. Conf. on Robotics and Automation 
(ICRA), Taipei, Taiwan. 

Humphrys, M. (1997). Action Selection Methods Using Reinforcement Learning. PhD Thesis. 
University of Cambridge, Computer Laboratory, Cambridge, England. 

Hy, R. L.; Arrigoni, A.; Bessiere, P.; Lebeltel, O. (2004). Teaching Bayesian behaviours to 
video game characters. Robotics and Autonomous Systems, 47, p. 177-185. 

Körding, K.; Wolpert, D. (2006). Bayesian Decision Theory in Sensorimotor Control. Trends 
in Cognitive Sciences, 10(7), p. 319-326. 

Lidoris, G.; Klasing, K.; Bauer, A.; Xu, T.; Kühnlenz, K.; Wollherr, D.; Buss, M. (2007). The 
Autonomous City Explorer Project: Aims and System Overview. Proceedings of the 
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), San Diego, USA. 

Lidoris, G.; Wollherr, D.; Buss, M. (2008). Bayesian State Estimation and Behavior Selection 
for Autonomous Robotic Exploration in Dynamic Environments. Proceedings of the 
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice, 
France, Sept, 22-26. 

Littman, M.; Cassandra, A.; Kaelbling, L. (1995). Learning Policies for Partially Observable 
Environments: Scaling Up. Proceedings of the 12th Intl. Conf. on Machine Learning. p. 
362-370, San Fransisko, USA. 

Maes, P. (1989). How to do the right thing. Connection Science Journal, 1(3): p. 291-323. 
Miller, I.; Campbell, M. (2007). Rao-Blackwellized Particle Filtering for Mapping Dynamic 

Environments. IEEE International Conference on Robotics and Automation (ICRA), 
Rome, Italy. 

Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B. (2002). FastSLAM: A Factored Solution 
to Simultaneous Localization and Mapping. National Conf. on Artificial Intelligence 
(AAAI), Edmonton, Canada. 

Montemerlo, M.; Whittaker, W.: Thrun, S. (2002). Conditional Particle Filters for 
Simultaneous Mobile Robot Localization and People-Tracking. IEEE Intl. Conf. on 
Robotics and Automation (ICRA), Washington, DC, USA. 



 Advances in Greedy Algorithms 

 

102 

Moravec, H. (1989). Sensor fusion in certainty grids for mobile robots. Sensor Devices and 
Systems for Robotics, p. 243-276. 

Murphy, K. (1999). Bayesian map learning in dynamic environments. Advances in Neural 
Information Processing Systems (NIPS). MIT Press, p. 1015-1021. 

Pirjanian, P.  (1999). Behavior coordination mechanisms -- state-of-the-art. Technical Report 
IRIS-99-375, Institute of Robotics and Intelligent Systems, School of Engineering, 
University of Southern California. 

Prescott, T.J.; Redgrave P.; Gurney, K. (1999). Layered control architectures in 
robots and vertebrates. Adaptive Behavior, 7:99-127. 

Rohrmüller, F.; Althoff, M.; Wollherr, D.; Buss, M. (2005). Probabilistic Mapping of Dynamic 
Obstacles Using Markov Chains for Replanning in Populated Environments. IEEE 
Intl. Conf. on Robotics and Automation (IROS), Nice, France, Sept, 22-26. 

Stachniss, C.; Haehnel, D.; Burgard, W. (2004). Exploration with Active Loop-Closing for 
FastSLAM. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Sendai, 
Japan. 

Stachniss, C.; Grisetti, G.; Burgard, W. (2005). Information Gain-based Exploration Using 
Rao-Blackwellized Particle Filters. Robotics: Science and Systems (RSS), Philadelphia, 
USA, p. 65-72. 

Thrun, S.; Liu, Y.; Koller, D.; Ng, A.; Ghahramani, Z.; Durrant-Whyte, H. (2004). 
Simultaneous Localization and Mapping with Sparse Extended Information Filters. 
Int.J. Robotics Research, 23(7-8), p. 693-716. 

Tyrrel, T. (1993). Computational Mechanisms for Action Selection. PhD Thesis, University of 
Edinburgh. 

Wang, C.; Thorpe, C.; Thrun, S. (2003). Online Simultaneous Localization And Mapping 
with Detection And Tracking of Moving Objects: Theory and Results from a 
Ground Vehicle in Crowded Urban Areas. IEEE Int. Conf.on Robotics and Automation 
(ICRA), Taipei, Taiwan. 

Yamauchi, B. (1998). Frontier-based Exploration Using Multiple Robots. Second Intl. 
Conference on Autonomous Agents, Minneapolis, USA. 



7 

Efficient Multi-User Parallel Greedy  
Bit-Loading Algorithm with  

Fairness Control For DMT Systems 
Cajetan M. Akujuobi and Jie Shen 

The Center of Excellence for Communication Systems Technology Research (CECSTR), 
Prairie View A&M University, Prairie View, Texas 77446 

USA 

1. Introduction      
This chapter addresses the multi-user bit-loading algorithm for discrete multitone (DMT) 
modulation in digital subscriber line (DSL) systems.  The widely deployed asymmetric 
digital subscriber line (ADSL) provides the high bit rate data transmission as well as plain 
old telephone service (POTS) on a single twisted-pair at the same time.  DMT, the core of 
DSL systems, divides the frequency-selective channel into large number of narrow 
subchannels.  If the number is large enough, each subchannel becomes flat in frequency 
response, although the responses may differ a lot among subchannels.  One of the 
advantages of DMT is that the power spectral density (PSD) and bits allocated to each 
subchannel could be chosen according to the subchannel signal-to-noise ratio (SNR) in order 
to obtain the optimal performance (e.g. maximum data rate, or minimum power 
consumption).  This process is called bit loading and is a critical issue in the design of DMT 
systems. 
In the early days of DMT development, bit loading was studied only in single-user case, 
where only one pair of modems (transmitter and receiver) was considered.  Compared with 
traditional telephone service, DSL systems always work on high frequency range, which 
causes the crosstalk interference among the twisted pairs in the same cable noticeable.  The 
SNR of a subchannel is related not only with the PSD of its own transmitter, but also with 
the PSD of all other transmitters in the same cable that act as disturbers.  The bit-loading 
algorithms need to be extended to multi-user scenario to obtain the global optimum 
performance among all users.  The optimal algorithm for discrete multi-user bit loading is a 
natural extension of single-user greedy algorithm.  A matrix of cost is calculated, with 
elements that represent the power increment to transmit additional bits for each subchannel.  
Then, the subchannel with minimum cost is found, and additional bits are assigned to it.  
The process continues until all subchannels are filled.  A drawback of the multi-user greedy 
bit loading is the computation complexity.  For a single iteration of the algorithm, only one 
subchannel on one user who has the minimum cost is selected to get additional bits. 
The objective of this chapter is to propose an efficient greedy bit-loading algorithm for 
multi-user DMT systems.  An improved parallel bit-loading algorithm for multi-user DMT 
will be discussed.  The new algorithm is based on multi-user greedy bit loading.  In a single 



 Advances in Greedy Algorithms 

 

104 

iteration, the bits were allocated to multiple users on the subchannels with same frequency.  
Thus, the number of iterations to allocate bits to all users decreased significantly. The 
adjustable cost elastic coefficient defined the range of power cost. In the bit-loading 
iteration, all subchannels for different users that have the power cost within the range have 
the chance to get additional bits assigned to them. 
As a consequence of the greedy bit-loading algorithm, the user with better channel 
condition, which means it has smaller cost to transmit additional bits, will have more chance 
to get bits assigned to it until it meets the target data rate or exceeds the power budget. The 
user with worse channel condition is sacrificed in order to gain the maximum total data rate.  
However, in most real networks, users in the same cable are of equal priority. Their service 
quality is supposed to be as equal as possible. Fairness should be considered in the design of 
bit-loading algorithm. This chapter studied the possibility to improve the fairness among 
users in the same cable. We proposed a fairness control method in the bit-loading algorithm.  
A fairness coefficient is introduced so that the variance of total number of bits for all users 
could be controlled.  The cost of fairness is that the better-condition loops have to reduce 
their data rate, because the worse-condition loops have little improvement in their data rate. 

2. Bit loading algorithms for DMT 
The application of discrete multi-tone (DMT), divides the frequency selective channel into 
large number of narrow subchannels, so that each subchannel could be used to modulate a 
fraction of information in parallel independently.  The advantage of DMT is that the power 
spectral density (PSD) of transmitted signal could be chosen according to the subchannel 
signal-to-noise ratio (SNR) in order to obtain the optimal performance (e.g. maximum data 
rate, or minimum power consumption).  The problem of how to allocate energy or information 
(bits) into subchannels optimally is a critical issue in the design of DMT systems.  This problem 
is called bit loading.  Many algorithms have been studied in the past for DMT systems such as 
(Akujuobi, C. M. & Shen, J. 2006), (Yu &Cioffi, 2001), (Hughes-Hartogs, 1987-1989), (Sonalker 
& Shively, 1998), (Chow & Cioffi, 1995), (Tu & Ciofi, 1990), (Leke & Cioffi, 1997) and 
(Campello, 1999).  They are the foundations for the work discussed in this chapter. A review of 
several typical bit-loading algorithms are discussed in this Section. 

2.1 Channel capacity 
In information theory, the capacity of a band-limited white noise channel is: (Cover & 
Thomas, 1991)  

 2
0

1 log 1
2

PC
N W

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 bits per sample  (1) 

where the power of signal is P watts, the spectral density of white noise is N0/2 watts/Hz, 
and the bandwidth is W Hz. The unit of capacity in Equation (1) is bits per sample, if we 
convert the unit to bits per second, the expression is the famous channel capacity formula 
proved by Claude Shannon in 1948 (Shannon, 1948) as shown in Equation (2): 

 2
0

log 1 PC W
N W

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 bits per second  (2) 



Efficient Multi-User Parallel Greedy Bit-Loading Algorithm with Fairness Control For DMT Systems 

 

105 

In DMT systems, QAM is used as modulation method to map digital information into 
complex numbers. And we know that QAM is a two-dimensional modulation method, 
which means it has two basis functions as in-phase function and quadrature function.  
Therefore, the channel capacity in QAM DMT is 

 ( )2log 1n nC SNR= +   (3) 

where SNRn refers to the signal-to-noise ratio for subchannel n, and Cn refers to the capacity 
of subchannel n. Channel capacity is the theoretic upper limit of achievable data rate for a 
channel with probability of error that tends to zero.  In practical analysis, the probability of 
error can never be zero; instead, we expect an acceptable error probability Pe at some 
practical data rate.  The reduced data rate could be expressed in a revised channel capacity 
formula by introducing a SNR gap Γ. 

 2log 1 n
n

SNRb ⎛ ⎞= +⎜ ⎟Γ⎝ ⎠
  (4) 

When Γ = 1 (0 dB), bi becomes the channel capacity. The selection of Γ depends on the error 
probability Pe and coding scheme. Higher Pe requires larger Γ. Complex coding scheme that 
guarantees reliable transmission can reduce the Γ. For the two-dimensional QAM system 
with bit error rate (BER) at 10-7, the gap Γ is computed using the following formula: (Chow 
et al., 1995) 

 9.8 ( )m c dBγ γΓ = + −   (5) 
where γm is the performance margin and γc is the code gain.  If the system is uncoded (γc = 
0dB) and performance margin is 0 dB, the gap is 9.8 dB. 

3. Review of bit-loading algorithms 
3.1 Water-filling algorithm 
Water-filling algorithm is demonstrated in (Cover & Thomas, 1991) and (Gallager, 1968) as 
the optimal solution for the problem that distributes energy into parallel independent 
Gaussian channels with a common power constraint.  Expand the SNRn in Equation (4) to 
the ratio of received signal power n nP H  and noise power nN , where nP  is the power 
allocated to subchannel n and nH  is the channel gain.  The number of bits that transmits in 
a subchannel is expressed as in Equation (6). 

 2log 1 n n
n

n

P H
b

N
⎛ ⎞

= +⎜ ⎟Γ⎝ ⎠
  (6) 

The problem of bit loading is an optimization problem that allocates power to subchannels.  The 
target of the optimization is to maximize the aggregate number of bits transmitted on all N 
subchannels under the constraint that the total power should not exceed the power budget P. 

                                               
2

1 1

1

maximize log 1

subject to

N N
n n

n n n

N

n
n

P H
b

N

P P

= =

=

⎛ ⎞
= +⎜ ⎟Γ⎝ ⎠

≤

∑ ∑

∑
                                           (7) 



 Advances in Greedy Algorithms 

 

106 

Employ Lagrange multipliers method to solve the optimization problem of Equation (7) 
with the Lagrangian function ( )nL P  as: 

 ( ) 2
1 1
log 1

N N
n n

n n
n nn

P H
L P P P

N
λ

= =

⎛ ⎞ ⎛ ⎞= + + −⎜ ⎟⎜ ⎟Γ ⎝ ⎠⎝ ⎠
∑ ∑   (8) 

The λ in Equation (8) is called Lagrangian Multiplier. Take the derivative on L(Pn ) over the 
variable Pn and make it equal to 0, 

 
1 0

ln 2 1

n

n nn n

n

HL
P NP H

N

λ∂
= ⋅ + =

∂ Γ⎛ ⎞
+⎜ ⎟Γ⎝ ⎠

  (9) 

Solve this equation to get the power allocation Pn as: 

 

1
ln 2

1where ,     
ln 2

n
n

n n

n
n

n

NP C
H g

HC g
N

λ

λ

λ

λ

Γ
= − −Γ = −

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠

  (10) 

This equation could be rearranged to the following form: 

 constant n
n

P C
g λ

Γ
+ =   (11) 

The variable gn in Equation (11) expresses the signal-to-noise ratio when unit power is 
transmitted on subchannel n. It is a unified version of SNR, which is a measurement to indicate 
the quality of subchannels. We can see from Equation (11) that Pn has the form of “water-
filling” distribution.  That is, the summation of power transmitted in subchannel n and inverse 

unified signal-to-noise power ratio (multiplied by Γ) must equal to a constant ( Cλ ). The 
ng
Γ  

can be understood as the terrain of a bowl, power is poured into the bowl like water.  The 
value of Cλ represents the resulting water level. Fig. 1 shows the idea of water-filling. 
 

 

Water level λC

Terrain 
ng
Γ  

Allocated power

 
Fig. 1. Water-Filling 



Efficient Multi-User Parallel Greedy Bit-Loading Algorithm with Fairness Control For DMT Systems 

 

107 

The formula to obtain the value of Cλ  comes from the constraint of total power budget. 

 
1 1 1

1N N N

n
n n nn n

P P C NC
g gλ λ

= = =

⎛ ⎞Γ
= = − = −Γ⎜ ⎟

⎝ ⎠
∑ ∑ ∑   (12) 

So we get 

  
1

1 1N

n n

C P
N gλ

=

⎛ ⎞
= + Γ⎜ ⎟

⎝ ⎠
∑   (13) 

The water-filling algorithm described in (Starr et al., 1999) and (Tu & Cioffi, 1990) starts 
from calculating the water-level Cλ , then calculate the power allocation by using, 

 n
n

P C
gλ

Γ
= −   (14) 

The subchannels are sorted in descendent order with respective to the value of gn.  
Therefore, if in any step the calculated Pn is negative, which means the subchannel’s terrain 
is too high (signal-to-noise ratio is too small) to hold the power, the algorithm stops. The 
problem of water-filling algorithm is that in DMT systems, the bit loading for subchannels 
should be discrete numbers instead of arbitrary real numbers, which is assumed in this 
algorithm. 

3.2 On/Off algorithm – chow’s algorithm 
The algorithm described in (Chow & Cioffi, 1995) utilizes the fact that if the same or nearly 
same subchannels are used, the difference of bit-loading result is very small (less than 2%, 
(Leke & Cioffi, 1997) between the proposed “on/off” algorithm and the traditional water-
filling algorithm. In Chow’s on/off algorithm, the power distribution is flat, that is, the 
power is same over all the selected subchannels. On the subchannels that are not selected, 
the power is simply set to zero, which means they are turned off. 
The algorithm starts by sorting the SNRs in descendent order, so that the first subchannel 
been processed has the highest SNR. At the beginning, the number of subchannels turned 
on is zero. During each step, one more subchannel is turned on, which causes the total 
number of turned on subchannels to be K. The power allocated to each turned on 
subchannel is set to be 

 ,   ( 1 )budget
n

P
P n K

K
= =   (15) 

where Pbudget is power constraint.  If the Pn is greater than the power mask at subchannel n, 
the power mask is used as Pn. With the power allocation from Equation (15), numbers of bits 
in subchannels 1 to n are then calculated using Equation (6). If the aggregated number of 
bits over all used subchannels becomes less than the value in previous step, the algorithm 
stops, and the bit allocation scheme obtained from previous step is used as the bit loading 
result.  All the remaining subchannels are thus left in the off state. 



 Advances in Greedy Algorithms 

 

108 

The flat power allocation in Chow’s algorithm satisfies the requirement of static spectrum 
management of ADSL power spectral density. The reason why flat power allocation causes 
very small difference from optimal water-filling algorithm is studied in detail in (Yu & 
Cioffi, 2001). The answer is because the logarithm operation in (6) is insensitive to the power 
actually allocated to subchannels, unless the SNR is small.  If the subchannels with SNR less 
than a cut-off value are turned off, the power could be simply allocated to all other 
subchannels evenly without loss of much accuracy. An even simpler algorithm was 
proposed in (Yu & Cioffi, 2001), that save the complexity to find the cut-off point of SNR.  
When the cut-off SNR is found, power allocation is just to assign constant power to 
subchannels that has SNRs greater than cut-off value, and assign zero power to other 
subchannels. 

3.3 Greedy algorithm – hughes-hartogs algorithm 
In Hughes-Hartogs’s patent (Hughes-Hartogs, 1987-1989), an algorithm based on greedy 
idea was proposed. That is, every incremental power to transmit one additional bit is 
allocated to the subchannel that can use it most economically.  For example, assume 
considering only two subchannels A and B.  Subchannel A bears NA bits now, and the 
incremental power required to transmit NA+1 bits is ΔPA.  For subchannel B that bears NB 
bits, the incremental power is ΔPB.  If ΔPA<ΔPB, subchannel A will be selected to transmit 
the additional bit and gets the incremental power allocation.  The power requirement for all 
subchannels to transmit all possible number of bits could be calculated in advance, and be 
saved in a matrix P as show in Fig.  2.  The element Pm,n in the matrix represents the power 
needed to transmit m bits in subchannel n.  The values in first row are zeros obviously.   
The incremental power required to transmit one additional bit is calculated by subtracting 
the first row from the second row.  The result ΔP is same as the second row in the first 
iteration.  The subchannel n that has minimum value in ΔP is selected to get the additional 
bit.  In the next iteration, the elements of column n in matrix P are shifted upward for one 
position.  The following subtractions are still performed on the row one and row two, until 
the power budget is fully consumed. 

 Subchannels 1 2 … N 
0 bit 0 0 … 0 
1 bit P1,1 P1,2  P1,N

2 bits P2,1 P2,2  P2,N

… …    
Mmax bits PM,1 PM,2  PM,N

 
Fig.  2.  Power Matrix for Hughes-Hartogs Algorithm 

The Hughes-Hartogs algorithm was first invented for voice-band modem in 1987, ((Hughes-
Hartogs, 1987-1989).  For the modern DSL systems, the number of subchannels is usually 
much larger than the voice-band modems.  The slow convergence rate of Hughes-Hartogs 
algorithm and some other constraints, such as the fixed SNR assumption, make this 
algorithm impractical in DSL systems.  But it is still a good starting point for later improved 
algorithms. 



Efficient Multi-User Parallel Greedy Bit-Loading Algorithm with Fairness Control For DMT Systems 

 

109 

3.4  Bit removal greedy algorithm 
Compared with the bit filling greedy algorithm described in Section 3.3, a bit removal 
greedy algorithm was proposed in (Sonalker & Shively, 1998).  Reversing Equation (6) we 
can get the power that is required to transmit nb  bits in subchannel n as, 

 [ ] ( ) ( )2 1 2 1n nb bn
n n n

n

NP b
H

α
Γ

= − = −   (16) 

Therefore, the amount of power saved if one bit is removed from the subchannel is 

 [ ] [ ] ( ) ( )1 11 2 1 2 1 2n n nb b bR
n n n n n n nP P b P b α α− −⎡ ⎤Δ = − − = − − − =⎣ ⎦   (17) 

The bit removal algorithm first allocates the maximum possible numbers of bits to all 
subchannels.  The maximum number of bits in a subchannel is determined by either the 
power mask limit or the upper limit of allowable bit number – whichever is smaller.  Most 
likely, this bit-loading scheme will exceed the power budget, and the total bits number will 
be greater than the desired target.  Then, the bits are removed one bit per time from the 
subchannel that may save the power most significantly by removing it. The removing 
process stops until the power constraint is satisfied, or the data rate requirement is satisfied. 
Authors (Sonalker & Shively, 1998) made a computation load comparison between bit-
removal and bit-filling greedy algorithms over several loops.  It showed that in most cases, 
the bit-removal algorithm required much fewer computations. 

3.5 Peter, chow, cioffi, and bingham’s practical algorithm 
Chow, Cioffi, and Bingham proposed a practical DMT loading algorithm based on the 
rounded bit number and performance margin adjustment in (Chow et al., 1995).  The idea is 
to make a round operation on the resulting bit loading value, which is expressed as  

 2
margin

( )( ) log 1
( )

SNR nb n
dBγ

⎛ ⎞
= +⎜ ⎟⎜ ⎟Γ +⎝ ⎠

  (18) 

where marginγ  represents the performance margin, and has the initial value of 0.  The zero 
value of marginγ  causes the b(n) to get the maximum value.  b(n) is then rounded to the nearest 
integer value ˆ( )b n .  In regular condition, the summation of rounded values ˆ( )b n , n from 1 
to N, will exceed the target total bit number.  In next step, the algorithm increases the 
margin by using the formula: 

 
total target

UsedCarriers
margin margin 1010log 2

B B

γ γ
−⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

  (19) 

With the updated marginγ , Equation (18) is calculated and rounded again.  The process 

continues until the total number of bits reaches the target.  If the process doesn’t converge 
after the maximum number of iterations, the algorithm forces the convergence by adjusting 
the bit allocation according to the difference between b(n) and ˆ( )b n .   



 Advances in Greedy Algorithms 

 

110 

At last, the algorithm makes further adjustment on energy distribution so that the bit error 
rates (BER) on all used subchannels are equal.  The analysis in (Chow et al., 1995) shows that 
only 10 iterations is enough for ADSL loops, which is much faster than the Hughes-Hartogs 
algorithm. 

4. Efficient greedy bit loading with fairness control for multi-user DMT 
The twisted-pairs inside a cable could be imagined as a multi-user communication channel 
because of crosstalk coupling.  The received signal power of any user depends on the 
peering transmitted power, and at the same time is impaired by additive white Gaussian 
noise (AWGN) and the crosstalk from all other transmitters in the same cable.  Fig. 3 shows 
the multi-user channel environment, where Hii represents the main channel transfer 
function; Hij (i ≠ j) represents the crosstalk transfer function from user i to user j; σi 
represents the power of AWGN noise.  Under DMT scenario, we need to study a step 
further besides the total power of each user.  The power allocation over frequency spectrum 
of each user is of interest. 
The power allocation problem relates with the bit-loading problem closely.  Actually, they 
are the two aspects of a same problem, because the number of bits that can be transmitted 
on a subchannel is a function of the power allocated to that subchannel.  Equation  (6) gives 
the relationship between them.  In Section 3, we gave a review of several major bit-loading 
algorithms.  However, all those algorithms we discussed are applied to a single modem (or 
single user).  In crosstalk environment, bit-loading algorithms need to be extended to 
consider mutual effects between multiple users so that the global optimal performance 
among all modems (users) in a cable could be obtained.   
In Section 4, we explore the current available multi-user bit-loading algorithms, and then 
propose an improved efficient algorithm, which allocates bits to multiple users in parallel on 
subchannels that have same frequency.  This new algorithm reduces the number of 
iterations dramatically.  A new fairness coefficient is also introduced to improve the fairness 
of data rate among users. 

σ 1
H11

σ 1
H22

σ 1
Hnn

H12
H21H1n

H2n

X1 

X2 

Xn 

Y1 

Y2 

Yn  
Fig. 3.  Multi-user Channel With Crosstalk among Loops 

4.1 Notation 
The notations that are used in the later Sections of this chapter are defined here.  As shown 
in  Figure 4, there are M users in the same cable in which interference exists between users.  



Efficient Multi-User Parallel Greedy Bit-Loading Algorithm with Fairness Control For DMT Systems 

 

111 

We use variables i or j (i, j = 1, … M) to indicate the indices of users.  In DMT based systems, 
each user has N sub-channels.  The index of sub-channel is indicated by variable n (n = 1, …, 
N).  We use the term “subchannel (i, n)” to refer to the subchannel n of user i, where i = 
1…M; n = 1…N.  More variables are listed as below: 

( )ib n : Number of bits allocated to subchannel (i, n). 

1 2( ) [ ( ), ( ) ( )]T
Mn b n b n b n=b : The vector of bit allocations at subchannel n for M users. 

( )iP n : Power allocated to subchannel (i, n). 

1 2( ) [ ( ), ( ) ( )]T
Mn P n P n P n=P : The vector of power allocation at subchannel n for M users. 

( )ijH n : Channel gain transfer function from user i to user j at the subchannel n.  When i = j, 

( )iiH n  is the insertion loss transfer function for user i at subchannel n (ANSI Std. T1.417, 

2001).  When i ≠ j, ( )ijH n  is the crosstalk transfer function from user i to user j at the 

subchannel n. 
Γ : SNR gap margin to ensure the performance under unexpected noise.  It is a function of 
target BER, modulation scheme and coding scheme. 

2 ( )i nσ : The variance of white Gaussian noise on subchannel (i, n). 

( )maskP n : The power mask on subchannel n. 

( )budgetP i : The power budget for user i. 

bΔ : The incremental unit of bits added to a subchannel in each iteration.  In general, it 
should be an integer number. 

symbolT : The symbol period of the DMT system.  For ADSL, it equals to 1/4000. 
 

 

Subchannel 
. . . . . .

1 2 n N

User i 
Subchannel 

. . . . . .
1 2 n N

User 1 

User M 
Subchannel 

. . . . . .
1 2 n N

. . . ..
 

. . . .. 

Fig. 4.  Multi-User Multi-Channel Configuration 



 Advances in Greedy Algorithms 

 

112 

4.2 Problem definition for multi-user bit loading 
Like single user bit-loading problem, the problem for multi-user bit loading is an 
optimization problem.  The purpose of the optimization is to find the bit allocation schemes 

( )nb  for all M users on each subchannel n (n = 1…N).  The objective is to maximize the 
aggregate data rate of all users 

 
1 1 1

1maximize  ( )
M M N

total i i
i i nsymbol

R R b n
T= = =

= =∑ ∑∑  (20) 

with the constraints of power and bit limits, such as: 

 0 ( ) ( )i maskP n P n≤ ≤   (21)                          

 
1

( ) ( )
N

i budget
n

P n P i
=

≤∑   (22)                          

 min max( ) , and ( ) is integeri ib b n b b n≤ ≤   (23) 

This is called “rate-adaptive loading” (Starr et al., 1999).  In some cases, what we care about is 
not to get the maximum data rate, but to minimize the power consumption with a fixed data 
rate. The second problem is called “margin-adaptive loading”. Formulated as in Equation (24): 

 1 1 1

arg

minimize     ( )

subject to           ( 1 )

M M N

i i
i i n

i t et

P P n

b b i M
= = =

=

= =

∑ ∑∑
  (24) 

These two kinds of problems are equivalent in that algorithms designed for one problem 
could be applied similarly to another one.  In this thesis, we concentrate on the rate-adaptive 
problem, that is, to maximize the total data rate. As a consequence of maximizing total data 
rate over all users, the user with better channel condition, which means it has smaller cost to 
transmit additional bits, will have more chance to get bits assigned to it until it meets the 
target data rate or exceeds the power budget. The user with worse channel condition is 
sacrificed in order to gain the maximum total data rate. 
However, in most real networks, users in the same cable are of equal priority.  They pay the 
service provider the same fee to get broadband Internet access. Their service quality is 
supposed to be as equal as possible.  Fairness should be considered in the design of bit-
loading algorithm.  Thus, the multi-user bit loading becomes a multi-objective problem.  On 
one hand, we want maximum total data rate (or equivalently, the minimum power 
consumption with given target data rate).  On the other hand, we want to minimize the 
difference of data rate among users. Therefore, we defined the second objective as to 
minimize the variance of data rate among users. 

 ( )
2

2

1 1

1minimize  ( )
M M

i i i total
i i

Var R R R R R
M= =

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

∑ ∑   (25) 

It is clear that the two objectives contradict each other.  One direct effect of minimizing the 
total data rate difference is that the best-condition user cannot obtain its highest data rate as 



Efficient Multi-User Parallel Greedy Bit-Loading Algorithm with Fairness Control For DMT Systems 

 

113 

it can in single user algorithm.  They cannot be achieved at the same time.  So there must be 
a tradeoff between them. 

4.3 Current multi-user bit-loading algorithms 
Distributed iterative water-filling algorithm employs the single-user water-filling method to 
allocate power iteratively, user by user, until all users and subchannels are filled (Yu et al., 
2002). The algorithm runs in two embedded loops. The outer loop looks for the optimal 
power constraint on each user by increasing or decreasing the power budget for the user, 
then the inner loop is called to calculate the power allocation under the given power 
constraint.  If the result of inner loop gives data rate lower than target rate, total power will 
increase, and vice versa. The inner loop employs iterative water-filling method to get 
optimal power allocation for all the users.  The problem of this algorithm is that if the target 
rate is not appropriate, this algorithm cannot converge. The question then switches to how 
to obtain the set of achievable target rates for each user. In the coordination of level 1 of 
DSM, a central agent with knowledge of all channel and interference transfer function exists 
and is able to calculate the achievable target rates. So, this algorithm is not totally 
autonomous, some kind of central control is required. 
Iterative constant power (ICP) transmission, a slightly variation of iterative water-filling 
(IW) algorithm is proposed in (Yu & Cioffi, 2001).  Both algorithms have the similar two-
stage structure. The difference lies in the inner loop: only constant value or zero value of 
power is allowed in ICP, while continuous power value is used in IW. Both of these two 
algorithms are suboptimal, but easy to deploy because there is no coordination among 
users. 
The optimal algorithm for discrete multi-user bit loading is a natural extension of single-
user greedy algorithm.  In the extended greedy algorithm, a matrix of cost is calculated. The 
elements in the matrix represent the power increment to transmit additional bits for each 
subchannel and each user. Then, the subchannel in a specific user with minimum cost is 
found, and additional bits are assigned to it. The process continues until all the power has 
been allocated.  This algorithm is illustrated in (Lee et al., 2002). 
A drawback of the multi-user greedy bit loading is the computation complexity. For a 
single iteration of the algorithm, only one subchannel on one user who has the minimum 
cost is selected to get additional bits. In each iteration step, the most time consuming 
calculation is to solve the linear equations to get power allocated to subchannels with 
specified bits allocation in order to updated the cost matrix. The number of subchannels 
in a DSL system is usually large, for example, in ADSL there are 223 subchannels for 
downstream (ANSI Std. T1.417, 2001). If the average number of bits assigned to a 
subchannel is 10, and there are 50 users in a cable, the total number of iterations that is 
required to allocate all bits is above 105. 

4.4 Formulation of the problem 
Before introduce the efficient greedy bit loading with fairness, we first formulate the bit-
loading problem for multi-user DMT systems with the objectives of maximizing aggregate 
data rate (Equation (20)) and minimizing the data rate variance among users (Equation (25)). 
By extending the single user bit loading to multi-user case, the noise that appears at the 



 Advances in Greedy Algorithms 

 

114 

receiver is the summation of AWGN and crosstalk from all other users in the same cable 
(Fig. 3), 

 
22

1
( ) ( ) ( ) ( )

M

i i j ji
j
j i

N n n P n H nσ
=
≠

= +∑   (26) 

Substitute Equation (26) into Equation (6) to replace the variable Nn, we get the multi-user 
bit loading expression as 

 
2

2

22

1

( ) ( )
( ) log 1

( ) ( ) ( )

i ii
i

M

i j ji
j
j i

P n H n
b n

n P n H nσ
=
≠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= +
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟Γ +
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑

 (27) 

The aggregate data rate of user i is the summation of bits transmitted over all subchannels 
divided by symbol period, 

 
1

1 ( )
N

i i
nsymbol

R b n
T =

= ∑   (28) 

symbolT  in Equation (28) is constant, so maximizing Equation (20) is equivalent to maximizing 
the aggregate bit number over all sub-channels and over all users. 

 
1 1

( )
M N

total i
i n

b b n
= =

= ∑∑   (29) 

Let us start from the first maximization objective in Equation (29).  Constraints (21) and (23) 
can be used as checking criteria during each step of the optimization.  Substitute Equation 
(27) into Equation (29), we get the first objective function as 

 [ ]
2

1 2
1 1

22

1

( ) ( )
( ) log 1

( ) ( ) ( )

M N
i ii

i n M

i j ji
j
j i

P n H n
F n

n P n H nσ
= =

=
≠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= +
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟Γ +
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑∑
∑

P   (30) 

The constraint is Equation (22). Use the Lagrange multipliers method to solve this problem.  
Construct the Lagrangian function as  

 [ ]1
1 1

( ) ( ) ( )
M N

i i budget
i n

L F n P n P iλ
= =

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∑ ∑P   (31) 

Make derivatives of L to Pi(n), and let it equal to zero to find the optimal point of L. 



Efficient Multi-User Parallel Greedy Bit-Loading Algorithm with Fairness Control For DMT Systems 

 

115 

 

22 2

1

22 2

1

2

2 22 2

1

2 2

( ) ( ) ( )
1

( ) ln 2
1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1           

ln 2
1 ( ) ( ) ( ) (

M

ii i j ji
j
j i

Mi

i ii i j ji
j
j i

M

j ii ji j m jm
m
m j

j jj j m jm

H n P n H n
L

P n
P n H n P n H n

P n H n H n P n H n

P n H n P n H n

σ

σ

σ

σ

=
≠

=
≠

=
≠

⎛ ⎞
⎜ ⎟Γ +
⎜ ⎟∂ ⎝ ⎠= ⋅

∂ ⎛ ⎞
⎜ ⎟+ Γ +
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟− Γ +
⎜ ⎟
⎝ ⎠+

+ Γ +

∑

∑

∑

1
2

1
)

          
          0

M

j Mj i

m
m j

iλ

=
≠

=
≠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

+
=

∑
∑

 (32) 

The first term is the contribution from user i itself.  The second term is a function of Pj(n) of all 
other (M-1) users, and shows the effect of crosstalk. Since this term has a high order in 
denominator and because the crosstalk is weak compare to the main signal, we can ignore the 
second term to make the equation tractable and get the approximated expression of Pi(n). 

 

22 2

1

22 2

1

( ) ( ) ( )
1 0

ln 2
1 ( ) ( ) ( ) ( )

M

ii i j ji
j
j i

i
M

i ii i j ji
j
j i

H n P n H n

P n H n P n H n

σ

λ

σ

=
≠

=
≠

⎛ ⎞
⎜ ⎟Γ +
⎜ ⎟
⎝ ⎠⋅ + =

⎛ ⎞
⎜ ⎟+ Γ +
⎜ ⎟
⎝ ⎠

∑

∑

  (33) 

Making a simple arrangement, Pi(n) is expressed as, 

 
22

2
1

1( ) ( ) ( )
ln 2 ( )

M

i i j ji
ji ii j i

P n P n H n
H n

σ
λ =

≠

⎛ ⎞− Γ ⎜ ⎟= − +
⎜ ⎟
⎝ ⎠

∑   (34) 

We denote 

 ,

1
ln 2i

i

C λ λ
−

=   (35) 

and 

 
22

2
1

( ) ( ) ( )
( )

M

i i j ji
j

ii j i

T n P n H n
H n

σ
=
≠

⎛ ⎞Γ ⎜ ⎟= +
⎜ ⎟
⎝ ⎠

∑   (36) 

then Pi(n) is expressed as 

 ,( ) ( )i i iP n C T nλ= −   (37) 



 Advances in Greedy Algorithms 

 

116 

Equation (37) has the form of “water filling” solution with the water level as ,iC λ , and the 

terrain that holds the poured power as ( )iT n . The constant ,iC λ  can be solved from the 
constraint (22).  Substitute Equation (37) into Equation (22), 

 
22

, 2
1 1

( ) ( ) ( )
( )

N M

i i j ji budget
n j

ii j i

C P n H n P i
H nλ σ

= =
≠

⎡ ⎤⎛ ⎞Γ⎢ ⎥⎜ ⎟− + =
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑   (38) 

 
22

, 2
1 1

( ) ( ) ( )
( )

N M

i i j ji budget
n j

ii j i

NC P n H n P i
H nλ σ

= =
≠

⎛ ⎞Γ ⎜ ⎟− + =
⎜ ⎟
⎝ ⎠

∑ ∑   (39) 

Therefore, we get 

 
22

, 2
1 1

1 ( ) ( ) ( )
( )

N M

i budget i j ji
k j

ii j i

C P i P k H k
N H kλ σ

= =
≠

⎡ ⎤⎛ ⎞Γ⎢ ⎥⎜ ⎟= + +
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑   (40) 

According to (Marler & Arora, 2003), the solution of a multi-objective optimization could be 
obtained by the “Lexicographic Method”.  The method solves the objective functions in the 
order of importance, and constructs new constraints for next objective function using the 
solution for previous objective.  In this multi-user bit-loading problem, we first get the 
optimal solution ( )n*b  of Equation (29) as described above, and then process the second 
objective by minimizing Equation  (25) and subject to 

 [ ]( ) ( )total totalb n b n≤ ⎡ ⎤⎣ ⎦
*b b   (41) 

It is obvious that this optimization is even more complex than the first objective optimization, 
because both objective function and constraint function include variables in high order terms 
and denominators. A practical implementation of this algorithm is required. 

4.5 Greedy algorithm for multi-user nit loading 
A practical method to obtain the optimal solution of Equation (29) is the extended greedy 
algorithm. The foundation of greedy algorithm is to calculate the power cost to transmit 
additional bits for each subchannel (i, n). First, we rearrange Equation (29) to remove the 
logarithm, 

 ( )
2

( )

22

1

( ) ( )
2 1

( ) ( )
i i iib k

M

i j ji
j
j i

P k H k

P k H kσ
=
≠

Γ − =
+∑

  (42) 

Let, 

 ( ) ( )( )( ) 2 1ib n
if b n = Γ −   (43) 

Then we get, 



Efficient Multi-User Parallel Greedy Bit-Loading Algorithm with Fairness Control For DMT Systems 

 

117 

 ( ) ( )
2

2

2 2
1

( )
( ) ( ) ( ) ( )

( ) ( )

M ji i
i i j i

j
ii iij i

H n
P n f b n P n f b n

H n H n
σ

=
≠

− =∑   (44) 

The above equation can be expressed in matrix form as 

 AX B=   (45) 
where 

 

( ) ( )

( ) ( )

( ) ( )

2 2

1 1 1 1
2 2

11 11

2 2

1
2 2

2 2

1
2 2

( ) ( ) ( ) ( )
1

( ) ( )
1

( ) ( ) ( ) ( )
1

( ) ( )
1

( ) ( ) ( ) ( )
1

( ) ( )

i M

i i i Mi

ii ii

M M M iM

MM MM

f b k H k f b k H k
H k H k

f b k H k f b k H k
A

H k H k

f b k H k f b k H k
H k H k

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
− −⎢ ⎥
⎢ ⎥
⎣ ⎦

 (46) 

 [ ]1 ( ) ( ) ( ) T

i MX P k P k P k=   (47) 

 
( ) ( ) ( )2 2 2

1 1
2 2 2

11

( ) ( ) ( )
( ) ( ) ( )

T

i i M M

ii MM

f b k f b k f b k
B

H k H k H k
σ σ σ⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (48) 

In Solving the above linear equation system, we obtain the power vector ( )nP  required to 

transmit bit allocation scheme ( )nb  on subchannel n for all M users.  One thing worthy of 

notice is that the solution of ( )nP  vector may contain negative elements.  This indicates that 
the corresponding users cannot afford to transmit the number of bits assigned to them on 
subchannel n. 
In DMT, different subchannels are well separated.  The crosstalk coupling between different 
users only appears in the subchannels with same frequency.  So we assume there is no 
interference between subchannels.  Equation (45) with different n = 1, …, N could be solved 
independently. Let ( ) ( )i ib k b k b′ = + Δ  for i = 1 to M and n = 1 to N, do a calculation of 

Equation (45) again to obtain the new power allocation ( )n′P .  Because of the crosstalk 
coupling, one element change in the coefficient matrix A in Equation (45) causes power of all 
the users on the same subchannel to change.  The cost of adding bΔ  bits on subchannel (i, n) 
is the summation of power increment on all users on subchannel n. 

 ( )
1

cost( , ) ( ) ( )
M

i i
i

i k P k P k
=

′= −∑   (49) 



 Advances in Greedy Algorithms 

 

118 

This calculation needs to be done on every subchannel and every user. The final cost matrix 
is M rows by N columns, with each element at position (i, n) represents the cost of 
transmitting addition bits on subchannel n of user i. The position of the minimum cost 
determines the subchannel and user where additional bits will be transmitted. 
Power budget need to be checked during the cost updating.  Additional bΔ  bits added to 
subchannel n of user i may cause the user i to get more power on subchannel n, and at the 
same time, it causes all other users to increase their power on subchannel n in order to 
maintain their SNR to transmit already-assigned number of bits.  Either the user i or other 
users may have the possibility to exceed their power budget.  If this happens, it means that 
the adding of bΔ  bits to subchannel n of user i is not feasible. 

4.6 Efficiency improvement to add bits to multiple users in parallel 
As discussed in the Section 4, the large number of iterations for multi-user DMT makes the 
greedy bit-loading algorithm hard to deploy. We mitigate this problem by processing 
multiple users in parallel, so that the number of iterations could be reduced dramatically.  
As we know, crosstalk only interferes with users on the subchannels that are in same 
frequency. Different-frequency subchannels are independent with each other. In other 
words, we can rewrite Equation (45) by indicating the subchannel index n explicitly as 

 ( ) ( ) ( )A n X n B n=   (50) 

If, for example, two subchannels with different indices n1 and n2 get additional bits, no 
matter whether the subchannels are for the same user or for different users, two linear 
Equations of (50) have to be calculated.  This means that adding bits to subchannels in the 
dimension of subchannel index requires the same number of iterations as the number of 
subchannels processed.  However, if we add bits to subchannels in the dimension of user 
index with subchannel index fixed, it is possible to reduce the number of calculations of 
Equation (50).  Let us say, for instance, within a specific subchannel n, we assign additional 
bits to two users i1 and i2, the resulting power scheme at subchannel n ( )n′P  could be 
calculated by solving a single equation of Equation (50). 
The subchannel with minimum cost is identified by both subchannel index n and user index 
i.  So, in the proposed algorithm, instead of adding bits to only one subchannel (i, n), we 
look for all users on subchannel n, which has cost very close to the minimum cost (costmin).  
The additional bits are added to subchannel n of all these users.  Fig. (5) visualizes the idea. 
The term “close” to the minimum cost is defined by a cost elastic coefficient δcost. On 
subchannel n where costmin appears, if any user i satisfies the condition 

 min
cost

min

cost( , ) cost
cost
i n

δ
−

<   (51) 

we add additional bits to it.  The value of δcost shows the percentage degree of how much the 
cost on a given subchannel is greater than the minimum cost. It could have any value 
greater than zero, depending on the accuracy we want in the algorithm. The effect of this 
coefficient will be analyzed in next chapter.  The simulation result shows that importing this 
cost elastic coefficient has nearly no negative impact on the final bit-loading scheme, but the 
number of iterations reduced greatly. 



Efficient Multi-User Parallel Greedy Bit-Loading Algorithm with Fairness Control For DMT Systems 

 

119 

 

Subchannel 
. . . . . .

1 2 n N

User i 
Subchannel 

. . . . . .
1 2 n N

User 1 

User M 
Subchannel 

. . . . . .
1 2 n N

. . . .. 

 

. . . .. 

Multiple users get bits in
parallel on subchannels n 

 
Fig. 5.  Multiple Users Get Bits in Parallel 

With the updated bit-loading scheme on subchannel n, we solve a single linear equation set 
in Equation (50) to obtain the new power allocation scheme.  It reflects the changes of bit 
number for several users. To prepare for the next iteration, the nth column in cost matrix 
needs to be updated. As usual, we assume additional bits are added to each user at 
subchannel n, and calculate the cost according to Equation (49). The comparison of 
traditional algorithm and improved efficient algorithm is listed in Table 1. 
 
Traditional Algorithm Efficient Algorithm 
Do 

Update cost matrix 
Find costmin at subchannel (i, n) 
Add bit to subchannel (i, n) 
Update nth column of A, B, X in 
  (50) 

While all subchannels are filled or power 
budget are reached 

Do 
Update cost matrix 
Find costmin at subchannel (i0, n) 
Find all users (i1,…ik) that have cost 
close to costmin at subchannel n  
Add bit to users i0, i1,…ik at subchannel n 
Update nth column of A, B, X in   
(50) 

While all subchannels are filled or power 
budget are reached 

Table 1. Algorithm Comparison of Traditional and Efficient Multi-User Bit Loading 

4.7 Fairness control 
The objective of minimizing the data rate variance among M users in Equation (25) is 
equivalent to minimize the variance of total number of bits of M users. We obtain this 
objective by importing a fairness elastic coefficient δfair in the bit loading process.  In each 
greedy bit loading iteration, we check the total bits number sum_bits(i) of the user that just 



 Advances in Greedy Algorithms 

 

120 

got the additional bits assigned to it, and keep the number in lock with the averaged total bit 
numbers of all the other users.  The range of lock is adjustable by using the fairness control 
coefficient δfair. 

 
1,
Frozen

1sum_bits( ) sum_bits( )
1

M

fair
j j i
j

i j
M

δ
= ≠
∉

≤
−

∑   (52)                          

 

When the sum_bits(i) exceeds the average sum_bits of all other users, the user i is to be in 
“frozen” state temporarily. Users in frozen set will not participate in the further bits 
assignment until they are unfrozen. The value of fairness elastic coefficient δfair depends on 
the degree of fairness we want. δfair = 1 ensures the final sum_bits of all users have 
minimum variance. If we loose the elastic coefficient, the variance may increase, and the 
better-condition users can get higher data rate. 

4.8 Algorithm Implementation 
In this work, we designed our newly proposed algorithm as a flexible solution, so that it 
supports both parallel bit loading and fairness adjustment, or other kinds of combinations.  
For example, we could run the algorithm with only parallel bit loading, or only fairness 
adjustment, or neither of them, which becomes the traditional multi-user greedy bit loading.  
This flexibility makes it easier for us to run the algorithm in different modes, and observe 
the effects of our improvements. 
Besides the switch variables that control the mode of algorithm, two flag variables (flag_user 
and flag_channel) are used to assist in the algorithm execution.  The variable flag_user is a 
vector that indicates the status of M users.  The user i is available in bit allocation process if 
flag_user(i) = 0;  If the user i is set to “frozen” status because of the fairness adjustment, 
flag_user(i) has the value of 1.  The user will relinquish its chance to get additional bits on all 
its subchannels, until the flag_user(i) is set to 0 again.  Since multi-user bit loading involves 
two dimensions – users and subchannels, we defined a matrix flag_channel (M rows and N 
columns) to indicate whether a subchannel (i, n) is available to allocate more bits.  
flag_channel(i, n) = 0 indicates subchannel n of user i is available; flag_channel(i, n) = 1 
indicates this subchannel is “full”.  There are two possible reasons that cause a subchannel 
to be full: 
1. The number of bits assigned to the subchannel reaches the cap bmax; 
2. Adding additional bits causes the power consumed on user i to exceed the power 

budget. 
The algorithm is described in the following list. 
Initialization 
1. bi(n) = OM, N; (OM, N is the M rows N columns zero matrix) 
2. Pi(n) = OM, N; 
3. flag_user = O1, M; 
4. flag_channel = OM, N; 
5. sum_bits = O1, M; 
6. cost(i, n) = OM, N; 
7. Calculate the initial matrices A and B using (46) and (48); 



Efficient Multi-User Parallel Greedy Bit-Loading Algorithm with Fairness Control For DMT Systems 

 

121 

8. Let additional bits to be assigned to each subchannel temporarily and calculate the new 
power vector ( )n′P  using Equation (45), then calculate the initial cost matrix using 
Equation (49); 

Iteration 
1. Find the subchannel (i, n) that has the minimum value in cost matrix. 
2. If the minimum cost is greater than or equal to a predefined BIGNUMBER, stop the 

iteration; algorithm finishes because no subchannel can get additional bits without 
breaking the power budget. 

3. If parallel bit loading is allowed, find all users that have costs close to the minimum cost 
to transmit addition bits on subchannel n. 

4. Add Δb bits to subchannel n of all the users selected in step 3. 
5. Update the matrices A and B for subchannel n, and calculate the new power vector 

( )n′P . 

6. Check if there are any elements in ( )n′P  that have negative value.  If so, consider two 
cases: 1. multiple users got additional bits on subchannel n, then mark this subchannel 
to not allow parallel bit loading and return to step 1; 2. only one user got additional bits, 
set flag_channel(i, n) = “full”, and set the costi(n) to be BIGNUMBER, then return to step 
1. 

7. Check if the total power on any user exceeds the budget.  If so, do the same processing 
as in step 6. 

8. If fairness adjustment is allowed, check the fairness using Equation (52).  If the bit sum 
of user i exceeds the elastic range, set flag_user = “frozen”, and add a BIGNUMBER to 
the costs of all subchannels on this user. 

9. For those users that already belong to the frozen set, check if their bit sum drop back 
into the elastic range.  If so, unfreeze them, and subtract BIGNUMBER from subchannel 
costs to restore the original values. 

10. Update part of cost matrix, which correspond to subchannel n of all users. 
11. Go to step 1. 

5. Simulation, results and analysis 
We implemented the proposed multi-user bit-loading algorithm for DMT in MATLAB. In 
Section 5, we analyzed the performance of our algorithm and made comparisons for 
different variances. The simulation was applied on ADSL and straight loop with variant 
loop lengths. The models of loop and far-end crosstalk (FEXT) came from (ANSI Std. T1.417, 
2001). We assume there are 50 subscriber loops in a cable, so the number of FEXT sources is 
49. The loop lengths are generated as uniformly distributed random numbers within the 
range of 2 – 16 kft.  They are sorted in ascendant order so that the performance of these 
loops would be displayed in descending order. Fig 6 shows the sorted loop lengths that 
were used in our simulation. 
Only downstream signals were considered for simplicity in this simulation.  The process of 
upstream signal is similar. As shown in Fig. 7, each receiver at the far end of the loop gets 
signal from both its own transmitter and FEXT noise from all other transmitters in the same 
cable. We assume all the 50 loops in the cable transmit ADSL signals; and no interference 
from other services exists. 



 Advances in Greedy Algorithms 

 

122 

 
Fig. 6.  Loop Lengths for the Simulation 

 

C 
O 

FEXT 

FEXT 

FEXT 
2 kft 

16 kft  
Fig. 7.  FEXT Among Loops with Differnt Lengths 

We assume there is no code gain and no noise margin, so the SNR gap Γ is chosen as 9.8 dB 
according to Equation (5).  In the downstream of ADSL DMT, the subchannels start from 33 
and end at 255 (ANSI Std. T1.417, 2001). Therefore, we are considering 255-33+1=223 
subchannels in this simulation.  The corresponding frequency range is 142 kHz – 1100 kHz 
with subchannel spacing as 4312.5 Hz. The power budget for each user is 20.4 dBm  (ANSI Std. 
T1.417, 2001).  For simplicity, we chose the incremental unit for bit addition as 1=Δ b  bit. 

5.1 Simulation mode 
We have two improvements in the proposed algorithm: parallel bit allocation and fairness 
control.  So we run the algorithm in all possible combinations.  Table 2 shows the four 
operational modes of the algorithm.  In traditional mode, neither of the two new features are 
applied, this is equivalent to the traditional multi-user DMT bit loading as in (Lee et al., 
2002).  We used this mode as reference to compare with our proposed features. 



Efficient Multi-User Parallel Greedy Bit-Loading Algorithm with Fairness Control For DMT Systems 

 

123 

 Parallel Bit Allocation Fairness 
Traditional Mode N N 
Parallel Only Mode Y N 
Fairness Only Mode N Y 
Both Mode Y Y 

Table 2.  Operational Mode of the Algorithm 

5.2 Simulation result analysis 
In the proposed algorithm, we introduced two elastic coefficients (δcost and δfair) for parallel 
bit loading and fairness control respectively. However, how the coefficients affect the 
performance of algorithm is not straightforward. This section shows the analysis of the 
simulation results to demonstrate that by using cost elastic coefficient, the computational 
load decreased significantly; and by using fairness elastic coefficient, we have a way to 
control the data rate fairness among users in the same cable. 
Traditional operational mode is used as comparison reference.  In the following analysis, the 
value of –1 for δcost or δfair indicates that the algorithm does not utilize the proposed parallel 
bit loading or fairness control.  The first data points in the following figures that have 
control value of –1 are used as reference points. 

5.3 Effectiveness of parallel bit loading 
The purpose of parallel bit loading is to reduce the computational load in the traditional 
multi-user DMT bit loading. In this section, we ran the algorithm with no fairness control so 
that it has comparability with traditional operational mode in terms of parallel bit loading.  
From Fig. 8 we see that when there are 50 users in a cable, the number of iterations required 
 

 
Fig. 8. Number of Iterations vs. Cost Elastic Coefficient (50 Users) 

to allocate all bits to users and subchannels is 66016, if no parallel bit-loading technique is 
used (δcost = -1).  If δcost is set to 0.1, the iterations number dropped immediately to only 22% 
of the previous value.  The number even reduced to 12% if the δcost is set to be greater than 
0.6.  This shows that parallel bit loading has a great improvement on the computational load 
for multi-user DMT bit loading. Fig. 9. shows the similar effect with the comparison for both 
50 users and 15 users. We see that the more users in a cable, the more significant 
improvement could be achieved for number of iterations. Furthermore, we noticed that as 



 Advances in Greedy Algorithms 

 

124 

long as parallel bit loading is used, the iteration numbers is not very sensitive to the value of 
δcost, especially when δcost ≥ 0.4.  Set δcost to 1 is a good choice. 
 

 
Fig. 9.  Number of Iterations vs. Cost Elastic Coefficient (50 Users and 15 Users) 

Reducing the iterations number is not the only goal of the algorithm.  To make the algorithm 
meaningful, we must guarantee that the final bit-loading result has no or only little loss 
comparing with the traditional algorithm.  We run the algorithm to generate bit-loading 
schemes for 50 users.  The number of bits on each user over all subchannels determines the 
data rate of the user.  The average value (mean) of the bits numbers for 50 users specifies the 
performance of bit-loading algorithm. 

 
50

1 1

1 ( )
50

N

i
i n

b b n
= =

= ∑∑   (53) 

Table 3 and Fig. 10. show the mean bit numbers when different δcost values were used.  It is 
clear from the figure that the mean bits numbers are constant for all δcost values that are less 
than or equal to 1.  As cost elastic coefficient increases to greater than 1, the mean bit 
number decreases.  Therefore, selecting δcost to be 1 does not result in loss of any accuracy of 
the algorithm. 
 

 
Fig. 10.  Mean Bits Number Per User vs. Cost Elastic Coefficient 



Efficient Multi-User Parallel Greedy Bit-Loading Algorithm with Fairness Control For DMT Systems 

 

125 

Fig. 11 demonstrates that many users get bits assigned to them simultaneously in a single 
iteration (marked by *).  In this case, bits were assigned to 32 users in the iteration 3000.  In 
other words, one iteration in the new efficient algorithm is equivalent to 32 iterations in 
traditional algorithm.  That is a remarkable improvement. 
 

  
Fig. 11.  Multiple Users Get Bits in a Single Iteration 

5.4 Effectiveness of fairness control 
By introducing the fairness control coefficient δfair, we have the ability to constraint the 
variance of bit numbers over all users. As stated before, the loop lengths of 50 users have 
been sorted in ascendant order.  That is, user 1 has the shortest loop length, and user 50 has 
the longest loop length. Therefore, if no fairness control is applied, the total number of bits 
assigned to each user is in the descendant order. The dashed curve in   Fig. 13 is in this case.  
When we set the δfair to be 1, the bits number of each user is limited to have minimum 
variance. Actually, in   Fig. 12, it is a straight line (the solid curve).  Two more curves are 
showed in Fig. 12, which represent the case for δfair equals to 1.2 and 1.4 respectively.  Fig. 13 
shows the mean and standard deviation of bits number per user in the same figure when 
different δfair were used.  We see that these two curves have similar shapes. That is, when 
the standard deviation reduced, the mean also reduced. The benefit of fairness is 
compensated by the loss of average data rate. Fig. 14 shows how the fairness control 
coefficient affects the number of iterations.  When δfair equals to 1, the number of iterations is 
minimum, but at the same time, the number of bits assigned to each user is also minimum. 
Fig. 12 also shows that the bits numbers of short-loop users have very limited improvement 
when fairness control is applied.  So the bits numbers for short-loop users have to be 
dropped greatly to obtain the small variance.  This indicates that although the application of 
fairness control makes the standard deviation of bits number (data rate) small, we pay the 
cost to sacrifice the performance for short-loop users.  Therefore, the fairness control may 
not be strongly desired. 



 Advances in Greedy Algorithms 

 

126 

 
  Fig. 12.  Bits Number of Users 

 
Fig. 13.  Mean and Standard Deviation of Bits Number vs. Fairness Coefficient 

 

 
Fig. 14 Number of Iterations vs. Fairness Coefficient 



Efficient Multi-User Parallel Greedy Bit-Loading Algorithm with Fairness Control For DMT Systems 

 

127 

5.5 Combination of parallel bit loading and fairness control 
When the parallel bit loading and fairness control are applied at the same time, the 
combined effectiveness of them needs to be identified.  This section analyzed the simulation 
results and illustrated them in 3-D plots.  The algorithm was run in full combination of δcost 
and δfair.  The major performance measures are recorded, such as number of iterations, mean 
and standard deviation of bits number per user.  Tables 3, and 4 are some of the simulation 
results. 
 

 
Fig. 15. Number of Iterations vs. Cost Elastic Coefficient and Fairness Coefficient 

Fig. 15 indicates that the number of iterations has a strong correlation with cost elastic 
coefficient.  As soon as the parallel bit loading is applied (δcost has any value other than -1), 
the number of iterations dropped significantly.  Compared with the significance of parallel 
bit loading, the fairness coefficient has relatively little contribution to reduce the iteration 
number. 
 

    cost 
fair 

-1 0.1 0.2 0.4 0.6 0.8 1 

-1 1320.3 1320.3 1320.3 1320.3 1320.3 1320.3 1320.3 
1 632.96 632.96 632.96 632.96 632.96 632.96 629.98 

1.2 683.4 703.48 703.46 705.1 701.92 696.02 719.48 
1.4 831.48 831.52 831.46 830.78 830.1 829.96 829.38 
1.6 1009.22 1009.22 1009.24 1008.76 1009.2 1008.82 1009.36 
1.8 1136.78 1137.18 1137.16 1137.7 1138.2 1138.26 1138.38 
2 1226.76 1227.2 1226.98 1228.22 1228.9 1229.32 1229.4 

2.2 1285.82 1286 1286.02 1287.18 1287.8 1287.74 1287.8 
4 1320.3 1320.3 1320.3 1320.3 1320.3 1320.2 1320.2 
8 1320.3 1320.3 1320.3 1320.3 1320.3 1320.3 1320.3 

Table 3.  Mean Bits Number Per User Under Different Coefficients Values 



 Advances in Greedy Algorithms 

 

128 

   cost 
fair 

-1 0.1 0.2 0.4 0.6 0.8 1 

-1 1008.1713 1008.1713 1008.1713 1008.1713 1008.1713 1008.1713 1008.1713 
1 0.19795 0.19795 0.19795 0.19795 0.19795 0.19795 0.14142 

1.2 218.5638 223.4621 223.5784 224.1786 223.0507 221.6587 229.2879 
1.4 380.3019 380.3123 380.3548 379.924 379.6629 379.6214 379.1612 
1.6 567.4984 567.5644 567.6492 567.3555 568.2036 567.9887 568.7456 
1.8 723.7036 724.4047 724.506 725.7295 726.8624 727.1101 727.4138 
2 850.2531 850.9939 850.6976 852.8352 854.0387 854.7548 854.9612 

2.2 944.991 945.3436 945.3933 947.5979 948.9535 948.8161 948.8768 
4 1008.1713 1008.1713 1008.1713 1008.1713 1008.1713 1007.935 1007.9803 
8 1008.1713 1008.1713 1008.1713 1008.1713 1008.1713 1008.1713 1008.1713 

Table 4.  Standard Deviation of Bits Number Per User Under Different Coefficients Values 

 
Fig. 16.  Standard Deviation of Bits Number vs. Cost Elastic Coefficient and Fairness Coefficient 
In the plot of Table 3 which is not shown here, it shows how the mean bits number per user is 
affected by cost elastic coefficient and fairness coefficient.  The surface is flat along the cost 
elastic coefficient direction, which means the selection of δcost has almost no influence on the 
mean bits number.  The only contribution to affect of the mean bits number is the value of δfair.  
Fig.16 shows how cost elastic coefficient and fairness coefficient affect the standard deviation 
of bits number per user. The isolated effects of parallel bit loading and fairness control gave us 
the flexibility to apply them separately or in combination according to the requirement. 

6. Summary of conclusions 
Traditional bit-loading algorithms for DMT system were designed for a single user.  As more 
and more users turn to DSL services, crosstalk inside the cable makes the traditional single-user 
bit-loading algorithms unable to reach the optimal solution.  Multi-user bit-loading algorithms 
were designed to obtain the global optimization among all users in a cable.  The problem of 
multi-user bit loading was computational complexity.  Because the number of subchannels for 
all users is very large, the calculation of power allocation needs to done many times. 



Efficient Multi-User Parallel Greedy Bit-Loading Algorithm with Fairness Control For DMT Systems 

 

129 

This research work studied several bit-loading algorithms for both single user and multiple 
user cases. Then an improved parallel bit-loading algorithm for multi-user DMT was 
proposed. The new algorithm was based on multi-user greedy bit loading. In a single 
iteration, the bits were allocated to multiple users on the subchannels with same frequency.  
Thus, the number of iterations to allocate bits to all users decreased significantly. The 
adjustable cost elastic coefficient defined the range of power cost. In the bit-loading 
iteration, all subchannels for different users that have the power cost within the range have 
the chance to get additional bits assigned to them. Furthermore, this research work studied 
the possibility to improve the fairness among users in the same cable. We introduced a 
fairness coefficient during bit-loading iterations so that the variance of total number of bits 
for all users could be controlled. 
The analysis of simulation results showed that the effectiveness of applying parallel bit 
loading is significant. If the cost elastic coefficient has the value of 1, it means that all 
subchannels who has power cost less than twice of the minimum cost could get additional bits 
assigned to them.  For 50 users case and δcost=1, the number of iterations to load all bits to all 
users reduced to only 12% of the number if no parallel bit loading is used.  Another good 
characteristic of parallel bit loading is that it has very small effect on the final loading result.  In 
the same 50-user case, when δcost is less than 1, the loading result is exactly the same as no 
parallel bit loading.  This means that we reduced the computational complexity without losing 
any accuracy of the result.  The simulations also showed that the fairness in the algorithm 
control could limit the variance of total bit numbers among all users.  The cost of fairness is 
that the better-condition loops (for example, shorter loop length) have to reduce their data rate, 
because the worse-condition loops have little improvement in their data rate. 

7. Recommendations for future work 
The parallel multi-user bit-load algorithm proposed in this research work reduced the 
number of iterations to allocated bits and power to all users. However, the computational 
load was still quite big even under the improved algorithm.  Further improvements are 
required.  For example, the idea of bit removal algorithm in (Sonalker & Shively, 1998) could 
be applied in the multi-user bit loading. In long-length loops, many high-frequency 
subchannels have no chance to get bits assigned to them.  The better way is to turn off these 
subchannels before the algorithm starts. The computational load could be reduced even 
more when those “bad” subchannels are eliminated from the bit-loading process. 
It is implied in the multi-user bit loading that a central process unit must exist in the 
network.  The central unit possesses the channel information of all users, such as channel 
transfer function and crosstalk transfer function.  The bit-loading algorithm runs on the 
central unit and the loading scheme is then distributed to all transmitters in the same cable.  
Therefore, the channel and crosstalk estimation need to be added into the multi-user bit-
loading system (Cioffi et al., 2001) and (Zeng et al., 2001). 

8. Reference 
Akujuobi, C. M. & Shen, J. (2006). A New Parallel Greedy Bit-Loading Algorithm With 

Fairness for Multi-Users in a DMT System, IEEE Transactions on Communications, 
Vol. 54, No. 8, August 2006 

ANSI Std. T1.417 (2001). Spectrum Management for Loop Transmission Systems, American 
National Standard Institute 



 Advances in Greedy Algorithms 

 

130 

Campello, J. (1998). Optimal Discrete Bit Loading for Multicarrier Modulation Systems, 
Proceedings of IEEE International Symposium on Information Theory, pp. 193, 1998 

Campello, J. (1999). Practical Bit Loading for DMT, IEEE International Conference on  
Communications, Vol. 2, pp 801-805, June 1999 

Cioffi, J. M.; Aldana, C.; Ekbal, A. ; Fang, J.; Ginis, G.; Lee, J.; Salvekar, A.;  Yu, W.; and Zeng, 
C. (2001). Channel Identification with Dynamic Spectrum Management, T1E1.4 
Spectrum Management II Project, 2001-147, May 2001 

Cioffi, J. M. (2001).  Proposed Scope and Mission for Dynamic Spectrum Management, 
T1E1.4 Spectrum Management Project, 2001-188R4, November 2001 

Cioffi, J. M.; Yu, W.; Chung, S. T.;  and Ginis, G. (2001).  Iterative Water-filling for DSM, 
T1E1.4 Spectrum Management Project, 2001-200R5, November 2001 

Chow, P. S.; Cioffi, J. M.; Bingham, J. A. C. (1995). A Practical Discrete Multitone Transceiver 
Loading Algorithm for Data Transmission over Spectrally Shaped Channels, IEEE  
Transactions on Communications, Vol. 43, no. 234, pp. 773-775, February/March/April 1995 

Chow, P. S.; Cioffi,  J. M. (1995). Method and Apparatus for Adaptive, Variable Bandwidth 
High-Speed Data Transmission of a Multicarrier Signal Over Digital Subscriber 
Lines, U.S. Patent 5,479,447 (December 1995) 

Cover, T. M. & Thomas, J. A. (1991).  Elements of Information Theory, John Wiley & Sons, 1991 
Gallager, R. G. (1968). Information Theory and Reliable Communication, John Wiley, New York, 1968 
Hughes-Hartogs, D. (1987-1989). Ensemble Modem Structure for Imperfect Transmission Media, 

U.S. Patent 4,679,227 (July 1987), 4,731,816 (March 1988), and 4,883,706 (May 1989) 
Lee, J.;  Sonalkar, R. V. and Cioffi, J. M.  (2002).  Multi-user discrete bit-loading for DMT-

based DSL Systems, IEEE Global Telecommunications Conference, Vol. 2, pp. 1259- 
1263, November 2002 

Leke, A. and Cioffi, J. M. (1997). A Maximum Rate Loading Algorithm for Discrete 
Multitone Modulation Systems, IEEE Global Telecommunications Conference, Vol. 3, 
pp. 1514-1518, November 1997 

Marler, R. T. and Arora, J. S. (2003). Review of Multi-Objective Optimization Concepts and 
Algorithms for Engineering, University of Iowa Optimal Design Laboratory, 
Technical Report Number ODL-01.03, 2003 

Shannon, C. E. (1948). A Mathematical Theory of Communication, The Bell System Technical  
Journal, Vol. 27, pp.379-423, 623-656, 1948 

Sonalker, R. V. & Shively, R. R. (1998). An Efficient Bit-Loading Algorithm for DM Applications, 
IEEE Global Telecommunications Conference, Vol. 5, pp 8-12, November 1998 

Starr, T.; Cioffi, J. M.;  Silverman, P. J. (1999).  Understanding Digital Subscriber Line 
Technology, Prentice Hall, New York. 

Tu, J. C.;  and Cioffi, J. M.  (1990). A Loading Algorithm for the Concatenation of Coset  
Codes with Multichannel Modulation Methods, IEEE Global Telecommunications 
Conference, pp. 1183-1187, December 1990 

Valenti, C. (2002). NEXT and FEXT Models for Twisted-Pair North American Loop Plant, 
IEEE Selected Areas in Communications Journal, Vol. 20, No. 5, June 2002, pp. 893-900 

Yu, W.; Cioffi, J. M.; (2001). On Constant Power Water-filling, Proc. IEEE International 
Conference on Communications, Vol. 6, pp. 1665–1669, June 2001 

Yu, W.; Ginis, G.;  Cioffi, J. M. (2002). Distributed Multiuser Power Control for Digital 
Subscriber Lines, IEEE Journal of Selected Areas in Communications, Vol. 20, No. 5,  
pp. 1105-1115, June 2002 

Zeng, C.; Aldana, C.;  Salvekar, A. and Cioffi, J. M. (2001). Crosstalk Identification in xDSL 
Systems, IEEE Journal of Selected Areas in Communications, , Vol. 19, No. 8, pp. 1488-
1496, August 2001 



8 

Energy Efficient Greedy Approach  
for Sensor Networks 

Razia Haider and Dr. Muhammad Younus Javed 
National University of Science and Technology 

Pakistan 

1. Introduction      
Applications of sensor networks ranging from environmental/military monitoring to 
industrial asset management. The development of sensor networks was originally 
motivated by military applications. However, now a days sensor networks are used in many 
civilian application areas, including environment and habitat monitoring, healthcare 
applications, home automation, and traffic control (Lewis,2004). It is mentioned above that 
the main purpose of deployment of sensor networks is to provide feed back and monitoring 
of environmental variables in areas, which are intractable to humans. The design of energy 
efficient routing algorithms is an important issue in sensor networks with such 
deployments. 
In wireless ad-hoc and sensor networks geographic routing is a key paradigm that is quite 
commonly adopted for information delivery, where the location information of the nodes 
are available (either a-priori or through a self-configuring localization mechanism). The 
implication of geographic routing protocols is efficient in sensor networks for several 
reasons. Firstly, nodes need to know only the location information of their direct neighbors 
in order to forward packets and therefore the state stored is minimum. Secondly, since 
discovery floods and state propagation are not required beyond a single hop hence, such 
protocols conserve energy and bandwidth.  
Due to energy constraints in these networks geographic routing in sensor networks has been 
a challenging issue for researchers. The design of routing strategy may also effect by 
deployment methodology. Sensors may be deployed randomly or deterministically based 
on the application in the sensor networks field. These random deployments might result in 
irregular topologies which in turn affect the routing strategy. Sensors perform both data 
sending and data routing. Inter-sensor communication is usually short ranged. The nodes in 
the network cooperate in forwarding other nodes’ packets from source to destination. 
Hence, certain amount of energy of each node is spent in forwarding the messages of other 
nodes. Lots of work has been done in this respect but still energy depletion of sensor nodes 
is a big challenge in sensor networks. 
The aim of this research is to present such geographic algorithm for sensor networks which 
will be simple, easy to implement and efficient in terms of energy consumptions. In this 
research various geographic routing protocols for sensor networks have been studied with 
their applications to have better understanding of these protocols, This research will explore 
the paradigm of routing in sensor networks in terms of energy efficiency.  



 Advances in Greedy Algorithms 

 

132 

The chapter comprises of 6 parts, description of each part is given as follow. Part 1 gives the 
introduction to sensor networks and objective of the research. Part 2 gives the description of 
sensor networks and different issues related to it. At the end some of the application areas of 
sensor networks have been discussed. Part 3 contains the details study of some routing 
protocols for sensor networks and explores their potential limitations. Part 4 presents the 
motivation of this research and defines the problem definition. Later it describes the 
proposed solution design and implementation in detail. Part 5 captures the detail of 
different test results and provides their analysis. Finally, conclusion and future work are 
discussed in Part 6. 

2. Sensor networks and their applications 
A number of new applications that benefit a large number of fields have come into existence 
with the emergence of sensor networks. A key concern in wireless sensor networks is energy 
efficiency. In a sensor network the nodes did not charged once their energy is drained so the 
lifetime of the network depends critically on energy conservation mechanism (Chan et al., 
2005; Melodia et al., 2004; Wu et al., 2004). 
With deployments of sensor networks in mission critical applications, they gained 
importance and provide for immense potential for research in this area. Two challenging 
issues are identified in this realm. First, being the reduction in consumption of power by 
these sensors to increase their lifetime. Second, being the design of routing strategies for 
communication in the network. In this part a brief description of sensor networks, 
challenges faced by them and some of the important application of sensor networks has 
been discussed. 

2.1 Sensor nodes 
A device that is capable of observing and recording a phenomenon is known us sensor. This 
is termed as sensing. Sensors are used in various applications such as in rescue operations, 
seismic sensors are used to detect survivors caught in landslides and earthquakes  With the 
advancements in technology it is easy to manufacture low cost and high performance 
sensors but only with limited resources which include energy supply and communication 
bandwidth. 
Sensor nodes can be imagined as small computers, extremely basic in terms of their 
interfaces and their components. They usually consist of processing unit with limited 
computational power and limited memory, sensors (including specific conditioning 
circuitry), a communication device (usually radio transceivers or alternatively optical), and a 
power source usually in the form of a battery (Han et al., 2006). A sensor node usually 
consists of four sub-systems. Computing subsystem, communication subsystem, sensing 
subsystem and power supply subsystem. 

2.2 Wireless sensor networks 
Sensor networking is an emerging technology that has a wide range of potential 
applications including environment monitoring, smart spaces, medical systems and robotic 
exploration. A wireless sensor network, WSN, is an ad-hoc network with many sensors 
deployed in an area for a specific reason. A sensor network consists of possibly several 
hundred sensor nodes, deployed in close proximity to the phenomenon that they are 



Energy Efficient Greedy Approach for Sensor Networks 

 

133 

designed to observe. The position of sensor nodes within a sensor network need not be pre-
determined (Zeng et al., 2006). Sensor networks must have the robustness to work in 
extreme environmental conditions with scarce or zero interference from humans. This also 
means that they should be able to overcome frequent node failures. Thus, network 
topological changes become common. Sensor networks must conserve energy since they are 
limited in energy, usually the battery as the sole supply of energy. Sensor nodes may also 
have limited mobility, which allow them to adjust to topology changes. 

2.3 Challenges 
The unique features of sensor networks pose challenging requirements to the design of the 
underlying algorithms and protocols. Several ongoing research projects in academia as well 
as in industry aim at designing protocols that satisfy these requirements for sensor 
networks. In spite of the diverse applications, sensor networks pose a number of unique 
technical challenges due to the following factors (Akyildiz et al., 2002). 
The sensor nodes are not connected to any energy source. There is only a finite source of 
energy, which must be optimally used for processing and communication. An interesting 
fact is that communication dominates processing in energy consumption. Thus, in order to 
make optimal use of energy, communication should be minimized as much as possible. 
Environmental stress on sensor nodes cause frequent node failures leading to connectivity 
changes. These require frequent reconfiguration of the network and re-computation of 
routing paths. The high probability of node failures in sensor networks requires that the cost 
of sensor nodes is minimal. This will enable redundancy of sensor nodes to account for node 
failures. In some cases, sensor nodes have the ability to move, although their mobility is 
restricted in range to a few meters at the most. Mobility of sensor nodes raises the possibility 
that nodes might go out of range and new nodes might come within the range of 
communication. The routing protocols for sensor networks must take these changes into 
account when determining routing paths. Thus, unlike traditional networks, where the 
focus is on maximizing channel throughput or minimizing node deployment, the major 
consideration in a sensor network is to extend the system lifetime as well as the system 
robustness. 
A number of solutions propose to one or more of the above problems. The survey focuses on 
the suggested solutions is energy efficiency which is a dominant consideration no matter 
what the problem is. This is because sensor nodes only have a small and finite source of 
energy. Many solutions, both hardware and software related, have been proposed to 
optimize energy usage. Traditional routing schemes are no longer useful since energy 
considerations demand that only essential minimal routing be done. 

2.5 Important applications of sensor networks 
Wireless sensor networks have significant impact upon the efficiency of military and civil 
applications such as environment monitoring, target surveillance, industrial process 
observation, tactical systems, etc. A number of applications have been discussed, 
(Barrenechea et al., 2004; Barett et al., 2003;Braginsky et al., 2002;intanagonwiwat et al., 2000; 
Krishnamachari et al., 2002; Servetto & Barrenechea, 2002; Ye et al., 2002). There are different 
potential applications of sensor networks in many areas due to their different 
communication model. A number of applications are in military where sensors are widely 
used in applications such as surveillance, communication from intractable areas to base-



 Advances in Greedy Algorithms 

 

134 

stations. Since these are inexpensive and deployed in large numbers, loss of some of these 
sensors would not affect the purpose for which they were deployed. In distributed 
surveillance highly mobile sensor networks make it possible to transmit huge amounts of 
data at low powers. Structure monitoring systems detect, localize, and estimate the extent of 
damage. Civil engineering structures can be tested for soundness using sensors. Sensors also 
used to monitor pollution and toxic level. These sensors collect data from industrial areas 
and areas where toxic spills occur.  

3. Literature review 
Like mobile ad-hoc networks, sensor networks also involve multi-hop communications. 
Many routing algorithms have been proposed for mobile networks. Yet, these algorithms 
are not applicable to sensor networks due to several factors (Akyildiz et al., 2002). Some of 
these factors are as the size of the sensor network is usually larger than that of ad-hoc 
networks. High density of sensor nodes are deployed in sensor networks as compared to 
mobile hosts. Sensor nodes have energy constraints and are highly susceptible to failures. In 
addition, they are generally static compared to mobile network. Sensor nodes use reverse 
multi-cast communication while ad-hoc networks use peer to peer communication. These 
nodes have several constraints with respect to power, memory, CPU processing which 
prohibits them from handling high data rate. Hence, sensors have low data rate than that of 
mobile hosts. 
All these factors distinguish sensor networks from mobile networks, and make most of the 
routing protocols of mobile networks inapplicable to sensor networks. Hence, new routing 
algorithms are investigated for sensor networks. 

3.1 Routing mechanism in sensor networks 
Generally data centric routing is used in sensor networks (Barrenechea et al., 2004). Unlike 
the mobile ad hoc networks, in sensor networks sensor nodes are most likely to be 
stationary for the entire period of their lifetime. Even though the sensor nodes are fixed, the 
topology of the network can change. During periods of low activity, nodes may go to 
inactive sleep state, to conserve energy. When some nodes run out of battery power and die, 
new nodes may be added to the network. Although all nodes are initially equipped with 
equal energy, some nodes may experience higher activity as result of region they are located 
in. 
As mentioned before, conventional routing protocols have several limitations when being 
used in sensor networks due to the energy constrained nature of these networks. These 
protocols essentially follow the flooding technique in which a node stores the data item it 
receives and then sends copies of the data item to all its neighbors. There are two main 
deficiencies to this approach implosion and resource management.. 
In implosion if a node is a common neighbor to nodes holding the same data item, then it 
will get multiple copies of the same data item. Therefore, the protocol wastes resources 
sending the data item and receiving it. In conventional flooding, nodes are not resource-
aware. They continue with their activities regardless of the energy available to them at a 
given time. So there is need of resource management in flooding. 
Due to such differences, many new algorithms have been proposed for the problem of 
routing data in sensor networks. These routing mechanisms have considered the 
characteristics of sensor nodes along with the application and architecture requirements. 



Energy Efficient Greedy Approach for Sensor Networks 

 

135 

Almost all of the routing protocols can be classified as data-centric, hierarchical or location-
based although there are few distinct ones based on network flow or QoS awareness. Data-
centric protocols are query-based and depend on the naming of desired data, which helps in 
eliminating many redundant transmissions. Hierarchical protocols aim at clustering the 
nodes so that cluster heads can do some aggregation and reduction of data in order to save 
energy. Location-based protocols utilize the position information to relay the data to the 
desired regions rather than the whole network. The last category includes routing 
approaches that are based on general network-flow modeling and protocols that strive for 
meeting some QoS requirements along with the routing function.  

3.2 Data centric protocols 
It is not feasible to assign global identifiers to each node due to the sheer number of nodes 
deployed in many applications of sensor networks. Therefore, data is usually transmitted 
from every sensor node within the deployment region with significant redundancy. Since 
this is very inefficient in terms of energy consumption, routing protocols that will be able to 
select a set of sensor nodes and utilize data aggregation during the relaying of data have 
been considered. This consideration has led to data centric routing, which is different from 
traditional address-based routing where routes are created between addressable nodes 
managed in the network layer of the communication stack. In data-centric routing, the sink 
sends queries to certain regions and waits for data from the sensors located in the selected 
regions. Since data is being requested through queries, attribute based naming is necessary 
to specify the properties of data. The two classical mechanisms flooding and gossiping 
which are used to relay data in sensor networks without the need for any routing algorithms 
and topology maintenance (Hedetniemi & Liestman, 1998). In flooding, each sensor 
receiving a data packet broadcasts it to all of its neighbors and this process continues until 
the packet arrives at the destination or the maximum number of hops for the packet is 
reached. On the other hand, gossiping is a slightly enhanced version of flooding where the 
receiving node sends the packet to a randomly selected neighbor, which picks another 
random neighbor to forward the packet to and so on. 
SPIN (Sensor Protocols for Information via Negotiation) is the first data-centric protocol, 
which considers data negotiation between nodes in order to eliminate redundant data and 
save energy (Heinzelman et al., 1999). Later, Directed Diffusion has been developed and has 
become a breakthrough in data-centric routing (Intanagonwiwat et al., 2000). Directed 
Diffusion is an important milestone in the data-centric routing research of sensor networks 
(Estrin et al., 1999).  Then, many other protocols have been proposed either based on 
Directed Diffusion or following a similar concept (Shah & Rabaey, 2002; Schurgers & 
Srivastava, 2001). 

3.3 Hierarchical protocols 
Scalability is one of the major design attributes of sensor networks similar to other 
communication networks. To allow the system to handle with additional load and to be able 
to cover a large area of interest without degrading the service, networking clustering has 
been purposed in some routing approaches. 
The main objective of hierarchical routing is to efficiently maintain the energy consumption 
of sensor nodes by involving them in multi-hop communication within a particular cluster 
and by performing data aggregation and fusion in order to decrease the number of 



 Advances in Greedy Algorithms 

 

136 

transmitted messages to the sink. Cluster formation is typically based on the energy reserve 
of sensors and sensor’s proximity to the cluster head. LEACH (Low Energy Adaptive 
Clustering Hierarchy) is one of the first hierarchical routing approaches for sensors 
networks (Heinzelman et al., 2000). The idea proposed in LEACH has been an inspiration 
for many hierarchical routing protocols (Manjeshwar & Agrawal, 2001; Lindsey & 
Raghavendra, 2002; Lindsey et al., 2001; Manjeshwar & Agrawal, 2002), although some 
protocols have been independently developed (Subramanian & Katz; 2000;  Younis et al., 
2002; Younis et al., 2003).  

3.4 Location-based protocols 
Location- based protocols are most commonly used in sensor networks as most of the 
routing protocols for sensor networks require location information for sensor nodes. In most 
cases location information is needed in order to calculate the distance between two 
particular nodes so that energy consumption can be estimated. Since, there is no addressing 
scheme for sensor networks like IP-addresses and they are spatially deployed on a region, 
location information can be utilized in routing data in an energy efficient way. Some of the 
protocols discussed here are designed primarily for mobile ad hoc networks and consider 
the mobility of nodes during the design (Xu et al., 2001; Rodoplu & Ming, 1999; Li & 
Halpern, 2001). However, they are also well applicable to sensor networks where there is 
less or no mobility. It is worth noting that there are other location-based protocols designed 
for wireless ad hoc networks, such as Cartesian and trajectory-based routing. However, 
many of these protocols are not applicable to sensor networks since they are not energy 
aware. In order to stay with the theme of the research, the scope has limited to the coverage 
of only energy-aware location based protocols. 

3.4.1 Geographic and energy aware rotuing 
Yu et al. have suggested the use of geographic information while disseminating queries to 
appropriate regions since data queries often includes geographic attributes ( Yu et al., 2001). 
The protocol, namely Geographic and Energy Aware Routing (GEAR), uses Energy Aware 
and geographically informed neighbor selection heuristics to route a packet towards the 
target region. The idea is to restrict the number of interests in Directed Diffusion by only 
considering a certain region rather than sending the interests to the whole network. GEAR 
compliments Directed Diffusion in this way and thus conserves more energy.  

3.4.2 Geographic adaptive fidelity 
Geographic Adaptive Fidelity (GAF) is an energy-aware location-based routing algorithm 
designed primarily for mobile ad hoc networks, but may be applicable to sensor networks as 
well (Xu et al., 2001). GAF conserves energy by turning off unnecessary nodes in the 
network without affecting the level of routing fidelity.  

4. Design and implementation 
In sensor networks, building efficient and scalable protocols is a very challenging task due 
to the limited resources and the high scale and dynamics. In this realm, geographic 
protocols [Xu et al., 2001; Yu et al., 2001) take advantage of the location information of 
nodes, are very valuable for sensor networks. The state required to be maintained is 
minimum and their overhead is low in addition to their fast response to dynamics.  



Energy Efficient Greedy Approach for Sensor Networks 

 

137 

4.1 Geographic routing 
Basic geographic protocol at the network layer has been examined for geographic routing 
based on greedy mechanisms. Geographic routing provides a way to deliver a packet to a 
destination location, based only on local information and without the need for any extra 
infrastructure. It makes geographic routing the main basic component for geographic 
protocols. With the existence of location information, geographic routing provides the most 
efficient and natural way to route packets comparable to other routing protocols. 
Geographic routing protocols require only local information and thus are very efficient in 
wireless networks. First, nodes need to know only the location information of their direct 
neighbors in order to forward packets and hence the state stored is minimum. Second, such 
protocols conserve energy and bandwidth since discovery floods and state propagation are 
not required beyond a single hop.  
It is based on assumption that the node knows the geographical position of the destination 
node. This approach to routing involves relaying the message to one of its neighbors that is 
geographically closest to the destination node of all neighbors, and is geographically closer 
to the destination. This approach attempts to find a short path to the destination, in terms of 
either distance or number of hops. It is based on the geographical distances between the 
nodes. 
A node that requires sending a message acquires the address of the destination. After 
preparing the message, it calculates the distance from self to the destination. Next, it 
calculates distance from each of its neighbors to the destination. The greedy approach 
always tries to shorten the distance to be traveled to the destination to the maximum 
possible extent. Therefore, the node considers only those neighbors that are closer to the 
destination than itself. The sending node then chooses the node closest to the destination 
and relays the message onto the neighbor.  
A node receiving a message may either be the final destination, or it may be one of the 
intermediate nodes on the route to the destination. If the node is an intermitted hop to the 
message being relayed, the node will calculate the next hop of the message in the manner 
described above. 
A sample topology is shown in Figure 1. Nodes A and B are the sender and receiver 
respectively. Node A sends the message to node Y as it is the closest of its neighbors to the 
destination node B. On receiving the message, Y calculates its closest neighbor and forwards 
message to it. This process will continue until the massage reached to the final destination B. 
The dotted arrows show the shortest path followed by the node. 
The basic geographic routing doest not use any data structures stored locally on a node 
apart from the neighbor table. Thus, no information is stored locally. The sending 
component doest not differentiate between the source of the message and an intermediate 
node on its route. The receiving component needs to handle to two different types of 
messages; one that says that the node is the destination, and the other that specifies the node 
to be an intermediate node for relaying the message. Both messages are handled in exactly 
the same way, without any form of distinction. 
A typical sensor network consisting of sensor nodes scattered in a sensing field in the 
vicinity of the phenomenon to be observed is shown in Figure 2 
(http://www.acm.org/crossroads/xrds9-4/sensornetworks.html). The nodes are connected 
to a larger network like the Internet via a gateway so that users or applications can access 
the information that is sent from the sensor nodes. The dotted circle shows the area where 



 Advances in Greedy Algorithms 

 

138 

sensor nodes are scattered to sense the specific task and then route the sensed processed 
data to the gateway. The main focus is on this dotted area and  this research has proposed 
an Energy efficient greedy scheme for inter-sensor nodes communication where information 
relay between these sensor nodes. Proposes algorithm will provide simple and effcient path 
to nodes for forwarding their messages which will furthure conserve total energy of the 
entire network. 

   
Fig. 1.  Sample Route for Basic Geographic Routing 
 

  
Fig. 2. Sensor Nodes Connected in a Network. 

4.2 Routing scheme for inter-sensor nodes communication 
Energy consumption is the most important factor to determine the life of a sensor network 
because usually sensor nodes are driven by battery and have very low energy resources. 
This makes energy optimization more complicated in sensor networks because it involves 
not only reduction of energy consumption but also prolonging the life of the network as 
much as possible. This can be done by having energy awareness in every aspect of design 
and operation. This ensures that energy awareness is also incorporated into groups of 
communicating sensor nodes and the entire network and not only in the individual nodes. 

A

B

Y 



Energy Efficient Greedy Approach for Sensor Networks 

 

139 

4.2.1 Weak node problem 
The main component of geographic routing is usually a greedy forwarding mechanism 
whereby each node forwards a packet to the neighbor that is closest to the destination. 
However, while assuming highly dense sensor deployment and reasonably accurate 
localization several recent experimental studies on sensor networks have shown that node 
energy can be highly unreliable and this must be explicitly taken into account when 
considering higher layer protocol (Li & Halpern, 2001). The existence of such unreliable 
nodes exposes a key weakness in greedy forwarding. At each step in greedy forwarding, the 
neighbors those are closest to the destination may not have sufficient energy to transmit the 
messages. These weak nodes would result in a high rate of packet drops, resulting in drastic 
reduction of delivery rate or increased energy wastage if retransmissions are employed. 
In sensor networks ,sensor nodes use their energy in forwarding messages in network but at 
some point when node deplete its all energy it fails to transmit the further messages 
resulting in loss of data ( formation of holes). In this research work, the geographic routing 
thorough the greedy forwarding (Karp & Kung, 2000) has been considered for 
implementation. Usually, in the greedy forwarding the closest neighbor node will be heavily 
utilized in routing and forwarding messages, while the other nodes are less utilized. Due to 
this uneven load distribution it results in heavily loaded nodes to discharge faster when 
compared to others. This causes few over-utilized nodes which fail and result in formation 
of holes in network, resulting in increase number of failed/dropped messages in the 
network. Energy efficient routing scheme should be investigated and developed such that it 
loads balances the network and prevents the formation of holes. In this research, the above 
mentioned problems faced by greedy forwarding approach will be taken care of in sensor 
networks.  

4.2.2 Energy efficeint greedy scehem: basic principle 
The concept of neighbor classification based on node energy level and their distances has 
been used in Energy Efficient Greedy Scheme (EEGS) has been used to cater of the weak 
node problem. Some neighbors may be more favorable to choose than the others, not only 
based on distance, but also based on energy characteristics. It suggests that a neighbor 
selection scheme should avoid the weak nodes. If the geographic forwarding scheme purely 
based on greedy forwarding attempts to minimize the number of hops by maximizing the 
geographic distance covered at each hop, it is likely to incur significant energy expenditure 
due to retransmission on the weak nodes. On the other hand, if the forwarding mechanism 
attempts to maximize per hop reliability by forwarding only to close neighbors with good 
nodes, it may cover only small geographic distance at each hop. It would also result in 
greater energy expenditure due to the need for more transmission hops for each packet to 
reach the destination. So in both cases energy is not being conserved to increase the lifetime 
of the network. Therefore, the strategy used in the proposed Energy Efficient Greedy 
Scheme (EEGS) first calculates the average distance of all the neighbors of transmitting node 
and checks their energy levels. Finally, it selects the neighbor which is alive (i.e. having 
energy level above than the set threshold) and having the maximum energy plus whose 
distance is equal to or less than the calculated average distance among its entire neighbors. 
Hence, the proposed scheme uses Energy Efficient routing to select the neighbor that has 
sufficient energy level and is closest to the destination for forwarding the query.  



 Advances in Greedy Algorithms 

 

140 

4.2.3 Assumptions for EEGS 
Some basic assumptions have been considered for the implementation of EEGS in this 
research work. Sensor nodes are static in the network (i.e.  Once the node has learned its 
location, its co-ordinates do not change). The central location database has been managed by 
a central entity which enables each of the nodes to discover its position. In the real scenario, 
each node would learn its location by some kind of GPS system so the above assumptions 
can be made without the loss of generality. The irregular random topology for sensor 
networks has been considered. Single destination scenario is taken into the account. There 
are infinite-size buffers at each node to support the incoming and outgoing message packets. 
Hence, buffer overflows and queuing analysis are not the part of this research. In the 
proposed system the fixed size of packets are used. So the packet sizes will not be 
considered during the analysis. 

4.3 General mechnism of purposed syetem 
There are four basic modules have been implemented in the proposed system i.e. network 
generator, route generator, routing algorithm and router. The platform of Visual Studio 6.0 
and OMNET++ network simulator has been used for implementation of purposed system. 
 

 
Fig. 3. Block Diagram of the System 

The brief description of each module is as follow.  
(a) Network Generator: This module generates the network. It has two type of parameters 
i.e. data rate and number of nodes. It includes a sub module network node which defines 
structure of single network node. Sub module network node has three types of parameters 
i.e. address of the node, then number of stations which is equal to number of nodes in this 
case and data rate. Two types of gates are defines for each node i.e. in gate and out gate. 
Input and output interfaces of modules are through these gates; messages are sent out 
through output gates and arrive through input gates, (b) Route Generator: In this module 
the source and destination are specified for the data sending and receiving. Each node 
randomly sent the massages to the destination node, (c) Routing Algorithm: This module 
takes location information of nodes in the network and set their weights. Then it chooses the 
next hop on the basis of EEGS, (d) Router: This module routes the packet to other nodes and 
generates the next hop destination map which comes from routing algorithm and then 
route/forward the received packet to the selected neighbor nodes. This map gives the 
complete information to each node about its own location and location of its neighbor nodes 
with their energy levels which are being updates after every transmission. Finally, router 
module gives the output in the form of packets delivered successfully, packet dropped, 
remaining energy level and status of the node. 



Energy Efficient Greedy Approach for Sensor Networks 

 

141 

4.4 Energy model 
For the implementation purpose, a simple energy model has been used. Each node starts 
with the same initial energy and forwards a packet by consuming same energy. Initially, all 
nodes have energy level equal to 1 joule (Yu et al., 2001). Each node depletes energy in 
transmitting one packet which is equal to 0.1mjoule. 

5. Simulations and results 
Different simulations results are presented with different number of nodes in order to check 
performance of the proposed algorithm. Location of nodes has been taken randomly in each 
network. Performance of two algorithms (i.e. Greedy & EEGS) has been compared in terms 
of successful delivery rate and number of nodes. 

5.1 Implementation with OMNET++ 
OMNET++ is an object-oriented modular discrete event simulator. The name itself stands 
for Objective Modular Network Testbed in C++. The simulator can be used for traffic 
modeling of telecommunication networks, protocol modeling, modeling queuing networks, 
modeling multiprocessors and other distributed hardware systems, validating hardware 
architectures, evaluating performance aspects of complex software systems, modeling any 
other system where the discrete event approach is suitable. 

5.2 Simulation model 
In simulation model, the numbers of nodes chosen ranged from 16 to 100 sensor nodes. 
Random topology has been considered in this implementation. The immobile sensor 
network has been considered, so every sensor node is static.  Initially, each node has same 
energy level as specified in energy model. Any node having energy less than or equal to set 
threshold will be considered as dead. One node is located as the destination node for all 
nodes i.e. one node is declared as target node for all data receiving as mentioned in 
assumptions that one destination scenario has been considered. The packet size is of 562 
bytes. Total simulation time is set to 500 seconds and each scenario is repeated ten times 
with different randomly deployed nodes. As mentioned above discrete even driven 
simulator OMNET++ has been used in this research for implementation purpose. It 
simulates routing packets among different nodes in the network.  
Figure 4 shows the sample network with 30 nodes. Nodes start sending packets randomly to 
destination node by choosing the neighbor nodes on the basis of EEGS approach. Initially 
each node has energy of 1J. EEGS approach calculates the average distance of all neighbor 
nodes of the sending node and checks their energy levels. Then, it selects the neighbor 
which is alive (i.e. having energy level above than the set threshold) and having the 
maximum energy plus whose distance is equal to or less than the calculated average 
distance among its entire neighbors. This process will continue until the packet reaches to 
the destination node. 

5.3 Evaluation metrics and measurement criteria 
There are four performance metrics have been defined in order to measure performance of 
the proposed algorithm. These metrics includes number of packets delivered successfully, 
number of packets dropped, number of nodes alive and number of nodes dead. 



 Advances in Greedy Algorithms 

 

142 

 
Fig. 4. Sample Network with the Network Size of 30 Nodes. 

In Table 1 the results of simulation for network size of 30 nodes has been shown. Each node 
starts with the energy equal to 1J. These simulation results clearly show that EEGS approach 
provides better packet delivery rate as compared to Greedy algorithm. In these results it is 
also worth noticing that EEGS approach is more reliable by having more number of nodes 
alive, thus it results in longer life of the network as compared to the Greedy algorithm. 
Total Packets Generated: 15,000 
 

 
Packets 

Successfully 
Delivered 

Packets 
Dropped 

 
Nodes Dead 

 
Nodes Alive 

Greedy 10500 4500 2 28 
EEGS 14536 464 1 29 

Table 1. The Simulation Results with Network Size of 30 Nodes 



Energy Efficient Greedy Approach for Sensor Networks 

 

143 

It is evident from Table 2 that the proposed EEGS approach provides better data delivery 
rate than the Greedy algorithm. The successful packet delivery of EEGS is 90% while Greedy 
algorithm has 72% on average. The main focus is on varying size of network by keeping 
other parameters constant. The main aim is to design an algorithm that can scale to 
thousands of nodes in future sensor networks, therefore the research has been focused on 
how the algorithm scales and perform better with networks of different sizes. It has been 
observed that the difference of amount of packets delivered successfully is getting larger as 
the number of nodes increases. It means that EEGS improves the performance much more as 
the number of source nodes increases. Also EEGS approach is more reliable in terms of 
energy consumption as it has less number of nodes dead as compared to Greedy algorithm. 
Hence, it provides longer the life to the sensor network as compared to the Greedy 
algorithm.  
 

Number 
of Nodes  

Total 
Number of 

Packets 
Generated 

by both 
Schemes 

Packets 
Successfully 

Delivered 

Packets 
Dropped 

Nodes 
Dead 

Nodes 
Alive 

20 Greedy 
EEGS 10,000 9251 

10000 
749 
0 

1 
0 

19 
20 

35 Greedy 
EEGS 17,500 15834 

17369 
1666 
131 

1 
1 

34 
34 

45 Greedy 
EEGS 22,500 18877 

21599 
3623 
901 

3 
1 

42 
44 

55 Greedy 
EEGS 27,500 21253 

23979 
6247 
3521 

5 
2 

50 
53 

65 Greedy 
EEGS 32,500 31019 

32500 
1481 

0 
1 
0 

64 
65 

75 Greedy 
EEGS 37,500 25917 

26421 
11583 
11079 

3 
2 

72 
73 

85 Greedy 
EEGS 42,500 27325 

38468 
15175 
4032 

3 
1 

82 
84 

95 Greedy 
EEGS 47,500 31019 

35872 
16481 
11628 

5 
3 

90 
92 

100 Greedy 
EEGS 50,000 32237 

40445 
17763 
4555 

5 
2 

95 
98 

Table 2. The Complete Simulation Results 

5.4 Results and performance comparsion 
In geographic routing greedy communication model has been used as the basic comparison 
model. Greedy algorithm is purely geographic based and does not consider the energy 
consumption of the nodes. As per the minimum criteria, proposed communication scheme 
should be having greater successful packet delivery than Greedy algorithm and should have 
less number of dead nodes. 



 Advances in Greedy Algorithms 

 

144 

The results presented in the Table 2 are shown in form of graphs in order to have the clear 
comparison between the EEGS and Greedy algorithm, which shows that proposed EEGS 
approach has performance clearly better than Greedy algorithm. 
In Figure 5 a comparison has been shown between the total numbers of packets that are 
successfully delivered in both algorithms. It is clear from the graph that the proposed EEGS 
approach has much higher successful delivery rate than the Greedy algorithm. 
 

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

16 25 35 45 55 65 75 85 95

Number of Nodes

To
ta

l N
um

be
r o

f P
ac

ke
ts

 
Su

cc
es

sf
ul

ly
 D

el
iv

er
ed

Greedy
EEGS

 
Fig. 5. Successful Packet Delivery in EEGS and Greedy Algorithm. 

It is also indicated in Figure 6 that the packet drop rate is very less in EEGS approach as 
compared to the Greedy algorithm. Hence, EEGS approach conserves more energy and 
more efficient then Greedy algorithm. 
 

0

2000

4000

6000

8000

10000
12000

14000

16000

18000

20000

16 25 35 45 55 65 75 85 95

Number of Nodes

T
ot

al
 N

um
be

r 
of

 P
ac

ke
ts

 D
ro

pp
ed

Greedy
EEGS

 
Fig. 6. Packets Dropped in EEGS and Greedy Algorithm. 



Energy Efficient Greedy Approach for Sensor Networks 

 

145 

From Figure 7 it is observed that EEGS approach is more reliable and results in longer life of 
the network as the total number of nodes which are alive are greater as compared to Greedy 
algorithm. 

0

20

40

60

80

100

120

16 25 35 45 55 65 75 85 95

Number of Nodes

N
um

be
r 

of
 N

od
es

 A
liv

e

Greedy
EEGS

 
Fig. 7. Nodes Alive in EEGS and Greedy Algorithm. 
Figure 8 clearly shows that Greedy algorithm has greater number of dead nodes as 
compared to EEGS approach. Hence, network lifetime is greater for EEGS than the Greedy 
algorithm. 
 

0

1

2

3
4

5

6

7

8

16 25 35 45 55 65 75 85 95

Number Nodes

N
um

be
r 

of
 N

od
es

 D
ea

d

Greedy
EEGS

 
Fig. 8. Dead Nodes in EEGS and Greedy Algorithm. 

5.5 Comparison between greedy algorithm & EEGS and analysis 
In Greedy algorithm, packets are marked by their originator with their destinations’ 
locations. As a result, a forwarding node can make a locally optimal, greedy choice in 



 Advances in Greedy Algorithms 

 

146 

choosing a packet’s next hop closest to the destination. Forwarding in this regime follows 
successively closer geographic hops until the destination is reached. On the other hand, 
EEGS has the forwarding rule based on location as well as energy levels of nodes. In energy 
aware algorithm, each node knows its neighbor positions and their energy levels. The 
transmitting node writes the geographic position of the destination node into the packet 
header and forwards it to the neighbor which has the distance equal to or less than the 
average distance of all neighbors of that transmitting node plus having the maximum 
energy level among all its neighbors.  
The geographical position provides the direction when the data is relayed in that direction 
until being reached to the gateway. The nodes add the geographical position of the gateway 
in the packet header and forward it to the neighbor who resides geographically closest to 
the destination and has the maximum energy (from the neighbors which has distance equal 
to or less than the average distance of neighbors). 
During the packet transmission, each node chooses the next hop based on the routing policy 
used. The procedure repeats until the packet reaches the destination node. The packet 
transmission energy required between the two nodes is calculated by the energy model 
specified in 4.4. 
The Greedy algorithm and EEGS approach have been run by using different number of 
sensor nodes with the same energy per node initially. It has been noted that EEGS approach 
as compared to the Greedy algorithm gives better results in terms of successful packet 
delivery and less number of dead nodes. Hence, proposed EEGS approach is more reliable 
as compared to Greedy algorithm and results in longer lifetime of the network. 

6. Conclusion and future work 
6.1 Conclusion 
A sensor network is a promising technology for applications ranging from 
environmental/military monitoring to industrial asset management. Due to sensor 
networks communication model, these networks have potential applications in many areas. 
Sensor networks, similar to mobile ad-hoc networks involve multi-hop communications. 
There have been many routing algorithms proposed for mobile networks. Yet, these 
algorithms are not applicable to sensor networks due to several factors. Due to these factors 
sensor networks are distinguished from mobile networks, and make most of the routing 
protocols of mobile networks inapplicable to sensor networks. Hence, new routing 
algorithms are investigated for sensor networks. Almost all of the routing protocols can be 
classified as data-centric, hierarchical or location-based although there are few distinct ones 
based on network flow or QoS awareness. Geographic routing in sensor networks has been 
a challenging issue for researchers considering the energy constraints in these networks. The 
nodes in the network cooperate in forwarding other nodes’ packets from source to 
destination. Hence, certain amount of energy of each node is spent in forwarding the 
messages of other nodes. Lots of work has been done in this respect but still energy 
depletion of sensor nodes is a big challenge in sensor networks. Sensor nodes use their 
energy in forwarding messages in network but at some point when node deplete its all 
energy it fails to transmit the further messages resulting in loss of data ( formation of holes). 
In this research work, the geographic routing thorough the greedy forwarding has been 



Energy Efficient Greedy Approach for Sensor Networks 

 

147 

considered for implementation. . In greedy forwarding uneven load distribution results in 
heavily loaded nodes to discharge faster when compared to others. This causes few over-
utilized nodes which fail and result in formation of holes in network, resulting in increase of 
failed messages in the network. So there was a need of such energy efficient routing strategy 
that should be balance the load of the network and prevents the formation of holes. 
Therefore this research work has investigated an Energy Efficient Greedy Scheme (EEGS) 
for geographic routing in sensor networks. The Greedy algorithm and EEGS approach have 
been implemented and simulation results have been obtained. From these results it has been 
shown that proposed EEGS approach performs better and efficiently than the Greedy 
routing. The simulations based upon the different number of nodes by employing these two 
algorithms considering different parameters (i.e. the successful packet delivery and number 
of nodes alive as the performance criterion). Therefore, performance of EEGS approach is 
much better than the Greedy algorithm in the defined parameters.  Consequently, it can be 
concluded that EEGS can efficiently and effectively extend the network lifetime by 
increasing the successful data delivery rate. 

6.2 Future work 
The emerging field of sensor networks has lot of potential for research. In this research 
work, has considered fixed sizes of packets by using very simple energy model for energy 
computation purposes. This work can be extended by considering the variable length of 
packets and the changing distance of transmitting node from its neighbors. For this purpose, 
there is a need of such an energy model that can calculate the energy consumption of nodes 
based on their sizes and distances. 

7. References 
Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y. & Cayirci, E. (2002). “Wireless sensor 

networks: a survey,” Computer Networks, 38(4):393-422, March 2002 
Barett, C. L.; Eidenbenz, S. J.; Kroc, L.; Marathe, M. & Smith, J. P.(2003). “Parametric 

Probabilistic Sensor Network Routing,” Proceedings of the 2nd ACM international 
conference on Wireless sensor networks and applications, pp. 122–131, San Diego, 
California, September 2003 

Barrenechea, G.; Beferull-Lozano, B. & Vetterli, M.(2004). “Lattice Sensor Networks: 
Capacity Limits, Optimal Routing and Robustness to Failures,” Proceedings of the 
third international symposium on Information processing in sensor networks, pp. 186–195, 
Berkeley, California, April 2004 

Braginsky, D. & Estrin, D.(2002).  “Rumor Routing Algorithm for Sensor Networks,” 
Proceedings of the 1st ACM international workshop on Wireless sensor networks and 
applications, pp.22–31, Atlanta, Georgia, 2002 

Chan, K.S.; Nik, H. P. &  Fekri, F. (2005). “Analysis of hierarchical Algorithms for Wireless 
Sensor Network Routing Protocols”, in the Proceedings of IEEE Communications 
Society /WCNC, 2005. 



 Advances in Greedy Algorithms 

 

148 

Estrin, D. et al. (1999). “Next century challenges: Scalable Coordination in Sensor 
Networks,” in the Proceedings of the 5th annual ACM/IEEE international conference on 
Mobile Computing and Networking (MobiCom’99), Seattle, WA, August 1999 

Han, U. P.; Park, S. E.; Kim, S. N. & Chung, Y. J. (2006). “An Enhanced Cluster Based 
Routing Algorithm for Wireless Sensor Networks”, in the Proceedings of the 
International Conference on Parallel and Distributed Processing Techniques and 
Applications and Conference on Real Time Computing systems ad Applications, PDPTA 
2006, pp.758-763, Lasvegas, Nevada, USA, June 2006 

Hedetniemi, S. & Liestman, A. “A survey of gossiping and broadcasting in communication 
networks,” Networks, Vol. 18, No. 4, pp. 319-349, 1988 

Heinzelman, W.; Kulik, J. & Balakrishnan, H. (1999). “Adaptive protocols for information 
dissemination in wireless sensor networks,” in the Proceedings of the 5th Annual 
ACM/IEEE International Conference on Mobile Computing and Networking 
(MobiCom’99), Seattle, WA, August 1999 

Heinzelman, W.; Chandrakasan, A. & Balakrishnan, H. (2000). "Energy-efficient 
communication protocol for wireless sensor networks," in the Proceeding of the 
Hawaii International Conference System Sciences, Hawaii, January 2000 

http://www.acm.org/crossroads/xrds9-4/sensornetworks.html 
Intanagonwiwat, C.; Govindan, R. & Estrin, D. (2000). “Directed diffusion: a scalable and 

robust communication paradigm for sensor networks,” Proceedings of the 6th annual 
international conference on Mobile computing and networking, pp. 56–67, Boston, 
Massachusetts, August 2000 

Karp, B. & Kung, H. T. (2000).  “GPSR: Greedy perimeter stateless routing for wireless 
sensor networks,” in the Proceedings of the 6th Annual ACM/IEEE International 
Conference on Mobile Computing and Networking (MobiCom '00), pp.243-254, Boston, 
MA, August 2000 

Krishnamachari, B.; Estrin, D. & Wicker, S. (2002). “Modeling Data-Centric Routing in 
Wireless Sensor Networks,” Proceedings of the 2002 IEEE INFOCOM, New York, NY, 
June 2002 

Lewis, F. L. (2004) “Wireless Sensor Networks”, in the Proceedings of Smart Environment 
Technologies, Protocols, and Applications, 2004(to appear), New York 

Li, L & Halpern, J. Y. (2001). “Minimum energy mobile wireless networks revisited,” in the 
Proceedings of IEEE International Conference on Communications (ICC’01), Helsinki, 
Finland, June 2001 

Lindsey, S.; Raghavendra, C. S. & Sivalingam, K, (2001). "Data Gathering in Sensor 
Networks using the Energy*Delay Metric", in the Proceedings of the IPDPS Workshop 
on Issues in Wireless Networks and Mobile Computing, San Francisco, CA, April 2001 

Lindsey, S. & Raghavendra, C. S. (2002). "PEGASIS: Power Efficient GAthering in Sensor 
Information Systems," in the Proceedings of the IEEE Aerospace Conference, Big Sky, 
Montana, March 2002 

Manjeshwar, A. & Agrawal, D. P. (2001). “TEEN : A Protocol for Enhanced Efficiency in 
Wireless Sensor Networks," in the Proceedings of the 1st International Workshop on 
Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing, 
San Francisco, CA, April 2001 



Energy Efficient Greedy Approach for Sensor Networks 

 

149 

Manjeshwar, A. & Agrawal, D. P. (2002). "APTEEN: A Hybrid Protocol for Efficient Routing 
and Comprehensive Information Retrieval in Wireless Sensor Networks," in the 
Proceedings of the 2nd International Workshop on Parallel and Distributed Computing 
Issues in Wireless Networks and Mobile computing, Ft. Lauderdale, FL, April 2002 

Melodia, T.; Pompili, D. & Akyildiz, F. Ian, (2004). “Optimal Local Topology Knowledge for 
Energy geographic Routing in Sensor networks”, in the proceedings of IEEE 
INFOCOM, Hong Kong S.A.R., PRC, March 2004 

Rodoplu, V. & Ming, T. H. (1999). "Minimum energy mobile wireless networks," IEEE 
Journal of Selected Areas in Communications, Vol. 17, No. 8, pp. 1333-1344, 1999 

Schurgers, C. & Srivastava, M. B. (2001). “Energy efficient routing in wireless sensor 
networks,” in the MILCOM Proceedings on Communications for Network-Centric 
Operations: Creating the Information Force, McLean, VA, 2001 

Servetto, S. D. & Barrenechea, G. (2002). “Constrained Random Walks on Random Graphs: 
Routing Algorithms for Large Scale Wireless Sensor Networks,” Proceedings of the 
1st ACM international workshop on Wireless sensor networks and applications, pp. 12–21, 
Atlanta, Georgia, September 2002 

Shah, R. & Rabaey, J. (2002). "Energy Aware Routing for Low Energy Ad Hoc Sensor 
Networks", in the Proceedings of the IEEE Wireless Communications and Networking 
Conference (WCNC), Orlando, FL, March 2002 

Subramanian, L. & Katz, R. H. (2000). "An Architecture for Building Self ConFigureurable 
Systems," in the Proceedings of IEEE/ACM Workshop on Mobile Ad Hoc Networking and 
Computing, Boston, MA, August 2000. 

Wu, S.; K. Sel¸ K. & Candan, C. (2004). “GPER: Geographic Power Efficient Routing in 
Sensor Networks”, Proceedings of the 12th IEEE International Conference on Network 
Protocols (ICNP’04), pp.161-172, Berlin, Germany, October 2004. 

Xu, Y.; Heidemann, J. & Estrin, D. (2001). "Geography-informed energy conservation for ad 
hoc routing," in the Proceedings of the 7th Annual ACM/IEEE International Conference 
on Mobile Computing and Networking (MobiCom’01), Rome, Italy, July 2001. 

Ye, F.; Luo, H.; Cheng, J.; Lu, S. & Zhang, L. (2002). “A Two-Tier Data Dissemination Model 
for Large-scale Wireless Sensor Networks,” Proceedings of the 8th annual international 
conference on Mobile computing and networking, pp. 148–159, Atlanta, Georgia, 
September 2002. 

Younis, M.; Youssef, M. & Arisha, K. (2002). “Energy-Aware Routing in Cluster-Based 
Sensor Networks”, in the Proceedings of the 10th IEEE/ACM International Symposium 
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems 
(MASCOTS2002), Fort Worth, TX, October 2002. 

Younis, M.; Munshi, P. & Al-Shaer, E. (2003) “Architecture for Efficient Monitoring and 
Management of Sensor Networks,” in the Proceedings of the IFIP/IEEE Workshop on 
End-to-End Monitoring Techniques and Services (E2EMON’03), Belfast, Northern 
Ireland, September 2003 (to appear). 

Yu, Y.; Estrin, D. & Govindan, R. “Geographical and Energy-Aware Routing: A Recursive 
Data Dissemination Protocol for Wireless Sensor Networks,” UCLA Computer 
Science Department Technical Report, UCLA-CSD TR-01-0023, May 2001 



 Advances in Greedy Algorithms 

 

150 

Zeng, K.; Ren, K.; Lou, W. & Moran, P. J. (2006). “ Energy – Aware Geographic Routing in 
Lossy Wireless Sensor Networks with Environmental Energy Supply”, The Third 
International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks, 
Waterloo, ON, Canada, ACM, August, 2006 



9 

Enhancing Greedy Policy Techniques for 
Complex Cost-Sensitive Problems 

Camelia Vidrighin Bratu and Rodica Potolea 
Technical University of Cluj-Napoca 

Romania 

1. Introduction    
One of the most prominent domains of application for machine learning techniques is data 
mining, which focuses on the discovery of novel, structured and potentially useful patterns 
in data. Each machine learning algorithm makes assumptions regarding the underlying 
problems it needs to solve. These assumptions and the search strategy employed constitute 
the bias of the learning algorithm. This bias restricts the area of successful application of the 
algorithm. Also, recent research in machine learning has revealed the necessity to consider 
more complex evaluation measures for learning algorithms, in some problem domains. One 
such novel measure is the cost. There are various types of costs involved in inductive 
concept learning, but, for the domains we focus on, the most important are test costs and 
misclassification costs. 
This chapter presents ProICET (Vidrighin et al, 2007), a hybrid system for solving complex 
cost-sensitive problems. We focus both on the theoretical principles of the approach, as well 
as highlight some implementation aspects and comparative evaluations on benchmark data 
(using other prominent learning algorithms). 
The remainder of the chapter is structured as follows: section 2 reviews the search problem, 
and a few fundamental strategies, and provides basic definitions for data mining and 
decision trees. Section 3 presents the cost-sensitive problem, together with a brief survey of 
the most prominent cost-sensitive learners present in literature. Section 4 presents the theory 
behind ProICET, followed by the enhancements considered and an overview of the 
implementation. Section 5 presents the experimental work performed in order to validate 
the approach. The chapter summary is presented in the final section.      

2. Basic techniques for search and knowledge extraction    
Search is a universal problem-solving mechanism is various domains, including daily life. It 
also represents one of the main applications in computer science in general, and in artificial 
intelligence in particular (Korf, 1999). The problem can be formalized as finding a path (in 
the state space) from the root node to the goal node. In many cases, a particular path is 
requested, namely the one which obeys some optimization criterion. The main task here 
comes from the difficulty of finding the right search strategy for the particular problem to 
solve. In evaluating them several criteria are considered, such as completeness (the ability of 
the strategy to find the solution in case there is one), time/space complexity (the amount of 



 Advances in Greedy Algorithms 

 

152 

time/memory the search strategy needs to find the solution), optimality (the ability of the 
strategy to find the best solution, according to the optimization criterion).  
The next section presents two important search strategies, with their derivatives. Moreover, 
their performance criteria are discussed and compared. An uninformed search strategy 
(sometimes called blind search) performs in the absence of knowledge about the number of 
steps or the path cost from the current state to the goal. The most prominent approaches in 
this category are breadth first search and depth first search. As opposed to uninformed 
methods, the informed search strategy employs problem-specific knowledge. The best first 
search strategy from this category is reviewed, and one of its simplest, yet effective versions, 
greedy search. The common pattern in all strategies is the expansion of the current node (i.e. 
considering its successors as candidates for finding the path to goal), while the particularity 
consists in the order in which the neighbors are evaluated for expansion. 

2.1 Fundamental search strategies 
In the breadth first search strategy the root node is expanded first. In the second step, all 
nodes generated by it are expanded, in the third step, their successors, and so on. This 
means that at every step the expansion process occurs for nodes which are at the same 
distance from the root, and every expanded node in a step is on the boundary of the 
covered/uncovered region of the search space. Breadth first search considers a systematic 
approach, by exhaustively searching the entire state space without considering the goal until 
it finds it. Due to the fact that the whole space is covered, the strategy is complete (i.e. on a 
finite space, the solution is found, in case there is one). Moreover, the strategy is optimal. The 
drawback is the large complexity, both in time and space: O(bd), where b represents the 
branching factor (i.e. number of descendents of a node) and d the depth of the space. 
Breadth first search can be implemented using a general search strategy with a FIFO queue 
for the states (Russell & Norvig, 1995).  
Uniform cost search comes as a flavor of breadth first search. Assuming a cost function g(n) is 
considered, breadth first search is modified by expanding the lowest cost node (min g(n)) on 
the boundary. The default distance to the root, used by the breadth first search is replaced 
by some specific cost function g(n) (i.e. for breadth first search, g(n)=depth(n) by default). 
Thus, the systematic approach of covering the space is relaxed to reach the optimal solution 
faster. Dijkstra’s algorithm is a uniform cost search algorithm. 
The depth first search strategy has a similar approach, but instead of expanding nodes on the 
boundary, it always expands one node at the deepest level. In case the search reaches a dead 
end, where no expansion is possible, a node on a shallower level is considered. This way, 
the “horizontal” approach of covering the states space is replaced by a “vertical” one.  
Depth first search can be implemented by a general search strategy if a stack is used to keep 
the states. That is, the FIFO policy is replaced by a LIFO. The major advantage of this 
strategy is reduced space requirement: O(bm), where m is the maximum depth. The time 
complexity remains in the exponential domain: O(bm). The drawback is that the method is 
neither complete, nor optimal. This is the reason why it should be avoided for spaces with large 
or infinite max depths. 
By imposing an upper limit to the maximum depth of a path these pitfalls can be avoided. 
This modified strategy is implemented by depth-limited search. In this situation, the strategy 
becomes complete, if the depth of the solution is smaller than the threshold imposed, yet it 
is still not optimal.  



Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems 

 

153 

The bidirectional search simultaneously searches both from the root (forward) and the goal 
(backward) and stops when the two meet in the middle. It has the advantage of being 
optimal and complete at the same time. Moreover, it reduces the time complexity to O(bd/2), 
with the cost of increasing the space complexity to O(bd/2). The disadvantage is that the 
backward search from the goal is not applicable to all problems. This requires expanding the 
predecessor node, rather than the successor. When the operators are reversible, computing 
the predecessor is not an issue. However, for some problems, calculating predecessors is 
very difficult. Moreover, the goal state may not be unique, meaning that the backward 
strategy should be started from several nodes. Finally, there is no unique way to perform 
the search in the two halves:  the strategy is strongly dependent on the problem. Other 
issues, such as checking the appearance of a node on the other half, have to be considered 
for the bidirectional approach as well.  
If some knowledge is added to the queuing function, which determines the node to expand 
next, the chances to find (completeness) the optimal (optimality) solution faster (time 
complexity) increases and we deal with an informed search strategy. The knowledge usually 
refers to some performance function, as a measure of the desirability of expanding a node.  
Best first search strategy expands the node for which the performance function is estimated to 
be the best. Emphasis on estimation is important: expansion applies to the most promising 
node, rather than to be the one which surely leads to the best solution. Thus, the strategy 
doesn’t necessarily deliver the optimal solution (but the one which appears to be the best 
according to the performance criterion). If the evaluation was precise, and we could expand 
the best node, it would not be a search strategy at all, but a straight path from the root to the 
goal. Selecting the best candidate for expansion is done using a priority queue. 
Greedy (best first) search is one of the simplest strategies in this category. The knowledge 
added here is the estimated cost of the cheapest path from the current node to the goal. As 
mentioned for the generic case, this cost cannot be determined exactly; the function that 
estimates the cost is called a heuristic function, h(n). The greedy strategy takes the best local 
decision, with no evaluation of further effort. The method resembles depth first search, as it 
follows a single path in the attempt to reach the goal, backing up in case a dead end is 
found. Because of the similarities, it has the same drawbacks with depth first search: it is not 
optimal, and incomplete. The time complexity is still exponential: O(bm). Even worse, due to 
the fact that the strategy memorizes all nodes, the space complexity is also O(bm). Although 
the optimality of the solution is not guaranteed, it usually finds a good solution (close to the 
optimal). Moreover, if some problem-specific knowledge is added, it can obtain the optimal 
solution. Both Prim’s and Kruskal’s algorithms for finding the minimum spanning tree are 
greedy search algorithms. Because it minimizes the estimated cost to the goal, h(n), greedy 
search decreases the search costs as well, by cutting search branches. This makes the 
strategy efficient, although not optimal.  
One trap greedy strategy falls in is estimating the performance function from the current 
node to the goal, without taking into account the component of the function from the root to 
the current node (which can actually be calculated exactly, not just estimated). This cost is 
the selection criterion for uniform cost search (g(n)). Thus, the choice can be based on a 
fusion of the two criteria. That is, the summation of h and g is considered as performance 
function: f(n)=g(n)+h(n). Such a strategy (similar to the branch and bound technique), of 
minimizing the total path cost defines the A* search. f(n) represents the estimated cost on the 
cheapest path from the start node to the goal, and it incorporates g(n) as an exact measure of 



 Advances in Greedy Algorithms 

 

154 

the path from the start node to the current node (as for uniform cost search), and h(n) as the 
estimation of the remainder path to the goal (as for greedy search). By finding a restriction 
that never overestimates the cost to reach the goal for h, the method is both complete and 
optimal (Russell & Norvig, 1995). Such a restriction is an admissible heuristic, which is 
optimistic by nature, by always underestimating the cost of solving the problem. Since h is 
admissible, the effect transfers to f as well (since f=g+h), and it underestimates the actual cost 
as well. A* search is a best first search using f as the evaluation function and an admissible h 
function.  

2.2 Enhanced search strategies 
Iterative improvement techniques are efficient practical approaches for boosting search 
strategies. They can be divided into two classes. The hill-climbing strategy makes changes to 
improve the current state. The algorithm does not maintain a search tree. Rather, it moves in 
the direction of increasing value within a loop. Although simple by nature, and efficient in 
practice, it suffers the drawback of becoming trapped in local optima. Simulated annealing 
represents the other class of iterative improvement strategies.  It simply allows escaping a 
local optimum, by taking some steps to break out.  It is an effective strategy for a good 
approximation of the global optimum in a large search space. 
In combinatorial search, the goal is to find the best possible solution out of the feasible ones. 
There are two main approaches here. In lazy evaluation the computation is delayed until it is 
really needed, in contrast to look-ahead where, before making a decision, a few input steps 
are evaluated, in order to avoid backtracking at later stages. Both methods try to save both 
time and space in their evaluation. 
Another distinctive technique is employed by genetic algorithms, which are essentially 
stochastic search methods, inspired from the principles of natural selection in biology. They 
employ a population of competing solutions—evolved over time—to converge to an optimal 
solution. Effectively, the solution space is searched in parallel, which helps in avoiding local 
optima, and provides straightforward parallelization possibilities. The search is an iterative 
process where each successive generation undergoes selection in the presence of variation-
inducing operators such as mutation and recombination (crossover). A fitness function is 
used to evaluate individuals, and reproductive success varies with fitness. 
Straightforward parallelization and the possibility of applying them in ill-defined problems 
make genetic algorithms attractive. 

2.3 Data mining 
Traditionally, data mining refers to the activity of extracting new, meaningful and potentially 
useful information from data. The term has recently expanded to the entire knowledge 
discovery process, encompassing several pre-/post- and processing steps. The learning step 
is central in any data mining process. It consists of presenting a dataset – the training set – to 
a learning algorithm, so that it learns the model “hidden” in the data. A dataset consists of a 
set of instances, each instance having a set of predictive attributes and a target attribute, the 
class. The aim is to predict the value of the class using the values of the predictive attributes 
and the model learned by the induction algorithm. In order to assess the generalization 
ability of the learned model (i.e. its quality), usually a test set is employed, consisting of 
instances that have not been “seen” by the model during the learning phase. Such a problem 
is known as a classification problem (if the class attribute is discrete), or a regression 



Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems 

 

155 

problem (if the class is continuous). Another data mining task is clustering, which identifies 
similar characteristics and groups cases with similar characteristics together. In this case the 
class attribute is not present.  

2.4 Decision trees 
One of the most prominent techniques used for classification (and regression) problems in 
data mining are decision trees. They are tree structures, where each interior node corresponds 
to a decision attribute; an arc from a node to a child represents a possible value of that 
attribute. A leaf represents the value of the class attribute, given the values of the attributes 
present on the path from the root to that leaf. Decision tree algorithms apply a greedy search 
heuristic and construct the model in a top-down, recursive manner (“divide and conquer”). 
At every step, the algorithm considers the partition of the training set with respect to the 
“best” attribute (which becomes the decision attribute for that node). The selection of the 
“best” attribute is made according to some splitting measure. After an appropriate split has 
been selected, the training set is divided among the branches going out of that node into 
smaller subsets. The process continues until no split is considered good enough or a 
stopping criterion is satisfied. 
The decision on which attribute to choose at a given step is based on measures provided by 
the information theory, namely on the entropy. It measures the uncertainty associated with 
a random variable. The most common attribute selection criterion is the expected reduction 
in entropy due to splitting on that attribute – the information gain.  
While being rather simple and easy to understand, decision trees are also very robust with 
respect to the data quantity. Also, they require little data preparation, being able to handle 
both numerical and categorical data, as well as missing data. Furthermore, it is possible to 
validate the model using statistical tests, such as to determine its reliability. 

3. Cost-sensitive learning 
Traditionally, learning techniques are concerned with error minimization, i.e. reducing the 
number of misclassifications. However, in many real-world problems, such as fraud 
detection, loan assessment, oil-slick detection or medical diagnosis, the gravity of different 
types of classification errors is highly unbalanced. 
For example, in credit assessment, given a customer loan application, the goal is to predict 
whether the bank should approve the loan, or not. In this situation, false positives are much 
more dangerous than false negatives. This means that an incorrect prediction that the credit 
should be approved, when the debtor is not actually capable of sustaining it, is far more 
damaging than the reverse situation. Another domain where different errors bear different 
significance and consequences is medical diagnosis (classifying an ill patient as healthy is by 
far riskier than the reverse situation). 
In domains like these, the measure of total cost is introduced to determine the performance 
of learning algorithms. Total cost minimization is at least as important as minimizing the 
number of misclassification errors. This strategy is employed by cost-sensitive learning, a 
category of learning schemes which consider different approaches to achieve minimal costs. 
As presented in (Turney, 2000), there are several types of costs involved in inductive 
concept learning, the most important being the misclassification costs and the test costs. These 
are also the focus of most cost-sensitive algorithms. Misclassification costs try to capture the 



 Advances in Greedy Algorithms 

 

156 

unbalance in different misclassifications. They are modeled through the use of a cost matrix 
(Cij)nxn, where Cij is the cost of misclassifying an instance of class j as being of class i. Test 
costs quantify the “price” of an attribute, without being restricted to its economical value. 
For example, in the medical domain, a test cost could represent a combination between the 
costs of the equipments involved in the investigation, the time spent to gather the results, 
the impact on the patient (psychical or physical - pain), a.s.o. Test costs are specified as 
attribute – value pairs. 
In most real-world problems, setting the true costs is a difficult issue. If, in the case of test 
costs, the decision is made easier by the possibility of considering the different dimensions 
(time, monetary, pain, emotional implications, e.t.c.), when it comes to determining the 
misclassification costs we come across a more serious issue: we have to put a price on 
human life. Perhaps an appropriate approach here would be to experiment with several 
close proportions for the errors’ unbalance.   

3.1 Cost-sensitive algorithms 
Most cost-sensitive classifiers focus on minimizing the misclassification costs. There exist, 
however, several algorithms which tackle test costs. Significantly less work has been done in 
aggregating the two cost components. This section reviews some of the most prominent cost-
sensitive approaches in literature: stratification, MetaCost (Domingos, 1999) and AdaCost (Fan 
et. al., 2000) as misclassification cost-sensitive approaches, and Eg2 (Nunez, 1988), IDX 
(Norton, 1989) and CS-ID3 (Tan & Schlimmer, 1989, 1990) which consider test costs.    

3.1.1 Stratification 
Stratification is one of the earliest and simplest techniques for minimizing misclassification 
costs. It is a sampling procedure, which modifies the distribution of instances in the training 
set, such that the classes with a higher misclassification cost are better represented. 
Stratification can be achieved either through undersampling, or oversampling. While being 
a very simple and intuitive technique for considering the unbalance of different types of 
errors, the modification of the set distribution induces drawbacks, since it may bias the 
learning process towards distorted models. Also, each alternative has its own drawbacks: 
undersampling reduces the data available for learning, while oversampling increases the 
training time. However, the most serious limitation of this method comes from the fact that 
it restricts the dimension or the form of the cost matrix. For problems with more than two 
classes, or when the cost is dependent on the predicted class (Cij ≠ Ckj, where k≠i), the cost 
matrix may become too complicated, such that proportions for each class cannot be 
established (Domingos, 1999). 

3.1.2 MetaCost and AdaCost 
More complex approaches usually involve meta-learning, and can be applied to a variety of 
base classifiers. The most representative in this category are MetaCost (Domingos, 1999) and 
AdaCost (Fan et. al., 2000). 
MetaCost, introduced by Pedro Domingos, is a method for converting error-based classifiers 
into cost-sensitive approaches. It employs the Bayes minimal conditional risk principle to 
perform class re-labeling on the training instances. In order to determine the Bayes optimal 
prediction for each training example, i.e. the class which minimizes the conditional risk, an 
ensemble of classifiers is initially trained and employed to estimate the class probability for 



Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems 

 

157 

each instance. After that, the risk for each class is computed, using the cost matrix settings. 
Each instance is then re-labeled with the class having the lowest risk. After obtaining the 
modified dataset, any error-based classifier will also minimize the cost while seeking to 
minimize zero-one loss (the error). 
AdaCost is the misclassification cost-sensitive variant of the AdaBoost.M1 algorithm. Being a 
boosting-based approach, AdaCost employs an ensemble method, which builds a new 
model at each phase. Weights are assigned to each instance, and they are modified after 
each boosting phase, using the cost of misclassifications in the weight-update mechanism. 
Initially, high weights are assigned to costly instances, as opposed to AdaBoost.M1, where 
uniform weights are assigned to the training instances for the first boosting phase. In the 
empirical evaluations performed, AdaCost yielded a consistent and significant reduction in 
misclassification costs over AdaBoost.M1. 

3.1.3 Eg2, CS-ID3 and IDX 
The category of algorithms which focus on minimizing test costs is largely based on decision 
trees. Eg2, CS-ID3 or IDX are basically decision trees which employ a modified attribute 
selection criterion such as to embed the cost of the attribute in the selection decision. Eg2’s 
criterion is detailed in the section regarding the algorithm ICET.  
IDX (Norton, 1989) uses a look-ahead strategy, by looking n tests ahead, where n is a 
parameter that may be set by the user. Its attribute selection criterion is: 

i

i

C
IΔ

 
(1) 

where ΔIi represents the information gain of attribute i, and Ci is its cost. 
CS-ID3 (Tan & Schlimmer, 1989, 1990) uses a lazy evaluation strategy, by only constructing 
the part of the decision tree that classifies the current case. Its attribute selection heuristic is: 

iC
I 2)(Δ

 
(2) 

4. ICET – Inexpensive Classification with Expensive Tests 
Introduced by Peter D. Turney as a solution to cost-sensitive problems, ICET (Inexpensive 
Classification with Expensive Tests) is a hybrid technique, which combines a greedy search 
heuristic (decision tree) with a genetic algorithm. Its distinctive feature is that it considers both 
test and misclassification costs, as opposed to the other cost-sensitive algorithms, which fail 
to consider both types of costs. Since it models real-world settings, where both the attributes 
and the different classification errors bear separate prices, the approach is more successful in 
true-life. 
The technique combines two different components, on two levels: 
• On the bottom level, a test cost-sensitive decision tree performs a greedy search in the 

space of decision trees 
• On the top level, the evolutionary component performs a genetic search through a space 

of biases; these are used to control the preference for certain types of decision trees in 
the bottom layer   



 Advances in Greedy Algorithms 

 

158 

The components used in the initial version of ICET are: Eg2 (Nunez, 1988) for the decision 
tree component and GENESIS (Grefenstette, 1986) for the genetic component. Eg2 has been 
implemented as a modified component of Quinlan’s C4.5 (Quinlan, 1993), using ICF 
(Information Cost Function) as attribute selection function. For the ith attribute, ICF may be 
defined as follows: 

w
i

I

i C
ICF

i

)1(
12

+
−

=
Δ

 , where 0 ≤  w ≤  1   (3) 

This means that the attribute selection criterion is no longer based solely on the attribute’s 
contribution to obtaining a pure split, but also on its cost, Ci. Also, the Information Cost 
Function contains parameter w, which adjusts the strength of the bias towards lower cost 
attributes. Thus, when w = 0, the cost of the attribute is ignored, and selection by ICF is 
equivalent to selection by the information gain function. On the other hand, when w = 1, ICF 
is strongly biased by the cost component. 
The algorithm flow: the algorithm starts by the genetic component evolving a population of 
randomly generated individuals (an individual corresponds to a decision tree). Each 
individual in the initial population is then evaluated by measuring its fitness. Standard 
mutation and crossover operators are applied to the trees population and, after a fixed 
number of iterations, the fittest individual is returned (Fig. 1). 
Each individual is represented as a bit string of n + 2 numbers, encoded in Gray. The first n 
numbers represent the bias parameters (“alleged” test costs in the ICF function). The last 
two stand for the algorithm’s parameters CF and w; the first controls the level of pruning (as 
defined for C4.5), while w is needed by ICF. 
 

 
Fig. 1. The ICET technique 

An important remark is that, unlike Eg2, ICET does not minimize test costs directly. Instead, 
it uses ICF for the codification of the individuals in the population. The n costs, Ci, are not 
true costs, but bias parameters. They provide enough variation to prevent the decision tree 
learner from getting trapped in a local optimum, by overrating/underrating the cost of 
certain tests based on past trials’ performance. However, it is possible to use true costs, 
when generating the initial population, which has been shown to lead to some increase in 
performance. 



Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems 

 

159 

Each trial on an individual consists in training and evaluating a decision tree on a given 
dataset, using the biases in the individual to set the attribute costs, CF and w. This is done by 
splitting the available dataset into two subsets: sub-training and sub-testing dataset. Since 
the split is random, there may be that two identical individuals will yield different outcomes 
(since the form of a decision tree is strongly related to the distribution in the training set – 
different training sets produce different trees).  
In ICET, the fitness function for an individual is computed as the average cost of classification 
of the corresponding tree (obtained by randomly dividing the training set in two subsets, 
the first used for the actual tree induction and the second for error estimation). The average 
cost of classification is obtained by normalizing the total costs (obtained by summing the 
test and misclassification costs) to the test set size. Test costs are specified as attribute - cost 
value pairs. The classification costs are defined by a cost matrix (Cij)nxn, where Cij - the cost 
of misclassifying an instance of class j as being of class i. If the same attribute is tested twice 
along the path (numeric attribute), the second time its cost is 0. 
The particularity presented by ICET, of allowing the test costs (encoded inside a genetic 
individual) to vary freely in the search domain, and then applying the fitness evaluation to 
guide the individuals towards an optimal solution, increases the variability in the heuristic 
component. Moreover, w and CF – two key features which influence the future form of a 
decision tree – are also encoded in the individual, providing even more possibility of 
variation in the decision trees search space. Theoretically, this variability is desirable, 
especially for greedy algorithms such as decision tree learners – that yield unique structures 
for a fixed training set. 

4.1 ProICET – improving the basic algorithm 
Although ICET has a strong theoretical background, some enhancements can be considered, 
in order to boost its performance in real-world settings. Most of the changes affect the 
genetic component, but the training process is slightly different as well. This section also 
presents other implementation details, and briefly reviews the two tools employed for the 
current implementation. 

4.1.1 Enhancements 
First, and most importantly, the single population technique is employed as replacement 
strategy (instead of the multiple populations). In this technique the population is sorted 
according to the fitness of its elements. At each step two individuals are generated and their 
fitness is evaluated. According to their score, they are added to the same population their 
parent elements came from. Then, the individuals with the lowest fitness values are 
eliminated, so that the size of the population remains the same.  
The single population technique has the advantage of directly implementing elitism: the best 
individuals of the current generation can survive unchanged in the next generation. Another 
prominent feature is the use of ranking in the fitness function estimation. The individuals in 
the population are ordered according to their fitness value, after which probabilities of 
selection are distributed evenly, according to their rank in the ordered population. Ranking 
is a very effective mechanism for avoiding the premature convergence of the population, 
which can occur if the initial pool has some individuals which dominate, having a 
significantly better fitness than the others. 



 Advances in Greedy Algorithms 

 

160 

Some amendments have been considered in the training process as well. Thus, the 
percentage of the training examples used when evaluating the fitness score of an individual 
in the population is now 70% of the original training set, as opposed to 50% (in the initial 
implementation).  
The number of evaluation steps has also been increased. Due to the fact that a new 
generation is evolved using single population, the final result yielded by the procedure is 
the best individual over the entire run, which makes the decision on when to stop the 
evolution less critical. More than that, experiments show that usually the best individual 
does not change significantly after 800 steps: in more than 90% of the cases the algorithm 
converges before the 800th iteration, while in the rest of the cases the variations after this 
point are small (less than 3.5%). Therefore, the number of steps in our implementation is 
1000. 

4.1.2 Implementation overview 
The current implementation of the improved ICET technique (ProICET) has been done 
starting from an existing implementation of revision 8 of the C4.5 algorithm, present in 
Weka (Witten, 2005) and a general genetic tool, GGAT (GGAT, 2002), developed at Brunel 
University.  
Weka (Waikato Environment for Knowledge Analysis) is a data mining tool developed at the 
University of Waikato, New Zealand. It is distributed under the GPL (Gnu Public License) 
and it includes a wide variety of state-of-the-art algorithms and data processing tools, 
providing extensive support for the entire process of experimental data mining (input 
filtering, statistical evaluation of learning schemes, data visualization, preprocessing tools). 
The command-line interface it provides was particularly useful when invoking the modified 
decision tree learner for computing the fitness function in the genetic algorithm part of the 
application.  
 

 
Fig. 2. ProICET main flow 



Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems 

 

161 

GGAT is a generic GA library, developed at the Brunel University, London. It implements 
most genetic algorithm mechanisms. Of particular interest are the single population 
technique and the ranking mechanisms. 
In order to obtain the Eg2 attribute selection criterion, as presented in equation (3), the 
information gain function of J4.8 algorithm was modified, similarly to the implementation 
presented in (Turney, 1995). 
ProICET has been implemented within the framework provided by GGAT. For each 
individual, the n + 2 chromosomes are defined (n being the number of attributes in the data 
set, while the other two correspond to parameters w and CF); each chromosome is 
represented as a 14 bits binary string, encoded in Gray. The population size is 50 
individuals. The roulette wheel technique is used for parent selection; as recombination 
techniques, we have employed single point random mutation with mutation rate 0.2, and 
multipoint crossover, with 4 randomly selected crossover points. 
Since the technique involves a large heuristic component, the evaluation procedure assumes 
averaging the costs over 10 runs. Each run uses a pair of randomly generated training-
testing sets, in the proportion 70% - 30%; the same proportion is used when separating the 
training set into a component used for training and one for evaluating each individual (in 
the fitness function). 

5. Experimental work 
A significant problem related to the original ICET technique is rooted in the fact that costs 
are learned indirectly, through the fitness function. Rare examples are relatively more 
difficult to be learned by the algorithm. This fact was also observed in (Turney, 1995), 
where, when analyzing complex cost matrices for a two-class problem, it is noted that: it is 
easier to avoid false positive diagnosis [...] than it is to avoid false negative diagnosis [...]. This is 
unfortunate, since false negative diagnosis usually carry a heavier penalty, in real life.  
Turney, too, attributes this phenomenon to the distribution of positive and negative 
examples in the training set. In this context, our aim is to modify the fitness measure as to 
eliminate such undesirable asymmetries.  
Last, but not least, previous ICET papers focus almost entirely on test costs and lack a 
comprehensive analysis of the misclassification costs component. Therefore we attempt to 
fill this gap by providing a comparative analysis with some of the classic cost-sensitive 
techniques, such as MetaCost and Eg2, and prominent error-reduction based classifiers, 
such as J4.8 and AdaBoost.M1.  

5.1 Symmetry through stratification 
As we have mentioned before, it is believed that the asymmetry in the evaluated costs for 
two-class problems, as the proportion of false positives and false negatives misclassification 
costs varies, is owed to the small number of negative examples in most datasets. If the 
assumption is true, the problem could be eliminated by altering the distribution of the 
training set, either by oversampling, or by undersampling. This hypothesis was tested by 
performing an evaluation of the ProICET results on the Wisconsin breast cancer dataset. 
This particular problem was selected as being one of the largest two-class datasets presented 
in the literature. 



 Advances in Greedy Algorithms 

 

162 

For the stratified dataset, the negative class is increased to the size of the positive class, by 
repeating examples in the initial set, selected at random, with a uniform distribution. 
Oversampling is preferred, despite of an increase in computation time, due to the fact that 
the alternate solution involves some information loss. Undersampling could be selected in 
the case of extremely large databases, for practical reasons. In that situation, oversampling is 
no longer feasible, as the time required for the learning phase on the extended training set 
becomes prohibitive. 
The misclassification cost matrix used for this analysis has the form: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅=
01

0
100

p
p

C  ,  (4) 

where p is varied with a 0.05 increment. 
The results of the experiment are presented in Fig. 3. We observe a small decrease in 
misclassification costs for the stratified case throughout the parameter space. This reduction 
is visible especially at the margins, when costs become more unbalanced. Particularly in the 
left side, we notice a significant reduction in the total cost for expensive rare examples, 
which was the actual goal of the procedure.  
 

Stratification Effect on ProICET

0

0.5

1

1.5

2

2.5

3

3.5

0.05 0.2 0.35 0.5 0.65 0.8 0.95
p

A
ve

ra
ge

  C
os

t

Normal
Stratified

 
Fig. 3. ProICET average costs for the breast cancer dataset 

Starting from the assumption that the stratification technique may be applicable to other 
cost-sensitive classifiers, we have repeated the procedure on the Weka implementation of 
MetaCost, using J4.8 as base classifier. J4.8 was also considered in the analysis, as baseline 
estimate. 
The results for the second set of tests are presented in Fig. 4. We observe that MetaCost 
yields significant costs, as the cost matrix drifts from the balanced case, a characteristic 
which has been described previously. Another important observation is related to the fact 
that the cost characteristic in the case of J4.8 is almost horizontal. This could give an 
explanation of the way stratification affects the general ProICET behavior, by making it 
insensitive to the particular form of the cost matrix. Most importantly, we notice a general 
reduction in the average costs, especially at the margins of the domain considered. We 



Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems 

 

163 

conclude that our stratification technique could be also used for improving the cost 
characteristic of MetaCost. 
 

Stratification Effect on 
MetaCost and J4.8

0

3

6

9

12

15

18

21

0.05 0.2 0.35 0.5 0.65 0.8 0.95p

A
ve

ra
ge

 C
os

t
MetaCost Normal
MetaCost Stratified
J4.8 Normal
J4.8 stratified

 
Fig. 4. Improved average cost for the stratified Wisconsin dataset 

5.2 Comparing misclassification costs 
The procedure employed when comparing misclassification costs is similar to that described 
in the previous section. Again, the Wisconsin dataset was used, and misclassification costs 
were averaged on 10 randomly generated training/test sets. For all the tests described in 
this section, the test costs are not considered in the evaluation, in order to isolate the 
misclassification component and eliminate any bias. 
As illustrated by Fig. 5, MetaCost yields the poorest results. ProICET performs slightly 
better than J4.8, while the smallest costs are obtained for AdaBoost, using J4.8 as base 
classifier. The improved performance is related to the different approaches taken when 
searching for the solution. If ProICET uses heuristic search, AdaBoost implements a 
procedure that is guaranteed to converge to minimum training error, while the ensemble 
voting reduces the risk of overfitting. However, the approach cannot take into account test 
costs, which should make it perform worse on problems involving both types of costs. 

5.3 Total cost analysis 
When estimating the performance of the various algorithms presented, we have considered 
four problems from the UCI repository. All datasets involve medical problems: Bupa liver 
disorders, thyroid, Pima Indian diabetes and heart disease Cleveland. For the Bupa dataset, 
we have used the same modified set as in (Turney, 1995). Also, the test costs estimates are 
taken from the previously mentioned study. As mentioned before, the misclassification costs 
values are more difficult to estimate, due to the fact that they measure the risks of 
misdiagnosis, which do not have a clear monetary equivalent. These values are set 
empirically, assigning higher penalty for undiagnosed disease and keeping the order of 
magnitude as to balance the two cost components (the actual values are displayed in tables 
1, 2, 3 and 4). 



 Advances in Greedy Algorithms 

 

164 

Misclassification Cost Component

0

3

6

9

12

15

18

21

0.05 0.2 0.35 0.5 0.65 0.8 0.95
p

A
ve

ra
ge

 C
os

t

AdaBoost.M1
ProICET
J4.8
MetaCost

 
Fig. 5. A comparison of average misclassification costs on the Wisconsin dataset 

Class less than 3 more than 
less than 3 0 5 

more than 3 15 0 

Table 1. Misclassification cost matrix for Bupa liver disorder dataset 

Class 3 2 1 
3 0 5 7 
2 12 0 5 
1 20 12 0 

Table 2. Misclassification cost matrix for the Thyroid dataset 

Class less than 3 more than 
less than 3 0 7 

more than 3 20 0 

Table 3. Misclassification cost matrix for the Pima dataset 

Class 0 1 2 3 4 
0 0 10 20 30 40 
1 50 0 10 20 30 
2 100 50 0 10 20 
3 150 100 50 0 10 
4 200 150 100 50 0 

Table 4. Misclassification cost matrix for the Cleveland heart disease dataset 

As anticipated, ProICET significantly outperforms all other algorithms, being the only one 
built for optimizing total costs (Fig. 6-9). ProICET performs quite well on the heart disease 
dataset (Fig. 6), where the initial implementation obtained poorer results. This improvement 
is probably owed to the alterations made to the genetic algorithm, which increase the 
population variability and extend the ProICET heuristic search. 



Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems 

 

165 

Total Cost for Cleveland Dataset

0

40

80

120

160

200

240

280

Ada
Boos

t.M
1

Eg2

Pro
IC

ET
J4

.8

Meta
Cos

t

A
ve

ra
ge

d 
To

ta
l C

os
t

 
Fig. 6. Average total costs of the considered algorithms on the Cleveland dataset 

Total Cost for Bupa Dataset

14

15

16

17

18

19

20

21

22

Ada
Boos

t.M
1

Eg2

Pro
IC

ET
J4

.8

Meta
Cos

t

A
ve

ra
ge

d 
To

ta
l C

os
t

 
Fig. 7. Average total costs of the considered algorithms on the Bupa dataset 

On the Bupa dataset (Fig. 7), AdaBoost.M1 slightly outperforms ProICET, but this is more 
an exception, since on the other datasets, AdaBoost.M1 yields poorer results. Moreover, the 
cost reduction performed by ProICET relative to the other methods, on this dataset, is very 
significant.  
The cost reduction is relatively small in the Thyroid dataset (Fig. 8), compared to the others, 
but is quite large for the other cases, supporting the conclusion that ProICET is the best 
approach for problems involving complex costs. 

6. Chapter summary 
This chapter presents the successful combination of two search strategies, greedy search (in 
the form of decision trees) and genetic search, into a hybrid approach. The aim is to achieve 
increased performance over existing classification algorithms in complex cost problems, 
usually encountered when mining real-world data, such as in medical diagnosis or credit 
assessment. 



 Advances in Greedy Algorithms 

 

166 

Total Cost for Thyroid Dataset

0

5

10

15

20

25

30

35

40

Ada
Boos

t.M
1

Eg2

Pro
IC

ET
J4

.8

Meta
Cos

t

A
ve

ra
ge

d 
To

ta
l C

os
t

 
Fig. 8. Average total costs of the considered algorithms on the Thyroid dataset  

Total Cost for Pima Dataset

0

4

8

12

16

20

24

28

Ada
Boos

t.M
1

Eg2

Pro
IC

ET
J4

.8

Meta
Cos

t

A
ve

ra
ge

d 
To

ta
l C

os
t

 
Fig. 9. Average total costs of the considered algorithms on the Pima dataset 

Any machine learning algorithm is based on a certain search strategy, which imposes a bias 
on the technique. There are many search methods available, each with advantages and 
disadvantages. The distinctive features of each search strategy restrict its applicability to 
certain problem domains, depending on which issues (dimensionality, speed, optimality, 
etc.) are of importance. The dimension of the search space in most real-world problems 
renders the application of complete search methods prohibitive. Sometimes we have to 
trade optimality for speed. Fortunately, greedy search strategies, although do not ensure 
optimality, usually provide a sufficiently good solution, close to the optimal one. Although 
they have an exponential complexity in theory, since they do not explore the entire search 
space, they have a very good behaviour in practice, in speed terms. This makes them 
suitable even for complex problems. Their major drawback comes from the fact that they 
can get caught at local optima. Since the complexity of the search space is too large, such 
that the problem is intractable for other techniques, in most real problems this is an accepted 
disadvantage. Greedy search strategies are employed in many machine learning algorithms. 



Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems 

 

167 

One of the most prominent classification techniques which employ such a strategy are 
decision trees.  
The main advantages of decision trees are: an easy to understand output model, robustness 
with respect to the data quantity, little data preparation, ability to handle both numerical 
and categorical data, as well as missing data. Therefore, decision trees have become one of 
the most widely employed classification techniques in data mining, for problems where 
error minimization is the target of the learning process.  
However, many real-world problems require more complex measures for evaluating the 
quality of the learned model. This is due to the unbalance between different types of 
classification errors, or the effort of acquiring the values of predictive attributes. A special 
category of machine learning algorithms focuses on this task – cost-sensitive learning. Most 
existing techniques in this class focus on just one type of cost, either the misclassification, or 
the test cost. Stratification is perhaps the earliest misclassification cost-sensitive approach (a 
sampling technique rather than an algorithm). It has been followed by developments in the 
direction of altering decision trees, such as to make their attribute selection criterion 
sensitive to test costs (in the early 90’s). Later, new misclassification cost-sensitive 
approaches emerged, the best known being MetaCost or AdaCost. More recent techniques 
consider both types of cost, the most prominent being ICET.  
Initially introduced by Peter D. Turney, ICET is a cost-sensitive technique, which avoids the 
pitfalls of simple greedy induction (employed by decision trees) through evolutionary 
mechanisms (genetic algorithms). Starting from its strong theoretical basis, we have 
enhanced the basic technique in a new system, ProICET. The alterations made in the genetic 
component have proven beneficial, since ProICET performs better than other cost-sensitive 
algorithms, even on problems for which the initial implementation yielded poorer results. 

7. References 
Baezas-Yates, R., Poblete, V. P. (1999). Searching, In: Algorithms and Theory of Computation 

Handbook, Edited by Mikhail J. Atallah, Purdue University, CRC Press 
Domingos, P. (1999). Metacost: A general method for making classifiers cost-sensitive. 

Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining, 
pp. 155-164, 1-58113-143-7, San Diego, CA, USA 

Fan, W.; Stolfo, S.; Zhang, J. & Chan, P. (2000). AdaCost: Misclassification cost-sensitive 
boosting. Proceedings of the 16th International Conference on Machine Learning, pp. 97–
105, Morgan Kaufmann, San Francisco, CA 

Freund, Y. & Schapire, R. (1997). A decision-theoretic generalization of on- line learning and 
an application to boosting. Journal of Computer and System Sciences, Volume 
55, Number 1, August 1997 , pp. 119-139 

General Genetic Algorithm Tool (2002), GGAT, http://www.karnig.co.uk/ga/content.html, 
last accessed on July 2008 

Grefenstette, J.J. (1986). Optimization of control parameters for genetic algorithms. IEEE 
Transactions on Systems, Man, and Cybernetics, 16, 122-128 

Korf, R. E. (1999). Artificial Intelligence Search Algorithms, In: Algorithms and Theory of 
Computation Handbook, Edited by Mikhail J. Atallah, Purdue University, CRC Press 

Norton, S.W. (1989). Generating better decision trees. Proceedings of the Eleventh International 
Joint Conference on Artificial Intelligence, IJCAI-89, pp. 800-805. Detroit, Michigan. 



 Advances in Greedy Algorithms 

 

168 

Núñez, M. (1988). Economic induction: A case study. Proceedings of the Third European
 Working Session on Learning, EWSL-88, pp. 139-145, California, Morgan Kaufmann. 

Quinlan, J. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, ISBN:1-55860-
238-0, San Francisco, CA, USA  

Quinlan, J. (1996) Boosting first-order learning. Proceedings of the 7th International Workshop 
on Algorithmic Learning Theory, 1160:143–155 

Russell, S., Norvig, P. (1995) Artificial Intelligence: A Modern Approach, Prentice Hall 
Tan, M., & Schlimmer, J. (1989). Cost-sensitive concept learning of sensor use in approach 

and recognition. Proceedings of the Sixth International Workshop on Machine Learning, 
ML-89, pp. 392-395. Ithaca, New York 

Tan, M., & Schlimmer, J. (1990). CSL: A cost-sensitive learning system for sensing and 
grasping objects. IEEE International Conference on Robotics and Automation. 
Cincinnati,Ohio 

Turney, P. (1995). Cost-sensitive classification: Empirical evaluation of a hybrid genetic 
decision tree induction algorithm. Journal of Artificial Intelligence Research, Volume 2, 
pp. 369–409 

Turney, P. (2000). Types of cost in inductive concept learning. Proceedings of the Workshop on 
Cost-Sensitive Learning, 7th International Conference on Machine Learning, pp. 15-21 

Vidrighin, B. C., Savin, C. & Potolea, R. (2007). A Hybrid Algorithm for Medical Diagnosis. 
Proceedings of Region 8 EUROCON 2007, Warsaw, pp. 668-673 

Vidrighin, C., Potolea, R., Giurgiu, I. & Cuibus, M. (2007). ProICET: Case Study on Prostate 
Cancer Data. Proceedings of the 12th International Symposium of Health Information 
Management Research, 18-20 July 2007, Sheffield, pp. 237-244 

Witten I. & Frank, E. (2005) Data Mining: Practical machine learning tools and techniques, 2nd ed. 
 Morgan Kaufmann, 0-12-088407-0 



10 

Greedy Algorithm: Exploring Potential of   
Link Adaptation Technique in Wideband 

Wireless Communication Systems 
Mingyu Zhou, Lihua Li, Yi Wang and Ping Zhang 

Beijing University of Posts and Telecommunications, Beijing 
China 

1. Introduction 
As the development of multimedia communication and instantaneous high data rate 
communication, great challenge appears for reliable and effective transmission, especially in 
wireless communication systems. Due to the fact that the frequency resources are 
decreasing, frequency efficiency obtains the most attention in the area, which motivates the 
research on link adaptation technique. Link adaptation can adjusts the transmission 
parameters according to the changing environments [1-2]. The adjustable link parameters 
includes the transmit power, the modulation style, etc. All these parameters are adjusted to 
achieve: 
1. Satisfactory Quality of Service (QoS). This helps guarantee the reliable transmission. It 

requires that the bit error rate (BER) should be lower than a target. 
2. Extra high frequency efficiency. This brings high data rate. It can be described with 

throughput (in bit/s/Hz). 
In conventional systems with link adaptation, water-filling algorithm is adopted to obtain 
the average optimization for both QoS and frequency efficiency [3]. But the transmit power 
may vary a lot on different time, which brings high requirement for the implementation and 
causes such algorithm not applicable in practical systems. 
Recently, wideband transmission with orthogonal frequency division multiplexing (OFDM) 
technique is being widely accepted, which divides the frequency band into small sub-
carriers [4]. Hence, link adaptation for such system relates to adaptation in both time and 
frequency domain. The optimization problem becomes how to adjust the transmit power 
and modulation style for all sub-carriers, so as to achieve the maximum throughput, subject 
to the constraint of instantaneous transmit power and BER requirement. The transmit power 
and modulation style on every sub-carrier may impact the overall performance, which 
brings much complexity for the problem [5]. 
In order to provide a good solution, we resort to Greedy algorithm [6]. The main idea for the 
algorithm is to achieve global optimization with local optimization. It consists of many 
allocation courses (adjusting modulation style equals to bit allocation). In each course, the 
algorithm reasonably allocates the least power to support reliable transmission for one 
additional bit. Such allocation course is terminated when transmit power is allocated. After 
allocation, the power on each sub-carrier can match the modulation style to provide reliable 



 Advances in Greedy Algorithms 

 

170 

transmission, the total transmit power is not higher than the constraint, and the throughput 
can be maximized with reasonable allocation. 
We investigate the performance of Greedy algorithm with aid of Matlab. With the 
simulation result, we can observe that: 
1. The transmit power is constraint as required with the algorithm; 
2. The algorithm can satisfy the BER requirement; 
3. It brings great improvement for the throughput. 
Hence we conclude that Greedy Algorithm can bring satisfactory QoS and high frequency 
efficiency. In order to interpret it in great detail, we will gradually exhibit the potential of 
Greedy algorithm for link adaptation. The chapter will conclude the following sections: 
Section 1: As an introduction, this section describes the problem of link adaptation in 
wireless communication systems, especially in OFDM systems. 
Section 2: As the basis of the following sections, Section 2 gives out the great detail for the 
theory of link adaptation technique, and presents the problem of the technique in OFDM 
systems. 
Section 3: Greedy Algorithm is employed to solve the problem of Section 2 for normal 
OFDM systems. And the theory of Greedy Algorithm is provided in the section. We provide 
comprehensive simulation results in the section to prove the algorithm can well solve the 
problem. 
Section 4: Greedy Algorithm is further applied in a multi-user OFDM system, so as to bring 
additional great fairness among the transmissions for all users. Simulation results are 
provided for analysis. 
Section 5: OFDM relaying system is considered. And we adopt Greedy Algorithm to bring 
the optimal allocation for transmit power and bits in all nodes in the system, so as to solve 
the more complex problem for the multi-hop transmission. We also present the simulation 
result for the section. 
Section 6: As a conclusion, we summarize the benefit from Greedy Algorithm to link 
adaptation in wireless communication systems. Significant research topics and future work 
are presented. 

2. Link Adaptation (LA) in OFDM systems 
In OFDM systems, system bandwidth is divided into many fractions, named sub-carriers. 
Information is transmitted simultaneously from all these sub-carriers, and because different 
sub-carriers occupy different frequency, the information can be recovered in the receiver. 
The block diagram for such systems is shown in Fig. 1. 
As far as multiple streams on all these sub-carriers are concerned, the problem came out 
about how to allocate the transmit power and bits on all the sub-carriers, so as to bring 
highest throughput with constraint of QoS, or BER requirement. Due to the fact that there 
exists channel fading and that the impact with different sub-carrier varies because of the 
multi-path fading, the allocation should be different for different sub-carriers. The system 
can be described with the following equation. 

 n n n n nR H P S N= +  (1) 

where Sn denotes the modulated signal on the n-th sub-carrier, which carries bn bits with 
normalized power; Pn denotes the transmit power for the sub-carrier; Hn denotes the channel 



Greedy Algorithm: Exploring Potential of  Link Adaptation Technique  
in Wideband Wireless Communication Systems 

 

171 

fading for the sub-carrier; Nn denotes the additive white Gaussian noise (AWGN) with 
variance of σ2; and Rn denotes the received signal on the sub-carrier. 
 

 
Fig. 1. Block diagram for OFDM with link adaptation 

In that case, the received signal-to-noise ratio (SNR) can be calculated as 

 SNRn=|Hn|2Pn/σ2 (2) 

In order to satisfy the requirement of BER, the received signal should satisfy that SNRn is 
larger than a certain threshold, or Tv for the v-th modulation. In the chapter, we assume that 
the target BER is 10-3. Hence, the constraint of BER can be described as 

 SNRn>Tv (3) 

As for the transmit power, it is required that the total transmit power should be constraint to 
a certain value P. That is to say 

 
1

1 N

n
n

P P
N =

≤∑  (4) 

As a conclusion, the optimization problem is how to determine bn and Pn to maximize 
throughput, i.e. 

 
, 1

arg max
n n

N

n
b P n

b
=
∑  (5) 

subject to equations (3) and (4). 

3. Application of greedy algorithm in OFDM systems 
The Greedy algorithm can be applied in solving the problem of (5). For the research in the 
section, we assume the parameters for the candidate modulation as shown in Table 1, where 
the thresholds are obtained through simulation. 



 Advances in Greedy Algorithms 

 

172 

In order to obtain the maximum throughput across all these N sub-carriers, Greedy 
algorithm can be taken advantage of. The problem can be seen as a problem with global 
optimization, and Greedy algorithm can help achieve the global optimization with a lot of 
local optimization. The theory of Greedy algorithm can be understood from an example 
shown in  Fig. 2. 
 

v Modulation Number of bits b(v) T(v) 
0 No transmission 0 0 
1 QPSK 2 9.78dB 
2 16QAM 4 16.52dB
3 64QAM 6 22.52dB

Table 1. Candidate modulation and parameters 

 
Fig. 2. Theory of the application of Greedy algorithm in OFDM systems 

In the initialization step, all the sub-carrier is allocated with 0 bit. And the required 
additional power with one additional bit for all sub-carriers can be calculated. The local 
optimization is to allocate one bit to the sub-carrier with the least required power. Hence, as 
shown in Fig. 2, the 1st sub-carrier is allocated with 1 bit. And the required additional power 
with one additional bit for it is updated. In the second allocation, the 3rd sub-carrier obtains 
the least required additional power. Hence it is allocated with 1 bit. The processes continue 
until all sub-carriers are allocated with the maximum bits or the power is not enough to 
support one further bit. When the processes end, the global optimization is achieved and the 
current allocation is the optimal allocation with the maximum throughput. Due to the 
candidate modulations in Table 1, the incremental bit number is 2 in the research. 
Fig. 3 shows the BER performance with Greedy algorithm, and the performance with fixed 
modulation of QPSK, 16QAM and 64QAM is shown for comparison, where SNR in the x-
axis denotes the average SNR in the link. From the figure, the fixed modulation schemes 
have bad performance. Only when SNR is as high as 30dB can the BER achieve 10-3. When 
Greedy algorithm is adopted, the BER performance can achieve the target BER with all SNR 
cases. Hence, it can be concluded that Greedy algorithm can satisfy the requirement of BER 
very well. Fig. 4 gives out the throughput performance with Greedy algorithm. As SNR rises 
larger, the throughput can achieve higher, with the maximum of 6 bits/symbol which 
denotes that all sub-carriers adopt 64QAM in this case. According to Greedy algorithm, the 
throughput is maximized. 



Greedy Algorithm: Exploring Potential of  Link Adaptation Technique  
in Wideband Wireless Communication Systems 

 

173 

0 5 10 15 20 25 30 35 40
10-4

10-3

10-2

10-1

100

SNR (dB)

B
E

R

 

 
Fixed Mod, QPSK
Fixed Mod, 16QAM
Fixed Mod, 64QAM
Greedy

 
Fig. 3. BER performance with fixed modulation and Greedy algorithm 
 

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

SNR (dB)

Th
ro

ug
hp

ut
 (b

its
/s

ym
bo

l)

 

 

 
Fig. 4. Throughput performance with Greedy algorithm 

4. Application of greedy algorithm in multi-user OFDM systems 
When multiple users are concerned, the problem becomes more complex. The block 
diagram for a typical multi-user adaptive OFDM system is shown in Fig. 5. Downlink 
transmission is taken for research in the section. It is assumed that channel state information 
(CSI) regarding to all users is available for the base station (BS). In the transmitter on BS, 
resource allocation is carried out according to CSIs regarding to all the users, so as to 
determine the allocated sub-carriers for each user, as well as the transmit power for sub-
carriers and loaded bits on them. Different loaded bits correspond to different modulation. 
All users’ bits are modulated accordingly, after which inverse discrete Fourier transform 
(IDFT) is carried out and cyclic prefix (CP) is added to form OFDM symbols to transmit. In 
the receiver on each mobile terminal (MT), symbols in frequency domain are obtained after 
removing CP and DFT. Relevant demodulation is carried out for all sub-carriers, and source 
bits for each user are recovered finally after demodulation. 



 Advances in Greedy Algorithms 

 

174 

 
Fig. 5. A typical multi-user adaptive OFDM downlink 

Considering a multi-user adaptive OFDM system with M users and N sub-carriers, the 
multi-user adaptive system model can be described as: 

 , , , , ,m n m n m n m n m nR H P S N= +  (6) 

where Sm,n denotes power-normalized modulated symbol on the n-th sub-carrier for the m-
th user; it contains bm,n source bits. In order to eliminate interference among the users, each 
sub-carrier can be allocated to only one user in the system, i.e. 

, ', 0,   0( ' )m n m nif b then b m m> = ∀ ≠ . Pm,n denotes allocated power for Sm,n. Hm,n denotes 

channel transfer function for Sm,n. Pm,n and bm,n is determined according to Hm,n by the “multi-
user sub-carrier, bit and power allocation” block as shown in Fig. 5. Nm,n denotes the 
additive white Gaussian noise (AWGN) with variance σ2. Rm,n is the received symbol in the 
receiver on the m-th MT. 

4.1 Multi-user resource allocation problem 
From (6), the received SNR can be calculated as 

 2 2
, , ,| | /m n m n m nH Pγ σ=  (7) 

As for conventional multi-user OFDM systems, each user is allocated with N/M sub-carriers 
with constant power fixedly. The throughput is very low since it is very likely that many 
users are allocated with sub-carriers with poor CSI. And the fairness performance is also 
poor. Adaptive resource allocation can take advantage of CSIs for all users to improve 
system performance through reasonable allocation of sub-carriers, bits and power. The 
multi-user adaptive problem for an OFDM system can be described as maximizing overall 
throughput while satisfying requirement of fairness, subject to power restriction and QoS 
requirement. Consequently, the problem can be described in the following way. 

 ,
1 1

max ( )
N M

m n
n m

b v
= =
∑∑  (8) 



Greedy Algorithm: Exploring Potential of  Link Adaptation Technique  
in Wideband Wireless Communication Systems 

 

175 

subject to  

 

, ', 0' 1

2 2
, , ,

,
1 1

max | [ ( ) ( )] |                 (a)

      ( ) / | |                   (b)

                                         (c)

N

m n m nm m n

m n m n m n

M N

m n T
m n

b v b v b

P T v H

P P

σ

≠
=

= =

− ≤

≥

≤

∑

∑∑

 (9) 

where vm,n denotes the index of a candidate modulation (vm,n =1, 2, …, V); PT denotes the 
total transmit power; T(vm,n) indicates the least required SNR when adopting vm,n-th 
modulation (one modulated symbol containing b(vm,n) bits) to ensure QoS guaranteeing 
(BER lower than a certain value), i.e. Pm,n is determined to satisfy γm,n≥T(vm,n), so as to 
transmit b(vm,n) bits with the target BER requirement; b0 is the upper limit for maximum 
difference of allocated bits numbers among all users. Accordingly, (9a) is set to guarantee 
fairness requirement among all users, (9b) is used to satisfy requirement of QoS, and (9c) is 
to ensure the transmit power restriction. 
In this section, 4 candidate modulations in Table 1 are considered. b0 is set to be 0. And V is 
4. BER performance versus SNR of received symbol can be calculated through 

 ( ) ( )( ) 2 1 1/ 2 3/(2 1)b b bQε γ γ= − −  (10) 

where 
2 / 2( ) 1/ 2 u

x
Q x e duπ

∞ −= ∫ , and b=2, 4, 6 correspond to QPSK, 16QAM and 64QAM, 

respectively. Parameters for the candidate modulations and least required SNR for BER 
lower than 10-3 are summarized in Table 1. 

4.2 Multi-user adaptive resource allocation methods 
The optimal joint problem of sub-carrier, bit and power allocation is a NP-hard 
combinatorial problem. It is quite difficult to determine how many and which sub-carriers 
should be assigned to every user subject to many restrictions as shown in (9). Some existing 
typical methods are introduced in [7-11]. They perform well in some aspects, but for services 
with tight fairness requirement, these solutions cannot provide nice performance. 
A.   Existing methods 
According to [7-11], there have been many methods to allocate resources including sub-
carriers, bits and power to multiple users. The fixed sub-carrier allocation method allocates 
the same number of sub-carriers to each user fixedly, and then adopts the optimal Greedy 
algorithm [6] to carry out bit-loading and power allocation on all sub-carriers [9]. This merit 
of the method is quite simple, and fairness can be guaranteed in a certain degree since each 
user is allocated with the same number of sub-carriers. But since it is very likely that many 
users are allocated with sub-carriers with poor CSI, the throughput is low; and because CSIs 
of different users vary much, fairness performance is also poor. 
Typically, [11] provides another solution. In each allocation, a user is assigned with one sub-
carrier with the best CSI from the remaining un-allocated sub-carriers. For allocations with 
odd indices, the order to allocate sub-carriers is from the 1st user to the M-th user. For 



 Advances in Greedy Algorithms 

 

176 

allocations with even indices, the order is from the M-th user to the 1st user. Allocation 
continues until all sub-carriers are assigned. The optimal Greedy algorithm is then adopted 
to accomplish bit-loading and power allocation. The ordered allocation method avoids that 
some user’s sub-carriers have much better CSI than other users, and fairness can be 
improved much over the fixed method. 
The fixed allocation method and ordered allocation method both allocate resources in two 
steps, and fairness is fine in some degree by allocation equal number of sub-carriers to 
each user. But because CSI of different users may vary greatly, allocating the same 
number of sub-carriers to all users may not provide enough fairness for some services 
with tight fairness requirement. Therefore, a multi-user sub-carrier, bit and power 
allocation method is introduced in the following, which can bring to much better fairness 
than the existing methods, while achieving high throughput and satisfying QoS 
requirement. 
B.   Proposed method 
In the proposed method, sub-carriers are allocated equally to all users firstly as 
initialization. This step realizes coarse sub-carrier allocation. Second, bits and power are 
loaded on the sub-carriers following the optimal Greedy algorithm for all users. Coarse 
resource allocation is fulfilled in the two steps, and they can benefit much for the overall 
throughput. In order to improve fairness as required, the next step is added. In the 3rd step, 
sub-carriers, bits and power are adjusted among all users. This step can be seen as fine 
adjustment for the resources. The three steps can be described as follows. 
1. Coarse sub-carrier allocation 
This step is to allocate sub-carriers to all users with high throughput and coarse fairness 
among all users. The numbers of allocated sub-carriers are the same for all users. In every 
allocation, if the CSI relating the m-th user and the n-th sub-carrier is the best, the n-th 
sub-carrier will be allocated to the m-th user. The allocation for one user will be 
terminated when the user has been allocated with N/M sub-carriers. We make the 
assumptions: Θ=Θ\{n} denotes removing the n-th sub-carrier from the set Θ, and φ 
denotes the null set; c(n) denotes the index of user who is allocated with the n-th sub-
carrier; Nm denotes the number of allocated sub-carriers for the m-th user. The processes 
for this step are as follows. 
 

,
,

{1, 2,..., }; {1, 2,..., }
( ) 0, ; 0,

 
{       [ , ] arg max | |

        ( )
        \{ }
        1
        / ,  \{ }
}

m

m n
m n

m m

m

N M
c n n N m

m n H

c n m
n

N N
N N M m

φ

∈Ψ ∈Θ

Θ = Ψ =
= ∀ ∈Θ = ∀ ∈Ψ
Ψ ≠

=

=
Θ = Θ

= +
= Ψ = Ψ

while

if then  

 



Greedy Algorithm: Exploring Potential of  Link Adaptation Technique  
in Wideband Wireless Communication Systems 

 

177 

2. Coarse bit loading and power allocation 
The optimal Greedy algorithm is adopted in this step to realize bit loading and power 
allocation on all the sub-carriers. We assume that: vn denotes the index of the modulation 
adopted on the n-th sub-carrier; P0 denotes the remaining power; Pn indicates power 
allocated on the n-th sub-carrier, and Wn denotes the required additional power in order to 
adopt a next higher order modulation. Then the step can be described as follows. 
 

{1, 2,..., }; {1, 2,..., }N MΘ = Ψ =  

( ),

0

2 2

0

0 0

2 2

,

0, ; 0,

(1) / | |
 min

{  = arg min

    
    
    1
     ,   

      [ ( 1) ( )] / | |
}

n c n n

m n

T

nn

nn

n
n

n

n n n

n n

n n

nn n n

H H n
v m P n
P P
W T H

P W

n W

P P W
P P W
v v

v V W
W T v T v H

σ

σ

∈Θ

∈Θ

= ∀ ∈Θ

= ∀ ∈Ψ = ∀ ∈Θ

=

=
≥

= −
= +
= +

= = ∞

= + −

while

if then
else

 

 

3. Fine sub-carriers, bits and power allocation 
After Step 2, the numbers of allocated sub-carriers for all users are the same, and the most 
bits are loaded to the sub-carriers through Greedy algorithm. However, due to the fact that 
CSI for all users varies much, the numbers of loaded bits may vary much for all users. This 
causes big difference in allocated bits for all users. Hence, Step 3 is used to make 
modification to the allocated sub-carriers and bits: reallocate sub-carriers of the user with 
the most number of loaded bits to the user with the least number of loaded bits. In each 
iteration, we assume the Umax-th and the Umin-th user obtain the most and the least number 
of loaded bits for current allocation scheme, respectively. This step reallocates one sub-
carrier of the Umax -th user to the Umin -th user to balance the allocated bits among the users, 
so as to guarantee the fairness; and in order not to bring down the throughput greatly, the 
sub-carrier with the worst CSI for the Umax -th user is reallocated to the Umin -th user. After 
the re-allocation of sub-carriers, Greedy algorithm is adopted again for bit-loading on the 
new sub-carrier allocation scheme. The iterations continue until the difference among the 
loaded bits of all users is low enough. Since this step reallocates the sub-carriers for balance 
among the loaded bits for all users, the overall throughput may be reduced, but fairness can 
be guaranteed better. We assume that βm denotes the loaded bits for the m-th user; Smax and 
Smin denotes sub-carriers set which contains sub-carriers allocated to the Umax -th user and 
Umin -th user, respectively; S0 denotes the sub-carrier with worst CSI for the Umax -th user. 
Step 3 can be realized as follows. 



 Advances in Greedy Algorithms 

 

178 

�
�

max min

max
max

{  | ( ) }

max min

0

max max min min

0 ,

( );

arg max( ); arg min( )

  

{   { | ( ) }, { | ( ) }
    arg min{| |}

m n
n n c n m

m m
m m

U U

U n
n S

b v

U U

b

S n c n U S n c n U
S H

β

β β

β β

∈ =

∈

=

= =

− >

= = = =
=

∑

while
 

min

min
0

min
0

0 0 ' '
'

2 2
' '' ', '

0 ''

'
'

0 0 '

' ' '

'

    ( )

    

    ; 0

    ;  (1) / | | , 0,    '

     min

    {    '= arg min

         
         
         

n n
n

n nn nU n

nn

n
n

n

n n n

n

c S U
S S

P P P P

H H W T H v n

P W

n W

P P W
P P W
v

σ
∈Θ

∈Θ

∈Θ

=

Θ =

= + =

= = = ∀ ∈Θ

≥

= −
= +

∑

while

∪

�
�

'

' '
2 2

'' ' '

{ | ( ) }

max min

1
         ,  

           [ ( 1) ( )] / | | }

    ( );

    arg max( ); arg min( )

}

n

n n

nn n n

m n
n n c n m

m m
m m

v
v V W

W T v T v H

b v

U U

σ

β

β β
∈ =

= +
= = ∞

= + −

=

= =

∑

 if then
else

 

4.3 Simulation results 
In order to give comprehensive evaluation to the proposed method, simulation is carried 
out and analyzed in the section. The adopted channel model is a typical urban (TU) multi-
path channel composed of 6 taps with the maximum time delay of 5μs [12] and the 
maximum moving velocity is 5kmph. The carrier frequency is 2.5GHz. The system 
bandwidth is 10MHz, and 840 sub-carriers are available, i.e. N=840. Sub-carrier spacing is 
11.16 kHz, and CP is set to be 5.6μs to eliminate inter-symbol interference. Candidate 
modulation schemes in Table 1 are employed for adaptive modulation (bit loading). The 
proposed method is compared with the fixed allocation method from [9] and ordered 
allocation method from [11]. And performance for BER, throughput and fairness is 
provided. 
A.   BER performance 
BER performance reflects the ability to satisfy QoS requirement. As mentioned above, target 
BER of 10-3 is investigated in the section. So it is required that the resource allocation 



Greedy Algorithm: Exploring Potential of  Link Adaptation Technique  
in Wideband Wireless Communication Systems 

 

179 

methods should bring BER lower than 10-3. BER performance with different methods is 
shown in Fig. 6. Cases for different user number (M= 2, 8, 20) are exhibited. It can be 
observed that BER is just lower than 10-3 for systems with all the resource allocation 
methods and for different M. Hence, all the methods, including the proposed method, can 
guarantee QoS requirement for such kind of service. 
A.   Overall throughput 
In order to show the transmission ability of these methods, overall throughput is 
investigated as shown in Fig. 7. Here the overall throughput is defined as the total 
transmittable bits per symbol for the system, and can be calculated through 
 

0 2 4 6 8 10 12 14 16 18 20

10-4

10-3

10-2

SNR (dB)

B
E

R

 

 

Fixed, U=2
Ordered, U=2
Proposed, U=2
Fixed, U=8
Ordered, U=8
Proposed, U=8
Fixed, U=20
Ordered, U=20
Proposed� , U=20

 
Fig. 6. BER v. s. SNR for systems with different methods 
 

0 5 10 15 20 25
0

1

2

3

4

5

6

SNR (dB)

Th
ro

ug
hp

ut
 (b

its
/s

ym
bo

l)

 

 
Fixed
Ordered
Proposed

 
Fig. 7. Overall throughput v. s. SNR for M=8 

 
1

1/ ( )(1 )
N

n
n

N b vβ ε
=

= −∑  (11) 



 Advances in Greedy Algorithms 

 

180 

where ε denotes BER. Performance with fixed method, ordered method and the proposed 
method when M=8 in the section is given out. As can be seen from Fig. 7, performances for 
the ordered method can obtain the highest overall throughput among all the methods, and 
throughput for the fixed sub-carrier allocation method is the worst. When SNR is low, the 
proposed method obtains lower throughput than that with the ordered method, but larger 
than the fixed method. When SNR=10dB, it obtains 0.8bits/symbol gain over the fixed 
method, about 46% improvement. When SNR is high enough, the proposed method can 
obtain the same overall throughput as the ordered method. When SNR=20dB, it obtains 
1.3bits/symbol gain over the fixed method, and only 0.15bits/symbol lower than the 
ordered method. The throughput is lower as the cost for excellent fairness, as will be 
introduced below. 
B.   Fairness 
Though there is little difference in the overall throughput for the proposed method 
compared with the ordered method, the fairness can be guaranteed very well. 
Firstly, we investigate the allocated bit for all users. Fig. 8 shows an example to the allocated 
bits of all users for different methods when M=8 and SNR=25dB. It can be seen that, when 
the fixed method is adopted, allocated bits number varies much for all the 8 users, the 
difference between the bits number of the users with most allocated bits and the least 
allocated bits is as high as 34bits; when the ordered method is adopted, fairness is improved 
much, and the maximum difference among the allocated bits of all the users is 3 bits. When 
the proposed method is adopted, all users are allocated with the same number of bits; 
what’s more, the number of bits allocated to the users are almost the same as the maximal 
value with the ordered method, and much larger than that with the fixed method. 
 

 
Fig. 8. Allocated bits number for all users with difference methods when M=8 and 
SNR=25dB 

Since Fig. 8 is only an example, further work was carried out to prove the advantage of the 
proposed method. Since there exist channel fading and AWGN for all links, the rightly 
demodulated bits (or transmittable bits) should be concerned most to evaluate the fairness 
performance. Therefore, we take the transmittable bits variance (TBV) among all users to 
evaluate fairness performance of all the methods. TBV can be calculated through 



Greedy Algorithm: Exploring Potential of  Link Adaptation Technique  
in Wideband Wireless Communication Systems 

 

181 

 2[| ( ) | ]m m m mTBV E Eβ ε β ε= −  (12) 

where E[⋅] denotes expectation operation; and εm denotes BER for the m-th user. Hence, if 
TBV is large, the transmittable bits numbers for all the users vary much, and such method 
cannot bring good fairness to the system. Low TBV denotes that the numbers for 
transmittable bits for all the users are quite near, which means that such method is a fair 
resource allocation solution. 
Transmittable bits variances for the 3 methods versus user number for SNR=15dB are shown 
in Fig. 9. As the number of users increases, the average allocated bits number decreases, so 
TBV is reduced. For the fixed method, the transmittable bit variance is quite high, which can 
be explained by the fact that channel fading for different users varies greatly. As for the 
ordered method, since fairness is guaranteed through allocating the same number of sub-
carriers according to CSI of all users, TBV is lower than the fixed method. But the variance is 
still high, when there are 4 users in the system, TBV can reach more than 10000. The 
proposed method can perform excellent in fairness. Fig. 9 indicates that it obtains much 
lower TBV than the fixed method and the ordered method. When the number of users is 4, 
TBV can be further reduced by about 80% compared to the ordered method. 
 

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

User Number M

Tr
an

sm
is

si
on

 b
it 

va
ria

nc
e

 

 
Fixed
Ordered
Proposed

 
Fig. 9. Transmitted bits variance among users v. s. M for SNR=15dB 

From the simulation results and analysis we can see that, the proposed method takes 
advantage of Greedy algorithm for many times, and can obtain nice BER performance, so it 
can provide required QoS guaranteeing. It can bring much larger throughput (more than 
40%) than the fixed method. It performs a little worse than the ordered method, but when 
fairness is concerned, the cost is worthy. The proposed method with application of Greedy 
algorithm for many times can bring excellent fairness performance over the other methods. 
It is recommended to be adopted for services with tight fairness requirement among all 
users. 



 Advances in Greedy Algorithms 

 

182 

5. Application of greedy algorithm in OFDM relaying systems 
The Greedy algorithm can be also adopted in OFDM relaying systems. In this section, we 
carry out research into the adaptive bit and power allocation technique in relaying system. 
Since there are several modes for relaying system, we take amplify-and-forward (AF) mode 
for example. 

5.1 AF-OFDM relaying system model 
AF-OFDM relaying system model is shown in Fig. 10, where a two-hop system is considered 
for its implementation advantages. In the first hop, source bits are modulated, and are 
allocated with a certain power at source station (SS). Then the modulated signals construct 
OFDM symbols, which are transmitted to relay station (RS). At RS, power amplification is 
carried out after signals on all sub-carriers are obtained. In the second hop, these signals are 
transmitted to the destination station (DS). After demodulation to the received signals on all 
the sub-carriers, source bits are recovered finally. During both hops, signals experience 
channel fading and AWGN. Channel transfer functions for the two hops are independent 
with each other since the two hops happen between different transmitters and receivers on 
different time slots. 
 

 
Fig. 10. AF-OFDM relaying system model 
We first introduce the basic model. Assume there are K sub-carriers in the OFDM system, 
and the channel transfer function of the k-th sub-carrier in the i-th hop is Hi,k. Then the first 
hop can be expressed as: 

 1, 1, 1,k k k k kR H P S n= +  (13) 

where Sk and P1,k denote the modulated signal and allocated power on the k-th sub-carrier, 
respectively; E[|Sk|2]=1; n1,k denotes AWGN with variance of σ12; Rk denotes the received 
signal at RS. 
Amplification is carried out at RS. Assume the amplification factor is ρk. Therefore, the 
average transmit power of the k-th sub-carrier at RS on the second hop is P2,k =|ρkRk|2. 
Hence, ρk can be calculated as 

 2 2 2
2, 2, 1, 1, 1/ | | /[| | ]k k k k k kP R P H Pρ σ= = +  (14) 

The second hop can be expressed as: 

 2, 2, 1, 2, 1, 2, 1, 2,k k k k k k k k k k k k k kD H R n H H P S H n nρ ρ ρ= + = + +  (15) 



Greedy Algorithm: Exploring Potential of  Link Adaptation Technique  
in Wideband Wireless Communication Systems 

 

183 

where Dk denotes the received signal on the k-th sub-carrier at DS, and n2,k denotes AWGN 
with variance of σ22. In the section, we consider σ12=σ22=σ2. From (15) we can obtain the 
SNR of Dk as follows: 

 2 2 2 2 2 2
1, 2, 1, 2, 1 2[| | ] /[| | ]k k k k k k kH H P Hγ ρ ρ σ σ= +  (16) 

We take adaptive bit allocation into account, i.e. modulation on all sub-carriers can be 
adjusted according to the channel condition. We assume that L candidate modulations can 
be selected, and every signal with the l-th (l=1, 2, …, L) modulation is loaded with b(l) bits. 
The candidate modulations in the research and their throughputs are shown in Table 2. We 
assume that the k-th sub-carrier adopts the lk-th modulation. Hence, the adaptive bit and 
power allocation (ABPA) problem in a two-hop AF-OFDM relaying system is described as 
how to allocate bits and power in the transmission (i.e. lk, P1,k and P2,k), so as to maximize 
system throughput subject to BER requirement and power constraint. In the section, we 
assume the target BER (BERtgt) to be 10-3. Hence γk should be higher than a certain threshold 
so as to achieve BERtgt. We assume the threshold for the lk -th modulation is T(lk), which is 
also provided in Table I for BERtgt =10-3.  
 

v Modulation Number of bits b(v) T(v) (dB)
0 No transmission 0 0 
1 QPSK 2 9.78dB 
2 16QAM 4 16.52dB 
3 64QAM 6 22.52dB 
4 256QAM 8 28.4 
5 1024QAM 10 35.0 

Table 2. Candidate modulation and parameters 

Since power constraint may be different for different application scenarios, we research into 
IPC problem and APC problem in the section, respectively. 

5.2 ABPA problem and solutions with IPC 
From the analysis above, the ABPA problem with IPC can be described as 

 
1, 2,, , 1

arg max ( )
k k k

K

k
l P P k

b l
=
∑  (17) 

subject to 

1, 2,
1

1/ ( )             (a)
K

k k
k

K P P P
=

+ ≤∑
        (b)k tgtBER BER=

(18) 

Equation (18a) denotes the IPC requirement, i.e. the instantaneous total power cannot be 
larger than P. And (18b) illustrates BER requirement. From (16) and Table 2, (18b) can be 
replaced by (19). 



 Advances in Greedy Algorithms 

 

184 

 2 2 2 2 2 2
1, 2, 1, 2, 1 2| | /[| | ] ( )k k k k k k kH H P H T lρ ρ σ σ+ =  (19) 

Assume that Gi,k=|Hi,k|/σi2, (i=1,2). According to (14), we can further rewrite (19) as 

 1, 2, 1, 2, 1, 1, 2, 2,/[ 1] ( )k k k k k k k k kG G P P G P G P T l+ + =  (20) 

Usually, such problem can be solved with Greedy algorithm [13], whose main concept is to 
achieve the global optimal allocation with many local optimal allocations. During every 
local optimal allocation, the least additional bits are allocated to the sub-carrier which 
requires the least additional power to satisfy BER requirement. Such allocations continue 
until the remaining power is not enough to support more bits. According to Table 2, the 
least additional bit number for every allocation is 2 in the section. 
Since the allocation of power relates to P1,k and P2,k, we discuss the problem for different 
cases: 1) Adaptive PA at SS or RS; 2) Adaptive PA at SS and RS. 
A.   Adaptive PA at SS or RS 
When P2,k is fixed and P1,k can be adjusted according to channel condition, we assume 

 2, 1,
1

1,
K

RS SS RS
k k

k
P P P P P P

K =

= = = −∑  (21) 

From (20), when the k-th sub-carrier adopts the lk-th modulation, we can get the required 
power as follows. 

 1, 2, 1, 2,( ) ( )[ 1] / [ ( )]SS RS RS
k k k k k k kP l T l G P G G P T l= + −  (22) 

Hence, in order to further load additional 2 bits on the k-th sub-carrier, the required 
additional power is 

 1, 1,( 1) ( )SS SS SS
k k k k kP P l P lΔ = + −  (23) 

According to Greedy algorithm, the sub-carrier with the minimum ΔPkSS will be allocated 
with 2 bits during every allocation. Such allocations will be terminated when the remaining 
power is not enough to support more bits. 
When P1,k is fixed and P2,k can be adjusted, we assume 

 1, 2,
1

,1/
K

SS RS SS
k k

k
P P K P P P P

=

= = = −∑  (24) 

We take the similar measures to the scheme with adaptive PA at SS. In this case, when the k-
th sub-carrier adopts the lk-th modulation, the required power for the sub-carrier is as 
follows. 

 2, 1, 2, 1,( ) ( )[ 1]/ [ ( )]RS SS SS
k k k k k k kP l T l G P G G P T l= + −  (25) 

And the least additional power to further load additional 2 bits on the k-th sub-carrier is 

 2, 2,( 1) ( )RS RS RS
k k k k kP P l P lΔ = + −  (26) 



Greedy Algorithm: Exploring Potential of  Link Adaptation Technique  
in Wideband Wireless Communication Systems 

 

185 

The sub-carrier with minimum ΔPkSS is allocated with additional 2 bits in every allocation. 
The courses continue until the remaining power is not enough to support more bits. 
B.   Adaptive PA at SS and RS 
When P1,k and P2,k can both be adjusted, we assume Pk = P1,k + P2,k. According to [14], the 
optimal power allocation strategy to achieve the highest capacity is described as follows. 

 1, 1, 2, 2, 2, 1,/{1 [ 1]/[ 1]}, /{1 [ 1]/[ 1]}k k k k k k k k k k k kP P G P G P P P G P G P= + + + = + + +  (27) 

We combine (27) with (20), and get the following equation. 

 2 2
1, 2, 1, 2,/[ 1 1] ( )k k k k k k k kG G P G P G P T l+ + + =  (28) 

According to Greedy algorithm, once we obtain the required power Pk on the k-th sub-
carrier with the lk-th modulation for k=1, 2, …, K, we can determine the sub-carrier which 
requires the least additional power to support additional 2 bits for every local optimal 
allocation. From (28), we obtain a quadratic equation regarding Pk as follows. 

 2
2 1 0 0k kP Pα α α+ + =  (29) 

where 

2 2
2 1, 2,

1 1, 2, 1, 2,

2 2
0 1, 2, 1, 2,

2 ( )( )

4 ( ) ( ) ( )

k k

k k k k k

k k k k k k

G G
G G T l G G

G G T l T l G G

α

α

α

=

= − +

= − + −
. 

Consequently, when the k-th sub-carrier adopts the lk-th modulation, the least required 
power is 

 
2 2

1 1 0 2 2 1 1 0 2,

2 2
1 1 0 2 2 1 1 0 2

( 4 ) / 2 ,  4
( )

( 4 ) / 2 , 4
SS RS

k k

if
P l

if

α α α α α α α α α

α α α α α α α α α

⎧ − − − − ≥ −⎪= ⎨
− + − − < −⎪⎩

 (30) 

5.3 ABPA Problem and solutions with APC 
Unlike the ABPA problem with IPC, the problem with APC requires the average total power 
to be limited to P. So the problem can be described as 

 
1, 2,

1, 2,

1, 2, 1, 2,
, , 1 ( , )

arg max ( ) ( , )
k k k

k k

K

k k k k k
l P P k G G

b l p G G dG dG
=
∑ ∫∫  (31) 

subject to 

1, 2,

1, 2, 1, 2, 1, 2,
1 ( , )

1/ ( ) ( , )     (a)
k k

K

k k k k k k
k G G

K P P p G G dG dG P
=

+ =∑ ∫∫

1, 2, 1, 2, 1, 1, 2, 2,/[ 1] ( )    (b)k k k k k k k k kG G P P G P G P T l+ + =

(32)



 Advances in Greedy Algorithms 

 

186 

where p(G1,k, G2,k) denotes the probability of (G1,k, G2,k); (32a) and (32b) illustrates APC and 
BER requirement, respectively. 
According to [15], distributions of channel transfer functions for all sub-carriers are the same 
in an OFDM system. So we omit the subscript k in the following description. Note that the 
following operation is carried out for all sub-carriers. We assume that Φl denotes (G1, G2) set 
whose elements support the l-th modulation. Hence we rewrite the problem as follows. 

 
1 2

1 2

1 2 1 2
, , 1 ( , )

arg max ( ) ( , )
l

L

l P P l G G

b l p G G dG dG
= ∈Φ
∑ ∫∫  (33) 

subject to 

1 2

1 2 1 2 1 2
( , )

( ) ( , )       (a)
G G

P P p G G dG dG P+ =∫∫

1 2 1 2 1 1 2 2/[ 1] ( )      ( )G G PP G P G P T l b+ + =
(34)

Similar to the problem with IPC, we discuss the problem for different cases: 1) Adaptive PA 
at SS or RS; 2) Adaptive PA at SS and RS. 
A.   Adaptive PA at SS or RS 
Assume that P2 is fixed, and P1 can be adjusted according to channel condition, we assume that 

 
1 2

2 1 1 2 1 2
( , )

, ( , )RS SS RS

G G

P P P p G G dG dG P P P= = = −∫∫  (35) 

Similar to (25), when the l-th modulation is adopted, the required power is 

 1 2 1 2( ) ( )[ 1]/ [ ( )]SS RS RSP l T l G P G G P T l= + −  (36) 

Then (35) and (36) can be combined to be 

 
1 2

2
1 2 1 2

1 1 2( , )

( )[ 1] ( , )
[ ( )]

l

RSL
SS

RS
l G G

T l G P p G G dG dG P
G G P T l= ∈Φ

+
=

−∑ ∫∫  (37) 

Hence, the problem of (34) becomes to be which (G1, G2) elements belong to Φl (l=1, 2, …, L), 
i.e. which (G1, G2) area belongs to Φl, so as to maximize average throughput under the 
constraint of BER and transmit power. Usually, such kind of problem may be solved with 
aid of Lagrange method. We assume that 

 
1 2

1 2

1 2 1 2
1 ( , )

2
1 2 1 2

1 1 2( , )

( ) ( , )

( )[ 1] ( , )
[ ( )]

l

l

L

l G G

RSL
SS

RS
l G G

J b l p G G dG dG

T l G PP p G G dG dG
G G P T l

λ

= ∈Φ

= ∈Φ

=

⎡ ⎤+
+ −⎢ ⎥

−⎢ ⎥⎣ ⎦

∑ ∫∫

∑ ∫∫
 (38) 

However, from (38) we can notice that double integrals referring to G1 and G2 are involved, 
and it is impossible to transfer (38) into another problem with single integral. Hence the (G1, 



Greedy Algorithm: Exploring Potential of  Link Adaptation Technique  
in Wideband Wireless Communication Systems 

 

187 

G2) area for Φl cannot be determined with Lagrange method. In order to solve the problem, 
we utilize the definition of integral to consider another problem as follows. 

 2

1  , (1,2,..., )
( , )

( ) ( , )

l

L

l i j N
i G j G

b l p i G j G G
= ∈

Δ Δ ∈Φ

Δ Δ Δ∑ ∑  (39) 

subject to 

 2

1  , (1,2,..., )
( , )

( )[ 1] ( , )
[ ( )]

l

RSL
SS

RS
l i j N

i G j G

T l j GP p i G j G G P
i G j GP T l= ∈

Δ Δ ∈Φ

Δ +
Δ Δ Δ =

Δ Δ −∑ ∑  (40) 

where ∆G is a small real number. Consequently, when N approaches infinity and ∆G 
approaches infinitesimal, the problem of (39) is just the same as the problem of (33). 
We observe the problem of (39), and can find that it can be described as how to allocate bits 
and power for N2 different (G1, G2) elements, so as to maximize the system throughput. Such 
problem is similar to the problem in Section 5.2, and can also be solved with Greedy 
algorithm. With aid of computer simulation, we can obtain the (G1, G2) area to adopt the l-th 
modulation, i.e. Φl for all l. The areas of Φl when P/σ2=30dB for Rayleigh fading channel are 
depicted in Fig. 11, where different colour denotes (G1, G2) areas for different modulations. 
 

 
Fig. 11. Area of Φl for scheme with adaptive PA at SS 

When P1 is fixed and P2 can be adjusted according to channel condition, we assume that 

 
1 2

1 2 1 2 1 2
( , )

, ( , )SS RS SS

G G

P P P p G G dG dG P P P= = = −∫∫  (41) 

With the same method, we can obtain the (G1, G2) area to adopt the l-th modulation, i.e. Φl 
for all l. The areas of Φl when P/σ2=30dB for Rayleigh fading channel are depicted in Fig. 12. 
B.   Adaptive PA at SS and RS 
When P1 and P2 can both be adjusted, we have to determine l, P1, and P2 jointly. We assume 
PA = P1 + P2, and follow the similar allocation to (27) to allocate power at SS and RS. In order  
 



 Advances in Greedy Algorithms 

 

188 

 
Fig. 12. Area of Φl for scheme with adaptive PA at RS  

to determine the (G1, G2) area for the l-th modulation, we consider another problem as 
follows. 

 2

1  , (1,2,..., )
( , )

( ) ( , )

l

L

l i j N
i G j G

b l p i G j G G
= ∈

Δ Δ ∈Φ

Δ Δ Δ∑ ∑  (42) 

subject to 

 2

1  , (1,2,..., )
( , )

( ) ( , )

l

L

l i j N
i G j G

b l p i G j G G
= ∈

Δ Δ ∈Φ

Δ Δ Δ∑ ∑  (38a) 

With the same method above, we can obtain Φl for all l in the case. The areas of Φl when 
P/σ2=30dB for Rayleigh fading channel are depicted in Fig. 13. 
 

 
Fig. 13. Area of Φl for scheme with adaptive PA at SS and RS 



Greedy Algorithm: Exploring Potential of  Link Adaptation Technique  
in Wideband Wireless Communication Systems 

 

189 

From Fig. 11 to Fig. 13, we can see that the boundaries between the areas of Φl are like 
hyperbolas. The areas of Φl for the scheme with adaptive PA at SS and the scheme with 
adaptive PA at RS are reverse. As for the scheme with adaptive PA at SS and RS, the areas to 
adopt higher order modulation (e.g. 1024QAM) are wider than the other two schemes. That 
is to say, this scheme is more likely to adopt higher order modulation (allocated with more 
bits), because both P1 and P2 can be adjusted and more adaptation can be obtained. 

5.4 Simulation and analysis 
In order to evaluate the performance of the proposed solutions in the section, numerical 
simulation is carried out, in which both large-scale fading and small-scale fading are both 
taken into consideration. The number of sub-carriers is 32. We assume 

1, 1, ,k k SRH h D η−=  and 

2, 2,k k RDH h D η−= , where h1,k and h2,k denote the small-scale fading, and they follow Rayleigh 

distribution; DSR and DRD denote the distance between SS and RS, and distance between RS 
and DS, respectively; DSR + DRD =1. η denotes path loss exponent for large-scale fading, 
which is 4 in the simulation; H1,k and H2,k are assumed to be available for SS and RS. For 
reason of fairness, we assume PSS = PRS = P/2. For the following description, we define 
SNR=P/σ2. The text in the legend is made short, e.g. “adaptive SS” is short for “adaptive PA 
at SS”. 
1) BER performance: First, we investigate BER performance of the proposed schemes in the 
section.  Fig. 14 gives out their BER performance vs. SNR for the schemes. When SNR is low, 
low order modulation (e.g. QPSK) may be adopted frequently; when SNR is high, higher 
order modulation (e.g. 256QAM) may be adopted, so BER remains almost the same as that 
when SNR is low. It can be seen that all solutions can bring to BER performance close to the 
target BER 10-3. This is because the power allocation at SS and RS can make the SNR of 
received signals to be the threshold to satisfy BERtgt. Hence, the proposed schemes can 
perform well in BER performance. 
 

0 5 10 15 20 25 30
10-4

10-3

10-2

SNR (dB)

B
E

R

 

 
Adapt SS, IPC
Adapt RS, IPC
Adapt SS & RS, IPC
Adapt SS, APC
Adapt RS, APC
Adapt SS & RS, APC

 
Fig. 14. BER vs. SNR for the solutions when DSR=0.5 



 Advances in Greedy Algorithms 

 

190 

2) Transmit power constraint: Fig. 15 shows the cumulative distribution function (CDF) of 
the normalized total power PA/P, where 

1, 2,
1

1/ ( )
K

A k k
k

P K P P
=

= +∑ . As for the three schemes 

with IPC, the distributions of PA are almost the same. The value of PA/P ranges from 0.92 
to 1, which means that the instantaneous total power PA is always lower than P, which is 
the requirement of IPC. As for the three schemes with APC, the distributions of PA are 
almost the same, too. Hence, for the scheme of adaptive PA at SS and RS, though the 
transmit power can both be adjusted at SS and RS, the range for the total power is not 
improved, i.e. more adaptation on power doesn’t cause the total power to vary more. 
From the figure, PA of the schemes with APC can range more widely than that with IPC, 
from 0.75 to 1.25 approximately, but its mean value is restricted to be P. Compared with 
the scheme with IPC, the scheme with APC can take use of more power in average. 
 
 

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PA/P

C
D

F

 

 

Adapt SS, IPC
Adapt RS, IPC
Adapt SS & RS, IPC
Adapt SS, APC
Adapt RS, APC
Adapt SS & RS, APC

 
 
 

Fig. 15. CDF of total power for the solutions when DSR=0.5 and SNR=20dB 

3) System throughput: Fig. 16 and Fig. 17 gives out the system throughput vs. DSR when 
SNR equals to 0dB and 20dB, respectively. The throughput is calculated as the average 
correctly transmitted bit number per OFDM symbol divided by the number of sub-carriers. 
Throughput may be 0 because the channel condition is terrible and “no transmission” is 
adopted. The schemes with IPC has lower throughput than that with APC, due to the fact 
that they obtains different constraint for total transmit power. When SNR equals to 0dB, the 
difference can achieve 10% (0.04bits/symbol). When SNR is higher, throughputs for IPC and 
APC solutions are quite close, because the impact of transmit power constraint is not 
dominant for throughput when SNR is high. 
As a conclusion, the Greedy algorithm can be applied into OFDM relaying system to achieve 
the maximum throughput subject to the BER and transmit power constraint. 



Greedy Algorithm: Exploring Potential of  Link Adaptation Technique  
in Wideband Wireless Communication Systems 

 

191 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

DSR

Th
ro

ug
hp

ut
 (b

its
/s

ym
bo

l)

 

 

Adapt SS, IPC
Adapt RS, IPC
Adapt SS & RS, IPC
Adapt SS, APC
Adapt RS, APC
Adapt SS & RS, APC

 
Fig. 16. System throughput vs. DSR for the solutions when SNR=0dB 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.5

3

3.5

4

4.5

5

5.5

6

DSR

Th
ro

ug
hp

ut
 (b

its
/s

ym
bo

l)

 

 

Adapt SS, IPC
Adapt RS, IPC
Adapt SS & RS, IPC
Adapt SS, APC
Adapt RS, APC
Adapt SS & RS, APC

 
Fig. 17. System throughput vs. DSR for the solutions when SNR=20dB 

6. Conclusion 
In this chapter we have presented the potential of link adaptation technique in wideband 
wireless communication systems with aid of Greedy algorithm. Link adaptation in OFDM 
systems is introduced firstly in section 2, i.e. how to allocation bits and power in all sub-
carriers to maximize the throughput. The optimal solution can be obtained with Greedy 
algorithm. The detail description is given out in section 3. Simulation results are shown, 
which indicate that the throughput is maximized with guaranteed BER performance. When 
multiple user case is concerned, the problem gets more complex. The section 4 provides a 



 Advances in Greedy Algorithms 

 

192 

novel solution, which takes use of Greedy algorithm for several times to obtain better 
fairness than the existing schemes. Simulation is also carried out to show the performance. 
Furthermore, due to the fact that relaying technique is an important component for future 
systems, the link adaptation in relaying systems is researched in section 5. AF-OFDM 
systems are investigated. The problem can be described as how to allocate bits and power in 
SS and RS to obtain the highest throughput subject to BER and transmit power constraint. 
Greedy algorithm helps to achieve the optimal result. Numeral simulation results indicate 
the proposed scheme perform well with satisfied BER and transmit power constraint. 
Further conclusions are obtained through the research. As a conclusion, with aid of Greedy 
algorithm, the potential of link adaptation technique is explored greatly. 

7. References 
Alamouti, S. M. & Kallel, S. (1994). Adaptive trellis-coded multiple-phase-shift keying for 

Rayleigh fading channels, IEEE Trans. on Comm., Vol. 42, No. 6, 1994, pp. 2305-2314 
Goldsmith J. &  Ghee C. S. (1998). Adaptive coded modulation for fading channels, IEEE 

Trans. on Comm., Vol. 46, No. 5, 1998, pp. 595-602 
Goldsmith J. & Ghee C. S. (1997). Variable–rate variable-power MQAM for fading channels, 

IEEE Trans. on Comm., Vol. 45, Oct. 1997, pp. 1218-1230 
Bahai R. S. & Saltzberg B. R. (1999). Multi-carrier digital communications: theory and applications 

of OFDM, Kluwer Academic / Plenum publishers, 2nd ed, New York 
Keller T. & Hanzo L. (2000) Adaptive multicarrier modulation: a convenient framework for 

time-frequency processing in wireless communications, in Proceedings of the IEEE, 
Vol. 88, No. 5, 2000, pp. 611-640 

Campello J. (1998). Optimal discrete bit loading for multicarrier modulation systems, IEEE 
International Symposium on Information Theory, Aug. 1998, pp. 193 

Wong C. Y.; Cheng R.; Lataief K. B.; et al. (1999). Multiuser OFDM system with adaptive 
subcarrier, bit, and power allocation, IEEE Journal on Selected Areas in 
Communications, Vol. 17, No. 10, Oct. 1999, pp. 1747-1758 

Rhee W. & Cioffi J. M. (2000). Increase in capacity of multiuser OFDM system using 
dynamic subchannel allocation, Vehicular Technology Conference Proceedings, VTC 
2000-Spring, Vol. 2, May 2000, pp. 1085-1089 

Wong C. Y.; Cheng R. & Letaief K. B. (1999). Multiuser subcarrier allocation for OFDM 
transmission using adaptive modulation, Vehicular Technology Conference, VTC 
1999-Spring, Vol. 1, May 1999, pp. 16-20 

Fu J. & Karasawa Y. (2002). Fundamental analysis on throughput characteristics of 
orthogonal frequency division multiple access (OFDMA) in multipath propagation 
environments, IEICE transaction, Vol. J85-B, No. 11, Nov. 2002, pp. 1884-1894 

Otani Y.; Ohno S.; Teo K. D.; et al., (2005). Subcarrier allocation for multi-user OFDM 
system, Asia-Pacific Conference on Communications, Oct. 2005, pp. 1073 – 1077 

3GPP, TS 45.005, Radio transmission and reception (Release 7), 2006 
Chung S. T. & Goldsmith A. J. (2001). Degrees of freedom in adaptive modulation: a unified 

view, IEEE Trans. Comm., Vol. 49, No. 9, Sep. 2001, pp. 1561-1571 
Yu G.; Zhang Z.; Chen Y. etc. (2005). Power allocation for non-regenerative OFDM relaying 

channels, Wireless Comm. Networking and Mobile Computing, Vol. 1, 2005, pp. 185-188 
Zhou M.; Li L.; Wen N.; etc. (2006). Performance of LDPC coded AOFDM under frequency-

selective fading channel, International Conference on Communication, Circuits and 
Systems, Vol. 2, June 2006, pp. 861-865 



11 

Greedy Algorithms for Mapping onto a  
Coarse-grained Reconfigurable Fabric1 

Colin J. Ihrig, Mustafa Baz, Justin Stander, Raymond R. Hoare, Bryan A. 
Norman, Oleg Prokopyev, Brady Hunsaker and Alex K. Jones 

University of Pittsburgh,  
United States 

1. Introduction 
This book chapter describes several greedy heuristics for mapping large data-flow graphs 
(DFGs) onto a stripe-based coarse-grained reconfigurable fabric. These DFGs represent the 
behavior of an application kernel in a high-level synthesis flow to convert computer 
software into custom computer hardware. The first heuristic is a limited lookahead greedy 
approach that provides excellent run times and a reasonable quality of result. The second 
heuristic expands on the first heuristic by introducing a random element into the flow, 
generating multiple solution instances and selecting the best of the set. Finally, the third 
heuristic formulates the mapping problem of a limited set of rows using a mixed-integer 
linear program (MILP) and creates a sliding heuristic to map the entire application. In this 
chapter we will discuss these heuristics, their run times, and solution quality tradeoffs. 
The greedy mapping heuristic follows a top-down approach to provide a feasible mapping 
for any given application kernel. Starting with the top row, it completely places each 
individual row using a limited look-ahead of two rows. After each row is mapped, the 
mapper will not modify the mapping of any portion of that row. This mapping approach is 
deterministic as it uses a priority scheme to determine which elements to place first based 
on factors such as the number of nodes to which it connects and second based on the 
desirability of a particular location in the row. While the limited information available to the 
mapper does not often allow it to produce optimal or minimum-size mappings, its runtime 
is typically a few seconds or less. We use a fabric interconnect model (FIM) file in the 
mapping flow to define a set of restrictions on what interconnect lines are available, the 
capabilities of particular functional units (e.g. dedicated vertical routes versus 
computational capabilities) in the system, etc. 
The greedy heuristic is deterministic in the priority system which it uses to place nodes. The 
second mapping heuristic we explore is based on this greedy algorithm and introduces 
randomness into the heuristic to make decisions along the priority list. In the first 
implementation the node selection order is selected randomly. In the second version, 
weights are assigned to nodes based on the deterministic placement order. Since the 
heuristic runs so quickly, we can run the heuristic 10’s or possibly 100’s of times and select 
the best result. This method is also parameterizable with the FIM. 
                                                 
1 This work partially supported by The Technology Collaborative. 



 Advances in Greedy Algorithms 

 

194 

Finally, we present a sliding window algorithm where groups of rows are placed using an 
MILP. This heuristic starts with an arbitrary placement where operations are placed in the 
earliest row possible and the operations are left justified. Starting from the top, a window of 
rows is selected and the IP algorithm adjusts column locations where the optimization 
criteria is to only use allowed routes specified by the architecture. If the program cannot 
find a feasible mapping, it tries to push violated edges (i.e. edges that do not conform to 
what is allowed in the architecture) down in the window so that subsequent windows may 
be able to find a solution. If no feasible solution can be found in the current window, then a 
row of pass-gates is added to increase the flexibility, and the MILP is run again. However, 
introducing a row of pass-gates delays the critical path and is undesirable from a power and 
performance perspective. This technique is also parameterizable within the FIM. 
In this chapter, these three heuristics will be explained in detail and numerous performance 
evaluations (including feasibility) will be conducted for different architectural 
configurations. Section 2 provides a background on the reconfigurable fabric concept and 
the process of mapping as well as related work. Section 3 introduces the Fabric Interconnect 
Model, an XML representation of the fabric. In Section 4 the greedy heuristic is described in 
detail. In particular, the algorithms for row and column placement are discussed. Section 5 
extends the greedy heuristic by introducing an element of randomness into the algorithm. 
Several methods of randomizing the greedy heuristic are explored, including completely 
random decisions and weighted decisions. In Section 6 the sliding partial MILP heuristic is 
introduced. In addition, several techniques for improving the execution time of the MILP 
are discussed. These techniques are based on decomposing the problem into smaller, 
simpler linear programs. Finally, Section 7 compares the different mapping techniques and 
provides some conclusions. 

2. Background and literature review 
A general trend seen during application profiling is that 90% of application execution time 
in software is spent in approximately 10% of the code. The idea of our reconfigurable device 
is to accelerate high incidence code segments (e.g. loops) that require large portions of the 
application runtime, called kernels, while assigning the control-intensive portion of the code 
to a core processor. 
 

 
Fig. 1. Power consumption features of a Xilinx Virtex-2 3000 FPGA (Sheng et al., 2002). 



Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric 

 

195 

A tremendous amount of effort has been devoted to the area of hardware acceleration of 
these kernels using Field Programmable Gate Arrays (FPGAs). This is a particularly popular 
method of accelerating computationally intensive Digital Signal Processing (DSP) 
applications. Unfortunately, while FPGAs provide a flexible reconfigurable target, they have 
poor power characteristics when compared to custom chips called Application Specific 
Integrated Circuits (ASICs). At the other end of the spectrum, ASICs are superior in terms of 
performance and power consumption, but are not flexible and are expensive to design. 
The dynamic power consumption in FPGAs has been shown to be dominated by 
interconnect power (Sheng et al., 2002). For example, as shown in Figure 1, the 
reconfigurable interconnect in the Xilinx Virtex-2 FPGA consumes more than 70% of the 
total power dissipated in the device. Power consumption is exacerbated by the necessity of 
bit-level control for the computational and switch blocks. 
Thus, a reconfigurable device that exhibits ASIC-like power characteristics and FPGA-like 
flexibility is desirable. Recently, the development and use of coarse-grained fabrics for 
computationally complex tasks has received a lot of attention as a middle ground between 
FPGAs and ASICs because they typically have simpler interconnects. Many architectures 
have been proposed and developed, including MATRIX (Mirsky & Dehon, 1996), Garp 
(Hauser & Wawrzynek, 1997), PipeRench (Levine & Schmit, 2002), and the Field 
Programmable Object Array (FPOA) (MathStar, MathStar). 
Our group has developed the SuperCISC reconfigurable hardware fabric to have low-
energy consumption properties compared to existing reconfigurable devices such as FPGAs 
(Mehta et al., 2006; Jones et al., 2008; Mehta et al., 2006, 2007, 2008). To execute an 
application on the SuperCISC fabric, the software kernels are converted into entirely 
combinational hardware functions represented by DFGs, generated automatically from C 
using a design automation flow (Jones et al., 2005, 2006; Hoare et al., 2006; Jones et al., 2006). 
Stripe-based hardware fabrics are designed to easily map DFGs from the application into 
the device. The architecture of the SuperCISC fabric (and other stripebased fabrics such as 
PipeRench) work in a similar way, retaining a data flow structure, which allows 
computational results to be computed in one multi-bit functional-unit (FU) and flow onto 
others in the system. FUs are organized into rows or computational stripes, within which each 
functional unit operates independently. The results of these operations are then fed into 
interconnection stripes which are constructed using multiplexers. Figure 2 illustrates this top-
down data flow concept. The process of mapping these DFGs onto the SuperCISC fabric is 
described in the next section. 
 

 
Fig. 2. Fabric conceptual model. 



 Advances in Greedy Algorithms 

 

196 

2.1 Mapping 
A mapping of a DFG onto a fabric consists of an assignment of operators in the DFG to FUs 
in the fabric such that the logical structure of the DFG is preserved and the architectural 
constraints of the fabric are respected. This mapping problem is central to the use of the 
fabric since a solution must be available each time the fabric is reprogrammed for a different 
DFG. Because of the layered nature of the fabric, the mapping is also allowed to use FUs as 
“pass-gates,” which take a single input and pass the input value to one or more outputs. In 
general, not all of the available FUs and edges will be used. An example DFG and a 
corresponding mapping are shown in Figure 3. 
 

 
(a) Example data flow graph (DFG).                (b) Example mapping. 

Fig. 3. Mapping problem overview. 

The interconnect design—that is, the pattern of available edges—is the primary factor in 
determining whether a given DFG can be mapped onto the fabric. For flexibility, it would 
make sense to provide a complete interconnect with each FU connected to every FU in the 
next row. The reason for limiting the interconnect is that the cardinality of the interconnect 
has a significant impact on energy consumption. Although most of the connections are 
unused, the increased cardinality of the interconnect requires more complicated underlying 
hardware, which leads to greater energy consumption. For a more detailed description of 
this phenomenon, see (Mehta et al., 2006), which indicates that this energy use can be 
significant. Therefore, we consider limited interconnects, which have better energy 
consumption but make the mapping problem more challenging. 
We consider the mapping problem in three forms. We call these problems Minimum Rows 
Mapping, Feasible Mapping with Fixed Rows and Augmented Fixed Rows. These problems 
are briefly described in the following subsections. 



Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric 

 

197 

2.1.1 Minimum rows mapping 
Given a fixed width and interconnect design, a fabric with fewer rows will use less energy 
than one with more rows. As data flows through the device from top to bottom it traverses 
FUs and routing channels, consuming energy at each stage. The amount of energy 
consumed varies depending on the operation that an FU performs. However, even just 
passing the value through the FU consumes a significant amount of energy. Thus, the 
number of rows that the data must traverse impacts the amount of energy that is consumed. 
If the final result has been computed, the data can escape to an early exit, which bypasses 
the remaining rows of the fabric and reduces the energy required to complete the 
computation. Therefore, it is desirable to use as few rows as possible. Given a fabric width, 
fabric interconnect design, and data flow graph to be mapped, the Minimum Rows Mapping 
problem is to find a mapping that uses the minimum number of rows in the fabric. The 
mapping may use pass-gates as necessary. 
We initially formulated a MILP to solve this problem, however, it has only been able to 
solve nearly trivial instances in a reasonable amount of time (Baz, 2008). We have since 
developed two heuristic approaches to solve this problem: a deterministic top-down greedy 
heuristic described in Section 4 and a heuristic that combines the top-down approach with 
randomization, described in Section 5. 

2.1.2 Feasible mapping with fixed rows 
One of the more complicated parts of creating a mapping is the introduction of pass-gates to 
fit the layered structure of the fabric. One approach that we have used is to work in two 
stages. In the first stage, pass-gates are introduced heuristically and operators assigned to 
rows so that all edges go from one row to the next. The second stage assigns the operators to 
columns so that the fabric interconnect is respected. This second stage is called Feasible 
Mapping with Fixed Rows. Note that depending on the interconnect design, there may or 
may not exist such a feasible mapping. 
We have formulated a MILP approach to solve this problem described in detail in (Baz et al., 
2008; Baz, 2008). This formulation can provide us with a lower bound with which to 
compare our heuristic solutions. 

2.1.3 Augmented fixed rows 
This problem first tries to solve the Feasible Mapping with Fixed Rows problem. If this is 
infeasible, then it may add a row of pass-gates to gain flexibility. It then tries to solve 
Feasible Mapping with Fixed Rows on the new problem. This is repeated until a solution is 
found or a limit is reached on the number of rows to add. 
We have developed a partial sliding MILP heuristic in Section 6 to solve this problem. 

2.1.4 Related work 
There are two problems in graph theory related to the mapping problems we present. First, 
Feasible Mapping with Fixed Rows may be viewed as a special case of subgraph 
isomorphism, also called subgraph containment. The DFG (modified to have fixed rows) 
may be considered as a directed graph G, and the fabric may be considered as a directed 
graph H. The problem is to identify an isomorphism of G with a subgraph of H. 
Most of the work on subgraph isomorphism uses the idea of efficient backtracking, first 
presented in (Ullmann, 1976). Examples of more recent work on the problem include 



 Advances in Greedy Algorithms 

 

198 

(Messmer & Bunke, 2000; Cordella et al., 2004; Krissinel & Henrick, 2004). In each of these 
cases, algorithms are designed to solve the problem for arbitrary graphs. In contrast, the 
graphs for our problem are highly structured, and our approaches take advantage of this 
structure. Subgraph isomorphism is NP-complete (Garey & Johnson, 1979). 
If we fix the number of rows in the fabric, then finding a feasible mapping (but not 
minimizing the number of rows) may be viewed as a special case of a problem known as 
directed minor containment (Diestel, 2005; Johnson et al., 2001). The DFG may be considered 
as a directed graph G, and the fabric may be considered as a directed graph H. Directed 
minor containment (also known as butterfly minor containment) is the problem of 
determining whether G is a directed minor of H. Unlike subgraph isomorphism, G may be a 
directed minor without being a subgraph; additional nodes (corresponding to “pass-gates” 
in our application) may be present in the subgraph of H. Directed minor containment is also 
NP-complete. We are not aware of any algorithms for solving directed minor containment 
on general graphs or graphs similar to our fabric mapping problem. 

2.2 Routing complexity 
The fundamental parameter in the design of a coarse-grain reconfigurable device for energy 
reduction is the flexibility and resulting complexity of the interconnect. For example, a 
simpler interconnect can lead to architectural opportunities for energy reduction (fewer 
wires, simpler selectors, etc.) but can also make the mapping problem more difficult. As 
discussed in Section 2.1, the quality of the mapping solution also impacts the energy 
consumed by the design. Thus, to effectively leverage the architectural energy saving 
opportunities the mapping algorithms must become increasingly sophisticated. 
As previously mentioned, the interconnection stripes are constructed using multiplexers. 
The cardinality of these multiplexers determines the routing flexibility and the maximum 
sources and destinations allowed for nodes in the DFG. This is shown in Figure 4. The 
interconnect shown in Figure 4(a) is built using 2:1 multiplexers, and is said to have a 
cardinality of two. Similarly, the interconnect in Figure 4(b) is comprised of 4:1 multiplexers, 
and is said to have a cardinality of four. By comparing these figures, it is obvious that the 
higher cardinality interconnect is more flexible because each functional unit can receive 
input from a larger number of sources. Essentially, a higher cardinality interconnect has 
fewer restrictions, which leads to a simpler mapping problem. 
 

 
              (a) Cardinality of two.                                                     (b) Cardinality of four. 
Fig. 4. Interconnects of two different multiplexer cardinalities. 
While the flexibility of higher cardinality multiplexers is desirable for ease of mapping, 
these multiplexers are slower, more complex, and dissipate more power than lower 
cardinality multiplexers. A detailed analysis of the power consumption versus cardinality is 
conducted in (Jones et al., 2008; Mehta et al., 2007, 2006). 



Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric 

 

199 

Additionally, when mapping a DFG to a stripe-style structure, data dependency edges often 
traverse multiple rows. In these fabrics, FUs must often pass these values through without 
doing any computation. We call these operations in the graph, pass-gates. However, these FUs 
used as pass-gates are an area and energy-inefficient method for vertical routing. Thus, we 
explored replacing some percentage of the FUs with dedicated vertical routes to save energy 
(Mehta et al., 2008; Jones et al., 2008). However, these dedicated pass-gates can make mapping 
more difficult because it places restrictions on the placement of operators. The work in (Mehta 
et al., 2008; Jones et al., 2008) only uses the first of the three greedy heuristics presented here 
and required that the interconnect flexibility be relaxed when introducing dedicated vertical 
routes. The more sophisticated greedy algorithms were designed in part to improve the 
mapping with the more restrictive multiplexer cardinalities along with dedicated pass-gates. 
The purpose of these heuristics is to provide high quality of solution mappings onto the 
low-energy reconfigurable device. One way to measure the effectiveness is to examine the 
energy consumed from executing the device with various architectural configurations and 
different data sets, etc. We obtain these energy results from extremely time consuming 
power simulations using computer-aided design tools. However, in this paper we chose to 
focus our effort on achieving a high quality of solution from the mapping algorithms. 
Conducting power simulations for each mapping would significantly limit the number of 
mapping approaches we could consider. 
Thus, we can examine two factors to evaluate success: the increase in the total path length of 
the mapped algorithm and the number of FUs used as pass-gates. The total path length in 
the mapped design is the sum of the number of rows traversed from each input to each 
output. Thus, the path length increase is the increase in the total path length from a solution 
where each computation is completed as early as possible limited only by the dependencies 
in the graph (see Section 4.1). The number of FUs used as pass-gates is useful in judging 
success in cases where the fabric contains dedicated pass-gates. Dedicated pass-gates are 
more energy efficient than complex functional units at passing a value (more than an order 
of magnitude (Jones et al., 2008)). Thus, when using dedicated-pass gates the fewer Fus used 
as pass-gates, the better. 
To demonstrate that these factors influence the energy consumption of the device, we ran a 
two-way analysis of variance (ANOVA) on the energy with the number of FUs used as pass-
gates and path length as factors to determine the correlation. Using an alpha value of 0.05, 
both factors significantly influenced the energy (p<0.01 and p=0.031, respectively). 

3. The Fabric Interconnect Model (FIM) 
As various interconnection configurations were developed, redesigning the mapping flow 
and target fabric hardware by hand for each new configuration was impractical (Mehta et 
al., 2007). Additionally, we envision the creation of customizable fabric intellectual property 
(IP) blocks that can be used in larger system-on-a-chip (SoC) designs. To make this practical, 
it is necessary to create an automation flow to generate these custom fabric instances. 
To solve this problem, we created the FIM, a textual representation used to describe the 
interconnect and the layout and make-up of the FUs in the system. The FIM becomes an 
input file to the mapper as well as the tool that generates a particular instance of the fabric 
with the appropriate interconnect. 
The FIM file is written in the Extensible Markup Language (XML) (Bray et al., 2006). XML 
was selected as it allowed the FIM specification to easily evolve as new features and 



 Advances in Greedy Algorithms 

 

200 

descriptions were required. For example, while the FIM was initially envisioned to describe 
the interconnect only, it has evolved to describe dedicated pass-gates and other 
heterogeneous functional unit structures. 
Figure 5(a) shows an example partial FIM file that describes a cardinality five interconnect. 
A cardinality five interconnect is a specially designed interconnect, which is actually 
constructed using mirrored 4:1 multiplexers. In Figure 4(b) a single multiplexer is depicted 
as providing all three inputs to each FU, also known as an ALU (arithmetic logic unit). In 
reality, each of the three inputs has its own individual multiplexer. By allowing the 
multiplexers to draw their inputs from different locations, 4:1 multiplexers can be used to 
create the illusion of a limited 5:1 multiplexer. This limited 5:1 multiplexer provides a 
surprisingly higher flexibility over a cardinality four interconnect with no cost in terms of 
hardware complexity. 
 

 
(a) FIM file example for 5:1 style interconnect.         (b) 5:1 style interconnect implementation. 

Fig. 5. Describing a 5:1 multiplexing interconnect using a FIM file. 

The pattern in Figure 5(a) repeats the interconnect pattern for ALU, whose zeroth operand 
can read from two units to the left, the unit directly above, and one unit to the right. The 
first operand is the mirror of the zeroth operand, reading from two units to the right, the 
unit directly above, and one unit to the left. The second operand, which has the same range 
as the first operand, serves as the selection bit if the FU is configured as a multiplexer. The 
resulting cardinality five interconnect implementation is shown in Figure 5(b). As specified 
in the FIM, the zeroth operand of ALU can access ALU0 through ALU3, while the first and 
second operands can access ALU1 through ALU4. 
The ranges in the FIM can be discontinuous by supplying additional range flags. The file can 
contain a heterogeneous interconnect by defining additional Fabric Topological Units (FTUs) 
with different interconnect ranges. The pattern can either repeat or can be arbitrarily 
customized without a repeating pattern for a fixed size fabric. 
The design flow overview using the FIM is shown in Figure 6. The SuperCISC Compiler 
(Hoare et al., 2006; Jones et al., 2006) takes C code input, which is compiled and converted 
into a Control and Data Flow Graph (CDFG). A technique known as hardware predication is 
applied to the CDFG in order to convert control dependencies (e.g. if-else structures) into 
data dependencies through the use of selectors. This post-predication CDFG is referred to as 



Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric 

 

201 

a Super Data Flow Graph (SDFG). The SDFG is then mapped into a configuration for the 
fabric described by the FIM. 
 

 
Fig. 6. Interconnect evaluation tool flow. 

The FIM is also used to automatically generate a synthesizable hardware description of the 
fabric instance described by the FIM. For testing and energy estimation, the fabric instance 
can be synthesized using commercial tools such as Synopsys’ Design Compiler to generate a 
netlist tied to ASIC standard cells. This netlist and the mapping of the application are then 
fed into ModelSim where correctness can be verified. The mapping is communicated to the 
simulator to program the fabric device in the form of ModelSim do files. A value change 
dump (VCD) file output from the simulation of the design netlist can then be used to 
determine the power consumed in the design. However, due to the effort required to 
generate a single power result we will use mapping quality metrics such as path length 
increase and FUs used as pass-gates rather than energy consumption to evaluate the quality 
of our mapping heuristics as described in Section 2.2. 
The FIM is incorporated into the mapping flow as a set of restrictions on both the 
interconnect and the functional units in each row. In addition to creating custom 
interconnects, the FIM can be used to introduce heterogeneity into the fabric’s functional 
units. This capability is used to allow the introduction of dedicated pass-gates into the target 
architecture and greedy mapping approaches. 

4. Deterministic greedy heuristic 
A heuristic mapping algorithm overviewed in Algorithm 1 was developed to solve the 
problem of Minimum Rows Mapping. The instantiation of this algorithm reads both the 
DFG and the FIM to generate its mapping result. The heuristic is comprised of two stages of 
row assignment followed by column assignment, which follows a top-down mapping 
approach using a limited look-ahead of two rows. In the first line of the algorithm each node 
is assigned to a row as described in Section 4.1. In the second stage, as shown in the 
algorithm, the column locations for nodes in each row are assigned starting with the top 
row. This is described in Section 4.2. After each row is mapped, the heuristic will not modify 
the locations of any portion of that row. 
While the limited information available to the heuristic does not often allow it to produce 
optimal minimum-size mappings, its relative simplicity provides a fast runtime. By default 
the heuristic tries to map the given benchmark to a fabric with a width equal to the largest 
individual row, and a height equal to the longest path through the graph representing the 
input application. Although the width is static throughout a single mapping, the height can 
increase as needed. 



 Advances in Greedy Algorithms 

 

202 

 

4.1 Row assignment 
Initially, the row of each node is set to its row assignment in an as soon as possible (ASAP) 
“schedule” of the graph. Beginning with the first row and continuing downward until the 
last, each node in the given row is checked to determine if any of its children are non-
immediate (i.e. the dependency edge in the DFG spans multiple rows) and as a result they 
cannot be placed in the next row. If any non-immediate children are present, a pass-gate is 
created with an edge from the current node. All non-immediate children nodes are 
disconnected from the current node and connected to the pass-gate. This ensures that after 
row assignment, there are no edges that span multiple rows of the fabric. 
After handling the non-immediate children, each node is checked to determine if its fanout 
exceeds the maximum as defined by the FIM. If a node’s fanout exceeds the limit, a pass-
gate is created with an edge from the current node. In order to reduce the node’s fanout, 
children nodes are disconnected from the current node and connected to the pass-gate. To 
minimize the number of additional rows that must be added to the graph we first move 
children nodes with the highest slack from the current node to the pass-gate. If the fanout 
cannot be reduced without moving a child node with a slack of zero, then the number of 
rows in the solution is increased by one causing an increase of one slack to all nodes in the 
graph. This process continues for each node in the current row, then subsequently for all 
rows in the graph as shown in Figure 7. Once row assignment is complete, the minimum 
fabric size for each benchmark is known. These minimum sizes are shown in Table 1. 
 

 
                           (a) Before row assignment.                              (b) After row assignment. 

Figure 7. Row assignment example showing pass-gate insertion. 



Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric 

 

203 

 
Table 1. Minimum fabric sizes with no interconnect constraints. 

4.2 Column assignment 
The column assignment of the heuristic follows Algorithms 2–4 where items in square 
brackets [] are included in the optimized formulation. Many of these bracketed items are 
described in Section 4.3. During the column assignment for each row, the heuristic first 
determines viable locations based on the dependencies from the previous row. Then, the 
heuristic considers the impact of dependencies of nodes in the two following rows. The 
heuristic creates location windows that describe these dependencies as follows: 
The parent dependency window (PDW) lists all FU locations that satisfy the primary constraint 
that the current node must be placed such that it can connect to each of its inputs (parents) 
with the interconnect specified in the FIM. The construction of the PDW is based on the 
location of each parent node, valid mapping locations due to the interconnect, and the 
operations supported by each FU (e.g. computational FU versus dedicated pass-gate). 
Figure 8 shows an example of a PDW dictated by the interconnect description. In this 
example, an operation that depends on the result of the subtraction in column 6 and 
addition in column 8 can only be placed in either ALU 6 or ALU 7 due to the restrictions 
of cardinality four interconnect. 
 

 
Fig. 8. Parent dependency window. 

The child dependency window (CDW) lists all FU locations that satisfy the desired but non-
mandatory condition that a node be placed such that each of its children nodes in the 
proceeding row will have at least one valid placement. The construction of the CDW is 
based on the PDW created from the potential locations of a current node as well as the PDW 
created from potential locations of any nodes that share a direct child with the current node. 
Nodes which share a direct child are referred to as connected nodes. Again the FIM is 
consulted to determine if there will be any potential locations for the children nodes based 
on the locations of the current node and connected nodes. A child dependency window 
example is shown in Figure 9. In this example, a left shift operation and a right shift 
operation are being assigned columns. Due to parent dependency window constraints, the 
 



 Advances in Greedy Algorithms 

 

204 

 
 

left shift can be placed in either ALU 10 or ALU 11. Similarly, the right shift can be placed 
in either ALU 6 or ALU 7. There is a third node (not pictured) which takes its inputs from 
the two shift operations. In order for this shared child to have a valid placement, the left 
shift must be placed in ALU 10 and the right shift must be placed in ALU 7. Using this 
placement, the shared child will have a single possible placement in its PDW, ALU 8. 
 

 
Fig. 9. Child dependency window. 

The grandchild dependency window (GDW) provides an additional row of look-ahead. The 
GDWlists all FU locations that satisfy the optional condition that a node be placed such that 
children nodes two rows down (grandchildren) will have at least one valid placement. It is 
constructed using the same method as the CDW. 
As nodes are mapped to FU locations, newly taken locations are removed from the 
dependency windows of all nodes (since no other node can now take those locations), and 
the child and grandchild windows are adjusted to reflect the position of all mapped nodes. 
In addition to tracking the PDWs, CDWs, and GDWs of each node, a desirability value is 
associated with each location in the current row. The desirability value is equal to the 
number of non-mapped nodes that contain the location in their PDW, CDW, or GDW. 



Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric 

 

205 

 
 

 
 

The mapper then places each node one at a time. To select the next node to place, the 
mapper first checks for any nodes with an empty PDW, then for any nodes with a PDW that 
contains only one location. Then it checks for any high-priority nodes in the current row, as 
these are nodes designated as difficult to map. Finally, it selects the node with the smallest 
CDW, most connected nodes, and lowest slack. This node is then placed within the 
overlapping windows while attempting to minimize the negative impact to other nodes. 
Column placement also uses the concept of a priority set. In the process of placing operators, 
the algorithm may find that an operator has become impossible to place. If this happens, the 
algorithm is placed into the priority set and column placement for the row is restarted. 
Operators in the priority set are placed first. Even then, it may be impossible to place some 
operators. The last resort for the algorithm is to reassign the operator to the next row and 
add pass-gates to the current row for the operator’s inputs. Unary operators cannot be 
reassigned because placing the pass-gate for the input would also be impossible. If a unary 
operator (or pass-gate) in the priority set cannot be placed, then the algorithm aborts. 

4.3 Extensions 
The initial algorithm was not always able to produce high quality mappings for some of the 
benchmarks when using more restrictive interconnects such as 5:1. Several extensions to the 
heuristic were implemented in an effort to increase its effectiveness. 
Potential Connectivity: When determining the location to place an operator we consider 

which locations provide the most potential connectivity to child operators. 



 Advances in Greedy Algorithms 

 

206 

Potential connectivity is defined as the number of locations each shared child 
operation could be placed when the current operation is placed in a particular 
location. 

Nearness Measure: This measure is used when an operator has shared children but the 
CDW is empty. The goal is to push the operators which share a child as close 
together as possible; this allows the algorithm to eventually place the child 
operators in some later row. The measure is the sum of the inverses of the distances 
from the candidate FU to the operators with common children. 

Distance to Center: Used as a tie-breaker only to prefer placing operators closer to the 
center of the fabric. 

Pass-gate centering: The initial algorithm tended to push pass-gates that have no shared 
child operators toward the edges of the fabric. This makes it harder for their 
eventual non-pass-gate descendants to be mapped, since their pass-gate parent is 
so far out of position. After placing an entire row the mapper pushes pass gates 
toward the center by moving them into unassigned FUs. This is the extension 
shown in Algorithm 1. 

4.4 Results 
Higher cardinality interconnects such as 8:1 and higher were easily mapped using the 
deterministic greedy algorithm. We show results using a 5:1-based interconnect as it 
exercised the algorithm well. The mapper was tested on seven signal and image processing 
benchmarks from image and signal processing applications. A limit of 50 rows was used to 
determine if an instance was considered un-mappable with the given algorithm. Mapping 
quality was judged on three criteria. The first is fabric size, represented in particular by the 
number of rows in the final solution. The second is total path length, or the sum of the paths 
from all inputs to all outputs as described in Section 2.2. The third metric is mapping time, 
which is the time it takes to compute a solution. 
The fabric size is perhaps the most important factor in judging the quality of a solution. The 
number of columns is more or less fixed by the size of the largest row in a given application. 
However, the number of additional rows added to the minimum fabric heights listed in 
Table 1 reflects directly on the capability of the mapping algorithm. Smaller fabric sizes are 
desirable because they require less chip area, execute more quickly, and consume less 
power. 
As described in Section 2.2, the total path length increase is a key factor in the energy 
consumption of the fabric executing the particular application. However, fabric size and 
total path length are related. A mapping with a smaller fabric size will typically have a 
considerably smaller total path length and thus, also have a lower energy consumption. 
Thus, the explicit total path length metric is typically most important when comparing 
mappings with a similar fabric size. 
The mapping time is important because it evaluates practicality of the mapping algorithm. 
Thus, the quality of solution of various mapping algorithms is traded off against the 
execution time of the algorithms when comparing these mapping algorithms. 
We compared two versions of the greedy algorithm. The initial algorithm makes decisions 
based on the PDW and the CDW and uses functional unit desirability to break ties. This 
heuristic is represented by Algorithms 1–3 without the sections denoted by square brackets 
[]. The final version of the algorithm is shown in Algorithms 1–4 including the square 



Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric 

 

207 

bracket [] regions. This version of the heuristic builds upon the initial algorithm by 
including the GDW, potential connectivity, and centering. The results of the comparison are 
shown in Table 2. 
 

 
Table 2. Number of rows added and mapping times for the greedy heuristic mapper using a 
5:1 interconnect. 

Using the initial algorithm, Sobel, Laplace, and GSM can be solved fairly easily, requiring 
only a few added rows in order to find a solution. However, the solutions for ADPCM 
Encoder and Decoder require a significant number of additional rows and both IDCT-based 
benchmarks were deemed unsolvable. 
The final algorithm is able to find drastically better solutions more quickly. For example the 
number of rows added for ADPCM Encoder and Decoder went from 13 to 5 and 11 to 1, 
respectively. It is also able to find feasible solutions for IDCT Row and IDCT Column. For 
the other four benchmarks, the final algorithm performs equally well or better than the 
initial algorithm. The final algorithm is faster in every case decreasing the solution time for 
all benchmarks to within 1 second except ADPCM Encoder which was reduced from 79 to 
12 seconds. 
We tried the final deterministic algorithm on a variety of more restrictive interconnects 
including a cardinality five interconnect with every third FU (33%)replaced with a dedicated 
pass-gate. The results are shown in Table 3. The fabric size results are actually quite similar 
in terms of rows added to the 5:1 cardinality interconnect without dedicated pass-gates. 
 

 
Table 3. Greedy heuristic mapper results using a 5:1 interconnect and 33% dedicated pass-
gates. 

While the deterministic heuristic provides a fast valid mapping, it does add a considerable 
number of rows from the ASAP (optimal) configuration, which leads to considerable path 
length increases and energy overheads. In the next section we explore a technique to 
improve the quality of results through an iterative probabilistic approach. 

5. Greedy heuristic including randomization 
Another flavor of greedy algorithms are greedy randomized algorithms. Greedy 
randomized algorithms are based on the same principles guiding purely greedy algorithms, 
but make use of randomization to build different solutions on different runs (Resende & 
Ribeiro, 2008b). These algorithms are used in many common meta-heuristics such as local 



 Advances in Greedy Algorithms 

 

208 

search, simulated annealing, and genetic algorithms (Resende & Ribeiro, 2008a). In the 
context of greedy algorithms, randomization is used to break ties and explore a larger 
portion of the search space. Greedy randomized algorithms are often combined with multi-
iteration techniques in order to enable different paths to be followed from the same initial 
state (Resende & Ribeiro, 2008b). 
The final version of the deterministic greedy algorithm is useful due to its fast execution time 
and the reasonable quality of its solutions. However, because it is deterministic it may get 
stuck in local optimums which prevent it from finding high quality global solutions. By 
introducing a degree of randomization into the algorithm, the mapper is able to find 
potentially different solutions for each run. Additionally, since the algorithm runs relatively 
quickly, it is practical to run the randomized version several times and select the best solution. 
The column assignment phase of the mapping algorithm was chosen as the logical place to 
introduce randomization. This area was selected as the column assignments not only affect 
the layout of the given row, but also affect the layouts of subsequent rows. In the 
deterministic algorithm, nodes are placed in an order determined by factors including 
smallest PDW, CDW, GDW, etc. and once placed, a node cannot be removed. In contrast, 
the randomized heuristic can explore random placement orders, which leads to much more 
flexibility. 
We investigated two methods for introducing randomization into the mapping heuristic. 
The first approach makes ordering and placement decisions completely randomly. We 
describe this approach in Section 5.1. The second leverages the information calculated in the 
deterministic greedy heuristic by applying this information as weights in the randomization 
process. Thus, the decisions are encouraged to follow the deterministic decision but is 
allowed to make different decisions with some probability. We describe this approach in 
Section 5.2. 

5.1 Randomized heuristic mapping 
The biggest difference between the deterministic heuristic and the heuristics that 
incorporate randomization is that the deterministic is run only once and the random 
oriented heuristics are run several times to explore different solutions. The basic concept of 
the randomized heuristic is shown in Algorithm 5. First the deterministic algorithm is run to 
determine the initial “best” solution. Then the randomizer mapper is run a fixed number of 
times determined by I. If an iteration discovers a better quality solution (better height or 
same height and better total path length) it is saved as the new “best” solution. This concept 
of saving and restoring solutions is common in many multi-start meta-heuristics, including 
simulated annealing and greedy randomized adaptive search procedures (GRASP) (Resende 
& de Sousa, 2004). 
 

 



Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric 

 

209 

The randomized mapping heuristic follows the same algorithmic design as the deterministic 
heuristic from Algorithm 2. The only major change is to line 15, in which the new algorithm 
selects the next node to map in a column randomly and ignores all other information. 
Although the introduction of randomization allows the mapper to find higher quality 
solutions, it also discovers many lower quality solutions, which often take a long time to 
complete. In order to mitigate this problem, one other divergence from the deterministic 
algorithm allows the mapper to terminate a given iteration once the fabric size of the current 
solution becomes larger than the current best solution. 

5.2 Weighted randomized heuristic mapping 
Using entirely random placement order did discover better solutions (given enough 
iterations) than the deterministic heuristic. Unfortunately, the majority of the solutions 
discovered were of poorer quality than the deterministic approach. Thus, we wanted to 
consider a middle ground algorithm that was provided some direction based on insights 
from the deterministic algorithm but also could make other choices with some probability. 
This resulted in a weighted randomized algorithm. 
Weights are calculated based on the deterministic algorithm concepts of priorities and 
dependency windows. Again the modification of the basic deterministic algorithm to create 
the weighted randomized algorithm is based on line 15 of Algorithm 2. The weighted  
randomized algorithm replaces this line with Algorithm 6 to select the next node to place. 
The algorithm begins by dividing the unplaced operators into sets based on their PDW size. 
Each set is then assigned a weight by dividing its PDW size by the sum of all of the unique 
PDW sizes. Because nodes with small parent dependency windows are more difficult to 
place, it is necessary to assign them a larger weight. This is accomplished by subtracting the 
previously computed weight from one. Each set is then further subdivided in a similar 
fashion based first on CDW sizes and then node slack. The result of this operator grouping 
process is a weighted directed acyclic graph (DAG) with a single vertex as its root. Starting 
at the root, random numbers are used traverse the weighted edges until a leaf vertex is 
reached, at which point an operator will be selected for column assignment. 
 

 
Fig. 10. Heuristic weight system. 



 Advances in Greedy Algorithms 

 

210 

An example of the weighting system used in the randomized mapper is shown in Figure 10. 
In this example, nodes priorities are assigned based on PDW size followed by CDW size. 
Slack is not considered in this example for simplicity. The deterministic heuristic would 
always assign the highest priority to the multiplier because it has the smallest parent 
window as well as the smallest child window. In Figure 10 this behavior is indicated by the 
dashed arrows. By introducing probability into the heuristic, the multiplier is still given the 
highest priority with a 50% chance of being selected. However, a node from the top group 
has a 17% chance of being selected and a node from the bottom group has a 33% chance of 
being selected instead. In the event that several nodes are assigned the same priority level, 
one node is chosen randomly with equal weight from the set. 
 

 

5.3 Mapper early termination 
The randomized and weighted randomized mappers require significantly longer run times 
than the deterministic heuristic due to their multiple iterations. Additionally, the runtime of 
these algorithms is hampered by another effect. For any given row, it is possible that the 
mapper will not be able to place all of the nodes. When this happens, the mapper will start 



Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric 

 

211 

the row over, attempting to place the problem node(s) first, this is shown in Algorithm 2 
lines 11–13. We call each occurrence of this behavior a row placement failure. The random 
oriented algorithms tend to have iterations that have a large volume of row placement 
failures, exacerbating run times. 
To limit the runtime overheads from row placement failure, during the deterministic 
mapper run we record the number of row placement failures across all of the rows. The 
randomized versions of the mapper then use this n value as an upper limit on the number of 
total row placement failures permitted per iteration. Once this limit of n row placement 
failures is eclipsed, the mapper aborts and moves on to the next iteration. 

5.4 Results 
Table 4 compares the fabric size, path length increase, and mapping time for the deterministic, 
randomized, and weighted randomized mappers. The two iterative mappers were run for 500 
iterations each. In order to further gauge the performance of the randomized and weighted 
randomized  mappers, the average mapping time per iteration is also reported. The 
completely randomized mapper outperformed or equaled the deterministic mapper in terms 
of fabric size and total path length for all of the benchmarks. The weighted randomized 
mapper was able to find significantly better solutions than both of the other mappers. The 
weighted randomized mapper was also, on average, 48% faster than the randomized mapper. 
 

 
Table 4. Deterministic, randomized, and weighted randomized mapper comparison using a 
5:1 interconnect. 
Table 5 illustrates the effects of implementing the early termination mechanism. Once again, 
the random and weighted randomized mappers were run for 500 iterations. The randomized 
mapper was still able to outperform the deterministic mapper in some cases, but not by the 
same margin as before. The reduction in execution time was roughly 38% for the randomized 
mapper. The weighted randomized mapper still performed well, only requiring one additional 
row to be added in IDCT Row. The weighted randomized mapper, which was already faster 
than the randomized mapper, saw a 12% improvement in terms of mapping time. 
The randomized and weighted randomized algorithms were also tested using the 5:1 
interconnect with 33% of the functional units replaced by dedicated pass-gates. These results 
are presented in Table 6. Again the random and weighted randomized mappers were run 
for 500 iterations with early termination enabled. As with the basic 5:1 interconnect, the 
randomized mapper performed as well or better than the deterministic mapper in terms of  
   



 Advances in Greedy Algorithms 

 

212 

 
Table 5. Deterministic, randomized, and weighted randomized mapper comparison using a 
5:1 interconnect and early termination. 
fabric size and path length increase. However, the weighted randomized mapper was 
superior to both of the other mappers. Since this interconnect contains dedicated pass-gates, 
the number of FUs utilized as pass-gates are also included in the results. A similar trend was 
observed where the weighted randomized mapper performed the best (fewest FUs used as 
pass-gates), followed by the randomized mapper and the deterministic mapper. 
 

 
Table 6. Deterministic, randomized, and weighted randomized mapper comparison using a 
5:1 interconnect, 33% dedicated passgates, and early termination. 

6. Sliding partial MILP heuristic 
The sliding partial MILP heuristic is a greedy approach to solve the augmented fixed rows 
mapping problem. As discussed in Section 2.1.2, we created a MILP that solved the feasible 
mapping with fixed rows problem for the entire device in a single formulation but the run 
times were prohibitively long (hours to days). However, an MILP that solves a limited scope 
of the mapping problem can run much faster (seconds). Thus, the partial sliding MILP 
heuristic creates the middle ground between the greedy heuristics and the full MILP 



Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric 

 

213 

formulation. It has similarities to the deterministic and randomized heuristics from Sections 
4 and 5 in that it follows a top to bottom approach, and rows that have been visited cannot 
be adjusted. However, while these earlier heuristics place a single node at a time, the sliding 
approach uses an MILP for an optimal solution for an entire row or multiple rows in one 
step. Thus, the sliding heuristic, while still greedy, has a much larger scope than the earlier 
greedy algorithms. Pseudocode for the sliding partial MILP heuristic is shown in Algorithm 7. 
 

 
 

The heuristic starts with an “arbitrary placement” where operations are placed in the 
earliest row possible (ASAP) and the operations are left justified. The heuristic follows a top-
down approach and continues until it fixes all of the violations. We define violations as 
edges connecting FUs between rows that cannot be realized using the routing described in 
the FIM. When a violated edge is located, a window of rows is selected as shown in Figure 
11. Within this window, an MILP is solved to attempt to correct the violations by moving 
the column locations of the nodes. We call this a partial MILP as it only solves the mapping 
problem for part of the fabric (i.e. the limited window). Because the heuristic takes a top-
down approach, any previously existing violations above the MILP window should have 
already been corrected. However, it is possible that violations exist below the window. 
Selection of the window of rows is discussed in Section 6.2. 
 

 
Fig. 11. Nearly feasible solution. 

There are three possibilities at the end of the run on a particular window: 
Case 1:  The partial MILP fixes the violation(s). 



 Advances in Greedy Algorithms 

 

214 

Case 2:  The partial MILP cannot fix the violation(s), but pushes the violation(s) down in the 
window so that subsequent windows may be able to find a solution. This case is 
shown in Figure 12(a) where the violating edge, represented by the bold dashed 
line between rows 5 and 6 in Figure 11, has been pushed down between rows 6 and 7. 

Case 3:  If the partial MILP cannot fix or push down the violation then a row of pass-gates is 
added to increase the flexibility, and the partial MILP is run again. This is 
illustrated with the addition of row 5’ containing all pass-gates in Figure 12(b). 

 

 
(a) Violation from Figure 11 is pushed                  (b) A row of pass-gates is added to the 
      down.                                                                          window from Figure 11. 

Fig. 12. Resolutions when the partial MILP cannot eliminate a violation. 

6.1 Partial MILP formulation 
The heuristic generates valid mappings by using small, fast MILPs on the selected rows 
(Figure 11). The partial MILP formulation, parameters, sets, and variables used in the 
heuristic are described below: 
The objective function (0) minimizes the number of edges used that violate the interconnect 
design. Constraint (1) ensures that an edge can be located in only one place. Constraint (2) 
ensures that an operator can be placed in only one column. Constraint (3) states that there 
can be at most one operator in a column for a given row k. The final two constraints relate 
the operator, x, and edge, z, variables. Constraint (4) states that edge (i, t) can only be placed 
starting at column j if operator i is at column j. Constraint (5) states that edge (i, t) can only 
be placed to end at column k if the ending operator t is at column k. We fix the locations of 
the operators in the first and last row of the MILP window by setting xi j = 1 where i is the 
operator and j is the column. 
Parameters:  
r: Number of rows  
c: Number of columns  
pi,t, j,k: Objective coefficients  
ai: Index of the first operator in row i 
Sets: 
C: Set of columns (1 to c) 
V: Set of operators in the MILP window 
E: Set of edges in the MILP window 
R: Set of rows in the MILP window (1 to r) 
Variables: 
xi j: Binary variable for operator assignment. If operator i is in column j, then xi j = 1, 
otherwise it is 0. 



Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric 

 

215 

zi,t, j,k: Binary variable for edge assignment. If starting operator i is in column j and ending 
operator t is in column k, then zi,t, j,k = 1, otherwise it is 0. 
Partial MILP formulation: 

 (0) 

 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

The effect of “pushing a violation down” when solving the MILP can be achieved with 
proper objective coefficients (pi,t, j,k) in the formulation. The objective coefficients for the 
violations in the upper rows are much higher than the ones in the lower rows. For example, 
assume there is a violation between rows 5 and 6, and that the MILP window size is three 
rows as shown in Figure 11. In other words, the columns of the operators in rows 4, 5, and 6 
can be adjusted while the locations of the operators in rows 3 and 7 are fixed. The objective 
coefficients are 10,000 for edges between rows 3 and 4 and between rows 4 and 5, 100 for the 
edges between rows 5 and 6, and 1 for the edges between rows 6 and 7. This avoids having 
violations in the higher rows, and may push the violation down to the rows between 6 and 
7. Thus, objective values > 10,000 show an improvement. Of course, if a objective value of 0 
is reached, then all violations are eliminated. 

6.2 Determining window size 
In the sliding partial MILP heuristic, a window of rows is selected for optimization. We 
tested different alternatives of numbers of rows to optimize in this window and used a 
cardinality five interconnect as the target for the tests. The more rows that are optimized 
simultaneously, the longer the MILP takes. However, it may not be possible to solve the 
violations if too few rows are included in the optimization window. We consider window 
sizes from one to five rows, as well as some approaches that change the number of rows. We 
did not exceed five rows since it started to take too long to solve the MILP. 
Optimizing a single row is a special case. Since all of the variables are binary and the 
locations of the operators in other rows are fixed, this formulation can be solved directly as a 
Linear Program (LP), which can be solved much more efficiently than an MILP. Since a 
violated edge connects two rows, either of these rows can be targeted for optimization. 
Thus, we attempt to optimize the top row first, and if unsuccessful, attempt to optimize the 
bottom row. Unfortunately, the single row method was not capable of solving the majority 
of the benchmarks. Using such a small window size often resulted in the LP being unable to 
find a feasible solution for a given row. In these cases, rows of pass-gates would be 
continuously added in the same location and the algorithm was unable to make progress. 
When optimizing two rows, the window would contain the two rows connected by the 
violating edge. Additionally, we attempted to correct the violations by optimizing previous 
rows. For example, if there is a violation between rows 5 and 6, first rows 4 and 5 are 
optimized. If the violation is not fixed, rows 5 and 6 are optimized. This example is shown in 
Figure 13. Unfortunately, most of the benchmarks also could not be solved by using a 
window size of two. 



 Advances in Greedy Algorithms 

 

216 

 
Fig. 13. Optimization of two rows. 

Next, a window size of three was tested as shown in Figure 11. In this example, there is a 
violation between rows 5 and 6. The MILP fixes the operators in rows 3 and 7, while 
attempting to optimize the operators in rows 4, 5, and 6. This approach was able to solve 
five of the seven benchmarks. The other two benchmarks could not be solved because they 
each have an operator with grandparents that are prohibitively far from each other. This 
case could not be solved by our algorithm even by adding rows of pass-gates. 
Having grandparents or great-grandparents far from each other causes problems. To solve 
this problem we introduced graded objective coefficients. The farther the violation is, the 
more it will cost. Based on this idea, the objective coefficients are multiplied by the absolute 
distance difference between the column numbers of the edges’ operators. Thus, operators 
with the same grandchildren are more likely to placed close to each other. Even if the 
grandparents or great-grandparents are far from each other, violations can be fixed with the 
graded objective function by adding enough rows of pass-gates. After adding this feature, 
“graded optimize three” can solve all of the instances. However, it adds seven rows of pass-
gates for one of the benchmarks. 
Optimizing three rows is successful because rows of pass-gates are utilized efficiently. When 
a row of pass-gates is added, the locations of the operators in the preceding and succeeding 
rows can be adjusted. In contrast, when two rows are optimized, only the locations of the 
row of pass-gates and another row can be adjusted, which does not always help. In other 
words, sometimes the violation cannot be fixed and rows of pass-gates are constantly added 
between the same rows. 
The four row optimization approach performs well. All of the instances were solved by 
adding at most five rows of pass-gates. Using the increased window size allows rows of 
pass-gates to be utilized more efficiently than in the three row optimization scenario. 
Finally, optimizing five rows can solve all of the benchmarks by adding two rows at most. 
However, the solution times are significantly longer than those of the “optimize four rows” 
version. 
Based on the tests “graded optimize four” is chosen as the best option. Optimizing a 
window of four rows does not take long. Additionally, it does not add too many rows of 
pass-gates since the rows of pass-gates are utilized efficiently. 



Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric 

 

217 

6.2.1 Dedicated pass-gates 
Based on the “graded optimize four” window size, the same window size was applied to 
interconnects with dedicated pass-gates. While the heuristic was successful with more 
relaxed interconnects (e.g. 8:1 cardinality with various percentages of dedicated pass-gates) 
the results for the more restrictive 5:1 cardinality interconnect with dedicated pass-gates led 
to several infeasible solutions. This is a limitation of the algorithm operating on the entire 
row and not being able to move individual operations into different rows like the 
deterministic and randomized heuristics. 

6.3 Extensions 
To improve the quality of the partial MILP heuristic, we explored some logical extensions. 
In the next two subsections, respectively, we describe an iterative method to improve the 
runtime and retain similar quality of results and a premapping step to potentially improve 
the quality of results. 

6.3.1 Iterative approaches 
Solving partial MILPs with smaller window sizes is much faster but is less effective at 
removing violations than larger window sizes. Thus, in the iterative approach we use 
variable sized windows starting with small window sizes and escalating to larger window 
sizes if necessary. Thus, the window size is increased if the violation(s) cannot be fixed or 
pushed down with the current size. For instance, in “iterative 1234” first one row is 
optimized. If the violation(s) cannot be removed, the window size is increased to two rows 
and the MILP is run again. This continues through a window size of four rows. If the MILP 
cannot be solved for four rows, a row of pass-gates is added. These iterative approaches 
perform well and are competitive with the “optimize four rows” version. 

6.3.2 Two-pass sliding partial MILP heuristic 
We discovered that the sliding partial MILP heuristic can be more effective if it starts with a 
nearly feasible solution when compared with an arbitrary solution. Thus, we created a two-
pass extension of the sliding partial MILP heuristic. The one-pass heuristic sometimes requires 
adding a row of pass-gates to fix violations. Thus, in the first pass of the two-pass heuristic, the 
option to add a row of pass-gates is removed and this pass runs partial MILPs to minimize the 
number of violated edges. However, some violations may remain. We used this pass on the 
arbitrary solutions to create better starting points for the sliding partial MILP heuristic (i.e. the 
second pass). We tested this heuristic approach for one, two, and three row windows, 
respectively for the first pass and “graded optimize four rows” in the second pass. 

6.4 Results 
This section presents the results of tests on the sliding partial MILP heuristic for 5:1 
cardinality interconnects for both the one-pass and two-pass instantiation. Table 7 
summarizes the number of rows added and the run times for the heuristics “optimize one 
row,” “optimize two rows,” “optimize three rows,” “graded optimize three rows,” 
“optimize four rows,” “graded optimize four rows,” and “graded optimize five rows” 
starting from an arbitrary solution. The “optimize one row” and “optimize two rows” 
methods only solve Sobel and Laplace, the two smallest benchmarks. The other benchmarks 
cannot be solved even after adding 20 rows of pass-gates. The “optimize three rows” 
method solves five out of seven benchmarks. The “graded optimize three rows” approach 



 Advances in Greedy Algorithms 

 

218 

solves all of the instances. The longest run time for “graded optimize three rows” is 102 
seconds and it adds at most seven rows. The “graded optimize four rows” solutions are 
always as good as the “optimize four rows” solutions in terms of fabric size. For ADPCM 
Encoder and both of the IDCT benchmarks, “graded optimize four rows” adds fewer rows 
than the “optimize four rows” approach. There are not significant differences in the run 
times. Even though arbitrary solutions are used as the starting points, the run times are not 
significantly long. IDCT Column has the longest runtime of approximately ten minutes. On 
the other hand, “graded optimize five rows” adds fewer rows than the other heuristics but 
at the price of much longer run times. It adds at most two rows of pass-gates, however, the 
run times are long enough to not be a practical option in many cases. 
 

 
Table 7. Tests on arbitrary instances. 
The results for the iterative “graded 1234,” “graded 234,” and “graded 34” heuristics are 
shown in Table 8. The “iterative graded 1234” and “iterative graded 234” heuristics behave 
similarly since optimizing one row rarely eliminates violations. They add at most six rows. 
When comparing the “graded optimize four rows” and “iterative graded 34” heuristics, 
“graded optimize four” is better for GSM while “iterative graded 34” is better for IDCT 
Column in terms of the number of rows added. 
Based on all of the computational tests, graded objective coefficients helped to find better 
mappings in terms of rows added and mapping time. The “graded optimize four rows” and 
“iterative graded 34” approaches were found to be the best of this group. Thus, to examine 
the heuristic extensions we will retain the “graded optimize four rows” method for the 
remaining tests. 

 
Table 8. Tests of iterative versions on arbitrary instances. 



Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric 

 

219 

In the two-stage sliding partial MILP heuristic, a nearly feasible solution could be found in 
the first stage using either “heuristic one row,” “heuristic two rows,” or “heuristic three 
rows.” Table 9 summarizes the number of rows added and the run times of the two-stage 
heuristic, with the run times separated into time for the first stage and second stage. The run 
times of the first stage are less than one second for “heuristic one row,” at most ten seconds 
for “heuristic two rows,” and less than two minutes for “heuristic three rows.” Starting the 
sliding partial MILP heuristic from solutions found using “heuristic one row” is not much 
better than starting from an arbitrary solution. However, “heuristic two rows” and 
“heuristic three rows” solutions provide more benefit in the first stage. The sliding partial 
MILP heuristic starting from “heuristic two rows” or “heuristic three rows” adds fewer 
rows with shorter solution times than starting from an arbitrary solution. 
 

 
Table 9. Tests on optimized instances. 

When the sliding partial MILP heuristic starts from an arbitrary solution, it adds more rows 
and solution times are 0-11 minutes. The two-stage version adds fewer rows and total run 
times are less than four minutes. So, the best option was found to be running the “heuristic 
three rows” to generate a starting point and then using the “graded optimize four rows” 
sliding partial MILP heuristic to generate a valid mapping. 
Table 10 shows that 8 out of 21 instances cannot be solved by the sliding partial MILP 
heuristic for cardinality five interconnect with dedicated pass-gates (for 25%, 33%, and 50%). 
However, by adding rows of pass-gates the heuristic can solve four of the instances—
ADPCM Encoder and Laplace for 33% dedicated pass-gates and ADPCM Decoder and 
Laplace for 50% dedicated pass-gates—that are proven infeasible for the feasible mapping 
with fixed rows solution (Baz, 2008). The heuristic adds at most two rows of pass-gates for 
these solutions and they are shown in bold in Table 10. When we consider the instances solved 
by the heuristic, the longest run time is 2,130.5 seconds. The two-stage heuristic did not find 
mappings not found by the one-stage heuristic. This is due to dense structures in these graphs 
that cannot be separated without moving individual nodes across rows (see Section 7). 
 

 
Table 10. Tests on 5:1 interconnect with 25%, 33%, and 50% dedicated pass-gates. 



 Advances in Greedy Algorithms 

 

220 

7. Conclusion 
In this chapter we have presented three greedy heuristics for mapping applications onto a 
reconfigurable device oriented for low-energy execution. The three heuristics are a 
deterministic top-down greedy algorithm described in Section 4, a greedy algorithm with 
randomization discussed in Section 5 based on the deterministic algorithm flow, and a 
partial MILP greedy heuristic presented in Section 6. 
Here we compare the deterministic, randomized, weighted randomized, and sliding partial 
MILP heuristics described in Section 4, Section 5.1, Section 5.2, and Section 6, respectively. The 
comparisons are made using a 5:1-based interconnect and are shown in Table 11. The results 
compare the different heuristics in terms of fabric size, path length increase, and mapping time. 
 

 
Table 11. Comparison of greedy mapping techniques targeting a 5:1 cardinality interconnect. 
Each heuristic provides different advantages and disadvantages. For example the 
deterministic approach provides a solution quickly but not of the highest quality as 
measured by required fabric size and total path length. The partial MILP heuristic was able 
to out perform the deterministic approach due to its much larger window size considering 
entire rows of nodes versus a single node, respectively. Actually, the weighted randomized 
algorithm provides better qualities of solution than the partial MILP heuristic but the run 
times are much higher. The two-stage partial MILP heuristic performs the best overall with 
reasonable run times (actually better than the one-stage partial MILP heuristic in many 
cases). Thus, if generating mappings in seconds is essential, the deterministic heuristic can 
be used. If energy consumption is critical and run times in minutes are acceptable, the two-
stage sliding partial MILP heuristic should be used. 
However, the large multi-row window size for the MILP heuristic became a disadvantage for 
restrictive interconnects with dedicated pass-gates, for which the randomized greedy heuristic 
provides the best results and the partial MILP heuristic is not able to solve many cases. 
To better understand the sliding partial MILP heuristic performance for this interconnect, we 
analyzed the eight instances which cannot be solved by the heuristic. The benchmarks IDCT 
Row and IDCT Column are infeasible because they have nodes which have four commutative 



Greedy Algorithms for Mapping onto a Coarse-grained Reconfigurable Fabric 

 

221 

children. In a situation like this, dedicated pass-gates with a cardinality five interconnect is too 
restrictive. In fact for a cardinality five interconnect with 50% dedicated pass-gates, the partial 
MILP was unable to map a majority of the benchmarks including one of the smallest ones 
(Sobel). To be able to solve these cases the operator assignments must be revised such that each 
node can have at most three children. This requires a pre-processing step to use the sliding 
partial MILP heuristic that will enforce these input and output restrictions, which will increase 
the overall path length and possibly the number of rows in the solution. 

7.1 Future work 
From the exploration of the heuristics described in this chapter there are clear tradeoffs between 
the three main heuristics. The deterministic approach is fast but far from optimal. The partial 
MILP heuristic (particularly the two-stage version) is strong for cardinality five and requires a 
reasonable time (seconds to minutes) to map but has problems when introducing dedicated 
pass-gates. The weighted randomized heuristic performed reasonably well for solution quality 
and could map the dedicated pass-gate interconnect, but the run times were too long. 
In our future work we plan to investigate methods to improve the runtime of the weighted 
randomized heuristic. For example, currently the heuristic re-evaluates the weights after the 
placement of each node. To make the decision faster, the heuristic could select multiple 
nodes to place based on the current weights before recalculating. Additionally, the early 
termination can be revised to avoid losing good solutions but also to create more candidates 
for early termination to improve performance. One example might be to relax the number of 
row placement failures but to terminate if the path length increase exceeds the current best 
solution (currently we use solution size). 
To improve the performance of the partial MILP heuristic, we can develop a pre-processing 
pass that relaxes infeasible constructs so that they can be mapped. We also may consider 
expanding the MILP to allow nodes to move between rows as well as columns. However, this 
is expected to significantly increase the runtime of the partial MILPs and may require use of a 
smaller window size. Additionally, we plan to explore other “first-stage” passes for the two-
stage heuristic. We may explore using the full fabric MILP to generate a nearly feasible fixed 
rows mapping or investigate other approaches such as simulated annealing for this first stage. 

8. References 
Baz, M. 2008. Optimization of mapping onto a flexible low-power electronic fabric 

architecture. Ph.D. thesis, University of Pittsburgh, Pittsburgh, Pennsylvania. 
Baz, M., Hunsaker, B., Mehta, G., Stander, J., and Jones, A. K. 2008. Application mapping 

onto a coarsegrained computational device. European Journal of Operations Research. 
in submission and revision since April 2007. 

Bray, T., Paoli, J., C. M. Sperberg-McQueen, E. M., and Yergeau, F. 2006. Extensible markup 
language (xml) 1.0 (fourth edition) - origin and goals. Tech. Rep. 20060816, World 
Wide Web Consortium. 

Cordella, L. P., Foggia, P., Sansone, C., and Vento, M. 2004. A (sub)graph isomorphism 
algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and 
Machine Intelligence 26, 10 (October), 1367– 1372. 

Diestel, R. 2005. Graph Theory. Springer-Verlag: Heidelberg. 3rd edition. 
Garey, M. and Johnson, D. 1979. Computers and Intractability: A Guide to the Theory of NP-

Completeness, W. H. Freeman. 



 Advances in Greedy Algorithms 

 

222 

Hauser, J. R. and Wawrzynek, J. 1997. Garp: A MIPS processor with a reconfigurable 
coprocessor. In IEEE Symposium on FPGAs for Custom Computing Machines, K. L. 
Pocek and J. Arnold, Eds. IEEE Computer Society Press, Los Alamitos, CA, 12–21. 

Hoare, R., Jones, A. K., Kusic, D., Fazekas, J., Foster, J., Tung, S., and McCloud, M. 2006. 
Rapid VLIW processor customization for signal processing applications using 
combinational hardware functions. EURASIP Journal on Applied Signal Processing 
2006, Article ID 46472, 23 pages. 

Johnson, T., Robertson, N., Seymour, P. D., and Thomas, R. 2001. Directed tree-width. 
Journal of Combinatorial Theory. Series B 82, 1, 138–154. 

Jones, A. K., Hoare, R., Kusic, D., Fazekas, J., and Foster, J. 2005. An FPGA-based VLIW 
processor with custom hardware execution. In ACM International Symposium on 
Field-Programmable Gate Arrays (FPGA). 

Jones, A. K., Hoare, R., Kusic, D., Mehta, G., Fazekas, J., and Foster, J. 2006. Reducing power 
while increasing performance with supercisc. ACM Transactions on Embedded 
Computing Systems (TECS) 5, 3 (August), 1–29. 

Jones, A. K., Hoare, R. R., Kusic, D., Fazekas, J., Mehta, G., and Foster, J. 2006. A vliw 
processor with hardware functions: Increasing performance while reducing power. 
IEEE Transactions on Circuits and Systems II 53, 11 (November), 1250–1254. 

Jones, A. K., Mehta, G., Stander, J., Baz, M., and Hunsaker, B. 2008. Interconnect 
customization for a hardware fabric. ACM Transactions on Design Automation for 
Electronic Systems (TODAES). in press. 

Krissinel, E. B. and Henrick, K. 2004. Common subgraph isomorphism detection by 
backtracking search. Software—Practice and Experience 34, 591–607. 

Levine, B. and Schmit, H. 2002. Piperench: Power and performance evaluation of a 
programmable pipelined datapath. In Presented at Hot Chips 14. 

MathStar. Field programmable object array architecture. http://www.mathstar.com/ 
literature.html. 

Mehta, G., Hoare, R. R., Stander, J., and Jones, A. K. 2006. Design space exploration for low-
power reconfigurable fabrics. In Proc. of the Reconfigurable Architectures Workshop (RAW). 

Mehta, G., Ihrig, C. J., and Jones, A. K. 2008. Reducing energy by exploring heterogeneity in a 
coarse-grain fabric. In Proc. of the IPDPS Reconfigurable Architecture Workshop (RAW). 

Mehta, G., Stander, J., Baz, M., Hunsaker, B., and Jones, A. K. 2007. Interconnect 
customization for a coarse-grained reconfigurable fabric. In Proc. of the IPDPS 
Reconfigurable Architecture Workshop (RAW). 

Mehta, G., Stander, J., Lucas, J., Hoare, R. R., Hunsaker, B., and Jones, A. K. 2006. A low-
energy reconfigurable fabric for the SuperCISC architecture. Journal of Low Power 
Electronics 2, 2 (August). 

Messmer, B. T. and Bunke, H. 2000. Efficient subgraph isomorphism detection: A decomposition 
approach. IEEE Transactions on Knowledge and Data Engineering 12, 2, 307–323. 

Mirsky, E. and Dehon, A. 1996. Matrix: A reconfigurable computing architecture with 
configurable instruction distribution and deployable resources. In Proceedings of the 
IEEE Workshop on FPGAs for Custom Computing Machines. 

Resende, M. and de Sousa, J. 2004. Metaheuristics: Computer Decision-Making. Kluwer 
Academic Publishers. 

Resende, M. and Ribeiro, C. 2008a. Handbook of Metaheuristics, 2nd Edition. Springer Publishers. 
Resende, M. and Ribeiro, C. 2008b. Search Methodologies, 2nd Edition. Springer Publishers. 
Sheng, L., Kaviani, A. S., and Bathala, K. 2002. Dynamic power consumption in virtex-II 

FPGA family. In FPGA. 
Ullmann, J. R. 1976. An algorithm for subgraph isomorphism. J. ACM 23, 1, 31 42. 



12 

Greedy Algorithms for Spectrum Management 
in OFDM Cognitive Systems - Applications to 

Video Streaming and Wireless Sensor Networks 
Joumana Farah1 and François Marx2 

 
1Faculty of Sciences & Computer Engineering, Holy-Spirit University of Kaslik, Jounieh, 

2 France Telecom, Paris,  
1Lebanon  

2France 

1. Introduction 
Since the beginning of regulatory planning in radio communications, new advancements in 
technology have been driving spectrum management procedures. Sophisticated techniques 
were introduced to improve the systems spectral efficiency while keeping pace with an 
increasing demand for new services and higher transmission rates. However, a new 
paradigm emerged recently in which regulation has driven technology. The exploding 
success of the first experiments in "open spectrum" using the ISM 
(Industrial/Scientific/Medical) bands gave rise to a tremendous interest in finding new 
strategies of spectrum management that will permit a more flexible and opportunistic 
utilization of the spectrum, without causing harm to existing services. This challenge is of a 
great concern to the proponents of new generations of communication systems because of 
the scarcity of spectrum resources. 
For this reason, the Federal Communication Commission published, in the last few years, 
several documents (FCC RO, 2003; FCC NOI and NPRM, 2003) that aimed to improve the 
radio spectrum allocation, using two different strategies: spectrum leasing and cognitive or 
smart radio. In the first one, a trading market for spectrum usage is proposed, and users can 
be dynamically rented the access to a piece of spectrum using a certain arrangement. The 
second type of dynamic spectrum assignment is the Open Spectrum approach, which allows 
users to sense available and unallocated spectrum. In this case, the overall spectrum is 
shared among all users and spectrum etiquette is used to limit harmful interference.  
In both cases, but for different motivations - financial stakes in the case of spectrum leasing 
and voluntary rules for the spectrum etiquette - optimizing the spectrum usage has become 
of major importance. Therefore, a mechanism must be set in each access point of the 
communication system in such a way to utilize the unused spectrum in an intelligent way, 
while not interfering with other incumbent devices in already licensed frequency bands. The 
spectrum usage will be minimized by an optimization of the channels allocation scheme, so 
that the spectrum freed by an operator may be used by another operator. 



 Advances in Greedy Algorithms 

 

224 

Therefore, new technical challenges must be overcome to enable the success of the cognitive 
radio paradigm: supporting different air interface standards, operating in multiple 
environments, adapting to several radio access techniques, counteracting the influence of 
channel impairments (multipath, fading, noise), coping with user mobility, and 
guaranteeing a minimum quality of service with an affordable transmission power. 
To reach these goals, this chapter investigates the problem of dynamic multiuser subchannel 
allocation for minimizing spectrum usage. The system overall bandwidth is supposed to be 
equally divided into a set of frequency bands, therefore assuming Orthogonal Frequency 
Division Multiplexing (OFDM). 
In former studies, most of the work dealing with dynamic spectrum allocation aimed either 
at maximizing the total system capacity or at minimizing the total transmission power. In 
(Rhee & Cioffi, 2000), an iterative algorithm was proposed that attributes subchannels to the 
users in such a way to maximize the smallest user capacity. However, an equal amount of 
power is allocated to each subcarrier. In (Kim et al., 2004), a maximization of the rate-sum 
capacity was realized by iterative subcarriers assignment followed by water-filling for 
power allocation. In (Toufik & Knopp, 2004), a graph theory approach was used to assign a 
fixed number of subcarriers to each user. Two strategies were considered: maximization of 
the total transmission rate under the constraint of a fixed amount of transmission power or 
minimization of the total transmission power while guaranteeing a set of users data rates. 
The second strategy was also the subject of study in (Wong et al., 1999) and (Kivanc et al., 
2003). In (Wong et al., 1999), a set of subcarriers is first assigned to each user based on the 
Lagrange optimization resolved by parameter relaxation. The transmission power and the 
number of bits in each subcarrier are then determined by a greedy approach. In (Kivanc et 
al., 2003), a number of subcarriers is first allocated to each user based on its average Signal-
to-Noise Ratio, assuming a flat-fading channel for the user. The best assignment scheme of 
the subchannels is then determined by an iterative algorithm.  
In this chapter, we propose novel techniques based on greedy algorithms for the 
optimization of the spectrum efficiency of an OFDM transmission system. The aim is to 
minimize the total allocated bandwidth while guaranteeing a certain transmission data rate 
to each user, under the constraint of a total transmission power. 
We begin, in section 2, by a description of the overall downlink transmission system using 
OFDM. Then, in section 3, we present two classical approaches for spectrum management 
based on Frequency Division Multiple Access (FDMA) and Time Division Multiple Access 
(TDMA). After discussing the disadvantages of these approaches, we explain how the 
spectrum allocation can be optimized by a proper formulation of a combinatorial 
assignment problem. Since exact solutions of this problem are impossible to obtain, we 
present, in section 4, a solution to this problem based on the Hungarian approach (or 
Munkres algorithm). Then, we propose an enhanced version of this solution in section 5. A 
quasi-optimal solution is investigated in section 6, based on a simulated annealing 
approach. A comparative analysis of the simulation results as well as the computational 
complexity of the different algorithms can be found in section 7. Finally, section 8 is an 
overture to different applications of our greedy approaches. For this reason, two application 
examples are presented: optimization of the terminals autonomy in a Wireless Sensor 
Network and optimization of a multi-user video streaming system where source and 
channel encoded video sequences are transmitted using OFDM. 



Greedy Algorithms for Spectrum Management in OFDM Cognitive Systems - Applications to Video 
Streaming and Wireless Sensor Networks 

 

225 

2. Description of the OFDM downlink transmission system 
The system consists of K mobile users, each requesting a download data rate Rk (k = 1, …, K) 
and uniformly distributed over the cell coverage area. We assume that all users have access 
to all time slots and that a given subchannel of the OFDM uplink system is allocated to only 
one user in each time slot (subchannels sharing is not allowed). 
After demultiplexing of each original user's binary sequence, subcarriers’ symbols are 
modulated and transformed in the time domain by inverse fast Fourier transform (Figure 1). 
Cyclic extension is then added (IEEE, 1999) before pulse shape filtering. After transmission 
through a frequency selective Rayleigh fading channel, each subcarrier will experience a 
different channel gain Hk,n in the frequency domain (Haykin, 2001). In the case of a 
multiuser system, these channel gains will constitute a channel matrix as in Figure 2, since 
each channel is seen "from a different point of view", depending on the user to which it is 
attributed. We assume that the base station receives channel information from all users and 
can perfectly estimate the channel state on each subcarrier using pilots inserted in a 
scattered manner in the transmitted OFDM symbols (IEEE, 1999). 
 

 
Demultiplexing

M-QAM 
constellation 

mapping 
IFFT Shaping 

filter 

Transmission 
Channel 

Binary 
Data Input 

FFT
M-QAM 

Demapping
Matched 

Filter 

Cyclic prefix 
insertion 

Cyclic prefix 
removalMultiplexing

Estimate of the 
original binary 

sequence  
Fig. 1. Overall baseband model of an OFDM transceiver. 

 

H1,1

Subcarriers 

User 1 

H2,2User 2 

User K HK,1

H1,2

H2,2

HK,2

1 2

H1,N

H2,N

HK,N

N

 
Fig. 2. Channel matrix of the downlink multiuser OFDM system. 

The following notations will be used throughout the paper:  
• N is the maximum number of available subchannels which form a set S. 
• B is the total system bandwidth.  
• Sk is the set of subcarriers allocated to user k. 
• Pmax is the maximum allowed transmission power by the base station. 
• Pk,n is the power transmitted on the subcarrier n allocated to the user k. 



 Advances in Greedy Algorithms 

 

226 

• N0 is the power spectral density of the additive white Gaussian noise (assumed to be 
constant over all subcarriers). 

3. Classical OFDM spectrum allocation approaches and problem formulation 
3.1 OFDM-FDMA approach 
In this approach, which uses FDMA in conjunction with OFDM, users are treated 
sequentially in time (Figure 3): for each user, subchannels are allocated one by one until the 
user transmission rate becomes at least equal to the target data rate Rk. In this strategy, 
subchannels are assigned to users without any consideration for the users channel state 
information. Subcarrier gains are only taken into account in the calculation of the users 
actual data rates while the transmission powers Pk,n are all equal to the same constant, 
independently from the subcarriers or the users. If we suppose that all users transmit at 
their capacity limit, the kth user’s total transmission rate, at a certain stage of the allocation 
process, can be written as:  

 
2

2

0

1
k

k ,n k ,n
k ,tot

n S

P HB
R log

BN N
N

∈

= +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑    

 
Fig. 3. Description of the iterative subcarrier allocation algorithm in OFDM-FDMA. 



Greedy Algorithms for Spectrum Management in OFDM Cognitive Systems - Applications to Video 
Streaming and Wireless Sensor Networks 

 

227 

3.2 OFDM-TDMA approach 
Classically, in an OFDM system using TDMA (Rohling & Grunheid, 1997), the spectrum 
bandwidth is entirely allocated to only one user during a certain period of time. The 
transmission frame is divided into a number of time slots equal to the number of users K. 
However, in order to permit a fair comparison with the optimized greedy approaches, and 
for the respect of spectrum etiquette (as explained in section 1), the user must only be 
assigned subcarriers that can actually increase its transmission rate. For this purpose, each 
step of the allocation algorithm consists (Figure 4) in assigning the user currently under 
consideration the best possible subcarrier, i.e. the subcarrier with the highest channel gain 
Hk,n. The subcarrier is then removed from the set of available subcarriers S, and power 
allocation is applied to the subcarriers so far allocated to the user (subcarriers in set Sk). This 
process is iterated until the user’s target rate is achieved, unless the set S is empty.  
 

 

Power allocation for user k on its 
so far attributed subcarriers 

,arg max
∉

=c k n
n S

n H

{ }
{ }

= ∪

= ∩

k k c
C

c

S S n

S S n

Estimation of , , ∀ ∈k n kP n S   

No

Yes ≠ ∅S

Target rate could not be reached: 
End the attribution process 

Yes
, >k tot kR R

2
, ,

, 2

0

log 1
∈

⎛ ⎞
⎜ ⎟

= +⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
k

k n k n
k tot

n S

P HBR
BN N
N

No

User target rate is reached: 
End the attribution process

 
Fig. 4. Subcarrier allocation for user k using OFDM-TDMA. 

As for the power allocation in OFDM-TDMA, it consists on a distribution of the total 
transmission power Pmax on the user k allocated subcarriers. In other words, { }k ,n kP , n S∈  
are to be determined in such a way to maximize the total transmission rate for user k, under 
the transmission power constraint: 



 Advances in Greedy Algorithms 

 

228 

{ }

2

2

0

1
k ,n k

k

k ,n k ,n

P ,n S n S

P HB
max log

BN N
N

∈
∈

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ,  

under the constaints: 
0k ,nP , k , n S≥ ∀ ∀ ∈  

k

n,k max
n S

P P
∈

≤∑  

It can be proven (Haykin, 2001; Cioffi, 2008) that the solution to this constrained 
optimization problem is: 

k

k ,n n k

n,k max
n S

P v , n S
P P

α

∈

+ = ∀ ∈⎧
⎪
⎨ =
⎪⎩
∑  

where α is a constant and 0
2n k

k ,n

N B / N
v , n S

H

⋅
= ∀ ∈ . 

An illustration of this solution is given in Figure 5 for the example of five subcarriers 
attributed to user k. 
 

Subcarrier index n 

Power

 
 

 
 
 

v1 

 
 
 
 

 
 

v3 

 
  
 

 
 
 
 

Pk,1 Pk,2 Pk,3 Pk,4

α

v2 v4 v5 

 
Fig. 5. Representation of the water-filling solution to the power allocation problem in 
OFDM-TDMA. 

This graphical interpretation clearly justifies the name of "water-filling" given to the power 
allocation technique. It can be seen that highly attenuated subcarriers (small Hk,n) will be 
allocated much less power than subcarriers with great amplitudes, therefore the 
transmission rate on those subcarrier will be much smaller than on others. In case vn is 
higher than α (ex: subcarrier 3), no power will be allocated to this subcarrier (i.e. 
corresponding data rate is null). 
In the sequel, we propose a gradual water-filling algorithm for the realization of power 
allocation. For this purpose, let: 
w the current waterline level, 
Ptot the total transmission power for the current waterline, 



Greedy Algorithms for Spectrum Management in OFDM Cognitive Systems - Applications to Video 
Streaming and Wireless Sensor Networks 

 

229 

Ptol the absolute tolerable error on the total transmission power, 
lk the number of subcarriers so far allocated to the user k (lk is the number of elements in the 
set Sk), and 
vn,min the vector having the smallest amplitude among the vectors n kv , n S∀ ∈ . 
At the beginning of the power allocation algorithm, the transmission powers Pk,n are all set 
to zero. Water-filling is performed in an iterative way (Figure 6) such that the absolute 
difference between the powers Ptot and Pmax does not exceed the tolerable error Ptol. The 
initialization of the waterline is chosen in such a way that, in case all vectors vn are equal, the 
waterline remains constant and the amount of power attributed to each user is Pmax / lk. 
 

Yes

Waterline initialization
n,min max kw v P / l= +

No

− >max tot tolP P P

End the waterfilling process: 
( ), max ,0 ,= − ∀ ∈k n n kP w v n S  

( )max ,0
∈

= −∑
k

tot n
n S

P w v

−
= + max tot

k

P P
w w

l

( )max ,0
∈

= −∑
k

tot n
n S

P w v

 
Fig. 6. Water-filling technique for power allocation in OFDM-TDMA. 

3.3 Disadvantages of the classical approaches and formulation of the optimization 
problem 
By analyzing the OFDM-FDMA assignment, we notice that a major drawback of this 
technique is that a subcarrier n can be assigned to a certain user k1 while there exists a user k2 
for whom the attribution of this subcarrier would be much more profitable (

2 1k ,n k ,nH H> ). 
In other words, the additional user rate obtained by the attribution of subcarrier n to user k1 
can be negligible compared to the one that could be achieved by its attribution to user k2. In 
our attempt to reach each user’s target rate, a large number of subcarriers and a high 
transmission power will be needed. Furthermore, since users are processed in order, 
subsequent ones will have smaller chances to reach their target rate. This problem will 
appear more often as the users target rates increase.  
As for the OFDM-TDMA attribution scheme, one of its disadvantages is that each user 
actually transmits data at a rate of K⋅Rk [bit/s] during one time slot of the transmission 



 Advances in Greedy Algorithms 

 

230 

frame and remains inactive during the other time slots. This effect can be disturbing in the 
case of real-time applications because of the high latency, especially when the number of 
users increases. Another important disadvantage is that the necessary number of sub-
carriers at a certain moment can reach important values, particularly for high user rates or 
short time slot durations. Therefore, the risk of failing to satisfy all users target rates is very 
high. 
These disadvantages of the OFDM-FDMA and OFDM-TDMA assignment techniques can be 
greatly alleviated if the subcarriers were allocated to the users in such a way to take into 
account the channel states of all users. Therefore, the prohibitive spectrum usage 
necessitated by those simple techniques, especially for important target rates, can be 
overcome by applying a dynamic assignment strategy that aims at minimizing the total 
number of allocated subcarriers under the constraints of the target data rates and the 
maximum allowed transmission power.  
The corresponding optimization problem can be formulated as follows:  

( )
1n ,k k

K

k
P ,S k

min card S
=
∑   

subject to the following constraints: 

2

2

0

1
k

k ,n k ,n
k

n S

P HB
log R , k

BN N
N

∈

+ = ∀

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑   

1 k

K

n ,k max
k n S

P P
= ∈

≤∑∑                               

0k ,nP , k , n S≥ ∀ ∀ ∈                              

i j
i j

S S
≠

= ∅∩      

{ }
1

1 2
K

k
k

S , ,...N
=

⊆∪     

The first constraint specifies the target transmission rate per user. The second and third 
conditions specify the power constraints. The last two conditions specify the maximum 
number of allocated subcarriers and that each subcarrier can be allocated to only one user at 
a certain time. 
We can clearly note that the optimization problem formulated above is a combinatorial 
assignment problem since set selection is involved. Therefore, it does not form a convex 
problem. In the literature, several attempts have been made to transform it into a convex 
optimization problem. In (Kim et al., 2004), specifications were relaxed by introducing a new 
parameter representing a portion of a subchannel assigned to a user. In (Wong et al., 1999), 
time sharing of a subcarrier among different users is considered. In either case, the solution 
obtained constitutes a lower bound to the combinatorial optimization problem. However, a 
general formulation of this solution is not obvious and since it only provides a lower bound, 
it is preferable to strive after a quasi-optimal solution to the real assignment problem. 



Greedy Algorithms for Spectrum Management in OFDM Cognitive Systems - Applications to Video 
Streaming and Wireless Sensor Networks 

 

231 

In the following, we describe several possible strategies to determine a quasi-optimal 
solution of the combinatorial optimization problem, using a greedy approach. 

4. Greedy technique for the optimization of spectrum resources using the 
Munkres algorithm (GOSM) 
In order to determine the best system configuration for the optimization problem presented 
in section 3, we came out with a greedy iterative algorithm that determines the best 
spectrum allocation scheme by applying a separate optimization algorithm that assigns the 
subcarriers to the users in such a way to minimize a cost function. This assignment is then 
followed by power allocation. The optimization algorithm is the well-known Munkres 
assignment algorithm (Munkres, 1957), also known by the Hungarian method. In our 
application case, the cost function is the sum of the opposite channel amplitudes -Hk,n and it 
is applied independently from the users actual transmission rates. 
 

At a certain stage of the optimization algorithm, we consider: 
U: the set of users whose target data rates have not been reached so far, 
kU: the number of users in U, 
SU: the set of subcarriers attributed to the users in the set U, 
lU: the number of subcarriers in SU, 
Prem: the remaining allowed transmission power after a user has reached its target rate, 
Ptot: the total transmission power for the current waterline, corresponding to the users in the 
set U, 
Ptol: the absolute tolerable error on the total transmission power, 
Rtol: the required precision on the users target data rates. 
 

At the beginning of the greedy channel allocation, the transmission powers Pk,n are all 
initialized to zero and Prem is initialized to Pmax. 
Our proposed greedy iterative algorithm (Figure 7) can be described as follows:  
In each iteration, the Munkres algorithm is used to allocate a subcarrier nk to each user k that 
has not reached so far its target data rate Rk (users in the set U). The allocated subcarriers are 
removed from the set S. Then, water-filling is applied on the allocated subcarriers, using the 
available remaining power Prem. The water-filling is performed by taking into account only 
users in the set U. After water-filling, the transmission power is estimated on all allocated 
subcarriers as well as the actual total transmission rate Rk,tot for each user k in the set U. If 
Rk,tot is higher than the target rate Rk, the transmission power on the allocated subcarrier for 
user k with the least channel amplitude has to be reduced in such a way to adjust the total 
rate to the exact target rate. Finally, user k is removed from U and the remaining power Prem 
is updated. The algorithm is iterated with the remaining users, unless the set S of available 
subcarriers is empty. 
By analyzing this allocation technique, it can be seen that, in each iteration, a local optimum 
is chosen in the hope of reaching the global optimum at the output of the overall algorithm. 
Therefore, it is indeed a greedy allocation algorithm.  
As for the adjustment of the transmission rate for user k before its removal from the set U, it 
is realized using the following equations: 

k

k ,n
n S

m arg min H
∈

=  



 Advances in Greedy Algorithms 

 

232 

2 1 k ,m
m k ,tot

m

PBR R log
N v

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 

( )( )2 1k mR R .N / B
k ,m mP .v−= −  

Finally, water-filling is performed in the same manner as in Figure 6 except that Pmax is 
replaced by Prem, lk by lU, and Sk by SU. 
 

 

Waterfilling on users k ∈ U 
constrained by: − ≤tot rem tolP P P

{ }
{ }

,

,

k k k
C

k

S S n k U

S S n k U

= ∪ ∀ ∈

= ∩ ∈

Estimate , , ,∀ ∈ ∈k n UP n S k U  

No

Yes
{ } { }1.. ≠ ∅∩ ∪ k

k

c
N S

The target rates could not be reached: 
End the attribution process 

U = {1, 2, …, K}

Yes

No
,k tot kR R>

,
, 2log 1 ,

k

k n
k tot

nn S

PBR k U
N v∈

⎛ ⎞
= + ∀ ∈⎜ ⎟

⎝ ⎠
∑

{ }CU U k= ∩

,
k

rem rem k n
n S

P P P
∈

= − ∑

,
, 2log 1 , 1,...,

∈

⎛ ⎞
= + =⎜ ⎟

⎝ ⎠
∑

k

k n
k tot

nn S

PBR k K
N v

Yes

( ),
1=

− >∑
K

k tot k tol
k

R R R No Target rates are 
reached: End the 

attribution process 

Ajust transmission rate
Rk,tot to the exact target Rk

Subcarriers 

User 1 

User 2 

User kU 

1 2 N3 

 

Munkres algorithm

(2)

(1)

(1) 

(2)

 
Fig. 7. Greedy iterative technique for dynamic spectrum allocation using the Munkres 
algorithm (GOSM). 

5. Enhanced greedy algorithm for spectrum optimization (EGAS) 
As it will be seen in section 7, the GOSM allocation technique has the disadvantage of 
attributing subchannels to the users without taking into account their actual transmission 
rates. For this reason, we propose the following enhanced greedy algorithm for dynamic 
spectrum allocation: 



Greedy Algorithms for Spectrum Management in OFDM Cognitive Systems - Applications to Video 
Streaming and Wireless Sensor Networks 

 

233 

Step 1:   start by identifying the user kc, whose actual total transmission rate is the farthest 
from its target data rate.  

( )c k k ,tot
k U

k arg max R R
∈

= − . 

Step 2:   attribute to this user the most favorable subcarrier nc. 

c
k

k

c k ,n
n S

n arg max H
∉

=
∪

. 

{ }
c ck k cS S n= ∪  

Step 3:   remove nc from the set S. 

{ }C
cS S n= ∩  

Step 4:   perform water-filling on the allocated subcarriers for all users in the set U, using the 
available remaining power Prem.  

Step 5:  estimate the transmission power on all allocated subcarriers as well as the actual 
total data rate for user kc (

ck ,totR ).  

Step 6:   Check if 
ck ,totR  exceeds the target rate

ckR . If yes, adjust the transmission power of 

user kc on the subcarrier with the least channel amplitude to reach the exact target 
rate 

ckR  (as described earlier in section 4) and go to Step 7. Otherwise, go to Step 8. 

Step 7:   Remove user kc from the set U and update the remaining power Prem. 
Step 8:  Evaluate all users' actual rates. End the attribution process in case the target rates 

have been reached with a precision Rtol. Otherwise, loop on Step 1, unless no more 
subcarriers are available (in this case, the attribution process has failed to satisfy the 
users target rates). 

6. Optimization of the EGAS algorithm by simulated annealing (SAS) 
In the aim of determining an optimal solution to the combinatorial problem presented in 
section 3.3, one can think of an exhaustive search that would constitute a lower bound to the 
cost function under consideration. Unfortunately, due to the large number of parameters 
and constraints involved in the optimization problem, such a strategy appears to be of an 
impractical use, especially when the ranges of the system variables (i.e. the number of 
subcarriers and users) increase. 
On the other side, in the greedy approaches we applied for resolving our optimization 
problem, the search can unfortunately get stuck in a local optimum, especially when the 
global optimum is hidden among many other poorer local optima. In order to overcome this 
difficulty, one possibility is to carry out the iterative process several times starting from 
different initial configurations. A similar strategy was applied in statistical mechanics 
(Metropolis et al., 1953) for determining the ground state of systems by a simulated 
annealing process. In (Kirkpatrick et al., 1983), it was shown how the analogy between 



 Advances in Greedy Algorithms 

 

234 

statistical mechanics and multivariate or combinatorial optimization can be exploited to 
resolve optimization problems of large scales.  
This technique, also known by the Metropolis algorithm, simulates an aggregation of atoms 
in equilibrium at a certain temperature. The cost function is the system energy E. In each 
step of the simulation algorithm, an atom is randomly selected and displaced. If the 
resulting change in the system energy ΔE is negative, the modification in the system 
configuration is accepted, and this new configuration is retained as the initial state of the 
following iteration. If ΔE is positive, the modification is accepted with probability Pr(ΔE) = 
exp(-ΔE/KBλ), where λ is the system temperature and KB the Boltzmann’s constant. 
Therefore, the system will evolve into a Boltzmann configuration.  
As for the temperature, it is used as a control parameter in the same unit as the cost 
function. When large, the control parameter allows the system to make transitions that 
would be improbable at low temperatures. Therefore, an annealing process is simulated by 
first “melting” the system and making coarse changes in the system configuration, and then 
gradually “freezing” the system by lowering the temperature to develop finer details until 
the optimal structure is attained.  
In this study, we applied the Metropolis algorithm subsequently to the EGAS procedure 
presented in section 5. The temperature parameter is gradually decreased throughout the 
iterations.  
In each iteration, a first step consists in a random selection of one of the three following 
possible actions: 
Action 1: We randomly select two users k1 and k2 and interchange two random subcarriers 
between the two users. Next, a water-filling is realized separately for each of the two users, 
on their allocated subcarriers. The water-filling procedure is constrained by the user’s target 
data rate and will be described in the sequel. 
Action 2: A randomly chosen subcarrier is removed from a random user k. Water-filling is 
then performed for k on its allocated subcarriers, with a constraint on its target rate. 
Action 3: A free subcarrier is randomly chosen and attributed to a random user k. Water-
filling is then performed for k on its allocated subcarriers, with a constraint on its target rate. 
The next step is to decide whether the action is accepted. For this purpose, we estimate the 

new total number of attributed subcarriers ( )
1

K

k

k

L card S
=

= ∑  as well as the total transmission 

power 
1 k

K

n ,k
k n S

P P
= ∈

= ∑∑ . The action is accepted only in the three following possible cases: 

Case 1: The total number of subcarriers L was decreased while the constraint on the total 
transmission power was still respected (P ≤ Pmax). 
Case 2: The total transmission power P was decreased while maintaining the same number 
of subcarriers L. 
Case 3: Neither the total number of subcarriers L nor the total transmission power P could 
be decreased. However, P ≤ Pmax. In this case, the action is accepted with probability Pr(ΔL) = 
exp(-ΔL/KBλ), where ΔL is the increase in the number of subcarriers. 
Note that when an action is accepted, the actual system configuration, i.e. the allocation 
scheme of the subcarriers to the users, is adopted as the initial condition for the subsequent 
iteration. Besides, due to the stochastic nature of this procedure, the algorithm has to be 
executed several times in order to increase the chance of finding a global optimum.  



Greedy Algorithms for Spectrum Management in OFDM Cognitive Systems - Applications to Video 
Streaming and Wireless Sensor Networks 

 

235 

As for the water-filling, it is constrained by the user data rate, instead of the available power 
as in section 3.2. It will be realized using a gradual dichotomy-based approach as described 
hereafter, where wstep is the current waterline step, lk the number of subcarriers allocated to a 
user k, etc. 
 

Yes

No
,k tot kR R≥

Yes

Waterline initialization
( ). / .

,min ,min2 1 . /k kR N l B
n n kw v v l= + −

w = w + wstep 

( ), max ,0 ,k n n kP w v n S= − ∀ ∈

,
, 2log 1

k

k n
k tot

nn S

PBR
N v∈

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

wstep = wstep / 2

No

,k tot k tolR R R− >

End the waterfilling process:
( ), max ,0 ,k n n kP w v n S= − ∀ ∈  

 
Fig. 8. Gradual dichotomy-based water-filling for the SAS algorithm. 

As it can be seen in Figure 8, the waterline is increased using a variable step such that the 
absolute difference between the achieved data rate and the user’s target rate does not exceed 
Rtol. As for the waterline initialization, it is chosen in such a way to satisfy the data rate 
constraint in the case where all subcarriers have the same SNR. This SNR’s value is taken as 
the highest one among all subcarriers. 

7. Performance analysis of the different allocation techniques 
7.1 Simulation conditions 
The performance of the allocation techniques for spectrum optimization were obtained by 
simulating a downlink OFDM system with a bandwidth B = 100 MHz and a maximum 
number of 1024 subcarriers per OFDM symbol. The simulations were conducted in the 
following conditions: 
• The number of users ranges from 10 to 60.  



 Advances in Greedy Algorithms 

 

236 

• The total permissible transmission power (by the base station) is Pmax = 1000 mW. 
• The noise power spectral density, constant over all subcarriers, is N0 = 4⋅10-18 Watt/Hz. 
• The absolute tolerable error on the user target rate is Rtol = 10-3 bit. 
• The absolute tolerable error on the total transmission power is Ptol = 10-5 mW. 
 

The transmission medium is a frequency-selective Rayleigh fading channel with a root mean 
square delay spread (RMS) of 150 or 500 nanoseconds. The users geographic locations are 
uniformly distributed in a 10 Km radius cell with a maximum path loss difference of 20 dB 
between users.  
The performance of the different methods is compared in terms of the average total number 
of allocated subcarriers. In the case of the OFDM-TDMA approach, we measured the 
median and the maximum of the necessary number of subcarriers (Median OFDM-TDMA 
and Max OFDM-TDMA). 
In Tables 1 and 2, we represent the total number of subcarriers for different user data rates, 
whereas in Table 3, the results are represented as a function of the number of users. In 
Tables 1, 2 and 3, we consider that the requested data rates are the same among users. 
However, in Table 4, the results are obtained for different target rates between users:  

Rk = R0 ⋅ 0.2 + 0.2 ⋅ (k-1), k = 1, ..., K,  
where R0 is chosen such that, for K = 20 users, the total transmission rate ranges from 48 to 
88 Mbit/s. 

7.2 Analysis of the practical results 
 
 

Rate (Mbit/s) 1 2 3 4 5 6 7 8 9 10 
OFDM-FDMA 234 420 529 737 852 - - - - - 
Max OFDM-TDMA 17 41 82 142 253 - - - - - 
Median OFDM-TDMA 13 34 61 94 139 221 501 - - - 
GOSM 19 36 58 81 111 151 206 249 - - 
EGAS 19 35 56 79 109 146 193 224 312 360 
SAS 16 33 55 78 108 144 192 221 307 355 

Table 1. Total number of subcarriers necessary to achieve different users data rates for K = 
10, channel RMS = 150 ns. 
 

Rate (Mbit/s) 1 2 3 4 5 6 
OFDM-FDMA 362 689 - - - - 
Max OFDM-TDMA 43 144 - - - - 
Median OFDM-TDMA 33 89 193 - - - 
GOSM 39 81 137 225 350 - 
EGAS 40 78 134 214 306 414 
SAS 38 76 130 211 303 407 

Table 2. Total number of subcarriers necessary to achieve different users data rates for K = 
10, channel RMS = 500 ns. 



Greedy Algorithms for Spectrum Management in OFDM Cognitive Systems - Applications to Video 
Streaming and Wireless Sensor Networks 

 

237 

Number of users 10 20 30 40 50 60 
OFDM-FDMA 196 455 633 799 - - 
Max OFDM-TDMA 16 44 87 148 334 - 
Median OFDM-TDMA 14 34 57 89 139 205 
GOSM 19 40 66 95 131 164 
EGAS 17 39 71 121 147 177 
SAS 16 37 57 88 123 153 

Table 3. Total number of subcarriers necessary to achieve a data rate of 1 Mbit/s for 
different numbers of users. 

Total Rate (Mbit/s) 48 58 68 78 88 
Median OFDM-TDMA 106 148 268 334 - 
GOSM 109 143 189 248 - 
EGAS 106 134 169 211 245 
SAS 103 131 167 208 243 

Table 4. Total number of subcarriers as a function of the total transmission rates for the case 
of different classes of services between users (K = 20). 

We can see that our greedy strategies for spectrum optimization clearly outperform the 
OFDM-FDMA approach in both cases of the channel RMS. For RMS = 150 ns, starting from 
Rk = 6 Mbit/s, the OFDM-FDMA technique fails to satisfy the users target rates under the 
transmission power constraint. At Rk = 5 Mbit/s and K = 10, the gain of the three iterative 
techniques (GOSM, EGAS, and SAS) towards the OFDM-FDMA reaches almost 750 
subcarriers (more than 70 % of the available subcarriers). In order to allow a fair comparison, 
we also tested the performance of the OFDM-FDMA technique in case the subchannels are 
randomly allocated to users in order to avoid the attribution of several neighboring subcarriers 
in deep fade to the same user. We noticed that the interleaved OFMA-FDMA technique 
outperforms the non-interleaved OFDM-FDMA by less than 10 % of the total number of 
subcarriers. Besides, when the channel RMS increases to 500 ns, both the OFDM-FDMA and 
OFDM-TDMA techniques fail to satisfy users starting from Rk = 3 Mbit/s.  
On the other hand, at Rk = 5 Mbit/s and K = 10, the gain of our greedy techniques is 
approximately 300 towards the Median OFDM-TDMA. Starting from 9 Mbit/s at RMS = 150 
ns and 6 Mbit/s at RMS = 500 ns, even the GOSM technique fails to determine a possible 
solution for the allocation problem, whereas the EGAS continues to perform well and presents 
similar results to the quasi-optimal SAS. In fact, the SAS technique permits an amelioration of 
the system performance, especially when the number of users is important (Tabe 3). 
When the users present different data rates, the EGAS approach outperforms the GOSM, 
especially when the total transmission rate increases. Indeed, as explained in section 5, the 
EGAS greedy algorithm allows the user whose actual transmission rate is far from its target 
rate the “right to choose” a favorable subcarrier. Whereas in the GOSM method, all users 
that have not reached their target rate are allocated a subcarrier at each iteration, regardless 
of their actual transmission rate, even the ones that are close to reaching their target. This 
will lead to a higher global amount of allocated subcarriers. 
However, as the number of users increases, the GOSM tends to present a slightly better 
performance than the EGAS (Table 3). This is due to the fact that when the number of 



 Advances in Greedy Algorithms 

 

238 

subcarriers per user decreases, there is a higher chance that certain subcarriers are favorable to 
more than one user. In these conditions, the application of an optimal assignment of the 
subcarriers by the Munkres algorithm can improve the overall system throughput. As the 
number of users approaches N, the performance of the GOSM algorithm will tend to be 
optimal.  
As a conclusion to this comparative study, the GOSM technique has the advantage of 
optimizing the subcarriers allocation between users; however, it does not take into account 
the users actual transmission rates in the optimization process. Not only does the EGAS take 
these rates into account, but it also presents a much more affordable complexity towards the 
GOSM, as will be proven in section 7.3.  

7.3 Analysis of the algorithms complexity 
Most of the previously presented algorithms for spectrum allocation largely use the water-
filling block which constitutes one of the most constraining part in terms of complexity. 
However, the direct estimation of the complexity of the iterative water-filling procedure 
presented in section 3.2 is rather impractical, mainly because of its dependence on the 
tolerance parameter Ptol. For this reason, we will replace it, in this part, by the exact water-
filling distribution that can be derived as the solution of a linear system of N+1 equations: 

1k ,n nP v , n ,...,Nα+ = =  

1

N

k ,n max
n

P P
=

=∑  

with N+1 unknowns (Pk,n and ). 
A simple algorithm was proposed in (Cioffi, 2008) to solve this system. It is summarized in 
Figure 9. 
 

 
Fig. 9. Estimation of the water-filling solution for power allocation. 
In fact, the sorting step is performed only once. Therefore, the water-filling algorithm 
complexity is O(N·log(N)) if the sorting step is taken into account and O(N) if not. The latter 
case will be considered in the sequel. 



Greedy Algorithms for Spectrum Management in OFDM Cognitive Systems - Applications to Video 
Streaming and Wireless Sensor Networks 

 

239 

Now that the water-filling complexity has been studied, we can proceed with the 
complexity of all spectrum allocation algorithms.  
First of all, OFDM-FDMA is basically a loop on each subcarrier; hence, its complexity is O(N). 
OFDM-TDMA is a loop on each subcarrier, with a water-filling power allocation each time a 
new subcarrier is allocated to the user. The number of subcarriers involved in the water-
filling procedure is successively 1, 2, …, N. The complexity is therefore O(N2). However, 
since the algorithm must be run sequentially for each user, the total complexity of OFDM-
TDMA is O(K·N2). 
On the other hand, the complexity of the GOSM technique is dominated by the Munkres 
assignment algorithm which has a complexity O((min(N,K))2·max(N,K)) (Burgeois, 1971). It 
assigns K subcarriers at each stage. Since K<N,  the total complexity of GOSM is 
O(N/K·K2·N)=O(K·N2). 
As for the EGAS technique, a new power allocation distribution (i.e. a water-filling step) is 
realized for each allocated subcarrier, leading to a total complexity of O(N2). 
Finally, each iteration of the SAS algorithm consists of at least a water-filling step. Therefore, 
its complexity is approximately O(niter·N), where niter is the number of iterations in the SAS 
algorithm. 
Since in general niter >> K·N, it can be seen from Table 5 that the OFDM-TDMA and GOSM 
approaches present a similar complexity, which is much smaller than the one for the SAS 
algorithm, but higher than that of the EGAS approach. 
 

Algorithm OFDM-FDMA OFDM-TDMA GOSM EGAS SAS 
Complexity O(N) O(K·N2) O(K·N2) O(N2) O(niter·N) 

Table 5. Complexity of the different spectrum allocation approaches. 

8. Applications of the greedy spectrum allocation approach in two case 
studies 
8.1 Optimization of wireless sensors' autonomies by greedy spectrum allocation in 
uplink transmission 
Wireless Sensor Networks have lately gained a great deal of attention in the areas of video 
transmission, surveillance, remote monitoring, etc. In these applications, a certain number of 
sensors transmit data simultaneously, on a shared medium, to a central base station. 
Therefore, the terminals batteries are highly solicited by the multimedia functionalities, the 
radio-frequency part, the real-time execution of increasingly complex algorithms and tasks, 
etc. Hence, stringent requirements have been put on the wireless terminal battery in order to 
offer a proper autonomy.  
Efficient techniques of dynamic spectrum allocation can help improve the autonomy of 
wireless terminals, especially in the case of the uplink transmission, where the power 
amplifier particularly solicits the sensor’s battery. For this reason, we propose to apply a 
greedy approach, similar to the one used in the downlink transmission, to determine the 
best assignment of subchannels in such a way to maximize the mobiles autonomies by 
efficiently managing their power consumption. This optimization will enhance the network 
lifetime defined as the duration of communication between mobiles before a failure occurs 
due to battery depletion. 
Let: 
Pmax the maximum allowed power per user. 
Δt the time duration over which the subchannel attribution scheme is valid (the 
transmission channel response is assumed to be constant over Δt) 



 Advances in Greedy Algorithms 

 

240 

Ek the battery level for the kth terminal. 
Pk,n the power transmitted by user k on the subcarrier n. 
The optimization problem is the following: 
Minimization of the power consumption of the least privileged user, i.e. the user suffering 
from the weakest initial battery level or the poorest channel conditions: 

n ,k k
k

k n,k
P ,S k n S

max min E t P
∈

− Δ
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑  

 

under the following constraints: 

2

2

0

1
k

k ,n k ,n
k

n S

P HB
log R , k

BN N
N

∈

+ = ∀

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑    

k

n ,k max
n S

P P , k
∈

≤ ∀∑      

0k ,nP , k , n S≥ ∀ ∀ ∈      

i j
i j

S S
≠

= ∅∩       

{ }
1

1 2
K

k
k

S , ,...N
=

⊆∪      

A greedy solution for this optimization problem is summarized in Figure 10.   
 

 
Fig. 10. Description of the greedy subcarrier allocation algorithm in OFDM uplink 
transmission. 



Greedy Algorithms for Spectrum Management in OFDM Cognitive Systems - Applications to Video 
Streaming and Wireless Sensor Networks 

 

241 

The proposed algorithm can be described as follows:  
While the set S of available subcarriers is non empty, we first identify the user kc with the 
highest necessary transmission power. If all users required powers respect the power 
constraint, kc is then the user with the weakest battery level. In other words, the power 
constraint has a higher priority over the optimization of the users battery levels. The second 
step consists in identifying the most interesting subcarrier for user kc, among all available 
subcarriers, and assigning it to user kc. Finally, we determine the power allocation scheme 
for user kc in order to reach its target bit rate with an absolute tolerable error Rtol. The power 
allocation for user kc is realized by performing water-filling on its so far allocated 
subcarriers. This water-filling is performed using the gradual dichotomy-based approach 
described in section 6. 
In (Farah & Marx, 2007), we propose several enhanced versions of this greedy uplink 
spectrum allocation approach. We also prove the high superiority of the greedy solution to 
the classical OFDM-FDMA approach. The gain in the power consumption of the least 
privileged user is considerable, especially when the number of sensors increases. 

8.2 Multiuser video streaming using greedy dynamic channel allocation 
Video streaming on demand is becoming a popular application in new generations of 
wireless and mobile systems. However, due to user mobility and random channel 
variations, existing networks cannot provide end-to-end quality of service (QoS) to a large 
number of users using traditional approaches of spectrum allocation. In a former work 
(Yaacoub et al., 2006; 2007), we showed how optimal rate allocation can improve the overall 
performance of a multiuser streaming system where a certain number of mobile users, 
sharing a certain data transmission rate, request different video sequences from a streaming 
server. This optimization is achieved by unequal error protection (UEP) of the compressed 
video streams using variable channel coding, in such a way to allocate appropriate 
transmission rates to users experiencing different channel conditions. This study was 
conducted with a limited number of users and by assuming Frequency Division 
Multiplexing of the different users. The results showed a significant improvement in the 
overall system performance compared to a traditional system where all users are allocated 
equal channel resources. 
In the following, we propose a framework for the optimal distribution of channel resources 
and transmission power among a large number K of users downloading video sequences 
from a streaming server, in the context of an OFDM cognitive system. The application of our 
EGAS allocation approach will permit an optimization of the necessary total bandwidth as 
well as the users decoding quality. 
All video sequences are supposed to be compressed and stored on the streaming server. 
Each sequence is divided in a certain number of Group Of Pictures (GOP), with an IPPP…P 
structure (i.e. a GOP consists of an intra-coded I frame followed by a fixed number of predicted 
P frames). We assume H.264 (ITU-T & ISO/IEC JTC1, 2003) video coding with an error-
concealment strategy described as follows: if an error occurs in a decoded frame, this frame and 
all the following ones in the same GOP are replaced by the last correctly decoded frame. 
As for UEP, it is realized by applying a set of different puncturing schemes (Rowitch & 
Milstein, 2000) to the same channel coder output, in such a way to vary the amount of 
redundancy bits used to protect different parts of the video stream. This amount will 
depend on the level of video motion in each part of the stream, as well as on the variable 
transmission channel conditions.  



 Advances in Greedy Algorithms 

 

242 

Let RCtot,k be the total source coding rate corresponding to the GOP of a user k. RCtot,k of each 
user is proportional to the size of the H264-compressed GOP, and therefore to the level of 
motion in this GOP.  
At each stage of the greedy allocation algorithm (Figure 11) , the user kc whose actual rate is 
the farthest from its target rate 

cCtot ,kR  is first identified. This user is attributed the most 

favorable subcarrier. Then, water-filling is performed on all so-far allocated subcarriers, as 
in section 5, for users who have not already reached their target rates (i.e. users from the set  
 

No

Yes

No

Yes

Inform users in U to perform error 
concealment on the rest of their current GOP

Users from the set U

Identify user kc with the highest priority 

Allocate the best subcarrier to user kc

Distribute power by waterfilling on 
subcarriers allocated to users in the set U

Estimate transmission rates RTi,k on 
subcarriers allocated to users in U 

Estimate the channel coding rate ri,k for each subcarrier

Estimate the source coding rate RCi,k for each subcarrier

Estimate Ci,k
i

R∑ for each user

Ci,k Ctot ,k
i

R R=∑ Remove k from the set U and 
estimate the remaining power 

Is the remaining 
power too low?

 
Fig. 11. Greedy channel allocation algorithm for multiuser video streaming in an OFDM 
cognitive system. 

U). After water-filling, the actual transmission rate RTi,k of each user k is estimated on each of 
its allocated subcarriers i. This data rate encloses the source coding rate Ci,kR of the GOP 

part of user k transmitted over the ith subcarrier of user k, as well as the channel coding rate 
ri,k (ri,kj <1) necessary to achieve an almost correct decoding of the coded stream transmitted 
on this subcarrier (for ex, with a decoding Bit Error Rate of 10-6):  



Greedy Algorithms for Spectrum Management in OFDM Cognitive Systems - Applications to Video 
Streaming and Wireless Sensor Networks 

 

243 

Ti ,k Ci ,k i ,kR R / r= . 

Note that ri,k depends on the subcarrier i transmission power, on the noise power spectral 
density N0, and on the subcarrier attenuation Hi,k. It can be obtained using pre-determined 
performance curves of the particular channel coding scheme in use.  
Therefore: Ci,k Ti,k i ,kR R r= ⋅ .  
A new iteration then begins by identifying the new user kc such that: 

c Ctot ,k Ci,k
k U i

k arg max R R
∈

= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ . Note that in the first iteration: ( )c Ctot ,k
k U

k arg max R
∈

= . 

At the end of the iterative process, each user will have his GOP partitioned over a certain 
number of subcarriers. Besides, the protection level of each part against transmission errors 
is realized according to the channel state of each allocated subcarrier, thus achieving 
Unequal Error Protection of the user downloaded stream. Indeed, the first frames in each 
user GOP will be sent on the best subcarriers (subcarriers with the highest amplitudes), 
whereas the last ones will be sent on more attenuated subcarriers, but with a higher level of 
protection. Moreover, users who are treated at the end correspond to those whose GOP 
contains a low level of motion (i.e. users with a small RCtot,k). It can happen that, before the 
end of the iterative process, the remaining transmission power (distributed by water-filling) 
becomes insufficient to insure an acceptable error-protection of the last frames of a few 
users. In this case, the remaining power will be distributed on some of those frames and 
users who where not able to complete the download of their GOP are informed by the base 
station to perform error concealment on the remaining part of their GOP (i.e. replace the last 
few frames in the GOP by the last correctly received frame).  

9. Conclusion 
In this chapter, we proposed several greedy approaches for the optimization of spectral 
resources in a multiuser OFDM system. Through an optimal subcarrier allocation scheme, 
the total amount of occupied bandwidth can be decreased in the downlink transmission, 
while ensuring a certain quality of service for a large number of users. Our simulations 
show that our approaches permit considerable gains towards classical assignment methods 
based on either FDMA or TDMA techniques. In fact, with our enhanced greedy subcarrier 
allocation technique, the risk of failing to satisfy the users rate constraints is weak compared 
to that of the other techniques, especially when the users target rates increase. The achieved 
performance is almost similar to the one obtained with a quasi-optimum technique based on 
simulated annealing. However, the complexity of our proposed iterative algorithms is much 
lower than that of the Metropolis algorithm and certainly lower than the exhaustive 
exploration. Several application cases can benefit from the application of our greedy 
iterative approaches for spectrum allocation. For this reason, we proposed two general 
frameworks for the optimization of power consumption in a wireless sensor network and 
for the optimization of the decoding quality in the context of multiuser video streaming. 

10. References 
Burgeios F. & Lassalle J. C. (1971). An extension of Munkres algorithm for the assignment 

problem to rectangular matrices, Commun. of the ACM, vol. 14, pp. 802, 1971.   



 Advances in Greedy Algorithms 

 

244 

Cioffi J. M. (2008). Advanced Digital Communications, Available at: 
http://www.stanford.edu/class/ee379c. 

Farah J. & Marx F. (2007). Combining Strategies for the Optimization of Resource Allocation 
in a Wireless Multiuser OFDM System, AEU International Journal of Electronics and 
Communications, Elsevier, 2007, Vol. 61, 2007, pp. 665-677. 

FCC NOI and NPRM (2003). Establishment of an Interference Temperature Metric to 
Quantify and Manage Interference, FCC-03-289, November 2003. 

FCC RO (2003). Promoting Efficient Use of Spectrum through Elimination of Barriers to the 
Development of Secondary Markets, FCC 00-230, October 2003. 

Haykin S. (2001), Communication Systems, John Wiley and Sons, USA, 2001. 
IEEE Standard 802.11a-1999, part 11. Wireless LAN Medium Access Control and Physical 

Layer Specifications. 
ITU-T & ISO/IEC JTC1 (2003), Advanced Video Coding for Generic Audiovisual Services, 

ITU-T Recommendation H.264 – ISO/IEC 14496-10 AVC, 2003. 
Kim K., Kim H., Han Y., and Kim S. L. (2004). Iterative and Greedy Resource Allocation in 

an Uplink OFDMA System, Proc. International Symposium on Personal, Indoor and 
Mobile Radio Communications, 2004, p. 2377-81. 

Kirkpatrick S., Gelatt C.D., and Vecchi M.P. (1983). Optimization by simulated annealing, 
Science, May 1983, vol. 220, no. 4598, p. 671-80. 

Kivanc D., Li G., and Liu H. (2003). Computationally Efficient Bandwidth Allocation and 
Power Control for OFDMA, IEEE Trans. Wireless Communications, vol. 2, no. 6, 
November 2003, p. 1150-58.  

Metropolis N., Rosenbluth A., Rosenbluth M., Teller A., and Teller E. (1953). Equations of state 
calculations by fast computing machines, J. Chem. Phys., Vol. 21, 1953, pp. 1087-91. 

Munkres J.R. (1957). Algorithms for the assignment and transportation problems, J. Soc. 
Indust. Appl. Math., vol. 5, 1957, p. 32-8. 

Rhee, W. & Cioffi , J. (2000). Increase in capacity of multiuser OFDM system using dynamic 
subchannel allocation, Proc. Vehicular Technology Conference, 2000, p. 1085-89. 

Rohling H. & Grunheid R. (1997). Performance Comparison of Different Multiple Access 
Schemes for the Downlink of an OFDM Communication System, Proc. Vehicular 
Technology Conference, 1997, p. 1365-9. 

Rowitch D.N. & Milstein L.B. (2000). On the performance of hybrid FEC/ARQ systems 
using rate compatible punctured turbo (RCPT) codes, IEEE Transactions on 
Communications, pp. 948-959, Vol. 48, June 2000. 

Toufik I. & Knopp R. (2004). Channel allocation algorithms for multi-carrier systems, Proc. 
IEEE Vehicular Technology Conference, September 2004, vol. 2, p. 1129-33. 

Wong C. Y., Cheng R. S., Ben Letaief K., and Murch R. D. (1999). Multiuser OFDM with 
Adaptive Subcarrier, Bit, and Power Allocation, IEEE Journal on Selected Areas in 
Communications, vol. 17, no. 10, October 1999, p. 1747-58. 

Yaacoub C., Farah J., Rachkidy N., Marx F., Pesquet-Popescu B. (2006). Dynamic RCPT-
Based Cross-Layer Optimization for Multi-User H.264 Video Streaming, Proc. of 2nd 
International Computer Engineering Conference Engineering the Information Society, 
ICENCO'2006, December 2006, Cairo, Egypt, pp. 65-70. 

Yaacoub C., Farah J., Rachkidy N., Pesquet-Popescu B. (2007). A Cross-Layer Approach for 
Dynamic Rate Allocation in H.264 Multi-User Video Streaming, Proc. of the 14th 
IEEE International Conference on Electronics, Circuits and Systems, ICECS 2007, 
Morocco, December 2007, pp.1244-1247. 



13 

Greedy Algorithms in  
Survivable Optical Networks 

Xiaofei Cheng 
Institute for Infocomm Research (I2R)  

Singapore 

1. Introduction 
Greedy algorithm is a simple and straightforward heuristic algorithm which is usually used 
to solve optimization problems. It has been widely applied in communication networks. In 
this chapter, we focus on greedy algorithm and its applications in survivable optical 
networks. After introducing basic concept and design method of greedy algorithm, we build 
up a mathematic model and design a greedy algorithm to solve backup resource reservation 
problems for protection against multiple-link failures in survivable optical networks. The 
design of the greedy algorithm is introduced in detail. Computational complexity and 
performance of the greedy algorithm are analyzed. Advances in greedy algorithms are 
discussed.  

2. Optimization problem 
An optimization problem is a problem in which the object is to find, not just a solution, but 
the best solution from all feasible solutions. More formally, optimization problem refers to 
study of problems and find a solution which has the minimum or maximum objective 
function value by systematically choosing the values of real or integer variables within a 
feasible region while satisfying all the constraints. Optimization problems are made up of 
three basic ingredients: (a) an objective function which the object is to minimize or 
maximize; (b) a set of variables which affect the value of the objective function; (c) a set of 
constraints that allow the variables to take on certain values but exclude others. Constraints 
are sometime not necessary. Some optimization problems are unconstrained. However, 
most of optimization problems, in practice, do have some constraints. In mathematics, the 
optimization problem can be represented as follows: 

min ( ) max ( )f x or f x  

Subject to:  g(x) ≥0 

x ∈ D 

where f(x) is the objective function. g(x) represents constraint functions and often specified 
by a set of constraints, equalities or inequalities that the variable x has to satisfy. D is the 



 Advances in Greedy Algorithms 

 

246 

feasible region or search space. Typically, D is some subset of the Euclidean space and is a 
set with limited elements. The elements of D are called candidate solution or feasible 
solution. Such a formulation is an optimization problem and the feasible solution that 
minimizes or maximizes the objective function is the optimal solution. 

3. Advanced algorithms 
We can get the optimal solution by enumerating all possible candidate solutions and 
comparing the value of objective function. However, it is time-consuming and the 
computational time is sometime unacceptable for complicated optimization problems. When 
the general methods are not available to find the optimal solution in an acceptable 
computational time, advanced algorithms are required to solve these problems.  
Two fundamental goals are needed to be considered to design advanced algorithms: (a) 
running time; (b) optimal solution quality. Heuristic algorithm refers to an algorithm that is 
constructed by intuition or prior experiences and the heuristic algorithm abandons one or 
both of these goals. For example, some heuristic algorithms give up finding the optimal 
solution for an improvement in run time. Advanced algorithms belong to heuristic 
algorithm. Recently, advanced algorithms develop very quickly. These advanced algorithms 
include tabu search, simulated annealing, genetic algorithms, neural networks algorithms, 
greedy algorithm, etc. Among these advanced algorithms, greedy algorithms are used to 
solve optimization problems and sometimes work very well. Greedy algorithms are very 
simple and straightforward. They are widely used as heuristic algorithms and sometimes 
are designed to embed into other heuristic algorithms to solve the optimization problem due 
to its rapid calculation speed and acceptable solution quality.  

4. Greedy algorithm 
Greedy algorithm is a heuristic algorithm which can be used to solve optimization 
problems. The principle of greedy algorithm is to recursively constructe a set of objectives 
and makes the choice that is the best at each step. It is a step-by-step recursive method for 
solving optimization problems. The basic idea behind greedy algorithms is to build large 
solutions up from smaller ones while keeping only the best immediate or local solution they 
find as they go along. That is why we call “Greedy”. Greedy algorithm works in phases. At 
each phase, a decision is made that appears to be the best at the step, without regard for 
future consequences. Generally, this means that some local optimum is chosen whereas this 
will not lead to globe optimum at the end of the algorithm. A greedy algorithm sometime 
can find the overall or globally optimal solution at terminate for some optimization 
problems. It is because a locally optimal choice leads to a globally optimal solution. 
However, it does not mean that is always yield optimal solutions. In most cases, it finds less-
than-optimal solutions and produces a suboptimal solution. Even more, many optimization 
problems cannot be solved correctly by greedy algorithms. However, the optimal solution is 
not always required for some optimization problems in practices. In these cases, simple and 
fast greedy algorithms are always good algorithms which are used to generate approximate 
answers, rather than using the more complicated algorithms generally required generating 
an exact answer. 
Greedy algorithms have many advantages and thus are very attractive. The greedy 
algorithms employ simple strategies that are simple to implement and require minimal 



Greedy Algorithms in Survivable Optical Networks 

 

247 

amount of resources. They are fast and generally linear to quadratic and require little extra 
memory. They are shortsighted in their approach in the sense that they take decisions on the 
basis of information at hand without worrying about the effect these decisions may have in 
the future. They are easy to invent, easy to be implemented and most of the time quite 
efficient. Even when greedy algorithms do not produce the optimal solution, they often 
provide fast heuristics (non-optimal solution), and are often used in finding good 
approximations. More over, the greedy algorithm can be designed to embed into other 
heuristic algorithms. In such cases the greedy method is frequently the basis of other 
heuristic approaches. Greedy algorithms have been widely applied to solve optimization 
problems in communications networks, e.g., Dijkstra's algorithm for finding the shortest 
path; Kruskal’s algorithm for finding a minimum-cost spanning tree and Prim’s algorithm 
for finding a minimum-cost spanning tree, etc. Dynamic programming is a powerful 
technique, but it often leads to algorithms with higher than desired running times. 

5. Survivability in optical communication networks 
Optical communication networks are high-capacity telecommunications networks which 
use fiber as transmission media to increase transmission distance and make use of 
wavelength-division multiplexing (WDM) technologies to increase the network capacity. 
Optical communication networks can provide routing, grooming, and restoration 
capabilities at the wavelength level. With the explosive growth of the Internet and the 
emergence of new services, optical communication networks are being rapidly deployed to 
satisfy the high-speed transport capacity demand economically. Optical communication 
networks have become the primary transport networks. Recently, optical communication 
network employing dense wavelength division multiplexing (DWDM) technology has 
currently harnessed several Terabits/s bandwidths into one fiber. As the size and capacity 
of transport network increase rapidly, any failure in the transport network will result in a 
significant loss of data and service. Therefore, survivability for high-speed communication 
networks becomes critical. In following section, we will discuss the greedy algorithm 
applications in survivable optical networks for protection against multiple-link failure [1]. 

6. Greedy algorithm in multiple-link failure protection in survivable optical 
networks 
In a survivable optical networks, we model the network as a graph G (N, L), where N and L 
are the set of nodes and the set of links respectively. A link in the graph G represents 
bidirectional fiber between two nodes. For each link, set the cost of the link equals to the link 
distance. F is the number of simultaneous link failures. In order to provide 100% guarantee 
for dynamic traffic, when a new connection request arrives at an ingress node, the ingress 
node would choose a working path (WP) and F link-disjoint backup paths (BP) between 
itself and the intended egress node from a pre-computed routing table. Let k denote the 
arrival sequence of a connection and wk denote the bandwidth requirement of the kth 
connection. We make use of the following notations to describe the problem and the 
proposed solution [1, 2].  

'eA :  Set of connections whose working paths traverse link e. 

eA :  Total bandwidth of all connections in A’e. 



 Advances in Greedy Algorithms 

 

248 

'eB :  Set of connections whose backup paths traverse link e. 

eB :  Backup bandwidth reserved on link e. Since sharing of protection bandwidth is 
                allowed,  Be

'e
k

k B
w

∈

≤ ∑ . 

eR :  Residue bandwidth of link e; i.e., e e eR C A B= − −  where C  is the total capacity of  
               link e. 

'baS :  Set of connections whose working paths traverse link a and backup path traverse 

               link b, i.e. ba
b
a BAS ''' ∩= . 

b
aS :  Total bandwidth of all the connections in 'baS . This is the total bandwidth of all  

                connections whose AP traverse link a and BP traverse link b. 

, , ,...'ea b c nU :   Set of connections whose working paths transverse any of the links a, b, c… n and  
                   whose backup paths traverse link e. In case of all links a, b, c … n failure  
                   simultaneously, all connections in , , ,...'ea b c nU  will be protected by link e.  

e
ncbaU ,...,, :Total backup bandwidth needed on link e for all the connections in set e

ncbaU ,...,,' . 
e

ncbaC ,...,, : Additional backup bandwidth needed on link e in order to use it as part of a BP 

                   for a new connection to protect against simultaneous failures of links a, b, c… n.  
eC  :  Additional bandwidth needed on link e when a new connection is established. 

,k jW : A variable that takes on the value of 1 if the jth alternative route between the node 
                pair of the kth connection is selected as the AP of the connection; 0 otherwise.   

,k jP : A variable that takes on the value of 1 if the jth alternative route between the node  
               pair of the kth connection is selected as the BP of the connection; 0 otherwise. 
R(k):      The number of alternative routers between the node pair of the kth connection. 
V (.): A function that returns the total bandwidth for all the connections in a set S, such 
               that ( ) k

k S
V S w

∈

= ∑ , where S is a set of connections. 

Based on the above definition, we can get the following equations: 

 Ae =
'e

k
k A

w
∈
∑   (1) 

 ' ' 'b
a a bS A B= ∩   (2) 

 
'ba

b
a k

k s

S w
∈

= ∑   (3) 

 , , ,...' ' ' ... 'e e e e
a b c n a b nU S S S= ∪ ∪ ∪   (4) 

 
, , ,...

, , ,...
'ea b c n

e
a b c n k

k U

U w
∈

= ∑   (5) 

The mathematic model of the optimization problem is given as follows: 



Greedy Algorithms in Survivable Optical Networks 

 

249 

Objective:   Minimize the total network bandwidth consumption: 

 
∈

+∑ [ ]e e
e L

Minimize A B   (6) 

where: 

 
∈

= "1 2, ,max( )
n

f

e
e L L LL L

B U   (7) 

Subject to:  
Link capacity constraints: 

 + ≤e eA B C                ∀e   (8) 

Traffic demand constraints: 

 
=

=∑
( )

,

1
1

R k
k j

j
W ;

=

=∑
( )

,

1

R k
k j

j
P F    k∀   (9) 

Link-disjoint constraints: 

 + ≤, , 1k j k jW P         ,k j∀   (10) 

Integer flow constraints: 

 ∈, ,; {0,1}k j k jW P          ∀ ,k j   (11) 

The mathematical model described in this section is suitable for static traffic pattern. To 
expedite a fast on-line algorithm for dynamic traffic, we present a fast on-line Greedy 
heuristic algorithm. The design of the greedy algorithm is analyzed as follows. 
In order to provide 100% guarantee for network connections, total backup bandwidth 
reserved on a link e should protect against random F-link simultaneous failure. Assume that 
F-link set is represented by 1 2{ , ,.. .. | }f i F iL l l l l l L= ∈ . To protect against this F-link 

failure, the total backup bandwidth reserved on the link e is 
1 2, ,.. ..,( )

i F

e
l l l lU . For random F-link 

failure case, the total backup bandwidth on link e must be enough to cater for the worst case 
and is therefore given by: 

 

1 2

1 2

, ,
1,2,...

' ' ... ' )1,2,...

max ( )

max

F
i

i e e e
l l lF

e
e l l ll L

i F

kl L
k S S Si F

B U

w

∈
=

∈
∈=

=

= ∑

"

∪ ∪ ∪

  (12) 

When a new connection knew (bandwidth requirement: 
newkw ) arrives, the ingress node will 

choose a working path (WP) and F link-disjoint backup paths (BP) from a list of pre-
computed routes between the source and the destination (We assume the network is F+1-



 Advances in Greedy Algorithms 

 

250 

connected) to protect against F link failures. The backup bandwidth will be reserved on each 
link of the BPs of the new connection. The objective is to find a working path and F backup 
paths from pre-computed routing table with the minimal total additional bandwidth to 
carry the new connection:  

 Minimize e
e WP BP

C
∈
∑
∪

  (13) 

For each link e of a candidate working path, an additional bandwidth 
newkw  is required to 

carry the new requested connection. For each link e of candidate backup paths, admission of 
connection knew changes the sets 'eA , 'eB , '

i

e
lS and 

1 2, , F

e
l l lU ′ " . Since the total backup 

bandwidth on link e before the admission is Be, to protect against the simultaneous failures 
of links L1,L2,…Ln , the additional backup bandwidth needed on link e for setting up a new 
connection knew is given by: 

 

1 2

1 21 2

1 2

1 2

, ,...

, ,..., ,...
, ,...

, ,...

0 if ( )

( ) if ( )

if or or

n new

new n newn
n

n new new

e
L L L k e

e e
k e e L L L k ee L L L

L L L

e
L L L k e e f e k

U w B

U w B B U w R
C

U w B R e L R w

⎧ + <
⎪
⎪
⎪ + − < + <⎪= ⎨
⎪
⎪∝ + − > ∈ <⎪
⎪⎩

  (14) 

Note that ∝=e
LLL n

C ,..., 21
 means that it is not feasible to set up the new connection with BP 

traverses link e.  Be is calculated according to the equation (12). The additional bandwidth on 
link e of a candidate backup path for protection against random F link-failure, 

(0 )
newe e kC C w≤ ≤  is given by: 

 Ce=
1 2, ,...max

nf

e
L L LL L

C
∀ ∈

  (15) 

Equation (12) ~ (15) gives a protection scheme for protect against random F (F>2) multiple-
link failure scenarios. However, the computation time for algorithm in equation (12) is 
O(LF). The computation time increases exponentially with the number of simultaneous link 
faults number F. It is not suitable for on-line resource reservation for dynamic traffic. To 
solve this problem, we present a greedy algorithm described below to calculate Be instead of 
equation (12). The detailed steps of greedy algorithm are described as follows: 
• STEP 1: Set j=1. Find the relative connection set of link e, S'(e), as given by 

 { }'( ) ' | , '
i i

e e
l i lS e S l L S= ∈ ≠ Φ   (16) 

• STEP 2: Find in S’ (e) the 
i

e
lS ′  with maximum ( )

i

e
lV S ′  and denote it as S'max.   

                      Calculate M (j) as given by:  



Greedy Algorithms in Survivable Optical Networks 

 

251 

 max ( )
( ) ( ) max ( )

S S e
M j V S V S

′ ′∈
′ ′= =   (17) 

• STEP 3: Update S’ (e) and every ( )S S e′ ′∈  as follows: 

 max( ) ( ) { }S e S e S′ ′ ′= −   (18) 

 maxS S S′ ′ ′= − , ( )S S e′ ′∀ ∈   (19) 

 Where 
__

A B A B− = ∩ . 
• STEP 4: Increment j. Repeat Step 2, 3 until M (1), M (2),… M (F) are found. We have then:  

 
1

( )
F

e
j

B M j
=

= ∑   (20) 

In equations (16) – (20), we iterate F times to get the F sequential maximal bandwidth 
required on link e for protect against random single link failure scenarios. After each 
iteration time, a connection set update operation is implemented to avoid iterate calculating 
a connection’ bandwidth. The time complexity of the greedy algorithm (equations (16) – 
(20)) is O (LF).  
In a centralized network, a control node will maintain the connection set, '

i

e
lS  

( , )il e L∀ ∈  information. When a dynamic connection arrives, the control node will assign 
an optimal working and F backup path and reserve backup bandwidth according to 
equations (13)-(20). The connection set, '

i

e
lS  ( , )il e L∀ ∈  will be updated. In a distributed 

network, each node will maintain the connection set, '
i

e
lS  ( , )il e L∀ ∈ . When a dynamic 

connection arrives, the ingress node will assign an optimal working and F backup paths and 
reserve backup bandwidth according to equations (13)-(20). Then, the connection set '

i

e
lS  

( , )il e L∀ ∈  is updated and the updated information is broadcasted to all distributed 
nodes. 
We simulate different routing and bandwidth allocation schemes on three network 
topologies: (a) a 8-node all connection network; (b) NJLATA network and (c) NSFNET 
network. The average node degrees d of the network topologies are 5, 4 and 3, respectively. 
We studied the following 4 algorithms: (1) greedy algorithm with alternate routing scheme 
(2) greedy algorithm with Fixed (Shortest path) routing scheme (3) ESPI algorithm [3, 4] and 
(4) NS: Shortest path with No backup bandwidth Sharing algorithm. We simulate these four 
algorithms with Matlab 6.2 version and 2.0GHZ CPU. In our simulation, connection request 
follows a Poisson process and has an exponential holding time. Connection request arrival is 
uniformly distributed over all node pairs and a total of 106 connection requests are 
generated. The bandwidth requirement of each demand varied randomly from 1 to 4 units. 
Simulation shows that our Greedy algorithm with alternate routing scheme has the least 
bandwidth consumption. Alternate routing is more superior in saving bandwidth than fixed 
routing. Greedy algorithms save more total bandwidth consumption (F=2, 12%; F=3, 17%; 
F=4, 22%) than the ESPI algorithm and save 32% of the total bandwidth consumption using 
NS algorithm. Our greedy algorithms have less blocking probability than other algorithms. 
Our greedy algorithms achieve superior performance both in total bandwidth consumption 
and blocking probability than other algorithms for protection against multiple-link failures. 



 Advances in Greedy Algorithms 

 

252 

7. Advances in greedy algorithms 
Greedy algorithms are fast, simple straightforward and generally linear to quadratic. They 
employ simple strategies that are simple to implement and require minimal amount of 
resources. They are easy to invent, easy to implement and most of the time quite efficient. 
So, simple and fast greedy algorithms are always good algorithms to solve the optimization 
problems when the optimal solution is not required.  

8. Reference 
[1] Xiaofei Cheng, Xu Shao, Yixin Wang, "Multiple Link Failure Recovery in Survivable 

Optical Networks", Photonic Network Communications, pp. 159-164, 14 (2007), July 
2007. 

[2] Xiaofei Cheng, Teck Yoong Chai, Xu Shao, Yixin Wang, “Complementary Protection 
Under Double Link Failure for Survivable Optical Networks”, IEEE GLOBECOM, 
OPN07-2, California, USA, 27 Nov.-1 Dec. 2006. 

[3] Chunming Qiao, Dahai Xu,”Distributed Partial Information Management (DPIM) 
Scheme for Survivable Networks-Part I”, INFOCOM 2002. Vol 1, pp. 302 –311, 2002.  

[4] Murali Kodianalm,T.V.Lakshman, “Dynamic Routing of Bandwidth Guaranteed Tunnels 
with Restoration,” IEEE, INFOCOM 2000, pp.902~910,2000. 



14 

Greedy Algorithms to Determine Stable Paths 
and Trees in Mobile Ad hoc Networks 

Natarajan Meghanathan 
Jackson State University, Jackson, MS 

United States of America 

1. Introduction 
A mobile ad hoc network (MANET) is a dynamic, resource-constrained, distributed system 
of independent and arbitrarily moving wireless nodes and bandwidth-constrained links.  
MANET nodes operate with limited battery charge and use a limited transmission range to 
sustain an extended lifetime. As a result, MANET routes are often multi-hop in nature and 
nodes forward the data for others. Based on their primary route selection principle, MANET 
routing protocols are classified into two categories (Meghanathan & Farago, 2004): 
minimum-weight based routing and stability-based routing protocols. The minimum-
weight path among the set of available paths in a weighted network graph is the path with 
the minimum total weight summed over all its edges. The routing metrics generally targeted 
include: hop count, delay, energy consumption, node lifetime and etc. The stability-based 
routing protocols are aimed to minimize the number of route transitions and incur the least 
possible route discovery and maintenance overhead to the network.  
A majority of the ad hoc routing protocols are minimum-weight based and are proposed to 
optimize one or more performance metrics in a greedy fashion without looking at the future. 
For example, the Dynamic Source Routing (DSR) protocol (Johnson et. al., 2001) 
instantaneously selects any shortest path that appears to exist and similarly the Ad hoc On-
demand Distance Vector (AODV) protocol (Perkins & Royer, 1999) chooses the route that 
propagated the Route Request (RREQ) route discovery messages, with the lowest delay. To 
maintain optimality in their performance metrics, minimum-weight based routing protocols 
change their paths frequently and incur a huge network overhead. The stability-based 
routing protocols attempt to discover stable routes based on the knowledge of the past 
topology changes, future topology changes or a combination of both. Prominent within the 
relatively smaller class of stability-based routing protocols proposed in the literature 
include: Associativity-based Routing (ABR) (Toh, 1997), Flow-Oriented Routing Protocol 
(FORP) (Su et. al., 2001) and the Route-lifetime Assessment Based Routing (RABR) (Agarwal 
et. al., 2000) protocols. ABR selects paths based on the degree of association stability, which 
is basically a measure of the number of beacons exchanged between two neighbor nodes. 
FORP selects the route that will have the largest expiration time since the time of its 
discovery. The expiration time of a route is measured as the minimum of the predicted 
expiration time of its constituent links. RABR uses the average change in the received signal 
strength to predict the time when the received signal strength would fall below a critical 



 Advances in Greedy Algorithms 

 

254 

threshold. The stable path MANET routing protocols are distributed and on-demand in 
nature and thus are not guaranteed to determine the most stable routes (Meghanathan 
2006d; Meghanathan 2007).   
Stability is an important design criterion to be considered while developing multi-hop 
MANET routing protocols. The commonly used route discovery approach of flooding the 
route request can easily lead to congestion and also consume node battery power. Frequent 
route changes can also result in out-of-order data packet delivery, causing high jitter in multi-
media, real-time applications. In the case of reliable data transfer applications, failure to 
receive an acknowledgement packet within a particular timeout interval can also trigger 
retransmissions at the source side. As a result, the application layer at the receiver side might 
be overloaded in handling out-of-order, lost and duplicate packets, leading to reduced 
throughput. Thus, stability is also important from quality of service (QoS) point of view too. 
This chapter addresses the issue of finding the sequence of stable paths and trees, such that 
the number of path and tree transitions is the global minimum. In the first half of the 
chapter, we present an algorithm called OptPathTrans (Meghanathan & Farago, 2005) to 
determine the sequence of stable paths for a source-destination (s-d) communication session. 
Given the complete knowledge of the future topology changes, the algorithm operates on 
the greedy “look-ahead” principle: Whenever an s-d path is required at a time instant t, 
choose the longest-living s-d path from t. The sequence of long-living stable paths obtained 
by applying the above strategy for the duration of the s-d session is called the stable mobile 
path and it incurs the minimum number of route transitions. We quantify route stability in 
terms of the number of route transitions. Lower the number of route transitions, higher is 
the stability of the routing algorithm. 
In the second half of the chapter, we show that the greedy look-ahead principle behind 
OptPathTrans is very general and can be extended to find a stable sequence of any 
communication structure as long as there is an underlying algorithm or heuristic to 
determine that particular communication structure. In this direction, we propose algorithm 
OptTreeTrans (Meghanathan, 2006c) to determine the sequence of stable multicast Steiner 
trees for a multicast session. The problem of determining the multicast Steiner tree is that 
given a weighted network graph G = (V, E) where V is the set of vertices, E is the set of 
edges connecting these vertices and S, is a subset of set of vertices V, called the multicast 
group or Steiner points, we want to determine the set of edges of G that can connect all the 
vertices of S and they form a tree. It is very rare that greedy strategies give an optimal 
solution. Algorithms OptPathTrans and OptTreeTrans join the league of Dijkstra algorithm, 
Minimum spanning tree Kruskal and Prim algorithms (Cormen et. al., 2001) that have used 
greedy strategies, but yet give optimal solution. In another related work, we have also 
proposed an algorithm to determine the sequence of stable connected dominating sets for a 
network session (Meghanathan, 2006b). 
The performance of algorithms OptPathTrans and OptTreeTrans have been studied using 
extensive simulations under two different scenarios: (1) Scenarios in which the complete 
knowledge of the future topology changes is available at the time of path/tree selection and 
(2) Scenarios in which the locations of nodes are only predicted for the near future and not 
exact. To simulate the second scenario, we consider a location prediction model called 
“Prediction with Uncertainty” that predicts the future locations of nodes at different time 
instants based on the current location, velocity and direction of travel of each node, even 
though we are not certain of the velocity and direction of travel in the future. Simulation 



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

255 

results illustrate that the algorithms OptPathTrans and OptTreeTrans, when run under the 
limited knowledge of future topology changes, yield the sequence of paths and trees such 
that the number of transitions is close to the minimum values obtained when run under the 
complete knowledge of future topology changes.  
The rest of the chapter is organized as follows: In Section 2, we describe algorithm 
OptPathTrans to determine the stable mobile path, discuss its proof of correctness and run-
time complexity. Section 3 illustrates the simulation results of OptPathTrans under the two 
scenarios of complete and limited knowledge of future topology changes. In Section 4, we 
explain algorithm OptTreeTrans to determine the stable mobile multicast Steiner tree, discuss 
its proof of correctness and run-time complexity. Section 5 illustrates the simulation results 
of OptTreeTrans under the two scenarios of complete and limited knowledge of future 
topology changes. In Section 6, we discuss the impact of the stability-hop count tradeoff on 
network resources and routing protocol performance. Section 7 concludes the chapter and 
discusses future work. Note that we use the terms ‘path’ and ‘route’ interchangeably 
throughout the chapter. They are the same. 

2. Algorithm for the optimal number of path transitions 
One could resort to flooding as a viable alternative at high mobility (Corson & Ephremides, 
1995). But, flooding of the data packets will prohibitively increase the energy consumption 
and congestion at the nodes. This motivates the need for stable path routing algorithms and 
protocols in dynamically changing scenarios, typical to that of MANETs.  

2.1 Mobile graph 
A mobile graph (Farago & Syrotiuk, 2003) is defined as the sequence GM = G1G2 … GT of 
static graphs that represents the network topology changes over some time scale T. In the 
simplest case, the mobile graph GM = G1G2 … GT can be extended by a new instantaneous 
graph GT+1 to a longer sequence GM = G1G2 … GT GT+1, where GT+1 captures a link change 
(either a link comes up or goes down). But such an approach has very poor scalability. In 
this chapter, we sample the network topology periodically for every one second, which 
could, in reality, be the instants of data packet origination at the source. For simplicity, we 
assume that all graphs in GM have the same vertex set (i.e., no node failures). 

2.2 Mobile path 
A mobile path (Farago & Syrotiuk, 2003), defined for a source-destination (s-d) pair, in a 
mobile graph GM = G1G2 … GT is the sequence of paths PM = P1P2 … PT, where Pi is a static 
path between the same s-d pair in Gi = (Vi, Ei), Vi is the set of vertices and Ei is the set of 
edges connecting these vertices at time instant ti. That is, each static path Pi can be 
represented as the sequence of vertices v0v1 … vl, such that v0 = s and vl = d and (vj-1,vj) ∈  Ei 
for j = 1,2, …, l. The timescale of tT normally corresponds to the duration of an s-d session.  
Let wi(Pi) denote the weight of a static path Pi in Gi. For additive path metrics, such as hop 
count and end-to-end delay, wi(Pi) is simply the sum of the link weights along the path. 
Thus, for a given s-d pair, if Pi = v0v1 … vl such that v0 = s and vl = d,  

 ∑
=

−=
l

j
jjiii vvwPw

1
1 ),()(   (1)                          



 Advances in Greedy Algorithms 

 

256 

For a given mobile graph GM = G1G2 … GT and s-d pair, the weight of a mobile path PM = 
P1P2 … PT is   

 ∑ ∑
=

−

=
++=

T

i

T

i
iitransiiM PPCPwPw

1

1

1
1),()()(   (2) 

where ),( 1+iitrans PPC is the transition cost incurred to change from path Pi in Gi to path Pi+1 

in Gi+1 and is measured in the same unit used to compute wi(Pi).  

2.3 Stable mobile path and minimum hop mobile path 
The Stable Mobile Path for a given mobile graph and s-d pair is the sequence of static s-d 
paths such that the number of route transitions is as minimum as possible. A Minimum Hop 
Mobile Path for a given mobile graph and s-d pair is the sequence of minimum hop static s-d 
paths. With respect to equation (2), a Stable Mobile Path minimizes only the sum of the 

transition costs 
1

1
1

( , )
T

trans i i
i

C P P
−

+
=
∑ and a Minimum Hop Mobile Path minimizes only the term 

∑
=

T

i
ii Pw

1
)( , assuming unit edge weights. For additive path metrics and a constant transition 

cost, a dynamic programming approach to optimize the weight of a mobile path 

∑ ∑
=

−

=
++=

T

i

T

i
iitransiiM PPCPwPw

1

1

1
1),()()(  has been proposed in (Farago & Syrotiuk, 2003).   

2.4 Algorithm description 
Algorithm OptPathTrans operates on the following greedy strategy: Whenever a path is 
required, select a path that will exist for the longest time. Let GM = G1G2 … GT be the mobile 
graph generated by sampling the network topology at regular instants t1, t2, …, tT of an s-d 
session. When an s-d path is required at sampling time instant ti, the strategy is to find a 
mobile sub graph G(i, j) = Gi∩Gi+1∩… ∩Gj such that there exists at least one s-d path in 
G(i, j) and no s-d path exists in G(i, j+1). A minimum hop s-d path in G(i, j) is selected. Such a 
path exists in each of the static graphs Gi, Gi+1, …, Gj. If sampling instant tj+1 ≤ tT, the above 
procedure is repeated by finding the s-d path that can survive for the maximum amount of 
time since tj+1. A sequence of such maximum lifetime static s-d paths over the timescale of a 
mobile graph GM forms the Stabile Mobile s-d Path in GM. The pseudo code of the algorithm 
is given in Fig. 1. 
 
Input: GM = G1G2 … GT, source s, destination d 
Output: PS              // Stable Mobile Path 
Auxiliary Variables: i, j 
Initialization: i=1; j=1; PS = Φ 
 
Begin OptPathTrans 
 
1    while (i ≤ T) do 
 



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

257 

2 Find a mobile graph G(i, j) = Gi ∩  Gi+1 ∩  …  ∩  Gj such that there exists at least one 
s-d path in G(i, j) and {no s-d path exists in G(i, j+1) or j = T} 

          
3         PS = PS U { minimum hop s-d path in G(i, j) } 
 
4         i = j + 1      
           
5     end while 
 
6 return PS 
 
End OptPathTrans 

Fig. 1. Pseudo code for algorithm OptPathTrans 

2.5 Algorithm complexity and proof of correctness 
In a mobile graph GM = G1G2 … GT, the number of route transitions can be at most T. A path-
finding algorithm will have to be run T times, each time on a graph of n nodes. If we use 
Dijkstra algorithm that has a worst-case run-time complexity of O(n2), where n is the 
number of nodes in the network, the worst-case run-time complexity of OptPathTrans is 
O(n2T). We use the proof by contradiction technique to prove the correctness of algorithm 
OptPathTrans. Let SP  (with m route transitions) be the mobile path generated by algorithm 
OptPathTrans. To prove m is optimal, we assume the contrary that there exists a mobile path 

'S
P  with m’ route transitions such that m’ < m. Let 1

Sepoch , 2
Sepoch , …., m

Sepoch  be the set of 

sampling time instants in each of which the mobile path SP  suffers no route transitions 

(refer Fig. 2). Similarly, let 1

'S
epoch , 2

'S
epoch , …, '

'
m

S
epoch  be the set of sampling time instants in 

each of which the mobile path 'S
P  suffers no route transitions (refer Fig. 3). 

 

 
 

Fig. 2. Sampling Time Instants for Mobile Path SP  (Determined by OptPathTrans) 
 

 
 

Fig. 3. Sampling Time Instants for Mobile Path 'S
P  (Hypothesis for the Proof) 



 Advances in Greedy Algorithms 

 

258 

Let jinit
St

, and jend
St

, be the initial and final sampling time instants of j
Sepoch  where 1 ≤ j ≤ 

m. Similarly, let ,

'
init k

S
t and ,

'
end k

S
t  be the initial and final sampling time instants of '

k

S
epoch  

where 1 ≤ k ≤ m’. Note that ,1init
St = ,1

'
init

S
t  and ,end m

St  = , '
'

end m

S
t  to indicate that SP  and 'S

P  span 

over the same time period, T, of the network session.  
Now, since the hypothesis is m’ < m, there should exist j, k where 1 ≤ j ≤ m and 1 ≤ k ≤ m’ 

such that j
Sepoch s '

k

S
epoch , i.e., t

S
init k
'

, < tS
init j,  < tS

end j,  < t
S
end k
'

, and at least one s-d path 

existed in [ ,

'
init k

S
t ,…, ,

'
end k

S
t ]. In other words, there should be at least one s-d path in 'S

P  that 

has a lifetime larger than that of the lifetime of the s-d paths in SP . But, algorithm 

OptPathTrans made a route transition at tS
end j,

 since there was no s-d path from ,init j
St  

beyond ,end j
St . Thus, there is no common s-d path in the range [ ,init j

St , …, ,

'
end k

S
t ] and hence 

there is no common s-d path in the range [ ,

'
init k

S
t ,…, ,

'
end k

S
t ]. This shows that the lifetime of each 

of the s-d paths in 'S
P  has to be smaller or equal to the lifetime of the s-d paths in SP , 

implying m’ ≥ m. This is a contradiction and proves that our hypothesis m’ < m is not correct. 
Hence, the number of route transitions in SP  is optimal and SP  is the Stable Mobile Path. 

2.6 Example run of algorithm OptPathTrans 
Consider the mobile graph GM = G1G2G3G4G5 (Fig. 4.), generated by sampling the network 
topology for every second. Let node 1 and node 6 be the source and destination nodes 
respectively. The Minimum Hop Mobile 1-6 Path for the mobile graph GM would be {{1-3-
6}G1, {1-4-6}G2, {1-2-6}G3, {1-3-6}G4, {1-2-6}G5}. As the minimum hop path in one static graph 
does not exist in the other, the number of route transitions incurred for the Minimum Hop 
Mobile Path is 5. The hop count in each of the static paths is 2 and hence the time averaged 
hop count would also be 2.  
 

 
Fig. 4. Mobile Graph and Minimum Hop Mobile Path 

The execution of algorithm OptPathTrans on the mobile graph GM, of Fig. 4. is shown in Fig. 
5. The Stable Mobile Path generated would be {{1-4-5-6}G123, {1-2-5-6}G45}. The number of 
route transitions is 2 as we have to discover a common path for static graphs G1, G2 and G3 
and a common path for static graphs G4 and G5. The hop count of each of the constituent 
paths of the Stable Mobile Path is 3 and hence the time averaged hop count of the Stable 



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

259 

Mobile Path would also be 3. Note that even though there is a 2-hop path {1-3-6} common to 
graphs G1 and G2, the algorithm ends up choosing the 3-hop path {1-4-5-6} that is common 
to graphs G1, G2 and G3. This shows the greedy nature of algorithm OptPathTrans, i.e., 
choose the longest living path from the current time instant. To summarize, the Minimum 
Hop Mobile Path incurs 5 path transitions with an average hop count of 2; while the Stable 
Mobile Path incurs 2 path transitions with an average hop count of 3. This illustrates the 
tradeoff between stability and hop count which is also observed in the simulations. 
 

 
Fig. 5. Execution of Algorithm OptPathTrans on Mobile Graph of Fig. 4.   

2.7 Prediction with uncertainty 
Under the Prediction with Uncertainty model, we generate a sequence of predicted network 
topology changes starting from the time instant a path is required. We assume we know 
only the current location, direction and velocity of movement of the nodes and that a node 
continues to move in that direction and velocity. Whenever the node hits a network 
boundary, we predict it stays there, even though a node might continue to move. Thus, even 
though we are not sure of actual locations of the nodes in the future, we construct a 
sequence of predicted topology changes based on the current information. We run 
algorithm OptPathTrans on the sequence of predicted future topology changes generated 
starting from the time instant a path is required. We validate the generated path with 
respect to the actual locations of the nodes in the network. Whenever a currently used path 
is found to be invalid, we repeat the above procedure. The sequence of paths generated by 
this approach is referred to as Stable-Mobile-PathUncertain-Pred.  
In practice, information about the current location, direction and velocity of movement 
could be collected as part of the Route-Request and Reply cycle in the route setup phase. 
After collecting the above information from each node, the source and destination nodes of a 
session assume that each node continues to move in its current direction of motion with the 

current velocity. Given the network dimensions (0… Xmax, 0… Ymax), the location ( xi
t , yi

t ) of 
a node i at time instant t, the direction of motion Θ (0 ≤ Θ ≤ 360) with reference to the 

positive x-axis, and the current velocity vi
t , the location of node i at time instant t + δt, 

( xi
t t+δ , yi

t t+δ ) would be predicted as follows:  

                       xi
t t+δ = x v ti

t
i
t+ ( * *cos )δ Θ                     if 0 ≤ Θ ≤ 90 

                         =  x v ti
t

i
t− −( * *cos( ))δ 180 Θ             if 90 ≤ Θ ≤ 180 

                         = x v ti
t

i
t− −( * *cos( ))δ Θ 180              if 180 ≤ Θ ≤ 270 



 Advances in Greedy Algorithms 

 

260 

                         =  x v ti
t

i
t+ −( * *cos( ))δ 360 Θ             if 270 ≤ Θ ≤ 360 

                 yi
t t+δ = y v ti

t
i
t+ ( * *sin )δ Θ                            if 0 ≤ Θ ≤ 90    

                          = y v ti
t

i
t+ −( * *sin( ))δ 180 Θ              if 90 ≤ Θ ≤ 180     

                          =  y v ti
t

i
t− −( * *sin( ))δ Θ 180             if 180 ≤ Θ ≤ 270 

                          = y v ti
t

i
t− −( * *sin( ))δ 360 Θ              if 270 ≤ Θ ≤ 360 

At any situation, when xi
t t+δ  is predicted to be less than 0, then xi

t t+δ is set to 0. 

                              when xi
t t+δ  is predicted to be greater than Xmax, then xi

t t+δ  is set to Xmax.  

           Similarly, when yi
t t+δ is predicted to be less than 0, yi

t t+δ  is set to 0.  

                             when yi
t t+δ  is predicted to be greater than Ymax, then yi

t t+δ  is set to Ymax. 
 
When a source-destination (s-d) path is required at time instant t, we try to find the 
minimum hop s-d path in the predicted mobile sub graph Gpred(t, t+δt) = Gt 

∩ Gt
pred
+1 ∩ Gt

pred
+2 ∩  …∩ Gt t

pred
+δ . If a minimum hop s-d path exists in Gpred(t, t+δt), then 

that path is validated in the actual mobile sub graph Gactual(t, t+δt) = Gt ∩  Gt+1 ∩  Gt+2 ∩  … 
∩  Gt+δt that spans time instants t, t+1, t+2, …, t+δt. If an s-d path exists in both Gpred(t, t+δt) 
and Gactual(t, t+δt), then that s-d path is used at time instants t, t+1, …, t+δt.  
If an s-d path exists in Gpred(t, t+δt), Gpred(t, t+δt+1) and Gactual(t, t+δt), but not in Gactual(t, 
t+δt+1), the above procedure is repeated by predicting the locations of nodes starting from 
time instant t+δt+1.  Similarly, if an s-d path exists in Gpred(t, t+δt) and Gactual(t, t+δt), but 
not in Gpred(t, t+δt+1), the above procedure is repeated by predicting the locations of nodes 
starting from time instant t+δt+1. The sequence of paths obtained under this approach 
will be denoted as Stable-Mobile-PathUncertain-Pred in order to distinguish from the Stable 
Mobile Path generated when future topology changes are completely known. 

3.  Simulation study of algorithm OptPathTrans 
3.1 Simulation conditions 
We ran our simulations with a square topology of dimensions 1000m x 1000m. The wireless 
transmission range of a node is 250m. The node density is varied by performing the 
simulations in this network with 50 (10 neighbors per node) and 150 nodes (30 neighbors 
per node). Note that, two nodes a and b are assumed to have a bidirectional link at time t if 
the Euclidean distance between them at time t (derived using the locations of the nodes 
from the mobility trace file) is less than or equal to the wireless transmission range of the 
nodes. We obtain a centralized view of the network topology by generating mobility trace 
files for 1000 seconds in the ns-2 network simulator (Bresalu et. al., 2000; Fall & Varadhan, 
2001). Each data point in Fig. 6, 7, 8 and 9 is an average computed over 10 mobility trace files 
and 15 randomly selected s-d pairs from each of the mobility trace files. The starting time of 
each s-d session is uniformly randomly distributed between 1 to 20 seconds. The topology 
sampling interval to generate the mobile graph is 1 second.  



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

261 

3.2 Mobility model 
We use the Random Waypoint mobility model (Betstetter et. al., 2004), one of the most 
widely used mobility simulating models for MANETs. According to this model, each node 
starts moving from an arbitrary location to a randomly selected destination with a randomly 
chosen speed in the range [vmin ... vmax]. Once the destination is reached, the node stays there 
for a pause time and then continues to move to another randomly selected destination with 
a different speed. We use vmin = 0 and pause time of a node is 0. The values of vmax used are 
10 and 15 m/s (representing low mobility scenarios), 20 and 30 m/s (representing moderate 
mobility scenarios), 40 and 50 m/s (representing high mobility scenarios). 

3.3 Performance metrics 
The performance metrics evaluated are the number of route transitions and the time 
averaged hop count of the mobile path under the conditions described above. The time 
averaged hop count of a mobile path is the sum of the products of the number of hops per 
static path and the number of seconds each static path exists divided by the number of static 
graphs in the mobile graph. For example, if a mobile path spanning over 10 static graphs 
comprises of a 2-hop static path p1, a 3-hop static path p2, and a 2-hop static path p3, with 
each existing for 2, 3 and 5 seconds respectively, then the time-averaged hop count of the 
mobile path would be (2*2 + 3*3 + 2*5) / 10 = 2.3.       

3.4 Obtaining minimum hop mobile path 
To obtain the Minimum Hop Mobile Path for a given simulation condition, we adopt the 
following procedure: When a minimum-hop path is required at time instant t and stability is 
not to be considered, the minimum-hop path Dijkstra algorithm is run on static graph at 
time instant t, and the minimum-hop path obtained is used as long as it exists. We repeat the 
above procedure until the end of the simulation time. 
 

   
Fig. 6. Stability of Routes (50 Nodes)                   Fig. 7. Hop Count of Routes (50 Nodes) 
 

   
Fig. 8. Stability of Routes (150 Nodes)                  Fig. 9. Hop Count of Routes (150 Nodes) 



 Advances in Greedy Algorithms 

 

262 

3.5 Stability-hop count tradeoff 
For all simulation conditions, the Minimum Hop Mobile Path incurs the maximum number 
of route transitions, while the average hop count per Minimum Hop Mobile Path is the least. 
On the other hand, the Stable Mobile Path incurs the minimum number of route transitions, 
while the average hop count per Stable Mobile Path is the maximum. The number of route 
transitions incurred by a Minimum Hop Mobile Path is 5 to 7 times to that of the optimal 
number of route transitions for a low-density network (refer Fig. 6) and 8 to 10 times to that 
of the optimal for a high-density network (refer Fig. 8). The average hop count per Stable 
Mobile Path is 1.5 to 1.8 times to that of the optimal hop count incurred in a low-density 
network (refer Fig. 7) and is 1.8 to 2.1 times to that of the optimal in a high-density network 
(refer Fig. 9). Optimality in both these metrics cannot be obtained simultaneously.   

3.6 Impact of physical hop distance 
The probability of a link (i.e., hop) failure increases with increase in the physical distance 
between the constituent nodes of the hop. We observed that the average physical distance 
between the constituent nodes of a hop at the time of a minimum-hop path selection is 70-
80% of the transmission range of the nodes, accounting for the minimum number of 
intermediate nodes to span the distance between the source and destination nodes of the 
path. On the other hand, the average physical distance between the constituent nodes of a 
hop at the time of a stable path selection is only 50-55% of the transmission range of the 
nodes. Because of the reduced physical distance between the constituent nodes of a hop, 
more intermediate nodes are required to span the distance between the source and 
destination nodes of a stable path. Hence, the probability of failure of a hop in a stable path 
is far less compared to that of the probability of a failure of a hop in a minimum hop path. 
Also, the number of hops does not increase too much so that the probability of a path failure 
increases with the number of hops. Note that when we have a tie among two or more static 
paths that have the longest lifetime in a mobile sub graph, we choose the static path that has 
the minimum hop count to be part of the Stable Mobile Path. 

3.7 Impact of node density 
As we increase the node density, there are more neighbors per node, which increases the 
probability of finding a neighbor that is farther away. This helps to reduce the number of 
hops per path, but the probability of failure of the hop (due to the constituent nodes of the 
hop moving away) is also high. Thus, for a given value of vmax, minimum hop paths are 
more stable in low-density networks compared to high-density networks (compare Fig. 6 
and Fig. 8). The average hop count of a Minimum Hop Mobile Path is more in a low-density 
network compared to that incurred in a high-density network (compare Fig. 7 and Fig. 9).  
When we aim for stable s-d paths, we target paths that have low probability of failure due to 
the constituent nodes of a hop in the path moving away. With increase in node density, 
algorithm OptPathTrans gets more options in selecting the paths that can keep the source 
and destination connected for a longer time. In high density networks, we have a high 
probability of finding links whose physical distance is far less than the transmission range of 
the nodes. This is explored to the maximum by algorithm OptPathTrans and hence we 
observe a reduction in the number route transitions accompanied by an increase in the hop 
count in high-density networks compared to low-density networks.  



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

263 

3.8 Performance under the prediction with uncertainty model 
The number of route transitions incurred by Stable-Mobile-PathUncertain-pred is only at most 1.6 
to 1.8 times that of the optimal for low-density networks (refer Fig. 6) and 2 to 3 times that of 
optimal for high-density networks (refer Fig. 8). Nevertheless, the average hop count 
incurred by Stable-Mobile-PathUncertain-pred is 1.3–1.6 times to that incurred by Minimum-
Hop-Mobile-Path (refer Fig. 7 and Fig. 9).  
The mobility prediction model is practically feasible because the current location of each 
node, its direction and velocity can be recorded in the Route Request (RREQ) packets that 
get propagated from the source to destination during an on-demand route discovery. Rather 
than just arbitrarily choosing a minimum hop path traversed by the RREQ packet and 
sending a Route Reply (RREP) packet along that path, the destination node can construct a 
mobile sub graph by incorporating the locations of nodes in the near future, apply algorithm 
OptPathTrans, obtain the Stable-Mobile-PathUncertain-Pred and send the RREP along that path. 

4.  Algorithm for the optimal number of multicast tree transitions 
MANETs are deployed in applications such as disaster recovery, rescue missions, military 
operations in a battlefield, conferences, crowd control, outdoor entertainment activities, etc. 
One common feature among all these applications is one-to-many multicast 
communications among the participants. Multicasting is more advantageous than multiple 
unicast transmissions of the same data independently to each and every receiver, which also 
leads to network clogging. Hence, to support these applications in dynamic environments 
like MANETs, ad hoc multicast routing protocols that find a sequence of stable multicast 
trees are required.  

4.1 Multicast steiner tree 
Given a weighted graph, G = (V, E), where V is the set of vertices, E is the set of edges and a 
subset of vertices (called the multicast group or Steiner points) S ⊆ V, the Steiner tree is the 
minimum-weight tree of G connecting all the vertices of S. In this chapter, we assume unit 
weight edges and that all the edges of the Steiner tree are contained in the edge set of the 
graph. Accordingly, we define the minimum Steiner tree as the tree with the least number of 
edges required to connect all the vertices in the multicast group (the set of Steiner points). 
Unfortunately, the problem of determining a minimum Steiner tree in an undirected graph 
like that of the unit disk graph is NP-complete. Efficient heuristics (e.g., Kou et. al., 1981) 
have been proposed in the literature to approximate a minimum Steiner tree. 

4.2 Stable mobile multicast steiner tree vs minimum mobile multicast steiner tree 
Aiming for the minimum Steiner tree in MANETs, results in multicast trees that are highly 
unstable. The multicast tree has to be frequently rediscovered, and this adds considerable 
overhead to the resource-constrained network. By adding a few more links and nodes to the 
tree, it is possible to increase its stability. We define stability of a multicast Steiner tree in 
terms of the number of times the tree has to change for the duration of a multicast session. 
Extending the greedy approach of OptPathTrans to multicasting, we propose an algorithm 
called OptTreeTrans to determine the minimum number of tree transitions incurred during 
the period of a multicast session for a multicast group comprising of a source node and a set 
of receiver nodes. Given the complete knowledge of future topology changes, the algorithm 



 Advances in Greedy Algorithms 

 

264 

operates on the following principle: Whenever a multicast tree connecting a given source 
node to all the members of a multicast group is required, choose the multicast tree that will 
keep the source connected to the multicast group members for the longest time. The above 
strategy is repeated over the duration of the multicast session and the sequence of stable 
multicast Steiner trees obtained by running this algorithm is called the Stable Mobile 
Multicast Steiner Tree. We use the Kou. et. al’s (Kou et. al., 1981) well-known O(|V||S|2) 
heuristic, as the underlying heuristic to determine the longest existing multicast Steiner tree. 
A Minimum Mobile Multicast Steiner Tree is the sequence of approximations to the 
minimum Steiner tree obtained by directly using Kou’s heuristic whenever required. 

4.3 Heuristic to approximate minimum steiner tree 
We use the Kou et. al’s (Kou et. al., 1981) well-known O(|V||S|2) heuristic (|V| is the 
number of nodes in the network graph and |S| is the size of the multicast group) to 
approximate the minimum Steiner tree in graphs representing snapshots of the network 
topology. We give a brief outline of the heuristic in Fig. 10. An (s-S)-tree is defined as the 
multicast Steiner tree connecting a source node s to all the members of the multicast group 
S, which is also the set of Steiner points. Note that s ∈ S.  
 
Input:   An undirected graph G = (V, E) 
              Multicast group S ⊆ V 
Output: A tree TH  for the set S in G 
 
Step 1:  Construct a complete undirected weighted graph GC = (S, EC) from G and S where 
∀ (vi, vj) ∈ EC, vi and vj are in S, and the weight of edge (vi, vj) is the length of the shortest 
path from vi  to vj in G.  
Step 2: Find the minimum weight spanning tree TC in GC (If more than one minimal 
spanning tree exists, pick an arbitrary one). 
Step 3: Construct the sub graph GS of G, by replacing each edge in TC with the 
corresponding shortest path from G (If there is more than one shortest path between two 
given vertices, pick an arbitrary one).  
Step 4: Find the minimal spanning tree TS in GS (If more than one minimal spanning tree 
exists, pick an arbitrary one). Note that each edge in GS has weight 1.  
Step 5: Construct the minimum Steiner tree TH, from TS by deleting edges in TS, if necessary, 
such that all the leaves in TH are members of S. 

Fig. 10. Kou et. al’s Heuristic (Kou et. al., 1981) to find an Approximate Minimum Steiner 
Tree 

4.4 Algorithm OptTreeTrans 
Let GM = G1G2 … GT be the mobile graph generated by sampling the network topology at 
regular instants t1, t2, …, tT of a multicast session. When an (s-S)-tree is required at sampling 
time instant ti, the strategy is to find a mobile sub graph G(i, j) = Gi∩Gi+1∩… ∩Gj such 
that there exists at least one multicast (s-S)-tree in G(i, j) and none exists in G(i, j+1). A 
multicast (s-S)-tree in G(i, j) is selected using Kou’s heuristic. Such a tree exists in each of the 
static graphs Gi, Gi+1, …, Gj. If there is a tie, the (s-S)-tree with the smallest number of 
constituent links is chosen. If sampling instant tj+1 ≤ tT, the above procedure is repeated by 



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

265 

finding the (s-S)-tree that can survive for the maximum amount of time since tj+1. A 
sequence of such maximum lifetime multicast Steiner (s-S) trees over the timescale of GM 
forms the Stable Mobile Multicast Steiner Tree in GM. The pseudo code is given in Fig. 11. 
 
Input: GM = G1G2 … GT, source s, multicast group S  
Output: (s-S)MobileStabletree // Stable-Mobile-Multicast-Steiner-Tree 
Auxiliary Variables: i, j 
Initialization: i=1; j=1; (s-S)MobileStabletree = Φ   
 
Begin OptTreeTrans 
 
1  while (i ≤ T) do 
 
2      Find a mobile graph G(i, j) = Gi ∩  Gi+1 ∩  …  ∩  Gj such that there exists at least one (s- 
        S)-tree in  G(i, j) and { no (s-S)-tree exists in G(i, j+1) or j = T } 
          
3      (s-S)MobileStabletree = (s-S)MobileStabletree U {Minimum Steiner (s-S)-tree in G(i, j) } 
 
4        i = j + 1      
           
5     end while 
 
6   return (s-S)MobileStabletree 
 
End OptTreeTrans 
 

Fig. 11. Pseudo Code for Algorithm OptTreeTrans 

4.5 Algorithm complexity and proof of correctness 
In a mobile graph GM = G1G2 … GT, the number of tree transitions can be at most T. The 
minimum Steiner tree Kou’s heuristic will have to be run at most T times, each time on a 
graph of |V| nodes. As Kou’s heuristic is of O(|V||S|2) worst-case run-time complexity 
where |S| is the size of the multicast group, the worst-case run-time complexity of 
OptTreeTrans is O(|V||S|2T). 
Given a mobile graph GM = G1G2 … GT, source node s and multicast group S, let the number 
of tree transitions in the Mobile Multicast Steiner Tree, (s-S)MobileStabletree, generated by 
OptTreeTrans be m. To prove m is optimal, assume the contrary: there exists another Mobile 
Multicast Steiner Tree (s-S)’MobileStabletree in GM and the number of tree transitions in (s-
S)’MobileStabletree is m’ < m.  
Let 1

Sepoch , 2
Sepoch ,…, epochS

m be the set of sampling time instants in each of which the 

Mobile Multicast Steiner Tree (s-S)MobileStabletree suffers no tree transitions. Let epoch
S '
1 , 

epoch
S '
2 , …, epoch

S
m
'
' be the set of sampling time instants in each of which the Mobile 

Multicast Steiner Tree (s-S)’MobileStabletree suffers no tree transitions. Let t s S
init j
( )

,
− and t s S

end j
( )

,
− be the 



 Advances in Greedy Algorithms 

 

266 

initial and final sampling time instants of epochS
j where 1 ≤ j ≤ m. Let t

s S
init k
( )

,
'−
and t

s S
end k
( )

,
'−
be 

the initial and final sampling time instants of epoch
S
k
' where 1 ≤ k ≤ m’. Note that tS

init ,1 = 

t
S
init
'

,1  and tS
end m,  = t

S
end m
'

',  to indicate (s-S)MobileStabletree and (s-S)’MobileStabletree  span over the 

same time period, T, of the network session.  
Now, since we claim that m’ < m, there should exist j, k where 1 ≤ j ≤ m and 1 ≤ k ≤ m’ such 

that epochS
j ⊂ epoch

S
k
' , i.e., t

S
init k
'

, < tS
init j,  < tS

end j,  < t
S
end k
'

, and at least one (s-S)’-tree 

existed in [ t
S
init k
'

, ,…, t
S
end k
'

, ]. In other words, there should be at least one (s-S)’-tree in (s-

S)’MobileStabletree that has a lifetime larger than that of the lifetime of the (s-S)-trees in (s-

S)MobileStabletree. But, algorithm OptTreeTrans made a tree transition at tS
end j,

 since there was 

no (s-S)-tree from tS
init j,  beyond tS

end j, . Thus, there is no (s-S)-tree in the range [ tS
init j, , …, 

t
S
end k
'

, ] and hence there is no (s-S)-tree in the range [ t
S
init k
'

, ,…, t
S
end k
'

, ]. This shows that the 

lifetime of each of the (s-S)’-trees in (s-S)’MobileStabletree has to be smaller or equal to the lifetime 
of the (s-S)-trees in (s-S)MobileStabletree, implying m’ ≥ m. This is a contradiction and proves that 
our hypothesis m’ < m is not correct. Hence, the number of tree transitions in (s-S)MobileStabletree 
is optimal and (s-S)MobileStabletree is the Stable Mobile Multicast Steiner Tree. 

4.6 Example run of algorithm OptTreeTrans 
Consider the mobile graph GM = G1G2G3G4G5 sampled every second (Fig. 12). Let node 1 
be the source node and nodes 5 and 6 be the receivers of the multicast group. The 
Minimum Mobile Steiner Tree in GM is {{1-3, 3-6, 5-6}G1, {1-4, 4-6, 4-5}G2, {1-2, 2-6, 5-6}G3, 
{1-3, 3-6, 5-6}G4, {1-2, 2-6, 2-5}G5}. The edges of the constituent minimum Steiner trees in 
each of the static graphs are shown in dark lines. The number of tree transitions is 5 and 
the time averaged number of edges per Minimum Mobile Steiner Tree is 3 as there are 
three edges in each constituent minimum Steiner tree. The execution of algorithm 
OptTreeTrans on the mobile graph GM is shown in Fig. 13. The Stable Mobile Steiner Tree 
formed is {{1-4, 4-3, 3-6, 4-5}G12, {1-2, 2-3, 3-6, 2-4, 4-5}G345}. The number of tree transitions 
is 2 and the time-averaged number of edges in the Stable Mobile Steiner Tree is (4*2 + 
5*3)/5 = 4.6 as there are 4 edges in the stable Steiner tree common to graphs G1 and G2 and 
5 edges in the stable Steiner tree common to G3, G4 and G5. The simulation results also 
vindicate such tradeoff between the number of Steiner tree transitions and number of 
edges in the mobile Steiner tree.  
 

 
Fig. 12. Mobile Graph and Minimum-Mobile-Steiner-Tree 



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

267 

 
Fig. 13. Execution of Algorithm OptTreeTrans on Fig. 12.  

5. Simulation study of algorithm OptTreeTrans 
5.1 Simulation conditions 
We ran our simulations with a square topology of dimensions 1000m x 1000m. The wireless 
transmission range of a node is 250m. The node density is varied by performing the 
simulations in this network with 50 (10 neighbors per node) and 150 nodes (30 neighbors 
per node). We obtain a centralized view of the network topology by generating mobility 
trace files for 1000 seconds in ns-2 (Bresalu et. al., 2000; Fall & Varadhan, 2001). Random 
waypoint mobility model is the mobility model used in the simulations. The range of node 
velocity values used are [0...10 m/s] and [0...50 m/s]. Each multicast group includes a 
source node and a set of receiver nodes. The multicast group size values are 2, 4, 8, 12, 18 
and 24. Each data point in Fig. 14 through 21 is an average computed over 10 mobility trace 
files and 5 randomly selected groups for each size. The starting time of each multicast 
session is uniformly randomly distributed between 1 to 50 seconds and the simulation time 
is 1000 seconds. The topology sampling interval to generate the mobile graph is 1 second.  

5.2 Minimum mobile multicast steiner tree and performance metrics 
When an (s-S) Steiner tree is required at sampling time instant ti and stability is not to be 
considered, then Kou’s heuristic is run on static graph Gi and the (s-S) tree obtained is used 
as long as it exists. The procedure is repeated till the last sampling time instant tT is reached. 
We refer to the sequence of multicast Steiner trees generated by the above strategy as 
Minimum Mobile Multicast Steiner Tree. The performance metrics evaluated are the number 
of tree transitions and the average number of edges in the mobile Steiner trees, which is the 
number of links in the constituent (s-S) Steiner trees, averaged over time.  

5.3 Minimum mobile multicast steiner tree vs stable mobile multicast steiner tree 
The number of multicast tree transitions increases rapidly with increase in multicast group 
size (refer Fig. 14, 16, 18 and 20). On the other hand, by accommodating 10-40% more edges 
(refer Fig. 15, 17, 19 and 21), stability of the Stable Mobile Multicast Steiner Tree is almost 
insensitive to multicast group size. For given value of vmax, the number of tree transitions 
incurred by the Minimum Mobile Multicast Steiner Tree in a low-density network (refer Fig. 
14 and 18) is 5 (with group size of 4) to 10 (with group size of 24) times to that of the 
optimal. In high-density networks (refer Fig. 16 and 20), the number of tree transitions 
incurred by the Minimum Mobile Multicast Steiner Tree is 8 (with group size of 4) to 25 
(with group size of 24) times to that of the optimal.  
For a given node mobility and multicast group size, as the network density increases, 
algorithm OptTreeTrans makes use of the available nodes and links as much as possible in 
order to maximize the stability of the trees. For a Minimum Mobile Steiner Tree, the average 



 Advances in Greedy Algorithms 

 

268 

number of links in the constituent (s-S) trees is the same with increase in node density; the 
stability of the Minimum Mobile Steiner Trees decreases with increase in node density.  
 

   
Fig. 14. Stability of Trees                                        Fig. 15. Edges per Tree 

(50 Nodes, vmax = 10 m/s)                                      (50 Nodes, vmax = 10 m/s) 

 

   
Fig. 16. Stability of Trees                                        Fig. 17. Edges per Tree 

(150 Nodes, vmax = 10 m/s)                                     (150 Nodes, vmax = 10 m/s) 

 

   
Fig. 18. Stability of Trees                                        Fig. 19. Edges per Tree  

(50 Nodes, vmax = 50 m/s)                                      (50 Nodes, vmax = 50 m/s) 

 

   
Fig. 20. Stability of Trees                                        Fig. 21. Edges per Tree  

(150 Nodes, vmax = 50 m/s)                                     (150 Nodes, vmax = 50 m/s) 



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

269 

For a given value of vmax, the number of tree transitions incurred by the Stable-Mobile-
Multicast-Steiner-TreeUncertain-pred in a low-density network (refer Fig. 14 and 18) is 1.6 (with 
group size of 2) to 2 (with group size of 24) times to that of the optimal, while in a high-
density network (refer Fig. 16 and 20), the number of tree transitions is 3 (with group size of 
2) to 4 (with group size of 24) times to that of the optimal. Thus, the stability of the 
constituent static trees in Stable-Mobile-Multicast-Steiner-TreeUncertain-pred is not much 
affected by multicast group size and the number of edges (refer Fig. 15, 17, 19 and 21) is at 
most 40% more than that found in a Minimum Mobile Multicast Steiner Tree. 

6. Impact of the stability-hop count tradeoff on network resources and 
routing protocol performance 
We now discuss the impact of the stability-hop count tradeoff on network resources like the 
available node energy and the performance metrics like end-to-end delay per data packet.   

6.1  Energy consumption 
With increase in network density, a Stable Mobile Path incurs a reduced number of route 
transitions at the cost of an increased hop count; while a Minimum Hop Mobile Path incurs 
a reduced hop count per path at the cost of an increase in the number of route transitions. In 
(Meghanathan & Farago, 2006a), we analyzed the impact of these contradicting route 
selection policies on the overall energy consumption of a source-destination (s-d) session 
when using a Stable Mobile Path vis-à-vis a Minimum Hop Mobile Path for on-demand 
routing in MANETs. Some of the significant observations include:  
- As we reduce the energy consumed per hop for data packet transfer (i.e., as we adopt 

reduced overhearing or no overhearing models), a Stable Mobile Path can bring 
significant energy savings than that obtained using a Minimum Hop Mobile Path. 

- When data packets are sent continuously but at a reduced rate, we should use stable 
paths. If minimum hop paths are used, we may end up discovering a route to send 
every data packet, nullifying the energy savings obtained from reduced hop count.  

- At high data packet rates (i.e., high data traffic), even a slight increase in the hop count 
can result in high energy consumption, especially in the presence of complete 
overhearing (also called as promiscuous listening). At high data traffic, energy spent in 
route discovery is overshadowed by the energy spent in data packet transfer.  

- Route discovery is very expensive with respect to energy consumption in networks of 
high density compared to networks of low density. To minimize the overall energy 
consumption at moderate data traffic, we should use minimum-hop based routing at 
low network densities and stability-based routing at high network densities.  

6.2  End-to-end delay per data packet 
In (Meghanathan, 2008), we studied the performance of stable path routing protocols like 
ABR, FORP and RABR in ns-2 and measured the route stability and the end-to-end delay 
per data packet for  s-d sessions running each of these three protocols. We observed a 
stability-hop count tradeoff within the class of stability-based routing protocols and the 
three protocols are ranked in the following increasing order of hop count: ABR, RABR and 
FORP; while in terms of the increasing order of the number of route transitions per s-d 
session, the ranking is: FORP, RABR and ABR. At low and moderate mobility conditions 



 Advances in Greedy Algorithms 

 

270 

(vmax <= 30 m/s), ABR routes incurred the lowest delay per packet compared to that of 
FORP. This could be attributed to the higher route relaying load on the nodes. Especially at 
high data traffic load, FORP routes incur significant delays due to MAC layer contention 
and queuing before transmission. RABR achieves a right balance between the route relaying 
load per node and the route discovery latency. RABR routes incur an end-to-end delay per 
packet that is close to that of ABR at low and moderate velocities and at the same time 
achieve stability close to that of the FORP routes. At high velocity, the buffering delay due 
to the route acquisition latency plays a significant role in increasing the delay of ABR routes 
and to a certain extent the RABR routes. Thus, at high node mobility conditions, all the three 
protocols incur end-to-end delay per packet that is close enough to each other.  

7. Conclusions and future work 
In this chapter, we described algorithms OptPathTrans and OptTreeTrans to determine 
respectively the sequence of stable paths (Stable Mobile Path) and multicast trees (Stable 
Mobile Multicast Steiner Tree) over the duration of a MANET  session. Performance study 
of the two algorithms, when the complete knowledge of future topology changes is 
available at the time of path/tree selection, illustrates a distinct tradeoff between path hop 
count and the number of path transitions, and the number of edges in the multicast Steiner 
tree and the number of multicast Steiner tree transitions. It is highly impossible to 
simultaneously achieve optimality in the above mentioned contrasting performance metrics 
for paths and trees. The sequence of stable paths and trees generated by the two algorithms 
under the ”Prediction with Uncertainty“ model are highly stable compared to their 
minimum mobile versions. Also, the hop count, the number of edges and the number of 
nodes in the stable paths and trees is not as high as that observed in the stable mobile paths 
and trees obtained when the algorithms are run with complete knowledge of the future 
topology changes.  
Note that the Dijkstra algorithm and the Kou et. al heuristic are merely used as a tool to find 
the appropriate stable communication structures. The optimal number of route and tree 
reconstructions does not depend on these underlying algorithms as we try to find the 
longest living route and tree in the mobile sub graph spanning a sequence of static graphs. 
But, the run-time complexity of the two algorithms depends on the underlying algorithm 
used to determine the Stable Mobile Path and the Stable Mobile Multicast Steiner Tree.  
Future work is on the following: (i) To develop distributed versions of OptPathTrans and 
OptTreeTrans by extending these algorithms respectively as unicast and multicast routing 
protocols, (ii) To study the performance of algorithms OptPathTrans and OptTreeTrans under 
other MANET mobility models like Random Walk, Random Direction and Gauss-Morkov 
models (Camp et. al., 2002)  and (iii) To develop various location-update and mobility 
prediction mechanisms to gather and/or distribute knowledge of future topology changes. 

8. References 
Agarwal, S.; Ahuja, A.; Singh, J. P. & Shorey, R. (2000). Route-Life Time Assessment Based 

Routing Protocol for Mobile Ad hoc Networks, Proceedings of the IEEE International 
Conference on Communications, pp. 1697-1701, ISBN: 0780362837, June 2000, New 
Orleans, LA, USA.  



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

271 

Bettstetter, C.; Hartenstein, H. & Perez-Costa, X. (2004). Stochastic Properties of the Random 
Way Point Mobility Model. Wireless Networks, Vol. 10, No. 5, (September 2004), pp. 
555-567, ISSN: 10220038.  

Breslau, L.; Estrin, D.; Fall, K.; Floyd, S.; Heidemann, J.; Helmy, A.; Huang, P.; McCanne, S.; 
Varadhan, K.; Xu, Y.; Yu, H. (2000). Advances in Network Simulation. IEEE 
Computer, Vol. 33, No. 5 (May 2000), pp. 59-67, ISSN: 00189162.  

Camp, T.; Boleng, J. & Davies, V. (2002). A Survey of Mobility Models for Ad Hoc Network 
Research, Wireless Communication and Mobile Computing, Vol. 2, No. 5, (September 
2002), pp. 483-502, ISSN: 15308669.  

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L. & Stein, C. (2001). Introduction to Algorithms, 2nd 
Edition, MIT Press, ISBN: 0262032937.  

Corson, M. S. & Ephremides, A. (1995). A Distributed Routing Algorithm for Mobile 
Wireless Networks. Wireless Networks, Vol. 1, No. 1, (February 1995), pp. 61-81, 
ISSN: 10220038.  

Fall, K. & Varadhan, K. (2001). ns notes and documentation. The VINT Project at LBL, Xerox 
PARC, UCB, and USC/ISI, http://www.isi.edu/nsnam/ns, August 2001.  

Farago, A. & Syrotiuk, V. R. (2003). MERIT: A Scalable Approach for Protocol Assessment. 
Mobile Networks and Applications, Vol. 8, No. 5, (October 2003), pp. 567 – 577, ISSN: 
1383-469X.  

Johnson, D. B.; Maltz, D. A. & Broch, J. (2001). DSR: The Dynamic Source Routing Protocol 
for Multi-hop Wireless Ad hoc Networks, In: Ad hoc Networking, Charles E. 
Perkins, (Ed.), 139 – 172, Addison Wesley, ISBN: 0201309769.  

Kou, L.; Markowsky, G. & Berman, L. (1981). A Fast Algorithm for Steiner Trees. Acta 
Informatica, Vol. 15, No. 2, (June 1981), pp. 141-145, ISSN: 0001-5903.  

Meghanathan, N. & Farago, A. (2004). Survey and Taxonomy of 55 Unicast Routing 
Protocols for Mobile Ad hoc Networks, Technical Report UTD-CSC-40-04, The 
University of Texas at Dallas, Richardson, TX, November 2004.  

Meghanathan, N. & Farago, A. (2005). An Efficient Algorithm for the Optimal Number of 
Route Transitions in Mobile Ad hoc Networks. Proceedings of the 1st IEEE 
International Conference on Wireless and Mobile Computing, Networking and 
Communications, Vol. 3, pp. 41-48, ISBN: 0780391810, August 2005, Montreal, 
Canada.  

Meghanathan, N. & Farago, A. (2006a). Comparison of Routing Strategies for Minimizing 
Energy Consumption in Mobile Ad Hoc Networks. Proceedings of the 4th Asian 
International Mobile Computing Conference, pp. 3-11, ISBN: 0070608342, January 2006, 
Kolkatta, India.  

Meghanathan, N. (2006b). An Algorithm to Determine the Sequence of Stable Connected 
Dominating Sets in Mobile Ad Hoc Networks, Proceedings of 2nd Advanced 
International Conference on Telecommunications, ISBN: 0769525229, February 2006, 
Guadeloupe, French Caribbean.  

Meghanathan, N. (2006c). Determining a Sequence of Stable Multicast Steiner Trees in 
Mobile Ad hoc Networks. Proccedings of the 44th ACM Southeast Conference, pp. 102-
106, ISBN: 1595933158, March 2006, Melbourne, FL, USA.  

Meghanathan, N. (2006d). A Simulation Study on the Stability-Oriented Routing Protocols 
for Mobile Ad hoc Networks. Proceedings of the IFIP International Conference on 



 Advances in Greedy Algorithms 

 

272 

Wireless and Optical Communication Networks, ISBN: 1424403405, April 2006, 
Bangalore, India.  

Meghanathan, N. (2007). Path Stability based Ranking of Mobile Ad hoc Network Routing 
Protocols. ISAST Transactions Journal on Communications and Networking, Vol. 1, No. 
1, (August 2007), pp. 66-73, ISSN: 17970989.  

Meghanathan, N. (2008). Exploring the Stability-Energy Consumption-Delay-Network 
Lifetime Tradeoff of Mobile Ad hoc Network Routing Protocols. Journal of 
Networks, Vol. 3, No. 2, (February 2008), pp. 17-28, ISSN: 17962056.  

Perkins, C. E. & Royer, E. M. (1999). Ad hoc On-demand Distance Vector Routing, 
Proceedings of the Second Annual IEEE International Workshop on Mobile Computing 
Systems and Applications, pp. 90–100, ISBN: 0769500250, February 1999, New 
Orleans, LA, USA.  

Su, W.; Lee, S.-J. & Gerla, M. (2001). Mobility Prediction and Routing in Ad hoc Wireless 
Networks. International Journal of Network Management, Vol. 11, No. 1, (Jan-Feb. 
2001), pp. 3-30, ISSN: 10991190.  

Toh, C.-K. (1997). Associativity-Based Routing for Ad hoc Mobile Networks. IEEE Personal 
Communications, Vol. 4, No. 2, (March 1997), pp. 103 – 109, ISSN: 10709916. 



15 

Greedy Anti-Void Forwarding Strategies for 
Wireless Sensor Networks 

Wen-Jiunn Liu and Kai-Ten Feng 
Department of Communication Engineering, National Chiao Tung University 

Taiwan, R.O.C. 

1. Introduction 
A wireless sensor network (WSN) consists of sensor nodes (SNs) with wireless 
communication capabilities for specific sensing tasks. Each SN maintains connectivity and 
exchanges messages between the decentralized nodes in the multi-hop manners. A source 
node can communicate with its destination via a certain number of relaying nodes, which 
consequently enlarges the wireless coverage of the source node. In conventional multi-hop 
routing algorithms, either the proactive or reactive schemes, significant amounts of routing 
tables and control packets are required for the construction of routing paths. Due to the 
limited available resources, efficient design of localized multi-hop routing protocols (Estrin 
et al., 1999) becomes a crucial subject within the WSNs. How to guarantee delivery of 
packets is considered an important issue for the localized routing algorithms. The well-
known greedy forwarding (GF) algorithm (Finn, 1987) is considered a superior localized 
scheme with its low routing overheads, which is fit for conducting the routing task of 
WSNs. However, the void problem (Karp & Kung, 2000) that occurs within the GF 
technique will fail to guarantee the delivery of data packets. 
Several routing algorithms are proposed to either resolve or reduce the void problem, which 
can be classified into non-graph-based and graph-based schemes. In the non-graph-based 
algorithms, the intuitive schemes as proposed in the research work (Stojmenovi´c & Lin, 
2001) construct a two-hop neighbor table for implementing the GF algorithm. The network 
flooding mechanism is adopted while the void problem occurs. There also exist routing 
protocols that adopt the backtracking method at the occurrence of the network holes, such 
as GEDIR (Stojmenović & Lin, 2001), DFS (Stojmenović et al., 2000), and SPEED (He et al., 
2003). The routing schemes as proposed by ARP (Giruka & Singhal, 2005) and LFR (Liu & 
Feng, 2006) memorize the routing path after the void problem takes place. Moreover, other 
routing protocols, such as PAGER (Zou & Xiong, 2005), NEAR (Arad & Shavitt, 2006), DUA 
(Chen et al., 2006), and YAGR (Na et al., 2007), propagate and update the information of the 
observed void node in order to reduce the probability of encountering the void problem. By 
exploiting these routing algorithms, however, the void problem can only be either (i) 
partially alleviated or (ii) resolved with considerable routing overheads and significant 
converging time.  
On the other hand, there are research works on the design of graph-based routing 
algorithms to deal with the void problem. Several routing schemes as surveyed in the 
literature (Frey & Stojmenović, 2006) adopt the planar graph (West, 2000) as their network 



 Advances in Greedy Algorithms 

 

274 

topologies, such as GPSR (Karp & Kung, 2000), GFG (Bose et al., 2001), Compass Routing II 
(Kranakis at al., 1999), GOAFR+ (Kuhn at al., 2003), GOAFR++ (Kuhn at al., 2003), and 
GPVFR (Leong at al., 2005). Nevertheless, the usage of the planar graphs has significant 
pitfalls due to the removal of communication links leading to the sparse network link 
distribution; while the adoption of the unit disk graph (UDG) for modeling the underlying 
network is suggested. A representative UDG-based greedy routing scheme, i.e. the 
BOUNDHOLE algorithm (Fang at al., 2004), forwards the packets around the network holes 
by identifying the locations of the holes. However, the delivery of packets cannot be 
guaranteed in the BOUNDHOLE scheme even if a route exists from the source to the 
destination node.  
 

Nj Ng

Ni Nh

N7

N5

N2

N3

N6 N4

N8

N9
N0

N1

R

 
Fig. 1. The forbidden region and the minimal sweeping angle criterion of the BOUNDHOLE 
algorithm: The node Ni determines the next-hop node of the packets based on the previous 
two hops Nh and Ng. The forbidden region is defined as the area bounded by (i) the two 
backward-extended edges of Egh and Ehi and (ii) the transmission range border, i.e. the grey 
region. The node Nj is selected as the next-hop node of Ni since it has the minimal sweeping 
angle from the previous hop Nh. 

In the beginning, the principle of the BOUNDHOLE routing algorithm is briefly described. 
As shown in Fig. 1, the node Ni is conducting the routing tasks of the packets based on the 
previous two hops Nh and Ng. The BOUNDHOLE algorithm adopts the forbidden region 
and the minimal sweeping angle criterion within its formulation. The forbidden region is 
defined as the area bounded by (i) the backward-extended edges of Egh and Ehi and (ii) the 
transmission range border, i.e. the grey region as in Fig. 1. All nodes in the forbidden region 
are not considered as the next-hop of Ni. The criterion of the minimal sweeping angle from 
the previous hop is utilized in the determination of the next-hops within the BOUNDHOLE 
algorithm. For example, as shown in Fig. 1, the node Nj, which is not in the forbidden 
region, has the minimal sweeping angle from the previous node Nh. The node Nj is therefore 
selected as the next-hop node of Ni. 



Greedy Anti-Void Forwarding Strategies for Wireless Sensor Networks 

 

275 

sV

sA

sB

sY

sX

R

GAR
BOUNDHOLE

0
ND

NS

NV

NANB

NE

NF

NG
NH

NX

NY

NZ

NW

NU

N0

N1

N2

N3 N4

N5

N6

N7

N8

N9

d(PNS, PND)

d(PNV, PND)

d(PNY, PND)

 
Fig. 2. The example routing paths constructed by using the GAR and the BOUNDHOLE 
algorithms under the existence of the void problem: (NS, ND) is the transmission pair and NV 
is the void node. NX is within the transmission range of NB; while it is out of the range of NA 
and NE. The GAR protocol utilizes the RUT scheme (with red solid arcs denoted as the 
trajectory of the SPs); while the minimal angle criterion is employed by the BOUNDHOLE 
algorithm. The resulting paths obtained from these two schemes are {NS, NV, NA, NB, NX, NY, 
NZ, ND} using the GAR protocol and {NS, NV, NA, NE, NF, NG, NH, NV} by adopting the 
BOUNDHOLE algorithm, which is observed to be undeliverable. The blue-shaded region 
associated with each SN is utilized to determine if the SN is a void node or not. 

For the comparison purposes, the BOUNDHOLE algorithm is further investigated via an 
illustrative example. As shown in Fig. 2, the nodes (NS, ND) are considered the transmission 
pair; while NV represents the node that the void problem occurs. In this example, it is 
assumed that the node NX is located within the transmission range of NB; while it is 
considered out of the transmission ranges of nodes NA and NE. Based on the minimal 
sweeping angle criterion within the BOUNDHOLE algorithm, NA will choose NE as its next 
hopping node since the counter-clockwise sweeping from NV to NE (hinged at NA) is smaller 
comparing with that from NV to NB. Therefore, the resulting path by adopting the 



 Advances in Greedy Algorithms 

 

276 

BOUNDHOLE scheme becomes {NS, NV, NA, NE, NF, NG, NH, NV}. It is observed that the 
undeliverable routing path from the source node NS is constructed even with un-partitioned 
network topology. Moreover, two cases of edge intersections within the BOUNDHOLE 
algorithm result in high routing overhead in order to identify the network holes.  
In this book chapter, the greedy anti-void routing (GAR) protocol is proposed to resolve the 
void problem by exploiting the boundary finding technique under the UDG-based network 
topology. The proposed rolling-ball UDG boundary traversal (RUT) scheme is also 
employed to completely guarantee the delivery of packets from the source to the destination 
nodes. Moreover, the hop count reduction (HCR) and the intersection navigation (IN) 
mechanisms are incorporated within the GAR protocol (denoted as the GAR-E algorithm) to 
further improve the routing efficiency and the communication overhead. The proofs of 
correctness for the GAR scheme are also given in this book chapter. Comparing with the 
existing anti-void routing algorithms, the simulation results show that the proposed GAR-
based protocols can provide better routing efficiency with guaranteed packet delivery. 
The remainder of this book chapter is organized as follows. Section 2 describes the network 
model and the problem statement. The proposed GAR protocol is explained in Section 3; 
while Section 4 exploits the two enhanced mechanisms, i.e. the hop count reduction (HCR) 
and the intersection navigation (IN) schemes. The performance of the GAR-based protocols 
is evaluated and compared in Section 5. Section 6 draws the conclusions. 

2. Network model and problem statement 

Considering a set of SNs }|{ iNi ∀=N within a two-dimensional Euclidean plane, the 
locations of the set N, which can be acquired by their own positioning systems, are 
represented by the set }),,(|{ iyxPP

iiii NNNN ∀==P . It is assumed that all the SNs are 
homogeneous and equipped with omni-directional antennas. The set of closed disks 
defining the transmission ranges of N is denoted as }|),({ iRPD

iN ∀=D , where 
},|{),( 2R∈∀≤−= xRPxxRPD

ii NN
. It is noted that R2 presents the two-dimensional real 

vector space and 
iNP is the center of the closed disk with R denoted as the radius of the 

transmission range for each Ni. Therefore, the underlying network model for the WSNs can 
be represented by a unit disk graph (UDG) as G(P, E) with the edge set 
E { | ( , ), ( , ), }

i j i jij ij N N N NE E P P P D P R i j= = ∈ ∀ ≠ . The edge Eij indicates the unidirectional link 
from 

iNP  to 
jNP  whenever the position 

iNP  is within the closed disk region ),( RPD
jN

. 
Moreover, the one-hop neighbor table for each Ni is defined as 

 [ ] }),,(|,{ ikRPDPPID
ikkki NNNNN ≠∀∈=Τ   (1) 

where 
kNID  represents the designated identification number for Nk. In the greedy 

forwarding (GF) algorithm, it is assumed that the source node NS is aware of the location of 
the destination node ND. If NS wants to transmit packets to ND, it will choose the next 
hopping node from its 

SNT  which (i) has the shortest Euclidean distance to ND among all the 
SNs in 

SNT  and (ii) is located closer to ND compared to the distance between NS and ND (e.g. 
NV as in Fig. 2). The same procedure will be performed by the intermediate nodes (such as 
NV) until ND is reached. However, the GF algorithm will be inclined to fail due to the 



Greedy Anti-Void Forwarding Strategies for Wireless Sensor Networks 

 

277 

occurrences of voids even though some routing paths exist from NS to ND. The void problem 
is defined as follows.  
Problem 1 (Void Problem). The greedy forwarding (GF) algorithm is exploited for packet 
delivery from NS to ND. The void problem occurs while there exists a void node (NV) in the 
network such that 

 φ=∈∀< }),,(),(|{
VkDVDkk NNNNNNN PPPdPPdP T   (2) 

where d(x, y) represents the Euclidean distance between x and y. 
VNT  is the neighbor table of NV. 

3. Proposed Greedy Anti-void Routing (GAR) protocol 
The objective of the GAR protocol is to resolve the void problem such that the packet 
delivery from NS to ND can be guaranteed. Before diving into the detail formulation of the 
proposed GAR algorithm, an introductory example is described in order to facilitate the 
understanding of the GAR protocol. As shown in Fig. 2, the data packets initiated from the 
source node NS to the destination node ND will arrive in NV based on the GF algorithm. The 
void problem occurs as NV receives the packets, which leads to the adoption of the RUT 
scheme as the forwarding strategy of the GAR protocol. A circle is formed by centering at sV 
with its radius being equal to half of the transmission range R/2. The circle is hinged at NV 
and starts to conduct counterclockwise rolling until an SN has been encountered by the 
boundary of the circle, i.e. NA as in Fig. 2. Consequently, the data packets in NV will be 
forwarded to the encountered node NA.  
Subsequently, a new equal-sized circle will be formed, which is centered at sA and hinged at 
node NA. The counter-clockwise rolling procedure will be proceeded in order to select the 
next hopping node, i.e. NB in this case. Similarly, the same process will be performed by 
other intermediate nodes (such as NB and NX) until the node NY is reached, which is 
considered to have a smaller distance to ND than that of NV to ND. The conventional GF 
scheme will be resumed at NY for delivering data packets to the destination node ND. As a 
consequence, the resulting path by adopting the GAR protocol becomes {NS, NV, NA, NB, NX, 
NY, NZ, ND}. In the following subsections, the formal description of the RUT scheme will be 
described in Subsection 3.1; while the detail of the GAR algorithm is explained in Subsection 
3.2. The proofs of correctness of the GAR protocol are given in Subsection 3.3. 

3.1 Rolling-ball UDG boundary Traversal (RUT) scheme 
The RUT scheme is adopted to solve the boundary finding problem. The definition of 
boundary and the problem statement are described as follows. 
Definition 1 (Boundary). If there exists a set NB ⊆ such that (i) the nodes in B form a 
simple unidirectional ring and (ii) the nodes located on and inside the ring are disconnected 
with those outside of the ring, B is denoted as the boundary set and the unidirectional ring 
is called a boundary. 
Problem 2 (Boundary Finding Problem). Given a UDG G(P, E) and the one-hop neighbor 
tables }|{ NTT ∈∀= iN N

i
, how can a boundary be obtained by exploiting the distributed 

computing techniques? 



 Advances in Greedy Algorithms 

 

278 

si

sjsk

sl

sm

R

1/2R

Nm

Np

Nq

Eij
Nk

Nj

Ni

Nl

 
Fig. 3. The rolling-ball UDG boundary traversal (RUT) scheme: Given si and Ni, the RUT 
scheme rotates the rolling ball ( , / 2)

iN iRB s R  counter-clockwise and constructs the simple 
closed curve (i.e. the flower-like red solid curve). The boundary set B = {Ni, Nj, Nk, Nl, Nm} is 
established as a simple unidirectional ring by using the RUT scheme. 

There are three phases within the RUT scheme, including the initialization, the boundary 
traversal, and the termination phases. 

3.1.1 Initialization phase 
No algorithm can be executed without the algorithm-specific trigger event. The trigger event 
within the RUT scheme is called the starting point (SP). The RUT scheme can be initialized 
from any SP, which is defined as follows. 
Definition 2 (Rolling Ball). Given N∈iN , a rolling ball )2/,( RsRB iNi

is defined by (i) a 

rolling circle hinged at 
iNP  with its center point at 2R∈is and the radius equal to R/2; and (ii) 

there does not exist any N∈kN  located inside the rolling ball as φ=∩ })2/,({ ~ NRsRB iNi

, 

where )2/,(~ RsRB iNi

 denotes the open disk within the rolling ball. 

Definition 3 (Starting Point). The starting point of Ni within the RUT scheme is defined as 
the center point 2R∈is  of )2/,( RsRB iNi

. 

As shown in Fig. 3, each node Ni can verify if there exists an SP since the rolling ball 
)2/,( RsRB iNi
 is bounded by the transmission range of Ni. According to Definition 3, the SPs 

should be located on the circle centered at 
iNP  with a radius of R/2. As will be proven in 

Lemmas 1 and 2, all the SPs will result in the red solid flower-shaped arcs as in Fig. 3. It is 
noticed that there should always exist an SP while the void problem occurs within the 
network, which will be explained in Subsection 3.2. At this initial phase, the location si can 
be selected as the SP for the RUT scheme. 



Greedy Anti-Void Forwarding Strategies for Wireless Sensor Networks 

 

279 

3.1.2 Boundary traversal phase 
Given si as the SP associated with its )2/,( RsRB iNi

 hinged at Ni, either the counter-clockwise 
or clockwise rolling direction can be utilized. As shown in Fig. 3, )2/,( RsRB iNi

 is rolled 
counter-clockwise until the next SN is reached (i.e. Nj in Fig. 3). The unidirectional edge Eij = 

),(
ji NN PP  can therefore be constructed. A new SP and the corresponding rolling ball hinged 

at Nj, i.e. sj and )2/,( RsRB jN j
, will be assigned and consequently the same procedure can be 

conducted continuously. 

3.1.3 Termination phase 
The termination condition for the RUT scheme happens while the first unidirectional edge is 
revisited. As shown in Fig. 3, the RUT scheme will be terminated if the edge Eij is visited 
again after the edges Eij , Ejk, Ekl, Elm, and Emi are traversed. The boundary set initiated from 
Ni can therefore be obtained as B = {Ni, Nj, Nk, Nl, Nm}. 

3.2 Detail description of proposed GAR protocol 
As shown in Fig. 2, the packets are intended to be delivered from NS to ND. NS will select NV 
as the next hopping node by adopting the GF algorithm. However, the void problem 
prohibits NV to continue utilizing the same GF algorithm for packet forwarding. The RUT 
scheme is therefore employed by assigning an SP (i.e. sV) associated with the rolling ball 

)2/,( RsRB VNV
 hinged at NV. As illustrated in Fig. 2, sV can be chosen to locate on the 

connecting line between NV and ND with R/2 away from NV. It is noticed that there always 
exists an SP for the void node (NV) since there is not supposed to have any SN located 
within the blue-shaded region (as in Fig. 2), which is large enough to satisfy the 
requirements as in Definitions 2 and 3. The RUT scheme is utilized until NY is reached (after 
traversing NA, NB, and NX). Since ),(),(

DVDY NNNN PPdPPd < , the GF algorithm is resumed at 

NY and the next hopping node will be selected as NZ. The route from NS to ND can therefore 
be constructed for packet delivery. Moreover, if there does not exist a node NY such that 

),(),(
DVDY NNNN PPdPPd <  within the boundary traversal phase, the RUT scheme will be 

terminated after revisiting the edge EVA. The result indicates that there does not exist a 
routing path between NS and ND. 

3.3 Proof of correctness 
In this subsection, the correctness of the RUT scheme is proven in order to solve Problem 2; 
while the GAR protocol is also proven for resolving the void problem (i.e. Problem 1) in 
order to guarantee packet delivery. 
Fact 1. A simple closed curve is formed by traversing a point on the border of a closed filled 
two-dimensional geometry. 
Lemma 1. All the SPs within the RUT scheme form the border of the resulting shape by 
overlapping the closed disks )2/,( RPD

iN
 for all N∈iN , and vice versa. 

Proof: Based on Definitions 2 and 3, the set of SPs can be obtained as S = 
21 RR ∩ = 

},,2/|{ 2RN ∈∈∃=− iiNii sNRPss
i

∩  },,2/|{ 2RN ∈∈∀≥− jjNjj sNRPss
j

by adopting the (i) 

and (ii) rules within Definition 2. On the other hand, the border of the resulting shape from 
the overlapped closed disks )2/,( RPD

iN
 for all N∈iN  can be denoted as 



 Advances in Greedy Algorithms 

 

280 

Ω= 2QQ −1
= )2/,()2/,( RPDRPC

iiii NNNN ∪∪ NN ∈∈ − , where )2/,( RPC
iN

 and )2/,( RPD
iN

 

represent the circle and the open disk centered at 
iNP  with a radius of R/2 respectively. It is 

obvious to notice that 11 QR =  and 22 QR ′= , which result in ΩS = . It completes the proof.  
Lemma 2. A simple closed curve is formed by the trajectory of the SPs. 
Proof: Based on Lemma 1, the trajectory of the SPs forms the border of the overlapped 
closed disks )2/,( RPD

iN
 for all N∈iN . Moreover, the border of a closed filled two-

dimensional geometry is a simple closed curve according to Fact 1. Therefore, a simple 
closed curve is constructed by the trajectory of the SPs, e.g. the solid flower-shaped closed 
curve as in Fig. 3. It completes the proof. 
Theorem 1. The boundary finding problem (Problem 2) is resolved by the RUT scheme.  
Proof: Based on Lemma 2, the RUT scheme can draw a simple closed curve by rotating the 
rolling balls )2/,( RsRB iNi

 hinged at 
iNP  for all N∈iN . The closed curve can be divided into 

arc segments S(si, sj), where si is the starting SP associated with Ni; and sj is the anchor point 
while rotating the )2/,( RsRB iNi

 hinged at 
iNP  . The arc segments S(si, sj) can be mapped into 

the unidirectional edges ),(
ji NNij PPE =  for all U∈ji NN , , where NU ⊆ . Due to the one-to-

one mapping between S(si, sj) and Eij , a simple unidirectional ring is constructed by Eij for 
all U∈ji NN , . According to the RUT scheme, there does not exist any N∈iN  within the 
area traversed by the rolling balls, i.e. inside the light blue region as in Fig. 3. For all N∈pN  
located inside the simple unidirectional ring, the smallest distance from Np to Nq, which is 
located outside of the ring, is greater than the SN’s transmission range R. Therefore, there 
does not exist any N∈pN  inside the simple unidirectional ring that can communicate with 

N∈qN  located outside of the ring. Based on Definition 1, the set U is identical to the 
boundary set, i.e. U = B. It completes the proof.  
Theorem 2. The void problem (Problem 1) is solved by the GAR protocol with guaranteed 
packet delivery. 
Proof: With the existence of the void problem occurring at the void node NV, the RUT 
scheme is utilized by initiating an SP (sV) with the rolling ball )2/,( RsRB VNV

 hinged at NV. 

The RUT scheme within the GAR protocol will conduct boundary (i.e. the set B) traversal 
under the condition that ),(),(

DVDi NNNN PPdPPd ≥  for all B∈iN . If the boundary within the 

underlying network is completely travelled based on Theorem 1, it indicates that the SNs 
inside the boundary (e.g. NV) are not capable of communicating with those located outside 
of the boundary (e.g. ND). The result shows that there does not exist a route from the void 
node (NV) to the destination node (ND), i.e. the existence of network partition. On the other 
hand, if there exists a node NY such that ),(),(

DVDY NNNN PPdPPd <  (as shown in Fig. 2), the GF 

algorithm will be adopted within the GAR protocol to conduct data delivery toward the 
destination node ND. Therefore, the GAR protocol solves the void problem with guaranteed 
packet delivery, which completes the proof. 

4. Enhanced mechanisms for proposed GAR protocol 
In order to enhance the routing efficiency of the proposed GAR protocol, two mechanisms 
are proposed in this section, i.e. the hop count reduction (HCR) and the intersection 
navigation (IN) schemes. These two mechanisms are described as follows. 



Greedy Anti-Void Forwarding Strategies for Wireless Sensor Networks 

 

281 

4.1 Hop Count Reduction (HCR) mechanism 
Based on the rolling ball traversal within the RUT scheme, the selected next-hop nodes may 
not be optimal by considering the minimal hop count criterion. Excessive routing delay 
associated with power consumption can occur if additional hopping nodes are traversed by 
adopting the RUT scheme. As shown in Fig. 4, the void node NV starts the RUT scheme by 
selecting N1 as its next hop node with the counter-clockwise rolling direction; while N2 and 
N3 are continuously chosen as the next hopping nodes. Considering the case that N3 is 
located within the same transmission range of N1, it is apparently to observe that the packets 
can directly be transmitted from N1 to N3. Excessive communication waste can be preserved 
without conducting the rerouting process to N2. Moreover, the boundary set B forms a 
simple unidirectional ring based on Theorem 1, which indicates that the next-hop SN of a 
node can be uniquely determined if its previous hopping SN is already specified. For 
instance (as in Fig. 4), if NV is the previous node of N1, N1’s next hopping node N2 is 
uniquely determined, i.e. the transmission sequences of every three nodes (e.g. {NV → N1 → 
N2} or {N1 → N2 → N3}) can be uniquely defined. 
 

NS

N2

N4

N5

R

N7

N8

N9

N0

NF
NE

NZ
NY

NX

NB

PATH-R

NA

PATH-LR
PATH-LL

NV

d(PNS, PND)d(PNC, PND)d(PNV, PND) 0

ND

NC

sC

sX

sY

sE
sF

sB

sA

sV

s1
s2

s3

s4

GN

N6

N1

N3

 
Fig. 4. The hop count reduction (HCR) and the intersection navigation (IN) mechanisms: 
(NS, ND) is the transmission pair, and NV and NC are the void nodes. The HCR mechanism: 
The SN N1 can create a short cut to its neighbor N3 by listening to the packet forwarding 
since the path {N1 → N2 → N3} is uniquely determined. The IN mechanism: Counter-
clockwise and clockwise rolling directions (denoted as the symbols of R and L) can be 
adopted in the RUT scheme. By flooding the navigation map (NAV_MAP) control packets, 
the shortest path can be acquired as PATH-R {NS, NV, N1, N3, N4, N5, N6, ND} with 7 hops. 
Consequently, all packets will contain the sequence {R} to choose the counter-clockwise 
rolling direction at the first void node NV. In the case that the path were selected as PATH-
LR, the sequence would change to {LR} by choosing the clockwise rolling direction at the 
first void node NV and counter-clockwise at the second void node NC. 

According to the concept as stated above, the hop count reduction (HCR) mechanism is to 
acquire the information of the next few hops of neighbors under the RUT scheme by 



 Advances in Greedy Algorithms 

 

282 

listening to the same forwarded packet. It is also worthwhile to notice that the listening 
process does not incur additional transmission of control packets. As shown in Fig. 4, N1 
chooses N2 as its next-hop node for packet forwarding; while N2 selects N3 as the next 
hopping node in the same manner. Under the broadcast nature, N1 will listen to the same 
packets in the forwarding process from N2 to N3. By adopting the HCR mechanism, N1 will 
therefore select N3 as its next hopping node instead of choosing N2 while adopting the 
original RUT scheme. Consequently, N1 will initiate its packet forwarding process to N3 
directly by informing the RUT scheme that the rerouting via N2 can be skipped. 

4.2 Intersection Navigation (IN) mechanism 
The intersection navigation (IN) mechanism is utilized to determine the rolling direction in 
the RUT scheme while the void problem occurs. It is noticed that the selection of rolling 
direction (i.e. either counter-clockwise or clockwise) does not influence the correctness of the 
proposed RUT scheme to solve Problem 2 as in Theorem 1. However, the routing efficiency 
may be severely degraded if a comparably longer routing path is selected at the occurrence 
of a void node. The primary benefit of the IN scheme is to choose a feasible rolling direction 
while a void node is encountered. Consequently, smaller rerouting hop counts (HC) and 
packet transmission delay can be achieved. 
Based on the transmission pair (NS, ND) as shown in Fig. 4, NV and NC become the void 
nodes within the network topology. There exist three potential paths from NS to ND by 
adopting the RUT scheme, i.e. PATH-R, PATH-LR, and PATH-LL. The suffixes R, LR, and 
LL represent the sequences of the adopted rolling direction at each encountered void node, 
where the symbol R is denoted as counter-clockwise rolling direction and L represents 
clockwise direction. It is noted that the suffix with two symbols indicates that two void 
nodes are encountered within the path. The entire node traversal for each path is as follows: 
PATH-R = {NS, NV, N1, N3, N4, N5, N6, ND}, PATH-LR = {NS, NV, NA, NB, NC, NE, NF, NG, N6, 
ND}, PATH-LL = {NS, NV, NA, NB, NC, NX, NY, NZ, ND}. Different HCs are observed with each 
path as HC(PATH-R) = 7, HC(PATH-LR) = 9, and HC(PATH-LL) = 8. 
The main objective of the IN scheme is to monitor the number of HC such that the path with 
the shortest HC can be selected, i.e. PATH-R in this case. A navigation map control packet 
(NAV_MAP) defined in the IN scheme is utilized to indicate the rolling direction while the 
void node is encountered. For example, two NAV_MAP packets are initiated after NV is 
encountered, where NAV_MAP = {R} is delivered via the counter-clockwise direction to ND 
and NAV_MAP = {L} is carried with the clockwise direction. It is noticed that the HC 
associated with each navigation path is also recorded within the NAV_MAP packets. As the 
second void node NC is observed, the control message NAV_MAP = {L} is transformed into 
two different navigation packets (i.e. NAV_MAP = {LR} and NAV_MAP = {LL}), which 
traverse the two different rolling directions toward ND. As a result, the destination node ND 
will receive several NAV_MAP packets at different time instants associated with the on-
going transmission of the data packets. The NAV_MAP packet with the shortest HC value 
(i.e. NAV_MAP = {R} in this case) will be selected as the targeting path. Therefore, the 
control packet with NAV_MAP = {R} will be traversed from ND back to the NS in order to 
notify the source node NS with the shortest path for packet transmission. After acquiring the 
NAV_MAP information, NS will conduct its remaining packet delivery based on the 
corresponding rolling direction. Considerable routing efficiency can be preserved as a 
shorter routing path is selected by adopting the IN mechanism. 



Greedy Anti-Void Forwarding Strategies for Wireless Sensor Networks 

 

283 

5. Performance evaluation 
The performance of the proposed GAR algorithm is evaluated and compared with the 
existing localized schemes (i.e. the GF and the BOUNDHOLE algorithms) via simulations. 
Furthermore, the GAR protocol with the enhanced mechanisms (i.e. the HCR and the IN 
schemes) is also implemented, which is denoted as the GAR-E algorithm. The simulations 
are conducted in the NS-2 network simulator (Heidemann at al., 2001) with wireless 
extension, using the IEEE 802.11 DCF as the MAC protocol. The parameters utilized in the 
simulations are listed as shown in Table 1.  
 

Parameter Type Parameter Value 
Grid Area 1000 x 800 m2 
Void Block 500 x 800 m2 
Simulation Time 150 sec 
Transmission Range 250 m 
Traffic Type Constant Bit Rate (CBR) 
Data Rate 12 Kbps 
Size of Data Packets 512 Bytes 
Number of Nodes 41, 51, 61, 71, 81 

Table 1. Simulation Parameters 

 

Void Block

NS ND

1000m

800m

 
Fig. 5. The simulation scenario: The transmission pair (NS, ND) is located at the center of the 
left and right boundaries of the grid topology. Moreover, there exists a void block with SNs 
located around the peripheral of the block; while none of the SNs is situated inside the 
block. The void block is randomly moved in the vertical direction in order to simulate the 
existence of a void problem within the network. 



 Advances in Greedy Algorithms 

 

284 

The simulation scenario is described as follows. As shown in Fig. 5, the grid topology with 
the existence of a void block is considered in the simulation. It is noted that there are SNs 
located around the peripheral of the void block; while none of the SNs is situated inside the 
block. The source and destination nodes NS and ND are located at the center of the left and 
right boundaries as shown in Fig. 5. The data packets are transmitted from NS to ND with the 
void block that is randomly moved with vertical direction in order to simulate the existence 
of a void problem within the network. It is noted that network partition between NS and ND 
is not considered to exist in the simulation. One hundred simulation runs are conducted for 
each randomly moved void block case. The following five metrics are utilized in the 
simulations for performance comparison: 
1. Packet Arrival Rate: The ratio of the number of received data packets to the number of 

total data packets sent by the source. 
2. Average End-to-End Delay: The average time elapsed for delivering a data packet 

within a successful transmission. 
3. Path Efficiency: The ratio of the number of total hop counts within the entire routing 

path over the number of hop counts for the shortest path. 
4. Communication Overhead: The average number of transmitted control bytes per 

second, including both the data packet header and the control packets. 
5. Energy Consumption: The energy consumption for the entire network, including 

transmission energy consumption for both the data and control packets under the bit 
rate of 11 Mbps and the transmitting power of 15 dBm for each SN. 

 

 
 

Fig. 6. Packet Arrival Rate (%) vs. Number of Nodes 

Figs. 6 to 10 show the performance comparison between these four algorithms under 
different number of nodes within the UDG network. As can be seen from Fig. 6, the packet 
arrival rates obtained from these four algorithms are independent to the number of nodes 



Greedy Anti-Void Forwarding Strategies for Wireless Sensor Networks 

 

285 

within the network, which is attributed to the design nature of these four schemes. In both 
of the proposed GAR and GAR-E protocols, 100% of packet arrival rate is guaranteed under 
different number of nodes. These results are consistent with the protocol design that is 
proven to ensure 100% of packet arrival rate as long as the network is not partitioned 
between NS and ND. It can also be observed in Fig. 6 that the BOUNDHOLE algorithm can 
achieve around 88% of packet arrival rate due to the occurrence of routing loop; while the 
GF scheme can only attain around 45% since the void problem is not considered within its 
protocol design. 
Fig. 7 shows the average end-to-end delay for successful packet delivery by adopting these 
four algorithms. The conventional GF protocol possesses the smallest end-to-end delay due 
to its negligence of the void problem, which leads to less than 50% of packet arrival rate as 
shown in Fig. 6. On the other hand, the BOUNDHOLE algorithm results in the largest end-
to-end delay owing to its potential rerouting and looping under certain cases, e.g. as in Fig. 
2. The proposed GAR and GAR-E protocols can achieve comparably less routing delay 
comparing with the BOUNDHOLE scheme, i.e. around 15 to 25 ms less in end-to-end delay. 
Moreover, the GAR-E algorithm can provide additional 8 to 15 ms less delay comparing 
with the original GAR protocol due to the enhanced HCR and IN mechanisms. It is also 
noteworthy to observe the M-shape curves resulted within these four schemes. The primary 
reason can be attributed to the different hop counts between the source/destination pair 
generated by the GF algorithm. It is noted that the GAR, GAR-E, and BOUNDHOLE 
schemes implement the GF algorithm without the occurrence of the void problem. The hop 
counts under the cases of the five different numbers of SNs are computed as 5, 7, 6, 6, and 5. 
It can be apparently translated into the M-shape curves of the end-to-end delay performance 
as shown in Fig. 7. 
 

  
Fig. 7. Average End-to-End Delay (ms) vs. Number of Nodes 



 Advances in Greedy Algorithms 

 

286 

As shown in Fig. 8, the path efficiency acquired from these four schemes follows the 
similar trend as that from the average end-to-end delay. Due to the greedy nature and 
the negligence of the void problem, the path efficiency of the conventional GF scheme 
can achieve almost one in the simulations, i.e. the total number of hop counts is almost 
equal to that of the shortest path. The proposed GAR algorithm possesses the path 
efficiency of around 1.3 to 1.5. Furthermore, the GAR-E protocol further enhances the 
path efficiency to around the value of 1.1, which greatly outperforms the BOUNDHOLE 
schemes. 
 
 

 
 
 
Fig. 8. Path Efficiency vs. Number of Nodes 

Fig. 9 shows the communication overheads resulting from these four schemes, which are 
observed to increase as the increment of the number of nodes. The reason is attributed to 
the excessive control packets that are required for obtaining the neighbor’s locations while 
the number of nodes is augmented. It is noted that the GF algorithm possesses the 
smallest communication overheads owing to its ignorance of the void problem. The 
BOUNDHOLE algorithm results in the largest communication overhead among all the 
schemes due to its usage of excessive header bytes for preventing the routing loops. It is 
noticed that even though the GAR-E scheme requires additional NAV_MAP control 
packets for achieving the IN mechanism, the total required communication overhead is 
smaller than that from the GAR protocol due to its comparably smaller rerouting number 
of hop counts. 
 



Greedy Anti-Void Forwarding Strategies for Wireless Sensor Networks 

 

287 

 
 

 
 

Fig. 9. Communication Overhead (byte/sec) vs. Number of Nodes 
 
 
 

 
 

Fig. 10. Energy Consumption (uJ) vs. Number of Nodes 



 Advances in Greedy Algorithms 

 

288 

The comparison for energy consumption between these algorithms is presented in Fig. 
10. Similar performance trend can be observed between the energy consumption and 
the communication overhead as shown in Fig. 9. Except for the reference GF protocol, 
the proposed GAR and GAR-E algorithms can effectively reduce the energy 
consumption in comparison with the baseline BOUNDHOLE scheme. The merits of the 
proposed GAR and GAR-E algorithms are observed and validated via the simulation 
results. 

6. Conclusion 
In this book chapter, a greedy anti-void routing (GAR) protocol is proposed to completely 
resolve the void problem incurred by the conventional greedy forwarding algorithm. The 
rolling-ball UDG boundary traversal (RUT) scheme is adopted within the GAR protocol to 
solve the boundary finding problem, which results in guaranteed delivery of data packets. 
The correctness of the RUT scheme and the GAR algorithm are properly proven. The GAR 
protocol with two delay-reducing schemes, the hop count reduction (HCR) and the 
intersection navigation (IN) mechanisms, is proposed as the enhanced GAR (GAR-E) 
algorithm that inherits the merit of guaranteed delivery. The performance of both the GAR 
and GAR-E protocols is evaluated via simulations and is compared with existing localized 
routing algorithms. The simulation study shows that the proposed GAR and GAR-E 
algorithms can guarantee the delivery of data packets; while the GAR-E scheme further 
improves the routing efficiency and the communication overhead. Feasible routing 
performance can therefore be achieved. 

7. Acknowledgments 
This work was in part funded by the MOE ATU Program 95W803C, NSC 96-2221-E-009-016, 
MOEA 96-EC-17-A-01-S1-048, the MediaTek research center at National Chiao Tung 
University, and the Universal Scientific Industrial (USI) Co., Taiwan. 

8. References 
Arad, N. & Shavitt, Y. (2006). Minimizing Recovery State in Geographic Ad-Hoc Routing, 

Proceedings of ACM Int. Symp. Mobile Ad Hoc Networking and Computing 
(MobiHoc’06), pp. 13-24, May 2006 

Bose, P.; Morin, P.; Stojmenovi´c, I. & Urrutia, J. (2001). Routing with Guaranteed Delivery 
in Ad Hoc Wireless Networks, ACM/Kluwer Wireless Networks, vol. 7, no. 6, Nov. 
2001, pp. 609-616 

Chen, S.; FAN, G. & Cui, J.H. (2006). Avoid “Void” in Geographic Routing for Data 
Aggregation in Sensor Networks, Int. Journal of Ad Hoc and Ubiquitous Computing 
(IJAHUC), vol. 1, no. 4, 2006, pp. 169-178 

Estrin, D.; Govindan, R.; Heidemann, J. & Kumar, S. (1999). Next Century 
Challenges: Scalable Coordination in Sensor Networks, Proceedings of 
ACM/IEEE Int. Conf. Mobile Computing and Networking (MobiCom’99), pp. 
263-270, Aug. 1999 



Greedy Anti-Void Forwarding Strategies for Wireless Sensor Networks 

 

289 

Fang, Q.; Gao, J. & Guibas, L. (2004). Locating and Bypassing Routing Holes in Sensor 
Networks, Proceedings of IEEE Int. Conf. Computer Communications (INFOCOM’04), 
pp. 2458-2468, Mar. 2004 

Finn, G.G. (1987). Routing and Addressing Problems in Large Metropolitan-Scale 
Internetworks, Info. Sci. Inst. (ISI), Tech. Rep. ISI/RR-87-180, Mar. 1987 

Frey, H. & Stojmenović, I. (2006). On Delivery Guarantees of Face and Combined 
Greedy Face Routing in Ad Hoc and Sensor Networks, Proceedings of ACM/IEEE 
Int. Conf. Mobile Computing and Networking (MobiCom’06), pp. 390-401, Sept. 
2006 

Giruka, V.C. & Singhal, M. (2005). Angular Routing Protocol for Mobile Ad Hoc Networks, 
Proceedings of IEEE Int. Conf. Distributed Computing Systems Workshops (ICDCSW’05), 
pp. 551-557, Jun. 2005 

He, T.; Stanković, J.A.; Lu, C. & Abdelzaher, T. (2003). SPEED: A Stateless Protocol for Real-
Time Communication in Sensor Networks, Proceedings of Int. Conf. Distributed 
Computing Systems (ICDCS’03), pp. 46-55, May 2003 

Heidemann, J.; Bulusu, N.; Elson, J.; Intanagonwiwak, C.; Lan, K.; Xu, Y.; Ye, W.; 
Estrin, D. & Govindan, R. (2001). Effects of Detail in Wireless Network 
Simulation, Proceedings of SCS Multiconference on Distributed Simulation, pp. 3-
11, Jan. 2001 

Karp, B. & Kung, H.T. (2000). GPSR: Greedy Perimeter Stateless Routing for Wireless 
Networks, Proceedings of ACM/IEEE Int. Conf. Mobile Computing and Networking 
(MobiCom’00), pp. 243-254, Aug. 2000 

Kranakis, E.; Singh, H. & Urrutia, J. (1999). Compass Routing on Geometric Networks, 
Proceedings of Canadian Conf. Computational Geometry (CCCG’99), pp. 51-54, Aug. 
1999 

Kuhn, F.; Wattenhofer, R.; Zhang, Y. & Zollinger, A. (2003). Geometric Ad-hoc Routing: Of 
Theory and Practice, Proceedings of ACM Symp. Principles of Distributed Computing 
(PODC), pp. 63-72, Jul. 2003 

Kuhn, F.; Wattenhofer, R. & Zollinger, A. (2003). Worst-case Optimal and Average-case 
Efficient Geometric Ad-hoc Routing, Proceedings of ACM Int. Symp. Mobile 
Computing and Networking (MobiHoc’03), pp. 267-278, Jun. 2003 

Leong, B.; Mitra, S. & Liskov, B. (2005). Path Vector Face Routing: Geographic Routing with 
Local Face Information, Proceedings of IEEE Int. Conf. Network Protocols (ICNP’05), 
pp. 147-158, Nov. 2005 

Liu, W.J. & Feng, K.T. (2006). Largest Forwarding Region Routing Protocol for Mobile Ad 
Hoc Networks, Proceedings of IEEE Global Communications Conference 
(GLOBECOM’06), pp. 1-5, Nov. 2006 

Na, J.; Soroker, D. & Kim, C.K. (2007). Greedy Geographic Routing Using Dynamic Potential 
Field for Wireless Ad Hoc Networks, IEEE Commun. Lett., vol. 11, no. 3, Mar. 2007, 
pp. 243-245 

Stojmenović, I. & Lin, X. (2001). Loop-Free Hybrid Single-Path/Flooding Routing 
Algorithms with Guaranteed Delivery for Wireless Networks, IEEE Trans. Parallel 
Distrib. Syst., vol. 12, no. 10, Oct. 2001, pp. 1023-1032 



 Advances in Greedy Algorithms 

 

290 

Stojmenović, I.; Russell, M. & Vukojevic, B. (2000). Depth First Search and Location Based 
Localized Routing and QoS Routing in Wireless Networks, Proceedings of IEEE Int. 
Conf. Parallel Processing (ICPP’00), pp. 173-180, Aug. 2000 

West, D.B. (2000). Introduction to Graph Theory, 2nd ed., Prentice Hall 
Zou, L.; Lu, M. & Xiong, Z. (2005). A Distributed Algorithm for the Dead End Problem of 

Location Based Routing in Sensor Networks, IEEE Trans. Veh. Technol., vol. 54, no. 
4, Jul. 2005, pp. 1509-1522 



16 

Greedy Like Algorithms for the  
Traveling Salesman and Multidimensional 

Assignment Problems 
Gregory Gutin and Daniel Karapetyan 

Royal Holloway, University of London 
United Kingdom 

1. Introduction 
Majority of chapters of this book show usefulness of greedy like algorithms for solving 
various combinatorial optimization problems. The aim of this chapter is to warn the reader 
that not always a greedy like approach is a good option and, in certain cases, it is a very bad 
option being sometimes among the worst possible options. Our message is not a 
discouragement from using greedy like algorithms altogether; we think that for every 
combinatorial optimization problem of importance, researchers and practitioners should 
simply investigate the appropriateness of greedy like algorithms and the existence of better 
alternatives to them (considering both quality of solution and running time). In many cases, 
especially when the running time must be very short, the conclusion may still be that the 
most practical of known approaches is a greedy like algorithm. 
The Traveling Salesman and Multidimensional Assignment Problems are optimization 
problems for which greedy like approaches are usually not very successful. We demonstrate 
this by providing both theoretical and experimental results on greedy like algorithms as 
well as on some other algorithms that produce (in theory and/or in experiments) much 
better results without spending significantly more time. 
There are some general theoretical results that indicate that there are, in fact, many 
combinatorial optimization problems for which greedy like algorithms are not the best 
option even among fast construction heuristics, see, e.g., [3, 5, 17]. We will not consider these 
general results in order to avoid most mathematical details that are not necessary for 
understanding the results of this chapter. For this reason we will not give proofs here apart 
from two simple proofs: that of Theorem 8 which shows that some instances on which the 
greedy algorithm fails are not exotic in a sense and that of Theorem 11 since Theorem 11 is a 
new result. 
It is not a trivial question whether a certain algorithm is greedy like or not. In the next 
section we define an independence system and give the classic definition of the greedy 
algorithm for such a system. We extend this definition to so-called greedy type algorithms 
that include such well-known algorithms as the Prim’s algorithm for the minimum 
spanning tree problem and the nearest neighbor algorithm for the traveling salesman 
problem. We use the term ‘greedy like’ in an informal way and we include in this class 
simple and fast construction heuristics that seem to us to be of greedy nature. 



 Advances in Greedy Algorithms 

 

292 

Unfortunately, no formal definition exists for the wide family of greedy like algorithms and 
one can understand the difficulty to formally classify such algorithms by, for example, 
considering local search algorithms which find the best solution in each neighborhood they 
search. Intuitively, it is clear that such local search algorithms are not greedy yet their every 
search is greedy in a sense. 
In the next section, we give most of terminology and notation used in this chapter. Several 
results on theoretical performance of greedy like algorithms for the Traveling Salesman and 
Multidimensional Assignment Problems are discussed in Sections 3 and 4, respectively. 
Experimental results on greedy like algorithms for the Traveling Salesman and 
Multidimensional Assignment Problems are given and analyzed in Sections 5 and 6, 
respectively. 

2. Terminology and notation 
The Asymmetric Traveling Salesman Problem (ATSP) is the problem of computing a minimum 
weight tour (Hamilton directed cycle) passing through every vertex in a weighted complete 
digraph  on n vertices. The Symmetric TSP (STSP) is the same problem, but on a weighted 
complete undirected graph Kn. When a certain fact holds for both ATSP and STSP, we will 
simply speak of TSP. We often assume that the vertices of  and Kn are 1, 2, …, n and often 
refer to the weight w(ij) of an edge ij of  (or Kn) as the distance from i to j. TSP has a large 
number of applications, see, e.g., the two recent books [1, 13] on TSP. 
The Multidimensional Assignment Problem (MAP) (abbreviated s-AP in the case of s 
dimensions) is a well-known optimization problem with a host of applications (see, e.g., [2, 
6, 7] for ‘classic’ applications and [4, 25] for recent applications in solving systems of 
polynomial equations and centralized multisensor multitarget tracking). In fact, several 
applications described in [4, 6, 25] naturally require the use of s-AP for values of s larger 
than 3. 
For a fixed s ≥ 2, the s-AP is stated as follows. Let X1 = X2 = … = Xs = {1, 2, … , n}. We will 
consider only vectors that belong to the Cartesian product X = X1 × X2 × … × Xs. Each vector 
e ∈ X is assigned a non-negative integral weight w(e). For a vector e ∈ X, the component ej 

denotes its jth coordinate, i.e., ej ∈ Xj . A collection A of t ≤ n vectors e1, e2, …, et is a (feasible) 
partial assignment if  

  
holds for each i ≠ k and j ∈ {1, 2, … , s}. The weight of a partial 

assignment A is w(A) = Σ w(ei). An assignment (or full assignment) is a partial assignment 
with n vectors. The objective of s-AP is to find an assignment of minimum weight. 
Let P be a combinatorial optimization problem and let H be a heuristic for P. The domination 
number domn(H, I) of H for an instance I of P is the number of solutions of I that are not 
better than the solution s produced by H including s itself. For example, consider an 
instance T of the STSP on 5 vertices. Suppose that the weights of tours in T are 2, 5, 5, 6, 6, 9, 
9, 11, 11, 12, 12, 15 (every instance of STSP on 5 vertices has 12 tours) and suppose that the 
greedy algorithm computes the tour T of weight 6. Then domn(greedy, T ) = 9. In general, 
if domn(H, I) equals the number of solutions in I, then H finds an optimal solution for I. If 
domn(H, I) = 1, then the solution found by H for I is the unique worst possible one. The 
domination number domn(H, n) of H is the minimum of domn(H, I) over all instances I of 
size n. 
An independence system is a pair consisting of a finite set E and a family F of subsets (called 
independent sets) of E such that (I1) and (I2) are satisfied. 



Greedy Like Algorithms for the Traveling Salesman and Multidimensional Assignment Problems 

 

293 

(I1) the empty set is in F; 
(I2) If X ∈ F and Y is a subset of X, then Y ∈ F. 
All maximal sets of F are called bases (or, feasible solutions). 
Many combinatorial optimization problems can be formulated as follows. We are given an 
independence system (E,F), a set W ⊆ Z+ and a weight function w that assigns a weight  
w(e) ∈ W to every element of E (Z+ is the set of non-negative integers). The weight w(S) of  
S ∈ F is defined as the sum of the weights of the elements of S. It is required to find a base  
B ∈ F of minimum weight. We will consider only such problems and call them the (E,F,W)-
optimization problems. 
ATSP is an (E,F,Z+)-optimization problem, where E is the set of arcs of the complete digraph 

 and F = {B ⊆ H : H ∈ H}, where H is the set of Hamilton directed cycles of . MAP is 
also an (E,F,Z+)-optimization problem, where E is the set of all vectors and F is the set of all 
partial assignments. 
If S ∈ F, then let I(S) = {x : S ∪ {x} ∈ F} \ S. This means that I(S) consists of those elements 
from E \ S, which can be added to S, in order to have an independent set of size │S│+ 1. 
Note that by (I2) I(S) ≠ 0 for every independent set S which is not a base. 
The Greedy Algorithm (Greedy) tries to construct a minimum weight base as follows: it starts 
from an empty set X, and at every step it takes the current set X and adds to it a minimum 
weight element e ∈ I(X), the algorithm stops when a base is built. We assume that the greedy 
algorithm may choose any element among equally weighted elements in I(X). Thus, when 
we say that the greedy algorithm may construct a base B, we mean that B is built provided 
the appropriate choices between elements of the same weight are made. 
Greedy type algorithms were introduced in [14]. They include the nearest neighbor 
algorithm for TSP and are defined as follows. A greedy type algorithm H is similar to the 
greedy algorithm: start with the partial solution X = 0; and then repeatedly add to X an 
element of minimum weight in (X) (ties are broken arbitrarily) until X is a base of F, 
where (X) is a subset of I(X) that does not depend on the cost function c, but only on the 
independence system (E,F) and the set X. Moreover, (X) is non-empty if I(X) ≠ 0, a 
condition that guarantees that H always outputs a base. 

3. Theoretical performance of greedy like algorithms for TSP 
The main practical message of this and the next section is that one should be careful while 
using the classical greedy algorithm and its variations in combinatorial optimization: there 
are many instances of combinatorial optimization problems for which such algorithms will 
produce the unique worst possible solution. Moreover, this is true for several well-known 
optimization problems and the corresponding instances are not exotic, in a sense. This 
means that not always the paradigm of greedy optimization provides any meaningful 
optimization at all. 
The first results of the kind mentioned in the previous paragraph were obtained in [19]: 
Theorem 1. For each n ≥ 2 there is an instance of ATSP for which the Greedy Algorithm finds the 
unique worst possible tour. 
Gutin, Yeo and Zverovitch [19] proved Theorem 1 also for the Nearest Neighbor (NN) 
algorithm: start from an arbitrary vertex i1 and go to a vertex i2 ≠ i1 with shortest distance 



 Advances in Greedy Algorithms 

 

294 

from i1; when in a vertex ik, k < n, go to a vertex ik+1 with shortest distance from ik among 
vertices not in the set {i1, i2, …, ik-1}. The proof for NN is correct for both ATSP and STSP. The 
proof of Theorem 1 itself (for Greedy) cannot be extended to STSP, but Theorem 1 holds 
also for STSP [18]. 
The Greedy and NN algorithms are special cases of greedy type algorithms and Bendall 
and Margot [5] proved the following result that generalizes all the results above. 
Theorem 2. Let A be a TSP greedy type algorithm. For each n ≥ 3 there is an instance of TSP for 
which A finds the unique worst possible tour. 
At this stage the reader may ask the following natural question: ‘Perhaps, it is true that 
every TSP heuristic has the domination number equal 1?’ The answer is negative. In fact, 
there are many TSP heuristics (see, e.g., [15, 23]) which, for every instance T of TSP with n 
vertices (n ≥ 3), produce a tour that is no longer than the average length of a tour in T. 
Among these heuristics there are several fast construction heuristics. Thus, we can apply the 
following theorem to many TSP heuristics (we formulate this theorem for ATSP, but an 
almost identical result by Rublineckii [26] is known for STSP, see [13]): 
Theorem 3. Let H be an ATSP heuristics that, for every instance T of ATSP on n ≥ 2 vertices, 
produces a tour that is no longer than the average length of a tour in T. Then the domination number 
of H is at least (n - 2)! for each n ≠ 6. 
This theorem was first proved by Sarvanov [27] for odd values of n and by Gutin and Yeo 
[15] for even values of n. 
Sometimes, we are interested in TSP with only restricted range of weights. The following 
two results for this variation of TSP were obtained by Bang-Jensen, Gutin and Yeo [3]. 
Theorem 4. Consider STSP as an (E,H,W)-optimization problem. 
a. If n ≥ 4 and │W│≤ , then the greedy algorithm never produces the unique worst possible 

base (i.e., tour). 
b. If n ≥ 3, r ≥ n - 1 and W = {1, 2, …, r}, then there exists a weight function w : E→{1, 2, …, r} 

such that the greedy algorithm may produce the unique worst possible base (i.e., tour). 
Theorem 5. Consider ATSP as an (E,H,W)-optimization problems. Let n ≥ 3. 
a. If │W│ ≤ , then the greedy algorithm never produces the unique worst possible base (i.e., 

tour). 
b. For every r ≥  there exists a weight function w : E( )→{1, 2, …, r} such that the greedy 

algorithm may produce the unique worst possible base (i.e., tour). 
Notice that the above-mentioned theorems can be proved as corollaries of general results 
that hold for many (E,H,W)-optimization problems, see, e.g., [3, 5, 16]. 
Another ATSP greedy like heuristic, max-regret-fc (fc abbreviates First Coordinate), was 
first introduced by Ghosh et al. [8]. Extensive computational experiments in [8] 
demonstrated a clear superiority of max-regret-fc over the greedy algorithm and several 
other construction heuristics from [9]. Therefore, the result of Theorem 6 obtained by Gutin, 
Goldengorin and Huang [11] was somewhat unexpected. 
Let Q be a collection of disjoint directed paths in  and let V = V ( ) ={1, 2, … , n}. An arc 
a = ij is a feasible addition to Q if Q ∪ {a} is either a collection of disjoint paths or a tour in . 
Consider the following two ATSP heuristics: max-regret-fc and max-regret. 
The heuristic max-regret-fc proceeds as follows. Set W = T = 0. While W ≠ V do the following: 
For each i ∈ V \W, compute two lightest arcs ij and ik that are feasible additions to T, and 



Greedy Like Algorithms for the Traveling Salesman and Multidimensional Assignment Problems 

 

295 

compute the difference Δi = │w(ij) - w(ik)│. For i ∈ V \ W with maximum Δi choose the 
lightest arc ij, which is a feasible addition to T and add ij to M and i to W. 
The heuristic max-regret proceeds as follows. Set W + = W - = T = 0. While W + ≠ V do the 
following: For each i ∈ V \ W +, compute two lightest arcs ij and ik that are feasible additions 
to T, and compute the difference  = │w(ij) - w(ik)│; for each i ∈ V \ W -, compute two 
lightest arcs ji and ki that are feasible additions to T, and compute the difference  = 
│w(ji) - w(ki)│. Compute i ’ ∈ V \ W + with maximum  and i” ∈ V \ W - with maximum 

. If  ≥  choose the lightest arc i ’j ’, which is a feasible addition to T and add i ’j ’ to 
M, i’ to W + and j ’ to W -. Otherwise, choose the lightest arc j “ i ”, which is a feasible addition 
to T and add j “ i “ to M, i “ to W - and j “ to W +. 
Notice that in max-regret-fc, if │V \ W│ = 1 we set Δi = 0. A similar remark applies to max-
regret. 
Theorem 6. The domination number of both max-regret-fc and max-regret equals 1 for each n ≥ 2. 

4. Theoretical performance of greedy like algorithms for MAP 
In this section, we will first prove that the greedy algorithm for s-AP is of domination 
number 1. The proof shows that the greedy algorithm fails on instances that cannot be called 
‘exotic’ in the sense that they do not have very large weights. For our proof we need the 
following definitions and lemma. 
A vector h is backward if min{hi : 2 ≤ i ≤ s} < h1; a vector h is horizontal if h1 = h2 = … = hs. A 
vector is forward if it is not horizontal or backward. 
Lemma 7. Let F be an assignment of s-AP (s ≥ 2). Either all vectors of F are horizontal or F contains 
a backward vector. 
Proof: Let F = {f 1, f 2, … , f n}, where  = i for each 1 ≤ i ≤ n. Assume that not every vector of 
F is horizontal. We show that F has a backward vector. Suppose it is not true. Then F has a 
forward vector f i. Thus, there is a subscript j such that  > i. By the pigeonhole principle, 
there exists a superscript k > i such that  ≤ i, i.e., f k is backward; a contradiction.                 □ 
Theorem 8. For each s ≥ 2, n ≥ 2, there exists an instance of s-AP for which Greedy will find the 
unique worst possible assignment. 
Proof: Consider some M > n and let E = {e1, e2, … , en}, where e i = (i, i, … i) for every 1 ≤ i ≤ n. 
We define the required instance I as follows: w(ei) = iM for each 1 ≤ i ≤ n and, for each f ∉ E, 
w(f) = min{f i : 1 ≤ i ≤ s} ⋅ M + 1. 
Observe that Greedy will construct E. Let F = {f 1, f 2, …, f n} be any other assignment, where 

 = i for each 1 ≤ i ≤ n. By Lemma 7, F has a backward vector f k. Notice that 

 (1) 

By the definition of the weights and (1), 

 



 Advances in Greedy Algorithms 

 

296 

                                                                                        □ 
One can consider various greedy type algorithms for s-AP. One natural algorithm of this 
kind proceeds as follows: At the ith iteration, i = 1, 2, … , n choose a vector e i of minimum 
weight such that = i and {e1, e2, … , e i} is a partial assignment. We call this algorithm the 
First Coordinate Fixing (FCF) heuristic. A simple modification of the proof of the first half of 
Theorem 10 in [5] shows the following: 
Theorem 9. For every n ≥ 1, s ≥ 2, there is an instance of s-AP and for every greedy type algorithm 
H for s-AP, there is an instance I of s-AP for which H finds the unique worst possible assignment. 
In Section 3, we considered the max-regret-fc and max-regret heuristics. In fact, max-regret 
was first introduced for 3-AP by Balas and Saltzman [2]. The s-AP heuristic max-regret 
proceeds as follows. We start from the empty partial assignment A and, at every iteration, 
we consider a partial assignment A. Set Vd = {1, 2, … , n} for each 1 ≤ d ≤ s. For each 
dimension d and each value v ∈ Vd consider every vector e ∈ X’ such that ed = v, where  
X’ ⊂ X is a set of feasible additional vectors, i.e., A∪{e} is a feasible partial assignment if e ∈ 
X’. If X’ ≠ 0, find two vectors  and  in the considered subset Yd,v = {e ∈ X’ : ed = v} 
such that , and . (If 
│Yd;v│= 1, set  = .) Select the pair (d, v) that corresponds to the maximum 
difference w( ) - w( ) and add the vector  for the selected (d, v) to the solution A. 
In computational experiments, Balas and Saltzman [2] compared the greedy algorithm with 
max-regret and concluded that max-regret is superior to the greedy algorithm with respect 
to the quality of solutions. However, after conducting wider computational experiments, 
Robertson [25] came to a different conclusion: the greedy algorithm and max-regret are of 
similar quality for 3-AP. Gutin, Goldengorin and Huang [11] share the conclusion of 
Robertson: both greedy algorithm and max-regret are of domination number 1 for s-AP for 
each s ≥ 3. Moreover, there exists a common family of s-AP instances for which both 
heuristics find the unique worst assignment [11] (for each s ≥ 3). 
Similarly to TSP, we may obtain MAP heuristics of factorial domination number if we 
consider not-worth-than-average heuristics. This follows from the next theorem: 
Theorem 10. [11] Let H be a heuristic that for each instance of s-AP constructs an assignment of 
weight at most the average weight of an assignment. Then the domination number of H is at least  
((n - 1)!)s-1. 
Using Theorem 10, it is proved in [11] that the following heuristic is of domination number 
at least ((n - 1)!)s-1. The Recursive Opt Matching (ROM) heuristic proceeds as follows. Initialize 
the solution by trivial vectors: e i = (i, i, … , i), i = 1, 2, … , n. On each jth iteration of the 
heuristic, j = 1, 2, … , s - 1, calculate an n × n matrix Mi,v

 = Σe∈Y (j,i,v)
 w(e), where Y (j, i, v) is a 

set of all vectors e ∈ X such that the first j coordinates of the vector e are equal to the first j 
coordinates of the vector e i and the (j + 1)th coordinate of e is v: Y (j, i, v) = {e ∈ X : e k =   1 
≤ k ≤ j, and ej+1

 = v}. Let permutation π be a solution of the 2-AP for the matrix M. We set 
 = π(i) for each 1 ≤ i ≤ n. 



Greedy Like Algorithms for the Traveling Salesman and Multidimensional Assignment Problems 

 

297 

The Multi-Dimensionwise Variation (MDV) heuristic is introduced in [12] as a local search 
heuristic for MAP. MDV starts from the trivial solution e i = (i, i, … , i), i = 1, 2, … , n. On each 
step it selects a nonempty set of distinct dimensions, F  {1, 2, ..., s}. The corresponding 
dimensions are fixed, while the others are varied, and an n × n matrix M i,j

 = w(v i,j) is 
produced, where 

 
Let permutation ρ be a solution of the corresponding 2-AP. If ρ is not an identity 
permutation, the heuristic changes the s-AP assignment in the following way: 

 
There are 2s - 2 distinct sets of the fixed dimensions F, but a half of them may be omitted 
since there is no difference whether to fix the selected dimensions and to vary the others, or 
to vary the selected dimensions and to fix the others. So, every iteration of the heuristic tries 
2s-1 - 1 distinct sets F. If no improvement was obtained during an iteration, the algorithm 
terminates. We have the following: 
Theorem 11. The domination number of  MDV equals (2s-1 - 1)(n! - 1) + 1. 
Proof: Let a vector e i = (i, i, … , i) ∈ X for every i = 1, 2, … , n and let vectors e(i,j,F ) ∈ X, 1 ≤ i ≠ 
j ≤ n, be defined as  ∈ {i, j} for every k = 1, 2, … , s and  = i if and only if k ∈ F. 
We assign the weights as follows: w(e i ) = 1 for every i = 1, 2, … , n, w(e(i,j,F )) = 2 for each of 
the 2s-1 - 1 sets F and 1 ≤ i ≠ j ≤ n and w(e) = 0 for every vector e ∈ X that has at least three 
coordinates of different value. Let F0

 be the first set F chosen by MDV. Observe that for F0 

MDV outputs the trivial assignment e1, … , en, which is the best among n! assignments. 
For every other F MDV outputs the trivial assignment which is better than n!–1 assignments. 
Further iteration will output the trivial assignment as well. Thus, we conclude that the 
trivial assignment is the best among at most (2s–1 – 1)(n! – 1)+1 assignments considered by 
MDV and, hence, the domination number of MDV is at most (2s–1 – 1)(n! – 1) + 1. 
Now consider the last iteration of MDV. No improvement is made, and, thus, a solution with 
which we started the iteration will not change during the iteration. By permuting the 
elements of X2, X3, … ,Xs (recall that X = X1 × X2 × … × Xs), if needed, we may assume, 
without loss of generality, that the solution at the start of the last permutation is the trivial 
assignment. Since  provided F’ ≠ F” and F’ ≠ {1, 2, … , s} \ F”, as above, 
we can see that the trivial assignment is the best among exactly (2s–1 – 1)(n! – 1)+1 distinct 
assignments of the last iteration. Thus, (2s–1 – 1)( n! – 1) + 1 is a lower bound on the 
domination number of MDV. Since this lower bound is also an upper bound on the 
domination number, we are done.                                                                                                     □  
This theorem and the result just after Theorem 10 show that ROM is of larger domination 
number than MDV for every fixed s ≥ 3 for every n large enough. This is in contrast with the 
experimental results reported in Section 6, where the solutions obtained by MDV are almost 



 Advances in Greedy Algorithms 

 

298 

always better than those produced by ROM. There is no contradiction in the two comparisons 
as they measure different sides of the quality of the two heuristics: the worst case behavior 
vs. the performance on some particular families of MAP instances. 

5. Empirical evaluation of greedy like algorithms for TSP 
We considered three ATSP heuristics in our experiments: Greedy, NN, and Patch Cycles 
(Patch) [22]. 
The Greedy heuristic is implemented as follows. Construct an array of all arcs xiyi, xi ≠ yi,  
1 ≤ i ≤ n(n - 1), and sort this array by the arc weight: w(xiyi) ≤ w(xi+1yi+1) for every 1 ≤ i < n(n - 
1). Let prev(i) be the vertex preceding the vertex i in the tour, and let next(i) be the vertex 
succeeding the vertex i in the tour. Initialize prev(i) = next(i) = 0 for every 1 ≤ i ≤ n. While the 
solution is incomplete, it consists of several separate components. For a vertex i let id(i) be 
the identifier of the vertex i component. Initialize id(i) = i for every 1 ≤ i ≤ n. On every kth 
step of the heuristic try to add the arc xkyk to the current solution, i.e., check whether next(xk) 
= 0 and prev(yk) = 0 and id(xk) ≠ id(yk). If all the conditions are met, set next(xk) = yk, prev(yk) = 
xk, and id(i) = id(yk) for every i ∈ { j : id(j) = id(xk)}. When n - 1 arcs are added to the solution, 
the algorithm closes the cycle and stops. 
The details on the NN heuristic are available in Section 3. 
The Patch heuristic proceeds as follows. Let π be a solution of the assignment problem 
(AP) for the distance matrix of ATSP. Construct vertex-disjointed cycles ci based on the AP 
solution π such that  = π( ) for every 1 ≤ j < si and  = π( ), where si is the number of 

vertices in the ith cycle. Let m be the number of cycles, such that Σ si = n. If m = 1, the 
cycle c1 is the optimal solution of ATSP and no further actions are required. Otherwise select 
two longest cycles (i.e., the cycles with the maximum values of si) and patch them by 
removing edges x1x2 from the first of them and y1y2 from the second one such that the value 
w(x1y2)+w(y1x2) – w(x1x2) – w(y1y2) is minimized. Repeat this procedure until there is just one 
cycle, that is considered as a solution. 
All the heuristics in this section and in Section 6 are implemented in Visual C++. The 
evaluation platform is based on AMD Athlon 64 X2 3.0 GHz processor. 
The experiment results are reported in Tables 1 and 2. Table 1 includes the results for 
randomly generated instances of nine classes (for details see [13]). Ten instances of size 100, 
ten instances of size 316, three instances of size 1000, and one instance of size 3162 are 
considered for every instance class. The solution quality is presented by percent above the 
Held-Karp (HK) lower bound [20, 21]. 
Table 2 includes the results for several real-world ATSP instances from TSPLIB [24] and 
some other sources [20]. The solution quality is presented by percent above the best known 
solutions. 
One can see that Patch clearly outperforms both Greedy and NN with respect to the 
solution quality, and the NN solutions are usually better than the Greedy ones (though 
Greedy slightly outperform NN on average with respect to the solution quality for the real-
world instances). NN is much faster than both Greedy and Patch, while Patch is faster 
than Greedy for small instances and slower for the large ones. Johnson et al. [20] showed 
that, along with Patch, there are some other ATSP heuristics that are relatively fast and 
normally produce solutions that are much better than those obtained by Greedy and NN. 
(Some ATSP heuristics of good quality are also studied in [8].) Thus, it appears that Greedy 



Greedy Like Algorithms for the Traveling Salesman and Multidimensional Assignment Problems 

 

299 

should never be used in practice and NN is of interest only if a very fast heuristic is 
required. 

6. Empirical evaluation of greedy like algorithms for MAP 
In this chapter we consider four MAP heuristics: Greedy, First Coordinate Fixing (FCF), 
Recursive Opt Matching (ROM), and Multi-Dimensionwise Variation (MDV). 
Greedy proceeds as follows. Let A =  be a partial assignment and B an array of vectors. 
While │A│< n, i.e., A is not a full assignment, the following steps are repeated. Scan the 
weight matrix to fill array B with k vectors corresponding to k minimal weights and sort B in 
non-decreasing order. For each vector e ∈ B, starting from the lightest, check whether A ∪ {e} 
is a feasible partial assignment and, if so, add e to A. Note, that during the second and 
further cycles we scan not the whole weight matrix but only a subset X’ ⊂ X of the vectors 
that can be included into the partial assignment A with the feasibility preservation: A ∪ {x} is 
a partial assignment for any x ∈ X’. The size of the array B is calculated as k = min{128, 
│X’│}. 
The details on FCF, ROM and MDV heuristics are available in Section 4. As in [12], the 
number of MDV iterations was artificially restricted to 10. 
The testbed includes three instance families: Random, Composite, and GP, discussed in 
[12]. 
In Random Instance Family (Random) the weight assigned to a vector is a random uniformly 
distributed integer value in the interval [a, b - 1]. We set a = 1 and b = 101. It is proved (see 
[12]) that the optimal solutions of large Random instances are very likely to be of weight an, 
so we assume in our experiments that the optimal solutions of the considered Random 
instances are exactly n. 
The Composite Instance Family (Composite) is a family of semi-random instances. They were 
introduced by Crama and Spieksma for 3-AP as a problem T [7]. We extend this family for s-
AP. 
Let d1, d2, . . . , ds

 be n × n matrices of non-negative uniformly distributed random integers in 
the interval [a, b - 1]. Let us consider a graph G(X1 ∪ X2 ∪… ∪ Xs, (X1 ×X2) ∪ (X2 ×X3) ∪ … ∪ 
(Xs-1 ×Xs) ∪ (X1×Xs)), where the weight of an edge (i, j) ∈ Xk × Xk+1 is  for 1 ≤ k < s and the 
weight of an edge (i, j) ∈ X1 × Xs is . In this interpretation of s-AP, the objective is to find 
a set of n vertex-disjoint s-cycles C ⊂ X1 ×X2 × … ×Xs such that the total weight of all edges 
covered by the cycles C is minimized. 
In other words,  
The GP Instance Family (GP) contains pseudo-random instances with predefined optimal 
solutions. GP instances are generated by an algorithm given by Grundel and Pardalos [10]. 
The generator is naturally designed for s-AP for arbitrary large values of s and n. The GP 
generator is relatively slow and, thus, is was impossible to experiment with large GP 
instances. 
The results of the experiments are reported in Tables 3, 4, and 5. One can see that Greedy is 
significantly slower than the FCF heuristic, while its solution quality is not significantly 
better than the FCF’s one. ROM outperforms or have very close results to Greedy with 
respect to both the solution quality and the running times. MDV clearly outperforms all 
other heuristics with respect to the solution quality, and it is the fastest algorithm for 



 Advances in Greedy Algorithms 

 

300 

Random and Composite instances. For GP instances FCF and ROM are faster than MDV. 
Based on the experimental data, MDV is definitely the overall winner. 

7. References 
[1] D.L. Applegate, R.E. Bixby, V. Chvátal and W.J. Cook, The Traveling Salesman Problem: A 

Computational Study, Princeton University Press, 2006. 
[2] E. Balas, and M.J. Saltzman, An algorithm for the three-index assignment problem, 

Operations Research 39 (1991), 150–161. 
[3] J. Bang-Jensen, G. Gutin and A. Yeo, When the greedy algorithm fails, Discerete 

Optimization 1 (2004), 121–127. 
[4] H. Bekker, E.P. Braad and B. Goldengorin, Using bipartite and multidimentional 

matchings to select roots of a system of polynomial equations. In Proc. ICCSA’05, 
Lecture Notes in Computer Science 3483 (2005), 397–406. 

[5] G. Bendall and F. Margot, Greedy Type Resistance of Combinatorial Problems, Discrete 
Optimization 3 (2006), 288–298. 

[6] R.E. Burkard and E. C¸ ela, Linear assignment problems and extensions, in Handbook of 
Combinatorial Optimization, Kluwer, Dordrecht, 1999, (Z. Du and P. Pardalos, 
eds.), 75–149. 

[7] Y. Crama and F.C.R. Spieksma, Approximation algorithms for threedimensional 
assignment problems with triangle inequalities, Europ. J. Operational Res. 60 (1992), 
273–279. 

[8] D. Ghosh, B. Goldengorin, G. Gutin and G. J¨ager, Tolerance-based greedy algorithms for 
the traveling salesman problem, Communications in DQM 10 (2007), 52–70. 

[9] F. Glover, G. Gutin, A. Yeo and A. Zverovich, Construction heuristics for the asymmetric 
TSP, European Journal of Operational Research 129 (2001), 555–568. 

[10] D.A. Grundel and P. M. Pardalos, Test problem generator for the multidimensional 
assignment problem, Comput. Optim. Appl., 30(2):133146, 2005. 

[11] G. Gutin, B. Goldengorin, and J. Huang, ‘Worst Case Analysis of Max-Regret, Greedy 
and Other Heuristics for Multidimensional Assignment and Traveling Salesman 
Problems’, Lect. Notes Computer Sci., 4368 (2006), 214–225. 

[12] G. Gutin and D. Karapetyan, Local Search Heuristics For The Multidimensional 
Assignment Problem, Preprint arXiv:0806.3258v2. 

[13] G. Gutin and A.P. Punnen (eds.), The Traveling Salesman Problem and its Variations , 
Kluwer, 2002 and Springer-Verlag, 2007. 

[14] G. Gutin, A. Vainshtein and A. Yeo, When greedy-type algorithms fail, unpublished 
manuscript, 2002. 

[15] G. Gutin and A. Yeo, Polynomial approximation algorithms for the TSP and the QAP 
with a factorial domination number, Discrete Appl. Math. 119 (2002), 107–116. 

[16] G. Gutin and A. Yeo, Anti-matroids, Oper. Res. Lett. 30 (2002), 97–99. 
[17] G. Gutin and A. Yeo, Domination Analysis of Combinatorial Optimization Algorithms 

and Problems. Graph Theory, Combinatorics and Algorithms: Interdisciplinary 
Applications (M.C. Golumbic and I.B.-A. Hartman, eds.), Springer-Verlag, 2005. 

[18] G. Gutin and A. Yeo, The Greedy Algorithm for the Symmetric TSP. Algorithmic Oper. 
Res. 2 (2007), 33–36. 



Greedy Like Algorithms for the Traveling Salesman and Multidimensional Assignment Problems 

 

301 

[19] G. Gutin, A. Yeo and A. Zverovitch, Traveling salesman should not be greedy: 
domination analysis of greedy-type heuristics for the TSP, Discrete Appl. Math. 117 
(2002), 81–86. 

[20] D.S. Johnson, G. Gutin, L.A. McGeoch, A. Yeo, X. Zhang and A. Zverovitch, 
Experimental Analysis of Heuristics for ATSP, Chapter 10 in [13]. 

[21] D.S. Johnson and L.A. McGeoch, Experimental Analysis of Heuristics for STSP, Chapter 
9 in [13]. 

[22] R.M. Karp, A patching algorithm for the non-symmetric traveling salesman problem, 
SIAM J. Comput., 8:561573, 1979. 

[23] A.P. Punnen, F. Margot and S.N. Kabadi, TSP heuristics: domination analysis and 
complexity, Algorithmica 35 (2003), 111–127. 

[24] G. Reinelt, TSPLIB—A traveling salesman problem library, ORSA J. Comput. 3 (1991), 
376-384, http://www.crpc.rice.edu/softlib/ tsplib/. 

[25] A.J. Robertson, A set of greedy randomized adaptive local search procedure 
implementations for the multidimentional assignment problem. Computational 
Optimization and Applications 19 (2001), 145–164. 

[26] V.I. Rublineckii, Estimates of the Accuracy of Procedures in the Traveling Salesman 
Problem, Numerical Mathematics and Computer Technology no. 4 (1979), 18–23 [in 
Russian]. 

[27] V.I. Sarvanov, The mean value of the functional of the assignment problem, Vestsi Akad. 
Navuk BSSR Ser. Fiz. -Mat. Navuk no. 2 (1976), 111–114 [in Russian]. 



 Advances in Greedy Algorithms 

 

302 

 
Table 1. ATSP heuristics experiment results for randomly generated instances. 



Greedy Like Algorithms for the Traveling Salesman and Multidimensional Assignment Problems 

 

303 

 
Table 2. ATSP heuristics experiment results for real-world instances. Here ∞ stands for ‘> 
105’ and BK for ‘best known.’ 

 
Table 3. MAP heuristics experiment results for Random instances. 



 Advances in Greedy Algorithms 

 

304 

 
Table 4. MAP heuristics experiment results for Composite instances. 
 

 
Table 5. MAP heuristics experiment results for GP instances. 



17 

Greedy Methods in Plume Detection, 
Localization and Tracking 

Huimin Chen 
University of New Orleans, Department of Electrical Engineering 

2000 Lakeshore Drive, New Orleans, LA 70148,  
USA 

1. Introduction 
Greedy method, as an efficient computing tool, can be applied to various combinatorial or 
nonlinear optimization problems where finding the global optimum is difficult, if not 
computationally infeasible. A greedy algorithm has the nature of making the locally optimal 
choice at each stage and then solving the subproblems that arise later. It iteratively makes 
one greedy choice after another, reducing each given problem into a smaller one. In other 
words, a greedy algorithm never reconsiders its choices. Clearly, greedy method often fails 
to find the globally optimal solution. However, a greedy algorithm can be proven to yield 
the global optimum for a given class of problems such as Kruskal's algorithm and Prim's 
algorithm for finding minimum spanning tree, Dijkstra's algorithm for finding single-source 
shortest path, and the algorithm for finding optimum Huffman tree [5]. Even for some 
optimization problems proven to be NP hard, a greedy algorithm may generate near 
optimal solution with high probability if one exploits the problem structure properly. In this 
chapter, we focus on the optimization problems arising from plume detection, localization 
and tracking and provide convincing argument on the usefulness of greedy algorithms. 
Detection, identification, localization, tracking and prediction of chemical, biological or 
nuclear propagation is crucial to battlefield surveillance and homeland security. In addition, 
post-accident management for public protection relies critically on detecting and tracing 
dangerous gas leakages promptly. The determination of source origins and release rates is 
useful for the forecast of gas concentration in the atmosphere and for the management staff 
to prioritize off-site evacuation plans. A lot of research has been focused on detecting and 
localizing single or multiple plume sources with autonomous vehicles [11] or sensor 
networks such as [22] for a vapor-emitting source, [2] for a nuclear source, and [14, 15] for a 
chemical source. In [12] the plume detection and localization problem is formulated as 
abrupt change detection using sparse sensor measurements. The development of a large 
scale testbed has been reported in [8] for plume detection, identification and tracking. In [3] 
dense sensor coverage has been used for radioactive source detection while [26] showed that 
using three error-free intensity sensors, one can identify the plume origin to any desired 
accuracy with high probability. Although this approach offers an effective solution with 
linear complexity of the hypothesis space, a major limitation is that the continuous time 
dynamic model of plume propagation has to be in the product form. 



 Advances in Greedy Algorithms 

 

306 

When the sensing devices can not provide accurate plume concentration readings, plume 
tracking relies heavily on the sensor coverage instead of the physics-based propagation 
model. In this case, hidden Markov model (HMM) offers a flexible tool to model the 
uncertainty of plume propagation motion in the air. It has been applied to plume mapping 
in [11] and chemical detection in [23]. The main issue of HMM resides in the time varying 
state transition probabilities which are not readily available from the physics based plume 
propagation equation. A viable approach is to use the generalized HMM with fuzzy 
measure and fuzzy integral [20]. The resulting plume localization problem becomes finding 
the most likely source sequence based on a fuzzy HMM. Existing algorithms of Viterbi type 
[20, 21] can be very inefficient when the size of the hidden state is large. Recently, [19] 
showed that the average complexity of finding the maximum likelihood sequence can be 
much lower than that using Viterbi algorithm for an HMM in the high SNR regime. 
Motivated by the theoretical result in [19], we propose a decoding algorithm of greedy type 
to obtain a candidate source path and search only for state sequences within a constrained 
Hamming distance from the candidate plume path. Our method is applicable to a general 
class of fuzzy measures and fuzzy integrals being used in fuzzy HMM. We compare the 
localization error using our algorithm with that using fuzzy Viterbi algorithm in a plume 
localization scenario with randomly deployed sensors. Simulation results indicate that the 
proposed greedy algorithm is much faster than fuzzy Viterbi algorithm for plume tracing 
over a long observation sequence when the localization error probability is small. 
When the sensing devices provide fairly accurate concentration readings of the sources, one 
would expect that plume localization and release sequence estimation can be solved jointly. 
However, despite the abundant literature in plume detection [3, 23, 24] and localization [11, 
30, 31], limited efforts have been made toward solving the joint problem of source 
localization and parameter estimation. The main reason is that even finding linear 
parameters related to the source release rate is an ill-posed problem and one has to impose 
certain regularization technique to avoid potential overfit. To solve the plume identification 
and parameter estimation jointly, we adopt the least squares technique based on the 
solution to the advection-diffusion equation [16, 17] and impose lp-regularization for  
0 ≤ p ≤ 1 [4, 7] to characterize the sparsity of the unknown source release rate signal. We also 
discuss its advantage over the popularly used l2-regularization. The accuracy of source 
parameter estimation is examined for the cases where both the number of sources and the 
corresponding locations are unknown. Since the resulting optimization problem is nonlinear 
and involves both discrete and continuous variables, we apply a greedy approach to 
identify and localize one source at a time. It is very efficient and can be interpreted as 
greedy basis pursuit [13]. 
The rest of the chapter is organized as follows. Section 2 formulates the plume localization 
problem using multiple binary detection sensors as maximum likelihood decoding over 
fuzzy HMM. Greedy algorithm is applied to maximum likelihood sequence estimation 
where the complexity comes from the fine resolution of the quantized surveillance area. 
Section 3 introduces the joint plume localization and source parameter estimation problem. 
Greedy algorithm is applied to source identification where the computational complexity 
mainly comes from the aggregation of unknown number of sources. Section 4 presents a 
concluding summary and discusses when one can expect good performance using greedy 
method. 



Greedy Methods in Plume Detection, Localization and Tracking 

 

307 

2. Sequence estimation using fuzzy hidden Markov model 
This section focuses on the maximum likelihood sequence estimation where the problem 
lends itself with a combinatorial structure similar to a decoding problem. We start with 
continuous time plume propagation model in Section 2.1 and then discuss the discrete time 
Markov approximation of the plume source as well as the sensor measurement model in 
Section 2.2. Section 2.3 presents the sequence estimation problem over a fuzzy hidden 
Markov model (HMM) using Viterbi and greedy heuristic algorithm. Section 2.4 provides 
simulation study on tracing a single plume source with unknown source location and initial 
releasing time. 

2.1 Gaussian puff plume propagation model 
It is challenging to accurately model the spatial and temporal distribution of a contaminant 
released into an environment due to the inherent randomness of the wind velocities in 
turbulent flow. Here we adopt a continuous time plume propagation model of 
instantaneous release type given in [28]. A plume consisting of particles or gases has the 
concentration c satisfying the following continuity equation 

 
where  is the j-th component of the wind velocity; D is the molecular diffusion coefficient; 
R is the rate of particle generation depending on the temperature T; S is the rate of 
aggregation of particles at location x and time t. In a perfectly known wind field where one 
knows the wind velocities at all locations, there will not be any turbulent diffusion. 
However, due to the randomness of the wind velocities, one can only expect that the mean 
concentration to satisfy the atmospheric diffusion equation 

 
where  is the j-th component of mean wind velocity and Kjj is the eddy diffusivity 
assuming molecular diffusion is negligible relative to turbulent diffusion. Assuming S(x, t) = 
0 (instantaneous release) without any boundary condition, one can obtain the closed form 
solution to the above partial differential equation, which in the two dimensional case is 

 
where x and y are the axis of the Cartesian coordinate system centered at the plume origin. 
In practice, one may not have the knowledge of the mean wind velocity at any location and 
it can also be time varying. In order to accommodate the uncertainty due to the aggregation 
of the plume release and the wind turbulence, in the sequel, we consider a dynamic model 
with both time and spatial transition following a Markov chain. 

2.2 Approximate plume propagation dynamics and measurement model 
We assume that the search region is partitioned into N cells indicating the possible origins of 
the plume source. The centroid of cell i is denoted by (qxi, qyi) for i = 1, …,N. Sensors are 



 Advances in Greedy Algorithms 

 

308 

homogeneous and randomly deployed in the search region. Time is discretized by the 
sensing interval Δt where chemical intensity is measured in the neighborhood of each 
sensor's location. If the intensity is above a predetermined threshold, then a sensor will 
declare its detection of chemical plume. Thus at any time instant k, a binary sequence yk is 
obtained from M sensors located at (rxi, ryi) indicating a possible chemical detection for  
i = 1, …,M. We assume that the flow velocity (vxi(k), vyi(k)) is also recorded by sensor i at time 
k (∀i, k). Denote by x(j)k the hidden state of cell j at time k taking binary values indicating 
whether it contains detectable chemicals. Denote by xk = [x(1)k x(2)k … x(N)k]’ the plume map 
at time k. Denote by y1:K = [y1 … yK] the detection sequence up to time K and, accordingly, 
x1:K = [x1 … xK] the possible plume sequence up to time K. The plume mapping problem can 
be written as finding the most likely plume sequence 

 
(1) 

where a statistical model between the state and observation sequence is assumed and the 
maximum likelihood (ML) criterion is used. From the ML estimate of the state sequence, one 
can identify the origin of the plume and its initial releasing time. Note that using the above 
formulation, one can also estimate the origins of multiple plumes at unknown and possibly 
different releasing times. The major difficulty lies in the availability of state and 
measurement model at any given time. 

2.3 Fuzzy hidden Markov model and maximum likelihood decoding 
2.3.1 Hidden Markov plume model 
Two methods are popularly used in modeling plume propagation: numerical solution to the 
advection-dispersion equation and random simulation [9]. In this section, we use random 
simulation to generate realistic plume propagation sequence when evaluating the state 
sequence estimation algorithm. In a hidden Markov plume model, the state sequence {xk} is 
assumed to be a Markov chain. At any time k, a cell i has a probability pb originating a new 
plume release if it contains no plume at k - 1. A cell i has a probability pc releasing the same 
amount of plume at time k if it contains a plume source at k -1. A cell j has detectable plume 
at time k coming from the source in cell i at time k - 1 with probability pd(i) depending on the 
source intensity Q and minimal detectable intensity C. Without the presence of wind, we 
have pd(i) = 0 for Gaussian plume if 

 (2) 

where D is the diffusion coefficient. With known flow velocity at cell i, the detectable region 
can be modified accordingly. Thus we denote by A(k) the state transition probability matrix 
of size 2N×2N with element amn(k) indicating p(xk = n⏐xk-1 = m) where m and n represent two 
binary sequences of length N. For each sensor, the probability of false alarm is assumed to 
be very low when there is no detectable plume in its neighborhood. The detection 
probability depends on the distance d between the sensor location and the centroid of the 
nearest cell which contains detectable plume. The following crude model is assumed. 

 (3) 



Greedy Methods in Plume Detection, Localization and Tracking 

 

309 

where  is chosen such that the detection probability at the edge of the cell is 1-C/Q. Thus we 
have specified the observation model B of size 2N×2M for M sensors with element bnl 

indicating the probability p(yk = l⏐xk = n). The hidden Markov plume model is represented 
by the parameter vector  where π is the initial probability of the state. 
Note that the hidden Markov plume model is nonstationary since the state transition matrix 
is time varying. The model parameter Λ is difficult to learn from experiments since it 
requires large training sets with various wind conditions. 

2.3.2 Fuzzy hidden Markov model 
Fuzzy hidden Markov model (FHMM) is a natural extension of the classical hidden Markov 
model with fuzzy measure and fuzzy integral. The theoretical framework was first proposed 
in [20] and applied to handwritten word recognition in [21]. Here we briefly highlight the 
key components in FHMM and its advantage over a nonstationary hidden Markov plume 
model. 
FHMM replaces the probability measure used in the classical HMM with the fuzzy measure. 
A fuzzy measure μ on the state space X is a mapping from subset of X onto the unit interval 
μ: 2X → [0, 1] such that μ (φ) = 0, μ (X) = 1, and if E ⊂ F, then μ (E) ≤ μ (F). To combine the 
evidences from different sensor measurements, the concept of fuzzy integral is introduced 
to replace the classical probabilistic inference. For a discrete set X = {x1, …, xn}, the Choquet 
integral of a function h with respect to a fuzzy measure  μ is computed as follows. 

 
(4) 

where h(x0) = 0, h(x1) ≤ h(x2) ≤ … ≤ h(xn) and 

 (5) 

A conditional fuzzy measure on Y given X is a fuzzy measure (·⏐x) on Y for any given x ∈ 
X. For E ⊂ Y , the  -induced fuzzy measure is computed by 

 
(6) 

With the above tools, a fuzzy hidden Markov model can be parameterized by  
where  is the initial fuzzy density of the state;  is the state transition matrix parameterized 
by fuzzy densities;  is measurement matrix parameterized by fuzzy densities. Note that the 
fuzzy state transition matrix is no longer time varying. This simplifies the learning of model 
parameters significantly. On the other hand, FHMM preserves the non-stationary nature of 
plume propagation and the nonstationary behavior is achieved naturally by the nonlinear 
aggregation of sensor measurements using fuzzy integral [20]. 

2.3.3 Viterbi algorithm for most likely sequence estimation 
For an HMM with parameter Λ, finding the most likely state sequence  given the 
observation  is often called maximum likelihood (ML) decoding. Viterbi algorithm 
guarantees obtaining the ML sequence with the following procedure [25]. 



 Advances in Greedy Algorithms 

 

310 

 

 

 

 
For a fuzzy hidden Markov model, the most likely state sequence given the observation 
sequence can also be defined with properly chosen fuzzy measure and fuzzy integral. The 
resulting optimization problem can be written as 

 
(7) 

where  is the extension of likelihood function in (13) with the conditional fuzzy 
measure. Note that the fuzzy likelihood function can be decomposed as follows. 

 
(8) 

Thus the decoding algorithm of Viterbi type can also be applied to FHMM. Specifically, the 
fuzzy Viterbi decoding procedure is as follows. 

 (9) 

 (10)

 (11)

where 

 
(12)

if Choquet integral is used with respect to a fuzzy measure μ [20]. It is a time varying and 
nonlinear function of the fuzzy state transition parameter , which characterizes the 
nonstationary nature of plume propagation using only time invariant parameter set . The 
resulting state sequence estimate is still given by 

 
Note that the most likely sequence estimation algorithm of Viterbi type guarantees finding 
the optimal solution and it has the worst case complexity of O(K2N). Clearly, Viterbi 
algorithm is much more efficient than the exhaustive search method for general decoding 
problem given by (13) or its fuzzy extension (7), which has the complexity of O(2NK). 



Greedy Methods in Plume Detection, Localization and Tracking 

 

311 

2.3.4 Greedy heuristic sequence estimation algorithm 
Viterbi algorithm (VA) has a complexity linear in the length of observation sequence but 
exponential in the number of cells. Throughout the past three decades, many attempts have 
been made to reduce the complexity of VA by searching only a selected number of paths in 
obtaining  (or ) with various criteria. However, unlike the original VA, there is no 
guarantee that the best state sequence obtained by any of those algorithms is indeed the 
optimal one. Recently, [19] proved the existence of efficient and exact maximum likelihood 
decoding method with the complexity polynomial in N under high SNR regime. 
Unfortunately, the decoding error probability goes to zero only when the SNR goes to 
infinity. In plume localization problem, the high SNR assumption is usually valid for the m-
th bit of the state variable when a sensor n is in cell m measuring its chemical concentration 
intensity. Thus we propose a greedy heuristic decoding algorithm applicable to both HMM 
and FHMM following the general constructive approach proposed in [19]. 
The algorithm contains three steps. 
1. Obtain a feasible solution  satisfying (m)k = y(n)k, ∀k, n where sensor n in cell m 

has a plume detection. 
2. Test the optimality: If the solution satisfies 

 (13)

then declare that  is the most likely sequence and stop. 
3. If the optimality test fails, then search the subset of the VA paths with Hamming 

distance no greater than L from  . 
The first step is crucial and may save significant amount of computational time if the 
solution is near optimal. It has been suggested in [19] to use the decision feedback method 
for obtaining a candidate solution. Its complexity scales in O(KN2). Intuitively, in the high 
SNR regime, we can assume that the false alarm probability of each sensor is very small, 
therefore, the plume map at a later time can be directly used to estimate the plume map at 
an earlier time where few sensor detections are made. Our decision feedback algorithm is 
similar to that of [19] but runs reversely in time as follows. 

 

 
The threshold L0 used in step 2 depends on the presumed plume path and SNR to be 
determined after having sensor detections. Note that if PFA → 0 and PD → 1, then the 
candidate solution will pass the test with high probability for arbitrarily chosen L0. The 
search constraint L used in step 3 is chosen to be compatible with (N -M) for large K. 

2.3.5 Performance analysis 
The proposed greedy decoding algorithm has the worst case complexity of O(K2L). If the 
SNR is large enough, then the average complexity of the algorithm is O(KN2) [19]. Next we 
show that the accuracy of our greedy heuristic algorithm has no essential loss compared 
with the optimal decoding algorithm, i.e., maximum likelihood decoder of Viterbi type, in 
the high SNR regime. 



 Advances in Greedy Algorithms 

 

312 

Theorem: Assume that the plume localization error Pe → 0 as K →∞. There exist L0 and L 
such that the greedy heuristic algorithm yields the error no larger than O(Pe) for large 
enough K. 
Proof sketch: For any state sequence  and the corresponding observation , define 

 
(14)

It has been shown in [19] that P(dmin > 0) = 1 when the SNR is large enough. If we choose 

 
(15)

then the test (13) is optimal in the sense that it only allows the most likely sequence estimate to 
pass asymptotically. Note that the test can be nontrivial if one chooses L0 = dmin due to the fact 
that any mismatched fuzzy likelihood function should satisfy  with 
probability one as Pe →0. 
The actual decoding error depends on the model parameter . By invoking Fano's 
inequality [6], we have  for any algorithm asymptotically. Under 

high SNR assumption, the entropy rate of the observation sequence satisfies 

 (16)

When K is large, the feasible solution  will satisfy the following condition: ∀m 
containing a sensor, (m)k =x(m)k with probability one. If we choose L = N - M, then the best 
solution  within the subset of the VA paths with Hamming distance no greater than L 
from  has an error probability 

 
(17)

Since  decays exponentially with rate hy [19], we have 

 
for large K where the second inequality follows by the fact that conditioning reduces the entropy. 
In practice, the conditional entropy H( ⏐ ) has to be estimated using the posterior 
distribution πn. For the decoding problem over an HMM, πn is obtained recursively using 
Bayes rule. 

 
(18)



Greedy Methods in Plume Detection, Localization and Tracking 

 

313 

For the decoding problem over an FHMM, the above equation should be replaced by the 
fuzzy intersection in the numerator and fuzzy integral in the denominator. In both cases, the 
resulting posterior distribution is helpful to design K for the desired decoding accuracy. 

2.4 Simulation study 
We simulate a plume source as independent particles following random walks which satisfy 
the advection and diffusion constraints. The model is reasonably accurate and the plume 
path generation is usually much faster than solving the advection-dispersion equation 
directly [18]. As an illustration, assuming Δt = 1s, the plume source is at (0, 0) with release 
rate 100 particles per second and duration of 8s. There are 20 sensors randomly deployed in 
a 1000×1000m2 field with sensing range of 50m for each sensor and at least 10 particles in its 
sensing area for a plume detection at any time. With wind velocity given by (vx(k), vy(k)) = 
(8, 5)m/s, longitudinal and transversal dispersivity L = 0.8, T = 0.2 and diffusion coefficient 
D = 0.9, one realization of the Gaussian plume at 100s is shown in Fig. 1 with two sensor 
detections. 
 

 
Fig. 1. One realization of plume propagation at K = 100. 

We partition the region into 100 cells of the same square shape. It is assumed that initially 
there is no plume source in the sensing field. All 20 sensors are assumed to be synchronized 
and provide binary detections to a centralized data processor for plume mapping. The 
FHMM assumes pb = 0.005 and pc = 0.8. The plume source always starts at the bottom left cell 
at 4s with a constant release rate. Viterbi algorithm maintains all feasible solutions in its 
trellis graph while greedy heuristic algorithm only keeps the solutions within a Hamming 
distance of 8 to the initial candidate. We compare the probability of finding the correct cell 
and initial releasing time of the plume source after K time steps. The plume localization 
error probabilities are shown in Fig. 2 based on 5000 Monte Carlo runs for each K. We can 



 Advances in Greedy Algorithms 

 

314 

see that greedy heuristic algorithm has the localization error close to that using Viterbi 
algorithm and the performance gap decreases as K increases. Using Matlab to compile both 
algorithms on a Pentium 4 PC with 2.80GHz CPU, we found that the average time to find 
the best state sequence using greedy heuristic algorithm is 0.05s when K = 100 while Viterbi 
algorithm takes 5.3s in average to obtain the most likely sequence estimate. Thus the 
proposed greedy algorithm achieves the plume localization accuracy close to that using 
Viterbi algorithm while the computational time is orders faster than that using Viterbi 
algorithm. 
Our approach can also be used to estimate the total mass of plume release. However, there 
is no guarantee on its accuracy even for instantaneous release of a single plume due to the 
nature of binary sensor detection. To estimate the release rate sequence of a plume source, 
denser sensor coverage or more accurate plume concentration intensity measurement is 
needed. This problem will be addressed in the next section. 
 

 
Fig. 2. Comparison of plume localization error probability with various observation length K. 

3. Parameter estimation and model selection for gaussian plume sources 
This section deals with joint plume localization and release sequence estimation when the 
number of plume sources is unknown. We start with the plume source aggregation and 
sensor measurement model in Section 3.1. Section 3.2 presents the regularized least squares 
solution to the parameter estimation problem. Section 3.3 discusses the implementation of 
the joint model selection (on the number of sources) and parameter estimation using greedy 
algorithm and the choice of regularization parameter. Section 3.4 compares our approach 
with alternative regularization methods. Section 3.5 provides realistic source release 
scenarios to assess the performance of the proposed algorithm. 



Greedy Methods in Plume Detection, Localization and Tracking 

 

315 

3.1 Plume aggregation and sensor measurement model 
We assume that the wind field in the search area can be accurately modeled and sensors can 
collect fairly accurate concentration readings in their neighboring areas. A Cartesian 
coordinate system is used with x-axis oriented towards the mean wind direction, y-axis in 
the cross-wind direction and z-axis in the vertical direction. If the source of a pollutant is 
located at (x0, y0, z0) with release rate q(t), then at time t, the concentration of the pollutant at 
some down-stream location (x, y, 0) can be written as [16] 

 
(19)

where the kernel K(t, τ ) is 

 
(20)

with mean wind speed u and diffusion coefficients Kx, Ky, Kz along x, y and z directions, 
respectively. 
We assume that there are J sensors deployed at fixed locations where sensor j is located at  
(xj, yj , 0) and collects N concentration readings cj = {C(xj , yj , 0, tn)} . Denote by c = {cj}  the 
collection of all sensor readings. Denote by q = {q(τi)}  the discretized source release sequence 
where q(τi) is the release rate at time τi. Ideally, we have the following observation equation 

 (21)

where p = (x0, y0, z0) denotes the unknown source location. Note that for measurement cj(xj , 
yj , 0, tn), the corresponding element a(jn,k) in A(p) is given by 

 (22)

where βnk is a quadrature weight [16, 17]. The estimation of source location p and release rate 
q can be formulated as the least squares problem given by 

 
(23)

Note that this formulation is valid only for a single source. 
To extend the estimation problem to include multiple sources, we assume that the 
concentration readings are the results of aggregation from multiple source releases. Assume 
that there are s sources with unknown locations {p(i)}  and release rate sequences 
{q(i)} . Then we have the following ideal observation equation 

 
(24)

The source parameter estimation problem becomes identifying the number of sources, the 
corresponding origins and the release sequences jointly using only the concentration 
readings from multiple sensors. 



 Advances in Greedy Algorithms 

 

316 

3.2 Regularized least squares 
In the single source case, the matrix A in (23) can be analyzed for various source locations. 
By ranking the singular values of A, the authors of [16] found that the discrete time least 
squares problem (23) is in general ill-posed and suggested to use the Tikhonov 
regularization to ensure certain smoothness of q. However, for a source with an 
instantaneous release, the sequence q may have only a single spike, which violates the 
smoothness assumption. Nevertheless, for multiple sources with instantaneous releases, we 
will observe the aggregated sparse signal with an unknown number of spikes. In fact, the 
sparsity assumption is crucial for the identification of multiple sources with instantaneous 
releases at different times. To encourage the sparsity of the release rate sequence estimate, 
we propose to use lp-regularized least squares as the objective function, i.e., 

 (25)

where the regularization parameters p controls the sparsity of the solution q and λ makes 
the tradeoff between the goodness-of-fit to the observations and the complexity of the 
model. Note that p = 1 is popularly used in compressed sensing [10] due to its numerical 
reliability. In fact, for any given p, minimizing (25) becomes a convex program if one 
chooses p = 1. However, our l1-regularized least squares problem still requires non-convex 
optimization without knowing the source location p. In addition, when choosing the 
regularization term with 0 < p < 1, one favors a more sparse solution than that using l1-
regularization [7]. This might be helpful when one has prior knowledge about the type of 
release of plume sources. In this case, the regularization term ·  is not a norm, but  

d(x, y) = x - y  is still a metric. 

When the concentration readings are the aggregation of individual release, we have to 
identify the number of sources and find their locations. In this case, we are facing a model 
selection problem, where model s corresponds to s sources with unknown locations  
{p(i)}  and release rate sequences {q(i)} . Assuming that different sources have different 
instantaneous release times so that there is no identifiability issue among the models, we can 
choose model s that minimizes a modified version of (25) 

 
(26)

where 

 
(27)

Note that the first term in the penalty encourages the sparsity of each identified source 
release sequence and the second term is for model complexity of the source location 
parameter based on the Bayesian information criterion [27]. The second term is necessary 
because one does not want to treat one source with two instantaneous releases (sparsity of 2) 
as two different sources with instantaneous releases at different time instances (sparsity of 
1). In practice, when the locations of two sources are close, they could be identified as a 



Greedy Methods in Plume Detection, Localization and Tracking 

 

317 

single source with aggregated release rate sequence. This seems to be acceptable when the 
locations of multiple sources are within the arrange of the localization accuracy obtained by 
minimizing (26). 

3.3 Model selection and parameter estimation with a greedy algorithm 
Finding the optimal solution to (26) requires solving a high dimensional nonlinear 
optimization problem for any fixed regularization parameters p and λ. In practice, the 
number of sources is usually small and a strong source can have the dominant effect on the 
sensor readings. Thus it would be meaningful to identify and localize one source at a time 
by treating the impact from the remaining possible sources as additive noise. In this case, 
assuming the source location is given, one can obtain the sparse solution of the release rate 
sequence by solving the following optimization problem. 

 
(28)

When p = 1, the problem becomes a convex program and is highly related to LASSO [29]. 
Once we obtain the release rate of the source, we can refine the estimate of source location 
by solving the regular nonlinear least squares problem given by 

 
(29)

Note that for the newly estimated source location, the sparsity (non-zero locations) of the 
solution to (28) may change. We can iteratively update the release rate and source location 
estimate until the residual is comparable to the noise level of sensor readings. 
We can extend the above procedure to deal with unknown number of sources. We apply a 
greedy heuristic algorithm that iteratively refines the estimate of signal sparsity and the 
noise level to determine the appropriate regularization parameter. The algorithm is greedy 
in the sense of extracting one plume source at a time, from the strongest one to the weakest 
(based on the penalty term in the model selection criterion). It simultaneously determines 
the number of sources, the corresponding locations and release rate sequences by the 
following steps. 
1. Set s = 1. 
2. Initialization: Set k = 0, q(s)k = 0 with an initial guess of source location p(s)k. 
3. Refining the estimate: Use Newton-Ralphson update 

 (30)

to refine the estimated source release sequence. 
4. Choosing regularization parameter: Compute the median of the residual  

⏐c - A(p(s)k)q(s)k+1⏐ and choose λ proportional to the estimated noise level. 
5. Denoising by soft thresholding: Compute the sparse approximation of q(s)k+1 by  

q(s) =T(q(s)k+1) where 

 (31)

6. Source localization: Solve the nonlinear least squares problem 



 Advances in Greedy Algorithms 

 

318 

 
(32)

7. Model selection: Set k = k+1 and iterate until q(s) converges to a sparse solution q(s)* or 
a predetermined maximum number of iterations kmax has reached. Subtract out the 
identified source from sensor readings. 

 (33)

Repeat steps 2-6 until 

 (34)

8. Declare the number of sources (s - 1), the corresponding locations p(s - 1)* and release 
rate sequences q(s - 1)*. 

For any given λ and p(s)*, the above iterative procedure converges to the optimal solution of 
(28) for p = 1 [1]. We used the median estimator of the residue to obtain the noise level 
which is robust against outliers. It is less sensitive to possible model mismatch than using 
the mean of the residue when we initially assume that there is a single (strong) source which 
results in the concentration readings while treating other (weak) sources as noise. Note that 
the dimension of p(s) only depends on the model order, i.e., the number of sources, which is 
usually much lower than the dimension of release sequences q(s). Thus solving the 
nonlinear least squares problem (32) is less computationally demanding than solving (26) 
directly. 
When 0 < p < 1, (28) becomes non-convex program and any iterative procedure may be 
trapped at a local minimum. Another issue is that (24) may become underdetermined when 
A has rank deficiency. In such a case, the sparse solution to the following constrained 
optimization problem 

 
is still meaningful. To encourage more sparsity of the release rate sequence with smaller p 
and solve the above constrained optimization problem directly, we apply iterative 
reweighted least squares (IRLS) update [7] and replace the soft thresholding step by 

 (35)

where the weighting matrix W(n) is diagonal with entries 

 
(36)

The damping coefficient ε is chosen to be relatively large initially and decreases to a very 
small number when the above iteration is close to converge. Note that the IRLS algorithm 
converges in less than 100 iterations most of the time in our simulation study. Even though 
there is no theoretical guarantee that the resulting solution is globally optimal, we suspect 
that it does approach to near global minimum since the solution quality improves when 
using smaller p. 



Greedy Methods in Plume Detection, Localization and Tracking 

 

319 

The above greedy algorithm can be interpreted as performing basis pursuit [13]. Specifically, 
given the stacked observation c, we want to find a good n term approximation using 
different sources as the basis functions from a general dictionary D. Denote by {gi} the i-th 
basis being selected. Basis pursuit proceeds as follows. 
1. Initialization: 

• Approximation: s0 = 0 
• Residual: r0 = c 
• Basis collection: Γ0 = φ 

2. Pure greedy search: 

 
Unfortunately, identifying a basis in the greedy pursuit is equivalent to localizing the origin 
of a single source, which requires solving a nonlinear least squares problem. The 
regularization on release rate sequence and penalty on the number of unknown sources 
prevent the resulting optimization problem from being ill-posed. Note that when the basis 
functions in the dictionary satisfy certain mutual incoherence property, the greedy basis 
pursuit algorithm guarantees finding the best n term approximation [13]. 

3.4 Comparison with other regularization techniques 
Tikhonov's regularization has been proposed in [16, 17] which essentially uses the objective 
function 

 
(37)

where L controls the smoothness of q(i) with the approximate form 

 
(38)

The popular choice for obtaining a smooth solution is N = 2. Unfortunately, the above 
regularization technique only works for continuous releases from well separated sources. 
We rely on the sparsity of q(s) to identify the model order s, which is suitable for localizing 
multiple sources of instantaneous release type. 
Another sparsity enforced estimator was proposed in [4] which essentially minimizes the 
following objective function 

 (39)

For known source locations, the estimated release rate guarantees to recover all possible 
sparse signals with a large probability [4]. However, the above objective function is a non-
smooth function of p(s), which is difficult to optimize when both source locations and 
release rate sequences are unknown. In practice, we fix the source locations p(s) and solve 



 Advances in Greedy Algorithms 

 

320 

(39) via linear programming. Then we fix the release rate sequence q(s) and update p(s) in 
its gradient descent direction. The iteration continues until p(s) reaches a stationary solution 
and the sparsity of q(s) does not change. 

3.5 Simulation of joint plume localization and release sequence estimation 
We present the simulation study of source localization and release rate estimation using 
multiple sensors. We are interested in both model selection and source parameter estimation 
accuracy. 

3.5.1 Scenario generation 
Consider a single source located at (-40, 35, 12) with instantaneous release of q(10) = 2 · 105. 
We assume that the wind speed u = 1.8 along x-axis and Kx = Ky = 12, Kz = 0.2113. Five 
sensors, located at (0, 0), (15, 15), (30, 30), (45, 45), (60, 60), respectively, collect concentration 
readings synchronously with 100 samples per sensor. All sensors are on the ground with 
zero elevation. We add Gaussian noise to the sensor readings with standard deviation  
4 · 10-3. Each sensor will have a plume detection when the concentration reading exceeds 
0.01. Fig. 3 shows one realization of the concentration readings from the five sensors. We can 
see that sensor 1 has early detection while sensors 3-5 have relatively large peaks in the 
concentration readings. 
We also considered the case of two sources where one source located at (-40, 35, 12) has the 
instantaneous release of q(10)=2 · 105 and the other located at (-30, 15, 15) has the 
instantaneous release of q(50)=1 · 105. Fig. 4 shows one realization of the concentration 
readings from the five sensors. Compared with Fig. 3, we can barely see the effect of the 
second source release due to the detection delay and source aggregation.  

3.5.2 Model selection and parameter estimation accuracy 
We want to compare our lp-regularization method with Tikhonov's method [16, 17] (denoted 
by p = 2) and Dantzig selector [4] (denoted by p = ∞) for both one-source and two-source 
cases. Note that Tikhonov's method is not appropriate for estimating instantaneous release 
rate, which is non-smooth. However, it is meaningful to study how the incorrect assumption 
in regularization may affect model selection accuracy. We estimated the probability of 
identifying the correct number of sources based on 100 realizations of each case. For those 
instances where the number of sources is correctly identified, we also computed the root 
mean square (RMS) error of the location estimate for each source. In the case of s = 2, the 
RMS error of the second source is in parentheses. The results are listed in Table 1. We can 
see that in the single source case, our lp-regularization method can identify the correct 
number of sources almost perfectly. In the two-source case, Tikhonov's method failed to 
identify the second source most of the time and Dantzig selector can only identify the 
correct number of sources with 64 out of 100 cases. Surprisingly, the proposed lp-
regularization method is able to find the correct model order with higher than 80% 
probability. As we reduce p, there is a slight increase in the probability of obtaining the 
correct number of sources due to the strong enforcement of sparsity. Among all cases where 
the first source is correctly identified, the root mean square error of the estimated release 
rate is 4.6 · 104 with p = 1. Note that the root mean square error of estimated location of the 
first source increases when we have a second source aggregated to it. Note also that the 
algorithm assuming the correct model order can only achieve the root mean square error of 
estimated location of the second source around 18 using lp-regularized method with p = 1. 



Greedy Methods in Plume Detection, Localization and Tracking 

 

321 

These observations suggest that the lp-regularized least squares method is effective in joint 
model selection and parameter estimation for instantaneous source release. 
 

 
Fig. 3. Sensor readings for a single source with instantaneous release. 

 
Table 1. Comparison of Model Selection and Source Localization Accuracy with Different 
Regularization Methods 

3.5.3 Model mismatch to continuous release source 
Consider a single source located at (-40, 35, 12) with continuous release rate 

 
One realization of the concentration readings from the five sensors is shown in Fig. 5. Note 
that the concentration readings from sensors 2-5 have not reached their peaks by the end of 
the samples. This will in general make the source parameter estimation more difficult. In 100 
realizations, the lp-regularized least squars method with p = 1 identified one source in 92 
times and two sources in 8 times with their estimated locations close to each other. The 
incorrect identification of model order is due to the abrupt release at two time instances  
t = 10 and t = 50 with exponential decay of the release rate. The root mean square error of 
the estimated source location is 15.4 using the estimates from the correctly identified cases. 
Clearly, the lp-regularized least squares method can tolerate slight model mismatch when 
the release rate sequence is not overly sparse. 



 Advances in Greedy Algorithms 

 

322 

 
Fig. 4. Sensor readings for two sources, each with instantaneous release. 

 
Fig. 5. Sensor readings for one source with continuous release. 

4. Discussion and conclusions 
In this chapter, we studied plume detection, localization and tracking problem with two 
different settings. For plume mapping with binary detection sensors, we formulated the 
problem as finding the most likely state sequence based on a fuzzy hidden Markov model. 



Greedy Methods in Plume Detection, Localization and Tracking 

 

323 

Under the assumption that each sensor has high detection and low false alarm probability, we 
proposed a greedy heuristic decoding algorithm with much less computational cost than the 
well known Viterbi algorithm. The plume localization accuracy of our algorithm is close to the 
optimal decoder using Viterbi algorithm when tracking a single plume using randomly 
deployed sensors. Our algorithm is applicable to general decoding problem over a long 
observation sequence when the localization error probability of the Viterbi decoder is small. 
There is a serious drawback of using FHMM for plume tracing. In our FHMM formulation, 
one can not distinguish whether a plume existence state is due to source releasing or plume 
propagation without knowing the whole state sequence. Thus one has to make tradeoff 
between the delay and localization accuracy. A refined plume propagation model based on 
more accurate sensor readings and contaminant transport physics was then used for source 
localization and release rate sequence estimation. When localizing unknown number of 
sources based on the observation of aggregated concentrations, we proposed an lp-
regularized least squares method to estimate the location and release rate of atmospheric 
pollution. For 0 ≤ p ≤ 1, the method enforces sparsity of the release sequence of each 
identified source. The proposed greedy method can identify multiple sources of 
instantaneous release type and can also localize sources of continuous release. The accuracy 
of source parameter estimation has been examined for the cases where the number of 
sources and the corresponding locations are unknown. 
In general, the least squares approach does not provide any measure of the estimation error. 
However, one can examine the residual and make additional assumptions such as additive 
Gaussian noise in order to quantify the covariance of the localization error. Through 
simulation study, we found that the proposed method is effective in localizing instantaneous 
release sources and has certain degree of tolerance to model mismatch. It is worth noting that 
the sensor locations, sampling rate and measurement accuracy can affect the source 
localization performance significantly. Finding the best sensor placement and sensing strategy 
in a given surveillance area is another important research theme and demands future work. 
We hope that with the advances in the development of greedy algorithms, many other 
challenging optimization tasks can be tackled with efficient and near optimal solutions. 

5. References 
[1] S. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.  
[2] S. M. Brennan, A. M. Mielke, and D. C. Torney, “Radiation Detection with Distributed 

Sensor Networks,” IEEE Computer, pp. 57-59, August 2004. 
[3] S. M. Brennan, A. M. Mielke, and D. C. Torney, “Radioactive Source Detection by Sensor 

Networks,” IEEE Nuclear Science, 52(3), pp. 813-819, 2005. 
[4] E. J. Candes and T. Tao,”The Dantzig Selector: Statistical Estimation When p Is Much 

Larger Than n,” submitted to Annals of Statistics, 2005. 
[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, first edition, 

MIT Press and McGraw-Hill, 1990. 
[6] T. M. Cover, and J. A. Thomas, Elements of Information Theory, New York: Wiley, 1991. 
[7] R. Chartrand, “Exact Reconstruction of Sparse Signals via Nonconvex Minimization,” 

IEEE Signal Processing Lett., 14, pp. 707-710, 2007. 
[8] J.-C. Chin, L.-H. Hou, J.-C. Hou, C. Ma, N.S. Rao, M. Saxena, M. Shankar, Y. Yong, and 

D.K.Y. Yau,”A Sensor-Cyber Network Testbed for Plume Detection, Identification, 
and Tracking,” 6th International Symposium on Information Processing in Sensor 
Networks, pp. 541-542, 2007. 



 Advances in Greedy Algorithms 

 

324 

[9] R. A. Dobbins, Atmospheric Motion and Air Pollution: An Introduction for Students of 
Engineering and Science, John Wiley & Sons, 1979. 

[10] D. L. Donoho, “Compressed Sensing,” IEEE Trans. Information Theory, 52, pp. 1289-1306, 2006. 
[11] J. A. Farrell, S. Pang, and W. Li, “Plume Mapping via Hidden Markov Methods," IEEE 

Trans. SMC-B, 33(6), pp. 850-863, 2003. 
[12] E. B. Fox, J. W. Fisher, and A. S. Willsky, “Detection and Localization of Material 

Releases with Sparse Sensor Configurations,” IEEE Trans. on Signal Processing, 55(5), 
pp. 1886-1898, May 2007. 

[13] P. S. Huggins, S. W. Zucker, “Greedy Basis Pursuit,”, IEEE Trans. Signal Processing, 
55(7), pp. 3760-3772, July 2007. 

[14] H. Ishida, T. Nakamoto, T. Moriizumi, T. Kikas, and J. Janata, “Plume-Tracking Robots: 
A New Application of Chemical Sensors,”Biological Bulletin, 200, pp. 222-226, 2001. 

[15] H. Ishida, G. Nakayama, T. Nakamoto, and T. Moriizumi, “ Controlling A Gas/Odor 
Plume-Tracking Robot based on Transient Responses of Gas Sensors," IEEE Sensors 
Journal, 5(3), pp. 537-545, 2005. 

[16] P. Kathirgamanathan, R. McKibbin and R. I. McLachlan, “Source Release Rate 
Estimation of Atmospheric Pollution from Non-Steady Point Source - Part 1: Source 
at A Known Location,” Res. Lett. Inf. Math. Sci., 5, pp. 71-84, 2003. 

[17] P. Kathirgamanathan, R. McKibbin and R. I. McLachlan, “Source Release Rate 
Estimation of Atmospheric Pollution from Non-Steady Point Source - Part 2: Source 
at An Unknown Location,” Res. Lett. Inf. Math. Sci., 5, pp. 85-118, 2003. 

[18] C. Kennedy, H. Ericsson, and P. L. R. Wong, “Gaussian Plume Modeling of 
Contaminant Transport,” Stoch. Environ. Res. Risk Assess, 20, pp. 119-125, 2005. 

[19] J. Luo, “Low Complexity Maximum Likelihood Sequence Detection under High SNR,” 
submitted to IEEE Trans. Information Theory, Sept. 2006. 

[20] M. A. Mohamed, and P. Gader, “Generalized Hidden Markov Models - Part I: 
Theoretical Frameworks”, IEEE Trans. on Fuzzy Systems, 8(1), pp. 67-81, 2000. 

[21] M. A. Mohamed, and P. Gader, “Generalized Hidden Markov Models - Part II: Application 
to Handwritten Word Recognition", IEEE Trans. on Fuzzy Systems, 8(1), pp. 82-94, 2000. 

[22] A. Nehorai, B. Porat, and E. Paldi, “Detection and Localization of Vapor-Emitting 
Sources,”IEEE Transactions on Signal Processing, 43(1), pp. 243-253, 1995. 

[23] G. Nofsinger, and G. Cybenko, “Distributed Chemical Plume Process Detection,” IEEE 
MILCOM, Atlantic City, NJ, USA, 2005. 

[24] M. Ortner, and A. Nehorai, “A Sequential Detector for Biochemical Release in Realistic 
Environments,” IEEE Transactions on Signal Processing, 55(8), pp. 4173-4182, 2007. 

[25] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in 
Speech Recognition,” Proc. of the IEEE, 77(2), pp. 257-286, 1989. 

[26] N. Rao, “Identification of Simple Product-Form Plumes Using Networks of Sensors With 
Random Errors,” Proc. Int. Conf. on Information Fusion, Florence, Italy, July 2006. 

[27] G. Schwartz, “Estimating the Dimension of a Model,” Annals of Statistics, vol.6, pp. 461-464, 1978. 
[28] J. N. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to 

Climate Change, John Wiley & Sons, New Jersey, 1997. 
[29] R. Tibshirani, “Regression Shrinkage and Selection via the LASSO," Journal Royal 

Statistical Society B, 58, pp. 267-288, 1996. 
[30] T. Zhao and A. Nehorai, ”Detecting and Estimating Biochemical Dispersion of A 

Moving Source in A Semi-Infinite Medium,” IEEE Transactions on Signal Processing, 
54(6), pp. 2213-2225, 2006. 

[31] T. Zhao and A. Nehorai, “Distributed Sequential Bayesian Estimation of a Diffusive 
Source in Wireless Sensor Networks,", IEEE Transactions on Signal Processing, 55(4), 
pp. 1511-1524, 2007. 



18 

Greedy Type Bases in Banach Spaces1 
Witold Bednorz 

Department of Mathematics, Warsaw Univeristy 
Poland 

1. Introduction 

Let (X, · ) be a (real) Banach space. We refer to [38] or [28] as some introduction to the 
general theory of Banach spaces. Note that, as usual in the case, all the results we discuss 
here remain valid for complex scalars with possibly different constants. Let I be a countable 
set with possibly some ordering we refer to whenever considering convergence with respect 
to elements of I (wich will be denoted by limi→∞). 
Definition 1 We say that countable system of vectors    is biorthogonal if for i, j ∈ I 
we have 

 
(1) 

Such a general class of systems would be inconvenient to work with, therefore we require 
biorthogonal systems to be aligned with the Banach space X we want to describe. 
Definition 2 We say that system  is natural if the following conditions are satisfied: 

 
(2) 

 
(3) 

 (4) 

Usually we assume also that  for all i ∈I, i.e. we normalize the system. Note that if 
(4) holds then functionals  are uniquely determined by the set  and thus 
slightly abusing the convention we can speak about  being a biorthogonal system. 
Observe that if assumptions (1)-(4) are verified, then each  is uniquely determined 
by the values  and moreover  for every . 
Clearly the concept of biorthogonal system is to express each  as the series 

 convergent to x. If such expansion exists for all  then we work in in 
the usual Schauder basis setting. 

                                                 
1 Research is partially supported by the Foundation for Polish Science: Grant NP-37 



 Advances in Greedy Algorithms 

 

326 

Definition 3 A natural system  is said to be Schauder basis if I = N and for any  the 
series *

1 ( )i i ie e∞
=∑ x  is convergent. 

However in this chapter we proceed in a slightly more general environment and do not 
require neither convergence of *

1 ( )i i ie e∈∑ x  nor fix a particular order on I. Obviously still the 
idea is to approximate any  by linear combinations of basis elements and therefore 
for any  and  we define 

 
(5) 

whenever this makes sense. In particular it is well defined for any finite J. It suggests that for 
each m = 0, 1, 2, … we can consider the space of m-term approximations. Namely we denote 
by  the collection of all elements of X which can be expressed as linear combinations of 
m elements of  i.e.: 

 
Let us observe that the space  is not linear since the sum of two elements from  is 
generally in Σ2m not in Σm. For  and for m = 0, 1, 2, … we define its best m-term 
approximation error (with respect to ) 

 
Commonly the system  is clear from the context and hence we can suppress it form the 
above notation. Observe that from (4) we acknowledge that for each  we have 

 There is a natural question one may ask, what has to be assumed for 
the best m-term approximation to exist, i.e. that there exists some  such that 

 The question of existence of the best m-term approximation for a given 
natural system was discussed even in a more general setting in [4]. A detailed study in our 
context can be found in [39] from which we quote the following result: 
Theorem 1 Let  be a natural biorthogonal system in X. Assume that there exists a 
subspace  such that 
1. Y is norming i.e. for all  

 
2. for every   we have lim i→∞ y(ei) = 0. 
Then for each  and m = 0, 1, 2, … there exists  such that  
The obvious candidate for being the norming subspace of X* is  
Later we will show that this is the case of unconditional bases. 
The idea of an approximation algorithm is that we construct a sequence of maps Tm : X →X, 
m = 0, 1, 2, … such that for each , we have that  The fundamental 
property which any admissible algorithm (Tm)m≥0 should verify is that the error we make is 
comparable with the approximation error, namely 

 (6) 



Greedy Type Bases in Banach Spaces 

 

327 

where C is an absolute constant. The potentially simplest approach is to use projection of the 
type (5). We will show later that in the unconditional setting for each m,  there exists 
projection PJ which has the minimal approximation error, namely   
Among all the possible projections, one choice seems to be the most natural: we take a 
projection with the largest possible coefficients, that means we denote 

 
 

where the set  is chosen in such a way that  
whenever j ∈ J and k ∉ J. The collection of such , i.e.  will be called the Greedy 
Algorithm. 
Clearly , m = 0, 1, 2, … have some surprising features which one should keep in mind, 
when working with this type of approximation (cf. [40]): 
1. It may happen that for some x and m the element  (i.e. the set J) is not uniquely 

determined by the previous conditions. In such case we pick any of them. 
2. The operator  is not linear (even if appropriate sets are uniquely defined). 
3. The operator  is discontinuous. To see it it suffices to fix  such that 

 We define two sequences of vectors 

 

 
Clearly both yn and zn converge to  but 

 
and 

 
 
4. Following the previous example we learn that  is continuous at the point  if 

and only if the set J used in the definition of  is uniquely defined. 
5. If I = N then there is a simple trick to define  uniquely, namely given  we 

define greedy ordering as the map F : N → N such that  and 

so that if j < k then either  and F(j) 
< F(k). With this notation the mth greedy approximation of x equals 



 Advances in Greedy Algorithms 

 

328 

 
As announced we consider the greedy algorithm acceptable if it verifies (6). We formalize 
the idea in the following definitions: 
Definition 4 A natural biorthogonal system  is called a greedy basis if there exists a constant C 
such that for all  and m = 0, 1, 2, … we have 

 
The smallest constant C will be called the greedy constant of . 
Definition 5 A natural biorthogonal system  is called quasi-greedy if for every  the norm 
limit  exists (and equals x). 
Clearly every greedy basis is quasi-greedy. We remark that those concepts were formall 
defined in [26] though implicit in earlier works of Temlyakov [30]-[33]. Throughout the 
chapter we study various properties of greedy and quasi greedy bases. Toward this goal let 
us introduce the following notation: 
 

 

2. Unconditional bases 
One of the most fruitful concepts in the Banach space theory concerns the unconditionality 
of systems. The principal idea of the approach is that we require the space to have a lot of 
symmetry which we hope to provide a number of useful properties. We refer to [37],[38] as 
some introductory feedback to this item. 
Definition 6 A biorthogonal system  is unconditional if there exists a constant K 
such for all  and any finite  we have have  The smallest such 
constant K will be called unconditional constant. 
Remark 1 Note that the above definition is equivalent to requiring that  for all 
(not necessarily finite) . 
Sometimes we refer to a stronger property which is called symmetry. 
Definition 7 An an unconditional system  is symmetric if there exists a constant U 
such for all , any permutation  and random signs  we have 

 



Greedy Type Bases in Banach Spaces 

 

329 

The smallest such constant U will be called symmetric constant. 
Usually in the sequel we will assume that the unconditional system has the unconditional 
constant equal to 1. This is not a significant restriction since given unconditional system  
in X one can introduce a new norm 

 
By the classical extreme point argument one can check that this is an equivalent norm on X, 
more precisely  for  and  has unconditional constant 1 in 

 In the classical Banach space theory a lot of attention has been paid to 
understand some features of spaces which admits the unconditional basis. We quote from 
[1] a property we have announced in the introduction. 
Proposition 1 Let  be an unconditional basis for X (with constant K). Then 

 verifies that 

 
for all  
Proof. Let . Since  it follows immediately that 

 
For the other inequality, pick  (from unit sphere in X*) so that  
Then for each finite J we have 

 
Now we let J tend to I and use that if  

■ 
Therefore according to Theorem 1 the optimal m-term approximation for unconditional 
system exists, i.e.  is attained at some y ∈ . We remark that there are a lot of 
classical spaces which does not admit any unconditional basis and even (e.g. C[0, 1] see [1]) 
cannot be embedded into a Banach space with such a structure. 
In the greedy approximation theory we consider the class of unconditional bases as the fine 
class we usually tend to search for the optimal algorithm (see [14]). The reason is that for 
unconditional bases for a given  the best m-term approximation must be attained at 
some projection  
Proposition 2 Let  be a natural biorthogonal system with unconditional constant 1. 
Then for each  and each m = 0, 1, 2, … there exists a subset  of cardinality m such 
that  
Proof. Let us fix m and  be the best m-term 
approximation i.e.  (the existence is guaranteed by Proposition 1). Note that 

 
which completes the proof.                                                                                                                 ■ 



 Advances in Greedy Algorithms 

 

330 

We turn to show that for unconditional systems  and  are comparable. The result we 
quote from [35] but for concrete systems (see [32]) the answer was known before. 
Theorem 2 If  is a natural biorthogonal system with unconditional constant 1, then 

 
Proof. We have shown in Proposition 2 that we can take the best m-term approximation of x 
as  Clearly  for some . In order to estimate  
we write 

 
so using 1-unconditionality we obtain 

 
 

Note that m. 
This implies that  Thus 
estimating c from the second inequality and substituting it into the first we get 

 
Consequently 

 
 

To show the converse inequality use the following result: 
Lemma 1 For each m there exists disjoint sets J1 and J2 with  such that 

 
Proof. If  the claim is obvious. Otherwise take sets J1 and J2 with  such 
that  For simplicity write 

 
 

With this notation we have  This implies 

 
so  Thus we have to replace J1 by any set of proper cardinality which 
contains J1\J2 and is disjoint with J2. 

■ 



Greedy Type Bases in Banach Spaces 

 

331 

We take sets as in Lemma 1 and denote  be a set of 
cardinality m disjoint with J2. Consider 

 
Then  From Proposition 2 we 
learn that 

 
This and Lemma 1 give 

 
Since  is arbitrary it completes the proof. 

■ 
More elaborate results of this type are presented in [29]. 
Theorem 3 Let  be natural biorthogonal system with unconditional constant 1. Suppose that s(m) 
is a function such that for some c > 0 

 (7) 

Then 

 
for some constants C and m = 0, 1, 2, …. 
Proof. Let us fix  with  and m = 0, 1, 2, …. By Proposition 2, there exits a 
subset J ⊂ I of cardinality m such that 

 
 

and  a subset of cardinality  Using 
the unconditionality of the system we get 

 
 

Let  The again using unconditionality we derive 

 
(8) 



 Advances in Greedy Algorithms 

 

332 

Since for  we get 

 
(9) 

From (8), (9) and (7) we get 

 
so 

 
■ 

Let  be a biorthogonal system. The natural question rises when  is 
the unconditional system in X*. The obvious obstacle may be that such system does not 
verify (4). For example the standard basis  in l1 cannot have its dual to be a basis in 

 since the latter is not separable. However, if we consider it as a system in 
span  then it will satisfy all our assumptions and thus we denote such 
system by *. Note that if  is unconditional then so is *. 
Theorem 4 Let  be natural biorthogonal system with unconditional constant 1. Then 

 
for m = 2, 3, …. 
Proof. Let us fix  and a set  of cardinality k. We have 

 
(10)

On the other hand there exists  with  such that 

 
(11)

Let  whenever  From 1- 
unconditionality we deduce that 
 

 
therefore 

 
(12)



Greedy Type Bases in Banach Spaces 

 

333 

Thus from (10),(11) and (12) using the fact that  is decreasing, we obtain that 

 

(13)

■ 
Theorems 3 and 4 are quoted from [40] but the almost the same arguments were used earlier 
in [11] and [27]. 

3. Greedy bases 
The first step to understand the idea of greedy systems in Banach spaces is to give their 
characterization in terms of some basic notions. The famous result of Konyagin and 
Temlyakov [26] states that being a greedy basis is equivalent to be an unconditional and 
democratic basis. We start from introducing these two concepts. 
The second concept we need to describe greedy bases concerns democracy. The idea is that 
we expect the norm  being essentially a function of  rather then from J itself. 
Definition 8 A biorthogonal system  is called democratic if there exists a constant D such that for 
any two finite subsets  with  we have 

 
 

The smallest such constant D will be called a democratic constant of . 
We state the main result of the section. 
Theorem 5 If the natural biorthogonal system  is greedy with the greedy constant less or equal C, 
then it is unconditional with unconditional constant less or or equal C and democratic with the 
democratic constant less or equal C2. Conversely if it is unconditional with constant K and 
democratic with constant D, then it is greedy with greedy constant less or equal K + K3D. 
Proof. Assume first that  is greedy with the greedy constant C. Let us fix a finite 
 set  of cardinality m,  and a number  We put y := 

 Thus 

 (14)

Therefore  is unconditional according to Definition 6. 
To show that  is democratic we fix two subsets  with  Then 
we choose a third subset  such that  
Defining  we have that 

 



 Advances in Greedy Algorithms 

 

334 

and 

 
 

Analogously we get 

 
 

and the conclusion follows. 
Now we will prove the converse. Fix  and m = 0, 1, 2, …. Choose  
with  Clearly 

 
 

for appropriate  We write 

 (15)

Using unconditionality we get 

 (16)

and analogously 

 
 

From the definition of  we infer that 

 
so from unconditionality we get 

 
(17)

and 

 
(18)

Since  from (17) and (18) and democracy we deduce that 

 (19)

From (15), (16) and (19) we get ( is arbitrary) 

  ■ 



Greedy Type Bases in Banach Spaces 

 

335 

Remark 2 The above proof is taken from [26]. However some arguments (except the proof that greedy 
implies unconditional), were already in previous papers [32] and [35]. 
If we disregard constants Theorem 5 says that a system is greedy if and only if it is 
unconditional and democratic. Note that in particular Theorem 5 implies that a greedy 
system with constant 1 (i.e. 1-greedy) is 1-unconditional and 1-democratic. However this is 
not the characterization of bases with greedy constant 1 (see [40]). The problem of isometric 
characterization has been solved recently in [2]. To state the result we have to introduce the 
so called Property (A). 
Let  be a Schauder basis of X. Given , the support of x denoted supp consists of 
those  such that  Let M(x) denote the subset of supp where the coordinates (in 
absolute value) are the largest. Clearly the cardinality of M(x) is finite for all . We say 
that 1-1 map π : suppx → N is a greedy permutation of x if π(i) = i for all i ∈ suppx\M(x) and if 

i ∈ M(x) then, either π(i) = i or π(i) ∈ N \suppx. That is a greedy permutation of x puts those 

coefficients of x whose absolute value is the largest in gaps of the support of x, if there are any. 
If suppx ≠ N we will put  Finally we denote by ΠG(x) 

the set of all greedy permutation of x. 
Definition 9 A Schauder basis  for Banach space X has property (A) if for any  we 
have 

 
 

for all π ∈ ΠG(x) and all signs  with  
Note that property (A) is a weak symmetry condition for largest coefficients. We require that 
there is a symmetry in the norm provided its support has some gaps. When suppx = N then 

the basis does not allow any symmetry in the norm of x. The opposite case occurs when 
 and J0 is finite, then  for any  of cardinality 

 
Theorem 6 A basis  for a Banach space X is 1-greedy if and only if it is 1- unconditional and 
satisfies property (A). 
Another important for application result is the duality property. 
Remark 3 Suppose that  is greedy basis and that  with 0 < α < 1. Then * is also 
greedy. 
Proof. From Theorem 5 we know that  is unconditional, so we can renorm it to be 1-
unconditional. Also, because  is greedy we have  We repeat the proof of 
Theorem 4 but in (13) we explicitly calculate as follows: 

 
so * is greedy 

■ 



 Advances in Greedy Algorithms 

 

336 

This is a special case of Theorem 5.1 from [11]. We recall that it was proved in [21] that each 
unconditional basis in Lp, 1 < p < 1, has a subsequence equivalent to the unit vectors basis in 
lp, so for each greedy basis  in Lp we have  Thus we get: 
Corollary 1 If   is a greedy basis in Lp, 1 < p < 1, then * is a greedy basis in Lq, 1/p + 1/q = 1. 

4. Quasi greedy bases 
In this section we characterize the quasi-greedy systems. The well known result of 
Wojtaszczyk [35] says quasi-greedy property is a kind of uniform boundedness principle. 
Theorem 7 A natural biorthogonal system is quasi greedy if and only if there exists a constant C 
such that for all  and m = 0, 1, 2, … we have 

 
The smallest constant C in the above theorem will be called quasi greedy constant of the system . 
Proof. 1⇒2. Since the convergence is clear for x's with finite expansion in the biorthogonal 
system, let us assume that x has an infinite expansion. Take  such that 

 where  is a finite set and  for . If we take m big 
enough we can ensure that  and 

 Then 

 
This gives 2. 
2⇒1. Let us start with the following lemma. 
Lemma 2 If 2 does not hold, then for each constant K and each finite set  there exist a finite 
set  disjoint from J and a vector  aj ej such that  and  
for some m. 
Proof. Let us fix M to be the minimum of the norms of the (linear) projections PΩ(x) = 

 where  Let us start with a vector x1 such that  and 

 where K1 is a big constant to be specified later. Without loss of generality 
we can assume that all numbers  are different. For  we 
have  for some  and   
Thus  
Let us put 

 
and take a finite set J1 such that for i∉J1 we have  Let us take η very small 
with respect to │J1│ and │J│ and find x4 with finite expansion such that  If 
η is small enough we can modify all coefficients of x4 from J1 and J so that the resulting x5 

will have its k biggest coefficients the same as x3 and  Moreover x5 will have 
the form  with J0 finite and disjoint from J. Since 

 which 
can be made greater or equal K if we take K1 big enough.                                                 ■ 



Greedy Type Bases in Banach Spaces 

 

337 

Using Lemma 2 we can apply the standard gliding hump argument to get a sequence o the 
vectors  with sets Jn disjoint and  a decreasing sequence of 
positive numbers  such that if  and a sequence of 

integers mn such that  Now we put  
This series is clearly convergent in X. If we write  we infer that 

 
This implies that for  we have 

 
so 

 
Thus  does not converge to x 

■ 
One of the significant features of quasi greedy systems is that they are closely related to the 
unconditionality property. 
Remark 4 Each unconditional system is quasi greedy. 
Proof. Note that for an unconditional system  and each  the series 

 converges unconditionally (we can change the order of I). In particular the 
convergence holds for any finite-set approximation of I and hence  is quasi greedy. 

■ 
There is a result in the opposite direction, which shows that quasi-greedy bases are rather 
close to unconditional systems. 
Definition 10 A system  is called unconditional for constant coefficients if there exits constants  
c1 > 0 and c2 < 1 such that for finite  and each sequence of signs  we have 

 
(20)

Proposition 3 If ( ) has a quasi-greedy constant C then it is unconditional for constant coefficients 
with c1 = C-1 and c2 = C. 
Proof. For a given sequence of signs  let us define the set  
For each  > 0 and  < 1 we apply Theorem 7 and we get 

 



 Advances in Greedy Algorithms 

 

338 

Since this is true for each  > 0 we easily obtain the right hand side inequality in (20). The 
other inequality follows by analogous arguments. 

■ 
The quasi greedy bases may not have the duality property. For example for the quasi greedy 
basis in l1, constructed in [12] the dual basis is not unconditional for constant coefficients 
and so it is not quasi greedy. On the other hand dual of a quasi greedy system in a Hilbert 
space is also quasi greedy (see Corollary 4.5 and Theorem 5.4 in [11]). Otherwise not much 
has been proved for quasi greedy bases. 

5. Examples of systems 
In this section we discuss a lot of concrete examples of biorthogonal systems. We remark 
here that all of the discussed concepts of: greedy, quasi greedy, unconditional symmetric 
and democratic systems, are up to a certain extent independent of the normalization of the 
system. Namely we have (cf. [40]): 
Remark 5 If  is a sequence of numbers such that 

 
and  is a system which satisfies any of the Definitions 4-8, then the system 

 verifies the same definitions. 
The most natural family of spaces consists of Lp spaces 1 ≤ p ≤ ∞ and some of their variations, 
like rearrangement spaces. As for the systems we will be mainly interested in wavelet type 
systems, especially the Haar system or similar, and trigonometric or Wlash system. 

5.1 Trigonometric systems 
Clearly standard basis in lp, p > 1 is greedy. The straightforward generalization of such 
system into  space is the trigonometric system  Such system may be 
complicated to the Walsh system in , given by  where  
Unfortunately the trigonometric system is not quasi greedy even in Lp. To show this fact we 
use Proposition 3, i.e. we prove that such systems are not unconditional for constant 
coefficients whenever p ≠ 2. 
Suppose that for some fixed 1 ≤ p < ∞ trigonometric system verifies (20). Then taking the 
average over signs we get 

 
The symbol rj in the above denotes the Rademacher system. The right hand side (which is 
the Lp norm of the Dirichlet kernel) is of order  and of order logN when p = 1. 
Changing the order of integration and using the Kchintchine inequality we see that the left 
hand side is of order  To decide the case p = ∞ we recall that the well-known Rudin 

Shapiro polynomials are of the form  for appropriate choice of 
 while the L∞  norm of the Dirichlet Kernel is clearly equal to N. This violates 

(20). Those results are proved in [40], [30], [8] and [35]. 



Greedy Type Bases in Banach Spaces 

 

339 

5.2 Haar systems 
We first recall the definition of Haar system in Lp space. The construction we describe here is 
well known an we follow its presentation from [40]. We start from a simple (wavelet) function: 

 

(21)

Clearly  For pair  we define the function hj,k(t) := h(2jt - k). The 
support of hj,k is dyadic interval I = I(j, k) = [k2-j, (k+1)2-j]. The usual procedure is to index Haar 
functions by dyadic intervals I and write hI instead of hj,k. We denote by D the set of all dyadic 
subintervals of R. It is a routine exercise to check that the system {hj,k : (j, k) ∈ Z2} = {hI : I ∈ D} is 
complete orthogonal system in L2(R). Note that whenever we consider the Haar system in a 
specified function space X on R we will consider the normalized system  
There are two common Haar systems in Rd: 

1. The tensorized Haar system, denoted by  and defined as follows: If J = J1×…×Jd where 
J1, …, Jd ∈ D, then we put  One checks trivially  

that the system {hJ : J ∈ Dd} is a complete, orthogonal system in L2(Rd). We will  

consider this system normalized in Lp with 1 ≤ p ≤ ∞, i.e. 
 The main feature of the system is 

that supports of the functions are dyadic parallelograms with arbitrary sides. 
2. The cubic Haar system, denoted by  defined as follows: We denote by h1(t) the 

functions h(t) defined in (21) and by h0(t) the function 1[0,1]. For fixed d = 1, 2, … let C 

denotes the set of sequences  = (1, …, d) such that i = 0 or 1 and  For  

 ∈ C, j ∈ Z and k ∈ Zd
 we define a function  by the formula 

 
(22)

Again it is a routine exercise to show that the system  where  varies over C, i 

varies over Z and k varies over Zd is a complete orthonormal system in L2(Rd). As before 

we consider the system normalized in Lp(Rd), namely  where J (d) = 

C × Z × Zd and for α = (, j, k) ∈ J (d) we have  The feature of this 

system is that supports of the functions are all dyadic cubes. Therefore one can restrict 
the Haar system  to the unite cube [0, 1]d. We simply consider all Haar functions 
whose supports are contained in [0, 1]d plus the constant function. In this way we get 
the Haar system in Lp[0, 1]d. 

The above approach can be easily generalized to any wavelet basis. In the wavelet 
construction we have a multivariate scaling function φ0(t) and the associated wavelet φ 1(t) 



 Advances in Greedy Algorithms 

 

340 

on Lp(R). We assume that both φ0 and φ1 have sufficient decay to ensure that φ0, φ 1 ∈ L1(R) ∩ 
L∞(R). Clearly functions 1[0,1] and h(t) are the simplest example of the above setting, i.e. of 
scaling and wavelet function respectively. This concept may be extended to Rd, i.e we can 
define a tensorized wavelet basis, though since we do not study such examples in this 
chapter we refrain from detailing the construction. 

5.3 Haar systems in Lp spaces 
Since Haar systems play important role in the greedy analysis we discuss some of their 
properties. The main tool in our analysis of Lp will be the Khintchine inequality which 
allows to use an equivalent norm on the space. 
Proposition 4 If   is an unconditional system in Lp, 1 < p < ∞, then the expression 

 
(23)

gives an equivalent norm on Lp. 
The above proposition fails for p = 1 but if we introduce the norm given by (23) for p = 1, 
then we obtain a new space denoted as H1, in which the Haar system  is unconditional. 
The detail construction of the space may be found in [37], 7.3. 
We show that one of our Haar systems  is greedy whereas the second one  is not. We 
sketch briefly these results. The first result was first proved in [33] but we present argument 
given in [22] and [40] which is a bit easier. 
Theorem 8 The Haar  is greedy basis in  for d = 1, 2, … and 1 < p < ∞. The system  is 
greedy in H1. 
Proof. The unconditionality of the Haar system is clear from Proposition 4. Therefore we 
only need to prove that  is democratic in  for d = 1, 2, … (and also in H1). Let 

 be a finite set. Note that if the cube Q is the support of the Haar function  
then  Thus, for each t ∈ Rd, the non-zero values of the Haar functions 

 belong to a geometric progression with ratio 2d. Then we check that for a given t ∈ Rd 

there are at most 2d-1 Haar functions which take a given non zero value at this point. Thus 
defining  we obtain that 

 
for some constant c(d) > 0. So 

 
We recall that for a given t ∈ Rd there are at most 2d-1 Haar functions which have the same 
non zero value at this point. Therefore, following the same geometric progression argument 
we see that for each t ∈ Rd we have 



Greedy Type Bases in Banach Spaces 

 

341 

 
for some constant C(d) < ∞ and  depending on t. Thus 

 
 

It shows that  is comparable with  which in the view of 
Proposition 4 completes the proof. 

■ 
The second result shows that  is not greedy in Lp. We recall that for as system,  we have 
used intervals I ∈ D d

 as the indices. We first prove the following: 
Proposition 5 For d = 1, 2, … and 1 < p < ∞ in  we have 

 
(24)

for p ≤ 2, and 

 
(25)

Proof. The right hand side inequality in (24) is easy. We simply apply the Holder inequality 
with exponent  to the inside sum and we get 

 
(26)

To show the left hand side we will need the following result: 
Lemma 3 For d = 1 and 1 ≤ p < ∞ and for any finite subset  we have 

 
 

Proof. Let us denote  From the definition of the Haar system we 
obtain that  so 

 
■ 

Now we fix d = 1 and 1 < p ≤ 2. Let  be such that  is a 
decreasing sequence. Fix s such that  and we put 



 Advances in Greedy Algorithms 

 

342 

 
 
Then 

 
 
Hence using Lemma 3 we obtain that 

 
 

Since 

 
 
we derive 

 
 

Therefore we have established (24) for d = 1. We turn to show the left hand side inequality in 
(24) by induction on d. Suppose we have (24) valid for d-1. Given a finite set d we 
write each I ∈ J as I = A × B with A ∈ D and B ∈ D d-1 and then  

where  We denote  and estimate 

 

(27)

For each t1 we apply the inductive hypothesis (note that the number of different B’s is at 
most J) and we continue the estimates 



Greedy Type Bases in Banach Spaces 

 

343 

 

(28)

Now we apply the estimate (24) for d = 1 and we continue as 

 

(29)

Due to Proposition 4 we can complete the proof of (24). The inequality (25) follows by 
duality from (24) for 1 < p ≤ 2. 

■ 
Note that if we work in the setting where all aI = 1, then actually one can show, using 
Lemma 3, that for d = 1,  is just comparable with │J│1/p. Therefore we can start 
the induction from d = 2 and thus derive: 
Proposition 6 For d = 1, 2, … and 1 < p ≤ 2 in  we have 

 
(30)

for 2 ≤ p < ∞, and 

 
(31)

The inequalities (30) and (31) finally lead to the main result for  systems which was 
conjectured in [32] and proved in [35]. 
Theorem 9 Suppose that for 1 < p < ∞ we consider the system  in  space. Then 

 (32)

Proof. Proposition 6 combined with Theorem 2 shows that  
The estimate from below was proved in [32]. 

■ 
Corollary 2 For d = 1, 2, … and 2 < p < ∞ in  we have 

 (33)

 (34)
whereas for p ≤ 2 



 Advances in Greedy Algorithms 

 

344 

 (35)

 (36)

Note that Corollary 2 implies that (7) is verified with  
Consequently we deduce from Theorem 3 that for a given x ∈ X there exist 

 coefficients from which we should choose m to find near best 
m-term approximation. Therefore it seems to be intriguing problem to find the algorithm 
which provides the near optimal approximation for  

5.4 Haar systems in other spaces 
One could expect that if there exists the Haar system  in  the same construction 
should work in rearrangement spaces. We recall that that a rearrangement invariant space is 
a Banach space (X, · ) whose elements are measurable functions on measure space (Ω, μ) 
satisfying the following conditions 
1. if x ∈ X and y is a measurable function such that  
2. if x ∈ X and y has the same distribution as x, i.e. for all λ ∈ R we have μ(x ≤ λ) = μ(y ≤ λ) 

then y ∈ X and  
The main result of [42] states that Lp are the only rearrangement spaces for which the 
normalized Haar system is greedy. 
Theorem 10 Let X be a rearrangement invariant space on [0, 1]d. If a Haar system hd normalized in 
X is a greedy basis in X, then X = Lp[0, 1] d

 for some 1 < p < ∞. 
On the other hand there are examples of bizzare rearrangement spaces (see [20]) for which 
there exists some greedy basis. However it was conjectured in [42] that for classical different 
from Lp rearrangement spaces (e.g. Lorentz, Orlicz) this is not possible. We recall that 
Lorentz  is a Lorentz rearrangement space with the norm  

 where x* is non-increasing rearrangement of x (uniquely 
determined). It was shown in [42] that if for p ≠ q there exists greedy basis in Lp,q, then it has 
rather unusual properties. 
The second interesting class of examples comprise Orlicz spaces. We recall that is an 
Orlicz rearrangement space with the norm   where ϕ 
is some convex, increasing, ϕ(0) = 0 function. Such spaces where analyzed recently in [16] 
where some extension of Theorem 10 has been proved. We say that space  has non-trivial 
Boyd indices if 

 
 

Theorem 11 Let  be an Orlicz spaces with non-trivial Boyd indices. An wavelet basis 

is democratic in  if and only if  = Lp (Rd) for some 1 < p < ∞. 



Greedy Type Bases in Banach Spaces 

 

345 

5.5 Functions of bounded variations 
Let  Ω ⊂ R d be an open subset. Let us recall that a function f ∈ L1(Ω) has bounded variation if 

all its distributional derivatives  are measures of bounded variation. The space of all 
such functions equipped with the norm 

 
is denoted by BV (Ω). This function space is of importance for the geometric measure theory, 
calculus of variation, image processing and other areas. Clearly whenever f BV < ∞ then 

 f ∈ Lp, where p = d/(d - 1) by the classical embedding theorems. Observe that BV (Rd) is a 

non separable space so it cannot have any countable system satisfying (4). On the other hand 
one may ask whether the Haar system normalized to BV (Rd) (which we denote by  ) 

has some stability property, i.e. is quasi greedy on  Generalizing 
some of the previous results (e.g. [7],[36],[41]) it was proved in [5] that the following holds: 
Theorem 12 Suppose that  is a normalized wavelet basis generated by some 
compactly supported scaling function (see our discussion in Section about Haar Systems). Then if  
f ∈ BV (Rd), d ≥ 2 the following inequality holds 

 (37)

for some constant C(p, d) depending on p, d only. 
This is however not much satisfactory result since  is not a very natural space. 
A natural separable space of BV (Rd) is the Sobolev space  i.e. the space of all f ∈ 

BV (Rd) such that  are absolutely continuous measures for j = 1, 2, …, d. A natural and 

interesting problem which rises in this context is to find a smooth wavelet basis which is 
quasi greedy in . We remark that  does not have unconditional basis, so it 
does not have a greedy basis. On the other hand an immediate consequence of Theorem 13 
is that  has a quasi greedy basis. 

6 Examples of greedy and quasi greedy bases 
In this section we provide a class of basic examples for natural systems which share the 
greedy or quasi greedy property. 

6.1 Greedy bases 
There to basic examples of greedy bases which we often refer to: 
1. the natural basis in lp, p ≥ 1; 
2. the Haar system  for . 
It occurs that these natural systems can be useful when combined with some theoretical 
methods of producing greedy bases. 



 Advances in Greedy Algorithms 

 

346 

The first approach is based on the fact that being greedy (or quasi greedy) is an isomorphic 
property. Therefore whenever   is a greedy system in Banach space X and T : X → Y 
is a linear isomorphism, then  is a greedy system in Y. We mention two 
practically useful examples of this remark: 
1. Consider Lp, 1 < p < ∞ space. If B is a good wavelet basis (cf. [37] Theorem 8.13) 

normalized to Lp then it is equivalent to the Haar system hp. Thus such all systems are 
greedy. 

2. It is known (cf. [37], Chapter 9) that good wavelet bases in Besov space when 
properly normalized are equivalent to the unit vector basis in lp, thus greedy for 1 ≤ p < 
∞. 

The second approach is to use the dual basis (see Remark 3). In particular (see Corollary 1) we 
have shown that dual basis of  in Lp, 1 < p < ∞ is greedy in Lq, were 1/p+1/q =1. However one 
has to be careful when using Remark 3, since without the additional assumption that 

 for some 0 <  < 1 it may be not true that dual basis is greedy in its linear 
closure. The simplest example of such a case may be constructed for the system  in H1 (the 
space of integrable functions with the norm given by (23)). The dual system is the system  

considered in the space VMO. It was proved in [29] that  in the space 
VMO, so we have a natural example of a greedy system whose dual is not greedy. Actually 
one can show that the space VMO does not have any greedy system. 
Now we turn to discuss other examples of greedy bases in Lp. The simplest case is of p = 2, 
i.e. when we consider Hilbert space. Clearly every orthonormal basis, and more generally, 
every Riesz basis is greedy in a Hilbert space, since they are the only unconditional systems 
in L2. This easily follows from Proposition 4. 
In Lp for 1 < p < ∞ , p ≠2, the situation is not as simple. Except wavelet bases it is a hard 
question to provide other examples of greedy bases. We state below the Kamont [23] 
construction of a generalized Haar system in [0, 1]: 
The first function is 1[0,1]. Next we divide [0, 1] into two subintervals Il and Ir (nontrivial but 
generally not equal) and the next function is of the form  and is orthogonal to the 
previous function. We repeat this process on each of intervals Il and Ir and continue in this 
manner. 
If we make sure that the lengths of subintervals tend to zero the system will span Lp[0, 1] for 
1 ≤ p < ∞. One of the main results of [23] states that each generalized Haar system 
(normalized in Lp[0, 1]) is equivalent to a subsequence of , so is greedy. 
An example of a basis in Lp for p > 2 which is greedy and not equivalent to a subsequence of 
the Haar system  was given in [35]. It follows from Corollary 1 that such an example 
exists also for 1 < p < 2. 

6.2 Quasi greedy bases 
As we have mentioned in Remark 4 all unconditional system are quasi greedy. This 
observation however shows that unfortunately the greedy approximation can be very 
inefficient when used in this case. For example for the natural basis in  which is 
unconditional we have  
Obviously to show other examples one has to investigate spaces without unconditional 
bases. Some examples were given in [26] but the general treatment was presented in [35] 



Greedy Type Bases in Banach Spaces 

 

347 

and recently generalized in [10]. In both papers the approach is quite abstract and uses the 
existence of good complemented subspace. A very general result (Corollary 7.3 from [10]) is 
as follows. 
Theorem 13 If X has a basis and contains a complemented subspace S with a symmetric basis, where 
S is not isomorphic to c0, then X has a quasi greedy basis. 
We recall that X is a L∞ space if there exists λ ≥ 1 and a directed net Y of finite dimensional 
subspaces of X, where each Y is λ-isomorphic to an  space such that   This 
class includes every complemented subspace of C(K). In [10] (Corollary 8.6) there was 
proved a characterization of L∞ spaces which admits a greedy basis. 
Theorem 14 The space c0 is the unique infinite dimensional L∞ space, up to isomorphism, with a 
quasi greedy basis. Moreover c0 has a unique quasi greedy basis up to equivalence. 
Therefore neither C[0, 1] nor the disc algebra A (which trivially shares L∞-property ) do not 
have any quasi greedy basis. 
Since clearly L1[0, 1] does contain complemented symmetric subspace (which is necessarily 
isomorphic to l1, see e.g. Proposition 5.6.3 in [1]) we obtain from Theorem 13 that L1[0, 1] has 
a quasi greedy basis. Since it is known that L1[0, 1] does not have unconditional  
(in particular greedy) this is a good kind of basis. On the other hand it is none of the  
classical systems. For example the Haar basis (and other wavelet bases) are not quasi greedy 
in L1(R). To see it note that for In = [0, 2-n], n = 1, 2, …, N, we have 

 so (20) is violated. 

7. Basic sequences 
We call a sequence  in a Banach space X a basic sequence if it is a basis for 

 The unconditional sequence problem is that we ask whether or not in any 
infinite dimensional Banach space there exists a quasi greedy sequence. The problem was 
regarded as perhaps the single most important problem in the approximation theory. 
Eventually a counterexample was found by Gowers and Maurey in [18]. The construction 
which is extremely involved has led to a variety of other applications (see e.g. [25], [17], 
[19]). However there is still open a bit weaker version of the problem: 
Conjecture 1 In every infinite Banach space X there exists a quasi greedy basic sequence. 
Some partial positive results are given in [13] and [3]. Roughly speaking there is shown in 
thees papers that whenever our space X is far from c0 (in a certain sense) then there exists 
quasi a greedy sequence. 

8. Greedy bases are best in Lp 
In this section we assume for simplicity that we work with Schauder bases. From recent 
works [9] and [36] it became apparent that greedy basis in Lp is a natural substitute for an 
orthonormal basis in a Hilbert space. Let us explain brifley what does it mean. 

8.1 Comparing bases 
In [9] the following general problem is discussed. Let F be a certain Banach space 
continuously embedded into Lp and let F0 be its unit ball. For a given basis B =  in Lp 

we introduce the quantities 



 Advances in Greedy Algorithms 

 

348 

 
We are looking for a basis B which gives the best order of decay m(B,F). It is natural to 

expect that the best basis has to have close connection with the class F. We shall say that 

F ⊂ X is aligned with B if for each  and  we have that 
 The following was proved in [9] (Theorem 4.2). 

Theorem 15 Let B be a greedy basis for X with the property  for some p > 1. 
Assume that F is aligned with B and for some  ∈ R, β > 0, we have 

 
Then for any unconditional basis B’ we have 

 
The theorem implies that in some sense a greedy basis aligned with F ⊂ X is the best among 
all unconditional bases. Certainly it seems that if they are best in the class of fine bases, 
greedy bases should be best among all the possible bases. Unfortunately all the admissible 
methods require the second basis to be unconditional. 
The first paper in this direction was by Kashin [24] who proved that if X is L2 space then for 
each orthogonal basis B we have  where 0 <  ≤ 1 and Lip  is a 
class of Lipschitz functions according to the metric  Next step was due 
to Donoho (see [14], [15]) who proved under the assumption X = L2 that if F is aligned with 
an orthogonal basis B, such that lim  for some β > 0, then for  
γ > β we have lim . Then by DeVore, Temlyakov and Petrova 
[9] the result was extended from L2 spaces to Lp, yet with a loss of some logarithmic factor. 
Theorem 15 has been recently improved in [6]. We first formulate the following condition 

 
(38)

Clearly if  1 then (38) is verified. The condition says that ϕ verifies a kind 
of Δ2 condition in ∞ (i.e. it cannot be linear in ∞). 
In what follows, we will need some of the basic concepts of the Banach space theory. First let 
us recall the definition of type and cotype. Namely, if  is a sequence of independent 
Rademacher variables, we say that X has type 2 if there exists a universal constant C1 such 
that 

 
and X is of cotype 2 if there exists a universal constant C2 such that 



Greedy Type Bases in Banach Spaces 

 

349 

 
In particular the Lp spaces have type 2 if p ≥ 2 and cotype 2 if 1 ≤ p ≤ 2. For more 
comprehensive information see for example, [38], Chapter III A. Since we work with bases, 
we need a definition of type and cotype 2 in these settings. A basis B is called Riesz basis if 

 
and Bessel basis, if 

 
where A1,A2 are universal constants. Obviously if X has type or cotype 2 then B is Riesz or 
Bessel basis respectively. 
We can formulate the main result of the section. 
Theorem 16 Let X be a Banach space and let B be a greedy and Riesz basis (or greedy and Bessel 
basis) which satisfies (38) (the Δ2 condition). Suppose that K is aligned with B and that B’ is an 
unconditional basis for X. There exist absolute constants C > 0 and τ ∈ N such that 

 
It is possible to prove a weaker version of Theorem 16 in which we do not assume B to be 
Riesz or Bessel basis and which exactly implies Theorem 15. However the main class of 
examples consists of Lp spaces  for all greedy bases in Lp) and in this setting we 
can benefit from the fact that Lp spaces are of type or cotype 2 (each unconditional basis B is 
Riesz or Bessel). Thus we can apply Theorem 16 for Lp spaces and consequently remove the 
additional logarithmic factor in Theorem 15. 
Corollary 3 (of Theorem 16) Suppose that X is Lp space, p > 1 and F is aligned with a greedy basis 
B. If  B verifies 

 
then for each unconditional basis B’ in X the following inequality holds 

 

8.2 Tools 
In this section, we derive some preliminary results that we shall need later. The following 
lemma holds. 
Lemma 4 If B is unconditional basis and verifies (38) (the Δ2 condition), then the following 
inequality holds: 



 Advances in Greedy Algorithms 

 

350 

 
Proof. We can assume that  an thus since B is unconditional, we have 

 for k = 0, 1, …, n. Hence 
by (38) we obtain 

 
■ 

Our main class of examples consists of Lp spaces, p > 1 for which the assumptions in 
Theorem 16 are clearly verified. In order to use Theorem 16 for much larger classes of 
Banach spaces, we need a simple characterization whether a greedy basis B is Riesz or Bessel 
in terms of ϕ(n) numbers. 
Lemma 5 Suppose B is a greedy basis (democratic and unconditional). If ϕ (n) satisfies 

 
(39)

then B is Bessel basis and if 

 
(40)

then B is Riesz basis. 
Proof. We can assume that  The unconditionality of B implies 

 
for k = 0, 1, 2, …. Hence by (39) 

 
Thus Similarly assuming 
that  and the fact that B is a democratic basis, we have that 

 



Greedy Type Bases in Banach Spaces 

 

351 

Thus using the Schwartz inequality and (40) we get 

 
where we applied the following inequali 

 
Consequently  

■ 
Remark 6 If we assume only that  
then mimicking the proof of Lemma 5 we obtain respectively 

 

Remark 7 If , where 1 < p < 2 or p > 2 then respectively (39) or (40) holds true. Thus 

each greedy basis B such that , where p > 1, p ≠ 2, is Bessel or Riesz basis. 

Furthermore for all p > 1, if   the condition from Remark 6 is verified. 

Lemma 6 Let  be a sequence of independent Rademacher variables and ai, ai,j ∈ R, i, j ∈ N. 
We have 

 
Proof. The first equality is classical and easy so we only prove the second one. If 

 then there is nothing to prove, otherwise we have 

 
where we have used the inequality  

■ 
Lemma 7 Let  are respectively greedy and unconditional basis for X. Let 

 and let K’ be the unconditionality constant for B’. If B is 
Riesz or Bessel basis, then 

 
where c is a certain constant (not depending on n). 



 Advances in Greedy Algorithms 

 

352 

Proof. Fix i ≥ 1. By the unconditionality of B’ and B and the Bessel property of B we have 

 
Thus due to Lemma 6 we obtain 

 
and hence  
 

Now fix l ≥ 1. Due to the Riesz property of B and the unconditionality of B’ and B we obtain 

 
If we take  then by Lemma 6 we get 

 
 

It proves that  
■ 

Remark 8 If we assume only that  then 
applying Remark 6 in the above proof (instead of Riesz or Bessel property) we obtain 

 
for some universal constant c < ∞. 

8.3 Proof of main result 
Proof of Theorem 1. Fix n ≥ 1,  > 0. First we assume that  < ∞. The definition of 

 implies that there exists x ∈ F0 such that 

 



Greedy Type Bases in Banach Spaces 

 

353 

Observe that  does not depend on the basis B renumeration, so we can 
and we will assume that  
Since F is aligned to B, whenever  we have  
where u is a universal constant. Consequently 

 
It proves that denoting  the cube 

 
is contained in F0. Applying the triangle inequality we obtain 

 
Thus due to the unconditionality we get 

 
hence 

 

(41)

Fix  be a sequence of independent Rademacher variables. For simplicity 
we denote  and consequently we have 

 

Observe that  and thus  for 

m = 0, 1, 2, …. By definition  and 
therefore 

 



 Advances in Greedy Algorithms 

 

354 

Furthermore, the unconditionality implies 

 
 

thus 

 
(42)

Again using the unconditionality and  we get 

 

(43)

Now we apply Lemma 1 in the case of   and derive that 

 
 

Observe that  hence by (42) and (43) we 
have 

 
 

The Schwartz inequality gives 

 
 

Applying the inequality  Lemma 6 and Lemma 7, we get 



Greedy Type Bases in Banach Spaces 

 

355 

 
Thus 

 
Taking m = k - τ , and using (41) we get 

 
 

We can find suitable τ such that   Since  > 0 is arbitrary we obtain 

 
where  This completes the proof when  
In the case of  given M < 1 we can find x such that  
Mimicking the previous argument we prove that 

 
Since M is arbitrary, it completes the proof in the case of   

■ 
Proof of Corollary 1. Obviously if X is Lp space, then B is Riesz (for p ≥ 2) or Bessel (for 1 ≤ p ≤ 2) 
basis. Moreover since  (see Section 2 in [9]), the basis B satisfies the Δ2 condition 
and thus we can apply Theorem 16. Assume that  That 

means for every  > 0 there exists N() ∈N such that  

Thus for n > N() + τ we have 

 
Observe that  where c is a universal constant (which 
depends on , β, τ only). Theorem 16 implies that 

  



 Advances in Greedy Algorithms 

 

356 

which is impossible since  
■ 

Remark 9 Using Remark 8 instead of Lemma 7 in the proof of Theorem 16 and then mimicking the 
argument from Corollary 1 (but for general Banach spaces and greedy basis B such that 

 ) we get Theorem 15. 
Remark 10 Results of [9] do not exclude the possibility that for some other unconditional basis B we 
have  It was conjectured in [40] that it is impossible. 

9. References 
[1] Albiac, F. and Kalton, N.J. (2005) Topics in Banach Space Theory. Graduate Texts in 

Mathematics Springer 
[2] Albiac, F. and Wojtaszczyk, P. (2006) Characterization of 1-greedy bases. J. Approx. Theory 

138, 65-86. 
[3] Arvanitakis, D. and Alexander, D. (2006) Weakly null sequences with an unconditional 

subsequence. Proc. Amer. Soc. 134, 67-74. 
[4] Baishanski, B. (1983) Approximation by polynomials of given length, Illinois J. Math 27, 

449-458. 
[5] Bechler, P. DeVore, R. Kamont, A. Petrova, G. (2007) Greedy Wavelet Projections are 

Bounded on BV . Trans. Amer. Math. 
[6] Bednorz, W. (2008) Greedy Bases Are Best for m-term approximation. J. Approx. Theory 

(soon) 
[7] Cohen, A. DeVore, R. Perushev, P. and Xh, H. (1999) Nonlinear approximation and the 

space BV (R2), Amer. J. Math. 121, 587-629. 

[8] Cordoba, A. and Fernandez, P. (1998) Convergence and divergence of decreasing 
rearranged Fourier series, SIAM J Math Anal, 29, 5, 1129-1139. 

[9] DeVore, R., Petrova, G. and Temlyakov V. (2003). Best basis selection for approximation 
in Lp. J. of FoCM 3, pp. 161-185. 

[10] Dilworth, S.J, Kalton N.J., Kutzarova, D. (2003) On the existence of almost greedy 
Banach spaces. 159, No 1., 67-101. 

[11] Dilworth, S.J, Kalton N.J., Kutzarova, D. and Temlyakov (2001) V.S. The thresholding 
greedy algorithm, greedy bases and duality. IMI-Preprints 

[12] Dilworth, S.J. and Mitra, D. (2001) A conditional quasi-greedy basis of l1. Studia Math. 
144 95-100. 

[13] Dilworth, S.J. Odell, E. Schlumprecht, Th and Zsak, A. (2008) Partial Unconditionality, 
Preprint. 

[14] Donoho, D. (1993) Unconditional bases are optimal for data compression and for 
statistical estimation. Appl. Comput. Harmon. Anal. 1 100-115. 

[15] Donoho, D. L. (1996) Unconditional Bases and Bit-Level Compression. Appl. Comp. 
Harm. Anal. 3, 388-392. 

[16] Garrios, G, Hernandez, E. and Martell, J.M. (2008) Wavelets, Orlicz Spaces and Greedy 
Bases. App. Comput. Harmon. Anal. 70-93. 

[17] Gowers, W.T. (1996) A new dichotomy for Banach spaces, Geom. Funct. Anal. 6, 1083-
1093. 



Greedy Type Bases in Banach Spaces 

 

357 

[18] Gowers, W.T, and Maurey, B. (1993) The unconditional basic sequence problem. J. Amer. 
Math. Soc. 6, 851-874. 

[19] Gowers, W.T. (1997) Banach spaces with small spaces of operators. Math. Ann. 307, 543-
568. 

[20] Johnson, W.B. Maurey, B. Schechtman and G, Tzafriri, L. (1979) Symmetric structures in 
Banach spaces, Mem. Amer. Math. Soc. 

[21] Kadec, M.I. and Pelczynski, A. (1962) Bases lacunary sequences and complemented 
subspaces in the spaces Lp, Studia Math. 21 661-676. 

[22] Kalton, N.J. Leranoz, C. and Wojtaszczyk, P. (1990) Uniqueness of unconditional bases 
in quasi-Banach spaces with applications to Hardy spaces, Israel Math. J. 72, 299-
311. 

[23] Kamont, A. (2001) General Haar systems and greedy approximation. Studia Math. 145, 
165-184. 

[24] Kashin, B.S. (1985). Approximation properties of complete orthonormal systems. 
(Russian) Studies in the theory of functions of several real variables and the approximation 
of functions. Trudy Mat. Inst. Steklov. 172, 187-191. 

[25] Komorowski, R.A. and Tomczak-Jeagerman, N. (1995) Banach spaces without local 
unconditional structure. Israel J. Math. 89, 205-226. 

[26] Konyagin, S.V. and Temlyakov, V.N. (1999) A Remark on Greedy Approximation in 
Banach Spaces. East J. Approx. 5 1-15. 

[27] Konyagin, S.V. and Temlyakov, V.N. (2002) Greedy approximation with regard to bases 
and general minimal systems. Industrial Math. Institute 

[28] Lindenstrauss, J. and Tzafriri, L. (1977) Classical Banach Spaces I,II. Classics in 
Mathematics, Springer, Berlin. 

[29] Oswald, P. (2001) Greedy algorithms and best m-term approximation with respect to 
biorthogonal systems. J.Fourier Anal. Appl., 325-341. 

[30] Temlyakov, V.N. (1998) Greedy algorithm and m-term trigonometric approximation, 
Constr. Approx., 569-587. 

[31] Temlyakov, V.N. 1998) Greedy algorithm and m-term trigonometric approximation. 
Adv. Comput. Math. 8, 249-265 

[32] Temlyakov, V.N. (1998) Non-linear m-term approximation with regard to multivariate 
Haar system, Esat J. Approx, 4, 87-106. 

[33] Temlyakov, V.N. 1998) Best m-term Approximation and Greedy Algorithms Adv. 
Comput. Math. 249-265. 

[34] Temlyakov, V.N. (2002) Nonlinear approximation with regard to bases. Approximation 
Theory, X 373-402, Vanderbilt University Press, Nashville, TN. 

[35] Wojtaszczyk, P. (2000) Greedy algorithm for general biorthogonal systems, J. Approx. 
Theory 107, 293-314 

[36] Wojtaszczyk, P. Projections and nonlinear approximation in the space BV (Rd), Proc. 
London Math. Soc. 

[37] Wojtaszczyk, P. (1997) A Mathematical Introduction to Wavelets, London Math. Soc. 
Student Texts, Cambridge University Press, UK. 

[38] Wojtaszczyk, P. (1996) Banach Spaces for Analysts, Cambridge studies in advanced 
mathematics, 25, Cambridge University Press, UK. 

[39] Wojtaszczyk, P. (2002) Existence of best m-term approximation, Functiones et 
Approximatio 30, 127-133. 



 Advances in Greedy Algorithms 

 

358 

[40] Wojtaszczyk, P. (2002). Greedy type bases in Banach spaces, Constructive Theory of 
Function Theory, Varna 2002 136-156, Darba, Sofia 

[41] Wojtaszczyk, P. (2003) Projections and nonlinear approximation in the space BV (Rd), 

Proc. London Math. Soc., 87 417-497. 
[42] Wojtaszczyk, P. (2006) Greediness of the Haar system in rearrangement spaces Banach 

Center Publications: Approximation and Probability, 385-395, Warsaw. 



19 

Hardware-oriented Ant Colony Optimization 
Considering Intensification and Diversification 

Masaya Yoshikawa  
Meijo University 

Japan 

1. Introduction    
Swarm intelligence is the technological modeling of behaviors of social insects, such as the 
ant or the honeybee. Although each element comprising swarm intelligence is simple, high 
grade intelligence emerges when the elements gather to form a swarm. Ant Colony 
Optimization (Dorigo, M, et al., 1997), which is called ACO, is one of the swarm intelligence 
and has been attracting much attention recently. The ACO represents a general name of the 
algorithm inspired by feeding behavior of ants. It has been applied to various combinatorial 
optimization problems (Ramkumar, A.S. et al., 2006), including the travelling salesman 
problem (TSP), the floorplanning problem (Luo, R., et al., 2007) and the scheduling problem 
(Sankar, S.S., et al., 2005). The basic model of the ACO is the ant system (AS) that was 
proposed by Dorigo et al. (1996), and many ACOs applied to TSP are based on the AS. 
However, these ACOs require a lot of calculation time, because the optimization process is 
based on repetitive searches by plural numbers of ants. 
In this chapter, a novel hardware-oriented ACO (H-ACO) is proposed to achieve high-speed 
optimization based on mechanism of ACO algorithm. The characteristics of the H-ACO is as 
follows: (1) all calculations can be performed with only addition, subtraction, and shift 
operation, instead of the floating point arithmetic and power calculation which are adopted 
in conventional ACO; (2) a new technique using Look-Up-Table (LUT) is introduced; and (3) 
in addition to upper and lower limits, benchmarks are set to the pheromone amount. 
Experiments using benchmark data prove effectiveness of the proposed algorithm. 
The organization of this chapter is as follows: Section 2 describes the search mechanism of 
ACO and briefly surveys the ACO research in terms of the computational time. Section 3 
explains H-ACO. Section 4 reports the results of computer simulations applied to travelling 
salesman problem. Section 5 summarizes the chapter. 

2. Preliminaries 
2.1 Ant colony optimization 
Ant Colony System is one of the expansion algorithm of AS, and it shows better capability 
than genetic algorithm and simulated annealing when applying to TSP. Therefore, we adopt 
Ant Colony System as a base algorithm and the target problem is TSP. Hereafter, ACO 
indicates Ant Colony System. 



 Advances in Greedy Algorithms 

 

360 

The search mechanism of ACO utilizes the static evaluation value and the dynamic one. The 
static evaluation value called heuristic value is peculiar information of the target problem, 
and the dynamic evaluation value is pheromone amount. Usually, a reciprocal number of 
the distance is adopted as the heuristic value, when ACO is applied to TSP. Specifically, ant 
k in city i selects the move to city j according to probability pk and it is defined as follows. 

 
(1) 

Where, τ(i,j) is a pheromone value between city i and city j, η(i,j) is a reciprocal number of 
the distance between city i and city j, β is a parameter which controls the balance between 
static evaluation value and dynamic one, and nk is a set of un-visit cities. 
On the other hand, a pheromone amount on each route is calculated by using two 
pheromone update rules. One is a local update rule and the other is a global update rule. 
The local update rule is applied to the route which is selected by equation (1), and it is 
defined as follows. 

 (2) 

Where, ψ is a decay parameter in the local update rule, τ0 is initial value of pheromone. Thus, 
the local update rule adds the pheromone to the selected route when the ant moves. The global 
update rule adds pheromone to the best tour (the completed route) of all tours. The best tour 
usually indicates the shortest tour. The global update rule is defined as follows.  

 

 
(3) 

Where, T+ is the best tour, and L+ is the total distance of the best tour.  

2.2 Related work 
Examples of dedicated hardware for ACO are found by Haibin et al. (2007), Nakano et al. 
(2006), and others. Haibin et al. (2007) proposed the hardware architecture that combines 
genetic algorithm and ACO, and they showed the validity of the combined architecture. 
Nakano et al. (2006) implemented the partial function of ACO on FPGA (Filed 
Programmable Gate Array), and they demonstrated more high-speed than software 
processing. The authors also proposed the dedicated hardware of ACO (Yoshikawa, M., et 
al., 2007). However, the developed hardware was based on ordinary ACO algorithm, and 
adopted floating point arithmetic as calculation of pheromone update rules. 
Regarding other meta-heuristic algorithm, the dedicated hardware approach to reduce 
calculation time are reported by Scotte et al. (1995), Imai at al. (2002), and Frye et al.(1991). 
Scott et al. (1995) developed a hardware-based GA and demonstrated its superiority to 
software in speed and solution quality. Imai et al. (2002) proposed a processor element 
constituting parallel GA, and achieved the parallelism due to the number effect. Frye et al. 
(1991) developed the dedicated hardware for neural network using analog device. 



Hardware-oriented Ant Colony Optimization Considering Intensification and Diversification 

 

361 

Thus, no studies have ever seen, to our knowledge, the hardware oriented ACO algorithm 
which does not utilize floating point arithmetic. 

3. Hardware-oriented ACO 
3.1 Pheromone update rule 
In the H-ACO, in order to control the trade-off between intensification (exploitation of the 
previous solutions) and diversification (exploration of the search space), upper and lower 
limits are set in a manner similar to the Max-Min AS. Here, a new benchmark of the 
pheromone is also introduced. Using this benchmark, an increment of the pheromone is 
determined. An example in which the pheromone is added is shown in Fig.1, where the 
horizontal axis indicates the time and the vertical axis indicates the pheromone value. 
 

 
Fig. 1. Example of transition of pheromone 

The pheromone value (pheromone amount) is added by performing the search starting from 
the initial value τ0. When the pheromone value is smaller than the benchmark, a large 
number of the pheromones are added from a viewpoint of intensification.  
On the other hand, when the pheromone value is larger than the benchmark, a small 
number of pheromones are added to diversify the search space. 
When a particular tour (route) has a large number of pheromones, this indicates that the 
tour is often selected. When the pheromone value reached the upper limit, the pheromone 
value is reduced to the lower limit. By this operation, the probability of other tours being 
selected is increased from a viewpoint of diversification. In other words, the H-ACO is 
controlled to perform a global search in this case. 
A new equation (4) is introduced to the local update rule and it is defined as follows. 

 

 
(4) 

Where, std represents the benchmark, max is upper limit, and the initial value of pheromone 
(τ0) is set to 8. In the local update rule, if τ(i,j) = 8, the increment is 0, i.e., no local update will 



 Advances in Greedy Algorithms 

 

362 

be performed. In other words, trapping by a local optimal solution can be avoided without 
adding excessive pheromones to the tour at early stages of the search.  
Moreover, high-speed processing can be also realized by reducing the number of processing 
steps. For example, when the numbers of ants (agents) and cities are denoted as m and n, 
respectively, the number of processing steps required for the local update rule of m × n 
times can be reduced in the first search.  
The global update rule is defined by the equation (5). 

 

 
(5) 

As regards the global update rule, if it is applied only when the pheromone value is smaller 
than the benchmark, a larger global search can be performed. 
Fig. 2 shows an example in which the local and global update rules are applied. As shown in 
the figure, the local update rule is only performed to the tours that pheromone have been 
added to in the global update rule. 
 

 
Fig. 2. Example of local update rule and global update rule 

That is, in the H-ACO, a global search is performed at the early stage of search, and a local 
search is performed as the search progressed. Thus, H-ACO can achieve not only speed-up 
of the pheromone update procedure by reducing the number of processing steps, but also 
effective search by controlling of intensification and diversification. 

3.2 Selection method using Look-Up-Table technique 
In the general ACO, when the city of the next destination is selected, a power calculation, as 
shown in equation (1), is required. In addition, the heuristics value, as the information 
peculiar to a certain problem, is a decimal because it is the reciprocal of distance. Therefore, 
when the heuristics value is realized in a dedicated hardware, a floating point arithmetic 
unit is required. To simplify hardware resources, the number of processing steps and the 
control, however, power calculations and floating point arithmetic operations are not 
suitable for the hardware. 
In the H-ACO, a selection technique based on the LUT system is introduced. As the 
heuristics value, the value that is obtained by converting the reciprocal of distance to the 



Hardware-oriented Ant Colony Optimization Considering Intensification and Diversification 

 

363 

positive integer is used. As the pheromone value, only the values that are multiples of 4, as 
shown in the equation (4) and (5) of the pheromone update rule, are used. Then, the LUT, 
into which both the heuristics and pheromone values are input, is created. Fig.3 shows an 
example of the LUT. By using the integral value and the LUT system, it ensures that all the 
operations can be performed by simple addition, subtraction, and shift operations. 
 

 
Fig. 3. Example of Look-Up-Table 

4. Experiments and discussion 
In order to verify the validity of the H-ACO, several comparative experiments are 
conducted. First, in order to evaluate search performance, the H-ACO is compared with the 
conventional ACO described in Section 2. 1. The experimental platform is a Pentium 4 3.0 
GHz and the program is described by the C language. As experimental data, the original 
data from 50 cities, in which the optimal solution is already known, and the travelling 
salesman problem library (TSP.LIB) benchmark data of 100 cities are used. The experimental 
results are shown in Figs. 4 and 5.  
 

 
Fig. 4. Result of 50 cities 

In both figures, the horizontal axis indicates the processing time and the vertical axis 
indicates the total distance of the route. As shown in both figures, the search performance of 



 Advances in Greedy Algorithms 

 

364 

the H-ACO, which does not use decimal operation and power calculation, is similar to that 
of the conventional ACO, which does require their use. 
Next, an experiment to evaluate the controllability of parameters is conducted. In the 
conventional ACO, the balance of the pheromone value and the heuristics value is 
controlled by parameter β in the equation (1) and the balance of the information on the past 
behaviour and that on the new behavior is controlled by decay parameters ψ and ρ (the 
evaporation rate) in the equations (2) and (3). 
In the H-ACO, the LUT value, upper limit, lower limit, and benchmark are used as the 
parameters, instead of parameters ψ , ρ and β, to control these balances.  
The experimental results with various LUT values are shown in Fig. 6. Fig.6 (1) shows the 
result of setting the pheromone value larger than the heuristics value. 
 
 

 
 

Fig. 5. Result of 100 cities 

Fig.6. (3) shows the result when the pheromone value is set to be smaller than the heuristics 
value.  
As shown in Fig.6 (1), since the influence of the heuristics value (in this case, it is the 
distance between the cities) is small, this search is similar to a random search and many 
tours are intersected.  
As shown in Fig.6 (3), since the influence of the distance between the cities is great, the 
cities (the distance between which is small) are selected in the initial stage of the route 
construction; that is, a behavior similar to the greedy algorithm is observed. Therefore, in 
the final stage, to complete the route, cities with large distances between them are 
selected. 
As shown in Fig.6 (2), the pheromone value and the heuristics value are well-balanced, and 
an effective search is realized. Thus, the technique of using the LUT value, which has been 
newly introduced to the H-ACO, instead of parameter β and power calculation, which are 
used in the conventional ACO, is clearly shown to provide an effective selection of the cities 
with well-balanced pheromone and heuristics values. 



Hardware-oriented Ant Colony Optimization Considering Intensification and Diversification 

 

365 

 
Fig. 6. Result of several kinds of LUTs 

Fig. 7 shows the results of the experiments in which various upper limits and benchmarks of 
the pheromone value are used.  



 Advances in Greedy Algorithms 

 

366 

 
Fig. 7. Result of several pairs of upper limit and benchmark 

In these experiments, since the relative relationship between the upper limit and the 
benchmark is considered as maintained even if the lower limit is fixed, only the upper limit 



Hardware-oriented Ant Colony Optimization Considering Intensification and Diversification 

 

367 

and the benchmark are changed. Figs.7 (1), (3), and (2) show the results of the experiments, 
in which the upper limit and the benchmark are set to be high, low, and intermediate, 
respectively. 
As shown in Fig.7 (1), since the upper limit was set high, pheromone is accumulated over a 
long period. This means that, since the past information is considered important, no 
progress is observed in the search. 
As shown in Fig.7 (3), since the distance between the upper limit and the benchmark is small 
due to the low upper limit, this search is similar to a random search. 
In contrast, as shown in Fig.7 (2), when the upper limit and the benchmark are well-
balanced, a satisfactory solution is obtained. 
Thus, simply by adjusting the upper limit and the benchmark, the same effect as using the 
decay parameters, which controlled the information on the past behavior and the 
information on the new behavior, can be realized. Based on the above experimental results, 
the proposed H-ACO is confirmed to provide a similar solution searching mechanism and 
ability as seen with the conventional ACO, without the need for floating point arithmetic 
operations and power calculations. 

5. Conclusion 
In this chapter, we proposed a novel hardware-oriented ACO algorithm. The proposed 
algorithm introduced new pheromone update rules using the LUT. It enabled all 
calculations for optimization with only addition, subtraction, and shift operation. Moreover, 
it controlled the trade-off between exploitation of the previous solutions and exploration of 
the search space effectively. As a result, the proposed algorithm achieved not only high 
speed processing, but also maintenance of the quality of solutions. Experiments using 
benchmark data proved effectiveness of the proposed algorithm. 

6. References 
Dorigo, M., Maniezzo, V. & Colorni,A.(1996). Ant system: optimization by a colony of 

cooperating agents, IEEE Transactions on Systems, Man and Cybernetics, Part B, 
Vol.26, No.1,pp.29-41. 

Dorigo, M. & Gambardella, L.M.(1997). Ant colony system: a cooperative learning approach 
to the traveling salesman problem, IEEE Transactions on Evolutionary Computation, 
Vol.1, No.1, pp.53-66. 

Frye, R.C., Rietman, E.A. & Wong, C.C. (1991). Back-propagation learning and nonidealities 
in analog neural network hardware, IEEE Transactions on Neural Networks, Vol.2, 
No.1, pp.110-117. 

Haibin, D. & Xiufen, Y. (2007). Progresses and Challenges of Ant Colony Optimization-
Based Evolvable Hardware, Proceedings of IEEE Workshop on Evolvable and Adaptive 
Hardware, pp.67-71. 

Imai, T., Yoshikawa, M., Terai, H. & Yamauchi, H. (2002).Scalable GA-Processor 
Architecture and Its Implementation of Processor Element, Proceedings of IEEE 
International Conference on Acoustics, Speech, and Signal Processing, Vol.3, pp.3148-
3151. 



 Advances in Greedy Algorithms 

 

368 

Luo, R. & Sun, P.(2007). A Novel Ant Colony Optimization Based Temperature-Aware 
Floorplanning Algorithm, Proceedings of Third International Conference on Natural 
Computation, Vol.4, pp.751-755. 

Nakano, M., Iida, M. & Sueyoshi, T. (2006). An Implementation of Ant Colony Optimization 
for the MaTriX Processing Engine, Proceedings of IEICE-RECONF2006-27, Vol.106, 
No.247，pp.1-6. 

Ramkumar, A.S. & Ponnambalam, S.G. (2006). Hybrid Ant colony System for solving 
Quadratic Assignment Formulation of Machine Layout Problems, Proceedings of 
IEEE Conference on Cybernetics and Intelligent Systems, pp.1-5. 

Sankar, S.S., Ponnambalam, S.G., Rathinavel, V. & Visveshvaren, M.S. (2005). Scheduling in 
parallel machine shop: an ant colony optimization approach, Proceedings of IEEE 
International Conference on Industrial Technology, pp.276-280. 

Scott, S.D., Samal, A. & Seth, S. (1995). HGA:A Hardware-Based Genetic Algorithm, 
Proceedings of Iternational Symposium on Field-Programmable Gate Array, pp.53-59. 

Yoshikawa, M. & Terai,H. (2007). Architecture for high-speed Ant Colony Optimization, 
Proceedings of IEEE International Conference on Information Reuse and Integration, 
pp.95-100. 



20 

Heuristic Algorithms for Solving Bounded 
Diameter Minimum Spanning Tree Problem and 

Its Application to  
Genetic Algorithm Development 

Nguyen Duc Nghia and Huynh Thi Thanh Binh 
Ha Noi University of Technology 

Viet Nam 

1. Introduction      
The bounded diameter minimum spanning tree (BDMST) problem is a combinatorial 
optimization problem that appears in many applications such as wire-based communication 
network design when certain aspects of quality of service have to be considered, in ad-hoc 
wireless network (K. Bala, K. Petropoulos, T.E. Sterm, 1993) and in the areas of data 
compression and distributed mutual exclusion algorithms (K. Raymond, 1989; A. Bookstein, 
S. T. Klein, 1996). A more comprehensive discussion of the real-world applications of 
BDMST was given in Abdalla’s seminal dissertation (Abdalla, 2001). 
Before the BDMST problem can be formally stated, we need some definitions relating to tree 
diameter and center. Given a tree T, the maximal eccentricity of vertex v is the length 
(measured in the number of edges) of the longest path from v to other vertices. The diameter 
of a tree T, denoted as diam(T), is the maximal eccentricity over all nodes in T (i.e the length 
of maximal path between two arbitrary vertices in T). Suppose that a diameter of a tree is 
defined by the path v0, v1, v2,…, v[k/2], v[k/2]+1, …, vk. If k is even then v[k/2] is called a center of 
the tree. If k is odd then v[k/2] and v[k/2]+1 are centers of the tree. In that case, the edge (v[k/2], 
v[k/2]+1) is called a center edge.  
Let G = (V, E) be a connected undirected graph with positive edge weights w(e). The BDMST 
problem can be formulated as follows: among spanning trees of G whose diameters do not 
exceed a given upper bound k ≥ 2, find the spanning tree with the minimal cost (sum of the 
weights on edges of the trees). As in almost all studies of the BDMST problem, and without 
lost of generality, we will assume that G is a complete graph. 
More precisely, the problem can be stated as: 
 

Find a spanning tree T of G that minimizes  

( ) ( )
e T

W T w e
∈

=∑
 

subject to 

diam(T) ≤ k . 



 Advances in Greedy Algorithms 

 

370 

This problem is known to be NP-hard for 4 ≤ k < |V|-1 (M.R.Garey & D.S.Johnson, 1979). 
In this chapter, we introduce the heuristic algorithms for solving BDMST: OTTC (Abdall, 
2001), RGH (R.Raidl & B.A.Julstrom, 2003), RGH1 (Binh et.at, 2008a), RGH-I (A. Singh & A.K. 
Gupta, 2007), CBRC (Binh et al., 2008b). In order to inlustrate the effectiveness of the 
proposed algorithms, we apply them for initializing the population of our new genetic 
algorithm with multi-parent recombination operator for solving given problem. Then results 
of computational experiments are reported to show the efficiency of proposed algorithms. 
The chapter is organized as follows. In the next section (section 2), we briefly overview 
works done in solving BDMST problems. Section 3 deals with new heuristic algorithm for 
solving BDMST problem. Section 4 describes our new genetic algorithm which uses 
heuristic algorithms that already presented in previous section to solve BDMST problem. 
The details of experiments and the comparative computational results are given and 
discussed in the last section of the chapter.  

2. Previous work on the BDMST problem 
Techniques for solving the BDMST problem may be classified into two categories: exact 
methods and inexact (heuristic) methods. Exact approaches for solving the BDMST problem 
are based on mixed linear integer programming (N.R.Achuthan et al., 1994), (L Gouveia et 
al., 2004). More recently, Gruber and Raidl suggested a branch and cut algorithm based on 
compact 0-1 integer linear programming (M. Gruber & G.R. Raidl, 2005). However, being 
deterministic and exhaustive in nature, these approaches could only be used to solve small 
problem instances (e.g. complete graphs with less than 100 nodes). 
(Abdalla et al., 2000) presented a greedy heuristic algorithm - the One Time Tree 
Construction (OTTC) for solving the BDMST problem. OTTC is based on Prim’s algorithm 
in (R. Prim, 1957). It starts with a set of vertices, initially containing a randomly chosen 
vertex. The set is then repeatedly extended by adding a new vertex that is nearest (in cost) to 
the set, as long as the inclusion of the new node does not violate the constraint on the 
diameter of the tree. This algorithm is time consuming, and its performance is strongly 
dependent on the starting vertex. 
Raidl and Julstrom proposed in (G.R. Raidl & B.A. Julstrom, 2003) a modified version of 
OTTC, called Randomized Greedy Heuristics (RGH). RGH starts from a centre by randomly 
selecting a vertex and keeping it as the fixed center during the search. It then repeatedly 
extends the spanning tree from the center by adding a randomly chosen vertex from the 
remaining vertices, and connecting it to a vertex that is already in the tree via an edge with 
the smallest weight. The obtained results showed that on Euclidean instances RGH performs 
better than OTTC, whereas on non-Euclidean instances the situation is reversed. 
RGH could be summarized in the following pseudo-code (G.R. Raidl & B.A. Julstrom, 2003) 
 

T  ← ∅; 
U  ← V; 
v0  ← random(U); 
U ← V − {v0}; 
C ← {v0}; 
depth[v0] ← 0; 
if (odd(k)) { 
 v1  ← random(U); 



Heuristic Algorithms for Solving Bounded Diameter Minimum Spanning Tree Problem and Its 
Application to Genetic Algorithm Development 

 

371 

 T  ← {(v0,v1)}; 
 U ← U − {v1};  
 C ← C ∪ {v1};  
 depth[v1] ← 0; 
} 
while (U ≠ ∅) { 
 v ← random(U); 
 u ← argmin {c(x,v): x ∈ C}; 
 T ← T ∪ {(u,v)}; 
 U ← U − {v} ; 
 depth[v] ← depth[u] + 1; 
 if (depth[v] < [k/2]) 
  C ← C ∪ {v} ; 
} 
return T; 
 
Raidl and Julstrom proposed a genetic algorithm for solving BDMST problems which used 
edge-set coded (G.R. Raidl & B.A. Julstrom, 2003) (JR-ESEA) and permutation-coded 
representations for individuals (B.A. Julstrom & G.R. Raidl, 2003) (JR-PEA). Permutation-
coded evolutionary algorithms were reported to give better results than edge-set coded, but 
usually are much more time consuming. Another genetic algorithm, based on a random key 
representation, was derived in (B.A. Julstrom, 2004), sharing many similarities with the 
permutation-coded evolutionary algorithms. In (M. Gruber & G.R. Raidl, 2005), Gruber used 
four neighbourhood types to implement variable neighbourhood local search for solving the 
BDMST problem. They are: arc exchange neighbourhood, level change neighbourhood, 
node swap neighbourhood, and center change level neighbourhood. Later, (M. Gruber et al., 
2006), re-used variable neighbourhood searches as in (M. Gruber & G.R. Raidl, 2005), 
embedding them in Ant Colony Optimization (ACO) and genetic algorithms for solving the 
BDMST problem. Both of their proposed algorithms (ACO and GA) exploited the 
neighbourhood structure to conduct local search, to improve candidate solutions. In (Nghia 
& Binh, 2007), Nghia and Binh proposed a new recombination operator which uses multiple 
parents to do the recombination in their genetic algorithm. Their proposed crossover 
operator helped to improve the minimum and mean weights of the evolved spanning trees.  
More recently, in (A. Singh & A.K. Gupta, 2007), Alok and Gupta derived two 
improvements for RGH heuristics (given in (G.R. Raidl & B.A. Julstrom, 2003)) and some 
new genetic algorithms for solving BDMST problems (notably the GA known as PEA-I). 
RGH-I in (A. Singh & A.K. Gupta, 2007) iteratively improves the solution found with RGH 
by using level change mutation. It was shown in (A. Singh & A.K. Gupta, 2007) that RGH-I 
has better results than all previously-known heuristics for solving the BDMST problem. 
PEA-I employs a permutation-coded representation for individuals. It uses uniform order-
based crossover and swap mutation as its genetic operators. PEA-I was shown to be the best 
GA of all those tried on the BDMST problem instances used in (A. Singh & A.K. Gupta, 
2007). In (Binh et al., 2008a), Binh et al., also implement another variant of RGH, which is 
called RGH1. RGH1 is similar to RGH, except that when a new vertex is added to the 
expanding spanning tree, it is chosen at random, and connected to a randomly chosen 
vertex that is already in the spanning tree.   



 Advances in Greedy Algorithms 

 

372 

3. New greedy heuristic algorithm (center-based recursive clustering) 
Our new greedy heuristics is based on RGH in (G.R. Raidl & B.A. Julstrom, 2003) and NRGH 
in (Nghia and Binh, 2007), called CBRC. We extend the concept of center to every level of the 
partially constructed spanning tree.  The algorithm can be seen as recursively clustering the 
vertices of the graph, in that every in-node of the spanning tree is the center of the sub-
graph composed of nodes in the subtree rooted at this node. It is inspired from our 
observation (and other such as in (A. Abdalla et.al, 2000), (G.R. Raidl and B.A. Julstrom, 
2003) that good solutions to the BDMST problem usually have “star-like structures” as can 
be seen (for a Euclidean graph) in Figure 1. 
In a star-like structure, the vertices of the graph are grouped in clusters, and the clusters are 
connected by a link between their centers. Pseudocode for the new heuristic based on this 
observation, known as Center-Based Recursive Clustering (CBRC), is presented below:   
 

   1. T  ← ∅; 
   v

0
 ← Choose_a_Center(V) 

   U ← V − {v
0
}; 

   C ← {v
0
}; 

   depth[v
0
] ← 0; 

  If k is odd then 
   { 
    v

1
 ← Choose_a_Center(U) 

  T ← {(v
0
, v

1
)}; 

  U ← U − {v
1
}; 

  C ← C ∪ {v
1
}; 

  depth[v
1
] ← 0; 

    } 
 2. //Group vertices in U into cluster(s)  
    //with centers at v

0
 or v

1
 

     For each node w in U do 
     { 
       If k is even then 
       {  
        w becomes child of v

0
 ; 

        depth[w]=1; 
        T ← T ∪ {(w,v

0
)}; 

        } 
       Else // k is odd 
        If Distance(w,v

0
) ≤ Distance(w,v

1
) then 

          { 
            w becomes child of v

0
; 

            depth[w]=1; 
            T ← T ∪ {(w,v

0
)}; 

          }  
        Else 
          {   
            w becomes child of v

1
; 

            depth[w]=1; 
            T ← T ∪ {(w,v

1
)}; 

          }  
      } //end for 
  3. Loop  



Heuristic Algorithms for Solving Bounded Diameter Minimum Spanning Tree Problem and Its 
Application to Genetic Algorithm Development 

 

373 

        V= set of leaves in U with depths < ⎣k/2⎦; 
        v= Choose_a_Center(V); 
        if(v is empty) 
          Break; // Jump out of the loop 
        U = U − {v}; 
      For each leaf node w in U do 
       { 
        If Distance(w,v) ≤ Distance(w, parent(w)) then 
           w becomes child of v; 
           depth[w]=depth[v] +1; 
           T=T -{(w,parent(w))}+{(w,v)}; 
        
       } 
The algorithm above is a general framework for CBRC. It employs two abstract functions, 
namely, Choose_a_Center and Distance. The implementations of these functions are expected 
to affect the performance of the heuristics, and the best choice could depend on the problem 
instance. We propose below some possible implementations of these two functions.  
 

 
Fig. 1. A “star-like” structure of a typical solution to the BDMST problem. 

Implementations of Choose_a_Center function: 
- v is a center of U if  ∑w∈U Distance(v, w) → min. If there is more than one such v then 

choose from them randomly. 
- Rank all vertices in U according to ∑w∈U Distance(v, w), then choose v randomly from 

the first h% of the vertices. 
- Conduct h-tournament selection, ∑w∈U Distance(v, w) as the vertex for v.  
- Choose v randomly (i.e. it does not depend on Distance at all). 
Implementations of the Distance function: 
- Distance(u, v) = c(u, v). 
- Distance(u, v) = cost the of shortest path between u and v (used for Non-Eclidean 

graphs). 
It can be seen from the pseudo-code of CBRC that none of the combinations of Distance and 
Choose_a_Center from the above implementations increase the asymptotic computational 
complexity of the heuristic to more than O(n3). It is also possible to apply post-



 Advances in Greedy Algorithms 

 

374 

improvement, as proposed in (A. Singh and A.K. Gupta, 2007) to CBRC just as for RGH. The 
resulting heuristic is known as CBRC-I. In the next section, CBRC is tested on some 
benchmark Euclidean instances of the BDMST problem. 

4. Proposed genetic algorithm 
Genetic algorithm has proven effective on NP-hard problem. Much works research on NP-
hard problem, particularly in problems relating to tree have been done. Several studies 
proposed representations for tree (J.Gottlieb et al., 2000), (G.R.Raidl & B.A.Julstrom, 2003), 
(B.A.Julstrom & G.R.Raild, 2003), (B.A.Julstrom, 2004), (Martin Gruber et al., 2006), (Franz 
Rothlauf, 2006). This section presents the genetic algorithm for solving BDMST problem.  

4.1 Initialization 
Use OTTC, RGH1, CBRC, RGH heuristic algorithms described above for initializing 
population and edge list for chromosome code. 

4.2 Recombination operator 
Using k-recombination operator as in (Nghia and Binh, 2007). 

4.3 Mutation operator 
Using four mutations operators: edge delete mutation, center move mutation, greedy edge 
replace mutation, subtree optimize mutation as in (G.R.Raidl & B.A.Julstrom, 2003). 

5. Computational results 
5.1 Problem instances 
The problem instances used in our experiments are the BDMST benchmark problem 
instances used in (G.R. Raidl & B.A. Julstrom, 2003), (A. Singh & A.K. Gupta, 2007), (Nghia 
& Binh, 2007), (Binh et al., 2008a) . They are Euclidean instances. All can be downloaded 
from http://www.sc.snu.ac.kr/~xuan/BDMST.zip. Euclidean instances are complete 
random graphs in the unit square. We chose the first five instances of each problem size on 
Euclide instances (number of vertices) n = 100, 250, 500, and 1000, the bounds for diameters 
being 10, 15, 20, 25 correspondingly (making up 20 problem instances in total).  

5.2 Experiment setup 
We created two sets of experiments. In the first set of experiment, we compare the 
performance of the heuristic algorithms: OTTC, RGH, RGH1, CBRC. The detail of the 
comparison between other heuristic algorithm for solving BDMST problem such as CBTC, 
RGH-I, CBRC-I can be refered to (Binh et al., 2008b), (A. Singh and A.K. Gupta, 2007). 
There are several heuristic algorithms for solving BDMST problem as mentioned above but 
no research has concerned with their effectiveness in application to develop hybrid genetic 
algorithm. Therefore, in second set of experiment, we will try to fix this problem.  
In the second set of experiment, we tested six genetic algorithm algorithms for solving 
BDMST problem. All of the genetic algorithms use recombination and mutation operator 
mentioned in section 4 but  initialized by different heuristic algorithm. GA1, GA2, GA3 uses 



Heuristic Algorithms for Solving Bounded Diameter Minimum Spanning Tree Problem and Its 
Application to Genetic Algorithm Development 

 

375 

CBRC, OTTC, RGH1 algorithm correspondent for initializing the population. GA4 uses 
CBRC, OTTC, RGH1 , RGH for initialization the population with the same rate for each 
heuristic. GA5 uses RGH1, CBRC for initializing, the rate of them in the population are 30 and 
70. GA6 uses RGH1, OTTC, CBRC for initializing, the rate of them in the population are 35, 35 
and 30. 
 

 GA1 GA2 GA3 GA4 GA5 GA6 

CBRC 100% 0% 0% 25% 70% 30% 

RGH 0% 0% 0% 25% 0% 0% 

OTTC 0% 100% 0% 25% 0% 35% 

RGH1 0% 0% 100% 25% 30% 35% 

Fig. 2. The rate of the heuristic algorithms use for initialization of the population in each 
experiment genetic algorithm 

5.3 System setting 
In the first experiment, the system was run 300 times for each instances. In the second 
experiment, the population size for GA1, GA2, GA3, GA4 , GA5, GA6 was 100.  The number of 
generations was 500. All GAs populations used tournament selection of size 3 and crossover 
rate of 0.5. The mutation rates for center level change, center move, greedy edge mutation, 
and subtree optimize mutation were 0.7, 0.2, 0.8, and 0.5 respectively.  
Each system was allocated 20 runs for each problem instance. All the programs were run on 
a machine with Pentium 4 Centrino 3.06 GHz CPU using 512MB RAM. 

5.4 Results of computational experiments 
The experiment shows that: 
- Figure 3, 4, 5, 6, 7, 8, 9, 10, 11 show that the proposed heuristic algorithm, called CBRC 

have the best result than RGH, OTTC, RGH1. It means that the solution found by CBRC 
algorithm is the best solution in comparison with the other known heuristic algorithm 
for solving BDMST problem on all the instances with n = 100, 250, 500 and 1000 (n is the 
number of vertices). 

- Figure 15 shows that the best solution found by GA1  have better result about 22% than 
the CBRC which is used for initialization the population in GA1 on all 20 problem 
instances. 

- Figure 16 shows that sum up of the best solution found by GA2 have better result about 
approximately four times than the OTTC which is used for initialization the population 
in GA2 on all 20 problem instances. 

- Figure 17 shows that sum up of the best solution found by GA3  have better result about 
over 10 times than the RGH1 which is used for initialization the population in GA3 on all 
20 problem instances. 

- Figure 11 shows that sum up of the best solution found by CBRC have better result 
about 6.5 times than the OTTC and 17 times than RGH1 while the the figure 18 shows 
that sum up of the best solution found by GA1 have better result about 0.8% times than 
the GA2 and approximately 2% than GA3. 



 Advances in Greedy Algorithms 

 

376 

a) b) 

 
c) 

 
Fig. 3. The best solution found by the heuristics: OTTC, RGH and CBRC on the problem 
instance with n = 250 and k = 15, test 1:  

(a) OTTC, weight=42.09; (b) RGH, weight=15.14;  (c) CBRC, weight = 13.32. 

0

10

20

30

40

50

60

1 2 3 4 5

Index of instances

W
ei

gh
t o

f t
re

e

CBRC

RGH

OTTC

RGH1

 
Fig. 4. The best solution found by the four heuristics: CBRC, RGH, OTTC, RGH1 on the 
problem instance with n = 100 and k = 10. 



Heuristic Algorithms for Solving Bounded Diameter Minimum Spanning Tree Problem and Its 
Application to Genetic Algorithm Development 

 

377 

0

20

40

60

80

100

120

140

1 2 3 4 5

Index of instances

W
ei

gh
t o

f t
re

e CBRC

RGH

OTTC

RGH1

 
Fig. 5. The best solution found by the four heuristics: CBRC, RGH, OTTC, RGH1 on the 
problem instance with n = 250 and k = 15 

0

50

100

150

200

250

300

1 2 3 4 5

Index of instances

W
ei

gh
t o

f t
re

e CBRC

RGH

OTTC

RGH1

 
Fig. 6. The best solution found by the four heuristics: CBRC, RGH, OTTC, RGH1 on the 
problem instance with n = 500 and k = 20. 

- Figure 18 shows that among GA1, GA2, GA3, GA4, GA5, GA6, sum up of the best solution 
found by GA6 have bettest result than the other, otherwise GA3 have worest result. 

- Figure 19 shows that GA1 have smallest sum of standard deviation otherwise GA3 have 
largest sum of standard deviation. 

- Figure 20 shows that among GA1, GA2, GA3, GA4, GA5, GA6, the number of instances 
found best result by GA5 and GA6 are biggest otherwise the number of instances found 
best result by GA2 and GA3 are smallest. 



 Advances in Greedy Algorithms 

 

378 

 

0

100

200

300

400

500

600

1 2 3 4 5

Index of instances

W
ei

gh
t o

f t
re

e

CBRC

RGH

OTTC

RGH1

 
 

Fig. 7. The best solution found by the four heuristics: CBRC, RGH, OTTC, RGH1 on the 
problem instance with n = 1000 and k = 25. 

 
 

100.0% 107.1%

203.5%

535.2%

0

50

100

150

200

250

300

CBRC RGH OTTC RGH1

Algorithm

W
ei

gh
t o

f t
re

e

0%

100%

200%

300%

400%

500%

600%

Pe
rc

en
ta

ge

 
 

Fig. 8. Comparision of the best solution found by the four heuristics: CBRC, RGH, OTTC, 
RGH1 on all the problem instance with n = 100 (5 instances), k = 10 



Heuristic Algorithms for Solving Bounded Diameter Minimum Spanning Tree Problem and Its 
Application to Genetic Algorithm Development 

 

379 

 

100.0% 109.6%

321.8%

873.3%

0

100

200

300

400

500

600

700

CBRC RGH OTTC RGH1

Algorithm

W
ei

gh
t o

f t
re

e

0%
100%
200%

300%
400%
500%
600%
700%

800%
900%
1000%

P
er

ce
nt

ag
e

 
 

Fig. 9. Comparision between  the best solution found by the four heuristics: CBRC, RGH, 
OTTC, RGH1 on all the problem instance with n = 250 (5 instances), k = 15 

 

100% 115%

1154%

389%

0

200

400

600

800

1000

1200

1400

CBRC RGH OTTC RGH1

Algorithm

W
ei

gh
t o

f t
re

e

0%

200%

400%

600%

800%

1000%

1200%

1400%

Pe
rc

en
ta

ge

 
 

Fig. 10. Comparision between the best solution found by the four heuristics: CBRC, RGH, 
OTTC, RGH1 on all the problem instance with n = 500 (5 instances) , k = 20 



 Advances in Greedy Algorithms 

 

380 

 

100.0% 107.6%

657.8%

1758.0%

0

500

1000

1500

2000

2500

3000

CBRC RGH OTTC RGH1

Algorithm

W
ei

gh
t o

f t
re

e

0.0%
200.0%
400.0%
600.0%
800.0%
1000.0%
1200.0%
1400.0%
1600.0%
1800.0%
2000.0%

Pe
rc

en
ta

ge

 
 

Fig. 11. Comparision between the best solution found by the four heuristics: CBRC, RGH, 
OTTC, RGH1 on all the problem instance with n = 1000 (5 instances) , k = 25 

 

11

11.5

12

12.5

13

13.5

14

14.5

15

1 2 3 4 5

Index of instances

M
in

 w
ei

gh
t o

f t
re

e

CBRC

GA1

 
 

Fig. 12. The best solution found by the CBRC and GA1 on all the problem instance with n = 
250, k = 15 



Heuristic Algorithms for Solving Bounded Diameter Minimum Spanning Tree Problem and Its 
Application to Genetic Algorithm Development 

 

381 

 

0

10

20

30

40

50

60

1 2 3 4 5

Index of instances

M
in

 w
ei

gh
t o

f t
re

e

OTTC

GA2

 
 

Fig. 13. The best solution found by the OTTC and GA2 on all the problem instance with n = 
250, k = 15 

 

0

20

40

60

80

100

120

140

1 2 3 4 5

Index of instances

M
in

 w
ei

gh
t o

f t
re

e

RGH1

GA3

 
 

Fig. 14. The best solution found by the RGH1 and GA3 on all the problem instance with n = 
250, k = 15 



 Advances in Greedy Algorithms 

 

382 

 

122.4%

100%

0
50

100
150
200
250
300
350
400
450

CBRC GA1

Algorithm

W
ei

gh
t o

f t
re

e

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

Pe
rc

en
ta

ge

 
 
 

Fig. 15. Sum up the best solution found by the CBRC and GA1 on all the problem instances 
(20 instances) 

 
 

481.5%

100.0%

0
200
400
600
800

1000
1200
1400
1600
1800
2000

OTTC GA2

Algorithm

W
ei

gh
t o

f t
re

e

0.0%

100.0%

200.0%

300.0%

400.0%

500.0%

600.0%
Pe

rc
en

ta
ge

 
 
 

Fig. 16. Sum up the best solution found by the OTTC and GA2 on all the problem instances 
(20 instances) 



Heuristic Algorithms for Solving Bounded Diameter Minimum Spanning Tree Problem and Its 
Application to Genetic Algorithm Development 

 

383 

 

1331.3%

100.0%
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000

RGH1 GA3

Algorithm

W
ei

gh
t o

f t
re

e

0.0%

200.0%

400.0%

600.0%

800.0%

1000.0%

1200.0%

1400.0%

P
er

ce
nt

ag
e

 
 
 

Fig. 17. Comparision between the best solution found by the RGH1 and GA3 on all the 
problem instances (20 instances) 

 
 

101.1%

101.8%

102.5%

101.9%

100.9%

100.0%

318

320

322

324

326

328

330

332

GA1 GA2 GA3 GA4 GA5 GA6

Algorithm

W
ei

gh
t o

f t
re

e

98.5%

99.0%

99.5%

100.0%

100.5%

101.0%

101.5%

102.0%

102.5%

103.0%

Pe
rc

en
ta

ge

 
 

Fig. 18. Comparision between the best solution found by found by GA1, GA2, GA3, GA4, GA5, 
GA6 on all the problem instance (20 instances) 



 Advances in Greedy Algorithms 

 

384 

 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

GA1 GA2 GA3 GA4 GA5 GA6

Algorithm

St
an

da
rd

 d
ev

ia
tio

n

 
 
 

Fig. 19. Comparision between the standard deviation of the solution found by GA1, GA2, 
GA3, GA4, GA5, GA6 on all the problem instance (20 instances) 

 

0
2

4
6

8
10
12

14
16

18
20

GA1 GA2 GA3 GA4 GA5 GA6

Algorithm

N
um

be
r o

f i
ns

ta
nc

es

 
 

Fig. 20. Number of instances found best result by GA1, GA2, GA3, GA4, GA5, GA6 on all the 
problem instance (20 instances) 



Heuristic Algorithms for Solving Bounded Diameter Minimum Spanning Tree Problem and Its 
Application to Genetic Algorithm Development 

 

385 

6. Conclusion 
We have introduced the heuristic algorithm for solving BDMST problem, called CBRC. The 
experiment shows that CBRC have best result than the other known heuristic algorithm for 
solving BDMST prolem on Euclidean instances. The best solution found by the genetic 
algorithm which uses best heuristic algorithm or only one heuristic algorithm for 
initialization the population is not better than the best solution found by the genetic 
algorithm which uses mixed heuristic algorithms (randomized heuristic algorithm and 
greddy randomized heuristic algorithm). The solution found by the genetic algorithm which 
uses mixed heuristic algorithm for initialization always is the best result.  

7. References 
M.R. Garey and D.S.Johnson (1979), Computers and Intractability: A Guide to the Theory of 

NP-Completeness.  
K. Raymond (1989), “A Tree-based Algorithm for Distributed Mutual Exclusion”, ACM 

Transactions on Computer Systems, 7 (1), 1989, pp. 61-77. 
K. Bala, K. Petropoulos (1993), and T. E. Stern, “Multicasting in a linear Lightwave 

Network”, in Proceedings of IEEE INFOCOM’93, 1993, pp. 1350–1358 
C.C. Palmer and A. Kershenbaum (1994), “Representing Trees in Genetic Algorithms”, in 

Proceedings of The First IEEE Conference on Evolutionary Computation, pp. 379-
384 

N.R.Achuthan, L.Caccetta, P.Caccetta, and A. Geelen (1994), “Computational Methods for 
the Diameter Restricted Minimum Weight Spanning Tree Problem”, Australian 
Journal of Combinatorics, 10, pp.51-71. 

NA. Bookstein and S. T. Klein (1996), « Compression of Correlated Bit-Vectors”, Information 
Systems, 16 (4), pp. 387-400. 

G. Kortsarz and D. Peleg (1997), “Approximating Shallow-light Trees”, in Proceedings of the 
8th Symposium on Discrete Algorithms, pp. 103-110. 

A. Abdalla, N. Deo, and P. Gupta (2000), “Random-tree Diameter and the Diameter 
Constrained MST”, in Proceedings of Congress on Numerantium, pp. 161-182. 

J.Gottlieb, B.A.Julstrom, F.Rothlauf, and G.R.Raidl (2001), “Prufer Numbers: A Poor 
Representation of Spanning Trees for Evolutionary Search”, in Proceedings of the 
Genetic and Evolutionary Computation Conference (GECCO’2001). 

A. Abdalla (2001), “Computing a Diameter-constrained Minimum Spanning Tree”, PhD 
Dissertation,  The School of Electrical Engineering and Computer Science, 
University of Central Florida. 

G.R. Raidl and B.A. Julstrom (2003), “Edge-sets: An Effective Evolutionary Coding of 
Spanning Trees”, IEEE Transactions on Evolutionary Computation, 7, pp.225-239. 

G.R. Raidl and B.A. Julstrom, (2003) “Greedy Heuristics and an Evolutionary Algorithm for 
the Bounded-Diameter Minimum Spanning Tree Problem”, in Proceeding of the 
ACM Symposium on Applied Computing, pp. 747-752. 

B.A. Julstrom, G.R. Raidl (2003), “A Permutation Coded Evolutionary for the Bounded 
Diameter Minimum Spanning Tree Problem, in Proceedings of the Genetic and 
Evolutionary Computation Conference (GECCO’2003), pp.2-7. 



 Advances in Greedy Algorithms 

 

386 

B.A. Julstrom (2004), “Encoding Bounded Diameter Minimum Spanning Trees with 
Permutations and Random Keys”, in Proceedings of Genetic and Evolutionary 
Computational Conference (GECCO’2004). 

L Gouveia, T.L. Magnanti and C. Requejo (2004), “A 2-Path Approach for Odd Diameter 
Constrained Minimum Spanning and Steiner Trees”, Network, 44 (4), pp. 254-265. 

M. Gruber and G.R. Raidl (2005), “A New 0-1 ILP Approach for the Bounded Diameter 
Minimum Spanning Tree Problem, in Proceedings of the 2nd International 
Network Optimization Conference. 

M. Gruber and G.R. Raidl (2005), “Variable Neighbourhood Search for the Bounded 
Diameter Minimum Spanning Tree Problem, in Proceedings of the 18th Mini Euro 
Conference on Variable Neighborhood Search, Spain. 

M. Gruber, J. Hemert, and G.R. Raidl (2006), “Neighbourhood Searches for the Bounded 
Diameter Minimum Spanning Tree Problem Embedded in a VNS, EA and ACO”, 
in Proceedings of Genetic and Evolutionary Computational Conference 
(GECCO’2006). 

F. Rothlauf (2006), Representations for Genetic and Evolutionary Algorithms, 2nd Edition, 
Springer-Verlag. 

Nguyen Duc Nghia and Huynh Thi Thanh Binh (2007), “A New Recombination Operator 
for Solving Bouded Diameter Minimum Spanning Tree Problem”, in Proceedings of 
RIVF’2007, LNCS. 

A. Singh and A.K. Gupta (2007), “An Impoved Heuristic for the Bounded Diameter 
Minimum Spanning Tree Problem, Journal of Soft Computing, 11, pp. 911-921. 

G. Kortsarz and D. Peleg (1999), ”Approximating the Weight of Shallow Steiner Trees”, 
Discrete Application Mathematics, 93, 1999, pp.  265-285. 

R. Prim (1957), “Shortest Connection Networks and Some Generalization”, Bell System 
Technical Journal, 36, pp. 1389-1401. 

Huynh Thi Thanh Binh, Nguyen Xuan Hoai, R.I Ian McKay (2008a), “A New Hybrid 
Genetic Algorithm for Solving the Bounded Diameter Minimum Spanning Tree 
Problem”, Proceedings of IEEE World Congress on Computational Intelligence, 
Hong Kong, LNCS 

Huynh Thi Thanh Binh, Nguyen Xuan Hoai, R.I  Ian McKay, Nguyen Duc Nghia (2008b), 
“A new heuristic for the bouded diameter minimum spanning tree problem : some 
preliminary results”, Conference on Artificial Intelligence PRICAI 2008, submitted 



21 

Opportunistic Scheduling for Next Generation 
Wireless Local Area Networks 

Ertuğrul Necdet Çiftçioğlu1 and Özgür Gürbüz2  
1The Pennsylvania State University,  

2Sabancı University,  
1USA, 

2Turkey 

1. Introduction 
Wireless access has been increasingly popular recently due to portability and low cost of 
wireless terminals and equipment. The emerging technologies for wireless local area 
networks (WLANs) are defined by the IEEE 802.11n standard, where physical layer data 
rates exceeding 200 Mbps are provisioned with multiple input multiple output antenna 
techniques. However, actual throughput to be experienced by WLAN users is considerably 
lower than the provided physical layer data rates, despite the link efficiency is enhanced via 
the frame aggregation concept of 802.11n.  
In a multi user communication system, scheduling is the mechanism that determines which 
user should transmit/receive data in a given time interval. Opportunistic scheduling 
algorithms maximize system throughput by making use of the channel variations and multi 
user diversity. The main idea is favouring users that are experiencing the most desirable 
channel conditions at each scheduling instant, i.e. riding the peaks. While maximizing 
capacity, such greedy algorithms may cause some users to experience unacceptable delays and 
unfairness, unless the users are highly mobile. In order to remedy this problem, we combine 
aggregation and opportunistic scheduling approaches to further enhance the throughput of 
next generation WLANs. We argue that aggregation can dramatically change the scheduling 
scenario: A user with a good channel and a long queue may offer a higher throughput than a 
user with better channel conditions but shorter queue. Hence, the statement that always 
selecting the user with the best channel maximizes throughput is not valid anymore.  
In this work, we first present our queue aware scheduling scheme that take into account the 
instantaneous channel capacities and queue sizes simultaneously, named as Aggregate 
Opportunistic Scheduling (AOS). Detailed simulations results indicate that our proposed 
algorithm offers significant gains in total system throughput, by up to 53%, as compared to 
opportunistic schedulers while permitting relatively fair access. We also improve AOS with 
the principle of relayed transmissions and show the improvements of opportunistic 
relaying. Later on, we propose another scheduler, which aims to maximize the network 
throughput over a long time scale. For this purpose, we estimate the statistical evolution of 
queue states and model the 802.11n MAC transmissions using queuing theory by extending 
the bulk service model. Utilizing the outcomes of the queuing model, we design Predictive 
Scheduling with time-domain Waterfilling (P-WF) algorithm. P-WF further improves the 



 Advances in Greedy Algorithms 

 

388 

performance of our queue aware schedulers, as the throughput is maximized by applying 
the water filling solution to time allocations.  
This chapter includes an overview of existing literature on opportunistic scheduling for 
wireless networks in general and presents our proposed algorithms with comparative 
detailed performance analysis as they are applied into the next generation WLANs.  

2. Scheduling approaches for wireless networks 
In a multi user communication system scheduling is an essential feature due to its effect on 
the overall behavior of the network. In this section, we briefly present the prominent 
scheduling disciplines for wireless networks. In this text, the terms user and station are used 
interchangeably. 

2.1 Maximum Rate Scheduling (MRS) algorithm 
Spatially greedy scheduling schemes, often denoted as Maximum Rate Scheduling (MRS) 
exploit variations in the time varying wireless channel. The selection metric is the channel 
capacity, allowing the user with the best channel conditions to transmit at a given time 
instant [Knopp & Humblet, 1995]. In other words, the selected user ki* at the ith  transmission 
opportunity is determined as:  

 * arg max k
i i

k
k C= ,  (1) 

where k
iC denotes the channel capacity of the kth user at the ith transmission opportunity. 

Scheduling users according to the channel state can provide significant performance gain 
due to the independence of fading statistics across users. This phenomenon is called multi 
user diversity. Although MRS method is shown to be optimal for capacity maximization, an 
important issue is unfairness in throughput distribution between the users, since the users 
subject to poor channel conditions may never get a chance to transmit.  

2.2 Proportional Fair Queuing (PFQ) algorithm 
In Proportional Fair Queuing (PFQ) algorithm, the user with the best channel condition 
(capacity) relative to its own average capacity is selected [Jalali et al., 2000]. The main aim of 
PFQ is to maximize throughput while satisfying fair resource allocation. If the users of all 
channels deviate from their mean capacities in similar ways, all users will gain access to the 
medium for similar proportions. Note that, being selected for similar proportions does not 
imply that the users have identical temporal share, since transmission to users with low data 
rates take longer time durations for the same amount of data. In PFQ, the selected user ki* 
can be found as:  

* arg max
k
i

i kk
i

Ck
C

=      (2) 

where k
iC denotes the average channel capacity of the kth user up to the ith transmission 

opportunity. 

2.3 Capacity Queue Scheduler (CQS) 
When the above opportunistic schemes are employed, users with high capacity links tend to 
have small queues, while users subject to poor channel conditions suffer from queue 



Opportunistic Scheduling for Next Generation Wireless Local Area Networks 

 

389 

overflows and long delays. In [Neely et al., 2002], a scheduler is applied which maximizes 
the link rates weighted by queue backlog differentials for each link. In this downlink setting, 
the  queue-weighted rate metric tries to select user ki* as 

 * arg max k k
i i ik

k C Q= ,  (3) 

where k
iQ denotes the queue size of the kth user at the ith transmission opportunity. The 

inclusion of queue length in this scheme provides important insights for fairness. For 
instance, assume initially that the queue sizes are similar for all users, except for one user 
whose channel is superior to others. The user with the best channel will be selected and 
served so its queue size will be reduced; however, in the next scheduling instant, the 
advantage of better channel quality will be alleviated by the smaller queue size, yielding 
transmission to other users. The algorithm guarantees stability whenever the arrival rate 
vector lies within the stability region of the network. 

2.4 Shortest Remaining Processing Time First (SRPT) algorithm 
Another scheduling algorithm that considers queue size together with capacity is Shortest 
Remaining Processing Time First (SRPT) method, where the metric is defined as the amount 
of time it takes to serve all the packets from a given queue [Schrage & Miller, 1966]. Here, 
the scheduler tries to choose the queue, which can be emptied in the shortest amount of 
time, i.e., the selected user ki* at the ith transmission opportunity is determined as: 

 * arg min
k
i

i kk
i

Qk
C

= .  (4)  

2.6 Opportunistic Autorate (OAR) algorithm 
Opportunistic Autorate protocol (OAR) is an opportunistic scheduler which takes into 
account the effect of aggregation, as the users are served in a round-robin fashion [Sadeghi 
et al., 2002]. While serving each user, the number of packets transmitted for the user 
depends on the ratio of the user rate to basic rate, hence operating with larger aggregate 
sizes for users with better channel conditions. It is worthwhile to note that OAR provides 
temporal fairness since the packet transmission times for each user are equal. 

2.7 Longest Queue (LQ) algorithm 
Longest Queue (LQ) algorithm, which is also one of the considered schemes for 802.11n 
[Mujtaba, 2004], is a non-opportunistic scheduling scheme. Using LQ, the scheduler simply 
selects the station with the largest number of packets in its queue and the channel states are 
not taken into account. In LQ, the selected user ki* is found as 

 * arg max k
i ik

k Q=   (5) 

The queues of users which have not been served for a long time duration are likely to be 
long, increasing the scheduling metrics and eventually causing the assocaited user to be 
served. The reasoning behind the LQ algorithm is to maximize the aggregate size for 
maximizing the throughput, with the basic assumption that users are experiencing similar 



 Advances in Greedy Algorithms 

 

390 

channels with equal data rates. However, the channel quality of stations can vary notably 
due to time-varying wireless channel and mobility [Rappaport, 2002]. 
In all of these approaches, the scheduler operates at the physical layer, considering the 
channel quality and/or queue level for the decision of the selected user. Once the user is 
selected, the implicit assumption is that a single physical layer data unit is transmitted and 
the link is fully utilized. With the frame aggregation feature of 802.11n, a number of packets 
are combined before transmission, so that WLAN overhead is reduced and link efficiency is 
improved [Tinnirello & Choi, 2005], [Liu & Stephens, 2005]. However, with aggregation, the 
advantages of opportunism and the statement that selecting the user with the highest 
channel capacity maximizes the throughput is not valid anymore. For instance, the MRS 
algorithm with frame aggregation may starve since specific stations are to be served more 
frequently, their queues will be drained, causing their aggregate sizes to be small, resulting 
in low efficiency and throughput. Algorithms such as SRPT favour users with high capacity 
and small queue sizes, which is even worse with frame aggregation causing low 
throughput. OAR considers frame aggregation and provides temporal fairness, but does not 
aim throughput maximization. When aggregation is employed, a user with a fair channel 
and long queue may result in a much higher throughput than a user with a high capacity 
channel but small queue size. In this work, we study all of the aforementioned algorithms 
with frame aggregation in the setting of next generation IEEE 802.11n WLANs. We also 
propose new scheduling algorithms that aim to enhance the performance and fill the 
performance gap between available and observed data rates by jointly considering channel 
and queue states of users via throughput calculations.  

3. System model 
We consider the downlink of a Multiple Input Multiple Output (MIMO) [Telatar, 1999] 
wireless cellular system that consists of a single access point (AP) communicating with 
multiple WLAN clients (Figure 1). The system is a closed-loop MIMO OFDM system such that 
the mobile users measure their channel states and send them as feedback to the AP. Based on 
the channel state, link capacities are calculated and 802.11n data rates are assigned at the AP 
according to available capacity1. The properties of the fading wireless channel are modeled in 
the channel matrix H, considering large-scale path loss, shadowing and small scale multi-path 
fading affects. In this paper, the log distance path loss model and the Channel B fading 
channel model defined by the Task Group n (TGn) are considered. The fading characteristics 
between individual antenna pairs are spatially correlated and the correlation matrices depend 
on the angular spread. Further details of the channel model can be found in [Erceg et al., 2004]. 
Due to low speeds of WLAN users, coherence time is large enough so that channel fading is 
slow, i.e. the channel is assumed stationary within one transmission opportunity.  

                                                 
1 In MIMO-OFDM based systems, the channel capacity is calculated by partitioning the 
system into multiple sub-channels that correspond to different sub-carriers as follows 
[Bolcskei et al., 2002]: C= 1 2 2

2
0

log (det( ( ) ( )))
c

c c

c

k kN j j
N NH

MN
kc

B e e
N

π π
ρ

−

=

+∑ I H H ,   with 2( )je πθH = 1
2

0

L
j l

l
l

e π θ
−

−

=
∑H  

(Nc: Number of subcarriers). The capacity calculation here considers the air interface 
specified in 802.11n draft standard. However, the scheduling algorithms can be applied to 
any other air interface with appropriate capacity calculations.  



Opportunistic Scheduling for Next Generation Wireless Local Area Networks 

 

391 

For medium access, we consider a time division system where only one user is served at a 
given time period, limited by a duration called transmission opportunity (TXOP). 
 

 
Fig. 1. A typical 802.11n AP and terminals 

As defined by 802.11n draft standard, within a TXOP, a two-way handshake with frame 
aggregation can be performed as shown in Figure 2 [Mujtaba, 2004]. Initiator Aggregation 
Control (IAC) and Responder Aggregation Control (RAC) are RTS/CTS-like reservation 
messages, which also involve training sequences to help (MIMO) channel estimation and 
data rate selection.  
 

 
Fig. 2. Example aggregate frame transmission 
After IAC/RAC exchange, a number of data packets are aggregated in one frame and an 
acknowledgement is requested in the end via the Block ACK Request (BLAR) packet. The 
destination station replies with a Block ACK (BLACK) packet that contains the reception 
status of packets in the aggregation. The data packets are transmitted at the selected 
transmission rate, while the control packets (IAC, RAC, BLAR and BLACK) are transmitted 
at the basic rate, so that all stations can decode these packets. The inter frame spacing (DIFS, 



 Advances in Greedy Algorithms 

 

392 

SIFS) values are as in the 802.11 specification. At each TXOP, the AP transmits to a station 
selected according to the implemented scheduling algorithm. 

4. Proposed scheduling algorithms for next generation WLANs 
4.1 Aggregate opportunistic scheduling 
Despite the performance enhancing techniques introduced by IEEE 802.11n, namely MIMO 
and frame aggregation, the throughput observed by the system depends on the channel and 
queue states of the selected user, hence scheduling. Our motivation here is that throughput 
can essentially shape scheduling, and we propose Aggregate Opportunistic Scheduling (AOS) 
algorithm [Ciftcioglu & Gurbuz, 2006], where the scheduler tries to maximize the 
instantaneous throughput when the AP is transmitting a number of packets in aggregation 
to a selected user. In other words, for ith TXOP, the AOS scheduler selects a user ki* as 

 * arg max k
i i

k
k S= ,  (6) 

where k
iS  is the throughput calculated for ith TXOP and kth user with the actual system 

overhead and parameters, as shown next. Considering traffic destined to the kth station in 
the ith TXOP, the point-to-point downlink throughput, k

iS , can be calculated as 

 

0 0 0 0

)

.

.(4. 4. 3.
k
i

P

IAC RAC BLACK BLAR P MH
PLCP k

i

k
i

k
i

L L L L A L LT DIFS SIFSr r r r C

S
A L

τ
=

+
⋅

+ + + + + + + +

  (7) 

with Aki being the instantaneous aggregate size to user k at ith TXOP and LP, LIAC, LRAC, 
LBLACK, LBLAR are the length of the data, reservation, ACK and ACK request packets, 
respectively. LMH is the MAC header in bits, TPLCP is duration of physical layer training 
header, τ is the one way propagation delay and DIFS, SIFS are inter frame spacing times 
specified in 802.11 [Mujtaba, 2004]. Finally, r0 is the basic data rate at which control packets 
are transmitted and k

iC  is the instantaneous capacity, i.e., maximum achievable data rate to 
communicate with user k, which depends on the channel state. Instantaneous aggregate size 
is determined as the minimum of the user’s queue size and the maximum allowable 
aggregation size, which is set according to limit of transmission opportunity duration. Here, 
only the downlink traffic is considered, hence there are no collisions and losses are merely 
due to protocol, packet and physical layer overhead.  
Another version of AOS, Aggregate Discrete Opportunistic Scheduling (ADOS) is also 
developed with slight modifications. In ADOS, again the throughput maximizing user is 
selected, but the throughput values are calculated by substituting one of the specified 
transmission rates of 802.11n, k

ir for capacity, k
iC  in throughput calculation in (7). k

ir  is 
selected from the set, dR ={12,24,36,48,72,96,108,144,192,216} Mbps through a rate matching 
mechanism, as defined in [Mujtaba, 2004].  

4.2 Scheduling with relaying 
In this section, we try to take advantage of relaying in our schedulers through increased 
data rates due to reduced path loss. Relaying offers improvements in throughput and range 



Opportunistic Scheduling for Next Generation Wireless Local Area Networks 

 

393 

extension in wireless networks, making use of multihop communication [Boyer et al.,2004], 
[Sreng et al., 2002]. Using intermediate relaying stations enables the communication to be 
carried out through shorter distances where the path loss much is lower as compared to 
direct transmission. The reduced path loss results in range extension or improved reliability 
over the same range, which enables transmitters to use lower transmission powers or using 
higher data rates. 
Our aim is to exploit relaying when it offers throughput enhancement with the information 
available at the AP. For simplicity, we consider only one relaying station. Figure 3 below 
shows the relaying scenario, where the end station is located at df meters from the AP 
operating at data rate rf, and the relay station is located at d1 (operating at data rate, r1). The 
distance between the relay and end stations is d2, and the data rate of the corresponding link 
is r2. Figure 4 depicts our modifcitions to 802.11n transmission sequence so as to allow frame 
aggregation in relaying mode. 
 

 
Fig. 3. Relaying with one relay station. 
 

 
Fig. 4. Frame aggregation with one relay station in IEEE 802.11n. 

In order to implement relaying over the 802.11n protocol, the first IAC packet is modified as 
Relayed IAC (RIAC) by adding fields to the packet which indicate whether relaying is 



 Advances in Greedy Algorithms 

 

394 

required or not and the adddress of the relaying station. The relay station initiates another 
contention-free transmission sequence to the destination. A new transmission sequence will 
not be initiated at the AP unless the Block ACK is received from the end station. The 
principle of relaying structure can also be applied to wireless mesh networks [Bicket et al., 
2005] ,[Navda et al., 2005]   using the IEEE 802.11n interface. 
In order to determine whether relaying is beneficial for transmitting data to an end user or 
not, we compare the transmission durations. Without relaying, the total transmission 
duration to the end station is given by: 

 
0 0 0 0

.4. 4. 3.IAC RAC BLACK BLAR P
PLCP

fr
L L L L A LT T DIFS SIFSdirect r r r rτ= + + + + + + + +   (8) 

 . P

fr
A LToverhead= +   (9) 

When relaying is employed, the resulting transmission duration is found as:   

 
1 2

. .2. P P
r r

A L A LT Trelay overhead= + +   (10) 

Clearly, relaying is beneficial if relaying offers a shorter transmission duration than direct 
transmission, i.e., when Trelay < Tdirect. An alternative approach to determine whether relaying 
is beneficial is to define an equivalent relaying rate.  For this, we decompose equation (10) as 
follows: 

 
1 2

. .P P
r r

A L A LT T Trelay overhead overhead= + + +  ,  (11)  

 
1 2

.
.

1 1
P

P

ToverheadT A L Trelay overheadr r A L
⎛ ⎞

= + + +⎜ ⎟⎜ ⎟
⎝ ⎠

 .  (12) 

Note that the form of (12) is similar to (9) with the total duration as the sum of overhead 
delay and a rate-dependent term multiplied by the aggregated frame size, in bits. We define 
the equivalent relaying rate as  

 
1

1 2 .
1 1

equivalent
i P

Toverheadr
r r A L

−
⎛ ⎞

= + +⎜ ⎟⎜ ⎟
⎝ ⎠

,  (13)  

and rewrite (12) as          

 . P

equivalentr
A LT Trelay overhead= +   (14)  

requivalent not only consists of rate-dependent terms, but it also depends on the aggregate size, 
A which in turn depends on the queue state for the final station. Hence, increasing aggregate 
size increases the equivalent relaying rate.  



Opportunistic Scheduling for Next Generation Wireless Local Area Networks 

 

395 

Considering relaying, the queue aware schedulers have been modified as follows: For each 
destination station, the effective relaying rate, requivalent is calculated using (13) considering 
each possible intermediate station as a relay station. Then, the best relaying station is 
selected as the station which enables the maximum effective relaying rate to the destination 
station. Next, the selected maximum effective relaying rate is compared to the direct rate. If 
relaying rate is larger than direct transmission rate, relaying is to be preferred, hence the 
corresponding metric, ηk of the scheduler (AOS, CQS, LQ etc.) is computed for user k using 
effective relaying rate. If the relaying rate is smaller than direct rate, the metric ηk is 
computed according to direct transmission. In the end, user scheduling is performed by 
selecting the user that maximizes the selection metric according to, * arg max k

k
k η= .  

Typically, relaying will improve the rates of stations with poor channel conditions which are 
located far away from the AP, equivalently increasing their metrics, increasing their chances 
for being served by the AP. As a result, we expect relaying to improve the fairness 
peformance of the schedulers. In addition, since higher effective data rates are used, 
relaying should improve throughput of the non-opportunistic scheduler LQ. For 
opportunistic schedulers, both effective data rates and the proportion of service for users 
with poor channels are expected to increase.  

4.3 Predictive scheduling with time waterfilling  
Selecting the user that maximizes the instantaneous throughput at a specific transmission 
opportunity may lower the throughput in the subsequent transmission opportunities. 
Likewise, increasing the participation of low capacity users can later enable the higher 
capacity users to transmit with larger aggregate sizes and hence result in higher efficiency 
and throughput.  Our aim in this section is to design block scheduling algorithms that 
perform allocation of multiple users, so as to maximize the overall throughput over a long 
term, the duration of which is set as an external parameter. Hence, we propose an algorithm 
where the access privileges and proportions of users are determined based on predicted per 
user aggregate size and throughput values. A queuing model is first developed for 
analyzing packet queueing after transmissions with frame aggregation in 802.11n downlink 
channel and then the outcomes of the queuing model are used to calculate long term 
average aggregate size and average throughput, which are then utilized in designing the 
heuristics of Predictive Scheduling with Time Water-filling (P-WF). 

4.3.1 Queuing formulation 
Here, we devise a queuing model for aggregate frame transmissions of the 802.11n MAC 
by extending the bulk service model in [Kleinrock, 1975]. From this queuing model, we 
compute the state probabilities, where each state corresponds to the number of packets 
included in the bulk that is an aggregate frame. By using the obtained state probabilities, 
we compute the expected aggregate size and throughput per user, and then the long term 
overall system throughput and accordingly design the metrics of the block schedulers. 
Figure 5 shows the bulk service model, where the packets are served collectively in 
groups and incoming packets are enqueued. Packets arrive one by one with an average 
rate, λ packets/second. All of the packets in the queue are served together if the number 
of packets is less than the bulk size, L. If the queue length exceeds L, only the first L 
packets are served.  



 Advances in Greedy Algorithms 

 

396 

 
Fig. 5. Bulk service system 

The bulk service rate, μ, is defined as the rate of serving bulks, which is assumed constant 
for all states [Kleinrock, 1975]. 
The assumption of constant bulk service rate implies that the processing rate in bits per 
second is to be increased proportionally with the bulk size. For transmissions over a wireless 
link, the channel data rate can vary due to variations in channel conditions, but in a given 
rate setting data transmission rate does not change with bulk size. Moreover, in realistic 
aggregate frame transmissions MAC and physical layer overhead should also be taken into 
account in determining the service rates. Therefore, for our queing model of aggregate 
transmission, the service rate μj is variable and is obtained as: 

 

. 1 ,
.( ) .

. ,
.( ) .

P

P MH overhead IFS
j

P

P MH overhead IFS

j L j L
j j L L L r T

L L j L
L L L L L r T

μ

μ
μ

⎧ ⎛ ⎞
⋅ ≤ <⎪ ⎜ ⎟

+ + +⎪ ⎝ ⎠= ⎨
⎛ ⎞⎪ ⋅ ≥⎜ ⎟⎪ + + +⎝ ⎠⎩

bulks/sec  (15) 

where j is the number of packets involved in the aggregation; μ is the rate of serving bulks; 
Loverhead  accounts for the total overhead including PHY ad MAC headers; TIFS  is the sum of 
interframe durations; r is the channel data rate determined according to the channel 
conditions which vary over time due to fading. 
Assuming Poisson packet arrivals, i.e., exponential inter arrival times, helps us to model the 
queuing system in terms of a Markov chain, due to the memoryless property of exponential 
distribution [Kleinrock, 1975]. Although Poisson distribution may exactly model the data 
traffic applications, it provides an adequate reference for comparing the evolution of 
different user queues in the AP, hence a relative performance can be obtained for scheduling 
purposes. Similar assumptions have been made in previous work on modeling WLAN 
traffic [Bianchi, 2000] as well as scheduler design [Zafer & Modiano, 2005]. Figure 6 depicts 
the Markov chain representation of the queueing model of aggregate frame transmissions, 
defining the state as the number of packets in the queue. Packets arrive at average rate λ, 
and bulks are served at rate μj, given by Eq.(15). 
Using this model, we derive the state probabilities, p1, p2,...,pL, at steady state by solving the 
balance equations: 

 0 1 1 2 2 0
1

... (1 )
L

L L j j
j

p p p p p pλ μ μ μ λ μ
=

= + + + ⇒ = ∑   (16a) 



Opportunistic Scheduling for Next Generation Wireless Local Area Networks 

 

397 

 1( ) 1j j L j L jp p p j Lλ μ μ λ+ −+ = + ≤ ≤   (16b)         

 1( )L j L j L jp p p j Lλ μ μ λ+ −+ = + ≥   (16c) 

Converting the balance equations into the alternative form by taking the z-transform, we 
obtain P(z) in rational form as follows: 

 1
1

[ ( ) ( ) ]

( )
( )

L
L j L jL j L j

j L j L j
j

L L
L L

z z z p

P z
z z

μ μ μ μ
μ μ μ μ

λ λ

λ λ μ μ

+

=
+

− − + + +

=
− + +

∑
i.e.,  (17) 

 
)(
)()(

zD
zNzP =   (18) 

 
Fig. 6. Markov-chain representation of aggregate frame transmission 

The global sum of probabilities should be equal to 1, requiring P(1)=1 to be satisfied. Since 

both  N(1)=0 and D(1)=0, we need to utilize the L’Hospital rule and solve 
1

'( )
lim 1

'( )z

N z

D z→
= . The 

next step is to obtain state probabilities by taking the inverse transform of  P(z). The fact that 
the bulk service rates are state-dependent has caused the order of N(z) to be greater than the 
order of D(z), so P(z) cannot be simplified. We take an alternative approach as follows: 
Similar to the bulk service model solution in [Kleinrock, 1975], out of the (L+1) roots of D(z), 
(L-1) roots are located within the unit circle. Due to the fact that the z-transform of a 
probability distribution is analytical inside the unit circle, P(z) should be bounded, which 
implies that (L-1) zeros of P(z) must also be the roots of the numerator N(z). N(z) must also 
vanish at each of the (L-1) roots of D(z) inside the unit circle. This constraint results in a set 
of (L-1) equations. Including the equation provided by the L’Hospital rule, we obtain L 
equations for probabilities p1, p2, ..., pL, and Eq. (16) provides the solution for p0. The set of 
equations is solved via numerical computations, obtaining the steady-state probabilities of 
the system for all the states up to the aggregation limit L. The expected aggregate size, A , 
and expected throughput, S , are found as the ensemble average, via 

 
1 0

. .(1 )
L L

j j
j j

A j p L p
= =

= + −∑ ∑ ,  (19) 

 
0 0

( ) (1 ) ( )
L L

j j j
j j

S p S A p S L
= =

= + −∑ ∑ ,  (20) 



 Advances in Greedy Algorithms 

 

398 

where S(Aj) is the throughput achieved with aggregate size Aj .  
The queuing model provides us the expected aggregate size and expected throughput for a single 
queue (user) given the service rate and applied load. Considering the multi user scenario 
with time-division multiplexed traffic, the parameters for the queuing model need to be 
modified by taking the temporal access proportions into account. Given the temporal access 
proportion of a user as πn, where πn ∈  [0,1], the effective channel service rate of that user is 
to be computed by scaling its link rate by πn. From Eq. (17), it can be verified that, scaling the 
service rate by πn with a given load level has the same effect as keeping service rate and 
scaling the load level by a factor of 1/πn. Hence, the effective load at the nth user queue is 
obtained as λn/πn, and the bulk service rate μj is found from Eq. (15) as a function of the data 
rate of the served user’s wireless channel (rn) and the aggregate size jn. After computing the 
state probabilities, the expected throughput per user n, 

nS , is obtained as:   

 
, ( )

( )
( ) , ( )

n n

n n
n n

n

n

S L
S f

S L S L

λ λ
π π

π
λ
π

⎧ <⎪⎪= = ⎨
⎪ >
⎪⎩

,  (21) 

where S(L) is the maximum throughput that can be achieved with the maximum allowed 
aggregate size, L. The overall network throughput is obtained as the weighted average of 
the per user throughput values:  

 
1

N

total n n
n

S Sπ
=

=∑ ,  (22) 

with N being the total number of users to be scheduled.  
The calculation of the state probabilities and estimation of queue size and throughput are to 
be implemented the AP. The AP has the per user information of traffic load, channel 
(service) rates and queue states available. Channel states are assumed to be stationary 
within a scheduling duration, as fading is assumed to be slow due to low mobility in indoor 
WLANs.  

4.3.2 Algorithm description 
In order to maximize the total throughput, Stotal obtained in (22) we propose Predictive 
Scheduling with Time-domain Water-filling (P-WF) [Ciftcioglu & Gurbuz, 2007] as a block 
scheduling solution that optimizes temporal access proportions, πn for a given number of 
users, N. The scheduling problem is described as:  

  
1

arg max
n

N

n n
n

S
π

π
=
∑    such that     

1
1

N

n
n

π
=

=∑ .  (23) 

The above problem resembles the power allocation problem among users or multiple 
transmit antennas for maximizing capacity of multi user or multi antenna fading channels, 
solved by water-filling. In a water filling problem in general, the aim is to maximize the 
weighted average of a quantity in the form: 



Opportunistic Scheduling for Next Generation Wireless Local Area Networks 

 

399 

 
1

max ( )
N

n n
n

xβ γ
=

+∑  with the constraint 
1

1
N

n
n

x
=

=∑ .  (24) 

The solution for (x1 ,x2, ... xN) is given as [Cover & Thomas, 1991]: 

 ( ) , 1,...,opt
n

n

x n Nβζ
γ += − = ,  (25) 

where (θ)+ denotes max(θ,0). For the power allocation problem, the solution, xnopt is the 
optimal transmission power level for each channel n with SNR value γn and the power cut-
off value, ζ is a function of receiver’s acceptable threshold SNR. We exploit the mathematical 
analogy between equations (23) and (24), where power level is analogous to temporal access 
proportion. Then, we apply the concept of waterfilling for determining the time proportions 
πn that maximize Stotal and we name this method as time-domain waterfilling. In order to 
achieve a full analogy between the equation pairs, we add a constant into the summation 
term on the left in Eq. (23) and obtain: 

 
1

' ( )
N

nn
n

S Sβ π
=

= +∑ .  (26) 

Maximizing S’ is equivalent to maximizing Stotal, so the waterfilling solution is found as: 

 
n

nS
βπ ς

+

⎛ ⎞= −⎜ ⎟
⎝ ⎠

, n=1, ..., N  (27) 

Unlike traditional waterfilling, the solution cannot be computed directly due to the coupling 
between the waterfilling terms, 

nS  and πn. At this point, we propose the following heuristic 
algorithm to find best πn values: 
1. Initialize all temporal proportions equally, as 0

nπ =1/N for n=1...N. 
2. For iteration i,  

•  Compute the effective load values, 
0

i n

n i

n

λ
λ

π
= , for each user, n∀ . 

•  Calculate the per user average aggeragate size, ( )i i
nA λ  and per user throughput, 

( )i i
nS λ  from the analytical model. 

•  Find access proportions from water filling solution as 1

( )
i

n i i

n
S

β
π ς

λ

+

+

= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

also 

solving for cut off value, ζ using 
0

1
( )

N

i i
i n

S

β
ς

λ=
+

− =
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ . Initially, all of the access 

proportions are assumed to be greater than zero, and cut off is obtained as: 

0

1 1
( )

N

i i
i nN N S

βς
λ=

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑ . If 

( )i i
nS

β ς
λ

>  is satisfied for all users, the iteration is 

completed. Otherwise, cutoff is calculated by eliminating users with low 
throughput, until the number of users surpassing ζ is consistent with the number of 
terms in the summation. 



 Advances in Greedy Algorithms 

 

400 

Step 2 with its sub steps is repeated until, after a finite number of iterations, the access 
proportions (πns) converge. The resulting proportions indicate optimal transmission 
durations of the users relative to the total transmission sequence in which scheduling is 
applied. Users below the threshold ratio are not served, similar to waterfilling schemes for 
power allocation, where poor channels are not allowed to transmit when their Signal to 
Noise Ratio (SNR) fall below the cutoff value. 
Having determined the temporal access proportions, next, we need to determine the 
sequence of transmissions for the selected active users. For this purpose we use an approach 
that is similar to calculation of finish tags in fluid fair queuing [Leon Garcia & Widjaja, 
2004]. Each active user is assigned a turn number, which indicates the number of times the 
user will be given access throughout the total scheduling duration. The turn number, tn for 
user n is determined in two steps: First, the ratio of the access proportion of the user to the 
transmission duration of serving that user is calculated, then all calculated turn numbers are 
scaled with respect to the minimum turn number. In other words,  

 
* *
n n

n
n n P n overhead

t  =  =   
T  (( A .L )/ r  + T )  
π π ,  (28)   

 
*

** *
1 2

0
1 2

' min , ,..., ,Active

n
Active

N

N

t
T T Tπ

ππ π
>

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

1 2
1 2, ,...,

' ' '
Active

Active

N
N

tt tt t t
t t t

= = =   (29) 

where Tn is the transmission duration of serving user n, 
nA  is the average aggeragate size 

calculated from the queuing model for user n, Toverhead refers to the sum of all the overhead 
terms in Eq. (7). The optimal solution can yield some of the users with a zero access 
proportion, so Nactive is the total number of users with a non-zero access proportion. The 
transmissions of those active users are scheduled in ascending order of their turn numbers. 
This ordering makes sure that the users with the smaller access proportions get their 
allocation before the others. 

5. Performance evaluation 
5.1 Performance of scheduling algorithms 
In this section, the performance of proposed Aggregate Opportunistic Scheduling (AOS and 
ADOS) and Predictive Block Scheduling with Time-Waterfilling (P-WF) schemes are evaluated 
in comparison to the scheduling disciplines from the literature namely LQ [Mujtaba, 2004], 
MRS [Knopp & Humblet, 1995], PFQ [Jalali et al., 2000], CQS [Neely et al., 2002], SRPT 
[Schrage & Miller, 1966] and OAR2 [Sadeghi et al., 2002]. The simulations are carried out in 
the OPNET simulation environment, modeling the wireless channel, physical layer 
parameters, 802.11 MAC layer with 802.11n enhancements and the scheduling algorithms. 
For the wireless channel, the log-normal path loss model is simulated with path loss 
exponent of 2 and log-normal shadowing deviation of 3 dB within a distance of 5 meters 

                                                 
2 The OAR algorithm defines the aggregate size as the ratio of the data rate of the station 
over basic rate. Here, we have considered two versions of OAR, where the algorithm is 
applied with a basic rate of 12 Mbps (OAR-12) and with a basic rate of 24 Mbps (OAR-24). 



Opportunistic Scheduling for Next Generation Wireless Local Area Networks 

 

401 

from the transmitter, and path loss exponent of 3.5 and shadowing variation of 5 dB for 
distances larger than 5 meters. For the fading model, the Channel B model developed for 
small office environments and non line-of-sight conditions by TGnSync group is 
implemented with an rms delay spread of 15 ns and Doppler frequency of 5 Hz. In the 
physical layer, a practical, 2x2 MIMO configuration is assumed. OFDM parameters such as 
guard interval, number of subcarriers etc., are chosen according to the 802.11n specifications 
in [Mujtaba, 2004]. Further details of the MIMO channel can be found in [Erceg et al., 2004]. 
IEEE 802.11n data rates are adaptively selected from the set {24, 36, 48, 72, 96, 108, 144, 192, 
216} Mbps according to the instantaneous channel conditions as explained in [Mujtaba, 
2004], [Erceg et al., 2004]. The basic rate, i.e. the common rate for control packet transmission 
is selected as 24 Mbps. Finally, some of the MAC related parameters of the simulation model 
are given in Table I. The maximum number of packets allowed in frame aggregation, L, is 
assumed as 63. The downlink traffic is modeled by fixed size (1024 bytes) packets that arrive 
due to the Poisson distribution. Similar load level is assumed for all stations and increased 
until the network is brought to saturation. Random topologies are simulated with an AP in 
the middle and 12 stations uniformly distributed within a radius of 25 m. 
In Figure 7 the effect of aggregation on scheduling is illustrated by comparing the 
throughput of three existing scheduling algorithms MRS, PFQ and LQ. Without frame 
aggregation, MRS shows the best performance, since the users with the better channel 
conditions are selected, providing the highest throughput. When frame aggregation is 
applied however, MRS shows the poorest performance, while LQ has the highest 
throughput. This is because of the fact that in MRS, the users with better channel capacities 
are served frequently so their queues do not fill up, resulting in small aggregate size and 
low throughput. With frame aggregation, the simplest queue aware scheduling scheme, LQ 
leverages the advantage of frame aggregation. 
 

Parameter Value 
SIFS      16 μ sec= 16 X 10-6 sec. 
DIFS      34 μ sec= 34 X 10-6 sec. 
PLCP overhead   44.8 μ sec= 448 X 10-7 sec. 
TIAC  11.2 μ sec = 112 X 10-7 sec. 
TRAC    8.7 μ sec = 87 X 10-7 sec. 
TBLACK  48.7 μ sec = 487 X 10-7 sec. 
TBLAR       9 μ sec = 90 X 10-7 sec. 

Table 1. Some MAC Related Parameters 

In the following, we provide the performance analysis when frame aggregation is applied, 
considering our proposed queue aware throughput opportunistic schedulers AOS, ADOS 
and P-WF in comparison to existing algorithms LQ, MRS, PFQ, CQS, SRPT and OAR. 
As depicted in Figure 8, where simulations are repeated with different topologies and the 
presented results are average values over ten topologies, proposed algorithms AOS and 
ADOS significantly outperform all the existing algorithms, e.g., by 53 % over SRPT, by 35 % 
over MRS, PFQ and by 21% over LQ, as they both maximize the instantaneous throughput. 
Our predictive block scheduler P-WF provides a further improvement of 4-5% over 
 



 Advances in Greedy Algorithms 

 

402 

 
Fig. 7. Throughput of existing schedulers with and without frame aggregation 
AOS/ADOS schemes, since it maximizes the throughput in the long term. Among the 
previous schemes, the CQS algorithm provides the highest throughput. This is followed by 
OAR and MRS algorithms and the SRPT algorithm exhibits the lowest throughput. In 
summary, proposed algorithms AOS, ADOS and P-WF provides the highest throughput as 
they possesses the most explicit insight about the system behavior, considering the effects of 
the physical medium, MAC efficiency and queue states jointly. It is worthwhile to note that 
throughput performance of ADOS is close to AOS, implying that the algorithm can be 
applied after rate matching. 

60 80 100 120 140 160 180 200
40

50

60

70

80

90

100

110

120

Load(Mbps)

Th
ro

ug
hp

ut
(M

bp
s)

 

 
P-WF
AOS
ADOS
CQS
OAR-12
OAR-24
MRS
PFQ
SRPT
LQ

 
Fig. 8. Throughput of proposed and existing schedulers with frame aggregation 



Opportunistic Scheduling for Next Generation Wireless Local Area Networks 

 

403 

In order to evaluate fairness, we define an unfairness index as the ratio of the standard 
deviation of station throughputs to the mean throughput, i.e., UF = σ / Sav. It is obvious that 
the larger UF gets, the distribution of throughput among stations becomes more unfair. 
Using the definition of this unfairness index, a picture of the fairness performance of all 
algorithms under varying load has been obtained as depicted in Figure 9. SRPT and MRS 
algorithms show the poorest performance in terms of fairness, since they aggressively 
favour users with high channel capacities. The LQ algorithm is the fairest scheme as it 
operates like the round robin scheme providing equal access to each station. The CQS 
algorithm follows the LQ algorithm. 

50 100 150 200
0

0.5

1

1.5

Load(Mbps)

U
nf

ai
rn

es
s 

In
de

x

 

 
P-WF
AOS
ADOS
CQS
OAR-12
OAR-24
MRS
PFQ
SRPT
LQ

 
Fig. 9. Fairness performance under varying load 

Fairness of our proposed algorithms remain between CQS and MRS. AOS is the most unfair 
among proposed schemes, since instantaneous throughput is maximized, in an 
opportunistic fashion. The ADOS algorithm offers slightly more fair distribution than AOS, 
due to the fact that quantized data rates results in increased emphasis on queue sizes, 
enhancing fairness. Our predictive block scheduler P-WF improves fairness further, since it 
considers allocation of multiple users to maximize the long term throughput.  
Finally, Figure 10 depicts the MAC efficency of each scheduler, where the actual throughput 
and time averaged data rates are plotted together as a function of load, again averaged over 
ten toplogies. LQ and CQS algorithms operate with highest eficiencies, where the average 
throughput is close to average of physical data rates. SRPT and MRS are the most inefficient 
schemes, since the achieved throughput levels half or less than half of the average of 
selected user data rates, which are considerably high. 
All our proposed algorithms provide a very good compromise between selected physical 
layer data rates and efficiency and our predictive block scheduler, P-WF provides the 
highest throughput with highest efficiency due to the main objective of long term 
throughput maximization. 



 Advances in Greedy Algorithms 

 

404 

60 80 100 120 140 160 180 200

0.4

0.5

0.6

0.7

0.8

0.9

1

Load(Mbps)

Th
ro

ug
hp

ut
(M

bp
s)

/D
at

a 
R

at
e(

M
bp

s)

 

 
P-WF
AOS
ADOS
CQS
OAR-12
OAR-24
MRS
PFQ
SRPT
LQ

 
Fig. 10. Average utilization performance 

5.2 Performance with relaying 
In this section we analyze the effect of incorporating relaying with opportunistic scheduling 
and frame aggregation. Distances between the AP and destination stations, the AP and 
intermediate stations, and intermediate stations to destination stations define the respective 
data rates to be supported in between, so we analyzed relaying by varying the distances 
between the stations. Before presenting the results, we first demonstrate how the average 
supported data rates vary by the distance.  
In Figure 11, for illustration purposes, we present the average physical data rates achieved 
for varying distances considering direct transmission and relaying (considering a relay in 
the middle), neglecting overhead terms. Relaying does not offer improvement for short 
distances since the maximum data rates are already realized by transmitting over one hop. 
On the other hand, as distance is increased, the direct transmission rate reduces significantly 
and improvement of relaying can be observed.  
In our next set of simulations we have considered topologies as shown in an example 
configuration in Figure 12 and we have varied the inner radius, d1 and outer radius, d2 
together, while keeping d2/ d1 = 2. In the figure we show the variation of d1 only, but the 
network radius, d2 is also varied to keep the same ratio. Accordingly, both the good and bad 
positioned stations are effected in a similar manner in terms of the increasing or decreasing 
of supported data rates. Yet, the fact that they both increase or decrease does not imply that 
their ratio remains fixed, hence the probability of opting for relaying is expected to differ 
with varying distance. We again consider a network with 12 stations and one AP. The total 
load is set as 200 Mbps, which is evenly distributed between the stations. The algorithms 
AOS, CQS and LQ are compared with their counterparts aided by relaying. As explained in 
Section 4, the schedulers are applied using the equivalent relaying rate given by Eq. (13) for 
a user  if it exceeds the rate of direct transmission for that user. The basic rate is selected as 
12 Mbps. 



Opportunistic Scheduling for Next Generation Wireless Local Area Networks 

 

405 

 

 
 

Fig. 11 Comparison of data rates for direct and two-hop neglecing overhead 

 

 
 

Fig. 12 Relaying topology d2/d1 =2  



 Advances in Greedy Algorithms 

 

406 

As depicted in Figure 13, without relaying, the total throughput is decreased as the network 
radius is increased, since the supported data rates are likely to decrease for all stations. 
When the radius is small, the algorithms perform very similarly, since the topology is close 
to a uniform topology. However, the effect of distance on total throughput largely depends 
on the scheduling algorithm used. As the network radius is increased, AOS and CQS 
outperform LQ since better positioned stations are preferred more frequently. LQ yields 
very low throughputs, for the algorithm cannot avoid transmitting to the farther stations, 
even if the supported data rates are very low. This result is due to the fact that although LQ 
serves each user equally in terms of amount of data, the actual temporal shares of the users 
are significantly different. Users with very low transmission rates are served for a very long 
duration, reducing total network throughput drastically. 

 

6 8 10 12 14 16 18 20 22 24 26
10

20

30

40

50

60

70

80

90

100

110

d1(m)

Th
ro

ug
hp

ut
(M

bp
s)

 

 

AOS-Rel
CQS-Rel
LQS-Rel
AOS
CQS
LQ

 
 

Fig. 13 Throughput with both inner and outer radius varying 
As shown in Figure 13, with relaying, the performance of the LQ algorithm is significantly 
improved. This is because the effective service rates of the farther stations are increased, 
leading to an increase in throughput. For this setting, we observe that the behavior and 
performance of the AOS algoritm is not drastically effected by relaying: Initially, all users 
are supported with high rates and no relaying is selected. When network radius is 
increased, we see that relaying is employed since direct user rates are reduced, and 
relaying offers advantage for farther stations. However, as the distance is further 
increased, the inner stations start to be scheduled more since their queues grow, resulting 
in larger scheduler metrics than the farther stations. Therefore, in AOS, relaying is not 
exploited at all for large distances. The behaviour of the CQS algorithm is different than 
both LQ and AOS. With CQS, initially relaying offers an improvement for throughput, but 
afterwards as the network radius is increased, the increase in the relative proportion of 



Opportunistic Scheduling for Next Generation Wireless Local Area Networks 

 

407 

outer stations being selected results in an overall decrease in the throughput. Therefore, 
the frequency of employing relaying in CQS is not as high as LQ, but is still much higher 
compared with AOS. 
In Figure 14 the unfairness index is plotted as a function of the distance. We see that 
relaying yields an increase in the capacity and enables the outer stations to gain access 
without growing their queue sizes (as much as the direct case), since their related 
scheduling metrics are increased. For AOS, fairness is slightly improved when relaying is 
employed, since the outer users are selected more frequently. For the CQS algorithm, we see 
that relaying significantly improves fairness preformance since it yields increase in the 
capacity terms of outer stations in the scheduling metric, enabling the outer stations to gain 
access without having to grow their queue sizes. 

 

6 8 10 12 14 16 18 20 22 24 26
0

0.5

1

1.5

d1(m)

U
nf

ai
rn

es
s 

In
de

x

 

 

AOS-Rel
CQS-Rel
LQS-Rel
AOS
CQS
LQ

 
 

Fig. 14. Unfairness with both inner and outer radius varying 

In essence, applying relaying for IEEE 802.11n improves throughput, fairness or even both 
simultanesously, yet the extent of improvement for opportunistic schedulers is limited by 
the fact that schedulers tend to give priority to users already with relatively good channel 
conditions.  

6. Conclusions  
In this work, we propose a family of scheduling algorithms for IEEE 802.11n, where  
scheduling decisions are based on throughput, calculated instantaously or considering the 
long term evolution of user queues. We provide a performance comparison of our 
schemes with all outstanding algorithms from the literature considering all in the same air 
interface.  



 Advances in Greedy Algorithms 

 

408 

We show that with frame aggregation, spatially greedy scheduling algortihms such as 
MRS are no longer optimal for maximizing throughput performance. Even though these 
algorithms yield the maximum physical data rates and they would have provided the 
highest throughput values in an infinitely backlogged setting if there were no overhead, 
they all fail considerably under the 802.11n model. This is because of the fact that the 
observed throughput higly depends on the transmission duration as well as the overhead, 
especially in WLAN systems which provides improved, 802.11n rates.  
Our proposed AOS and ADOS algorithms improve the throughput of such greedy 
opportunistic scheems, by up to 53% when aggregation is applied. Our block scheduling 
algorithm P-WF further improves the performance, since the statistical evolution of the 
queue states are considered and hence the average aggregate size and the throughput are 
predicted in the long term, justifying the concept that selecting the user which maximizes 
the instantaneous scheduling metric may not provide maximum performance throughout 
the entire time duration. This algorithm offers temporal shares of access, in addition to 
scheduling order, with allocations that provide maximized long term throughput while at 
the same time providing better fairness. When throughput and fairness performance are 
considered together, our predictive block scheduler, P-WF stands out as the best scheduling 
scheme that provides the highest throughput without fairness penalty. 
Applying the concept of relaying is slightly differentiated from convential relaying due to 
overhead. We have shown that for networks which have users located far away from the 
AP, relaying improves either throughput or fairness or both. Our queue aware scheduler 
AOS is not improved through relaying in terms of throughput as much as non-opportunsitic 
schedulers since poor channel users are not selected frequently, but yet the performance is 
enhanced. 
The practical implementation of our scheduling algorithms requires monitoring of the load 
at each user queue and the channel conditions. Hence, scheduling decisions can adapt to 
varying channel and traffic conditions as long as channel state information and queue states 
can be easily, continuously observed.  

7. References 
Bianchi, G. (2000) . Performance analysis of the IEEE 802.11 distributed coordination 

function. IEEE Journal Selected Areas in Communications, 18,3, March 2000, 535 – 
547. 

Bicket, J.; Aguayo, D. ;Biswas, S. & Morris, R. (2005) Architecture and Evaluation of an 
Unplanned 802.11b Mesh Network. MobiCom’05, Cologne, Germany, August 
2005 

Bolcskei, H.; Gesbert, D. & Paulraj, A. J. (2002). On the Capacity of OFDM-Based Spatial 
Multiplexing Systems. IEEE Transactions on Communications, 50, 2, February 2002, 
225-234. 

Boyer, J.;Falconer, D.D. & Yanikomeroglu, H., (2004). Multihop diversity in wireless 
relaying Channels. IEEE Transactions on Communications, 52, 10, October 2004, 
1820-1830. 



Opportunistic Scheduling for Next Generation Wireless Local Area Networks 

 

409 

Ciftcioglu, E.N. & Gurbuz, O. (2006). Opportunistic Scheduling with Frame Aggregation for 
Next Generation Wireless LANs. IEEE International Conference on Communications  
(ICC) 2006, pp. 5228-5233, Istanbul, Turkey, June 2006. 

Ciftcioglu, E.N. & Gurbuz, O. (2007). Access Scheduling Based on Time Water-Filling for 
Next Generation Wireless LANs. IEEE Vechicular Technology Conference (VTC)  
Spring 2007, pp.2966-2970, Dublin, Ireland, April 2007. 

Cover, T.M. & Thomas, J.A. (1991). Elements of Information Theory. Wiley, New York. 
Erceg, V. et al. (2004). TGn Channel Models. IEEE 802.11 - 03/940r4, May 2004. 
Jalali, A.; Padovani, R. & Pankaj, R. (2000). Data Throughput of CDMA-HDR: A High 

Efficiency-High Data Rate  Personal Communication Wireless System. Proceedings 
of IEEE Vehicular Technology Conference (VTC) Spring 2000, pp. 1854-1858, Tokyo, 
Japan, May 2000.  

Kleinrock, L. (1975) Queuing Systems, Volume I: Theory. Wiley-Interscience, New York. 
Knopp, R. & Humblet, P. (1995). Information capacity and Power Control in Single Cell 

Multi-user Communications. Proceedings of IEEEInternational Conference on 
Communications (ICC) 1995, pp. 331-335, Seattle, USA. June 1995. 

Leon Garcia, A. & Widjaja, I. (2004) Communication Networks: Fundamental Concepts    and Key  
Architectures.  Second Edition, McGraw Hill. 

Liu, C. & Stephens, A. P. (2005). An analytic model for infrastructure WLAN capacity with 
bidirectional frame aggregation. IEEE Wireless Communications and Networking 
Conference (WCNC) 2005, pp. 113-119, New Orleans,, USA, March 2005. 

Mujtaba, S.A. (2004). TGn Sync Proposal Technical Specification 3.  TGn Sync Technical 
Proposal R00, August 13, 2004.   

Navda, V.; Kashyap, A.  & Das, S. R. (2005) Design and Evaluation of iMesh: an 
Infrastructure-mode Wireless Mesh Network. IEEE Symposium on a World of 
Wireless, Mobile ans Multimedia(WOWMOM), pp. 164-170, Taormina,  Italy, June 
2005. 

Neely, M.; Modiano, E. & Rohrs, C.(2002) .Power and server allocation in a multi-beam 
satellite with time varying channels,” Proceedings of  IEEE Infocom 2002, pp. 1451–
1460. New York, USA, June 2002. 

Rappaport, T.S. (2002). Wireless Communications: Principles and Practice, Second Edition, 
Prentice Hall, Upper Saddle River, NJ. 

Sadeghi, B.; Kanodia, V.; Sabharwal, A. & Knightly, E. (2002). Opportunistic Media Access 
for Multirate Ad Hoc Networks. Proceedings of ACM MOBICOM 2002, 24-35, 
Atlanta, USA, September 2002. 

Schrage, L.E. & Miller, L.W. (1966), The queue M/G/1 with the shortest remaining 
processing time discipline. Operations Research,14, August 1966, 670-684. 

Sreng, V.; Yanikomeroglu, H., & Falconer, D.D. (2002). Coverage enhancement through 
two-hop relaying in cellular  radio systems. IEEE Wireless Communications and   
Networking Conference(WCNC) 2002, pp. 881-885, Orlando, USA, March 2002.  

Telatar, I. E. (1999). Capacity of multi-antenna Gaussian Channels. European Transactions on 
Telecommunications, 10, 6, November 1999, 585-595. 



 Advances in Greedy Algorithms 

 

410 

Tinnirello, I. & Choi, S. (2005). Efficiency Analysis of Burst Transmissions with Block ACK in 
Contention-Based 802.11e WLANs. Proceedings of IEEE International Conference on   
Communications(ICC) 2005, pp. 3455-3460, Seoul, Korea, May 2005. 

Zafer, M. & Modiano, E. (2005). A calculus approach to minimum energy transmission 
policies with quality of service guarantees. Proceedings of  IEEE Infocom 2005, pp. 
548-559 , Miami, USA, March 2005 



22 

Parallel Greedy Approximation on Large-Scale 
Combinatorial Auctions 

Naoki Fukuta1 and Takayuki Ito2,3 
1Shizuoka University,  

2Nagoya Institute of Technology 
3Massachusetts Institute of Technology 

1,2Japan 
3United States 

1. Introduction  
Combinatorial auctions (Cramton et al., 2006) are auctions that allow bidders to place bids 
for a set of items. Combinatorial auctions provide suitable mechanisms for efficient 
allocation of resources to self-interested attendees (Cramton et al., 2006). Therefore, many 
works have been done to utilize combinatorial auction mechanisms for efficient resource 
allocation. For example, the FCC tried to employ combinatorial auction mechanisms for 
assigning spectrums to companies (McMillan, 1994).  
On the other hand, efficient resource allocation is also becoming crucial in many computer 
systems that should manage resources efficiently, and combinatorial auction mechanisms 
are suitable for this situation. For example, considering a ubiquitous computing scenario, 
there is typically a limited amount of resources (sensors, devices, etc.) that may not cover all 
needs for all users. Due to certain reasons (physical limitations, privacy, etc.), most of the 
resources cannot be shared with other users. Furthermore, software agents will use two or 
more resources at a time to achieve desirable services for users. Of course, each software 
agent provides services to its own user, and the agent may be self-interested.  
Tremendous research efforts have been done to improve many parts of combinatorial 
auctions. An example is recent efforts for winner determination problem. In general, the 
optimal winner determination problem of a combinatorial auction is NP-hard (Cramton et 
al., 2006) for the number of bids. Thus, much work focuses on tackling the computational 
costs for winner determination (Fujishima et al., 1999); (Cramton et al., 2006); (Sandholm et 
al., 2005). Also many efforts have been done for generic problem solvers that can be applied 
to solve winner determination problems. 
However, in such ubiquitous computing scenarios, there is strong demand for completing 
an auction within a fine-grained time period without loss of allocation efficiency. In a 
ubiquitous computing scenario, the physical location of users may always be changing and 
that could be handled by the system. Also, each user may have multiple goals with different 
contexts, and those contexts are also dynamically changing. Therefore, resources should be 
re-allocated in a certain fine-grained period to keep up with those changes in a timely 
manner. For better usability, the time period of resource reallocation will be 0.1 to several 



 Advances in Greedy Algorithms 

 

412 

seconds depending on services provided there. Otherwise, resources will remain assigned to 
users who no longer need them while other users are waiting for allocation.  
Also, in the above scenarios, it is very important to handle a large number of bids in an 
auction. Consider that if there are 256 resources and 100 agents, and each agent has 200 to 
1000 bids, then there will be 20,000 to 100,000 bids for 256 items in an auction. However, it 
has been difficult to complete such a large-scale combinatorial auction within a very short 
time. Such hard time constraint even prevents algorithms to prepare a rich pre-processing to 
reach optimal results in (not very) short time. 
Since greedy algorithm is so simple, it can be applied to such situations. However, a pure 
greedy algorithm typically provides lower optimality of results that are not satisfiable for 
applications. When we solve this issue, parallel greedy approach can be a good solution for this 
kind of problems. Furthermore, a simple greedy algorithm can be used to enforce results to 
satisfy desirable properties that are very important for both theoretical and practical reasons. 
In this chapter, we describe how greedy algorithms can be effectively used in mechanism 
design, especially, on designing and implementing combinatorial auction mechanisms. 

2. Combinatorial auctions and winner determination problem 
2.1 Mechanism design and combinatorial auctions 
An auction mechanism is an economic mechanism for efficient allocations of items to self-
interested buyers with agreeable prices. When the auction mechanism is truthful, i.e., it 
guarantees incentive compatibility, the mechanism enforces the bidders to locate their bids 
with true valuations. In such auctions, since we have an expectation of obtaining bids with 
true valuations, we can allocate items to buyers efficiently even though some buyers may try 
to cheat the mechanisms out of gaining sufficient incomes from them. For example, Vickrey 
proposed an auction mechanism that has incentive compatibility (Vickrey, 1961). That is a 
basic difference from ordinary resource allocation mechanisms that have implicit 
assumptions of truth-telling attendees. 
Combinatorial auction is an auction mechanism that allows bidders to locate bids for a 
bundle of items rather than single item (Cramton et al., 2006). Combinatorial auction has 
been applied for various resource allocation problems. For example, McMillan et al. 
reported a trial on an FCC spectrum auction (McMillan, 1994). Rassenti et al. reported a 
mechanism for an airport time slot allocation problem (Rassenti et al., 1982). Ball et al. 
discussed applicability of combinatorial auctions to airspace system resource allocations 
(Ball et al., 2006). Caplice et al. proposed a bidding language for optimization of procurement 
on freight transportation services (Caplice et al., 2004). Estelle et al. proposed a formalization 
on auctioning London Bus Routes (Cantillon & Pesendorfer, 2004). Hohner et al. presented an 
experience on procurement auctions at a software company (Hohner et al., 2003). 
However, on emerging applications with such resource allocation problems, their problem 
spaces are larger, more complex, and much harder to solve compared to previously 
proposed applications. For example, Orthogonal Frequency Division Multiple Access 
(OFDMA) technology enables us to use a physically identical frequency bandwidth as 
virtually multiplied channels at the same time, and this causes the channel allocation 
problem to become more difficult (Yang & Manivannan, 2005). Also some recent wireless 
technologies allow us to use multiple channels on the same, or different physical layers (i.e, 
WiFi, WiMax, and Bluetooth at the same time) for attaining both peak speed and robust 
connectivity (Salem et al., 2006); (Niyato and Hossain, 2008). Furthermore, such resource 



Parallel Greedy Approximation on Large-Scale Combinatorial Auctions 

 

413 

allocation should be done for many ordinary users rather than a fixed limited number of 
flights or companies. Also the contexts of users, which are dynamically changing through 
the time, should be considered in the allocation. 
In this chapter, to maintain simplicity of discussion, we focus on utility-based resource 
allocation problems such as (Thomadakis & Liu, 1999), rather than generic resource 
allocation problems with numerous complex constraints. The utility-based resource 
allocation problem is a problem that aims to maximize the sum of utilities of users for each 
allocation period, but does not consider other factors and constraints (i.e., fair allocation 
(Sabrina et al., 2007); (Andrew et al., 2008), security and privacy concerns (Xie & Qin, 2007), 
uncertainty (Xiao et al., 2004), etc). 
Also, throughout this chapter, we only consider auctions that are single-sided, with a single 
seller and multiple buyers to maintain simplicity of discussion. It can be extended to the 
reverse situation with a single buyer and multiple sellers, and the two-sided case. The two-
sided case is known as the combinatorial exchange. In the combinatorial exchange 
mechanisms, multiple sellers and multiple buyers are trading on a single trading 
mechanism. About this mechanism, the process of determining winners is almost the same 
as single-sided combinatorial auctions. However, it is reported that the revenue division 
among sellers can be a problem. There are a lot of interesting studies on combinatorial 
exchange (Parkes et al, 2005).  

2.2 Winner determination problem 
An important issue on combinatorial auction is representation of bids. In this chapter, we 
use OR bid representation(Lehmann et al., 2006), a simplest one in major formalisms. 
On OR bid representation, the winner determination problem on combinatorial auction 
WDPOR is defined as follows (Cramton et al., 2006): The set of bidders is denoted by 
N={1,...,n}, and the set of items by M={m1,...,mk}. |M|=k. Bundle S is a set of items:S ⊆ M . 
We denote by vi(S), bidder i's valuation of the combinatorial bid for bundle S. An allocation 
of the items is described by variables xi(S) ∈ {0, 1}, where xi(S)=1 if and only if bidder i wins 
bundle S. An allocation, xi(S), is feasible if it allocates no item more than once,  

∑

i∈N

∑

S�j

xi(S) ≤ 1

 
for all j ∈ M . 
The winner determination problem is the problem to maximize total revenue 

max
X

∑

i∈N,S⊆M

vi(S)xi(S)

 
for feasible allocations X � xi(S). 
Fig. 1 shows an example of WDPOR. Consider there are three items a, b, and c, and three 
bidders Alice, Bob, and Charles. Alice bids 10 for a. Bob bids 20 for {b, c}. Charles bids 18 for {a, 
b}. The problem is to choose winners of this auction from those three bids. Here, to choose 
Alice's and Charles's, or Bob's and Charles's are infeasible allocation, since both Alice's and 
Charles's include item a, and both Bob's and Charles's include item b. The optimal allocation is 
a for Alice, and b and c for Bob. 



 Advances in Greedy Algorithms 

 

414 

��

����

���

	��

���� �
�

��

��

��

��
��������  
Fig. 1. Winner Determination Problem 

Since the winner determination problem WDPOR is a combinatorial optimization problem, it 
is generally NP-hard(Cramton et al., 2006). Furthermore, winner determination also plays 
important roles in other parts of combinatorial auction mechanism. For example, some 
combinatorial auction mechanisms (e.g., VCG, etc.) require many times of winner determination 
for slightly different bids for pricing mechanism. Therefore, it is strongly demanded to solve the 
problem in tractable way. In this chapter, we focus on solving this problem. 

2.3 Lehmann’s greedy winner determination 
Lehmann et al. proposed a combinatorial auction mechanism that preserves truthfulness, a 
very important desirable property, while it uses a greedy approximation algorithm for its 
winner determination(Lehmann et al., 2002). 
Lehmann's greedy algorithm (Lehmann et al., 2002) is a very simple but powerful linear 
algorithm for winner determination in combinatorial auctions. Here, we denote a bid 
b=<s,a>, such that S ⊆ M  and a ∈ R+. Two bids b=<s,a> and b'=<s',a'>  conflict if and 
only if s ∩ s′ �= ∅. The greedy algorithm can be described as follows. (1) The bids are sorted 
by some criterion. In (Lehmann et al., 2002), Lehmann et al. proposed sorting list L by 
descending average amount per item. More generally, they proposed sorting L by a criterion 
of the form a/|s|c for some number c ≥ 0, possibly depending on the number of items, k. (2) 
A greedy algorithm generates an allocation. L is the sorted list in the first phase. Walk down 
the list L, allocates items to bids whose items are still unallocated. 
Example: Assume there are three items a, b, and c, and three bidders Alice, Bob, and Charles. 
Alice bids 10 for a. Bob bids 20 for {b,c}. Charles bids 18 for {a,b} (Fig. 2 Step1). We sort the bids 
by the criterion of the form a/|s|0.5 (Fig. 2 Step2). Alice's bid is calculated as 10/10.5=10. Bob's 
bid is calculated as 20/20.5=14 (approximately). Charles's bid is calculated as 18/20.5=13 
(approximately). The sorted list is now Bob's bid <{b,c},20>, Charles's bid <{a,b},18>, and 
Alice's bid <{a}, 10>. The algorithm walks down the list (Fig. 2 Step3). At first, Bob wins {b,c} 
for 20. Then, Charles cannot get the item because his bid conflicts with Bob's bid. Finally, 
Alice gets {a} for 10.  
Lehmann's greedy algorithm provides a computationally tractable combinatorial auction. 
However, it has two remaining issues: (1)efficiency of item assignment, and (2)adjustment of 
good bid weighting parameter c. In the next section, we describe possible approaches for 
these issues. 



Parallel Greedy Approximation on Large-Scale Combinatorial Auctions 

 

415 

��

����

���

���

���� ���

�����������������

�����������������

����������������

��������� �! ����������"�	#$���
"�

��

����

���

���

���� ���

�����������������

�����������������

����������������

��������#$����
"��%��������

����&���  #��������'"�
$��
� %�

��

����

���

���

���� ���

 
Fig. 2.  Lehmann’s Greedy Allocation 

3. Parallel greedy approximation 
3.1 Incremental updating 
In (Fukuta & Ito, 2006), we have shown that the hill-climbing approach performs well when 
an auction has a massively large number of bids. In this section, we summarize our 
proposed algorithms for incremental updating solutions. 
Lehmann's greedy winner determination could succeed in specifying the lower bound of the 
optimality in its allocation (Lehmann et al., 2002). A straightforward extension of the greedy 
algorithm is to construct a local search algorithm that continuously updates the allocation so 
that the optimality is increased.  Intuitively, one allocation corresponds to one state of a local 
search.  
List 1 shows the algorithm. The inputs are Alloc and L. L is the bid list of an auction. Alloc is 
the initial greedy allocation of items for the bid list. 
The function consistentBids finds consistent bids for the set NewAlloc by walking down the 
list RemainBids. Here, a new inserted bid will wipe out some bids that conflict with the 
inserted bid. So there will be free items to allocate after the insertion. The function 
consistentBids tries to insert the other bids greedily for selling as many of the items as 
possible. When the total price for NewAlloc is higher than Alloc, current allocation is 
updated to NewAlloc and the function continues updating from NewAlloc. We call this as 
Greedy Hill Climbing(GHC) in this chapter. 



 Advances in Greedy Algorithms 

 

416 

1: function GreedyHillClimbingSearch(Alloc, L)

2: RemainBids:= L - Alloc;

3: for each b ∈ RemainBids as sorted order

4: if b conflicts Alloc then

5: Conflicted:=Alloc - consistentBids({b}, Alloc);

6: NewAlloc:= Alloc - Conflicted + {b};

7: ConsBids:=

8: consistentBids(NewAlloc, RemainBids);

9: NewAlloc:=NewAlloc+ConsBids;

10: if price(Alloc) < price(NewAlloc) then

11: return GreedyHillClimbingSearch(NewAlloc,L);

12: end for each

13: return Alloc  
List. 1. Greedy Hill Climbing Algorithm 

������ ������
•� Initial State 

–� AL : Current allocation of items  
(The initial allocation is Lehmann’s allocation.) 

–� Remain : All bids that are not included in AL 

A&B&C 30 

D&E 15 

A 15 

C 13 

A&C 14 

B 8 
Total revenue =  45 

AL 

Remain 

–�Take the top of bid in Remain, 
then push it into AL 

A&B&C 30 

D&E 15 

A 15 
C 13 

A&C 14 

B 8 

PUSH IN 

PUSH 
OUT 

AL 

Remain 

������

–� (In this case,  
  item B and C are not allocated.)  
Lehmann’s algorithm is applied to the non-
allocated items. A&B&C 30 

D&E 15 

A 15 
C 13 

A&C 14 

B 8 

Apply Lehmann’s 
algorithm for not 
currently allocated 
items. AL 

Remain 

����	�

–� If the total revenue is larger than the last 
then the found allocation overwrites AL. 

A&B&C 30 

D&E 15 

A 15 

C 13 
A&C 14 

B 8 

Put back to Remain 

Total revenue =  51   ( larger than the last revenue = 45) 

AL 

Remain 

AAA

AAA

 
 

Fig. 3. Example of Greedy Hill Climbing 

Example: Assume there are five items a, b, c, d, and e, and there are six bids, <{a,b,c},30>, 
<{a},15>, <{c},13>, <{d,e},15>, <{a,c},14>, and <{b},8>. We can calculate the values of 
Lehmann's criterion a/|s|0.5 as 17.6, 15, 13, 10.7, 10, and 8, respectively.  In this case, the 
initial allocation is Lehmann's greedy allocation <{a,b,c},30>, <{d,e},15> and the total revenue 
is 45. Here, the remaining list contains  <{a},15>, <{c},13>, <{a,c},14>, and <{b},8> (Fig. 3, 



Parallel Greedy Approximation on Large-Scale Combinatorial Auctions 

 

417 

Step1). In this algorithm, we pick <{a},15> since it is the top of the remaining list. Then we 
insert <{a},15> into the allocation and remove <{a,b,c},30>. The allocation is now <{a},15>, 
<{d,e},15> (Fig. 3, Step2). We then try to insert the other bids that do not conflict with the 
allocation (Fig. 3, Step3). Then, the allocation becomes <{a},15>, <{b},8>, <{c},13>,<{d,e},15>. 
The total revenue is 51, and is increased. Thus, the allocation is updated to it (Fig. 3, Step4). 
Our local algorithm continues to update the allocation until there is no allocation that has 
greater revenue. This could improve the revenue that Lehmann's greedy allocation can 
achieve. 
To show the advantages of greedy incremental updating, we also prepared an ordinary Hill-
Climbing local search algorithm. List.2. shows the algorithm. The difference to above is to 
choose best alternatives in each climbing step, instead of choosing it greedily. We call this as 
Best Hill Climbing(BHC) in this chapter. 
 

1: function BestHillClimbingSearch(Alloc, L)

2: MaxAlloc := φ

3: RemainBids:= L - Alloc;

4: for each b ∈ RemainBids as sorted order

5: if b conflicts Alloc then

6: Conflicted:=Alloc - consistentBids({b}, Alloc);

7: NewAlloc:= Alloc - Conflicted + {b};

8: ConsBids:=

9: consistentBids(NewAlloc, RemainBids);

10: NewAlloc:=NewAlloc+ConsBids;

11: if price(MaxAlloc) < price(NewAlloc) then

12: MaxAlloc := NewAlloc;

13: end for each

14: if price(Alloc) < price(MaxAlloc) then

15: return BestHillClimbingSearch(MaxAlloc,L);

16: return Alloc  
List. 2. Best Hill Climbing Algorithm 

3.2 Parallel search for multiple weighting strategies 
The optimality of allocations got by Lehmann's algorithm (and the following hill-climbing) 
deeply depends on which value was set to c in the bid weighting function. Again, in 
(Lehmann et al., 2002), Lehmann et al. argued that c=1/2 is the best parameter for 
approximation when the norm of the worst case performance is considered. However, 
optimal value for approximating an auction is varied from 0 to 1 depending on the auction 
problem. 
For example, when we choose c=1 in the example in section 3.1, we can get better results 
directly at the time of initial Lehmann's greedy allocation (Fig. 4). 
In (Fukuta & Ito, 2006), we presented an initial idea of an enhancement for our incremental 
updating algorithm to parallel search for different bid weighting strategies (e.g, doing the 
same algorithm for both c=0 and c=1). 



 Advances in Greedy Algorithms 

 

418 

�
�
�� ��� ��
���
���������

�� ��� ��
���
�������

�� ��� ��
���
�������

���� ��� ���������	��
���

���� �
� �
�������	�����

�� �� ���������	����

������ �
� �
�����	���
�

�� ��� �������	�����

�� ��� �������	�����

���� ��� �������	������

���� �
� �
�����	������

�� �� ��������	������

��	�������
�
��
�	�
��� ��	�����
�
��
�	�����

 
Fig. 4. Effects of Bid Weighting Strategy 

3.3 Simulated annealing search 
We also prepared a small extension of the shown algorithm to the simulated annealing local 
search(Fukuta & Ito, 2006). The algorithm is a combination of the presented hill-climbing 
approach and a random search based on the standard simulated annealing algorithm. We 
use a parameter that represents the temperature. The temperature is set at a high value at 
the beginning and continuously decreased until it reaches 0. For each cycle, a neighbour is 
randomly selected and its value may be less than the current value in some cases. Even in 
such a case, if a probability value based on the temperature is larger than 0, the state is 
moved to the new allocation that has less value. This could make us get off the local 
minimum. 
We prepared this algorithm only for investigating how random search capability will 
improve the performance. Note that the proposed SA search may not satisfy our proposed 
features discussed later. 

4. Experimental analysis 
4.1 Experiment settings 
In this section, we compare our algorithms to other approaches in various datasets. Details 
about other approaches are presented in section 5. 
We implemented our algorithms in a C program for the following experiments. We also 
implemented the Casanova algorithm(Hoos & Boutilier, 2000) in a C program. However, for 
the following experiments, for Zurel's algorithm we used Zurel's C++ based implementation 
that is shown in (Zurel & Nisan, 2001). Also we used CPLEX Interactive Optimizer 11.0.0 
(32bit) in our experiments. 
The experiments were done with the above implementations to examine the performance 
differences among algorithms.  The programs were employed on a Mac with Mac OS X 10.4, 
CoreDuo 2.0GHz CPU, and 2GBytes of memory. Thus, actual computation time will be 
much smaller when we employ parallel processor systems in a distributed execution 
environment. 



Parallel Greedy Approximation on Large-Scale Combinatorial Auctions 

 

419 

We conducted several experiments. In each experiment, we compared the following search 
algorithms. greedy(c=0.5) uses Lehmann's greedy allocation algorithm with parameter 
(c=0.5). greedy-N uses the best results of Lehmann's greedy allocation algorithm for N 
different weighting parameters (0 ≤ c ≤ 1).  *HC(c=0.5) uses a local search in which the 
initial allocation is Lehmann's allocation with c=0.5 and conducts one of hill-climbing 
searchs (e.g., GHC or BHC) shown in the previous section. Similarly, *HC-N uses the best 
results of a hill-climbing search (e.g., GHC or BHC) for N different weighting parameters 
(0 ≤ c ≤ 1). For example, GHC-11 means the best result of greedy hill-climbing(GHC) with 
parameter c = {0, 0.1,...,0.9, 1}. SA uses the simulated annealing algorithm presented in 
(Fukuta & Ito, 2006). Also, we denote the Casanova algorithm as casanova and Zurel's 
algorithm as Zurel. 
In the following experiments, we used 0.2 for the epsilon value of Zurel's algorithm in our 
experiments. This value appears in (Zurel & Nisan, 2001). Also, we used 0.5 for np and 0.15 
for wp on Casanova, which appear in (Hoos & Boutilier, 2000). Note that we set maxTrial to 1 
but maxSteps to ten times the number of bids in the auction. 

4.2 Evaluation on basic auction dataset 
In (Zurel & Nisan, 2001), Zurel et al. evaluated the performance of their presented algorithm 
with the data set presented in (de Vries & Vohra, 2003), compared with CPLEX and other 
existing implementations.  
In (Fukuta & Ito, 2007a), we presented comparison of our algorithms, Casanova, and Zurel's 
algorithm with the dataset provided in (de Vries & Vohra, 2003). This dataset contains 2240 
auctions with optimal values, ranging from 25 to 40 items and from 50 to 2000 bids. Since 
the data set is small, we omit details in this chapter. 
We conducted detailed comparisons with common datasets from CATS benchmark(Leyton-
Brown et al., 2000). Compared to deVries' dataset shown in (de Vries & Vohra, 2003), the 
CATS benchmark is very common and it contains more complex and larger datasets. 
Fig. 5 shows the comparison of our algorithms, Casanova, and Zurel's algorithm with a 
dataset provided in the CATS benchmark (Leyton-Brown et al., 2000). The dataset has 
numerous auctions with optimal values in several distributions. Here we used varsize 
which contains a total of 7452 auctions with reliable optimal values in 9 different 
distributions1. Numbers of items range from 40 to 400 and numbers of bids range from 50 to 
2000.  
Since problems in the dataset have relatively small size of bids and items, we omitted the 
execution time since all algorithms run in very short time. Here, we can see that the 
performances of GHC-11 and SA are better than Zurel's on average optimality. 
Note that those differences come from the differences of the termination condition on each 
algorithm. In particular, Casanova spent much more time compared with the other two 
algorithms. However, we do not show the time performance here since the total execution 
time is relatively too small to be compared. 

                                                 
1 Since some of the original data seems corrupted or failed to obtain optimal values, we 
excluded such auction problems from our dataset. Also, we excluded a whole dataset of a 
specific bid distribution when the number of valid optimal values is smaller than the other 
half of the data. The original dataset provides optimal values of auction problems by two 
independent methods, CASS and CPLEX. Therefore, it is easy to find out such corrupted 
data from the dataset. 



 Advances in Greedy Algorithms 

 

420 

�������

�������

�������

�������

����(��

����(��

���(���

�������

������

�������

�������

�������

����� ����� ���� ����� ����� ����� ����� ��

����������	
��

�
�����	
��

�
�����	
��

�������(�

�
��(�

�
��(�

����������

�
�����

�
�����

���

������

���������

 
Fig. 5.  Optimality on CATS-VARSIZE dataset 

Here, we can see the performance of both greedy, GHC, and BHC increases when we use 
more threads to parallel search for multiple weightings. For example, the result of GHC-3 is 
better than GHC(c=0.5) and GHC-11 is slightly better in the average. It shows that our 
parallel approximation approach will increase the performance effectively even when the 
number of parallel executions is small. 
Also we compared the performance on our greedy local updating approach (GHC) with 
ordinary best updating approach (BHC). Surprisingly, the average performances of GHC are 
slightly better than BHC, regardless of using parallel search. This is because the BHC 
approach is still heuristic one so it does not guarantee the choice is best for global 
optimization. Also we think we found a very good heuristic bid weighting function for our 
greedy updating. 

4.3 Evaluation on large auction dataset 
The CATS common datasets we used in Section 4.2 have a relatively smaller number of bids 
than we expected. We conducted additional experiments with much greater numbers of 
bids. We prepared additional datasets having 20,000 non-dominated bids in an auction. The 
datasets were produced by CATS (Leyton-Brown et al., 2000) with default parameters in 5 
different distributions. In the datasets, we prepared 100 trials for each distribution. Each trial 
is an auction problem with 256 items and 20,000 bids2.  

                                                 
2 Due to the difficulty of preparing the dataset, we only prepared 5 distributions. For more 
details about the bid generation problem, see (Leyton-Brown et al., 2000). A preliminary 
result of this experiment was shown in (Fukuta & Ito, 2007b). 



Parallel Greedy Approximation on Large-Scale Combinatorial Auctions 

 

421 

Fig. 6 (6a and 6b) shows the experimental result on the datasets with 20,000 bids in an 
auction focused on execution time of approximation. Due to the difficulty of attaining 
optimal values, we normalized all values as Zurel's results equaling 1 as follows. 
Let A be a set of algorithms, z ∈ A be the Zurel's approximation algorithm, L be a dataset 
generated for this experiment, and revenuea(p) such that a ∈ A be the revenue obtained by 
algorithm a for a problem p such that p ∈ L, the average revenue ratio ratioAa(L) for 
algorithm a ∈ A for dataset L is defined as follows: 

( )
( )

( )
L

L

p
L

p
∈

∈

= ∑
∑

p a

p z

a

revenue
ratioA

revenue
 

Here, we use ratioAa(L) for our comparison of algorithms. 
 

��)�*���

��)��)��

��)��)��

��)�*���

��)��)��

��)��)��

��)�����

��) )���

��)+�+��

��)�*���

��)��)��

��)��)��

��)++*��

��))* ��

�����)��

��)*+���

��+�  ��

��������

��� ����

�����*��

����� ��

���� ���

���)� ��

���)� ��

�� +����

�������� �������� �������� �� ����� ��+����� �������� ��������

�����%��,�����

�	

�%�
��
��

�	

�%�
���	��

�����,�����������

����
��
��������

����
���	��������

�����,�����������

����
��
��������

����
���	��������

�����,������������

����
��
���������

����
���	���������

�����,������������

����
��
���������

����
���	���������

����������

��	
������

��	
��

��������������

���������������

����������������

���
��������

���
��


���

���
���������

���
��
������

 
Fig. 6a.  Time Performance on 20,000 bids- 256 items (Optimality Ratio) 



 Advances in Greedy Algorithms 

 

422 

�����

 *���

���!�

����

����

����

����

����

����

�����

�����

�����

�����

�����

�����

�����


!

�

�!*��

���

����

�����

��+�

!!!�

�!���

!
+ �

�� ����� ����� 
���� !���� �����  ����

�	

�%��"�����

�	

�%�
��
��

�	

�%�
���	��

�����"�����������

����
��
��������

����
���	��������

�����"�����������

����
��
��������

����
���	��������

�����"������������

����
��
���������

����
���	���������

�����"������������

����
��
���������

����
���	���������

����������

��	
������

��	
��

��������������

���������������

����������������

���
��������

���
��


���

���
���������

���
��
������

 
Fig. 6b. Time Performance on 20,000 bids - 256 items (Elapsed Time[msec]) 

We prepared cut-off results for Casanova and HC. For example, casanova-10ms denotes the 
result of Casanova within 10 milliseconds. Here, for faster approximation, we used greedy-
3, GHC-3, and BHC-3 but did not use greedy-11, GHC-11, and BHC-11. Here, greedy-3 uses 
the best results of Lehmann's greedy allocation algorithm with parameter (0 ≤ c ≤ 1  in 0.5 
steps). GHC-3 and BHC-3 use the best results of the local updating with parameter 
(0 ≤ c ≤ 1  in 0.5 steps). Also, we prepared a variant of our algorithm that has a suffix of  
-seq or -para. The suffix -seq denotes the algorithm is completely executed in a sequence 
that is equal to one that can be executed on a single CPU computer. For example, greedy-3-
seq denotes that the execution time is just the sum of execution times of three threads. The 
suffix -para denotes the algorithm is completely executed in a parallel manner, and the three 
independent threads are completely executed in parallel. Here, we used the ideal value for  
-para since our computer has only two cores in the CPU. The actual execution performance 



Parallel Greedy Approximation on Large-Scale Combinatorial Auctions 

 

423 

will be between -seq and -para. Also, we denote the initial performance of Zurel's algorithm 
as Zurel-1st. Here, Zurel-1st is the result at the end of its first phase and no winners will be 
approximately assigned before it. cplex is the result of CPLEX with the specified time limit.  
On most distributions in Fig. 6, Zurel-1st takes more than 1 second but the obtained ratioA is 
lower than greedy-3-seq. Furthermore, the average ratioA of GHC-3-para-1000ms is higher 
than Zurel while its computation time is less than both Zurel and Zurel-1st.  
In Fig. 6, BHC could not get any update within the time limit so there is no update from 
greedy. Here, although SA performs better than greedy(C=0.5), it could not outperform 
GHC(C=0.5) in any case. Therefore, we can see that both best-updating and random-updating 
approaches are not sufficient enough for extremely short time approximation, although the 
greedy-updating approach makes a good performance in the same situation. 
In many settings of CPLEX, the values are 0. This is because CPLEX could not generate 
initial approximation result within the provided time limit. Only datasets for two bid 
distributions have non-zero results for CPLEX. However, CPLEX spends around 400 msec 
for the computation but the results are still lower than greedy-3. On a dataset for another 
bid distribution, CPLEX could prepare results in 3.8 sec of computation, however, the result 
is still lower than greedy-3. This is because the condition we set up gave extremely short 
time limit so therefore CPLEX could not generate sufficient approximation results in such 
hard time constraint. 
Fig. 7 shows the experimental result on the dataset with 100,000 bids in an auction focused 
on the early anytime performance. While GHC-3 and Zurel's algorithm are competitive in 
Fig. 6, it is clear that our proposed GHC-3 outperforms Zurel's algorithm in any time 
performance in Fig. 7. Note that, for Zurel's algorithm, the time needed to attain initial 
allocations increased approx. six times when the number of bids becomes five times larger 
than that of Fig. 6. However, while our GHC-3-para-1000ms only takes the same execution 
time (i.e, 1000 msec) for larger dataset, its average ratioA is higher than Zurel. Note that the 
GHC-3-para-333ms has still higher ratioA value than Zurel while its average computation 
time is 100 times less. We argue that our algorithm has an advantage when the number of 
bids increases. 

5. Related work    
5.1 Approaches for optimization problems 
There are really many approaches to optimization problems. Linear programming is one of 
the well-known approaches in this area. The winner determination problem on 
combinatorial auctions can be transformed into a linear programming problem. Therefore, it 
is possible to use a linear programming solver for the winner determination problem.  
CPLEX is a well-known, very fast linear programming solver system. In (Zurel & Nisan, 
2001), Zurel et al. evaluated the performance of their presented algorithm with many data 
sets, compared with CPLEX and other existing implementations. While the version of 
CPLEX used in (Zurel & Nisan, 2001) is not up-to-date, the shown performance of Zurel's 
algorithm is approximately 10 to 100 times faster than CPLEX. In this chapter, we showed 
direct comparisons to the latest version of CPLEX we could prepare. Our approach is far 
better than latest version of CPLEX for large-scale winner determination problems. 
Therefore, the performance of our approach is competitive enough with CPLEX or other 
similar solver systems. This is natural since Zurel's and our approaches are specialized for 
combinatorial auctions, and also focus only on faster approximation but do not seek optimal  
 



 Advances in Greedy Algorithms 

 

424 

��������

��������

��������

��	��
��

��������

���
�
��

��������

��������

��������

��������

���		���

�������� �������� ��
����� �������� �������� �������� ��������

�
�������

��������
��������

��������
���������

��
�������

��
���

������ ��������

������ ���������

����!�������

����!�������

����!��������

����!��������

 
Optimality Ratio 

 

#
���

����

�����

�"����

��"���

����

�����

����

"���

��#��

��
"�

�� #���� ������ �#���� ������ �#���� ������ �#���� 
�����

�
�������

��������
��������

��������
���������

��
�������

��
���

������ ��������

������ ���������

����!�������

����!�������

����!��������

����!��������

 
Elapsed Time[msec] 

Fig. 7. Time Performance on 100,000bids - 256items 

solutions. In case we need optimal solutions, it is good choice to solve the same problem by 
both our approach and CPLEX in parallel. This could improve anytime performance but 
guarantee obtaining optimal solutions. Even in such case, our approach should spend very 
small computation overhead. 
Random-walk search is also a strong approach for approximating combinatorial 
optimization problems. There have been many algorithms proposed based on random-walk 
search mechanisms. In (Hoos & Boutilier, 2000), Casanova was proposed, which applies a 



Parallel Greedy Approximation on Large-Scale Combinatorial Auctions 

 

425 

random walk SAT approach for approximating the winner determination problem in 
combinatorial auctions. In this chapter, we showed that our approach outperforms 
Casanova when the time constraint is very hard but the problem space is really large.  
Simulated Annealing (SA) is another similar approach. We prepared an SA-based extension 
for our approach and we confirmed it increases the performance when the problem size is 
relatively small. However, SA needs random-walk in the early stage of its search and it 
decreases performance on short-time approximation.  
Genetic Algorithm is another similar approach. In (Avasarala et al., 2006), Avasarala et al. 
proposed an approach for the winner determination problem on combinatorial auctions. 
However, in (Avasarala et al., 2006), they noticed that their algorithm is not effective for 
approximation in short time but is effective for obtaining higher optimal solutions with 
enough computation time. Random-walk searching is really effective approximation 
approach for combinatorial optimization problems. However, it is not effective when there 
are such hard time constraints. We focused on solving problems that are hard for such 
random-walk search approaches. 

5.2 Approaches to obtain optimal solutions 
There have been a lot of works on obtaining optimal solutions for winner determination in 
combinatorial auctions (de Vries & Vohra, 2003). For example, CABOB (Sandholm et al., 
2005) and CASS (Fujishima et al., 1999) have been proposed by aiming to get the optimal 
allocations.  
In (Hoos & Boutilier, 2000), it is shown that the Casanova algorithm outperforms 
approximation performance of CASS on winner determination. In this chapter, we showed 
that our approach outperforms Casanova in settings of a very large number of bids in an 
auction. Therefore, our approach should also outperform CASS in the same settings.  
In (Sandholm et al., 2005), Sandholm et al. showed that CABOB outperforms CPLEX in 
several settings. However, according to our comparison, our algorithm should outperform 
CABOB in our settings. We argue that our approach is rather complementary to those 
algorithms that are seeking exact optimal solutions. It is not fair to compare their 
approximation performances when one guarantees obtaining optimal solutions but the 
other does not. Our approximation approach only covers large size problem settings that 
can only be handled by specialized approximation algorithms. Our approach does not 
contribute to advances in developing algorithms to obtain optimal solutions directly. 

5.3 Other greedy approaches 
Some researchers have noticed the better performance of simple greedy and incremental 
approaches for very large-scale problems. For example, (Sandholm, 2002) noticed the ease of 
approximation on very large auction problems. In (Lehmann et al., 2002), Lehmann et al. 
mentioned that a simple greedy approach obtains very high results when the auction 
problem is rather huge.  
Also in (Kastner et al., 2002), Kastner et al. mentioned a potential capability of a simple 
incremental search approach to apply to very large auction problems and discussed the 
sensitivity for the number of bids in an auction. However, there is little mentioned about a 
detailed comparison of actual performances for several different types of datasets. In 
(Kastner et al., 2002), they only presented their preliminary experimental results on a dataset 
that is based on a single bid distribution.  



 Advances in Greedy Algorithms 

 

426 

Guo et al. (Guo et al., 2005) proposed similar local-search based algorithms and they argued 
that their approach is good for the settings of a large number of bids in a combinatorial 
auction problem. However, in (Guo et al., 2005), they presented very limited experimental 
results and little analysis or comparison to other high performance algorithms. Also in (Guo 
et al., 2005), they did not propose an idea that is similar to our multiple bid-weighting 
search. We argue that this multiple weighting search approach is very effective and that it 
distinguishes our approach from others. Also, we showed a detailed analysis of our 
experiments based on datasets generated by possible different bid distributions. We also 
showed direct comparisons to Zurel's approach presented in (Zurel & Nisan, 2001). 

5.4 Other approaches 
When we have some assumptions about models for valuation of bids, we can utilize those 
assumptions for better approximation. Dobzinski et al. proposed improved approximation 
algorithms for auctions with submodular bidders (Dobzinski & Schapira, 2006). Lavi et al, 
reported an LP-based algorithm that can be extended to support the classic VCG (Lavi & 
Swamy, 2005). Those studies mainly focused on theoretical aspects. In contrast to those 
papers, we rather focus on experimental analysis and implementation issues. Those papers 
did not present experimental analysis of the settings with a large number of bids as we 
presented in this chapter. 
Using sequential auctions (Boutiler et al., 1999) is another approach to overcome the 
communication cost problem. Koenig et al. proposed a multiple-round auction mechanism 
that guarantees the upper bound of communication cost as fixed size k, that is independent 
from the number of agents or items in the auction (Koenig et al., 2007). Although our 
algorithm itself can approximate winners within a very short time with a huge number of 
updated bids, the communication cost problem remains. 

6. Discussion    
Lehmann's mechanism preserves truthfulness of the auction. However, since greedy 
incremental updating approach breaks monotonicity, an important property to provide 
truthfulness of auctions, the resulting auction will not be truthful. Detailed discussions and 
a counter example for monotonicity is presented in (Fukuta & Ito, 2007c). Therefore, another 
monotonicity has been proposed to approach this issue. 
In real world auctions, often we open the winners and their bidding prices after the auction 
is finished. When we employ an approximated algorithm for winner determination, a loser 
who might be a winner in the optimal allocation could know the winner's bidding price in 
an approximate allocation after the auction finishes. In some cases, this loser had placed a 
higher price than the winner's for the same or a subset of the bundle. This would result in 
unacceptable allocations for bidders.  
We believe that the above issue should be considered to make our mechanism acceptable by 
participants in the real world. Therefore, Winner-Price-Monotonicity and Weak-Winner-
Price-Monotonicity are proposed to avoid unacceptable allocations(Fukuta & Ito, 2007a).  

Definition 1. (Winner-Price-Monotonicity: WPM) For two non-empty
bundles B and B′, if B ⊆ B′and vi(B) > vj(B

′), then j must not win bun-
dle B′.

Definition 2. (Weak-Winner-Price-Monotonicity: Weak-WPM) For non-
empty bundle B, if vi(B) > vj(B), then j must not win bundle B.  



Parallel Greedy Approximation on Large-Scale Combinatorial Auctions 

 

427 

Here, proofs for following propositions are shown in (Fukuta & Ito, 2007a).  
Proposition 1. Our proposed winner determination algorithms, except for the
simulated annealing-based algorithm, produce allocation Wfin that satisfies WPM
when the algorithm reaches an end.

Proposition 2. In terms of any allocations that are achieved during computa-
tion (as an anytime algorithm), our proposed winner determination algorithms,
except for the simulated annealing-based algorithm, satisfy Weak-WPM.  

 

It is a big merit to guarantee WPM and/or Weak-WPM at the algorithm level when we 
use it where slightly different combinatorial auctions are conducted iteratively. It seems 
easy to satisfy WPM and/or Weak-WPM by using any approximated winner 
determination algorithms by adding a pre-processing that removes all dominated bids 
from the bidset before starting the approximation. However, we should consider its 
computational overhead. For simplicity, consider a case B = B' instead of B ⊆ B′ . Let n be 
the number of items and m be the number of items in an auction. When m is very small, it 
is easy to look up the highest bids of each bundle by using a hash algorithm. In this case, 
the computational order is O(n). However, it consumes a great deal of memory (of course 
it can be smaller than 2m but at least additional O(n) of working space), and it is actually 
very difficult to determine good hash functions for a smaller hash table size without loss 
of computational speed. It is a serious problem when the memory is almost completely 
used up for storing the data of a large number of bids. Sometimes its computational order 
might reach O(n2), which is greater than that of typical good approximation algorithms. 
For example, the computational order of Lehmann's greedy algorithm is O(n log n) when 
we use one of the O(n log n) sorting algorithms on it. Furthermore, when we consider the 
deletion of a bid, we have to determine the highest price bid that has been made obsolete 
by the deleted bid, or recalculate such pre-processing for all bids again. Considering a 
case B ⊆ B′  will make the problem more difficult. Since our algorithms guarantee Weak-
WPM and WPM for the produced results, there is no need to prepare such additional pre-
processing. 

7. Conclusions    
In this chapter, we presented how greedy approach can be used in combinatorial auctions. 
When we have hard time constraint and a large scale problem, greedy approach works very 
well compared to other approaches. Two different greedy approaches can be combined to 
improve performance. Also it is good idea to combine parallel search approach for greedy 
approximation algorithm. Furthermore, greedy-based approach is also helpful to keep the 
result of algorithm a certain desirable property, while other random search algorithms could 
not. 
For further reading about combinatorial auctions, (Cramton et al., 2006) is a best book for 
both researchers and practitioners. For further reading about the shown approach, see 
(Fukuta & Ito, 2007a); (Fukuta & Ito, 2007b) for detailed performance analysis, and see 
(Fukuta & Ito, 2006); (Fukuta & Ito, 2007c); (Fukuta & Ito, 2007a) for theoretical issues and 
further discussions. 



 Advances in Greedy Algorithms 

 

428 

8. References 
Andrew, L. L.H.; Hanly, S. V. & Mukhtar, R. G. (2008). Active queue management for fair 

resource allocation in wireless networks. IEEE Transactions on Mobile Computing, 
pages 231-246, Feb. 2008. 

Avasarala, V.; Polavarapu, H.; & Mullen, T. (2006). An approximate algorithm for resource 
allocation using combinatorial auctions. In Proc. of The 2006 WIC/IEEE/ACM 
International Conference on Intelligent AgentTechnology (IAT2006), pages 571-578, 
2006. 

Ball, M. O.; Donohue, G. L. & Hoffman, K. (2006). Auctions for allocation of airspace system 
resources. In Peter Cramton, Yoav Shoham, and Richard Steinberg, editors,  
Combinatorial Auctions, chapter 20, pages 507-538. The MIT Press, 2006. 

Boutiler, C.; Goldszmidt, M.; & Sabata, B. (1999). Sequential auctions for the allocation of 
resources with complementarities.  In Proc. of International Joint Conference on 
Artificial Intelligence(IJCAI1999), pages 527-534, 1999. 

Cantillon, E. & Pesendorfer, M. (2004). Combination bidding in multi-unit auctions. Working 
Paper of Harvard Business School and London School of Economics, 2004. 

Caplice, C.; Plummer, C. & Sheffi, Y. (2004). Bidder behavior in combinatorial auctions for 
transportation services. Working Paper of Massachusetts Institute of Technology Center 
for Transportation and Logistics, 2004. 

Cramton, P.; Shoham, Y. & Steinberg, R. (2006). Combinatorial Auctions. The MIT Press, 2006. 
de Vries, S. & Vohra, R. V. (2003). Combinatorial auctions: A survey. International 

Transactions in Operational Research, 15(3):284-309, 2003. 
Dobzinski, S. & Schapira, M. (2006). An improved approximation algorithm for 

combinatorial auctions with submodular bidders. In SODA ’06: Proceedings of the 
seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 1064-1073. 
ACM Press, 2006. 

Fujishima, Y.; Leyton-Brown, K. & Shoham, Y. (1999). Taming the computational complexity 
of combinatorial auctions: Optimal and approximate approarches. In Proc. of the 
16th International Joint Conference on Artificial Intelligence (IJCAI99), pages 548-553, 
1999. 

Fukuta, N. & Ito, T. (2007a). Periodical resource allocation using approximated 
combinatorial auctions. In Proc. of The 2007 WIC/IEEE/ACM International Conference 
on Intelligent Agent Technology (IAT2007), pages 434-441, 2007. 

Fukuta, N. & Ito, T. (2007b). Short-time approximation on combinatorial auctions – a 
comparison on approximated winner determination algorithms. In Proc. of The 3rd 
International Workshop on Data Engineering Issues in E-Commerce and Services 
(DEECS2007), pages 42-55, 2007. 

Fukuta, N. & Ito, T. (2007c). Toward a large scale e-market: A greedy and local search based 
winner determination. In Proc. of The 20th International Conference on Industrial, 
Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE2007), pages 
354-363, 2007. 

Fukuta, N. & Ito, T. (2006). Towards better approximation of winner determination for 
combinatorial auctions with large number of bids. In Proc. of The 2006 
WIC/IEEE/ACM International Conference on Intelligent Agent Technology (IAT2006), 
pages 618-621, 2006. 



Parallel Greedy Approximation on Large-Scale Combinatorial Auctions 

 

429 

Guo, Y. ; Lim, A. ; Rodrigues, B. & Zhu, Y. (2005). A non-exact approach and experiment 
studies on the combinatorial auction problem. In Proc. of HICSS2005, page 82.1, 
2005. 

Hohner, G.; Rich, J.; Ng, E.; Reid, G.; Davenport, A.; Kalagnanam, J.; Lee, H. S.  & An, C. 
(2003). Combinatorial and quantity discount procurement auctions with mutual 
benefits at mars, incorporated. Interfaces, 33:23-35, 2003. 

Hoos, H. H. & Boutilier, C. (2000). Solving combinatorial auctions using stochastic local 
search. In Proc. of the AAAI2000, pages 22-29, 2000. 

Kastner, R.; Hsieh, C.; Potkonjak, M. & Sarrafzadeh, M. (2002). On the sensitivity of 
incremental algorithms for combinatorial auctions. In Proc. International Workshop 
on Advanced Issues of E-Commerce and Web-Based Information Systems (WECWIS2002), 
pages 81-88, 2002. 

Koenig, S.; Tovey, C.; Zheng, X. & Sungur, I. (2007). Sequential bundle-bid single-sale 
auction algorithms for decentralized control. In Proc. of International Joint Conference 
on Artificial Intelligence(IJCAI2007), pages 1359-1365, 2007. 

Lavi, R. & Swamy, C. (2005). Truthful and near-optimal mechanism design via linear 
programming. In 46th Annual IEEE Symposium on Foundations of Computer Science 
(FOCS’05), pages 595-604, 2005. 

Lehmann, D.; Mu¨ller, R. & Sandholm T. (2006). The winner determination problem. In Peter 
Cramton, Yoav Shoham, and Richard Steinberg, editors, Combinatorial Auctions,  
chapter 20, pages 507-538. The MIT Press, 2006. 

Lehmann, D.; O’Callaghan, L. I. & Shoham, Y. (2002).  Truth revelation in rapid, 
approximately efficient combinatorial auctions. Journal of the ACM, 49:577-602, 2002. 

Leyton-Brown, K.; Pearson, M. & Shoham, Y. (2000). Towards a universal test suite for 
combinatorial auction algorithms. In Proc. of EC 2000, pages 66-76, 2000. 

McMillan, J. (1994). Selling spectrum rights. The Journal of Economic Perspectives, 1994. 
Niyato, D. & Hossain, E. (2008). A noncooperative gametheoretic framework for radio 

resource management in 4g heterogeneous wireless access networks. IEEE 
Transactions on Mobile Computing, pages 332-345, March 2008.  

Parkes, D. C.; Cavallo, R.; Elprin, N. ; Juda, A.; Lahaie, S.; Lubin, B.; Michael, L.; Shneidman, 
J. & Sultan, H. (2005). Ice: An iterative combinatorial exchange. In The Proc. 6th 
ACM Conf. on Electronic Commerce (EC’05), 2005. 

Rassenti, S. J.; Smith, V. L. & Bulfin, R. L. (1982). A combinatorial auction mechanism for 
airport time slot allocation.  Bell Journal of Economics, 13:402-417, 1982. 

Sabrina, F.; Kanhere, S. S. & Jha, S. K. (2007). Design,  analysis, and implementation of a 
novel low complexity scheduler for joint resource allocation. IEEE Transactions on 
Parallel and Distributed Systems, pages 749-762, June 2007. 

Salem, N. B.; Buttyan, L.; Hubaux, J.-P. & Jakobsson, M. (2006). Node cooperation in hybrid 
ad hoc networks.  IEEE Transactions on Mobile Computing, pages 365-376, April 2006. 

Sandholm, T. (2002). Algorithm for optimal winner determination in combinatorial auctions. 
Artificial Intelligence, 135:1-54, 2002. 

Sandholm, T.; Suri, S.; Gilpin, A.; & Levine, D. (2005). Cabob: A fast optimal algorithm for 
winner determination in combinatorial auctions. Management Science,  51(3):374-390, 
March 2005. 



 Advances in Greedy Algorithms 

 

430 

Thomadakis, M. E. & Liu, J.-C. (1999). On the efficient scheduling of non-periodic tasks in 
hard real-time systems. In Proc. of IEEE Real-Time Systems Symp., pages 148-151, 
1999. 

Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. Journal of 
Finance, XVI:8-37, 1961. 

Xiao, L.; Chen, S.; & Zhang, X. (2004). Adaptive memory allocations in clusters to handle 
unexpectedly large data-intensive jobs. IEEE Transactions on Parallel and Distributed 
Systems, pages 577-592, July 2004. 

Xie, T. & Qin, X. (2007). Security-aware resource allocation for real-time parallel jobs on 
homogeneous and heterogeneous clusters. IEEE Transactions on Parallel and 
Distributed Systems, Sep. 2007.  

Yang, J. & Manivannan, D. (2005). An efficient fault-tolerant distributed channel allocation 
algorithm for cellular networks. IEEE Transactions on Mobile Computing, pages 578-
587, Nov. 2005. 

Zurel, E. & Nisan, N. (2001). An efficient approximate allocation algorithm for combinatorial 
auctions. In Proc. of the Third ACM Conference on Electronic Commerce (EC2001), 
pages 125-136, 2001. 



23 

Parallel Search Strategies for TSPs using a 
Greedy Genetic Algorithm 

Yingzi Wei1 and Kanfeng Gu2 

1School of Information Science and Engineering, Shenyang Ligong University, 
2Shenyang Institute of Automation, Chinese Academy of Science,  

China 

1. Introduction      
The Genetic Algorithm (GA) is an optimizing algorithm modelled after the evolution of 
natural organisms. GA was not originally intended for highly constrained optimization 
problems but were soon adapted to order-based problems like the TSP (Goldberg, D.E. etc. 
1985, 1989). It has also been applied to a variety of combinatorial optimization problems. GA 
is an iterative procedure which maintains a population of candidate solutions. These 
solutions (instances or chromosomes) are encoded into strings of symbols. The initial 
population of instances, represented by their chromosomes, can be chosen heuristically or at 
random. During each iteration step, called a generation, a number of individuals selected 
from population solutions implement genetic operations. Some of the GA's merits are that it 
can be easily developed. GA does not require detailed knowledge about the problem, can 
search globally, and also adapt to the changing conditions in the problem. The traveling 
salesman problem (TSP) is defined as a very difficult task that seeks a shortest tour of N 
cities in such a way, that to visit all cities only once and return to the starting city. The TSP 
was chosen for many reasons: (i) it can be used to model many practical problems, (ii) it is a 
standard test-bed for new algorithmic ideas and a good performance on the TSP is often 
taken as a proof of their usefulness or effectiveness, and (iii) it is easily understandable, so 
that the algorithm behavior is not obscured by too many technicalities. 
Despite of these merits, GA is often slower than conventional methods, such as heuristic 
searches. This is because GA does not utilize explicitly the knowledge of how to search for 
the solutions. Therefore, hybrid methods that combine GA with other techniques have been 
attempted (G. Andal Jayalakshmi etc, 2001). The TSP solver we suggested is one of the 
hybrid methods. It combines GA and greedy principles to construct the TSP solver. With the 
TSP, we can study the effect of using information about distances of the cities in genetic 
operators. We improved the genetic operator to guide the generation of new offspring 
genotypes. Owing to heuristics of greed, it is much faster than other TSP solvers based on 
GA alone.  
This paper begins with a brief description of TSP and GA in general, followed by a review of 
key to design the GA for permutation problems and analysis of the probable difficulties 
therein. Then, the greedy selection principle is introduced. In the next a few sections, we 
present the greedy genetic algorithm (GGA), how we modify a genetic algorithm to solve 
TSP, our methodology, results, and conclusions. 



 Advances in Greedy Algorithms 

 

432 

2. Population initialization  
2.1 Encoding scheme  
We use a path representation where the cities are listed in the order in which they are 
visited. In this technique, the N cities are represented by a permutation of the integers from 
1 to N. For example, assuming there are 5 cities  1, 2, 3, 4 and 5, if a salesman goes from city 
4, through city 1, city 2, city 5, city 3 and returns back to city 4, the chromosome will be {4 1 2 
5 3}. For an N cities TSP, we initialize the population by randomly placing 1 to N into N 
length chromosomes and guaranteeing that each city appears exactly once. Thus 
chromosomes stand for legal tours.  
When using the GA to solve TSPs, the absolute position of a city in a string is less important 
than the relative position of a city with respect to a tour. So the important information in a 
chromosome or city sequence is the relative positions of the cities, not the absolute position. 
Changing the relative positions of the cities may increase or decrease the amount of building 
blocks and thus result in greater or lesser fitness. For example, for a 5 cities tour, {4 1 2 5 3} 
and {3 4 1 2 5} mean the same tour. However, pairs of cities are now important. Shortly, 
highly fit subsets of strings (building blocks) play an important role in the action of genetic 
algorithms because they combine to form better strings (Goldberg, D.E. etc. 1985, 1989). 

2.2 Initial population generation from gene bank 
The initial solution plays a critical role in determining the quality of final solution in any 
local search. However, since the initial population has been produced randomly in most GA 
researches, it not only requires longer search time to obtain an optimal solution but also 
decreases the search possibility for an optimal solution. Evolution burden on the GA is 
especially obvious for TSP when GA starting from an original population with poor quality. 
For overcoming the difficulties forementioned, we use a gene bank to generate the initial 
population with good and diverse individuals in this paper.  
The N cities are permuted and assembled to build a gene bank. For a TSP of N cities, C cities 
that are closer to the city i are encoded to construct a gene bank, where C is a number less 
than N-1. For simplification, C equals 3 in GGA. Gene bank is a matrix AN×C whose size is 

CN × . The element of A[i][j] is the jth closest city to city i. For example, A[i][1] and A[i][2] 
are the first and second cities closest to city i, respectively. The C closest cities constitute the 
whole ith row of gene bank for the city i. 
When initializing the population, the first city code i is generated randomly. From the ith 
row of gene bank, city code j is then generated where j is the closest one in the unselected 
elements of the ith row. Then, city code h is selected from the jth row of gene bank. If all the 
city codes of the jth row have been selected, GGA produce randomly a city code not 
traveled before as the next traveling city. Following this method, city codes not traveled are 
generated to form a complete chromosome. The algorithm repeats the forgoing procedures 
multiple times. Many such chromosomes form the initial population of GGA. 
Our algorithm always makes the choice that looks best when selecting a gene to assemble a 
chromosome based on the gene bank. This strategy for generating initial population is of a 
greedy method. The substring assembled based on gene bank is of above-average fitness 
and short defining length. These schemata with above-average fitness, low-order and short 
defining length tend to produce more offspring than others. For brevity, such schemata are 
called building blocks. As we known, building block hypothesis is that a genetic algorithm 
creates stepwise better solutions by recombining, crossing and mutating short, high-fitness 



Parallel Search Strategies for TSPs using a Greedy Genetic Algorithm 

 

433 

schemata(Goldberg, D.E. etc. 1985, 1989). So using these substrings is of great benefit to 
GGA getting an effective solver. 

3. Operators of greedy genetic algorithm 
A simple class of GAs always guides the algorithm to the solution by preferring individuals 
with high fitness over low-fitted ones. It can be deterministic, but in most implementation 
that it has random components. Greedy algorithms are introduced to our genetic operations. 
After genetic operation, such as crossover and mutation, only the better offspring will 
replace the parents. This policy is mainly to maintain its respective evolution direction of an 
individual and deduce the error of random operations. 

3.1 Double-directional greedy crossover  
Different crossover acts like the different environmental condition impacting on an 
individual. A different crossover operation changes the domain and procedure of search in 
order to enhance the possibility of finding a new solution. We adopt multiple crossover 
operators in this algorithm.  
Crossover is a very powerful tool for introducing new genetic material and maintaining 
genetic diversity, but with the outstanding property that good parents also produce well-
performing children or even better ones. Traditionally, combination has been viewed as the 
primary mechanism and advantage of crossover. However, there is no guarantee that 
crossover combines the correct schemata.  
For crossover operation after several tests and researching, we use the double-directional 
greedy crossover which is similar to the greedy crossover invented. Greedy crossover selects 
the first city of one parent, compares the cities leaving that city in both parents, and chooses 
the closer one to extend the tour (Grefenstette 1985). If one city has already appeared in the 
tour, we choose the other city. If both cities have already appeared, we randomly select a 
non-selected city. Greedy crossover guides the searching direction by using local 
information. The TSP, we chose, is symmetric and its tour is a Hamiltonian cycle. So we 
propose an effective strategy to improve the greedy crossover operation aforementioned. 
The gene crossing of a double-directional greedy crossover is applied twice to a 
chromosome (e.g. to select from the first gene to the last and from the last gene to the first, 
respectively). This double-directional greedy crossover provides equivalent chances for 
gene segments located in different positions to reach a local optimum. The method is 
developed to form a suboptimal cycle based on more effective local searches. 

3.2 Greedy mutation 
In a GA, the mutation is the random deformation of one or more genes that occurs 
infrequently during the evolutionary process. The purpose of the mutation is to provide a 
mechanism to increase coverage of the search space and help prevent premature 
convergence into a local optimum. Given a permutation based individual of TSP, the 
mutation operator modifies the related traveling sequence. There are a lot of manners for 
doing sequence swapping operation. Easiest way is in using random swap. Unfortunately, 
such strategy unable to achieve an optimum quickly but can prevent convergence into a 
local optimum.  
We use a new mutation operator, greedy-swap of two cities positions. The basic idea of 
greedy-swap is to randomly select two adjacent cities from one chromosome and swap them 



 Advances in Greedy Algorithms 

 

434 

if the new (swapped) tour length is shorter than the elder. For the use of the gene bank 
when initializing the population, the neighboring coding is often constituted of building 
block. This strategy is mainly to decrease the possibility of breaking the building block. 
GGA keep the new tour only when getting a shorter-length tour after not more than 3 trials 
of swap. So the greedy mutation operation is a procedure of local adjustment and 
improvement for the chromosome. 

3.3 Immigration  
The "goodness" of the genetic population depends both on the average fitness (that is 
corresponding to the objective function value) of individuals and the diversity in the 
population. Losing on either count tends to produce a poor GA. In the beginning, the 
potentially good individuals sometimes fill the population so fast that can lead to premature 
convergence into local maxima. Mutation means to increase diversity in the population by 
introducing random variations in the members of the population. However, the mutation in 
the end phase can be too slow to improve population since the individuals have similar 
fitness values. These problems can be overcome by using the immigration in place of 
mutation.  
Immigration refers to the process of replacing poor members of the current population by 
bringing in new individuals. For our implementation of the immigration, the population is 
doped with immigrant individuals for a few of generations. After the midterm phase of 
evolution, we use the same method to generate immigrants as the method we adopt to 
generate the initial population. We found that these immigrants not only introduce new 
genetic material into the population but also bring an open competition plaza for GGA and 
hence force the algorithm to search newer regions of solution space. Immigrants can also 
remedy the shortage of small population because the population size is limited for too 
heavy computation. Figure 1 illustrates the transitional process between consecutive 
generations of  GGA. 
 

Copy best

Current Population Next Population

Im m igrants

 Crossover
and M utation

 
Fig. 1. Transitional process between consecutive generations 

4. Evolutionary dynamics of GGA 
Genetic algorithms mimic nature evolution using the principles of survival of the fittest. 
Reproduction operation, or called selection, is the impulsion of GA evolution. A simple GA 
selects the better individuals from the population into the next generation based on the 
roulette wheel selection. This always affects the diversities of population for that super-
individual(s) will take over most of the population in a few generations. 



Parallel Search Strategies for TSPs using a Greedy Genetic Algorithm 

 

435 

By comparing the qualities of parents to their offspring’s, the individuals of GGA realize the 
population evolution. Only better offspring will replace its parent place. We abandon the 
traditional selection operator in our GGA so that the population’s diversity is kept very well 
all along. Each individual runs in its own evolution direction, respectively. Different 
individuals search different domains. The greedy genetic algorithm takes on the 
parallelization nature due to its parallel searches.  
We haven’t employed special fitness function for TSP problems. The length of tour is 
calculated and directly used for evaluating the fitness of each individual. We leave out the 
transformation procedure between the objective function and fitness function so as to 
deduce the computation amount. 
The genetic operators of GGA make the most of the heuristic information to achieve local 
optima. The evolution of whole population fulfils the distributed and parallelized search. So 
the GGA search is a perfect combination of local and global search for optimal solution 
keeping from the premature convergence. 
By comparing the qualities of parents to their offspring’s, the individuals of GGA realize the 
population evolution. Only better offspring will replace its parent place. We abandon the 
traditional selection operator in our GGA so that the population’s diversity is kept very well 
all along. Each individual runs in its own evolution direction, respectively. Different 
individuals search different domains. The greedy genetic algorithm takes on the 
parallelization nature due to its parallel searches.  
We haven’t employed special fitness function for TSP problems. The length of tour is 
calculated and directly used for evaluating the fitness of each individual. We leave out the 
transformation procedure between the objective function and fitness function so as to 
deduce the computation amount. 
The genetic operators of GGA make the most of the heuristic information to achieve local 
optima. The evolution of whole population fulfills the distributed and parallelized search. 
So the GGA search is a perfect combination of local and global search for optimal solution 
keeping from the premature convergence. 

5. Experimental results  
We used standard TSP benchmarks (G. Reinelt, 1996) whose optimal solutions (or the current 
best solutions) are compiled, too. For all the problems, we use the same double-directional 
greedy crossover and greedy mutation possibilities of 0.8 and 0.02, respectively, but use 
different population sizes, immigrant possibilities and various number of generations for 
different problems, as Table 1 shows. Because the template based crossover operation is of the 
random operation, low possibility of template based crossover is adopted.  
We run the GGA 10 times with 10 different random seeds contrast with GA so as to compare the 
average performance between GGA and GA. For comparison, we also experiment on the 
different effects between the greedy crossover operator (G. Andal Jayalakshmi, 2001) known and 
our double-directional greedy crossover operator. We list real number solutions, not the integral 
ones. From figure 2 to figure 7, we illustrate the best tour routes provided and the best solution 
that we calculate out with GGA for problem eil51, eil76, eil101, respectively. For problem eil51, 
we get a new better solution, shown in figure 3, than the provided one (G. Reinelt, 1996). We try 
to use a higher immigration possibility and less population size for problem eil101 in order to 
decrease the computation amount, where we get a solution shown in figure 6.  
As illustrated in figure 8, for problem eil76, the average tour length of initial population 
generated from gene bank is 1012 in GGA. However, the average tour length of initial 



 Advances in Greedy Algorithms 

 

436 

population generated randomly is 2561 in GA. From figure 8, the curve of average tour 
length declines straightly with the increase of evolution generation, especially in the start 
phase. But we notice the occurrence that the curve of GGA fluctuates slightly after the 
midterm phase of evolution. That is because, after evolving half of the whole generation 
number, the population is mixed with immigrants that lead the average population fitness 
to decrease. With sacrificing the high fitness a little, the population retrieves its diversities to 
some extent. However, the curve of GGA is still in the decline tendency generally. The 
immigration operation manifests its effect of inhibiting from premature convergence. 
 

Control parameter of GGA Solutions of GGA and solutions provided 
Problem 
instance Population

size 
Immigrant 
possibilities

Number of 
generations

Average tour 
length 

Best tour 
length 

Best tour 
length ( G. 

Reinelt, 1996) 

Quality 
of tour 

eil51 150 0.15 2000 433.05 428.98 429.98 0.9977 
eil76 200 0.15 2000 562.93 553.70 545.39 1.0152 
eil101 105 0.2 5000 689.67 665.50 642.30 1.0353 

Table 1. Empirical results 

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

x

y 

Tour Length=429.98

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

x

y 

Tour Length=428.98

 
Fig. 2. Best solution of problem eil51                          Fig. 3. Our best solution of problem eil51.  
(G. Reinelt, 1996). Tour Length=429.98                       Tour Length=428.98  
 

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

x

y 

Tour Length=545.39

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

x

y 

Tour Length=553.70

 
Fig. 4. Best solution of problem eil76                          Fig. 5. Our best solution of problem eil76. 
(G. Reinelt, 1996). Tour Length=545.39                       Tour Length=553.70 

 



Parallel Search Strategies for TSPs using a Greedy Genetic Algorithm 

 

437 

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

x 

y 
Tour Length=642.31

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

x 

y

Tour Length=665.51

 
Fig. 6. Best solution of problem eil101                      Fig. 7. Our best solution of problem eil101. 
(G. Reinelt, 1996).  Tour Length=642.31                    Tour Length=665.51 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

3000

Evolution Generation

A
ve

ra
ge

 L
en

gt
h 

of
 T

ou
r

GA for eil 76
GA for eil 51
GGA for eil 76
GGA for eil 51

 
Fig. 8. Performance comparison of different algorithms 

6. Conclusion 
GA is unable to guarantee to achieve the optimal solution of problems. Compared to the 
GA, the greedy genetic algorithm with improved genetic operations has been presented for 
the global optimization of TSPs. The GGA is a parallel-searching algorithm based on TSP-
oriented methodologies. Powerful heuristics developed in the corresponding field of TSPs 
can significantly increase the performance of the genetic algorithm. It is vital for GGA 
application to engineering practice that GGA works very efficiently in the start phase. A suit 
of benchmark test has been used to illustrate the merits of the modified genetic operations in 
GGA. Both the solution quality and stability are improved. GGA demonstrates its promising 
performance. 

7. References 
Andrzej Jaszkiewicz, (2002) Genetic local search for multi-objective combinatorial 

optimization, European Journal of Operational Research, Vol. 137, No. 1, pp. 50-71. 



 Advances in Greedy Algorithms 

 

438 

Bryan A. Norman & James C. Bean, (1999) A genetic algorithm methodology for complex 
scheduling problems, Naval Research Logistics, Vol. 46, No. 2, pp. 199-211. 

Chatterjee S., Carrera C. & Lynch L., (1996) “Genetic algorithms and traveling salesman 
problems,” European Journal of Operational Research vol. 93, No. 3, pp. 490-510. 

Forbes J. Burkowski, (2004) “Proximity and priority: applying a gene expression algorithm 
to the Traveling Salesperson Problem,” Parallel Computing, Vol. 30, No. 5-6, pp. 803-
816.  

G. Andal Jayalakshmi & S. Sathiamoorthy. (2001) “A Hybrid Genetic Algorithm: A New 
Approach to Solve Traveling Salesman Problem,” International Journal of 
Computational Engineering Science Vol. 2, No. 2,  pp. 339-355. 

G. Reinelt, (1996) TSPLIB, University of Heidelberg, http://www. iwr. uni-
heidelberg.de/iwr/comopt/soft/ TSPLIB95/TSPLIB.html. 

Goldberg, D.E. & Lingle, R.J. (1985) Alleles, loci, and the traveling salesman problem, 
Proceedings of the International Conference on Genetic Algorithms, London, pp. 154-159. 

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. 
Addison-Wesley, Reading, MA. 

J. Grefenstette, R. Gopal, R. Rosmaita, & D. Gucht, (1985) Genetic algorithms for the 
traveling salesman problem, Proceedings of the Second International Conference on 
Genetic Algorithms. Lawrence Eribaum Associates, Mahwah, NJ.  

Paul K. Bergey & Cliff Ragsdale, (2005) “Modified differential evolution: a greedy random 
strategy for genetic recombination,” Omega, Vol. 33, No. 3, pp. 255-265. 

Whitley D., Starkweather, T. & Fuquay, D., (1989) “Scheduling problems and traveling 
salesmen: the genetic edge recombination operator,” Proceedings of the Third 
International Conference on Genetic Algorithms, Los Altos, CA, pp. 133-140. 



24 

Provably-Efficient Online Adaptive Scheduling 
of Parallel Jobs Based on Simple Greedy Rules 

Yuxiong He1,2,3 and Wen-Jing Hsu1,2 

1Singapore-MIT Alliance 
2Nanyang Technological University 

3Sun Microsystems  
Singapore 

1. Introduction 
Scheduling competing jobs on multiprocessors has always been an important issue for 
parallel and distributed systems. The challenge is to ensure overall system efficiency while 
offering a level of fairness to user jobs. Although various degrees of successes have been 
achieved over the past decades, few existing schemes address both efficiency and fairness 
over a wide range of work loads. Moreover, in order to obtain analytical results, many 
known results [22, 24, 7, 8, 17, 20, 23, 25, 33] require prior information about jobs such as 
jobs' release time, amount of work, parallelism profile, etc, which may be difficult to obtain 
in real applications. This chapter describes a scheduling algorithm - GRAD, which offers 
provable efficiency in terms of makespan and mean response time by allotting each job a fair 
share of processor resources. Our algorithm is non-clairvoyant [10, 6, 18, 12], i.e. it assumes 
nothing about the release time, the execution time, and the parallelism profile of jobs. 
A parallel job can be classified as adaptive or non-adaptive. An adaptively parallel job [34] 
may change its parallelism, and it allows the number of the allotted processors to vary 
during its execution. A job is nonadaptive if it runs on a fixed number of processors over its 
lifetime. With adaptivity, new jobs can enter the system by simply recruiting processors 
from the already executing jobs. Moreover, in order to improve the system utilization, 
schedulers can shift processors from jobs that do not require many processors to the jobs in 
need. However, since the parallelism of adaptively parallel jobs can change during the 
execution and the future parallelism is usually unknown, how a scheduler decides the 
processor allotments for jobs is a challenging problem. We describe GRAD that effectively 
addresses such an adaptive scheduling problem. 
Scheduling parallel jobs on multiprocessors can be implemented in two levels [14]: a kernel-
level job scheduler which allots processors to jobs, and a user-level thread scheduler which 
maps the threads of a given job to the allotted processors. The processor reallocation occurs 
periodically between scheduling quanta. The thread scheduler provides parallelism feedback to 
the job scheduler. The feedback is an estimation of the number of processors that its job can 
effectively use during the next quantum. The job scheduler follows some processor 
allocation policy to determine the allotment to the job. It may implement a policy that is 
either space-sharing, where jobs occupy disjoint processor resources, or time-sharing, where 



 Advances in Greedy Algorithms 

 

440 

different jobs may share the same processor resources at different points in time. Once a job 
is allotted its processors, the allotment does not change within the quantum. 
GRAD is a two-level scheduling algorithm that uses simple, greedy-like rules. The thread-
level scheduler called A-GREEDY [1] provides feedback based on two simple indicators 
acquired from the past quantum, namely, whether its request was satisfied and whether the 
allotted processors are well utilized. Based on the feedbacks from all jobs, the OS allocator 
RAD [19] partitions processors as equally as possible. Once given the processors, A-
GREEDY greedily maps the ready threads of the job onto its allotted processors. If the 
number of ready threads is less than or equal to the number of allotted processors, all ready 
threads are scheduled to execute. Otherwise, each allotted processor is assigned with one 
ready thread. The thread mapping in greedy manner ensures that the allotted processors 
always make useful work unless there are insufficient number of ready threads to work on. 
Based on the “equalized allotment” scheme for processor allocation, and by using the 
history-based feedback, we show that GRAD is provably efficient. The performance is 
measured in terms of both makespan and mean response time. GRAD achieves O(1)-
competitiveness with respect to makespan for job sets with arbitrary release times, and O(1)-
competitiveness with respect to mean response time for batched job sets where all jobs are 
released simultaneously. Unlike many previous results, which either assume clairvoyance 
[29, 21, 31] or use instantaneous parallelism [10, 6], GRAD removes these restrictive 
assumptions. Moreover, because the quantum length can be adjusted to amortize the cost of 
context-switching during processor reallocation, GRAD provides effective control over the 
scheduling overhead and ensures efficient utilization of processors. 
Our simulation results also suggest that GRAD performs well in practice. For job sets with 
arbitrary release time, their makespan scheduled by GRAD is no more than 1.39 times of the 
optimal on average (geometric mean). For batched job sets, their mean response time 
scheduled by GRAD is no more than 2.37 times of the optimal on average. 
The remainder of this chapter is organized as follows. Section 2 describes the job model, 
scheduling model, and objective functions. Section 3 describes the GRAD algorithm. Section 
4 analyzes the competitiveness of GRAD with respect to makespan. Section 5 shows the 
competitiveness of GRAD with respect to mean response time for batched jobs, while its 
detailed analysis is presented in Appendix A. Section 6 presents the empirical results. 
Section 7 discusses the related work, and Section 8 gives some concluding remarks. 

2. Scheduling and analytical model 
Our scheduling input consists of a collection of independent jobs = {J1, J2, … , J } to be 
scheduled on a collection of P identical processors. Time is broken into a sequence of equal-
sized scheduling quanta 1, 2, …, each of length L, where each quantum q includes the interval 
[L ⋅ q,L ⋅ q +1, … ,L(q +1) - 1] of time steps. The quantum length L is a system configuration 
parameter chosen to be long enough to amortize scheduling overheads. In this section, we 
formalize the job model, define the scheduling model, and present the optimization criteria 
of makespan and mean response time. 
We model the execution of a multithreaded job Ji as a dynamically unfolding directed acyclic 
graph (DAG, for short). Each vertex of the DAG represents a unit-time instruction. The work 
T1 (Ji) of the job Ji corresponds to the total number of vertices in the dag. Each edge 
represents a dependency between the two vertices. The span T∞(Ji) corresponds to the 



Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules 

 

441 

number of nodes on the longest chain of the precedence dependencies. The release time r(Ji) 
of the job Ji is the time at which Ji becomes first available for processing. Each job is handled 
by a dedicated thread scheduler, which operates in an online manner, oblivious to the future 
characteristics of the dynamically unfolding DAG. 
The job scheduler and the thread schedulers interact as follows. The job scheduler may 
reallocate processors between scheduling quanta. Between quantum q - 1 and quantum q, 
the thread scheduler of a given job Ji determines the job's desire d(Ji, q), which is the number 
of processors Ji wants for quantum q. Based on the desire of all running jobs, the job 
scheduler follows its processor-allocation policy to determine the allotment a (Ji, q) of the job 
with the constraint that a (Ji, q) ≤ d(Ji, q). Once a job is allotted its processors, the allotment 
does not change during the quantum. 
A schedule X = (, π) of a job set  is defined as two mappings  : ∪  Vi → {1, 2, … ,1}, 
and π : ∪ Vi → {1, 2, … , P}, which map the vertices of the jobs in the job set  to the set 
of time steps, and the set of processors on the machine respectively. A valid mapping must 
preserve the precedence relationship of each job. For any two vertices u, v ∈ Vi of the job Ji, if 
u ≺ v, then  (u) <  (v), i.e. the vertex u must be executed before the vertex v. A valid 
mapping must also ensure that one processor can only be assigned to one job at any given 
time. For any two vertices u and v, both  (u) =  (v) and π(u) = π(v) are true iff u = v. 
Our scheduler uses makespan and mean response time as the performance measurement. 
Definition 1 The makespan of a given job set  is the time taken to complete all the jobs in 

, i.e. T( ) = max  T(Ji), where T(Ji) denotes the completion time of job Ji. 
Definition 2 The response time of a job Ji is T(Ji) - r(Ji), which is the duration between its 
release time r(Ji) and the completion time T(Ji). The total response time of a job set  is given 
by R( ) = Σ (T(Ji) - r(Ji)) and the mean response time is ( ) = R( )/ . 
The goal of the chapter is to show that our scheduler optimizes the makespan and mean 
response time, and we use competitive analysis as a tool to evaluate and compare the 
scheduling algorithm. The competitive analysis of an online scheduling algorithm is to 
compare the algorithm against an optimal clairvoyant algorithm. Let T*( ) denote the 
makespan of an arbitrary jobset  scheduled by an optimal scheduler, and T( ) denote the 
makespan produced by an algorithm A for the job set . A deterministic algorithm A is said 
to be c-competitive if there exists a constant b such that T( ) ≤ c ⋅ T*( ) + b holds for the 
schedule of any job set. We will show that our algorithm is c-competitive in terms of the 
makespan, where c is a small constant. Similarly, for the mean response time, we will show 
that our algorithm is also constant-competitive for any batched jobs. 

3. Algorithms 
This section presents the job scheduler - RAD, and overviews the thread scheduler - A-
GREEDY [1]. 
RAD Job Scheduler 
The job scheduler RAD unifies the space-sharing job scheduling algorithm DEQ [35, 27] 
with the time-sharing RR algorithm. When the number of jobs is greater than the number of 
processors, GRAD schedules the jobs in a batched, round-robin fashion, which allocates one 
processor to each job with an equal share of time. When the number of jobs is not more than 
the number of processors, GRAD uses DEQ as the job scheduler. DEQ gives each job an 
equal share of spatial allotments unless the job requests for less. 



 Advances in Greedy Algorithms 

 

442 

When a batch of jobs are scheduled in the round-robin fashion, RAD maintains a queue of 
jobs. At the beginning of each quantum, if there are more than P jobs, it pops P jobs from the 
top of the queue, and allots one processor to each of them during the quantum. At the end of 
the quantum, RAD pushes the P jobs back to the bottom of the queue if they are 
uncompleted. The new jobs can be put into the queue once they are released. 
DEQ attempts to give each job a fair share of processors. If a job requires less than its fair 
share, however, DEQ distributes the extra processors to the other jobs. More precisely, upon 
receiving the desires {d(Ji, q)} from the thread schedulers of all jobs Ji ∈ , DEQ executes the 
following processor-allocation algorithm: 
1. Set n = . If n = 0, return. 
2. If the desire of every job Ji ∈  satisfies d(Ji, q) ≥ P/n, assign each job a (Ji, q) = P/n 

processors. 
3. Otherwise, let ’ = {Ji ∈ : d(Ji, q) < P/n}. Assign a (Ji, q) = d(Ji, q) processors to each Ji ∈ 

’. Update  =  - ’, and P = P - Σ ’ d(Ji, q). Go to Step 1. 
Note that, at any quantum where the number of jobs is equal to the number of processors, 
DEQ and RR give exactly the same processor allotment, and allocate each of P jobs with one 
processor. 
Adaptive Greedy Thread Scheduler 
A-GREEDY [1] is an adaptive greedy thread scheduler with parallelism feedback. Between 
quanta, it estimates its job's desire, and requests processors from the job scheduler. During 
the quantum, it schedules the ready threads of the job onto the allotted processors greedily 
[15, 5]. If there are more than a (Ji, q) ready threads, A-GREEDY schedules any a (Ji, q) of 
them. Otherwise, it schedules all of them. 
A- GREEDY's desire-estimation algorithm is parameterized in terms of a utilization parameter 
 > 0 and a responsiveness parameter ρ > 1, both of which can be adjusted for different levels of 
guarantees for waste and completion time. 
Before each quantum, A- GREEDY y for a job Ji ∈  provides parallelism feedback to the job 
scheduler based on the Ji’s history of utilization in the previous quantum. A- GREEDY 
classifies quanta as “satisfied” versus “deprived” and “eficient” versus “inefficient.” A 
quantum q is satisfied if a (Ji, q) = d(Ji, q), in which case Ji’s allotment is equal to its desire. 
Otherwise, the quantum is deprived.1 The quantum q is efficient if A- GREEDY utilizes no less 
than a  fraction of the total allotted processor cycles during the quantum, where  is the 
utilization parameter. Otherwise, the quantum is inefficient. Under the four-way 
classification, however, A- GREEDY only uses three: inefficient, efficient-and-satisfied, and 
efficient-and-deprived. 
Using this three-way classification and the job's desire for the previous quantum, A- 
GREEDY computes the desire for the next quantum as follows: 
• If quantum q - 1 was inefficient, decrease the desire, setting d(Ji, q) = d(Ji, q - 1)=½, where 

ρ is the responsiveness parameter. 
• If quantum q - 1 was efficient-and-satisfied, increase the desire, setting d(Ji, q) = ρd(Ji, q - 1). 
• If quantum q - 1 was efficient-and-deprived, keep desire unchanged, setting d(Ji, q) = 

d(Ji, q - 1). 

                                                 
1 We can extend the classification of “satisfied” versus “deprived” from quanta to time 
steps. A job Ji is satisfied (or deprived) at step t ∈ [L ⋅ q,L ⋅ q + 1, .. ,L(q + 1) - 1] if Ji is satisfied 
(resp. deprived) at the quantum q. 



Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules 

 

443 

4. Makespan 
This section shows that GRAD is c-competitive with respect to makespan, where c denotes a 
constant. The exact value of c is related to the choice of A-GREEDY's utilization and 
responsiveness parameter, as will be explained shortly. 
We first review the lower bounds of makespan. Given a job set  and P processors, lower 
bounds on the makespan of any job scheduler can be obtained based on release time, work, 
and span. Recall that, for a job Ji ∈ , the quantities r(Ji), T1 (Ji), and T∞(Ji) represent the 
release time, work, and span of Ji, respectively. Let T* ( ) denote the makespan produced 
by an optimal scheduler on a job set  on P processors. Let T1 ( ) = Σ T1 (Ji) denote the 
total work of the job set. The following two inequalities give two lower bounds on the 
makespan [6]: 

 (1) 

 (2) 

To facilitate the analysis, we state a lemma from [1] that bounds the satisfied steps and the 
waste of a single job scheduled by A-GREEDY. Recall that, the parameter ρ > 1 denotes A- 
GREEDY's responsiveness parameter,  > 0 its utilization parameter, and L the quantum 
length. 
Lemma 1 [1] For a job Ji with work T1 (Ji) and span T∞(Ji) on a machine with P processors,  
A- GREEDY produces at most 2T∞(Ji)/(1 - )+Llogρ P +L satisfied steps, and it wastes at most  
(1+ρ - )T1 (Ji) / processor cycles in the course of the computation.                                                      □ 
The following theorem analyzes the makespan of a job set  scheduled by GRAD. 
Theorem 2 Let ρ denote A-GREEDY's responsiveness parameter,  its utilization parameter, and L 
the quantum length. Then, GRAD completes a job set  on P processors in 

 
(3) 

time steps. 
Proof. Suppose job Jk is the last job completed among the jobs in . Let S(Jk) denote the set of 
satisfied steps for Jk, and D(Jk) denote its set of deprived steps. The job Jk is scheduled to start 
its execution at the beginning of the quantum q where Lq < r(Jk) ≤ L(q + 1), which is the 
quantum immediately after Jk's release. Therefore, we have T( ) ≤ r(Jk) + L + │S(Jk)│ + 
│D(Jk)│. We now bound │S(Jk)│ and │D(Jk)│ respectively. 
From Lemma 1, we know that the number of satisfied steps attributed to Jk is at most 
│S(Jk)│≤ 2T∞(Jk)/(1 - ) + Llogρ P + L. 
We now bound the total number of deprived steps D(Jk) of job Jk. For each step t ∈ D(Jk), 
GRAD applies either DEQ or RR as job scheduler. RR always allots all processors to jobs. By 
definition, DEQ must have allotted all processors to jobs whenever Jk is deprived.  
Thus, the total allotment on such a step t is always equal to the total number of  
processors P. Moreover, the total allotment of  over Jk's deprived steps D(Jk) is a  
( ,D(Jk)) = Σ Σ  a (Ji, t) = P│D(Jk)│. Since any allotted processor is either working 
productively or wasted, the total allotment for any job Ji is bounded by the sum of its total 



 Advances in Greedy Algorithms 

 

444 

work T1 (Ji) and total waste w(Ji). By Lemma 1, the waste for the job Ji is at most (ρ -  + 1)/ 
times of its work. Thus, the total number of allotted processor cycles for job Ji is at most T1 (Ji) 
+ w(Ji) ≤ (ρ + 1)T1 (Ji) /. The total number of allotted processor cycles for all jobs is at most 
Σ  (ρ + 1)T1 (Ji) / = ((ρ + 1)/)T1 ( ). Given a ( ,D(Jk)) ≤((ρ + 1)/)T1 ( ) and a ( ,D(Jk)) = P 
│D(Jk)│, we have │D(Jk)│ ≤  . 
Therefore, we can get 

 
□ 

Since both T1 ( ) =P and max  {T∞(Ji) + r(Ji)} are lower bounds of T*( ), we obtain the 
following corollary. 
Corollary 3 GRAD completes a job set  in 

 
time steps, where T*( ) denotes the makespan of  produced by an optimal clairvoyant scheduler.  □ 
Since both the quantum length L and the processor number P are independent variables 
with respect to any job set , Corollary 3 shows that GRAD is O(1)-competitive with respect 
to makespan. 
To better interpret the bound, let's substitute ρ = 1.2 and  = 0.6, we have T( ) ≤ 8.67T*( ) + 
Llg P/ lg 1.2 + 2L. Since both the quantum length L and the processor number P are 
independent variables with respect to any job set , GRAD is 8.67-competitive given ρ = 1.2 
and  = 0.6. 
When  = 0.5 and ρ approaches 1, the competitiveness ratio (ρ + 1)= + 2=(1 - ) approaches 
its minimum value 8. Thus, GRAD is (8 + ε)-competitive with respect to makespan for any 
constant ε > 0. 

5. Mean response time 
Mean response time is an important measure for multiuser environments where we desire 
as many users as possible to get fast response from the system. In this section, we first 
introduce the lower bounds. Then, we show that GRAD is O(1)-competitive for batched jobs 
with respect to the mean response time. 
Lower Bounds and Preliminaries 
We first introduce some definitions. 
Definition 3 Given a finite list A =〈αi〉 of n =│A│integers, define f : {1, 2, … , n}→{1, 2, … , n} 
to be a permutation satisfying α f (1) ≤ α f (2) ≤ … ≤ α f (n). The squashed sum of A is defined as 

 



Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules 

 

445 

The squashed work area of a job set  on a set of P processors is 

 
where T1 (Ji) is the work of job Ji ∈ . The aggregate span of  is 

 
where T∞(Ji) is the span of job Ji ∈ . 
The research in [36, 37, 10] establishes two lower bounds for the mean response time: 

 (4) 

 (5) 

where ( ) denotes the mean response time of  scheduled by an optimal clairvoyant 
scheduler. Both the aggregate span T∞( ) and the squashed work area swa ( ) are lower 
bounds of the total response time R*( ) under an optimal clairvoyant scheduler. 
Analysis 
The proof is divided into two parts. In the first part where  ≤ P, GRAD always uses DEQ 
as job scheduler. In this case, we apply the result in [18], and show that GRAD is O(1)-
competitive. In the second part where  > P, GRAD uses both RR and DEQ. Since we 
consider batched jobs, the number of incomplete jobs decreases monotonically. When the 
number of incomplete jobs drops to P, GRAD switches its job scheduler from RR to DEQ. 
Therefore, we prove the second case based on the properties of round robin scheduling and 
the results of the first case. The following theorem shows the total response time bound for 
the batched job sets scheduled by GRAD. Please refer to Appendix A for the complete proof. 
Theorem 4 Let ρ be A-GREEDY's responsiveness parameter,  its utilization parameter, and L the 
quantum length. The total response time R( ) of a job set  produced by GRAD is at most 

 
(6) 

where swa ( ) denotes the squashed work area of , and T∞( ) denotes the aggregate span of .   □ 
Since both swa ( ) /  and T∞( )/  are lower bounds on R( ), we obtain the following 
corollary. It shows that GRAD is O(1)-competitive with respect to mean response time for 
batched jobs. 
Corollary 5 The mean response time ( ) of a batched job set  produced by GRAD satisfies 

 
where ( ) denotes the mean response time of  scheduled by an optimal clairvoyant scheduler.   □ 

6. Experimental results 
To evaluate the performance of GRAD, we conducted four sets of experiments, which are 
summarized below. 



 Advances in Greedy Algorithms 

 

446 

• The makespan experiments compares the makespan produced by GRAD against the 
theoretical lower bound for over 10000 runs of job sets. 

• The mean response time experiments investigate how GRAD performs with respect to 
mean response time for over 8000 batched job sets. 

• The load experiments investigate how the system load affects the performance of 
GRAD. 

• The proactive RAD experiments compare the performance of RAD against its variation 
- proactive RAD. The proactive RAD always allots all processors to jobs even if the 
overall desire is less than the total number of processors. 

 

 
Fig. 1. The DAG of a fork-join job used in the simulation. This job has start-up length w0 = 1, 
serial phase length w1 = 3, parallel phase length w2 = 2, parallelism h = 7, and the number of 
iterations iter = 2. 

6.1 Simulation setup 
To study GRAD, we build a Java-based discrete-time simulator using DESMO-J [11]. Our 
simulator models four major entities - processors, jobs, thread schedulers, and job 
schedulers, and simulates their interactions in a two-level scheduling environment. As 
described in Section 2, we model the execution of a multithreaded job as a dag. When a job 
is submitted to the simulated multiprocessor system, an instance of a thread scheduler is 
created for the job. The job scheduler allots processors to the job, and the thread scheduler 
executes the job using A-GREEDY. The simulator operates in discrete time steps, and we 
ignore the overheads incurred in the reallocation of processors. 
Our benchmark application is the Fork-Join jobs, whose task graphs are typically as shown 
in Figure 1. Each job alternates between a serial phase of length w1 and a parallel phase (with h- 
way parallelism) of length w2, while the initial serial phase has length w0. The parallelism of 
job's parallel phase is the height h of the job, and the number of iterations is denoted as iter . 
Fork-Join jobs arise naturally in jobs that exhibit “data parallelism”, and apply the same 
computation to a number of different data points. Many computationally intensive 
applications can be expressed in a data-parallel fashion [30]. The repeated fork-join cycle in 
the job reflects the often iterative nature of these computations. The average parallelism of 
the job is approximately (w1 + hw2)=(w1 + w2). By varying the values of w0, w1, w2, h, and the 
number of iterations, we can generate jobs with different work, spans, and phase lengths. 
GRAD requires some parameters as input. We set the responsiveness parameter to be ρ= 2.0, 
and the utilization parameter  = 0.8 unless otherwise specified. GRAD is designed for 
moderate-scale and large-scale multiprocessors, and we set the number of processors to be  
P = 128. The quantum length L represents the time between successive reallocations of 



Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules 

 

447 

processors by the job scheduler, and is selected to amortize the overheads due to the 
communication between the job scheduler and the thread scheduler, and the reallocation of 
processors. In conventional computer systems, a scheduling quantum is typically between 
10 and 20 milliseconds. The execution time of a task is decided by the granularity of the job. 
If a task takes approximately 0.5 to 5 microseconds, then the quantum length L should be set 
to values between 103 and 105 time steps. Our theoretical bounds indicate that as long as 
T∞� Llog P, the length of L should have little effect on our results. In our experiments, we 
set L = 1000. 

6.2 Makespan experiments 
The competitive ratio of makespan derived in Section 4, though asymptotically strong, has a 
relatively large constant multiplier. The makespan experiments were designed to evaluate 
the constants that would occur in practice and compare GRAD to an optimal scheduler. The 
experiments are conducted on more than 10, 000 runs of job sets using many combinations 
of jobs and different loads. 
Figure 2 shows how GRAD performs compared to an optimal scheduler. The makespan of a 
job set  has two lower bounds max (r(Ji) + T∞(Ji)) and T1( ) =P. The makespan 
produced by an optimal scheduler is lower-bounded by the larger of these two values. The 
makespan ratio in Figure 2 is defined as the makespan of a job set scheduled by GRAD 
divided by the theoretical lower bounds. Its X-axis represents the range of the makespan 
ratio, while the histogram shows the percentage of the job sets whose makespan ratio falls 
into the range. Among more than 10, 000 runs, 76.19% of them use less than 1.5 times of the 
theoretical lower bound, 89.70% use less than 2.0 times, and none uses more than 4.5 times. 
The average makepsan ratio is 1.39, which suggests that, in practice, GRAD has a small 
competitive ratio with respect to the makespan. 
 

 
Fig. 2. Comparing the makespan of GRAD with the theoretical lower bound for job sets with 
arbitrary job release time. 



 Advances in Greedy Algorithms 

 

448 

We now interpret the relation between the theoretical bounds and experimental results as 
follows. When ρ = 2 and  = 0.8, from Theorem 2, GRAD is 13.75-competitive in the worst 
case. However, we anticipate that GRAD's makespan ratio would be small in practical 
settings, especially when the jobs have total work much great than the span and with the 
machine moderately- or highly- loaded. In this case, the term on T1 ( )/P in Inequality (3) of 
Theorem 2 is much larger than the term max  {T∞(i) + r(i)}, i.e. the term T1( )/P 
generally dominates the makespan bound. The proof of Theorem 2 calculates the coefficient 
of T1 ( )/P as the ratio of the total allotment (total work plus total waste) versus the total 
work. When the job scheduler is RAD, which is not a true adversary, our simulation results 
indicate that the ratio of the waste versus the total work is only about 1/10 of the total work. 
Thus, the coefficient of T1 ( )/P in Inequality (3) is about 1.1. It explains why the makespan 
produced by GRAD is less than 2 times of the lower bound on average as shown in Figure 2. 

6.3 Mean response time experiments 
This set of experiments is designed to evaluate the mean response time of the batch job sets 
scheduled by GRAD. Figure 3 shows the distribution of the mean response time normalized 
w.r.t. the larger of the two lower bounds { the squashed work bound swa ( ) /  and the 
aggregated critical path bound T∞( )/ . The histogram in Figure 3 shows that, among 
more than 8, 000 runs, 94.65% of them use less than 3 times of the theoretical lower bound, 
and none of them uses more than 5:5 times. The average mean response time ratio is 2.37. 
 

 
Fig. 3. Comparing the mean response time of GRAD with the theoretical lower bound for 
batched job sets. 

Similar to the discussion in Section 6.2, we can relate the theoretical bounds for mean 
response time to the experimental results. When ρ = 2 and ρ = 0.8, from Theorem 4, GRAD is 
27.60-competitive. However, we expect that GRAD should perform closer to optimal in 
practice. In particular, when the job set J exhibits reasonably large total parallelism, we have 
swa ( ) � T∞( ), and thus, the term involving swa ( ) in Theorem 4 dominates the total 
response time. More importantly, RAD is not an adversary of A-GREEDY, as mentioned 



Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules 

 

449 

before, the waste of a job is only about 1/10 of the total work in average for over 100, 000 job 
runs we tested. Based on this waste, the squashed area bound swa ( ) in Inequality (6) of 
Theorem 4 has a coefficient to be around 2.2. It explains that the mean response time 
produced by GRAD is less than 3 times of the lower bound as shown in Figure 3. 

6.4 Load experiments 
This set of experiments is designed to investigate how the load affects the performance of 
GRAD. The load of a job set J on a machine with P processors indicates how heavily the jobs 
compete for processors on the machine, which is calculated as follows 

 
For a batched job set, the load is just the average parallelism of the set divided by the total 
number of processors. 
Figure 4 shows how GRAD performs against the theoretical lower bound with respect to 
makespan by varying system load. The makespan ratio in this figure is defined as the 
makespan of a job set scheduled by GRAD divided by the larger of the two lower bounds. 
Each data point represents the makespan ratio of a job set. The testing results suggest that 
the makespan ratio becomes smaller when the load gets heavier. Specifically, the makespan 
generated by GRAD is very close to the lower bound when the load is greater than 4; it 
never exceeds 1.5 times of the makespan produced when the system load is greater than 3. 
However, when the load is less than 2, the makespan ratio spreads in the range from 1 to 4. 
 

 
Fig. 4. Comparing GRAD against the theoretical lower bound for makespan with varying 
load. 

Figure 5 shows the performance of GRAD with respect to mean response time for batched 
jobs by varying system load. It compares the mean response time incurred by GRAD with 



 Advances in Greedy Algorithms 

 

450 

the theoretical lower bound. Under heavy load, the mean response time produced by GRAD 
concentrates on about 2 times of the lower bound, while under light load, the ratio spreads 
in the range from 1 to 4.  
 

 
Fig. 5. Comparing GRAD against the theoretical lower bound for mean response time with 
varying load for batched jobs. 

The load experiments bring up a question of how to improve the performance of GRAD 
under light load. The job scheduler RAD makes conservative decision on the allocation of 
processors to jobs. When the system is lightly loaded where the total demand is less than the 
total number of processors, RAD keeps some processors idle without allocating them to any 
jobs. Since a greedy thread scheduler executes a job faster with more processors allotted, a 
job scheduler that always allots all processors to jobs should perform better under light load. 
We will explore such a variation of the job scheduler RAD in the next set of the experiments. 

6.5 Proactive RAD experiments 
Proactive RAD always allocates all processors to jobs even if the total requests are less than 
the total number of processors. At a quantum q, when the total requests d( , q) = Σ  
 d(Ji, q) are greater than or equal to the total number P of processors, the proactive RAD 
works exactly the same as the original one. However, if d( , q) < P, the proactive RAD 
evenly allots the remaining P - d( , q) processors to all the jobs. 
Figure 6 shows the makespan ratio of proactive RAD against its original algorithm by 
varying system load. Each data point in the figure represents a job set's makespan ratio, 
defined as the makespan produced by the proactive RAD divided by that of the original. We 
can see that the makespan ratio is less than 1 for most of the runs, indicating that the 
proactive RAD out-performs the original one in most of these job sets. Moreover, the 
difference between them becomes more pronounced under light load, and diminishes with 
the increase of the system load. The reason is that the proactive RAD generally allocates 
more processors to jobs, especially when the load is light. The increased allotment allows 



Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules 

 

451 

faster execution of jobs which shortens the makespan of the job set. Figure 6 gives evidences 
that the proactive RAD improves the performance of our scheduling algorithm under light 
load. 
 

 
Fig. 6. Comparing the proactive RAD against the original for makespan with varying load. 
The X-axis represents the load of the system. The Y- axis represents the makespan ratio 
between the proactive and original RAD. 

 

 
Fig. 7. Comparing the proactive RAD against the original for mean response time with 
varying load . The X-axis represents the load of the system. The Y-axis represents the mean 
response time ratio between the proactive and original RAD. 



 Advances in Greedy Algorithms 

 

452 

7. Related work 
Adaptive parallel job scheduling has been studied both empirically [27, 38, 35, 26] and 
theoretically [16, 9, 28, 12, 13, 4]. McCann, Vaswani, and Zahorjan [27] introduce the notion 
of dynamic equipartitioning (DEQ), which gives each job a fair allotment of processors 
based on the job's request, while allowing processors that cannot be used by a job to be 
reallocated to the other jobs. Brecht, Deng, and Gu [6] prove that DEQ with instantaneous 
parallelism as feedback is 2-competitive with respect to the makespan. Later, Deng and 
Dymond [10] prove that DEQ with instantaneous parallelism is also 4-competitive for 
batched jobs with respect to the mean response time. 
Even though using instantaneous parallelism as feedback is intuitive, it can either cause 
gross misallocation of processor resources [32] or introduce significant scheduling overhead. 
For example, the parallelism of a job may change substantially during a scheduling 
quantum, alternating between parallel and serial phases. Depending on which phase is 
currently active, the sampling of instantaneous parallelism may lead the task scheduler to 
request either too many or too few processors. Consequently, the job may either waste 
processor cycles or take too long to complete. On the other hand, if the quantum length is set 
to be small enough to capture frequent changes in instantaneous parallelism, the proportion 
of time spent reallotting processors among the jobs increases, resulting in a high scheduling 
overhead. 
Our previous work in [18] presents a two-level adaptive scheduler AGDEQ, which uses 
DEQ as the job scheduler, and A-GREEDY as the thread scheduler. Instead of using 
instantaneous parallelism, AGDEQ uses the job's utilization in the past as feedback. AGDEQ 
is O(1)-competitive for makespan, and in a batched setting, O(1)-competitive for mean 
response time. However, as with other prior work [6, 10] that uses DEQ as the job scheduler, 
AGDEQ can only be applied to the case where the total number of jobs in the job set is less 
than or equal to the number of processors. 

8. Conclusions 
We have presented a non-clairvoyant adaptive scheduling algorithm GRAD that ensures 
provable efficiency, fairness and minimal overhead. 
The history-based feedback mechanism of GRAD can be applied to not only greedy-based 
thread schedulers, but many other thread schedulers. For example, GRAD using greedy 
rules to map ready threads to allotted processors is suitable for scheduling jobs in more 
centralized setting such as data parallel applications. In the centralized setting, the scheduler 
has the information of all ready threads at any moment such that it can apply greedy rules 
to make effective assignment of ready threads. However, for applications using many 
processors and executed with more distributed setting, it can be costly for a scheduler to 
collect the ready threads information before making each scheduling decision. In this case, 
other than using a greedy thread scheduler, it is more practical to apply a distributed thread 
scheduler such as A-STEAL [2, 3] that uses randomized work stealing. A-STEAL performs 
as well as A-GREEDY asymptotically [3] in terms of both job completion time and waste, 
however, A-STEAL has slightly larger coefficients because it does not have the complete 
information on ready threads to make full utilization of the allotted processors. Therefore, a 
greedy scheduler like A-GREEDY could be a good choice in the centralized setting, while A-
STEAL can be applied in the distributed setting where a greedy thread scheduler is no 



Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules 

 

453 

longer applicable. Analogously, one can develop a two-level scheduler by applying the 
feedback mechanism in GRAD, and application-specific thread schedulers. Such a two-level 
scheduler can be developed to provide both system-wide performance guarantees such as 
minimal makespan and mean response time, and optimization of individual applications. 

9. Acknowledgements 
The preliminary version of GRAD algorithm was published in our paper [19] coauthored 
with Charles E. Leiserson. The authors would like to thank Charles for many helpful 
discussions on formalizing the analysis and advices on revising the write-up. 

10. References 
[1] K. Agrawal, Y. He, W. J. Hsu, and C. E. Leiserson. Adaptive task scheduling with 

parallelism feedback. In Proceedings of the ACM SIGPLAN Symposium on Principles 
and Practice of Parallel Programming, pages 100 - 109, New York City, NY, USA, 2006. 

[2] K. Agrawal, Y. He, and C. E. Leiserson. An empirical evaluation of work stealing with 
parallelism feedback. In Proceedings of the International Conference on Distributed 
Computing Systems, pages 19 - 29, Lisboa, Portugal, 2006. 

[3] K. Agrawal, Y. He, and C. E. Leiserson. Work stealing with parallelism feedback. In 
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel 
Programming, San Jose, CA, USA, 2007. 

[4] N. Bansal, K. Dhamdhere, J. Konemann, and A. Sinha. Non-clairvoyant scheduling for 
minimizing mean slowdown. Algorithmica, 40(4):305-318, 2004. 

[5] R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded 
computations. SIAM Journal on Computing, 27(1):202-229, 1998. 

[6] T. Brecht, X. Deng, and N. Gu. Competitive dynamic multiprocessor allocation for 
parallel applications. In Parallel and Distributed Processing, pages 448 - 455, San 
Antonio, TX, 1995. 

[7] S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein. Improved 
scheduling algorithms for minsum criteria. In In the Proceedings of Automata, 
Languages and Programming, pages 646-657, Paderborn, Germany, 1996. 

[8] B. Chen and A. P. A. Vestjens. Scheduling on identical machines: How good is lpt in an 
on-line setting? Operations Research Letters, 21:165-169, 1998. 

[9] X. Deng and P. Dymond. On multiprocessor system scheduling. In Proceedings of the 
ACM Symposium on Parallel Algorithms and Architectures, pages 82-88, Padua, Italy, 
1996. 

[10] X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive scheduling of parallel jobs on 
multiprocessors. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 
pages 159-167, Philadelphia, PA, USA, 1996. 

[11] DESMO-J: A framework for discrete-event modelling and simulation. http://asi- 
www.informatik.uni-hamburg.de/desmoj/. 

[12] J. Edmonds. Scheduling in the dark. In Proceedings of the ACM Symposium on the Theory of 
Computing, pages 179-188, Atlanta, Georgia, United States, 1999. 

[13] J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng. Non-clairvoyant multiprocessor 
scheduling of jobs with changing execution characteristics. Journal of Scheduling, 
6(3):231-250, 2003. 



 Advances in Greedy Algorithms 

 

454 

[14] D. G. Feitelson. Job scheduling in multiprogrammed parallel systems (extended 
version). Technical report, IBM Research Report RC 19790 (87657) 2nd Revision, 
1997. 

[15] R. L. Graham. Bounds on multiprocessing anomalies. SIAM Journal on Applied 
Mathematics, pages 17(2):416-429, 1969. 

[16] N. Gu. Competitive analysis of dynamic processor allocation strategies. Master's thesis, 
York University, 1995. 

[17] L. A. Hall, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion time: 
off-line and on-line algorithms. In Proceedings of the ACM-SIAM Symposium on 
Discrete Algorithms, pages 142-151, Philadelphia, PA, USA, 1996. 

[18] Y. He, W. J. Hsu, and C. E. Leiserson. Provably e±cient two-level adaptive scheduling. 
In Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing, Saint-
Malo, France, 2006. 

[19] Y. He, W. J. Hsu, and C. E. Leiserson. Provably efficient online non-clairvoyant 
scheduling. In Proceedings of IEEE International Parallel and Distributed Processing 
Symposium, Long Beach, CA, USA, 2007. 

[20] K. S. Hong and J. Y. T. Leung. On-line scheduling of real-time tasks. IEEE Transactions 
on Computers, 41(10):1326-1331, 1992. 

[21] K. Jansen and H. Zhang. Scheduling malleable tasks with precedence constraints. In 
Proceedings of the ACM Symposium on Parallel Algorithms and Architectures, pages 86-
95, New York, NY, USA, 2005. 

[22] D. Karger, C. Stein, and J. Wein. Handbook of Algorithms and Theory of Computation, 
chapter 35 - Scheduling Algorithms. CRC Press, 1997. 

[23] H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and 
nonaproximability results for minimizing total flow time on single machine. In 
Proceedings of the ACM Symposium on the Theory of Computing, Philadelphia, 
Pennsylvania, USA, 1996. 

[24] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys. Sequencing and Scheduling: 
Algorithms and Complexity, pages 445-552. Elsevier Science Publishers, 1997. 

[25] S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In 
Proceedings of the ACM Symposium on the Theory of Computing, pages 110-119, El 
Paso, Texas, USA, 1997. 

[26] S. T. Leutenegger and M. K. Vernon. The performance of multiprogrammed 
multiprocessor scheduling policies. In SIGMETRICS, pages 226-236, Boulder, 
Colorado, United States, 1990. 

[27] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation policy for 
multiprogrammed shared-memory multiprocessors. ACM Transactions on Computer 
Systems, 11(2):146-178, 1993. 

[28] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. In Proceedings of the 
ACM- SIAM Symposium on Discrete Algorithms, pages 422-431, Austin, Texas, United 
States, 1993. 

[29] G. Mounie, C. Rapine, and D. Trystram. E±cient approximation algorithms for 
scheduling malleable tasks. In Proceedings of the ACM Symposium on Parallel 
Algorithms and Architectures, pages 23-32, New York, NY, USA, 1999. 

[30] L. S. Nyland, J. F. Prins, A. Goldberg, and P. H. Mills. A design methodology for data-
parallel applications. IEEE Transactions on Software Engineering, 26(4):293-314, 2000. 

[31] U. Schwiegelshohn, W. Ludwig, J. L.Wolf, J. Turek, and P. S. Yu. Smart smart bounds 
for weighted response time scheduling. SIAM Journal of Computing, 28(1):237-253, 
1998. 



Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules 

 

455 

[32] S. Sen. Dynamic processor allocation for adaptively parallel jobs. Master's thesis, 
Massachusetts Institute of technology, 2004. 

[33] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines online. In 
Proceedings of the IEEE Symposium on Foundations of Computer Science, pages 131-140, 
San Juan, Puerto Rico, 1991. 

[34] B. Song. Scheduling adaptively parallel jobs. Master's thesis, Massachusetts Institute of 
Technology, 1998. 

[35] A. Tucker and A. Gupta. Process control and scheduling issues for multiprogrammed 
shared-memory multiprocessors. In Proceedings of the ACM Symposium on Operating 
Systems Principles, pages 159-166, New York, NY, USA, 1989. 

[36] J. Turek, W. Ludwig, J. L. Wolf, L. Fleischer, P. Tiwari, J. Glasgow, U. Schwiegelshohn, 
and P. S. Yu. Scheduling parallelizable tasks to minimize average response time. In 
Proceedings of the ACM Symposium on Parallel Algorithms and Architectures, pages 200-
209, Cape May, New Jersey, United States, 1994. 

[37] J. Turek, U. Schwiegelshohn, J. L.Wolf, and P. S. Yu. Scheduling parallel tasks to 
minimize average response time. In Proceedings of the ACM-SIAM Symposium on 
Discrete Algorithms, pages 112-121, Philadelphia, PA, USA, 1994. 

[38] K. K. Yue and D. J. Lilja. Implementing a dynamic processor allocation policy for 
multiprogrammed parallel applications in the SolarisTMoperating system. 
Concurrency and Computation-Practice and Experience, 13(6):449-464, 2001. 

Appendix A. Proof of Theorem 4 
The proof is divided into two cases - when  ≤ P and when  > P. 
Case 1: when  ≤ P 
For the first case where  ≤ P, GRAD always use DEQ as job scheduler. In our previous 
work [18], we show that AGDEQ (the combination of DEQ and A-GREEDY) is O(1)-
competitive with respect to mean response time for batched jobs when  ≤ P. The 
following lemma from [18] bounds the mean response time of a batched job set with  ≤ P. 
Lemma 7 [18] A job set is scheduled by GRAD on P processors where  ≤ P. The total response 
time R( ) of the schedule is at most 

 
where c = 2 - 2/  + 1). 
Case 2: when jJ j > P 
We now derive the mean response time of GRAD for batched jobs for the second case where 

 >P. Since all jobs in the job set J arrive at time step 0, the number of uncompleted jobs 
decreases monotonically. When the number of uncompleted jobs drops down to P or below, 
GRAD switches its job scheduler from RR to DEQ. We divide the analysis into three parts. 
In Part (a), we prove two technical lemmas (Lemmas 8 and 9) which show the properties of 
round robin as the job scheduler. In Part (b), we analyze the completion time of the jobs 
which are scheduled by RR during their entire execution. In Part (c), we combine results and 
give response time of GRAD in general. 
A batched job set  can be divided into two subsets - RR set and DEQ set. The RR set, 
denoted as RR, includes all the jobs in  which are entirely scheduled by RR for their 
execution. The DEQ set, denoted as DEQ, includes all the jobs in  which are scheduled by 
RR at the beginning, and by DEQ eventually. There exists a unique quantum q called the 



 Advances in Greedy Algorithms 

 

456 

final RR quantum such that q is the last quantum scheduled by RR, and from quanta q+1 
onwards are all scheduled by DEQ. According to RAD, there must be greater than P 
uncompleted jobs at the beginning of q, and less than or equal to P uncompleted jobs 
immediately after the execution of q. Let  denote the total number of uncompleted jobs 
immediately after the execution of the final RR quantum. We know that  =│ DEQ│, and  ≤ 
P. Let π denote a permutation that lists the jobs according to the ascending order of their 
completion time, i.e. T(Jπ(1)) ≤ T( π(2)) ≤ … ≤ T( π( )). We have RR = { π(i) │ 1 ≤ i ≤  - } 
and DEQ = { π(i)│i >  - }, i.e. DEQ includes the  jobs that are completed last, and RR 

includes the other  -  jobs. 
We define two notations - t-suffix and t-preffix, and use them to simplify the notations. For 
any time step t, t-suffix denoted as  represents the set of time steps from t to the 
completion of  by  = {t, t + 1, … , T( )}, while t-preffix denoted as  represents set of 
time steps from 1 to t by  = {1, 2, … , t}. We shall be interested in the suffixes of jobs. 
Define the t-suffix of a job Ji ∈  to be the job Ji( ), which is the portion of job Ji that remains 
after t - 1 number of time steps have been executed. The t-suffix of the job set  is 

 
 

Thus, we have  = (  ), and the number of uncompleted jobs at time step t is the 
number│ ( )│ of nonempty jobs in  ( ). Similarly, we can define the t-prefix of a job Ji 

as Ji ( ), and the t-prefix of a job set  as  ( ). 
Case 2 - Part (a) 
The following two technical lemmas present the properties of round robin as a job 
scheduler. The first lemma shows that jobs make almost the same progress on the execution 
of their work when they are scheduled by RR. The second lemma relates the work of jobs to 
their completion time. 
Lemma 8 A batched job set  is scheduled by GRAD on a machine with P processors where  

 > P. At any time step t scheduled by RR, for any two uncompleted jobs Ji and Jj , we have  
│T1 (Ji ( )) - T1 (Jj ( ))│≤ L, where L is the length of the scheduling quantum. 
Proof. Since RR gives an equal share of processors to all uncompleted jobs, for any two jobs 
that arrive at the same time, their allotments differ by at most L at any time. When a job's 
allotment is 1, its allotted processor is always making useful work. Then the work done for 
any two uncompleted jobs differs by at most L at any time before their completion.              □ 
Lemma 9 A batched job set  is scheduled by GRAD on a machine with P processors where  

 > P. The following two statements are true: 
1. If Ji ∈ RR, Jj ∈ RR, and T1 (Ji) < T1 (Jj), then T(Ji) ≤ T(Jj). 
2. If Ji ∈ RR, and Jj ∈ DEQ, then T1 (Ji) ≤ T1 (Jj). 
Proof. We now prove the first statement. Let t = T(Ji). At time step t, job Ji completes work T1 

(Ji). From Lemma 8, we know that T1 (Jj ( )) ≥ T1 (Ji ( )) - L = T1 (Ji) - L. Since job Jj completes 
after job Ji, job Jj takes at least one more scheduling quantum than Ji to complete its 
execution. Thus the work done for Jj during the period from t to T(Jj) is at least L. Therefore, 
we have T1 (Jj) = T1 (Ji ( )) ≥ T1 (Ji ( ))+ L ≥ T1 (Ji). 
For any two jobs Ji ∈ RR, and Jj ∈ DEQ, we have T(Ji) < T(Jj ). By using a similar analysis, we 
can prove the second statement. 



Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules 

 

457 

Lemma 9 relates the work of jobs to their completion time. Its second statement tells us that 
only the  jobs with largest work are scheduled by DEQ eventually, and the other  -  
jobs are scheduled by RR for their overall execution. Moreover, according to its first 
statement, under the schedule of RR, the jobs with less work are completed more quickly 
than those with more work. Consider the jobs according to their work such that  
T1 (J1) ≤ T1 (J2) ≤ … ≤ T1 ( ). From Lemma 9, we have RR = {Ji│1 ≤ i ≤  - } and  

DEQ = {Ji│i >  - }. 
Case 2 - Part (b) 
The following lemma bounds the completion time of the jobs in RR where T1 (Ji) denotes the 
work of a job Ji. 
Lemma 10 GRAD schedules a batched job set  on a machine with P processors where  > P. 
Consider the jobs according to their work such that T1 (J1) ≤ T1 (J2) ≤ … ≤ T1 ( ). For  
1 ≤ i ≤  - , the completion time T(Ji) of a job Ji is T(Ji) ≤ ((  - i + 1) T1 (Ji) +Σ1 ≤ j < i T1 (Jj))=P+L. 
Proof. Since we consider the jobs according to their work, from Lemma 9, we have Ji ∈ JRR 

where 1 ≤ i ≤  - . Such a job Ji completes its overall execution under the schedule of RR as 
job scheduler.  
We first evaluate T1 ( ( )), which is the work done for  up to a time step t. Suppose that 
the job Ji terminates at the end of a quantum q where T(Ji) = q(L + 1) - 1. Let t = qL - 1 be the 
end of the quantum q - 1, which is L steps before the completion of Ji. The work done for Ji in 
interval  is T1 (Ji ( )) = T1 (Ji) - L. According to Lemma 8, no job completes more than  
T1  (Ji ( ))+ L amount of work in interval . Therefore, for any job Jj with j > i, we have 

 
(7) 

For each job Jj where j < i, by definition, we always have 

 (8) 

Thus, at time step t, from Inequalities (7) and (8), the total work done for the job set  is 

 

(9) 

Since RR always allots all processors to jobs, and all allotted processors are making useful 
work, RR executes P ready threads at any time step. Thus, the total work done for job set  
increases by P at each time step. From Inequality (9), we have 

 
 

Since T(Ji) = t + L, we complete the proof.                                                                                        □ 



 Advances in Greedy Algorithms 

 

458 

Case 2 - Part (c) 
The following lemma bounds the total response time of job sets scheduled by GRAD when 

 > P where swa ( ) denotes squashed work area, and T∞( ) denotes the aggregate span. 
Lemma 11 Suppose that a job set  is scheduled by GRAD on a machine with P processors 
where  > P. The response time R( ) of  is bounded by 

 
(10)

Proof. The jobs in  can be divided into RR set RR and DEQ set DEQ. Let n =  denote 
the number of jobs in . Recall that  denotes the number of jobs in DEQ, i.e.  ≤ P. 
Consider the jobs in the ascending order of their completion time such that T(J1) ≤ T(J2) ≤ … 
·≤ T(Jn). From Lemma 9, we have RR = {Ji│1 ≤ i ≤ n - } and DEQ = {Ji│i > n - }. We will 
calculate the total response time of the jobs in RR and DEQ respectively. 
Step 1: To calculate R( RR), we apply Lemma 10. For any job Ji ∈ RR, its completion time is 
T(Ji) ≤ (1/P)((n - i+1)T1 (Ji)+Σ1 ≤ j < i T1 (Jj))+L according to Lemma 10. Thus, the total response 
time of the jobs in RR is 

 (11)

Step 2: We now calculate R( DEQ). The  jobs in DEQ are scheduled by RR until the time 
step t = T(Jn-) at which the job Jn- completes, and scheduled by DEQ afterwards. The total 
response time of DEQ is 

 (12)

From Lemma 10, we know that the completion time of the job Jn- is 

 
(13)

To get R( DEQ), we only need to calculate R( DEQ ). 
Since the job set DEQ is scheduled by DEQ as the job scheduler from time step t onwards, 
we can apply the total response time bound in Lemma 7 to calculate R(JDEQ ). During 
the interval , job Jn- completes T1 (Jn-) amount of work. From Lemma 8, we know that 
each job Ji with i > n -  has completed at least T1 (Jn-) - L amount of work. Thus, such a job Ji 

has remaining work T1 (Ji  ≤ T1 (Ji) - T1 (Jn-) + L. The squashed work of DEQ  is 

 

(14)



Provably-Efficient Online Adaptive Scheduling of Parallel Jobs Based on Simple Greedy Rules 

 

459 

Let the constant c = 2 - 2/(1 + P) < 2. According to Lemma 7, we have 

 
(15)

where E1 = c T∞( ) + cPL(logρ P + 1). 
We will now calculate the response time of DEQ. Since we know c = 2 – 2/(1 + P) > 1, the 
responsiveness parameter ρ > 1, and the utilization parameter  ≤ 1, we have c(ρ + 1)= > 2. 
Given Equation (12), and Inequalities (13), (14) and (15), the response time of DEQ is 

 

(16)

where E2 = E1 + (c  + 1)PL . 
Step 3: Given R( RR) in Inequality (11), R( DEQ) in Inequality (16), and c(ρ+1)= > 2, the 
response time of  is the sum of them as follows: 
 

 
 

□ 
 



 Advances in Greedy Algorithms 

 

460 

Lemmas 7 and 11 bound the total response time of a batched job set  when  ≤ P and  
> P respectively. Combining them, we have completed the proof of Theorem 4. 

□ 



25 

Quasi-Concave Functions and  
Greedy Algorithms 

Yulia Kempner1, Vadim E. Levit2 and Ilya Muchnik3 

1 Holon Institute of Technology,  
2 Ariel University Center of Samaria, 

3 Rutgers - the State University of New Jersey, 
1,2Israel  

3USA 

1. Introduction 
Many combinatorial optimization problems can be formulated as: for a given set system over 
E (i.e., for a pair (E, ) where  ⊆ 2E is a family of feasible subsets of finite set E), and for a 
given function F : →R, find an element of  for which the value of the function F is 
minimum or maximum. In general, this optimization problem is NP-hard, but for some 
specific functions and set systems the problem may be solved in polynomial time. For 
instance, greedy algorithms may optimize linear objective functions over matroids [11] and 
Gaussian greedoids [5], [15], [32], while bottleneck objective functions can be maximized 
over general greedoids [16]. A generalization of greedoids in the context of dynamic 
programming is discussed in [1] and [2]. 
Another example is about set functions defined as minimum values of monotone linkage 
functions. These functions are known as quasi-concave set functions. Such a set function can 
be maximized by a greedy type algorithm over the family of all subsets of E 
[19],[24],[29],[30],[34], over antimatroids and convex geometries [17], [20], [25], join-
semilattices [28] and meet-semilattices [21]. A relationship was also established between 
submodular and quasi-concave functions [28] that allowed to build series of branch and 
bound procedures for finding maximum of submodular functions. 
Originally, quasi-concave set functions were considered [23] on the Boolean 2E 

 (1) 

In this work we extend this definition to various set systems. One of the natural extensions 
is a join-semilattice. Here,  ⊆ 2E is a join-semilattice if it is closed under union, i.e., A∪B ∈  
for each A,B ∈ . 
Another direction of our research is to adapt the definition of the quasi-concave set 
functions to set systems that are not necessarily closed under union. Let E be a finite set, and 
a pair (E, ) be a set system over E. A minimal feasible subset of E that includes a set X is 
called a cover of X. We will denote by C(X) the family of covers of X. Then the inequality (1) 
turns into the following.  
Definition 1 A function F defined on a set system (E, ) is quasi-concave if for each X, Y ∈ , and 
Z ∈ C(X ∪ Y ) 



 Advances in Greedy Algorithms 

 

462 

 (2) 

If a set system is closed under union, then the family of covers C(X ∪ Y ) contains the unique 
set X∪Y , and the inequality (2) coincides with the original inequality (1). 
This chapter is organized as follows. Section 1 contains an extended introduction. Section 2 
gives basic information about monotone linkage functions. We show that for a number of 
combinatorial structures the class of functions defined as the minimum values of monotone 
linkage functions coincides with the class of quasi-concave set functions. Section 3 deals 
with the construction of efficient algorithms for maximizing quasi-concave functions which 
are associated with monotone linkage functions. It is shown that properties of combinatorial 
structures affect their corresponding optimization algorithms. Section 4 deals with 
applications to clustering in bioinformatics. In this section we use a particular class of quasi-
concave set functions as natural criteria for cluster analysis. We describe how the Fibonacci 
heap structure can dramatically reduce the computational complexity. Section 5 contains 
conclusions and directions of future research. 

2. Preliminaries 
Here we will give definitions of some set properties that are discussed in the following 
sections. We will use X ∪ x for X ∪ {x}, and X − x for X − {x}. 
A non-empty set system (E, ) is called accessible if for each non-empty X ∈ , there exists 
an x ∈ X such that X − x ∈ . 
For each non-empty set system (E, ) accessibility implies that ∅ ∈ . 
Definition 2 A closure operator, : 2E→2E, is a map satisfying the closure axioms: 

 
Definition 3 The set system (E, ) is a closure system if it satisfies the following properties 

 
Let a set system (E, ) be a closure system, then the operator 

 (3) 

is a closure operator. 
A convex geometries was introduced by Edelman and Jamison [9] as a combinatorial 
abstraction of ”convexity”.  
Definition 4 [16] The closure system (E, ) is a convex geometry if the family  satisfies the 
following property 

 (4) 

It is easy to see that property (4) is dual to accessibility. Then, we will call it up-accessibility. If 
in each non-empty accessible set system one can reach the empty set ∅ from any feasible set 
X ∈  by moving down, so in each non-empty up-accessible set system (E, ) the set E may 
be reached by moving up. 
It is clear that a complement set system (E,  ) (system of complements), where  = {X ⊆ E 
: E −X ⊆ }, is up-accessible if and only if the set system (E, ) is accessible. 



Quasi-Concave Functions and Greedy Algorithms 

 

463 

In fact, accessibility means that for all sets X ∈  there exists a chain ∅= X0 ⊂ X1 ⊂ ... ⊂Xk = 
X such that Xi = Xi−1 ∪ xi and Xi ∈  for 0 ≤ i ≤ k, and up-accessibility implies the existence of 
the corresponding chain X = X0 ⊂ X1 ⊂ ... ⊂ Xk = E. Consider a set family for which this chain 
property holds for each pair of sets X ⊂ Y . 
Definition 5 A set system (E, ) satisfies the chain property if for all X, Y ∈ , and X ⊂ Y , there 
exists an y ∈ Y − X such that Y − y ∈ . We call the system a chain system. 
In other words, a set system (E, ) satisfies the chain property if for all X, Y ∈ , and X ⊂ Y, 
there exists a chain X = X0 ⊂ X1 ⊂ ... ⊂ Xk = Y such that Xi = Xi−1 ∪ xi and Xi ∈  for 0 ≤ i ≤ k. 
It is easy to see that (E, ) is a chain system if and only if (E, ) is a chain system as well. 
Consider a relation between accessibility and the chain property. If ∅ ∈ , then accessibility 
follows from the chain property. In general case, there are accessible set systems that do not 
satisfy the chain property (for example, consider E = {1, 2, 3} and  = {∅, {1}, {2}, {2, 3}, {1, 2, 
3}}) and vice versa, it is possible to construct a set system, that satisfies the chain property 
and it is not accessible (for example, let now  = {{1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}). In fact, if we 
have an accessible set system satisfying the chain property, then the same system but 
without the empty set (or without all subsets of cardinality less then some k) is not 
accessible, but satisfies the chain property. The analogy statements are correct for up-
accessibility. 
Examples of chain systems include convex geometries (see proposition 8) and complement 
systems called antimatroids, matroids and all independence systems (matchings, cliques, 
independent sets of a graph). Consider a less common example. 
Example 6 For a graph G = (V,E), the set system (V, ) given by 

 
is a chain system. The example is illustrated in Figure 1. 
 

 
                     (a)                                                                           (b) 

Fig. 1. G = (V,E) (a) and a family of connected subgraphs (b). 

To show that (V, ) is a chain system consider some A,B ∈  such that A ⊂ B. We are to 
prove that there exists an b ∈ B − A such that A ∪ b ∈ . Since B is a connected subgraph, 
there is an edge e = (a, b), where a ∈ A and b ∈ B − A. Hence, A ∪ b ∈ . 



 Advances in Greedy Algorithms 

 

464 

For a set X ∈ , let ex(X) = {x ∈ X : X − x ∈ } be the set of extreme points of X. Originally, 
this operator was defined for closure systems [9]. An element e ∈ A was called an extreme 
point if e ∉  (A − e). Our definition does not demand the existing of a closure operator, but 
when the set system (E, ) is a convex geometry ex(X) becomes the set of original extreme 
points of a convex set X. 
Note, that accessibility means that for each non-empty X ∈ , ex(X) ≠ ∅. 
Definition 7 The operator ex :  → 2E satisfies the heritage property if X ⊆ Y implies ex(Y ) ∩ X ⊆ 
ex(X) for all X, Y ∈ . 
We choose the name heritage property following B. Monjardet [26]. This condition is well-
known in the theory of choice functions where one uses also alternative terms like Chernoff 
condition [7] or property α [31]. This property is also known in the form X − ex(X) ⊆Y − ex(Y). 
The heritage property means that Y − x ∈  implies X − x ∈  for all X, Y ∈  with X ⊆ Y 
and for all x ∈ X. 
The extreme point operator of a closure system satisfies the heritage property, but the 
opposite statement in not correct. Indeed, consider the following example illustrated in 
Figure 2 (a): let E = {1, 2, 3, 4} and 

 
It is easy to check that the extreme point operator ex satisfies the heritage property, but the 
set system (E, ) is not a closure system ({2, 4}∩{3, 4} ∉ ). It may be mentioned that this set 
system does not satisfy the chain property. Another example (Figure 2 (b)) shows that the 
chain property is also not enough for a set system to be a closure system. Here 

 
and the constructed set system satisfies the chain property, but is not a closure set ({1, 3} ∩ 
{3, 4} ∉ F). 

 
                                          (a)                                                                               (b) 
Fig. 2. Heritage property (a) and chain property (b). 

Proposition 8 A set system (E, ) is a convex geometry if and only if 
(1) ∅ ∈ , E ∈   



Quasi-Concave Functions and Greedy Algorithms 

 

465 

(2) the set system (E, ) satisfies the chain property 
(3) the extreme point operator ex satisfies the heritage property. 

Proof. Let a set system (E, ) be a convex geometry. Then the first condition automatically 
follows from the convex geometry definition. Prove the second condition. Consider X, Y ∈ 

, and X ⊂ Y. From (4) it follows that there is a chain X = X0 ⊂ X1 ⊂ ... ⊂ Xk = E such that Xi = 
Xi−1 ∪ xi and Xi ∈ F for 0 ≤ i ≤ k. Let j be the least integer for which Xj ⊇ Y . Then Xj−1  Y , 
and xj ∈ Y . Thus, Y − xj = Y ∩ Xj−1 ∈ . Since xj ∉ X, the chain property is proved. To prove 
that ex(Y ) ∩ X ⊆ ex(X), consider p ∈ ex(Y ) ∩ X, then Y − p ∈  and X ∩ (Y − p) = X − p ∈ , 
i.e., p ∈ ex(X). 
Conversely, let us prove that the set system (E, ) is a convex geometry. We are to prove 
both up-accessibility and that X, Y ∈  implies X ∩ Y ∈ . Since E ∈ , up-accessibility 
follows from the chain property. Consider X, Y ∈ . Since E ∈ , the chain property 
implies that there is a chain X = X0 ⊂ X1 ⊂ ... ⊂ Xk = E such that Xi = Xi−1 ∪ xi and Xi ∈  for  
0 ≤ i ≤ k. If j is the least integer for which Xj ⊇ Y , then Xj−1  Y , and xj ∈ Y . Since xj ∈ ex(Xj ), 
we obtain xj ∈ ex(Y ). Continuing the process of clearing Y from the elements that are absent 
in X, eventually we reach the set X ∩ Y ∈ .   ■ 

3. Monotone linkage functions 
Monotone linkage functions were introduced by Joseph Mullat [29]. 
A function π: E × 2E → R is called a monotone linkage function if 

 (5) 

For each X ⊆ E define function F : (2E − ∅) → R as follows 

 (6) 

Example 9 Consider a graph G = (V,E), where V is a set of vertices and E is a set of edges. Let 
degH(x) denote the degree of vertex x in the induced subgraph H ⊆ G. It is easy to see that function 
π(x,H) = degH(x) is monotone linkage function and function F(H) returns the minimal degree of 
subgraph H. 
Example 10 Consider a proximity graph G = (V,E,W), where wij represents the degree of similarity 
of objects i and j. A higher value of wij reflects a higher similarity of objects i and j. Define a monotone 
linkage function π(i,H)

  
that measures proximity between subset H ⊆V and their element 

i. Then the function  can be interpreted as a measure of density of the set H. 

It was shown [23], that for every monotone linkage function π, function F is quasi-concave 
on the Boolean 2E. Moreover, each quasi-concave function may be defined by a monotone 
linkage function. In this section we investigate this relation on different families of sets. 
For any function F defined on a set system (E, ), we can construct the corresponding 
linkage function 

 

(7) 



 Advances in Greedy Algorithms 

 

466 

where [x,X]  = {A ∈  : x ∈ A and A ⊆ X}. 
The function πF is monotone. Indeed, if x ∈ X and [x,X]  ≠ ∅, then X ⊆ Y implies [x,X]  ≠ ∅ 
and 

 
If x ∈ X and [x,X]  = ∅, then X ⊆ Y implies 

 
It is easy to verify the remaining cases. 
In the sequel we will consider various types of set systems. At first, we investigate the set 
systems closed under union, i.e., we study quasi-concave functions on join-semilattices. 
Theorem 11 A set function F defined on a join-semilattice  is a quasi-concave function if and only 
if there exists a monotone linkage function π such that  for each X ∈  − ∅. 

Proof. If a monotone linkage function π is given, then F(X∪Y) = π(x*,X∪Y), where 
 1. Without loss of generality, assume that x* ∈ X. Thus, 

 
Conversely, if we have a quasi-concave set function F, we can define the monotone linkage 
function πF (x,X) using the definition 7. Let us denote

 
, and prove 

that F = G on  − ∅. 
Now, for each X ∈  − ∅ 

 
where 

 
On the other hand, 

 
where Ax is a set from [x,X]  on which the value of the function F is maximal i.e., 

 
From quasi-concavity of F it follows that 

 
Therefore, G(X) ≤F(X), and, hence,    ■ 

Now, consider set systems that are not closed under union. 

                                                 
1 argmin f(x) denote the set of arguments that minimize the function f. 



Quasi-Concave Functions and Greedy Algorithms 

 

467 

Let (E, ) be an accessible set system. Denote + =  − ∅. Then, having the monotone 
linkage function π , we can construct for all X ∈ + the set function 

 
It is easy to see that 

 (8) 

Indeed, for each X ∈ + 

 
where 

 
The following theorem finds conditions on the set system (E, ) and on the function F 
ensuring that the function GF coincides with F. 
Theorem 12 [18] Let (E, ) be an accessible set system. Then for every quasi-concave set function  
F : + → R 

 
if and only if the set system (E, ) satisfies the chain property. 
Thus, for an accessible set system satisfying the chain property each quasi-concave function 
F determines a monotone linkage function πF , and a set function defined as a minimum of 
this monotone linkage function πF coincides with the original function F. 
As examples of such set systems may be considered greedoids [16] that include matroids 
and antimatroids, and antigreedoids including convex geometries. By an antigreedoid we 
mean a set system (E, ) such that its complement set system (E, ) is a greedoid. 
Note, that if F is not quasi-concave, the function GF does not necessarily equal F. For 
example, let  = {∅, {1}, {2}, {1, 2}} and let 

 
The function F is not quasi-concave, since F({1}∪{2}) < min(F({1}), F({2})). It is easy to check 
that here GF ≠ F, because πF (1, {1, 2}) = πF (2, {1, 2}) = 1, and so GF ({1, 2}) = 1. Moreover, the 
function GF is quasi-concave. To understand this phenomenon, consider the opposite 
process. 
Let (E, ) be an accessible set system. If a monotone linkage function π : E × 2E → R is given, 
we can construct the set function Fπ : + → R: 

 
(9) 

To extend this function to the whole set system (E, ) define 

 



 Advances in Greedy Algorithms 

 

468 

Theorem 13 [18] Let (E, ) be an accessible set system. Then the following statements are equivalent 
(i) the extreme point operator ex :  → 2E satisfies the heritage property. 
(ii) for every monotone linkage function π the function Fπ is quasi-concave. 

Thus, if a set system (E, ) is accessible and the operator ex satisfies the heritage property, 
then for each set function F, defined on (E, ), one can build the quasi-concave set function 
GF that is an upper bound of the original function F. If, in addition, the set system has the 
chain property, the class of set functions defined as the minimum values of monotone 
linkage functions coincides with the class of quasi-concave set functions. 
Corollary 14 A set function F defined on a convex geometry (E, ) is quasi-concave if and only if 
there exists a monotone linkage function π such that  for each X ∈ −∅. 

Another approach to the result of Theorem 13 is in extending the function F to the Boolean 
2E by building a new linkage function πex. 
Let (E, ) be an accessible set system and π be a monotone linkage function. Define 

 
(10)

where 
 

Theorem 15 [25] Let (E, ) be an accessible set system and the extreme point operator ex satisfies 
the heritage property. If function π is a monotone linkage function, then 

(i) function πex is also monotone and 
(ii) its function  coincides with the function Fπ(X) = 

 for each X ∈ −∅. 

Now, Theorem 13 immediately follows from the properties of quasi-concave functions on 
the Boolean [23]. 
Remark 16 [25] Any extreme point operator ex satisfying the heritage property may be represented 
by some monotone linkage function π in the following way 

 (11)

and vice versa, if the linkage function π is monotone, the operator ex defined by (11) satisfies the 
heritage property. 

4. Maximizers of quasi-concave functions 
Consider the following optimization problem: given a monotone linkage function π, and an 
accessible set system (E, ), find a feasible set A ∈ +, such that Fπ(A) = max{Fπ(B) : B ∈ +}, 
where the function Fπ is defined by (9). From quasi-concavity of the function Fπ it follows 
that the set of optimal solutions is a join-semilattice with a unique maximal element. Our 
goal is to find this maximal element, which we call the ∪ − maximizer. For instance, for the 
functions defined in Example 9 ∪ − maximizer is the largest subgraph with the maximum 
minimum degree. In Example 10 we look for the largest subset with the highest density. 
A greedy-type algorithm for finding the ∪ − maximizer on the Boolean was constructed by 
Mullat [29] and has been effectively applied in data mining [22], biology [33], and for 
computer vision [35]. 
Here we want to investigate the more general set systems. 



Quasi-Concave Functions and Greedy Algorithms 

 

469 

4.1 Chain algorithm on convex geometries 
A convex geometry is a closure system, and so closed under intersection. Hence, each set X⊆ 
E has an unique cover which is a closure of X, i.e.,  (X) and the family of feasible sets F of a 
convex geometry (E, ) form a join-semilattice L , with the lattice operation: X ∨ Y =  (X 
∪Y ). Hence, for convex geometries the inequality (2) reads as follows F(X ∨ Y ) ≥ min{F(X), 
F(Y )} for each X, Y ∈ L . 
Consider the special structure that quasi-concave function Fπ determines on a convex 
geometry. It has been already noted that the family of feasible sets maximizing function Fπ  is 
a join-semilattice with a unique maximal element. Denote this family by 0, and let a0 be the 
value of function Fπ on the sets from 0. We denote by 1 the family of sets, which 
maximize function Fπ over + − 0, and by a1 the value of function Fπ on these sets. 
Continuing this process, we have , where t + 1 is a number of different values 
of function Fπ. It is easy to see that  is a subsemilattice of L , where j = {X ∈ 

+ : Fπ(X) ≥ a j}. We call these subsemilattices upper level semilattices. Denote by K j
 the 

maximal element - 1 of the upper level semilattice j. Since i ⊆ i+1, we obtain K0 ⊆ K1 ⊆ ... 
⊆ Kt, where Kt is 1 of the join-semilattice L , i.e., Kt

 = E. 
Let K0 = H0 ⊂ H1 ⊂ ... ⊂ Hr = Kt be the subchain of all different 1-s of the chain K0 ⊆ K1 ⊆ ... ⊆ 

Kt. Thus, to find a ∪ − maximizer, we have to find just H0. In fact, we construct an algorithm 
that finds the complete chain H0 ⊂ H1 ⊂ ... ⊂ Hr = E of different 1-s. This chain of ”local 
maximizers”2 has a number of interesting applications [24]. 
For any real number u we define the u-level set of a family  as 

 
It is clear that if Fπ is quasi-concave, then the u-level set of a join-semilattice is a join-
semilattice as well. The input of the following algorithm is a threshold u and a set X ∈ , 
while it returns 1 of non-empty ( +∩[∅,X])u. The algorithm is motivated by procedures 
from [28] and [29]. 
The Level-Set Algorithm (u,X) 

1. Set A = X 
3. While A ≠ ∅ do 
   3.1 Set Iu(A) = {x ∈ ex(A) : π(x,A) ≤ u}  
   3.2 If Iu(A) = ∅ then stop and return A 
   3.3 Set A = A − Iu(A) 
4. Return A. 

Theorem 17 Let (E, ) be a convex geometry. Then, for every monotone linkage function π and the 
corresponding function  the Level-Set Algorithm (u,X) returns 1 of 

non-empty semilattice ( + \ [∅,X])u and returns ∅ when this u-level set is empty. 
Proof. At first, note that  Since any convex geometry is 

closed under intersection, then all sets generated by the algorithm belong to the convex 
geometry. 

                                                 
2 Indeed, for each A ∈ +, and for each null Hl, if A  Hl then F(A) < F(Hl). 



 Advances in Greedy Algorithms 

 

470 

Consider the case when the algorithm returns A ≠ ∅. Since Iu(A) = ∅, then Fπ(A) > u, i.e. A ∈ 
( + ∩ [∅,X])u. It remains to be proven that A is the null of the u-level set, i.e., that B ∈ ( + ∩ 
[∅,X])u implies A ⊇ B. Suppose the opposite was true, and let X = X0

 ⊃ X1
 ⊃ ... ⊃ Xk = A be a 

sequence of sets generated by the algorithm, where Xi+1
 = Xi − Iu(Xi) for 0 ≤ i < k. Since B ∈ 

( + ∩ [∅,X])u, then X ⊇ B. On the other hand, since A  B, there exists the least integer j for 
which Xj  B. Then Xj−1

 ⊇ B, and there is xj ∈ Iu(Xj−1) that belongs to B. So, Xj−1
 ⊇ B , xj ∈ B 

and xj ∈ ex(Xj−1), then from heritage property it follows that xj ∈ ex(B). Hence, monotonicity 
of function π implies F(B) ≤ π(xj ,B) ≤ π (xj ,Xj−

1) ≤ u, a contradiction. 
If the algorithm returns A = ∅, then ( + ∩ [∅,X])u = ∅. Assuming the opposite, then there is 
a non-empty set B ∈ ( + ∩ [∅,X])u. By analogy, with the first part of the proof, we obtain 
that Fπ(B) ≤ u, a contradiction.   ■ 
The following Chain Algorithm finds the chain of all local maximizers for a non-empty join-
semilattice L . 
The Chain Algorithm (E, π, ) 

1. Set Γ0 = E 
2. i = 0 
3. While Γi ≠ ∅ do 
   3.1 u = F(Γi) 
   3.2 Γi+1 = Level-Set(u, Γi) 
   3.3 i = i + 1 
4. Return the chain Γ0 ⊃ Γ1 ⊃ ... ⊃ Γi−1. 

Theorem 18 Let (E, ) be a convex geometry. Then, for every monotone linkage function π and the 
corresponding function  the Chain Algorithm returns the chain Γ0 ⊃ 

Γ1 ⊃ ... ⊃ Γp, which coincides with H0
 ⊂ H1

 ⊂ ... ⊂ Hr
 - the chain of all different 1-s of the upper level 

semilattices. 
Proof. First, prove that for each l = 0, 1, ..., p, Γl is 1 of some upper level semilattice. It is clear, 
that if Fπ(Γl) = aj , then Γl ∈ Lj . To prove that Γl is 1 of Lj , we have to show that for each A ∈ 

+, A  Γl implies Fπ(A) < Fπ(Γl). Suppose that the opposite is true, and let k be the least 
integer for which there exists A ∈ +, such that A  Γk and Fπ(A) ≥ Fπ(Γk). Note that k > 0, 
because Γ0

 = E is 1 of join-semilattice L , and so A  Γ0
 never holds. The structure of the 

Chain Algorithm implies Fπ(Γk) > Fπ(Γk−1). Hence Fπ(A) > Fπ(Γk−1) and, consequently, A ⊆ Γk−1. 
Thus A ∈ ( + ∩ [∅,Γk−1])u, where u = Fπ(Γk−1). On the other hand, from Theorem 17 it follows 
that Γk is 1 of ( + ∩ [∅,Γk−1])u, i.e., A ⊆ Γk, a contradiction. 
It remains to show that for each Hi

 there exists l ∈ {0, 1, ...p} such that Γl = Hi. Assume the 
opposite, and let Hj

 be a maximal 1 for which the statement is not correct. Since Hr
 = Γ0, then 

j < r, i.e., there exists l ∈ {0, 1, ...p} such that Hj+1 = Γl. From Fπ(H j) > Fπ(H j+1) = Fπ(Γl) and H j
 ⊂ 

H j+1 = Γl, it follows that H j
 ∈ ( + ∩ [∅,Γl])u, where u = Fπ(Γl). Thus H j ⊆ Γl+1, where Γl+1

 is 1 of 
( + ∩ [∅,Γl])u. On the other hand, since Γl+1

 is 1 of some upper level semilattice and H j
 is the 

closest 1 to H j
 
+1, then Γl+1

 ⊆ H j
 ⊆ H j

 
+1 = Γl. Hence H j

 = Γl+1, a contradiction.   ■ 
Corollary 19 Let (E, ) be a convex geometry. Then, for every monotone linkage function π, the 
Chain Algorithm finds a ∪ − maximizer of the quasi-concave function 

 



Quasi-Concave Functions and Greedy Algorithms 

 

471 

Actually, a convex geometry is the unique structure on which the Chain Algorithm 
produces optimal solutions. To prove it we have to show that for each set system that is not 
a convex geometry there exists a monotone linkage function for which the Chain Algorithm 
does not find the ∪ − maximizer. It is obvious that if a set system is not up-accessible, then 
the Chain Algorithm may not reach the optimal solution. 
Now, consider an up-accessible set system (E, ) that does not satisfy the heritage property, 
i.e., there exists A,B ∈  such that A ⊂ B, and there is a ∈ A such that B − a ∈  and A − a ∉ . 
Up-accessibility of the set system (E, ) implies that there exists a sequence of feasible sets 

 
where Bi = Bi−1 − ai for 1 ≤ i ≤ p, and ap+1 = a. Define a linkage function π on pairs (x,X) where 
X ⊆ E, X ≠ ∅ and x ∈ X: 

 
It is easy to verify that function π is monotone. Then the Chain Algorithm generates only 
one set E, on which the value of the function Fπ is equal to 1, while Fπ(A) = 2. Thus, the Chain 
Algorithm does not find a feasible set that maximizes the function Fπ. So, we have the 
following theorem. 
Theorem 20 Let (E, ) be an accessible and an up-accessible set system. Then the following 
statements are equivalent 

(1) the set system (E, ) is a convex geometry 
(2) The Chain Algorithm finds a ∪ − maximizer of the quasi-concave function  

for every monotone linkage function π 
The Chain Algorithm is of greedy type, since it is based on the best choice principle: it 
chooses on each step the extreme elements (with respect to the linkage function) and, in 
such a way, approaches the optimal solution. The run-time of the algorithm depends largely 
on the efficiency of linkage function computation. For instance, in Example 10 the 
complexity of computing the initial linkage function values π(x, V ) for all the vertices in V is 
O(|E|), where E is a set of edges. For straightforward implementation the time required for 
finding the minimum value is O(|V |). After deleting the vertex with minimum value of π, 
the time required for updating the linkage function values for all the neighboring vertices of 
the deleted vertex is O(|V |), since the update can be carried out in time O(1) by subtracting 
the corresponding weight wij. So, the total time required for straightforward implementation 
of the Chain Algorithm in Example 10 is O(|E| + |V |2) = O(|V |2). 
In general case, the Chain Algorithm finds the ∪ − maximizer of a convex geometry (E,F) in 
O(P|E|+U|E|2) time, where P is the maximum complexity of computing the initial linkage 
function values π(x,E) over all x ∈ E, and U is the maximum complexity of updating the 
linkage function values. 
For some special linkage functions the running time can be improved by using more 
efficient data structure that will be discussed in the next section. 

4.2 Chain algorithm on join-semilattices 
Now we have a monotone linkage function π, and a join-semilattice  ⊆ 2E, and we are 
interested in finding a maximal maximizer of the function Fπ defined as F(X) = minx∈X π(x,X) 
according to (6). 



 Advances in Greedy Algorithms 

 

472 

Since a join-semilattice should not to be up-accessible, we have to find another way to reach 
each feasible set. 
Consider the following operator: 

 
(12)

If  is a join-semilattice, ω(X) is the largest set in  contained in X (if such a set exists). In 
other words, ω (X) is the 1 of the subsemilattice [∅,X]  if the subsemilattice is not empty, 
and ∅, otherwise. 
Note, that a join-semilattice  should not have the minimum element, and we use the 
element ∅ only to complete the definition of the operator ω. 
The operator ω is called interior (dual to closure) operator: 

(i) ω (X) ⊆ X, 
(ii) ω (X) = ω (ω (X)), 
(iii ) X ⊆ Y ⇒ ω (X) ⊆ ω (Y ). 

ω (X) is an interior of X. The fixed points of ω (X = ω (X)) are called the open sets of ω and 
forms the dual closure system [27]. A set system (E, ) is a dual closure system if and only if 
the complement set system (E, ) is a closure system. If  is a join-semilattice and the 
operator ω is defined by (12), then the family of open sets coincides with , excluding, 
possible, the empty set. 
We assume that for each X ⊆ E a procedure for finding interior ω (X) is available. Later we 
will consider some examples of procedures building interior efficiently. 
From quasi-concavity of function Fπ  it follows that the set of maximizers is a join-semilattice 
with a unique maximal element. It is easy to see that the structure of upper level semilattices 
investigated for convex geometries holds for join-semilattice as well. To obtain the chain H0 

⊂ H1 ⊂ ... ⊂ H r = E of different 1-s we use the Chain Algorithm with the following 
transformation: instead of assigning some set we replace it by its interior. 
The Level-Set Algorithm-JS (u,X) 

1. Set A = ω (X) 
3. While A ≠ ∅ do 
   3.1 Set Iu(A) = {x ∈ A : π(x,A) ≤ u}  
   3.2 If Iu(A) = ∅ then stop and return A 
   3.3 Set A = ω (A − Iu(A)) 
4. Return A. 

The Chain Algorithm-JS (E, π,F) 
1. Set Γ0 = ω (E) 
2. i = 0 
3. While Γ i ≠ ∅ do 
   3.1 u = F(Γ i) 

   3.2 Γ i+1 = Level-Set(u, Γ i) 
   3.3 i = i + 1 
4. Return the chain Γ 0 ⊃ Γ 1 ⊃ ... ⊃ Γ i−1. 

Similarly with the proof of Theorem 18 we obtain the following result. 



Quasi-Concave Functions and Greedy Algorithms 

 

473 

Theorem 21 Let  ⊆ 2E
 be a non-empty join-semilattice. Then, for every monotone linkage function 

π and the corresponding function  the Chain Algorithm-JS returns the chain 

Γ0
 ⊃ Γ1

 ⊃ ... ⊃ Γp, which coincides with H0 ⊂ H1 ⊂ ... ⊂ Hr
 - the chain of all different 1-s of the upper 

level semilattices. 
Consider the complexity of the Chain Algorithm-JS. The run-time of the algorithm depends 
largely on the efficiency of interior construction. The Chain Algorithm-JS finds the ∪ − 
maximizer of a join-semilattice (E, ) in O(|E|(P + T + U|E|)) time, where P is the 
maximum complexity of computing the initial linkage function values π(x,E) over all x ∈ E, 
U is the maximum complexity of updating the linkage function values, and T is the 
maximum complexity of interior construction. 

4.2.1 Algorithms for interior construction 
The efficiency of the interior construction depends on the representation of a join-
semilattice. Here we consider a join-semilattice specified by a quasi-concave function. In 
addition, we consider an antimatroid that is a specific case of a join-semilattice.  
1. Quasi-Concave constraints. Assume that the family Ω ⊆ 2E of feasible sets is determined 
by the following constraints: for each H ∈ Ω , (H) > α, where  is a quasi-concave 
function defined by a monotone linkage function . It is easy to see that the set Ω is an α-
level set of 2E, i.e., Ω = {X ⊆ E :  (X) > α}. Since  is a quasi-concave function, the set  Ω is a 
join-semilattice. The problem is to find interior ω(X) over Ω for every set X ⊆ E, i.e., to find 1 
of the non-empty join-semilattice Ω ∩[∅,X]. Note that the Level-Set Algorithm(α,X) enables 
us to find 1 of the non-empty join-semilattice (2E ∩[∅,X])α, i.e., ω(X) over Ω. The modified 
Level-Set Algorithm is as follows: 
Quasi-Concave Interior Algortihm (α,X) 

1. Set A = X 
3. While A ≠ ∅ do 
   3.1 Set Iα(A) = {x ∈ A : (x,A) ≤ α}  
   3.2 If Iα(A) = ∅ then stop and return A 
   3.3 Set A = A − Iα(A) 
4. Return A. 

The Quasi-Concave Interior Algorithm finds the interior ω(X) in O(P|X|+ U|X|2) time, 
where P is the maximum complexity of computing the initial linkage function values (x,X) 
over all x ∈ X, and U is the maximum complexity of updating the linkage function values. 
2. Antimatroids. There are many equivalent axiomatizations of antimatroids, that may be 
separated into two categories: antimatroids defined as set systems and antimatroids defined 
as languages. An algorithmic characterization of antimatroids based on the language 
definition was introduced in [6]. Another algorithmic characterization of antimatroids that 
depicted them as set systems was developed in [17]. While classical examples of 
antimatroids connect them with posets, chordal graphs, convex geometries, etc., game 
theory gives a framework in which antimatroids are interpreted as permission structures for 
coalitions [4]. There are also rich connections between antimatroids and cluster analysis [20]. 
In mathematical psychology, antimatroids are used to describe feasible states of knowledge 
of a human learner [12]. 



 Advances in Greedy Algorithms 

 

474 

Definition 22 [16]A non-empty set system (E, ) is an antimatroid if 
(A1) (E, ) is an accessible set system 
(A2) for all X, Y ∈ , and X Y, there exist an x ∈ X − Y such that Y ∪ x ∈ . 

It is easy to see that the chain property follows from (A2), but these properties are not 
equivalent. 
Proposition 23 [5][16]For an accessible set system (E, ) the following statements are equivalent: 
(i) (E, ) is an antimatroid 
(ii)  is closed under union (X, Y ∈  ) ⇒X ∪ Y ∈ ). 
Therefore an antimatroid is a join-semilattice that includes the empty set. The interior 
operator ω defined by (12) returns for each set X ⊆ E the maximal feasible subset called the 
basis of X. 
Since an antimatroid (E, ) satisfies the chain property, to find ω(X), one can build the chain 
∅ ⊂ X0 ⊂ X1 ⊂ ... ⊂ Xm = ω(X) belonging to . 
Antimatroid Interior Algortihm(X, ) 

1. A = ∅ 
2. Find x ∈ X - A, such that A ∪ x ∈ S  
    if no such x exists, then stop and return A 
3. Set A = A ∪ x and go to 2. 

The Antimatroid Interior Algorithm returns the basis ω(X) for each set X ⊆ E that 
immediately follows from the chain property. 
Let an antimatroid (E, ) be given by a membership oracle which for each set A ⊆ E decides 
whether A ∈  or not. Then the Antimatroid Interior Algorithm finds the interior of a set in 
at most k(k + 1)/2 oracle calls, where k = |X|. Thus the complexity of interior construction is 
O(|X|2θ), where θ is the complexity of the membership oracle. 
Consider another way to define antimatroids. Let P = {x1 < x2 < ... < xn} be a linear order on E. 
Define 

 
It is easy to see that (E,DP ) is an antimatroid. 
Let (E, 1) and (E, 2) be two antimatroids. Define 

 
Then (E, 1 ∨ 2) is also an antimatroid [16]. 
Every antimatroid can be represented as a join of a family of its maximal chains. Hence, each 
antimatroid may be defined by a set T of linear orders as 

 
(13)

By analogy with convex realizers of convex geometries [10] the set T is called a realizer. 
Thus, if {P1, P2, ..., Pk} is a realizer of (E, ), then each element of  is a join of elements in 

. Note, that each  
Since each (E,  ) is an antimatroid , there are k interior operators , where ωP(X) = {y ∈ 
E : y ≤P min }, i.e., let P = {x1 < x2 < ... < xn} and a minimal element of  with respect to the 
order P be xi = min , then ωP (X) = {x1, x2, ..., xi−1}. 



Quasi-Concave Functions and Greedy Algorithms 

 

475 

Proposition 24  
 

Proof. Let A = ∪P∈T ωP (X). Since for each P ∈ T, ωP (X) ⊆ X and ωP (X) ∈ , then ωP (X) ⊆ 
ω(X), which implies A ⊆ ω(X). Conversely, from (13) ω(X) = ∪P∈TXP , where XP ∈ DP. Since 
ω(X) ⊆X implies XP ⊆ X for all P ∈ T, then XP ⊆ ωP (X) and so ω(X) ⊆ A.   ■ 
Let an antimatroid (E, ) be given by a realizer T = {P1, P2, ..., Pk}, then the following 
algorithm builds the interior set using Proposition 24. 
Ordering Interior Algorithm(X, ) 

1. For i = 1 to k do 
   1.1 build  
2. Return  

A straightforward implementation of the Ordering Interior Algorithm runs in O(k|E|), 
where k is the cardinality of a realizer. 

5. Ortholog clustering 
This section deals with applications of quasi-concave functions to clustering in 
bioinformatics. We concentrate on the one of the problem of comparative genomics. 
Comparative genomics is a field of biological research in which the genome sequences of 
different species are compared. Although living creatures look and behave in many 
different ways, all of their genomes consist of DNA, the chemical chain that includes the 
genes that code for thousands of different kinds of proteins. Thus, by comparing the 
sequence of the human genome with genomes of other organisms, researchers can identify 
regions of similarity and difference. This information can help scientists better understand 
the structure and function of human genes and thereby develop new strategies to combat 
human disease. Comparative genomics also provides a powerful tool for studying 
evolutionary changes among organisms. 
A fundamental problem in comparative genomics is the detection of genes from different 
organisms that are involved in similar biological functions. This requires identification of 
homologous genes that are similar to each other because they originated from a common 
ancestor. Such genes are called orthologs [13]. 
We describe an ortholog clustering method where we require that any sequence in an ortholog 
cluster has to be similar to other sequence from other genomes in that ortholog cluster. 

5.1 Ortholog detection using multipartite graph clustering 
The input for the ortholog clustering problem is a set of genetic sequences along with 
information about the organisms they belong to. The goal is to find similar sequences from 
different organisms. The ortholog detection problem is complicated due to the presence of 
another type of very similar sequences in the same organism. These sequences, called 
paralogs, are result of duplication events when a gene in an organism is duplicated to occupy 
two different positions in the same genome. Although both types of genes are similar, only 
orthologs are likely to be involved in the same biological role. So, for detecting orthologs it is 
critical to focus on the similarities between genes from different organisms while ignoring 
the similarities between genes within an organism. 
The requirement of selectively ignoring gene similarities for paralogous sequences can be 
conveniently represented in a multipartite graph. A graph is a multipartite if the set of 



 Advances in Greedy Algorithms 

 

476 

vertices in the graph may be divided into non-empty disjoint subsets, called parts, such that 
no two vertices in the same part have an edge connecting them. We use a multipartite 
graph, where different genomes correspond to different parts and the genes in a genome 
correspond to vertices in a part. 
Another specific problem in finding ortholog clusters is that orthologous genes from closely 
related organisms will be much more similar than those from distantly related organisms. 
Fortunately, we often have estimates of evolutionary relationships between the organisms 
that define a hierarchical graph over the partite sets. Using this evolutionary graph, called a 
phylogenetic tree, we can correct the observed gene similarities by scaling up the similarities 
between the orthologs from distantly related organisms. 
Consider the ortholog clustering problem with k different genomes, where the genome l, 
represented by Vl (l = 1, 2, ...k), contains nl genes. Then, the similarity relationships between 
genes from different genomes can be represented by an undirected weighted multipartite 
graph G = (V,E,W), where , every set Vl contains nl vertices corresponding to nl 

genes, and  (i, j = 1, 2, ..., k) is a set of weighted edges representing 
similarities between genes. The example of a multipartite graph is illustrated in Figure 3 (a). 
The relationship between these genomes is given by the phylogenetic tree relating the 
species under study (see Figure 3 (b)). 
 

 
                                        (a)                                                                               (b) 
Fig. 3. Multipartite graph (a) and phylogenetic tree (b). 

We consider an ortholog cluster as a largest subgraph with the highest density. For finding 
an ortholog cluster we assign a score F(H) to any subset H of V. A score function F denotes a 
measure of proximity among genes in H. Then an ortholog cluster H* is defined as the 
subset with the largest score value (a maximizer of F). To build a score function F(H) we use 
Definition 6 that is based on using a linkage function π(i,H) which measures the degree of 
similarity of the gene i ∈ H to other genes in H. 
Our linkage function considers the sequence similarity between genes within the ortholog 
cluster, their relationship to genes outside the cluster, and the phylogenetic distance 
between the corresponding genomes. 
We require that H contains at least two genomes. So, let , where Hl is the 
subset of genes from Vl present in H. If mij ≥ 0 is the similarity value between gene i from 
genome g(i) and gene j from another genome g(j), and p(g(i), g(j)) represents the distance 
between the two genomes, then the linkage function is defined as 

 
(14)



Quasi-Concave Functions and Greedy Algorithms 

 

477 

For each part Vl ≠ g(i) the term  aggregates the similarity values between the genes i 

and all other genes in the subset Hl, while the second term, mij, estimates the 

relationship between gene i and genes from genome l that are not included in Hl. A large 
positive difference between two terms ensures that the gene i is highly similar to genes in Hl 

and at the same time very dissimilar from the genes not included in Hl. From a clustering 
point of view, this ensures large values of intra-cluster homogeneity and inter-cluster 
separability for extracted cluster. 
The scaling term p(g(i),l) is used for correcting the observed sequence similarities by 
magnifying the sequence similarities corresponding to genomes which diverged in ancient 
times. Given the phylogenetic tree relating the species under study, the distance p(g(i), g(j)) 
between genomes g(i) and g(j) is defined as the height, hg(i),g(j), of the subtree rooted at the 
last common ancestor of these genomes. When the species are closely related, a function that 
depends on hg(i),g(j), but grows slower will better model the distance between the species. 
Choosing an appropriately growing function is critical because a faster growing function 
will have the undesirable effect of clustering together sequence from distance species but 
leaving out the sequence from closely related species. So, in this case the distance p(g(i), g(j)) 
may be defined as (1 + log2 hg(i),g(j)). 
It is easy to verify that function π defined in (14) is monotone. Firstly note that the distance 
p(g(i), g(j)) ≥ 0 has no effect on the monotonicity. Consider the case when H is extended by 
some gene p. If i ∈ g(p), then π(i,H ∪ p) = π(i,H), otherwise π(i,H ∪ p) − π(i,H) = 2p(g(i), 
g(p))mip ≥ 0 
So, the function  is quasi-concave and we can use the Chain 

Algorithm to find the orthogonal cluster. 

5.2 Analysis and implementation 
The performance of the Chain Algorithm depends on the type of data structure one chooses 
to maintain the set of linkage function values. In Example 10 the total time required for 
straightforward implementation of the Chain Algorithm is O(|V |2). Here we build the 
efficient data structure that enables us to reduce the run-time of the algorithm. There are 
three operation that are performed at each iteration of the algorithm. 
i. find-min - this operation performs in Step 3.1 of the Chain Algorithm where the value 

F(Γi) is determined. 
ii. delete-min - this operation performs in Step 3.2 of the Chain Algorithm when the Level-

Set Algorithm finds set Iu(A) of elements with the minimum value of function π and 
removes this set from the set A. 

iii. decrease-key - this operation performs inside the Level-Set Algorithm. Deleting set Iu(A) 
entails updating the linkage function values for all neighbors of elements from this set. 

If |V | elements are organized into a Fibonacci heap [14], we can perform a delete-min 
operation in O(log V ) amortized time and a decrease-key operation in O(1) amortized time, 
while a find-min operation can be done in constant time [8]. 
Proposition 25 [33] With a Fibonacci heap, the Chain Algorithm finds an ortholog cluster in time 
O(|E| + |V | log |V |). 
Proof. The initialization of the algorithm includes computing π(i, V ) for each i ∈ V. The 
value π(i, V) depends on the weights on edges incident to i and on the relationship of the 



 Advances in Greedy Algorithms 

 

478 

genome g(i) with other genomes. We assume that the number of genomes is very small 
compared to the number of genes, i.e., k << n. Thus computing the initial linkage function 
values for all the vertices takes O(|E|). 
We use Fibonacci heap to store vertices according to their linkage function values. So, the 
value F(Γi) can be found in O(1) time, and since each deletemin operation takes O(log V ) 
amortized time, the total time for all calls to delete-min is O(V log V ). 
Each deleting of an element with minimum value of linkage function π leads to updating the 
linkage function values for all neighbours of the element. Due to the additive property of the 
linkage function (14), the update can be carried out in time O(1) by subtracting the 
corresponding value 2p(g(i), g(p))mip due to the deleted edge (i, p). 
Decreasing the value of function π involves an implicit decrease-key operation, which can be 
implemented in O(1) amortized time. As each edge is deleted once, all linkage function 
updates together require O(|E|) time. Thus, the algorithm runs in O(|E| + |V | log |V |) 
time. ■ 
The proposed ortholog clustering method was applied to the protein sequences from 
complete genomes of seven eukaryotes present in the eukaryotic orthologous groups [33]. 
The analysis of these results shows that clusters obtained using proposed method show a 
high degree of correlation with the manually curated ortholog clusters. 

6. Conclusions 
In this article, we have investigated monotone linkage functions defined on convex 
geometries, antimatroids, and semilattices in general. It has been shown that the class of 
functions defined as minimum values of monotone linkage functions has close relationship 
with the class of quasi-concave set functions. Quasi-concave functions defined on 
semilattices, antimatroids and convex geometries determine special substructures of these 
set families. This structures allow building efficient algorithms that find minimal sets on 
which values of quasi-concave functions are maximum. 
The mutual critical step of these algorithms is how to describe the set closure operator. If an 
efficient algorithm of the closure construction exists it causes the optimization algorithm to 
be efficient as well. On the other hand, we think that the closure construction problem is 
interesting enough to be investigated separately. Thus, we suppose that for an arbitrary 
semilattice the problem of closure construction has exponential complexity. 
An interesting direction for future work is to develop our methods for relational databases, 
where a polynomial algorithm for closure construction is known [3]. 
We have considered some applications of quasi-concave functions to clustering a structured 
data set, where together with pair-wise similarities between objects, we are also given 
additional information about objects organization. 
We focused on a simple structure - a partition model of data where the objects are a priori 
partitioned into groups. While clustering such data, we also considered an additional 
requirement of being able to differentiate between pairwise similarities across different 
partite sets. Existing clustering methods do not solve this problem, since they are limited to 
finding clusters in a collection of isolated objects. 
The requirement of differentially treating pair-wise relationships across different groups 
was modeled by a multipartite graph along with a hierarchical relationship between these 
groups. The problem was reduced to finding the cluster (subgraph) of the highest density in 
the multipartite graph. 



Quasi-Concave Functions and Greedy Algorithms 

 

479 

This problem is usually formulated as finding the maximum weight multipartite clique. 
However, no efficient procedure exists for solving this problem. Due to this, clusters are 
often modeled as quasi-cliques or dense graphs. 
Traditionally, quasi-cliques are defined, using a threshold, as a relaxation of a complete 
subgraph - the relaxation can be on the degree of a vertex or on the total number of edges in 
the quasi-clique. In contrast to traditional quasi-clique definition, our definition does not use 
any threshold parameters. 
The proposed multipartite graph clustering method was successfully applied to the ortholog 
clustering problem. It may be also adapted to other clustering problem both in comparative 
genomics and in computer vision [35]. 

7. References 
[1] Bagotskaya, N.V.; Levit, V.E. & Losev, I.S. (1988). On one generalization of matroids 

insuring applicability of dynamic programming method, In: Information 
Transmission and Processing Systems, Vol. 2, IPIT USSR Academy of Sciences, 
Moscow, (33–36). (in Russian) 

[2] Bagotskaya, N.V.; Levit, V.E. & Losev, I.S. (1990). A combinatorial structure insuring 
applicability of dynamic programming method, Automation and Remote Control 50, 
(1414-1420). 

[3] Beeri,C. & Bernstein, P.A. (1979). Computational problems related to the design of 
normal form relational schemes, ACM Transactions on Database Systems 4, No.1, (30-
59). 

[4] Bilbao, J.M. (2003). Cooperative games under augmenting systems, SIAM Journal of 
Discrete Mathematics 17, (122-133). 

[5] Björner, A. & Ziegler, G.M. (1992). Introduction to greedoids, In: Matroid applications, ed. 
N. White, Cambridge Univ.Press, Cambridge, UK. 

[6] Boyd, E.A. & Faigle, U. (1990). An algorithmic characterization of antimatroids, Discrete 
Applied Mathematics 28, (197-205). 

[7] Chernoff, H. (1954). Rational selection of decision functions, Economica 22, (422-443). 
[8] Cormen, T.H.; Leiserson, C. E.; Rivest, R. L. & Stein, C. (2001). Introduction to Algorithms, 

second ed. MIT Press and McGraw-Hill, (476-497). 
[9] Edelman, P.H. & Jamison, R.E. (1985). The theory of convex geometries, Geom. Dedicata 

19, (247-270). 
[10] Edelman, P.H. & Saks, M.E. (1988). Combinatorial representation and convex dimension 

of convex geometries, Order 5, No.1, (23-32). 
[11] Edmonds, J. (1971). Matroid and the greedy algorithm, Mathematical Programming 1, 

(127-136). 
[12] Eppstein, D. (2008). Upright-Quad Drawing of st-planar learning spaces, Journal of 

Graph Algorithms and Applications 12, No. 1, (51-72). 
[13] Fitch, W.M. (1970). Distinguishing homologous from analogous proteins, Systematic 

Zoology 19, (99-113). 
[14] Fredman, M.L. & Tarjan, R.E. (1987). Fibonacci heaps and their uses in improved 

network optimization algorithms, Journal of the ACM 34, No.3, (596-615). 
[15] Goecke, O. (1988). A greedy algorithm for hereditary set systems and a generalization of 

the Rado-Edmonds characterization of matroids, Discrete Applied mathematics 20, 
(39-49). 



 Advances in Greedy Algorithms 

 

480 

[16] Korte, B.; Lovász, L. & Schrader, R. (1991). Greedoids, Springer-Verlag, New 
York/Berlin. 

[17] Kempner, Y. & Levit, V.E. (2003). Correspondence between two antimatroid algorithmic 
characterizations, The Electronic Journal of Combinatorics 10, R44. 

[18] Kempner, Y. & Levit, V.E. (2008). Duality between quasi-concave functions and 
monotone linkage functions, arXiv:0808.3244 [math.CO]. 

[19] Kempner, Y.; Mirkin, B. & Muchnik, I. (1997). Monotone linkage clustering and quasi-
concave functions, Appl.Math.Lett. 10, No.4 (19-24). 

[20] Kempner, Y. & Muchnik, I. (2003). Clustering on antimatroids and convex geometries, 
WSEAS Transactions on Mathematics 2, Issue 1, (54-59). 

[21] Kempner, Y. & Muchnik, I. (2008). Quasi-concave functions on meet-semilattices, 
Discrete Applied Mathematics 156, No. 4, (492-499). 

[22] Kuusik, R. & Lind, G. (2004). Generator of Hypotheses - An approach of data mining 
based on monotone system theory, International Journal of Computational Intellegence 
1, No. 1, (43-47). 

[23] Malishevski, A. (1998). Properties of ordinal set functions, In: A.Malishevski, Qualitative 
Models in the Theory of Complex Systems, Nauka, Moscow, (169-173) (in Russian). 

[24] Mirkin, B. & Muchnik, I. (2002). Layered clusters of tightness set functions, Appl. Math. 
Lett. 15, (147-151). 

[25] Mirkin, B. & Muchnik, I. (2002). Induced layered clusters, Hereditary Mappings, and 
Convex Geometry, Appl. Math. Lett. 15, (293-298). 

[26] Monjardet, B. & Raderanirina, V. (2001). The duality between the antiexchange closure 
operators and the path independent choice operators on a finite set, Mathematical 
Social Sciences 41, (131-150). 

[27] Monjardet, B. (2003). The presence of lattice theory in discrete problems of mathematical 
social sciences. Why. Mathematical Social Sciences 46, (103-144). 

[28] Muchnik, I. & Shvartser, L.V. (1989). Kernels of Monotonic Systems on a Semi-lattice of 
Sets, Automation and Remote Control 50, No. 8, part 2, (1095-1102). 

[29] Mullat, J. (1976). Extremal subsystems of monotone systems: I, II, Automation and Remote 
Control 37, (758-766); (1286-1294). 

[30] Mullat, J. (1995). A fast algorithm for finding matching responses in survey data table, 
Mathematical Social Sciences 30, (195-205). 

[31] Sen, A.K. (1971). Choice functions and revealed preference, Review of Economic Studies 
38, (307-317). 

[32] Serganova, V.V.; Bagotskaya, N.V.; Levit, V.E. & Losev, I.S. (1988). Greedoids and the 
greedy algorithm, In: Information Transmission and Processing Systems, Vol. 2, IPIT 
USSR Academy of Sciences, Moscow, (49-52). (in Russian) 

[33] Vashist, A.; Kulikowski, C.A. & Muchnik, I. (2007). Ortholog clustering on a 
multipartite graph, IEEE/ACM Transactions on Computational Biology and 
Bioinformatics 4, No. 1 (17-27). 

[34] Zaks (Kempner), Y. & Muchnik, I. (1989). Incomplete classifications of a finite set of 
objects using monotone systems, Automation and Remote Control 50, (553-560). 

[35] Zhang, R.; Vashist, A.; Muchnik, I.; Kulikowski, C. A. & Metaxas, D. N. (2005). A new 
combinatorial approach to supervised learning : Application to gait recognition, 
LNCS 3723 (55-69). 



26 

Semantic Matchmaking Algorithms 
Umesh Bellur1 and Harin Vadodaria 

1Department of Computer Science and Engineering, Indian Institute of Technology, Bombay 
2Sybase Software, Pune 

India 

1. Introduction 
The advantages of loose coupling offered by service oriented architectures (SOA) have made 
it a popular choice for today’s enterprise systems. The popularity has driven 
standardization efforts in the areas of service advertisement and invocation and services 
specified using these standards are termed as Web services. A Web service is self containing, 
self describing application that can be deployed, published and invoked over the Internet. 
The publish-find-bind approach is the fundamental idea behind Service Oriented 
Architectures that web services aim to implement. The ultimate vision of SOA is to enable a 
client to automatically select an appropriate service from a pool of dynamically discovered 
services and invoke it without having any apriori knowledge about the service provider and 
the specifics of the service itself. This vision has thrown up various challenges such as - 
service discovery based on an abstract query, selection of service from the discovered pool, service 
composition, dynamic service binding and invocation, quality of service, negotiation of service 
contracts and trust. 
Enhancing what has traditionally been sytanctic descriptions of services with semantics is 
necessary to resolve most of these issues. Once semantic descriptions are available, one 
needs to deal with matchmaking of these descriptions to a query. In the rest of this chapter 
we present concepts involved in semantic matchmaking as it applied to web services and a 
set of algorithms that solve the semantic matchmaking problem. 

1.1 Background concepts 
In this section, we present necessary background concepts essential to understand the rest of 
the chapter. The chapter centers around Web services although there exist several other 
implementation of SOA concepts such as Jini for Java. 

1.1.1 Service discovery 
Service discovery is the process of evaluating a query for a service and returning a set of 
compatible services. WSDL and UDDI are two standards used in service discovery. The 
Simple Object Access Protocol (SOAP) is a messaging protocol used to invoke web services 
and get back results asynchronously. 
• The Web Services Description Language (WSDL) [3] is a language for description of 

service and contains operations supported by the service. Each operation is described 



 Advances in Greedy Algorithms 

 

482 

by it’s input and outputs. WSDL description of a service defines XML message format 
for communication with the service. A compiler at the client generates stubs based on 
the WSDL description for: 1) Marshaling and unmarshaling objects into SOAP 
messages. 2) Sending SOAP messages over communication protocol. The application is 
then bound with these stubs to invoke the service. 

• The Universal Description and Discovery Interface [2] is a registry that contains 
information about different services offered by various service providers. This 
information is usually output as a WSDL document. UDDI provides mechanisms for: 
1) Publishing a service to the registry 2) Searching a required service from the 
registry. The state of the art today limits storage in UDDI to Strings and searches are 
syntactic in nature as well. 

1.1.2 Ontology 
Ontology represents knowledge about a particular domain. This knowledge includes 
entities in the domain, their property and relationship with each other. Entities in the 
ontology are termed Concepts. A well defined syntax is required to unambiguously represent 
concepts of a domain. RDF[16] framework is suitable for describing an ontology. Web 
Ontology Language (OWL)[17] is developed on the top of RDF and is used for ontology 
description. Given below is a part of Entertainment ontology. 
 

 

1.1.3 OWL-S: semantic markup for web services 
Semantic web is not merely a collection of marked up content but includes (software 
applications packaged as) services as well. It is essential for a software agent to discover, 
compose, invoke and monitor web resources in order to take advantage of a service. OWL-S 
[1] (formerly, DAML-S) is a language for describing services which makes this possible. It 
uses RDF as basic framework. OWL-S is required to perform following tasks automatically. 
• Web Service Discovery: Extract the information from the page in order to find a 

required service. 
• Web Service Invocation: OWL-S along with the domain ontology specifies the 

invocation methods of a Web Service (e.g. necessary inputs, expected outputs). 
• Web Services Composition and Interoperation: OWL-S provides declarative way to 

specify prerequisite and consequences of a service which helps software agents in 
composing different web services. 

OWL-S provides Service Profile, Service Model and Service Grounding to represent 
Description, Functionality and Access Mechanism respectively. 



Semantic Matchmaking Algorithms 

 

483 

• Service Profile: Service profile facilitates Service Provider to describe its service. It is up 
to the Service Provider how much details are given in the Service Profile. E.g. a Book 
selling service may also provide browsing facility but it is not necessary that it is 
included in Service Profile. We can categorize the information provided by Service 
Profile as: 
- Provider’s Information - This may include name of the provider and contact details. 
- Functional Description - specifies inputs required, output generated and 

conditions to be set at the beginning and change in the real world after service 
completes its function. In short, inputs, outputs, preconditions and effects are 
described here. 

- Profile Attributes - Some parameters that service wants to specify e.g. quality 
guarantees, service categorization etc. They are represented by Service Parameter 
and Service Category. 

• Service Model: It describes service as a process, either atomic or composite: receives 
and sends a single message or retains/changes state through a sequence of messages. A 
service can give some output and set some condition thus changing real world. 
- Inputs and output parameters are expressed as a subclass of the parameter class in 

OWL-S. 
- Preconditions and effects are modeled as logical formulas or expressions which are 

treated as either string literals or XML literals depending on the language used. 
The expression class in OWL-S specifies two separate subclasses condition and effect 
for precondition and effect respectively. 

Often outputs and effects of the service are coupled together with a condition bounding 
them. E.g. service for selling software modules may have different results and effects 
depending on a failed or succeeded transaction. 
Composite processes are more difficult to handle. They have a set of sub processes 
associated with a control structure. The control structure will specify the order in which 
different sub processes are executed. In case of composite process, client needs to send a 
series of messages to get the final result. Different types of control structures are: Sequence, 
Split, Split+Join, Any-Order, Choice, If-Then-Else, Iterate, Repeat While and Repeat Until. 
Data flow and parameter binding is very critical issue in case of composite process. OWL-S 
has adopted Consumer-Pull convention i.e. if p2 requires input which comes from p1, p2 is 
responsible for explicitly describing this fact. 
Service Grounding: Grounding deals with the realization of services. It provides concrete 
details necessary to invoke the service such as message format, transfer protocol etc. OWL-S 
uses WSDL standard for Service grounding. WSDL provides a wrapper and can carry OWL-
S message on standard network protocols. WSDL can not capture the semantic of a message 
while OWL-S in its own is not capable to deal with the standard transfer protocol. Both 
languages overlap at description of message at abstract level. Mapping from OWL-S to 
WSDL is done in 3 steps: 

- An OWL-S atomic process corresponds to a WSDL operation. 
- Inputs and outputs of OWL-S process correspond to input part and output part of 

WSDL messages respectively. 
- Inputs and output of OWL-S process correspond to WSDL’s abstract type. 

An example of OWL-S profile is as follows: 



 Advances in Greedy Algorithms 

 

484 

 

2. What is semantic matchmaking? 
The publish-find-bind architecture targets dynamic service invocation - i.e., the client of the 
service invocation has no prior knowledge of the service description and hence cannot link 
in pre-compiled stubs. Specification standards such as WSDL and registry standards such as 
UDDI facilitate the discovery process that is needed for dynamic invocation. Together UDDI 
and WSDL can serve the goal of automatic discovery of web services. However, the 
matching mechanism provided by UDDI and WSDL is no better than a simple string 
matching in XML. In reality automated service discovery can not be accomplished by mere 
string matching. For example, a simple service that takes two integers as input and produces 
a float as output could actually perform one of a variety of operations like interest 
calculation on a principal and period, average points per game given the total points and 
games etc. A simple syntax based matching can produce many false positives since nature of 
service is not captured in the service description. 
In order to overcome this limitation, concept of semantics has been introduced with OWL-S. 
In this approach, functionality of a service is described in terms of inputs, outputs, 
preconditions and effects. Input and output terms of the service are expressed as concepts 
belonging to a set of ontologies. Use of ontology allows referring to a single concept from 
two or more syntactically different terms. Thus, it eliminates the limitations caused by 
syntactic difference between terms since matching is now possible on the basis of concepts 
of ontologies used to describe input and output terms. 
For semantic matchmaking, if we assume that both, advertisement and query are defined in 
OWL-S format then an advertisement Advt and query Query match if 
• For every input parameter in Advt, there is one input parameter in Query. Let Queryin 

and Advtin represent the list of input concepts of query and the advertisement 
respectively. The service can correctly perform the task if all the input concepts defined 
in the advertisement are satisfied by the requester. Hence, matching of inputs exist if 

 

 
• For every output parameter in Query, there is one output parameter in Advt. Let 

Queryout and Advtout represent the list of output concepts of query and the advertisement 



Semantic Matchmaking Algorithms 

 

485 

respectively. The service can be used by the requester if all the output concepts defined 
in the query are satisfied by the advertisement. Hence, matching of outputs exist if 

 

 
• For every precondition in Advt, there is one precondition in Query. Let Query precondition 

and Advtprecondition represent the list of preconditions of query and the advertisement 

respectively. The service can correctly perform the task if all the preconditions defined 
in the advertisement are satisfied by the requester. Hence, matching of preconditions 
exist if 

 

 
• For every effect in Query, there is one effect in Advt. Let Query effect and Advt effect represent 

the list of effects of query and the advertisement respectively. The service can be used 
by the requester if all the effects defined in the query are satisfied by the advertisement. 
Hence, matching of effects exist if 

 

 

2.1 An example 
Let us now look at an example of how a request is matched with service advertisements. The 
service that is advertised is a car selling service which, when given a Price as input, return 
which car can be bought at that price. A strip-down version of advertisement is shown in 
Figure 2. As, is clear the input to the service are instances of the concept Price and the output 
is instances of the concept Car. 
 

 
Fig. 1. A fragment of Vehicle Ontology [12] 

Shown below is an example request in the same format. The request shows that the service 
sought should take as input instances of Price and should generate output as instances of 
Sedan. 



 Advances in Greedy Algorithms 

 

486 

Now, in the given example, for service to match with the request we need to match inputs as 
well as outputs. In this case, inputs match directly as they both contain the same concept 
Price. The outputs also match as Car provided by the service in the given ontology is a super 
class of the Sedan which is expected in the request. Hence, this will be considered as a 
suitable match although the score(or rank) of this match will vary accordingly with different 
semantic matchmaking algorithms. 
 

 
Fig. 2. Advertisement of a car selling service [12] 

 
Fig. 3. Request for a car selling service service [12] 

If we had an advertisement with Sedan as a concept, it must be ranked higher than the above 
advertisement as it is closer to the given request. From this example, it is clear, the match 
performed is a semantic match. The reason is because the fact that Car is a superclass of 
Sedan has been used while matching. In a syntactic matching scenario, this would result in 
no match as Car and Sedan are syntactically very different. 



Semantic Matchmaking Algorithms 

 

487 

Note that in given example service semantics are described by input and output parameters 
only. In addition to these parameters, preconditions and effects can also be added to define 
restriction over parameter values. 

3. Taxonomy of semantic matchmaking algorithms 
In this section, we present the qualitative and quantitative aspects on which a semantic 
matchmaking algorithm can be evaluated. We then use this to compare and contrast 
different efforts in the area. 

3.1 Qualitative aspects 
Semanticmatching as compared to syntacticmatching As the term semantic matchmaking 
suggests, a semantic matchmaking algorithm should consider the meaning of concepts 
while performing comparisons between services and requests. It should take into account 
the various relations which exist between the concepts in the ontology in the process of 
matchmaking. 
For example, in the ontology given by 1, when a request contains Sedan, a service with 
concept Car should be given more weightage than concept Vehicle as Sedan is closer to Car in 
the ontology. Similarly, a service with Sedan should be given an appropriate score(less than 
Car) when a request for Car is made by taking into account the fact that Sedan could only 
partially satisfy the request. Its important to note that in pure syntactic matching, this kind 
of reasoning is not possible as the meaning of the concepts are not considered. 
False positives and negatives False positives are returned when a semantic matchmaking 
algorithm matches an advertisement to a given request even if it was not relevant. 
Analogically, a false negative is the case where a semantic matchmaking algorithm fails to 
match a relevant advertisement to the given request. There is a trade off between the 
number of false positives and false negatives returned by a matchmaking algorithm. As the 
algorithm becomes more flexible, the number of false positives increase and number of false 
negatives decrease. Therefore, its necessary to regulate the flexibility of the semantic 
matchmaking algorithm so as to have a balanced number of false positives and negatives. 
The requesting service should have some control over the flexibility of the algorithm. 
Notion of Flexible matching The semantic matchmaking algorithm should promote the 
advertisers to be more precise in their description. It can be done by providing a degree of 
match for the matched advertisements. The degree of match should be higher for 
advertisements which are closer to the request and hence imposing penalty on 
advertisements which are very general. If this is not done, then all the advertisers will make 
advertisements as general as possible to increase their chances of match rather being specific 
about what they actually have. 
Consider that AdOp is one of the concepts of the outputs of an advertisement Qop is one of 
the concepts of the outputs of a query. Four degrees of matching are: 
• Exact: If AdOp is an equivalent concept to QOp, then they are labeled as Exact match. 
• Plug in: If QOp is superclass of/subsumes AdOp, then AdOp can be plugged in place of 

QOp. Thus, it is marked as Plug in match. 
• Subsumes: If AdOp is superclass of/subsumes QOp, then service may fulfill the 

requirements of the request since advertisements provides output in some of the 
subclasses of the concept defined by QOp. Thus, it is a subsume match. 



 Advances in Greedy Algorithms 

 

488 

• Fail: If no subsumption relation is found between QOp and AdOp, then it is declared as 
failure. 

Soft constraints Soft constraints are constraints which should be preferably but not 
necessarily be satisfied. For example, if we are ordering a DVD from a web-based DVD 
store, we could specify that we would prefer to pay by a credit card. A semantic 
matchmaking algorithm should be able to take soft constraints into account while 
performing matches. Hence, an advertisement which satisfies a soft constraint should be 
given better ranking than an advertisement which does not (assuming they satisfy other 
constraints with same degree of match). 
Preference of concepts The user should be able to specify which concepts are preferred. A 
semantic matchmaking algorithm should to take into account the preference of concepts as 
specified by the user. For example, if a user needs to book a hotel for his journey, then most 
important concepts for him would be the city and date. Other concepts(for e.g. prices) even if 
matched would be useless unless it is in the same city as mentioned by the user. Hence its 
important that the algorithm gives higher ranking to advertisements which match concepts 
of higher preferences. 
User defined matching The user should have some control over the matching process. The 
algorithm should give the user ability to regulate various aspects such as the flexibility of 
the algorithm, the quality or rating which is expected for the service etc. User-defined 
matching helps make the matching process more suited to one’s needs. 
Heterogeneous ontologies The semantic matchmaking example, we discussed in previous 
section assumes that both the service and the request use the same shared ontology for 
description. However, in a truly distributed environment where services are autonomous 
this assumption may not hold true. Hence, an algorithm must be able to perform semantic 
matching across descriptions with heterogeneous ontologies. 
Quality-of-Service(QoS) enabled discovery All the aspects we have discussed so far deal 
with how closely the advertisement matches functionally with the request. However, non-
functional and QoS properties such as price, performance, throughput, reliability, 
availability, trust etc. are equally important while deciding whether a service is satisfactory 
for a given request. Hence, a semantic matchmaking algorithm must take into account the 
presence of such parameters while matching. User feedback must be taken into account in 
this framework to define QoS properties for various services. 

3.2 Quantitative measures 
Efficiency : As we know that the search has to be made over all possible advertisements for 
services. Given the current size of Web, the number of services existing on web and hence 
the number of advertisements will be huge. Hence, for the semantic matchmaking process to 
scale up to the size of web, the computational complexity of the algorithm should not be 
high. 
Precision : Precision is defined as the number of ”relevant and retrieved” advertisements 
over the number of ”retrieved” advertisements. As the algorithm becomes more flexible in 
matching, the number of false positives increase and hence precision decreases. Therefore, 
  

 
Table 1. Advertisement 



Semantic Matchmaking Algorithms 

 

489 

 
Fig. 4. A part of Entertainment Ontology 

 
Table 2. Query 

to obtain higher precision the semantic matchmaking algorithm has to be more rigid in 
matchmaking. 
Recall Recall is defined as the number of ”relevant and retrieved” advertisements over the 
number of ”relevant” advertisements. As the algorithm becomes more flexible in matching, 
the number of false negatives decrease and hence recall increases. Therefore, to obtain 
higher recall the semantic matchmaking algorithm has to be more flexible in matchmaking. 
F1 and break-even : As discussed earlier, we need to have regulated amount of flexibility in 
the algorithm to balance precision and recall. Since there is a trade-off between precision 
and recall, we can use unified measures which will give weightage to both precision and 
recall. For example, F1 is defined as the harmonic mean of precision and recall. Hence, when 
maximized, it would result in both precision and recall set to acceptable values. Similarly, 
break-even is the point where the precision and recall curves meet each other. 
Precision and recall are very coarse-grained measures as they categorise a document into 
two categories :- relevant or irrelevant. Especially, in the context of semantic matchmaking 
where the degree of match between query and advertisement comprises of many levels, 
such coarse-grained measures are not the best indicators of performance of matchmaking. 
We need fine-grained evaluative measures which can distinguish between documents 
matching with various degrees of match. [16] proposes a method based on fuzzy logic 
which provides fuzzy equivalents of precision and recall as measures to quantify 
performance of matchmaking. 
These equivalents are computed in terms of two membership functions, one defined by the 
semantic matchmaking engine and one by the domain experts. The two membership 
functions are fe : Q×S → [0, 1] , and fr : Q×S → [0, 1]. fe is delivered by the algorithm and fr is 
calculated by the feedback of domain experts. These functions are computed using 
fuzzification of the degree of match performed between the advertisement and the request. 
The fuzzy logic equivalents of Recall(RG) and Precision(PG) are defined in Equations 1 and 2. 

 
(1) 

 
(2) 



 Advances in Greedy Algorithms 

 

490 

Since, theses measures are fuzzy, they take into account the values for all the advertisements 
and not only those documents which are relevant or returned. 

4. A survey of matchmaking algorithms 
In this section we take a in-depth look into existing semantic matchmaking algorithms. 

4.1 Greedy approach 
This algorithm was proposed by [12]. It is based on semantic matchmaking based on input 
and output terms. 
Algorithm presented in [12] is a greedy approach for matchmaking. Algorithm tries to 
match every output concept of Query with one of the concepts of Advertisement. It starts 
from all output concepts (call it candidate list) of Query and removes a concept from 
candidate list as soon as it is matched with a concept from Advertisement with degree of 
matching > Fail. 
[12] uses following scheme for degrees of matching. 
• Exact: If AdOp is an equivalent concept to QOp, then they are labeled as Exact match. If 

QOp is a subclass of AdOp, then match is considered Exact under the assumption that 
provider agrees to provide output in every possible subclasses of AdOp. 

• Plug in: If AdOp subsumes QOp, then AdOp can be plugged in place of QOp. Here 
also, it is assumed that provider agrees to provide output in some of the subclasses of 
AdOp. 

• Subsumes: If QOp subsumes AdOp, then service may fulfill the requirements of the 
request since advertisements provides output in some of the subclasses of the concept 
defined by QOp. 

• Fail: If no subsumption relation is found between QOp and AdOp, then it is declared as 
failure. 

4.1.1 Discussion 
Scheme for Degrees of matching assumes that service provider agrees to provide output in 
every possible subclass of the output concept. Also, Algorithm is dependent on the order in 
which concepts are defined in the Query. Consider following example. 
As depicted in figure 4, Drama and Concert are subclass of the concept Theatre. Concert is 
also a sub-concept of Music via inferred relationship. 
Output concept list for Query and Advt are: 
• Advtoutput = Theatre, Music 
• Queryoutput = Concert, Drama 
At first, algorithm will try to match Concert with all concepts of candidate list of Advtoutput. 
We have, 
• Theatre is superclass of Concert ⇒ Exact match 
• Music subsumes Concert ⇒Plugin match 
Since the algorithm uses greedy approach, it will match Concert with Theatre and removes 
both from respective lists. Now there is only one concept in Advtoutput  and, 
Match(Drama, Music) = Fail 
Thus, the algorithm will return Fail match for Query and Advt. In reality, we can have 
following matching. 



Semantic Matchmaking Algorithms 

 

491 

• Theatre is super class of Drama→ Exact match 
• ” Music subsumes Concert → Plugin match 
Overall degree of matching for Query and Advt is Plugin. If we have changed order of 
concepts in Query outputlist, we could have achieved this matching. Thus, algorithm in [12] is 
dependent on the order in which concepts are defined. Thus, algorithm may produce false 
negative results. 
Consider the scenario when the output concept is not removed from the candidate list. 
Suppose, the advertisement is for {Theatre, Cost} and the request is for {Drama, Concert}. 
Here, the above algorithm would return an exact match as both Drama and Concert are 
immediate subclasses of Theatre. Hence, the requester would receive only one reservation for 
a Theatre whereas he expected two reservations for a Drama and a Concert. This would result 
in a false positive. 

4.1.2 Quantitative analysis 
For each advertisement, we have to compare each output concept of query with all the 
advertisement concepts and each input concept of advertisement to all the input concepts of 
query. Hence, the number of operations are given by 

 (3) 

where Qo and Ao are the number of output concepts and Qi and Ai are the number of input 
concepts in query and advertisement respectively. Since, the algorithm iterates over N 
advertisements, the total complexity is given by 

 (4) 

in general, Qo,Ao,Qi and Ai are bounded by small integers. Hence, the complexity is linear 
in N (the number of advertisements) with small constants. 

 (5) 

4.2 Bipartite graph based matching 
To solve the problems mentioned in previous section, we introduce in this section another 
approach [5] towards semantic matchmaking which makes use of bipartite graph matching 
to produce a match. 
The algorithm also introduces a different set of rules of match between concepts in which 
PlugIn and Subsume levels are interchanged in their degree of match. The assumption that 
if an advertiser advertises a concept, it would provide all the immediate subtypes of that 
concept is dropped. Hence, if the query concept is subsumed by the advertisement concept a 
Subsume is returned while if the query concept subsumes the advertisement concept 
PlugIn is returned. PlugIn is still ranked higher than a Subsume match. You can see that 
this scheme of matching is opposite to the one discussed in previous section. 
Bipartite graph A bipartite graph is a graph in which the vertex set can be divided into two 
disjoint sets such that no edge of the graph lies between the two vertices in the same set. 
Matching A matching of a bipartite graph G = (V,E) is a subgraph G’ = (V,E’) such that no 
two edges e1,e2 in E’ share the same vertex. 



 Advances in Greedy Algorithms 

 

492 

Let the set of output concepts for query and advertisement be Q and A. We will construct a 
graph G = (Q+A,E) which has one vertex corresponding to each concept in query and 
advertisement . If there exists a degree of match between (≠ Fail) between a concept v1 
belonging to Q and a concept v2 belonging to A, then we define an edge (v1, v2) with weight 
as the degree of match. We need a matching in which all the output concepts of Q are 
matched with some concept of A. If such a matching exists, we would say that the 
advertisement and the query match.If there exist multiple such matchings, we will choose 
the one which is optimal(the criterion is defined below). However, if such a matching 
doesn’t exist the query and the advertisement doesn’t match. 
optimality criterion We need to select the matching which is best from the perspective of 
semantic match. For, this we would assign different numerical weights to edges with 
different degrees of match. Let us suppose, we assign minimum weight to exact, then 
Plugin and then subsumes.Let max(wi) be the maximum weighted edge in the matching. An 
optimal matching in this case would be a complete matching with minimum max(wi). 
Algorithm for optimal matching Hungarian algorithm [10] computes a complete matching 
for a weighted bipartite graph such that sum of weights of all the edges in the matching is 
minimised. To adapt Hungarian algorithm to above case, where a matching with minimum 
value of max(wi) is needed, we would assign weights according to the scheme shown as 
below. 
 

 
 

It can be proved that with the above weighting scheme, a matching in which Σwi is 
minimized is equivalent to matching in which max(wi) is minimised [5]. 
Matchmaking Algorithm The search procedure accepts a query as input and tries to match 
its output concepts and input concepts with each advertisement. If there exists a match in 
both input and output concepts, it appends the advertisement to the result set. To match 
inputs as well as it outputs, it invokes Hungarian algorithm on a graph created with weights 
as given in above table to compute an optimal matching of the graph. The degree of match is 
defined by the weight of the maximum-weight edge in the matching. In the end, a list of 
advertisements sorted on the basis of input and output concepts is returned. 

4.2.1 Discussion 
The above algorithm eliminates the correctness issues with the algorithm described in the 
previous section. It also regulates false positives and false negatives as discussed in the 
example above. However, it does not allow for priority of concepts and soft constraints to be 
input by the user. Like the previous algorithm, the algorithm does not provide a ranking of 
the results. The algorithm assumes a shared ontology between the advertisements and the 
request. In the following sections, we would look at some algorithms which allow some of 
these features. 

4.2.2 Quantitative analysis 
Using the same notation as in Section 4.1.2, we get 



Semantic Matchmaking Algorithms 

 

493 

The weights wo, w1 and w2 are computed in O(1) time. The weights of edges in the graph 
can be determined in Qo×Ao operations, by comparing all pair of concepts. 
The time complexity of Hungarian algorithm is bounded by Qo3. Hence, the total complexity 
of the search is bounded by: 

 (6) 

Hence, we get If we assume that number of input and output concepts in the query and 
advertisement are small, we can approximate: 

 (7) 

The complexity of above algorithm is asymptotically similar to the previous algorithm. 
However, the constants will be different. 

4.2.3 Addition of precondition and effect matching 
Original algorithm proposed by [5] was based on matching of input and output terms only. 
However, precondition and effect matching can also be added using same bipartite graph 
based technique as discussed in [6]. As discussed earlier, in OWL-S description, 
preconditions and effects are represented as boolean expression. Algorithm for condition 
matching works in two phases. 
• Parameter Compatibility: Whether parameters used in both expressions are equivalent 

or not. From input-output terms matching, we obtain the mapping between terms used 
in query and advertisement. If every parameter used in the query’s condition has an 
equivalent parameter (obtained from the mapping constructed during input-output 
term matching phase) in the advertisement’s condition such that, degree of matching 
between two parameters > Fail Match, we have parameter compatibility between these 
two conditions. 

• Condition Equivalence: This refers to structural similarity between two conditions. For 
our purpose, we do not need strict equivalence. If condition specified in the query 
contains all parameters specified in advertisement’s condition AND the relation 
between various parameters in advertisement’s condition are retained in query 
condition, we can flag it as condition equivalence. In other words, if condition in the 
query is denoted by QCondition and condition in advertisement is denoted by 
ACondition then what we need is, 
QCondition ⇒Acondition 
which essentially says that, variable space in which QCondition is true is a subset of the 
variable space in which ACondition is true. 
This is true when we match for preconditions. The relation will be reversed when we 
match for effects. i.e. 
ACondition ⇒ Qcondition 
This problem is constraint satisfiability problem which NP-Complete by its nature. 
Some heuristics like DPLL algorithms are used to solve this problem in exponential 
time. 



 Advances in Greedy Algorithms 

 

494 

 
Fig. 5. Solution space for ACondition and Qcondition 

4.3 Semantic matchmaking across heterogeneous ontologies 
In this section, we discuss a framework for semantic matchmaking which relaxes the 
requirement of a single ontology and allows advertisements and requests to be expresses in 
different ontologies. The approach to compare concepts across ontologies uses different ways to 
assess the similarity of various concepts used in description of services and requests [14]. 
SynonymSets Synonymsets are semantically equivalent or very similar words. Hence, 
synonyms can be considered as the same entity. Wordnets are used to derive the synonym 
set of the name of the parameters. In a cross-ontology evaluation scenario these words(like 
person and human) are likely to refer to the same entity. 
Distinguishing features of concepts Some concepts could have quite different names, while 
still being semantically similar. To incorporate semantics into the similarity measure in such 
cases we can also use some distinguishing features of concepts. We choose the properties of 
classes such as object properties and data type properties to perform semantic similarity 
tests. The assumption is that semantically similar parameters with different names are likely 
to have some common features or properties. The matching is performed between the 
properties of the two concepts. 
Semantic neighbourhoods and relations The semantic relations which exist between 
various classes could be used to perform semantic matchmaking. The idea is that the target 
concepts (i.e.which are subject of comparison) which are related to the same set of classes 
through similar relations, may be semantically similar. For example, semantic relations like 
Subclass, Disjoint With,Equivalent Classes etc. can help determine semantic similarity 
amongst various concepts. 
To integrate the information obtained by above methods, a weighted sum of the similarity 
of each function component is used to compute the overall similarity. 
Another similarity measure defined in terms of set theory is based on the normalisation of 
Tversky’s model and the set-theory functions of intersection(A ∩ B) and difference (A/B). It 
is shown below. 

 
(8) 

where a and b are parameter classes 
A and B corresponds to the description sets of a and b 
(i.e. synonym sets,feature sets and semantic neighbourhood) 
and  is a function which defines relative importance of non-common characteristics 



Semantic Matchmaking Algorithms 

 

495 

The above mentioned similarity measures are used to compute the edge weights of edges in 
the bipartite graph discussed in the previous section. The function elements( concepts) are 
extracted from the advertisement as well as the requested profile. A bipartite graph is 
formed using these concepts as nodes. The edge weights are then computed using the 
similarity measures described above. Bipartite graph matching algorithms are then applied 
to produce matches and their scores which are used to generate the sorted list of relevant 
advertisements. 

4.3.1 Discussion 
The algorithm provides a way to make semantic matchmaking possible over descriptions 
with heterogeneous ontologies. The algorithm uses a similarity function of concepts for 
matching which is based on a weighted sum of synonym sets,semantic neighbourhood and 
distinguishing features. The algorithm however does not allow the user to input preferences 
of concepts. Preference of concepts would give the requester more expressive power to 
express their needs. In further sections, we would look into some algorithms which support 
preferences amongst the concepts. 

4.4 Semantic matchmaking based on description-logics 
We now discuss an algorithm which performs semantic matchmaking on advertisements 
and requests which are defined in Description Logics. Description Logics(DL) are a family 
of logic formalisms used for knowledge representation. They can be used to represent the 
knowledge of a service or an application domain in a structured and formal way which can 
be understood by a computer system. As we will see the algorithm discussed below 
provides a ranking of the matched advertisements which was not the case with the previous 
algorithms. 
In this section, we’ll discuss an algorithm for the DL of the Knowledge Representation 
System CLASSIC of AT&T Bell Labs [15]. The basic syntax is based on predicate logic and 
comprises of three kinds of descriptions. 
• concept names concept names stand for sets of objects, such as book, room etc. 
• number restrictions these correspond to restrictions which quantify the amount of a 

concept. for example, (> 3author) denotes that there should be more than three authors. 
• universal quantifications these can be used to specify some restriction on all the objects 

belonging to a concept. For example, ∀ supplier.japanese implies that all the suppliers 
(i.e.objects belonging to the concept supplier) must be Japanese. 

An advertisement (as well as a request) can be described as a conjunction of these concepts. 
For example, one might represent an advertisement for an apartment as 
 

A = apartment ∩ ∀hasRooms.roomswithTV ∩ (≥ 3 hasRooms) 
 

Requests can be represented in the similar way. The matchmaking algorithm then matches 
the request with the candidate advertisements one by one and provides a ranking for the 
match.The algorithm, recursively calls itself for the parts which are universally quantified 
and keeps a global score which denotes the degree of match. If there happens to be a case, in 
which there exists a universal quantification statement for a particular concept in only one 
of the advertisement or request, the recursive call is made with a T (universal truth) as 
predicate. Hence, if a description does not mention ∀hasRooms, we would assume that 
∀hasRooms.T is present in the description. The algorithm is as follows. 



 Advances in Greedy Algorithms 

 

496 

4.4.1 Algorithm 
The algorithm for ranking follows a recursive procedure as mentioned above. It starts with a 
global rank of zero for every advertisement and then increases it for every concept which 
differs in the advertisement and the request. Therefore, lower the rank, higher is the degree 
of match. The algorithm uses four rules to increase the rank which are given below :- 
• Add 1 to rank for each concept name which are present in query but not in 

advertisement 
• Add 1 to rank for each number restriction in request which can not be satisfied by the 

advertisement 
• If for a concept ∀R.E, there does not exist a ∀R.F in the advertisement, add to rank the 

answer to the recursive call with T, and E. 
• If for a concept ∀R.E, there does exist a ∀R.F in the advertisement, add to rank the 

answer to the recursive call with F, and E. 
Total match exists when the algorithm returns 0. The above algorithm can be modified 
easily to provide for preference of concepts. By adding different weights for different 
concepts, we can penalize the match selectively according to our preferences. Thus, an 
important concept would cause a larger number to be added to n, hence decreasing the 
degree of match for advertisements which can not satisfy them. In the next section, we will 
see how preference of concepts can increase your expressive power in defining the query. 
The taxonomy can be also taken into account, while defining weights for various concepts. 
Hence, in the taxonomy of figure 2.1, we could say that n will be increased a larger amount 
if we have vehicle and SUV as compared to if we have vehicle and cars. The weights can 
also be learnt by the system, by providing a set of advertisements and their ranks according 
to human users. Hence, the system would be able to learn to distinguish between concepts 
which are more important by learning weights to fit given training examples of ranked 
advertisements. 

4.4.2 Discussion 
In this section we saw an algorithm which performs semantic matchmaking on 
advertisements and requests described using Description Logics. As we discussed, the 
algorithm performs an approximate matching of advertisements and requests and provides 
a ranking of candidate advertisements with varying degrees of match. The algorithm can 
also be used to take into account preference of concepts as provided by the user. 

4.5 Semantic matchmaking based on ranked instance retrieval 
In this section we present another method for semantic matchmaking which takes into account 
the preference of concepts a provided by the user [4].This algorithm uses the concept of a 
ranking tree to match and compare various advertisements w.r.t. a particular query. 
We will take an example to describe how the preference of concepts gives you more 
expressive power in making the request. Suppose, the user wants to find out a service which 
offers DVD’s for movies. Hence she could make a query like, Q1 := OffersDVD. However, 
this would provide tons of hits. To narrow down our search, she would want to provide 
more search criterion. Suppose she specifies that she prefers 24 hours shipping over three-
day shipping and a service with shipping time more than three days is not acceptable. 
In this case, writing a query like Q2 := OffersDVD ⊓ (24HoursShipping ⊓ 3DaysShipping), 
would get unacceptable results as the proper requirement has not been expressed. To 



Semantic Matchmaking Algorithms 

 

497 

express the correct requirement, there should be a way to annotate the concepts with 
preferences, thus providing a way to determine which concept is preferred. Hence, if we 
provide a query like Q3 :=OffersDVD1⊓(24HoursShipping2⊓ 3DaysShipping1), the service with 
24HoursShipping would be rated more than 3DaysShipping and hence would generate 
acceptable results. 
The above method of annotating preferences, could also be used to specify soft constraints 
as discussed earlier. Suppose, we have a top concept T, such that every concept is an 
instance of type T. Now, suppose if we need to specify that we would prefer to have a 
service with CreditCardPayment, however its not a necessity, we could do that by writing 
the query as 
Q4 :=OffersDV D1 ⊓ (24HoursShipping2  ⊓ 3DaysShipping1) ⊓ (CreditCardPayment1 ⊔  T0). 
Similarly, we could use a bottom concept ⊥ to denote the fact that OffersDVD is a necessary 
concept but should not affect the ranking.Suppose we write our query as, 
Q5 :=OffersDV D1 ⊔ (24HoursShipping2 ⊔ 3DaysShipping1) ⊔ (CreditCardPayment1  ⊔  ⊥0). 
In the above query, the second part of disjunction is not satisfiable and hence every hit must 
satisfy OffersDVD. Hence, ranking is only affected by the other concepts which could be 
taken into account by the matchmaking algorithm. Therefore, as we discussed allowing 
annotations of concepts with their preferences could give us a lot more expressive power in 
describing our request. It will also allow the user to specify soft constraints and constraints 
like in Q5. 
Due to existence of disjunctive knowledge in description logics (in query Q5), a single 
numerical value is not sufficient for expressing rankings. Suppose, we have Q := A1 ⊔(B1 ⊔ 
C2)0. Since, B ⊔ C has preference 0, it should not contribute to the top level rank. However, 
for two equal top level ranks, we should use (B1  ⊔ C2)0 to refine the ranking. A ranking tree is 
appropriate for such kind of reasoning.In the following part of this section, we will discuss a 
ranking tree and how it can be used for matchmaking of advertisements and requests with 
such annotations. 

4.5.1 Ranking tree 
We define a ranking tree as follows: 
1. for r ∈ [0 ; 1] (r) is a ranking tree. 
2. let r ∈ [0 ; 1] and t1,t2 .. tn be ranking trees with n ≥ 1, then (r,t1,t2,...,tn) is a ranking 

tree. 
for example t1:= (0,(1), (0,(1),(0))) is ranking tree. 
Ordering on ranking tree Let a = (ra, a1, a2, a3....an) and b = (rb, b1, b2, b3.....bn) where 
a1,a2...an and b1,b2 ... bn are ranking trees. 
Let a < b⇔ra < rb now, a  b iff 
1. a < b or 
2. ra = rb and ∃i : ai < bi and ∀1 ≤ j ≤ n : bj ≮ aj or 
3. ra = rb and ∀1 ≤ i ≤ n : ai 	 bi 

4.5.2 Matchmaking algorithm 
Given an annotated query and an advertisement, we must evaluate the ranking tree of the 
advertisement. The query is represented as either a conjunction or disjunction of subqueries. 



 Advances in Greedy Algorithms 

 

498 

The ranking tree is evaluated by calling the routine recursively for each subquery and using 
the resulting ranking trees to form the top-level ranking tree. The rank of top-level rank tree 
is an of average user preferences of all the subqueries which are satisfied. For a negated 
query, the rank of top-level tree is replaced by the average of user preferences of all the 
concepts which are not satisfied by the query. An atomic concept belonging to the query is 
satisfied by advertisement if its contained in it.  
Discussion The above algorithm supports most of features discussed in chapter 2.The 
algorithm supports preference of concepts and allows for soft constraints to be specified. In 
the next section, we would look at Quality-of-Service(QoS) aspects of semantic 
matchmaking. 

4.6 QoS enabled matchmaking 
A web service is a web-based interface which providing electronic description of a concrete 
service. The service could be of varied types from functionality of a software component 
(such as data backup) to a real-life business activity(such as shipping). Hence, the QoS 
properties of a service vary over a wide range depending upon the type of service. For 
example, for a network service, it could be response-time,availability etc. On the other hand, 
for a pizza delivery service it could the quality of food. QoS is a very important factor in 
deciding whether the service will be able to fulfil the demands of requester. Hence, it is very 
important for a semantic matchmaking algorithm to take into account QoS parameters along 
with the functional properties to perform a more meaningful and successful match. 
To support QoS information while discovering services through matchmaking process, 
we need to evaluate how well a service can fulfil user’s non-functional (quality) 
requirements based on the service’s past performance. Hence, there must be an interface 
where the users can submit their feedback on the perceived QoS of consumed services. 
While discovering services, we can take into account data from the following sources 
[11]:- 
• QoS values promised by the providers in their advertisements 
• feedback on the perceived QoS submitted by the users on the interface 
• reports produced by trustworthy QoS monitoring agents such as rating agencies 
• QoS information provided by similar discovery components which exist over the 

network in a distributed setting 
A complementary ontology for providing detailed QoS information have been proposed in 
(Semantics in service discovery and management.) Algorithms similar to what we have 
studied in this chapter so far, can be applied to perform matching on QoS parameters. 
Hence, a service would be matched on its functional properties as well as non-functional 
properties and QoS parameters and the information provided by both the aspects would be 
combined to provide a common ranking of advertisements which could be used by a 
requester. 

5. Comparing the algorithms 
In this section, we provide, a comparison table comparing the algorithms on various aspects 
we have presented so far. 



Semantic Matchmaking Algorithms 

 

499 

 
Table 3. Comparison table for different matchmaking algorithms 

6. Applications of semantic matchmaking 
Semantic matchmaking has been applied in a variety of contexts. It is a very importan field 
of research and forms a basis for service discovery and composition. Reliable and efficient 
algorithms for semantic matchmaking are extremely important in the new vision of 
web(semantic web). 
The algorithm we discussed here have been used to make a combined matchmaker for 
DAML-S/OWL-S and UDDI. UDDI allows only keyword search based on the names, which 
is not enough as no inferencing or flexible matching can be performed. A matching engine 
which augments UDDI registries with an additional semantic layer allows for a capability 
based matching. It uses the ontologies published on the web. The matchmaking process 
allows services to be discovered on the basis of their capabilities and hence result in their 
interoperability and enhanced problem solving abilities with minimizing human 
intervention. 
Preference SQL [9],a powerful extension to SQL aims for providing support for preference 
queries in relational databases. Its objective is similar to that of matchmaking. It aims to find 
approximate matches to user’s queries which are based on preferences defined by him. It 
also performs matchmaking to find the best possible match between a request and existing 
data. 
OWLS-MX is a semantic web services matchmaker which retrieves services for a given 
query. It uses both logic based semantic matching and token-based syntactic similarity 
measure to perform the match between a query and the services [13]. 
[9] discusses the need for  semantic matchmaking in geo web services which are in growing 
demand these days. Geo Web services are services which provide location based 
information on the web. For example, an user who wants to know about hazardous objects 



 Advances in Greedy Algorithms 

 

500 

near her proximity would need to first find out her own location by a geo coder service. 
Then she could use another service to locate the all the chemical factories etc near it. With a 
semantic matchmaker, such services could be discovered and interoperate with each other 
to form more complex services. 
[7] use semantic matchmaking approach for skill management of various business entities. 
Semantic matching is performed between buyers and sellers of skills. It is very important for 
knowledge intensive companies because it can be used to search for professionals who have 
expertise in a given area within and across companies. 
These are but a few applications of matchmaking engines and algorithms that we have 
presented in this chapter. 

7. Open issues 
We currently do not have well recognized evaluation metrics for the efficiency of algorithms 
which would define their scalability in real world scenarios. We also need testcases and 
testbeds where various algorithms can be plugged in and tested against each other for 
various features described in previous sections. 
Currently fuctional information used in semantic matchmaking is limited to IOPE. This can 
be extended in the following ways. 
• Semantic matchmaking can involve use of contexts. Currently there is no framework 

defined for context identification and evaluation. In fact, context providers can be 
thought of web services Web service providing output in terms of contextual 
information. [6] has proposed an architecture for such a context aware discovery 
mechanism but still, inclusion of contexts needs major change in current mechanism for 
semantic matchmaking. 

• Preconditions and effects are represented as boolean conditions and matching based on 
them is limited to structural similarity of expressions. However, if we can treat static 
and dynamic nature of parameters [6], evaluation of expression can be partially done at 
discovery time. 

McIlraith suggested an approach for matching based on non-functional requirements of web 
service. We still need an improved framework to specify non-functional requirements more 
clearly. Also, weights of the results obtained from matching based on functional and non-
functional requirements has to be set in such a way that candidate services are ranked as 
close as uesr’s preference. 
We presented an algorithm that tries to perform semantic matchmaking across 
heterogeneous ontologies, still the discrepancies amongst the ontologies could lead to many 
failed matches. We need a sophisticated mediation layer in the system which would help in 
translation of natural language requests to ontology based requests. We also need to find 
better algorithms and framework for dealing with non-functional properties of services such 
as trust and reliability. Such properties are very important for building semantic 
matchmaking systems which can be used reliably by users. 

8. Concluding remarks 
We have seen a variety of algorithms dealing with different aspects of semantic 
matchmaking. They involve matchmaking based on functional and non-functional 
requirements of web service. The process of semantic matchmaking assumes that semantic 



Semantic Matchmaking Algorithms 

 

501 

information is attached to services. But, the question we need to ask is: Is this expressiveness 
worth the complexity of semantic matchmaking? In other words, is it possible for a semantic 
matchmaking system to deliver performance comparable to syntactic matching systems(like 
keyword search)? 

9. Acknowledgments 
The authors would like to acknowledge the contribution made by Amit Gupta of the 
Department of CSE, IIT Bombay. 

10. References 
[1] OWL-S: Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S/. 

Visited on 10th June,2008. 
[2] Universal Description Discovery and Integration (UDDI). Visited on 10th June, 2008. 
[3] Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl. Visited on 

10th June,2008. 
[4] Matthias Beck and Burkhard Freitag. Semantic matchmaking using ranked instance 

retrieval. SMR ’06: Proceedings of the 1st International Workshop on Semantic 
Matchmaking and Resource Retrieval, Co-located with VLDB, 178 of CEUR Workshop 
Proceedings, 2006. 

[5] Umesh Bellur and Roshan Kulkarni. Improved matchmaking algorithm for semantic web 
services based on bipartite graph matching. ICWS 2007. IEEE International 
Conference on Web Services, 2007, 2007. 

[6] Umesh Bellur and Harin Vadodaria. On extending semantic matchmaking to include 
precondition and effect matching. Accepted for publication in the Proceedings of 
the International Conferences on Web Services, 2008, Beijing, China, 2008. 

[7] Simona Colucci et al. A formal approach to ontology-based semantic match of skills 
descriptions. Journal of Universal Computer Science, Volume 9, Issue 12, pages 1437–
1454, 2003. 

[8] Amit Gupta. Semantic matchmaking algorithms. Technical report, Department of 
Computer Science and Engineering, IIT-Bombay, 2008. Seminar Report, Third Year 
BTech Seminar guided by Prof. Umesh Bellur. 

[9] Werner Kiebling and Gerhard Kostler. Preference sql: design, implementation, 
experiences. VLDB ’02: Proceedings of the 28th international conference on Very Large 
Data Bases, pages 990–1001, 2002. 

[10] H.W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistic 
Quarterly, pages 2:83–97, 1955. 

[11] Fabio Porto Le-Hung Vu, Manfred Hauswirth and Karl Aberer. A search engine for qos-
enabled discovery of semantic web services. International Journal of Business Process 
Integration and Management 2006 - Vol. 1, No.4, pages 244– 255, 2006. 

[12] T. Payne M. Paolucci, T. Kawmura and K. Sycara. Semantic matching of web service 
capabilities. Springer Verlag, LNCS, Proceedings of the International Semantic Web 
Conference, 2002. 

[13] Benedikt Fries Matthias Klusch and Katia Sycara. Automated semantic web service 
discovery with owls-mx. AAMAS ’06: Proceedings of the Fifth international joint 
conference on Autonomous agents and multiagent systems, pages 915–922, 2006. 



 Advances in Greedy Algorithms 

 

502 

[14] Jiajin Le ruiqiang Guo and Dehua Chen. Matching semantic web services across 
heterogenous ontologies. CIT 05: Proceedings of the Fifth international conference on 
computer and information technology, 2005. 

[15] Francesco M. Donini Tommaso Di Noia, Eugenio Di Sciascio and Marina Mongiello. 
Semantic matchmaking in a p2p electronic marketplace. SAC ’03: Proceedings of the 
2003 ACM symposium on Applied computing, pages 582–586, 2003. 

[16] Christos Anagnostopoulos Vassileios Tsetsos and Stathes Hadjiefthymiades. On the 
evaluation of semantic web service matchmaking systems. ECOWS ’06: Proceedings 
of the European Conference on Web Services, IEEE Computer Society, pages 255–264, 
2006. 



27 

Solving Inter-AS Bandwidth Guaranteed 
Provisioning Problems with Greedy Heuristics 

Kin-Hon Ho1, Ning Wang2 and George Pavlou3 
1Department of Computer Science, City University of Hong Kong,  

2Centre for Communication Systems Research, University of Surrey,  
3Department of Electronic and Electrical Engineering, University College London, 

 1Hong Kong  
2,3United Kingdom 

1. Introduction     
The current Internet consists of more than 26,000 Autonomous Systems (ASes) or domains, 
each being a network or group of networks managed by a single authority commonly 
known as Internet Network Provider (INP). With wide deployment of real-time multimedia 
applications in recent years, the emerging future-generation Internet is expected to provide 
end-to-end Quality of Service (QoS) guarantees across multiple ASes. In situations where 
stringent end-to-end QoS is required, ensuring that an adequate bandwidth is guaranteed 
by each AS along as the entire route in the Internet backbone is essential to achieve relevant 
performance targets (Zhang et al., 2004). Yet in practice, an AS is only capable of 
provisioning bandwidth guarantees within its own network. Hence, extending bandwidth 
guarantees beyond its boundary requires the AS to agree the supply of sufficient bandwidth 
from other ASes. This bandwidth supply is likely to be associated with a financial cost and 
therefore there is an economic incentive for an AS to carefully select its downstream 
provider ASes so as to minimize the cost of using that bandwidth. 
Having purchased access to sufficient bandwidth from downstream ASes, the AS needs to 
utilize both this purchased bandwidth and its own network capacity in the most effective 
way in order to provide bandwidth guarantees for customer traffic. INPs thus need to 
optimize the utilization of these resources. Traffic Engineering (TE) is an effective technique 
to optimize IP operational network performance and subsequently improve network QoS 
capabilities (Awduche et al., 2002). INPs can thus use TE as an effective means for 
bandwidth guarantee provisioning while optimizing network resource utilization.  
Concatenation of bandwidth guarantees between ASes makes it possible to provide an end-
to-end guarantee between a source-destination pair in the Internet.  These guarantees across 
ASes owned by different INPs require some level of agreement between themselves, usually 
summarized in a negotiated Service Level Agreement (SLA) at the AS level. An SLA is an 
agreement contracted between a customer AS and a provider AS that describes the 
characteristics of a service, specifying in particular the supported QoS and the associated 
cost. However, given that the Internet consists of thousands of ASes, SLA negotiation 
between ASes has to be carefully managed in an effective and scalable manner. In this 
chapter we adopt a cascaded negotiation model which allows ASes to build up end-to-end 
SLAs that provide end-to-end bandwidth guarantees. In this model, apart from route 



 Advances in Greedy Algorithms 

 

504 

reachability information, each AS receives from adjacent downstream ASes a set of what we 
call bandwidth offers to designated remote AS destinations. If an AS decides to accept a 
bandwidth offer, an SLA is established between the two ASes. The AS can then in turn make 
bandwidth offers to its upstream (customer) ASes; these offers reflect both the AS’ own 
resources and the SLAs established with the downstream ASes. The full set of SLAs enables 
all the ASes to support traffic with end-to-end bandwidth guarantees. However, the AS’ 
tasks of making appropriate decisions on which bandwidth offers to accept, how much 
bandwidth to purchase and how to allocate the bandwidth among traffic aggregates are 
non-trivial. Inappropriate bandwidth offer selection or traffic assignment could result in 
respectively high cost or poor resource utilization. In order to obtain the best solutions, we 
propose a network dimensioning system that incorporates optimization modules that solve 
the two following problems: 
• how to determine an appropriate amount of bandwidth to be purchased from each 

bandwidth offer so that the total cost of the bandwidth is minimized; 
• given the knowledge of the available intra-AS bandwidth and the bandwidth 

purchased from downstream ASes, how to assign routes to the predicted traffic 
aggregates so that bandwidth demand is met while optimizing resource utilization.  

We call these two problems the Inter-AS Bandwidth Provisioning and Traffic Assignment 
problems respectively. Our proposed network dimensioning system enables ASes to move 
from trial-and-error to a systematic approach for provisioning their end-to-end bandwidth 
guarantees. More specifically, we propose two efficient greedy heuristics to solve these 
optimization problems. It has been a long history that greedy heuristics are used for solving 
network optimization problems, such as traffic engineering (Sridharan et al., 2005), multicast 
routing (Shi & Turner, 2002) etc. Nevertheless, the optimization problems of end-to-end 
bandwidth guarantees provisioning across multiple ASes has not been addressed until 
recently, and in this chapter we will illustrate how greedy heuristics can gracefully solve 
these novel problems. The main contributions of this chapter can be summarized as follows: 
• We propose a systematic network dimensioning system that can be used by ASes to 

achieve effective provisioning of end-to-end bandwidth guarantees. The network 
dimensioning system formulates two problems that respectively provide economic and 
engineering optimization, namely the inter-AS bandwidth provisioning and traffic 
assignment problems. 

• We show that a heuristic approach can be used to solve the inter-AS bandwidth 
provisioning problem. To illustrate this, we use an efficeint genetic algorithm 
embedded with two problem-specific greedy heuristics. Our proposed algorithm 
optimizes the bandwidth provisioning with 5%-30% and 75%-90% less cost than a 
conventional heuristic and a random-based algorithm respectively. 

• We use a greedy-penalty heuristic algorithm to solve the traffic assignment problem. 
The proposed greedy-penalty heuristic results in 10% less total bandwidth consumption 
than a random-based algorithm. 

2. Cascaded inter-AS negotiation model     
The provision of end-to-end bandwidth guarantees requires each intermediate AS on the path 
from the source AS to the destination AS to guarantee the agreed bandwidth. However, this 
cannot be realized without first negotiating and agreeing SLAs among the ASes. Since the 
Internet is a collection of a large number of ASes, attention needs to be paid to how to manage 
such negotiation and SLA establishment in an effective and scalable manner. In this chapter, 



Solving Inter-AS Bandwidth Guaranteed Provisioning Problems with Greedy Heuristics 

 

505 

we adopt a cascaded model, as proposed by the MESCAL project for negotiating QoS 
guarantees (e.g. bandwidth and delay) among ASes (Howarth et al., 2005).    
The model is based on two concepts: (1) negotiation of bandwidth offers between ASes; (2) 
establishment of unidirectional SLAs between ASes for the agreed bandwidth. The key idea 
of the cascaded model is as follows. An AS offers bandwidth guarantees to its upstream 
ASes; each bandwidth offer specifies the reachable remote destination(s), the available 
bandwidth (e.g., maximum offered bandwidth) and a cost, for example, per unit of 
bandwidth. These destinations are either in customer ASes or reachable through 
downstream ASes. An upstream AS in general receives multiple bandwidth offers for any 
given destination, and has to decide which one to accept. Each accepted bandwidth offer is 
then established as a unidirectional SLA. The AS can then in turn make bandwidth offers to 
its upstream ASes, by combining its local bandwidth capabilities with the SLA.  This process 
continues in a cascaded manner for further upstream ASes, and an end-to-end SLA chain 
can be built, with each SLA relying on the SLAs between downstream ASes. 
 

 

Fig. 1. Illustration of the cascaded inter-AS negotiation model 

Fig. 1 illustrates an example. Let o-BW1 be the bandwidth guarantee offered by AS1 towards 
destination ‘dest’. AS2 receives this offer o-BW1. We assume that AS2 decides to accept the 
bandwidth offer: AS2 then establishes an SLA with AS1 (SLA2-1) for this bandwidth. Now 
AS2 has a bandwidth guarantee provided by AS1 for access to ‘dest’. AS2 can in turn extend 
this bandwidth guarantee by concatenating its local bandwidth capability with SLA2-1, and 
then offering a bandwidth (o-BW2) to AS3. o-BW2 is the minimum of (a) the local bandwidth 
capability that AS2 is prepared to guarantee across its network and (b) SLA2-1. Now o-BW2 
indicates the bandwidth guarantee from AS2 to destination ‘dest’. AS3 receives o-BW2 from 
AS2 and it in turn repeats the decision process, possibly purchasing the offered bandwidth 
and establishing SLA3-2. In summary, once offers from other adjacent downstream ASes 
have been agreed as SLAs, an INP may build new extended services upon cascaded existing 
ones. Further details of the cascaded model can be found in (Howarth et al., 2005). 
The cascaded model has several advantages: (1) it makes possible to build scalable end-to-end 
QoS guarantees between any two ASes while only maintaining SLAs with adjacent ASes; (2) it 
has backward compatibility with BGP, making inter-AS QoS deployment possible through 
extensions to BGP; (3) it retains privacy for all ASes regarding the details of their interactions. 
The decision on which bandwidth offers to accept, and how to effectively utilize the 
established SLAs and the AS’ intra-AS resources is non-trivial. In the next section, we 
propose a network dimensioning system, incorporating TE mechanisms, to solve this 
problem and make the best decisions.  

3. Decomposition of the network dimensioning system     
We consider two optimization problems, an economic and an engineering one, that need to 
be solved for provisioning end-to-end bandwidth guarantees. First, an AS needs to 



 Advances in Greedy Algorithms 

 

506 

determine the appropriate amount of bandwidth to be purchased from each adjacent 
downstream AS so that the total bandwidth cost is minimized. Second, given these available 
bandwidth resources defined in the SLAs and the local network’s bandwidth, the AS has to 
determine how to assign routes to the supported traffic in order to satisfy their bandwidth 
requirements while at the same time optimizing network resource utilization. We illustrate 
on Fig. 2 a decomposition of a network dimensioning system which consists of several 
components.  We envisage this system as being offline and running infrequently as part of a 
resource provisioning cycle, e.g. in the order of weeks. 
 

 

Fig. 2. Architecture of the network dimensioning system 

3.1 Components of the network dimensioning system 
The proposed network dimensioning system consists of the following components: 
1. Inter-AS Traffic Forecast predicts inter-AS traffic in the network for a period of time 

and records this information in an inter-AS Traffic Matrix (TM). Each element in the 
inter-AS TM is the aggregate traffic load that enters the network at an ingress point† and 
is destined for a remote destination prefix.  The TM entry is represented by the tuple  

< ingress point, remote destination prefix, long-term average traffic demand > 
Some known methods can be used to compute the traffic aggregate, such as the 
effective bandwidth approach (Guerin et al., 1991) if the mean and peak rates of the 
traffic are known.  
The inter-AS TM is an important element for network and traffic engineering. Whilst an 
accurate inter-AS TM could be obtained through fine-grained flow-level traffic 
measurement this is not suitable for long term predictions (Awduche et al., 2002). 
Nevertheless, these problems have recently been addressed with a methodology that 
allows an inter-AS TM to be predicted through measurement (Teixeira et al., 2005) and 
estimation for web traffic (Feldmann et al., 2004). Alternatively, an inter-AS TM can be 
extrapolated from customer SLAs. 



Solving Inter-AS Bandwidth Guaranteed Provisioning Problems with Greedy Heuristics 

 

507 

2. Inter-AS Bandwidth Discovery discovers bandwidth offers from adjacent downstream 
ASes through offline techniques, e.g. advertisement. A bandwidth offer is uniquely 
identified by a connection point at which the offer is provided. Bandwidth offers are 
provided by adjacent ASes, and so the connection point, or inter-AS link on which it is 
offered, uniquely identifies the adjacent AS. Each bandwidth offer specifies a maximum 
bandwidth towards a remote destination prefix and is associated with a cost, for 
example per unit of bandwidth. Each bandwidth offer is represented by the tuple  

< egress router, adjacent AS border router address , remote destination prefix,  

maximum offered bandwidth, cost > 
3. Inter-AS Bandwidth Provisioning (IBP) addresses the economic problem described in 

the beginning of this section. For the sake of service resilience and load balancing, an 
increasing number of ASes have multiple connections to adjacent downstream ASes. As 
a result, an AS may receive multiple offers to each destination prefix from different 
adjacent downstream ASes. The goal of IBP is to take as input the inter-AS TM and a set 
of bandwidth offers, and to produce as output a decision on which bandwidth offers to 
accept and the amount of bandwidth to be purchased from each of the accepted offers. 
Based on the IBP outcome, the AS will then establish SLAs (in this chapter called 
outbound provider SLAs) with the adjacent downstream ASes to contract the 
bandwidth guarantees. We assume that the establishment of outbound provider SLAs 
is performed by the component “provider SLA ordering”, a process whose details are 
outside the scope.  

4. Traffic Assignment (TA) deals with the engineering problem described in the beginning 
of this section. The goal of TA is to take as input an inter-AS TM, a set of outbound 
provider SLAs that are established after the IBP phase, and the available bandwidth 
resources of the AS, i.e. intra- and inter-AS link capacities, and then to assign 
appropriate routes for the supported traffic so that the bandwidth requirements are met 
while optimizing network resource utilization. An assignment of the route includes 
selection of an outbound provider SLA, an inter-AS link and an intra-AS route for the 
supported traffic. The key output of the TA is a Traffic Assignment matrix that records 
the outbound provider SLAs, inter-AS links and intra-AS routes that have been selected 
for the supported traffic. Based on this matrix, an INP can implement the TA solution 
by configuring the network accordingly. 

3.2 Inter-AS bandwidth overprovisioning 
We can employ overprovisioning in the IBP phase. This implies that some network resources 
are left unused so as to protect the core backbone from failures and to accommodate some 
degree of traffic demand fluctuation (Nucci et al., 2005). Overprovisioning is also the current 
solution adopted by some INPs for QoS provisioning within their networks. For these reasons, 
we consider a certain amount of inter-AS bandwidth overprovisioning in this chapter. During 
the IBP phase, the AS should not merely purchase bandwidth that marginally accommodates 
the forecasted traffic demand, because the bandwidth guarantee may not be maintained if 
even a small traffic upsurge occurs. A solution to this is to purchase more bandwidth than the 
forecasted traffic demand in order to insure against such traffic fluctuations. This also provides 
a buffer against inter-AS link failures, which may cause traffic to be shifted from one outbound 
provider SLA to another. 



 Advances in Greedy Algorithms 

 

508 

The task of IBP is thus to decide an appropriate amount of bandwidth to be purchased from 
the adjacent downstream ASes by taking into account overprovisioning. To do so, we 
introduce an overprovisioning factor fover ≥ 1.0 to specify the degree of inter-AS bandwidth 
overprovisioning. In principle, this factor is determined by considering the network’s traffic 
characteristics and the target link utilization. However, since optimization of fover is not the 
subject to be concerned, we assume that a single value is used to represent the optimal 
overprovisioning that has already been determined by the ASes. The concept of 
overprovisioning factor has also been used by other researchers, e.g. (Nucci et al., 2005). 
In this work, inter-AS bandwidth overprovisioning is implemented as follows. If t(i,k) 
denotes the average demand of an inter-AS traffic flow aggregate, we define an inflated 
traffic flow, ť(i,k) = t(i,k)⋅ fover. 

4. Optimal inter-AS bandwidth provisioning   
In this section and the next, we present the problem statement, formulation and algorithms 
of both the IBP and the TA problems. 
 

 
Fig. 3. Elements of the inter-AS bandwidth provisioning 
Fig. 3 illustrates an AS topology with the key elements of the IBP problem. A set of border 
routers is connected to adjacent ASes. An ingress (or egress) router is the border router that 
receives (or sends) traffic from (or to) an adjacent AS. Each border router is associated with 
one or more inter-AS links. Each bandwidth offer is associated with a single inter-AS link. 
Each border router may receive multiple bandwidth offers for a remote destination prefix 
from different adjacent downstream ASes through different attached inter-AS links, for 
example, the top left border router in Fig. 3. Each inter-AS traffic flow enters the AS through 
a designated ingress router. We define the total inter-AS bandwidth provisioning cost to be 
the total charge an AS pays for purchasing bandwidth from its adjacent downstream ASes. 
The inter-AS bandwidth provisioning problem can be summarized as follows: 
Given a set of bandwidth offers from adjacent downstream ASes, an inter-AS traffic matrix and a 
physical network topology, determine an appropriate amount of bandwidth to be purchased from each 
bandwidth offer so that the total inter-AS bandwidth provisioning cost is minimized while respecting 
the capacity constraints of the inter-AS links. 
In solving the IBP problem we assume that the inter-AS traffic is non-splittable. This method 
not only can determine the appropriate amount of bandwidth to be purchased but also 
ensures that each traffic flow will be accommodated by at least one SLA during TA without 
causing the traffic to be split.  



Solving Inter-AS Bandwidth Guaranteed Provisioning Problems with Greedy Heuristics 

 

509 

Note that some types of ASes, such as tier 2 and 3, may have both peering and customer-
provider connections with adjacent ASes. A peering connection between two ASes refers to 
the case where each AS carries a similar amount of customer traffic from the other AS for 
free. On the other hand, a customer-provider connection refers to the case where the 
provider charges the customer for carrying traffic across its network. The IBP description in 
Section 3 assumed that an AS has only customer-provider connections with its adjacent 
downstream ASes and that a cost is associated with each bandwidth offer. In fact, peering 
connections can also be considered by IBP. In this case, the cost of bandwidth is typically 
zero and the maximum bandwidth represents the agreed amount of traffic to be exchanged. 

4.1 Inter-AS bandwidth provisioning problem formulation 
We formulate IBP as an integer programming problem. Table 1 shows the notation used 
throughout this chapter.  The objective of the IBP problem is to minimize the total IBP cost: 

 
,,

,
( , , ) ( )

 '( , )
j nj n

i k k
i I k K oBw k j n Out k

t i kMinimize chgx
∈ ∈ ∈

⋅ ⋅∑∑ ∑  (1) 

subject to: 

 ,

, '( , )j n j,n

i k inter
i I k K

t i kx c
∈ ∈

⋅ ≤∑∑   ( , ) where , jj n j J n NEXT∀ ∈ ∈  (2) 

 , ,
, '( , )j n j n

ki k
i I

t i k MaxBwx
∈

⋅ ≤∑   ( , , )  where  , , jk j n k K j J n NEXT∀ ∈ ∈ ∈  (3) 

 { }
,,

, , 0,1
j nj n

i k kyx ∈  (4) 

 
,,

,

j nj n

i k kyx ≤   ( , , , )  where  , , , ji k j n i I k K j J n NEXT∀ ∈ ∈ ∈ ∈  (5) 

 ,

,
( , , ) ( )

1j n

i k
oBw k j n Out k

x
∈

=∑   ( , )  where  ,i k i I k K∀ ∈ ∈  (6) 

 
,

1
j

j n

k
n NEXT

y
∈

≤∑   ( , )  where  ,k j k K j J∀ ∈ ∈  (7) 

Constraint (2) ensures that no inter-AS link carries traffic exceeding its capacity. Constraint 
(3) ensures that no bandwidth offer carries traffic exceeding its maximum capacity. 
Constraint (4) ensures that the discrete variables assume binary values. Constraint (5) 
ensures that, whenever traffic flow t’(i,k) is assigned to bandwidth offer ,j n

koBw , then this 
bandwidth offer must have been selected. Constraint (6) ensures that only one bandwidth 
offer is selected for each inter-AS traffic flow. Hence, traffic splitting over multiple 
bandwidth offers is not considered. Constraint (7) ensures that only one of the bandwidth 
offers, which are advertised at a border router through different inter-AS links, is selected 
for each remote destination prefix. This constraint ensures the BGP rule that only one route 
toward a remote destination prefix is selected as the best route. This makes the IBP 
implementation easier through BGP configuration. 



 Advances in Greedy Algorithms 

 

510 

Notation Description 
- General notation - 

K A set of destination prefixes 
I A set of ingress routers 
J A set of egress routers 

fover Overprovisioning factor 
t(i,k) Bandwidth demand of an inter-AS traffic flow entering the AS at ingress router

i∈I towards destination prefix k∈K. It is considered by the TA problem 
ť(i,k) Inflated traffic flow t(i,k). It is considered by the IBP problem 
Out(k) A set of bandwidth offers that has reachability to destination prefix k 
NEXTj A set of next hop addresses (addresses of the border routers in adjacent

downstream ASes) that is associated with egress router j∈J 
j,n
interC  Capacity of the inter-AS link that connects egress router j to next-hop address

n∈ NEXTj 
j,n
interbw  Residual bandwidth of j,n

interC  
l
intraC  Capacity of intra-AS link l 

l
intrabw  Residual bandwidth of l

intraC  
- Notation used in the IBP problem - 

,j n
koBw  Bandwidth offer that is associated with destination prefix k and is advertised

through the inter-AS link that connects egress router j to next-hop address n 
,j n

kMaxBw  Maximum bandwidth of the offer ,j n
koBw  

,j n

kChg  A charge per unit bandwidth for ,j n
koBw  

,
,
j n
i kx  Variable indicating whether traffic flow t’(i,k) is assigned to bandwidth offer

,j n
koBw  

,j n

ky  Variable indicating whether the bandwidth offer ,j n
koBw  is selected 

- Notation used in the TA problem - 
,j n

kpSLA  Outbound provider SLA of the bandwidth offer ,j n
koBw  

,j n

kpSLAC  
Contracted bandwidth specified in outbound provider SLA ,j n

kpSLA  
,j n

kpSLABw  Residual bandwidth of ,j n

kpSLAC  

,
k
i jdist  Number of hops on the intra-AS route between ingress router i and egress

router j towards destination prefix k 
Pi,j A set of feasible intra-AS routes between ingress router i and the egress router j

to which the selected outbound provider SLA is associated. 

,
p
i kw  Variable indicating whether path p∈ Pi,j is chosen to realize traffic flow t(i,k) 
,
,
j n
i kz  Variable indicating whether traffic flow t(i,k) is assigned to outbound provider

SLA ,j n

kpSLA  

,
l
i kϒ  Variable indicating whether traffic flow t(i,k) is assigned to intra-AS link l 



Solving Inter-AS Bandwidth Guaranteed Provisioning Problems with Greedy Heuristics 

 

511 

4.2 Modified inter-AS bandwidth provisioning problem 
We assume that when multiple bandwidth offers towards the same remote destination 
prefix k are present at a given border router j (i.e. , 0  j n

kn MaxBw >∃ ), the AS has already 
determined the best one as a candidate bandwidth offer. Thus, each border router will 
consider at most one bandwidth offer towards each remote destination. The decision of 
selecting the best bandwidth offer might be based on business factors such as the 
relationships between ASes and the reputations of adjacent downstream ASes. As a result of 

this assumption, the variable
,j n

ky  of which bandwidth offer has been considered for each 

remote destination prefix k at each border router j is pre-determined and this satisfies 

constraint (7) since at most one bandwidth offer will be considered (i.e. 1
,

jn NEXT k

j n
y

∈

≤∑ ). 

Therefore, constraint (7) is automatically enforced. 

4.3 A Lower bound of the inter-AS bandwidth provisioning problem 
We derive an approximated optimal solution of the IBP problem that can be obtained 
efficiently by relaxing some constraints. This approximated optimal solution is thus a lower 
bound of the IBP problem. A lower bound typically has better result than the optimal 
solution because some problem constraints are relaxed. However, due to the relaxation, it is 
not a valid solution to the problem. Nevertheless, the lower bound is a good approximation 
of an optimal solution for heuristic algorithms to compare their performance. We show the 
derivation of a lower bound for the IBP problem as follows. 
We derive a lower bound by relaxing some IBP problem constraints. First of all, constraint 
(7) is automatically enforced by our assumption that each border router has only considered 
the best candidate bandwidth offer towards each remote destination prefix. Second, we 
relax the non-bifurcation integer constraint (4). In many practical situations, integer 
programming problems, which require all variables to be integers, are NP-hard. Instead, a 
linear programming problem that has only non-integer variables can be generally solved 
efficiently in the worst case. Therefore, we relax constraint (4) to 

 ,

,
0 1j n

i kx≤ ≤ , non-integer (8) 

Finally, we find that a lower bound can be readily calculated by the following method if 
inter-AS link capacity constraint (2) is relaxed. Relaxation of a capacity constraint means that 
the constraint is simply ignored based on the assumption that capacity is large enough to 
accommodate the traffic. 

Given  
, ,

,

k j n

j n
low kChgMinPr

∀
=  and

, ,

,

k j n

j n
high kChgMaxPr

∀
= , we can define 

 
,, |

j

j nj n
k k k

j J n Next

Chgb MaxBwψ ψ
∈ ∈

= =∑ ∑      low high and k KPr Prψ∀ ≤ ≤ ∈  (9) 

where 0kbψ ≥  is the sum of maximum capacity of all the bandwidth offers to remote 
destination prefix k with a charge equal to ψ, and 

 '( , )k

i I

t i kd
∈

= ∑    k K∀ ∈   (10) 



 Advances in Greedy Algorithms 

 

512 

where dk ≥ 0 is the sum of bandwidth demands of all the traffic flows to destination prefix k. 
For each traffic demand dk towards remote destination prefix k, we first attempt to assign it 
to the lowest cost bandwidth offer. If the lowest cost bandwidth offer cannot entirely 
accommodate the traffic demand due to capacity limitation, then the residual demand will 
be assigned to the next lowest cost bandwidth offer. This traffic demand assignment iterates 
until the bandwidth offer with a particular cost can entirely accommodate the traffic 
demand. A lower bound is calculated based on the traffic assigned to each bandwidth offer 
and its associated cost. A lower bound, using the abovementioned method, can be 
calculated by 

 
1

, 0 ,
high

low low

Pr

Pr Pr
k k k

k K
Min Max d b b

ψ
α ψ

ψ α
ψ

−

∈ = =
− ⋅

⎧ ⎡ ⎛ ⎞ ⎤ ⎫
⎨ ⎬⎜ ⎟⎢ ⎥⎩ ⎣ ⎝ ⎠ ⎦ ⎭

∑ ∑ ∑  (11) 

For a particular cost ψ, the max function determines the residual traffic demand that has not 
been allocated to the bandwidth offers that have lower cost than the one being considered. 
The min function attempts to assign this residual traffic demand to the bandwidth offer with 
the cost currently being considered. The inner summation symbol considers all bandwidth 
offers toward a remote destination prefix with different costs. The outer summation symbol 
considers all the remote destination prefixes.  

4.4 A genetic algorithm embedded with greedy heuristics 
We propose an efficient Genetic Algorithm (GA) to obtain a near-optimal solution of the IBP 
problem. Genetic Algorithm is an algorithm that operates by the natural selection of 
‘survival of the fittest (Holland 1975). It has been successful in solving many large-scale 
optimization problems. In order to making the proposed GA in solving the IBP problem 
more efficiently, we propose two problem-specific greedy heurtsics embedded into the GA. 
To solve the IBP problem, we modify and extend the GA (Chu & Beasley, 1997) proposed 
for solving the Generalized Assignment Problem (Martello & Toth, 1990). The steps of our 
GA are as follows: 
Step 1. Create a feasibility mapping table which maps all the feasible bandwidth offers to 
each inter-AS traffic flow. A bandwidth offer ,j n

koBw is feasible for an inter-AS traffic flow 
t’(i,k) if the following constraints are satisfied: 

 , ( )j n
k Out koBw ∈  (12) 

 '( , ) j,n

intert i k c≤  (13) 

 ,'( , ) j n
kt i k MaxBw≤  (14) 

Constraint (12) ensures that the remote destination prefix in the bandwidth offer matches 
the requested remote destination prefix of the traffic flow. Constraints (13) and (14) ensure 
respectively that the bandwidth demand of the traffic flow does not exceed the capacity of 
either the inter-AS link to which the bandwidth offer is associated or the maximum capacity 
of the bandwidth offer. These constraints, however, do not guarantee that constraints (2) or 
(3) are met for the entire chromosome. 



Solving Inter-AS Bandwidth Guaranteed Provisioning Problems with Greedy Heuristics 

 

513 

Step 2. Generate an initial population of C randomly constructed chromosomes. Fig. 4 
shows a representation of an individual chromosome which consists of T genes where T is 
the number of inter-AS traffic flows and each gene represents an assignment between a 
traffic flow and a bandwidth offer. The identifier given to each traffic flow represents each 
inter-AS traffic flow ť(i,k). Let Sť(i,k),c = <k,j,n> represent the bandwidth offer ,j n

koBw  that has 
been assigned to traffic flow ť(i,k) in chromosome c∈C. Each gene of the initial chromosomes 
is generated by randomly assigning a feasible bandwidth offer to each traffic flow according 
to the feasibility mapping table created in step 1. Note that an initial chromosome may not 
be a feasible solution as capacity constraint (2) or (3) could be violated. 
 

 

Fig. 4. Representation of an individual’s chromosome 

Step 3. Decode each chromosome to obtain its fitness value. The fitness of chromosome c is 
equal to the total inter-AS bandwidth provisioning cost, given by 

 '( , ),( ) '( , )t i k c
i I k K

sChg t i k
∈ ∈

− ⋅∑∑  (15) 

The negative sign reflects the fact that a solution with lower cost has higher fitness. We 
define '( , ),( ) '( , )t i k csChg t i k⋅  to be the IBP cost for the traffic flow ť(i,k). If the chromosome 
contains an infeasible solution, a common approach is to penalize its fitness for the 
infeasibility. Instead of this, we adopt the approach in (Chu & Beasley, 1997) and associate 
an unfitness value for each chromosome. The unfitness value of chromosome c is the degree 
of infeasibility of the chromosome, which equals the amount of violated capacity summed 
over all the inter-AS links and all the bandwidth offers, 

'( , ),, : , ,
0 , '( , )

j t i k c

j,n

inter
j J n Next i I k K S k j n

Max t i k c
∈ ∈ ∈ ∈ =< >

⎧ ⎫⎪ ⎪−⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ∑ +  

'( , ),

,

: , ,
0 , '( , )

j t i k c

j n
k

k K j J n Next i I S k j n
Max t i k MaxBw

∈ ∈ ∈ ∈ =< >

⎧ ⎫⎪ ⎪−⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑ ∑ ∑  

(16) 

With the separation of fitness and unfitness values, chromosomes can be evaluated in a two-
dimensional plane, so the selection and replacement can direct the search towards feasible 
solutions by replacing highly unfit chromosomes with lightly unfit or entirely fit ones.  
Step 4. Select two parent chromosomes for reproduction. We use the pairwise tournament 
selection method. In pairwise tournament selection, two individual chromosomes are 
chosen randomly from the population and the one that is fitter (higher fitness value) is 
selected for a reproductive trial. Two pairwise tournament selections are held, each of which 
produces one parent chromosome, in order to produce a child chromosome. 



 Advances in Greedy Algorithms 

 

514 

Step 5. Generate two child chromosomes by applying a simple one-point crossover operator 
on the two selected parents. The crossover point pco is randomly selected. The first child 
chromosome consists of the first pco genes from the first parent and the remaining (n − pco) 
genes from the second parent. The second child chromosome takes the parent genes that 
have not been considered by the first child chromosome. 
Step 6. Perform a probabilistic mutation on each child chromosome. The mutation simply 
exchanges elements in two selected genes (i.e. exchange the assigned bandwidth offers 
between two randomly selected traffic flows) without violating constraints (12) – (14). 
Step 7. The fitness and unfitness values of child chromosomes can be improved by applying 
the following two problem-specific heuristic operators: 
• Heuristic-A: For each inter-AS traffic flow that has been assigned to an infeasible 

bandwidth offer such that either capacity constraint (2) or (3) is violated, find a feasible 
bandwidth offer that incurs the lowest IBP cost for the traffic flow. Denote Δť(i,k) the 
difference between the original IBP cost induced by the traffic flow and the new IBP 
cost after the traffic flow has been reassigned to a feasible bandwidth offer. Among 
those inter-AS traffic flows, select the one with the lowest Δť(i,k) and assign it to the 
corresponding selected feasible bandwidth offer. This heuristic operator iterates at most 
H times where H is a parameter that optimizes the algorithm’s performance or stops 
when no inter-AS traffic flows have been assigned to infeasible bandwidth offers. 

• Heuristic-B: For each inter-AS traffic flow, find a feasible bandwidth offer that produces 
the lowest IBP cost. If such a feasible bandwidth offer has been found, reassign the 
traffic flow to it. 

Heuristic-A aims to reduce the unfitness value of the child chromosome by reassigning 
traffic flows from infeasible to feasible bandwidth offers while keeping the total IBP cost as 
low as possible. Heuristic-B attempts to improve the fitness of the child chromosome by 
reassigning traffic flows to feasible bandwidth offers with lower costs.  
Step 8. Replace two chromosomes in the population by the improved child chromosomes. In 
our replacement scheme, chromosomes with the highest unfitness are always replaced by 
the fitter child chromosomes. If no unfit solution exists, the lowest fitness ones are replaced. 
Step 9. Repeat step 4 - 8 until Ncd child chromosomes have been produced and placed in the 
population. 
Step 10. Check if the GA termination criterion is met. The termination criterion is that either 
both the average and the best fitness over all the chromosomes in the two consecutive 
generations are identical or once the selected number of iterations, Nit, has been reached in 
order to avoid excess algorithm execution time. Steps 4 - 9 iterate until the termination 
criterion is met. 

5. Optimal traffic assignment     
Let us assume that the bandwidth offers selected by the IBP (Section 4) have now been 
accepted and configured as a set of outbound provider SLAs. Given this set and the 
available bandwidth capacity within the AS, we now consider how to assign routes to the 
traffic so as to meet the traffic’s bandwidth requirements. Fig. 5 shows that from the 
viewpoint of AS-1, a route to the destination can be decomposed into three parts: (1) the 
intra-AS route, (2) the inter-AS link and (3) the inter-AS route from the downstream AS (AS-
2) to the destination AS (AS-3). Sufficient bandwidth must be provisioned in all parts of this 
route in order to satisfy the bandwidth demand. Once the outbound provider SLA is 



Solving Inter-AS Bandwidth Guaranteed Provisioning Problems with Greedy Heuristics 

 

515 

known, the available bandwidth resource on any part of the route is known to the AS: the 
intra- and inter-AS links are owned by the AS and the available bandwidth from the 
downstream AS to the destination AS is guaranteed by the outbound provider SLA. As a 
result, the TA problem can be defined as follows: 
Given a set of outbound provider SLAs, an inter-AS TM and a physical network topology, assign 
end-to-end routes to the supported traffic so that the bandwidth requirement is satisfied while 
optimizing network resource utilization. A route assignment includes the selection of an outbound 
provider SLA, an inter-AS link and an explicit intra-AS route from the ingress router to the egress 
router where the selected outbound provider SLA is associated. 
We assume that explicit intra-AS routes are implemented by MPLS. In addition, there are many 
optimization criteria for network resource utilization, such as minimizing resource 
consumption or load balancing. For simplicity, the network resource utilization used in this 
chapter is a general metric, the total bandwidth consumed in carrying traffic across the network. 

 

Fig. 5. Essential components for end-to-end bandwidth guarantee 

5.1 Traffic assignment problem formulation 
As with the IBP problem of Section 4, we formulate the TA problem as an integer-
programming problem. The fundamental objective is to provide bandwidth guarantees to 
inter-AS traffic by satisfying their bandwidth demands. We define the bandwidth demand 
of an inter-AS traffic flow t(i,k) to be met if the following three constraints are satisfied: 

There exists at least one feasible path fpath∈Pi,j from ingress router i to egress router j to
which the selected outbound provider SLA is associated , i.e.  

intra ( , ) 
path

l

l f
t i kMin bw

∀ ∈
≥

 

(17) 

 , ( , )j n
inter t i kbw ≥  (18) 

 ( , , ) ( , )pSLABw k j n t i k≥  (19) 

Constraint (17) ensures that there exists at least one feasible path between the ingress point 
and the selected egress point, and the bottleneck bandwidth of the path is not less than the 
bandwidth demand of the traffic flow. Constraints (18) and (19) ensure that the inter-AS link 
and the outbound provider SLA respectively have sufficient bandwidth to accommodate the 
traffic flow. 
The objective of minimizing the total bandwidth consumption within the network can be 
translated to the problem of minimizing the total number of hops that a traffic flow must 
traverse in the network, i.e. 



 Advances in Greedy Algorithms 

 

516 

 ( ),
,,

( , , ) ( )
 ,j n k

i ji k
i I k K oBw k j n Out k

t i kdistMinimize z
∈ ∈ ∈

⋅ ⋅∑∑ ∑  (20) 

subject to: 

 ,,
, ( , ) j nj n

i k inter
i I k K

t i k cz
∈ ∈

⋅ ≤∑∑   ( , )  where  , jj n j J n NEXT∀ ∈ ∈  (21) 

 , ( , ) ll
i k intra

i I k K
t i k c

∈ ∈

⋅ ≤ϒ∑∑   l E∀ ∈   (22) 

 , ,
, ( , )j n j n

ki k
i I

t i k pSLACz
∈

⋅ ≤∑   ( , , )  where  , , jk j n k K j J n NEXT∀ ∈ ∈ ∈  (23) 

 { },
,, ,, , 0,1pj n l

i ki k i kwz ∈ϒ  (24) 

 
( )

,
,

( , , )
1j n

i k
oBw k j n Out k

z
∈

=∑   ( , )  where  ,i k i I k K∀ ∈ ∈  (25) 

 
,

, 1
i jP

p

i k
p

w
∈

=∑   ( , )  where  ,i k i I k K∀ ∈ ∈  (26) 

 , ,

pl
i k i kw≤ϒ   ,( , , , )  where  , , ,i jl p i k l p p P i I k K∀ ∈ ∈ ∈ ∈  (27) 

Constraints (21), (22) and (23) ensure that the total traffic assigned to the inter-AS link, the 
intra-AS link and the outbound provider SLA do not exceed their respective capacities. 
Constraint (24) ensures the discrete variables assume binary values. Constraint (25) ensures 
that only one outbound provider SLA is selected for each traffic flow. Constraint (26) 
ensures that each traffic flow t(i,k) is routed along a single intra-AS route in order to 
preserve scalability and minimize network management complexity. Constraint (27) ensures 
that, whenever traffic flow t(i,k) is assigned to intra-AS link l, then the path to which l is 
associated must have been selected. Moreover, given the lossless property of the links, an 
additional constraint that has not been presented is the flow conservation constraint which 
ensures that the traffic flowing into a node must equal the traffic flowing out of the node for 
any intermediate node. 

5.2 A greedy heuristic algorithm for the traffic assignment problem 
In comparing the two problems in the network dimensioning system, the complexity of the 
TA Problem is higher than the IBP problem, in terms of number of decision variables and 
constraints. In addition, the TA is performed more frequently than the IBP: network capacity 
expansion is usually less frequent than traffic engineering. Based on these reasons, the 
algorithm for solving the TA problem should be more efficient than the IBP algorithm. In 
general, a GA can produce a better performance but with higher time complexity than 
simple greedy-based heuristics. Due to the higher complexity of the TA problem, we do not 
consider using GA to solve the TA problem as we did for the IBP problem. Instead, we 
present a simple and efficient greedy heuristic algorithm to solve the TA problem, namely 
greedy-penalty heuristic. 



Solving Inter-AS Bandwidth Guaranteed Provisioning Problems with Greedy Heuristics 

 

517 

Greedy-penalty heuristic: It is possible that the order in which traffic flows are assigned to 
outbound provider SLAs may produce different selection results. For example, if we take a 
traffic flow t(i,k) = 2, we might assign it greedily to some outbound provider SLA ,j n

kpSLA  

with intra-AS distance ,
k
i jdist  = 3. In this case, the total bandwidth consumed equals 6. If on 

the other hand we allocate it later in the process, the outbound provider SLA may not have 
sufficient bandwidth because its bandwidth has been allocated to other traffic flows and the 
considered traffic flow might have to be assigned to another outbound provider SLA 

', 'j n
kpSLA  , for example, with , '

k
i jdist  = 6. As a result, the total bandwidth consumed equals 

12. In this case, we have a penalty on the consumption of additional bandwidth (i.e. 12 − 6 = 
6) and we use penalty to refer to this value. A penalty-based algorithm aims to minimize the 
number of hops a flow must traverse by placing customer traffic flows in certain order 
according to penalty. We propose a greedy-penalty heuristic algorithm that takes into 
consideration the penalty value. Such an algorithm has also been used to solve the GAP 
(Martello & Toth, 1990).  
Step 1 For each unassigned traffic flow, we measure the desirability of assigning it to each 
feasible outbound provider SLA that satisfies constraint (19). The desirability is the total 
bandwidth consumed by the traffic flow along the intra-AS route between the ingress and 
the egress router with which the outbound provider SLA is associated (i.e. the number of 
intra-AS hops times the bandwidth demand). Intra-AS route computation is done by 
Constrained Shortest Path First (CSPF) (Osborne & Simha, 2002), which finds a route that is 
shortest in terms of hop while satisfying the bandwidth requirement. The smaller the 
desirability, the smaller amount of bandwidth to be consumed, and thus the better the 
selection. 
Step 2 Compute penalty for each unassigned traffic flow, being the difference between the 
desirability of the traffic flow’s best and second best selection (i.e. the two outbound 
provider SLAs which yield the smallest desirability). If there is only one feasible outbound 
provider SLA with sufficient spare capacity to accommodate the traffic flow, we need to set 
penalty to infinity and immediately assign the traffic flow to it. Otherwise, this outbound 
provider SLA may subsequently become unavailable, resulting in an invalid solution. 
Step 3 Among all unassigned traffic flows, the one yielding the largest penalty is placed with 
its best selection. In other words, this traffic flow is assigned to the feasible outbound 
provider SLA that achieves the smallest desirability. If multiple traffic flows which have the 
same largest penalty exist, the one with the largest bandwidth demand is placed. If there are 
several such traffic flows, one is chosen randomly. 
Step 4 Once the outbound provider SLA is selected, the requested bandwidth is allocated on 
the corresponding selected intra-AS route and the outbound provider SLA to establish an 
end-to-end bandwidth guaranteed route. We iterate step 1 to step 4 until all the traffic flows 
have been considered. 

6. Performance evaluation     
We evaluate the proposed GA and the greedy-penalty heuristic algorithms by simulation. 
The simulation software was written in Java. The computation was carried out on a laptop 
with an Intel Pentium Centrino 1.5GHz Processor with 512MB RAM. All the results 
presented in this chapter are an average of 50 different simulation trials. 



 Advances in Greedy Algorithms 

 

518 

6.1 Network model 
We use a network topology generated by BRITE (Brite) with 100 nodes and average node 
degree of 4. These numbers were chosen to represent a medium to large INP topology. All 
intra-AS links are unidirectional and each has capacity of 500 units. Note that, since no 
realistic data is publicly available, we assume that the values of link capacity, bandwidth 
offers, and traffic demand are unitless. Therefore, these values that we use in this chapter 
may represent any specific value depending on the definition of the corresponding unit.  
Among the 100 nodes, 30 nodes are randomly selected as border routers and the remaining 
nodes are core routers. In practice, each border router may connect with several inter-AS 
links to adjacent ASes. However, for simplicity, and without loss of generality, we abstract 
these inter-AS links into one. Thus, each border router is associated with one virtual inter-
AS link which can logically represent one or multiple physical inter-AS links. Therefore, 30 
virtual inter-AS links are considered and each has capacity of 500 units. 

6.2 Bandwidth offer model 
It is well known that whilst a typical default-free routing table may contain routes for more 
than 100,000 prefixes, only a small fraction of prefixes are responsible for a large fraction of 
the traffic (Feamster et al., 2003). Based on this finding, we consider 100 remote destination 
prefixes to be included in the bandwidth offers. In fact, each of them may not merely 
represent an individual prefix but also a group of distinct address prefixes that have the 
same end-to-end path properties, e.g. geographical location, offering AS and maximum 
available bandwidth. Hence, the hundred prefixes we considered could reflect an even 
larger number of prefixes. 
In a network, each border router can be an ingress or egress point. Without loss of 
generality, we consider the network scenario where if a border router receives a bandwidth 
offer towards destination prefix k from adjacent AS Y, then AS Y cannot inject traffic for k 
into it. This corresponds to multi-hop traffic (Feldmann et al., 2001) in which the traffic 
traverses the network instead of being directed to another egress link of the same border 
router. We adopt this model in order to evaluate the TA objective of total bandwidth 
consumption in the network. As a result, we cannot assign all the destination prefixes on 
each border router as bandwidth offers. Instead, at each border router we randomly select 
half of these hundred destination prefixes as bandwidth offers and the other half as inter-AS 
traffic. In other words, we set the average number of distinct bandwidth offers advertised at 
each border router to be half of the number of prefixes. Furthermore, each border router can 
generate the number of traffic flows towards half of these prefixes that have not been 
selected for bandwidth offers. We note that this destination prefix generation process is just 
a best effort attempt to model prefix distribution, as no synthetic model for the actual 
behavior of prefix distribution in real networks was found in the literature. The remote 
destination prefixes associated with the bandwidth offers are randomly selected. The 
maximum capacity of each bandwidth offer is uniformly generated between 100 and 200 
units. The charge associated with each bandwidth offer varies according to the simulation 
scenarios. 

6.3 Traffic model 
Ingress points and remote destination prefixes of the inter-AS traffic matrix are randomly 
generated. Previous work has shown that inter-AS traffic is not uniformly distributed (Fang 



Solving Inter-AS Bandwidth Guaranteed Provisioning Problems with Greedy Heuristics 

 

519 

& Peterson, 1999). According to (Broido et al., 2004)), the AS traffic volumes are top-heavy 
and can be approximated by a Weibull distribution with shape parameter 0.2-0.3. We 
therefore generate the inter-AS TM with traffic demand following this distribution with the 
shape parameter 0.3. As previously mentioned, we do not allow traffic-prefix looping, so 
that if the AS receives a bandwidth offer towards remote destination prefix k from an 
adjacent AS, then this adjacent AS cannot inject traffic into the AS for k. The number of inter-
AS traffic flows to be considered ranges from 500 to a maximum 1500.  
As mentioned in Section 3.1, each inter-AS traffic flow is an aggregate of individual traffic 
flows that have identical ingress points and remote destination prefixes. Hence, the number 
of inter-AS traffic flows we considered does not reflect the exact total number of individual 
traffic flows. Instead, the number could represent more individual traffic flows. We assume 
that moderate overprovisioning is considered by the IBP and unless specified, fover = 1.25 (i.e. 
25% inter-AS bandwidth overprovisioning). Table 2 shows the number of traffic flows, their 
corresponding traffic volume and overall inter-AS link utilization. Note that the total traffic 
volume presented in the table has already taken into account the overprovisioning factor. 
 

Number of traffic 
flows Total Traffic volume Overall inter-as egress link 

utilization (%) 
500 4465 30% 
625 5578 37% 
750 6719 45% 
875 7813 52% 

1000 8915 60% 
1125 10046 67% 
1250 11142 74% 
1375 12259 82% 
1500 13402 90% 

Table 2. Inter-AS traffic 

6.4 Algorithm parameters 
For the IBP’s GA parameters, we adopt the suggested values from previous GA research to 
achieve satisfactory effectiveness and convergence rate of the algorithm (Lin et al., 2003). 
The population size is 200, the value of H of the heuristic operator (a) is 200 since the IBP 
problem is highly constrained by two capacity constraints, Ncd is set to 50, the probability of 
mutation is 0.01 and Nit is set to 100. 

6.5 Evaluation of the IBP algorithms 
We compare the performance of our proposed GA described in Section 4.4 with the 
following alternatives: 
Greedy-cost heuristic: The Greedy-cost heuristic sorts all the inter-AS traffic flows in 
descending order of bandwidth demand and selects one at a time in that order. From the 
bandwidth offers that have sufficient bandwidth to accommodate the given traffic flow, we 
select the one which incurs the least IBP cost. The flow is then allocated to this bandwidth 
offer and its corresponding inter-AS route. This step is repeated for the next traffic flow until 
all flows have been considered. One can imagine this heuristic might be a conventional 
algorithm used by INPs to solve the IBP problem. 



 Advances in Greedy Algorithms 

 

520 

Greedy-random heuristic: A greedy-random heuristic algorithm is included as a baseline 
comparison. The random heuristic algorithm is similar to the Greedy-cost heuristic except 
that the bandwidth offer selection of traffic flows is done at random. It may be viewed as the 
solution obtained by a trial-and-error or an ad hoc IBP approach. 

6.5.1 Evaluation of the Total IBP Cost 
The aim of the proposed GA is to achieve better and near-optimal IBP cost in comparison 
with the alternative algorithms. Hence, the main objective of the evaluation in this section is 
to quantify the effectiveness of the proposed GA over the alternative algorithms. 
Fig. 6 shows the total IBP cost achieved by the Greedy-cost and the GA as a function of 
inter-AS traffic flows. The performance of the Greedy-random heuristic is not presented in 
this figure since it has a significant performance gap from the other heuristics. Nevertheless, 
it is compared to the alternative algorithms in Table 3. The legend in the figure shows the 
names of the algorithms followed by the percentage of established peering connections as 
mentioned at the beginning of Section 4.  
 

 

Fig. 6. Evaluation of the total inter-AS bandwidth provisioning cost 

The figure presents the results of two practical scenarios, and we evaluate whether the 
proposed GA performs consistently well under these scenarios. The first scenario consists of 
all customer-provider connections. In other words, no peering connection (i.e. 0%) is 
established and the charge of each bandwidth offer is non-zero. We generate an integer 
uniformly between 1 and 10 to represent each cost. The figure shows that the GA has a 
lower total IBP cost at all numbers of inter-AS traffic flows. We conjecture that when the 



Solving Inter-AS Bandwidth Guaranteed Provisioning Problems with Greedy Heuristics 

 

521 

number of inter-AS traffic flows is small, the inter-AS links and the bandwidth offers have 
relatively plenty of bandwidth to cover all the traffic, and so the GA and the Greedy-cost 
algorithm would give equivalent IBP results and costs. In contrast, as the number of inter-
AS traffic flows increases, both the overall inter-AS link and bandwidth offer utilizations 
increase and some inter-AS links or bandwidth offers have even reached their capacity 
limits. In this case, some traffic flows may be assigned to other bandwidth offers which have 
higher costs. This evaluation shows that a careful selection of bandwidth offers is important 
in order to minimize the total IBP cost. This can be achieved by the GA.  
In addition, the total IBP costs of the GA at all volumes of traffic flows are closer to the 
lower bound than the Greedy-cost heuristic. This shows that the GA is not only able to 
achieve a better cost than the Greedy-cost, but also able to achieve a near-optimal cost. 
In the second scenario not only are customer-provider connections considered but also 
peering connections. We evaluate three levels of established peering connections: 3%, 6% 
and 9% of the total number of bandwidth offers. Simulation data presented in this scenario 
is as for the previous one except that a designated number of bandwidth offers is randomly 
selected as peering connections. In current Internet peering practice, most ASes will only 
accept on a peer link traffic from the peers’ customers. Since our purpose is to merely 
evaluate the performance of the algorithms, we follow the assumption in (Feigenbaum et al., 
2002) that general policy routing and peering/transit restrictions are ignored.  
Fig. 6 shows that the GA performs better than the Greedy-cost at all degrees of peering 
connection and all number of inter-AS traffic flows. This is similar to the results of the 0% 
peering scenario. The GA has better total IBP costs than the Greedy-cost heuristic as the 
degree of peering connection increases. This is because more and more peering connections 
do not incur any charges, so that the GA can more effectively utilize the cost-free bandwidth 
in order to further minimize the total IBP cost. In general, this performance improvement 
not only applies to the second scenario where some peering connections exist but also 
applies to the 0% peering scenario where some exceptional low cost bandwidth offers exist. 
 

Number of Inter-AS traffic flows 1000 1125 1250 1375 1500       
Over Greedy-cost with 0% peering 3.33 5.0 5.92 8.67 12.75 

Over Random with 0% peering 76.16 75.97 75.68 75.6 75       
Over Greedy-cost with 3% peering 4.98 6.91 10.13 12.61 17.16 

Over Random with 3% peering 83.66 83.08 83.06 81.95 81.38       
Over Greedy-cost with 6% peering 7.71 10.6 14.3 18.01 24.0 

Over Random with 6% peering 89.22 88.7 88.47 87.67 87       
Over Greedy-cost with 9% peering 12.59 16.45 20.96 24.87 31.76 

Over Random with 9% peering 92.7 92.41 91.98 91.47 90.85 

Table 3. Performance improvement of the GA over the alternative algorithms (in %) 

Table 3 shows the relative improvement of the GA over the Greedy-cost and the Greedy-
random heuristic algorithms at all numbers of inter-AS traffic flows with different degrees 
of peering connection. By summarizing the table and considering a reasonably high traffic 
volume, the proposed GA has approximately 5%-30% and 75%-90% performance 
improvement over the Greedy-cost and the Greedy-random heuristics respectively under 
different scenarios. In comparison with the Greedy-random heuristic, the performance of 



 Advances in Greedy Algorithms 

 

522 

the GA is remarkable. This shows the importance and value of using systematic approaches, 
such as the proposed GA, over the trial-and-error and ad hoc approaches. 

6.5.2 Evaluation of the proposed GA average running time 
In Table 4 we provide the average running time of the GA. The average running time 
increases as the number of traffic flows increases. We can see that even for quite high 
numbers of traffic flows the running times are acceptable. These times are perfectly 
acceptable taking into account the timescale of the provisioning system operation. 
 

Number of traffic flows Average running time (secs) 

500 36.6 
1000 78.6 
1500 150.4 

Table 4. Average running time of the GA 

6.5.3 Discussion of the IBP algorithms 
The simulation study in this section has evaluated the performance of three IBP algorithms. 
Simulation results have firstly shown that the proposed GA is efficient and is able to achieve 
better total IBP cost than the random-based and the conventional heuristic algorithms. The 
relative total IBP cost improvement achieved by the GA over the Greedy-cost heuristic and 
the random-based algorithms are great, with 5%-30% and 75%-90% cost savings 
respectively. We conclude that the IBP solutions obtained by the proposed GA are good 
overall. This has an implication for INPs that a systematic approach could be developed to 
optimize the total IBP cost significantly. 

6.6 Evaluation of the TA algorithms 
The previous section evaluated the performance of the proposed IBP algorithms. Once the 
IBP phase is completed, an AS performs TA to optimize network resource utilization in 
order to provide end-to-end bandwidth guarantees for the supported traffic. In this section, 
we evaluate the performance of our proposed TA algorithms. 
We assume that outbound provider SLAs are successfully established in line with the first 
scenario in the evaluation of IBP algorithms, i.e. the GA IBP outcomes with a linear cost 
function and all customer-provider connections (0% peering). These outbound provider 
SLAs are then the input to the TA problem. We consider the following three approaches for 
the TA problem, namely Cost-only, Cost-Performance and Performance-only approaches. 
The words “Cost” and “Performance” used in the names of these approaches mean that the 
ordered priorities of the algorithm optimization targets are on the total IBP cost and the total 
bandwidth consumption respectively. 
Cost-only: Given an IBP solution produced by the GA, there are multiple solutions for 
assigning traffic to satisfy all the TA problem constraints. Any of these solutions can be 
selected as the solution of the Cost-only approach since it does not optimize the total 
bandwidth consumption in the network. We use the Random-TA heuristic algorithm, as 
shown in Fig. 7, to find a solution for the Cost-only approach. 



Solving Inter-AS Bandwidth Guaranteed Provisioning Problems with Greedy Heuristics 

 

523 

 

Fig. 7. The random-TA heuristic 

Cost-Performance: Given an IBP solution produced by the GA, the Cost-Performance 
approach takes the proposed greedy-penalty heuristic algorithm as the TA algorithm to 
optimize the total bandwidth consumption in the network. 
Performance-only: The Performance-only approach does not use the IBP solution. Instead, it 
takes all the bandwidth offers (rather than the outbound provider SLAs) as input and uses 
the Greedy-penalty heuristic algorithm to solve the TA problem. The total IBP cost is then 
equal to the sum of the cost of each accepted bandwidth offer. Since the total IBP cost is 
calculated by taking overprovisioning into consideration, we approximate the total IBP cost 
of the Performance-only approach by multiplying its solution cost by fover in order to 
compare it with the total IBP costs achieved by the other two approaches. 

6.6.1 Cost vs. performance 
We evaluate the proposed three TA approaches. We test the hypothesis that the Greedy-
penalty heuristic algorithm can improve the total network bandwidth consumption. 
 

 

Fig. 8. Normalized total inter-AS bandwidth provisioning cost 

Fig. 8 shows the total IBP costs of all the TA approaches at three different volumes of 
inter-AS traffic flows: 500, 1000 and 1500. The total IBP costs are normalized by the cost of 



 Advances in Greedy Algorithms 

 

524 

the solution produced by the GA. The total IBP costs of the Cost-only and the Cost-
Performance approaches are identical because they both use the IBP solution produced by 
the GA. In contrast, the total IBP cost of the Performance-only approach is on average 4 
times higher than the others. This significantly higher cost results from neglecting the IBP 
optimization so that some expensive bandwidth offers are selected, although, as we can 
see below, using them can significantly improve the total bandwidth consumption in the 
network. 
Indeed, although the Performance-only approach has a very high total IBP cost, Fig. 9 
shows that its total bandwidth consumption is approximately half of the other two 
approaches. Nevertheless, because of its high total IBP cost, the Performance-only 
approach can be assumed impractical. This implies that there can be conflict between the 
IBP cost and bandwidth consumption. Therefore, we need a compromising solution that 
would balance the interests of these two metrics. The Cost-Performance approach attempt 
to achieve such solution as it has low IBP cost and low total bandwidth consumption 
compared to the Cost-only approach with the amount closer to the Performance-only 
approach. This reduced total bandwidth consumption reveals that the proposed Greedy-
penalty heuristic algorithm has on average a 10% improvement over the Random-TA 
heuristic algorithm. 
 

 

Fig. 9. Normalized total bandwidth consumption in the network 

6.6.2 Evaluation of the greedy-penalty heuristic algorithm average running time 
Table 5 provides the average running time of the proposed greedy-penalty heuristic 
algorithm. The average running time increases as the number of traffic flows increases. 
These running times are perfectly acceptable taking into account the timescale of the 
provisioning system operation. The computation time could have been much longer if GA 
was used due to its evolutionary process. 



Solving Inter-AS Bandwidth Guaranteed Provisioning Problems with Greedy Heuristics 

 

525 

Number of traffic flows Average running time (secs) 

500 6.2 
1000 22.1 
1500 64.76 

Table 5. Average running time of the greedy-penalty heuristic 

6.6.3 Discussion of the TA approaches 
The simulation described in this section has evaluated the performance of three TA 
approaches. Simulation results have shown that the proposed Greedy-penalty heuristic 
algorithm used by the Cost-Performance approach is efficient and is able to achieve on 
average 10% less total bandwidth consumption than the random-based algorithm used in 
the Cost-only approach. The performance difference between the Performance-only 
approach and the other two reveals that a trade-off exists between the IBP and the TA 
optimization. This trade-off has also been discussed in (Goldenberg et al., 2004) where 
primarily optimizing monetary cost can degrade network performance and vice versa. 
However, the determination of relative weights between cost and performance 
optimizations is far from trivial, particularly when the units of the two metrics have 
different scales. It is thus in many cases difficult to express in terms of weights the trade-off 
between the two metrics. Therefore, we assume that from business point of view, an AS 
considers the IBP cost optimization as more important than the TA performance 
optimization. Based on this assumption and our simulation study, we conclude that the 
Cost-Performance approach, which uses our proposed GA and the greedy-penalty heuristic 
algorithm, performs well both in terms of the total IBP cost and the total bandwidth 
consumption, in comparison with the Cost-only and the Performance-only approaches. 
The Cost-Performance approach can be used by INPs to achieve an effective provisioning of 
end-to-end bandwidth guarantees. Moreover, since the TA problem has dealt with the 
selection of inter-AS route and explicit intra-AS route within the network, the Cost-
Performance approach could be effectively applied to BGP/MPLS virtual private network 
provisioning (Rosen & Rekhter, 1999), a subject which is attracting a great deal of attention. 

6.6.4 Impact of inter-AS overprovisioning factor on bandwidth consumption 
We evaluate the impact of overprovisioning factor on the total bandwidth consumption 
achieved by the three TA approaches. The results of this evaluation are based on 1500 inter-
AS traffic flows. The values of the inter-AS bandwidth overprovisioning factor examined are 
1.25, 1.5, 1.75 and 2.0. As the inter-AS available bandwidth increases, the outbound provider 
SLA capacity constraint becomes less restrictive to the TA problem. Thus, in this case, we 
expect that the total bandwidth consumption in the network can be further improved. 
Fig. 10 shows that the total bandwidth consumption decreases as the overprovisioning 
factor increases. This is because a large overprovisioning factor reduces the outbound 
provider SLA capacity constraint and therefore increases the solution space for the TA 
algorithm, enabling it to find a result with lower total bandwidth consumption. As 
expected, the Cost-Performance approach has lower total bandwidth consumption than the 
Cost-only approach at any considered value of the overprovisioning factor. The total 
bandwidth consumption of the Performance-only approach for all considered values of the 



 Advances in Greedy Algorithms 

 

526 

overprovisioning factor is identical because the approach does not consider IBP. Therefore, 
its performance is not affected by the overprovisioning factor. Fig. 11 shows the normalized 
total bandwidth consumption achieved by the three TA approaches. As the 
overprovisioning factor increases, the relative improvement of the Cost-Performance 
approach over the Cost-only approach slightly increases from approximately 11% to 13%.  
 

 

Fig. 10. Total bandwidth consumption achieved by different fover 

 

 

Fig. 11. Normalized total bandwidth consumption achieved by different fover 



Solving Inter-AS Bandwidth Guaranteed Provisioning Problems with Greedy Heuristics 

 

527 

Fig. 11 also reveals that the performance differences among the three TA approaches are 
consistent and are insensitive to changes on the overprovisioning factor. The results 
presented in these figures have revealed the effect of IBP on the TA performance with a 
different overprovisioning factor. The results confirm our conjecture that as the 
overprovisioning factor increases, more bandwidth is available in outbound provider SLAs 
for the TA algorithms to further optimize the total bandwidth consumption. 

7. Conclusion 
In this chapter we have reviewed a cascaded negotiation model for negotiating and 
establishing SLAs for bandwidth guarantees between ASes, and a network dimensioning 
system to solve the inter-AS bandwidth provisioning and the traffic assignment problems 
systematically.  
We formulated the inter-AS bandwidth provisioning problem as an integer programming 
problem and prove it to be NP-hard. An efficient genetic algorithm was proposed to solve 
the problem. Our simulation study shows that the genetic algorithm has a near-optimal total 
inter-AS bandwidth provisioning cost. This cost is approximately 5%-30% and 75%-90% less 
than the cost achieved by a conventional greedy heuristic algorithm and a random-based 
algorithm respectively under two customer-peering scenarios. 
We formulated the traffic assignment problem as an integer programming problem and 
prove it to be NP-hard. An efficient greedy-penalty heuristic algorithm was proposed to 
solve the problem. Our simulation study showed that the greedy-penalty heuristic 
algorithm achieved on average 10% less total bandwidth consumption than the random-
based TA heuristic algorithm. 
Finally, we evaluated the effects of different overprovisioning factor values on the total 
bandwidth consumption. The more the inter-AS bandwidth is overprovisioned, the less the 
total bandwidth is needed to carry the supported traffic across the network. 
A limitation of our work is performance robustness. In case where the derived traffic matrix 
deviates significantly from the real traffic demands or link failures happen, the performance 
of IBP and TA may be affected since these network conditions have not been taken into 
account during the optimization. As future work, we will make the IBP and TA problems 
robust to traffic demand uncertainty and link failures. Although this may result in trade-offs 
between performance and robustness, we attempt to achieve good and balance solutions 
with respect to these two metrics. 

8. References 
Awduche, D. et al. (2002). Overview and Principles of Internet Traffic Engineering, IETF 

RFC 3272. 
BRITE: Boston University Representative Internet Topology Generator. Website 

http://www.cs.bu.edu/brite/. 
Broido, A. et al. (2004). Their Shares: Diversity and Disparity in IP Traffic, Proceedings of 

Passive and Active Measurement Workshop, pp. 113-125, Antibes Juan-les-Pins, April 
2004, Springer. 

Chu, P.C. & Beasley, J.E. (1997). A Genetic Algorithm for the Generalized Assignment 
Problem. Computers and Operations Research, Vol. 24, No, 1, January, pp. 17-23. 



 Advances in Greedy Algorithms 

 

528 

Fang, W. & Peterson, L. (1999). Inter-AS Traffic Patterns and Their Implications, Proceedings 
of IEEE GLOBECOM, pp. 1859-1868, Rio Je Janeiro, December 1999, IEEE. 

Feamster, N. et al. (2003). Guidelines for Interdomain Traffic Engineering. ACM SIGCOMM 
Computer Communications Review, Vol. 33, No. 5, October, pp. 19-30. 

Feigenbaum, J. et al. (2002). A BGP-based Mechanism for Lowest-Cost Routing, Proceedings 
of ACM Symposium on Principles of Distributed Computing, pp. 173-182, Monterey, 
July 2002, ACM. 

Feldmann, A. et al. (2001). Deriving Traffic Demands for Operational IP Networks: 
Methodology and Experience. IEEE/ACM Transactions on Networking, Vol. 9, No. 3, 
June, pp. 265-279. 

Feldmann, A. et al. (2004). A Methodology for Estimating Interdomain Web Traffic Demand, 
Proceedings of ACM IMC, pp. 322-335, Taormina, October 2004, ACM. 

Goldenberg, D.K. et al. (2004). Optimizing Cost and Performance for Multihoming, 
Proceedings of ACM SIGCOMM, pp. 79-92, Portland, August 2004, ACM. 

Guerin, R.; Ahmadi, H. & Naghshineh, M. (1991). Equivalent Capacity and Its Applications 
in High-speed Networks. IEEE Journal on Selected Areas in Communications, Vol. 9, 
No. 7, September, pp. 968-981. 

Holland, J.H. (1975). Adaptation in Natural and Artificial System, The University of Michigan 
Press, ISBN 0262581116. 

Howarth, M. et al. (2005). Provisioning for Inter-domain Quality of Service: the MESCAL 
Approach. IEEE Communications Magazine, Vol. 43, No. 6, June, pp. 129-137. 

Martello, S. & Toth, P. (1990). Knapsack Problems: Algorithms and Computer Implementations, 
Wiley-Interscience, ISBN 0471924202. 

Lin, X.H.; Kwok, Y.K. & Lau, V.K.N. (2003). A Genetic Algorithm Based Approach to Route 
Selection and Capacity Flow Assignment. Computer Communications, Vol. 26, No. 9, 
June, pp. 961-974. 

Nucci, A. et al. (2005). Increasing Link Utilization in IP over WDM Networks Using 
Availability as QoS. Photonic Network Communication, Vol. 9, No. 1, January, pp. 55-
75. 

Osborne, E. & Simha, A. (2002). Traffic Engineering with MPLS, Cisco Press, ISBN 1587050315. 
Rosen, E. & Rekhter, Y. (1999). BGP/MPLS VPNs, IETF RFC 2547. 
Shi, S.Y. & Turner, J.S. (2002). Multicast Routing and Bandwidth Dimensioning in Overlay 

Networks. IEEE Journal on Selected Areas in Communications, Vol. 20, No. 8, October, 
pp. 1444-1455. 

Sridharan, A.; Guerin, R. & Diot, C. (2005). Achieving Near-optimal Traffic Engineering 
Solutions for Current OSPF/IS-IS Networks. IEEE/ACM Transactions on Networking, 
Vol. 13, No. 2, April, pp. 234-247. 

Teixeira, R. et al. (2005). Traffic Matrix Reloaded: Impact of Routing Changes, Proceeding of 
Passive and Active Measurement Workshop, pp. 251-264, Boston, March/April 2005, 
Springer. 

Zhang, R. et al. (2004). MPLS Inter-Autonomous System Traffic Engineering Requirements, 
IETF RFC 4216. 



28 

Solving the High School Scheduling Problem 
Modelled with Constraints Satisfaction using 

Hybrid Heuristic Algorithms 
Ivan Chorbev, Suzana Loskovska, Ivica Dimitrovski and Dragan Mihajlov 

Faculty of Electrical Engineering and Information Technologies 
Republic of Macedonia 

1. Introduction 
Constraint Programming is a methodology for problem solving which allows the user to 
describe data and constraints of the problem without explicitly solving in the declarative 
phase. Constraint Satisfaction Problems (CSP) can simply be defined as a set of variables 
and a set of constraints among the values of the variables. Typical method of solving CSP 
models is building the solution by backtracking approach in which a partial assignment to 
the variables is incrementally extended, while maintaining feasibility of the current solution. 
The constraints are kept satisfied throughout the solving process. 
Many optimization problems of practical as well as theoretical significance consist of finding 
"the best" configuration of values for a set of variables. Such problems where the solution is 
modelled using discrete variables belong to combinatorial optimization (CO).  The problems 
of combinatorial optimization consist of a set of variables, their domains, constraints among 
variables and a goal function that requires to be optimized. School scheduling is a typical 
example of a CO problem. 
High school schedule generation includes both temporal and spatial scheduling. It is a 
computation demanding and usually a complex task. It is a NP hard optimization problem 
that requires a heuristic solving approach (Zhaohui & Lim, 2000). 
It is interesting to note that educational institutions rarely use automated tools for schedule 
generation, although the area has been researched for a long time. A survey in British 
universities (Zervoudakis 2001) showed that only 21% of the universities use a computer in 
the generation of exam timetables. Only 37% of the universities use the computer as 
assistance in the process, while 42% do not use a computer at all. Generation of schedules in 
some schools in Japan takes up to 100 man hours a year. In bigger schools, schedule 
generation begins in April and does not end until June, two months after the beginning of 
the school year, almost 150 work days. 
Constraint satisfaction is usually not the first choice for modelling scheduling problems, due to 
their high complexity. Only the final schedule (hopefully) satisfies all imposed constraints. 
During schedule generation, most of the constraints will be dissatisfied at some point. We 
created a system where the extent of constraint satisfaction is measured and compared, so CSP 
can be successfully used in scheduling (Chorbev et al. 2007). When a measurement of constraint 
satisfaction is included, the system becomes a Constraint Optimization Problem (COP). 



 Advances in Greedy Algorithms 

 

530 

A very general approach to solve combinatorial optimization problems like scheduling is to 
generate an initial, suboptimal solution and then to apply heuristics to improve the solution. 
This method is somewhat incompatible with the standard backtracking method in 
constraints programming. In NP hard problems, building the solution by backtracking 
approach in which a partial assignment to the variables is incrementally extended is 
virtually impossible. For example, when the number of queens in the N-Queens problem 
exceeds certain number (for example 50), the Generalised Arc Consistency – Conflict Based 
Back-jumping (GAC-CBJ) algorithm fails to give a result in reasonable time (Jolevski et al., 
2005b). The duration of the search quickly grows beyond any reasonable amount. 
Initially, the aim of our research was to achieve a successful symbiosis of constraint 
programming and heuristic algorithms. Additionally, we aimed to create hybrid heuristic 
algorithms that would use the advantages of known algorithms. Therefore, we developed 
hybrid combinations of different heuristic approaches. Our solving approach begins with an 
initial suboptimal solution followed by heuristic repair to achieve the final correct solution. 
Ideas from algorithms like Simulated Annealing, Tabu Search, and Guided Search were 
incorporated to achieve quicker and more accurate solving. Heuristic algorithms demand a 
constraint satisfaction system that can measure the level of constraint satisfaction and 
provide heuristics for solution improvement (Leenen et al. 2003). 
Most of the heuristic decisions in our solving process are made in the process of repairing 
the first suboptimal solution. We had to implement mechanisms to avoid trapping at local 
optima, avoid deadlocks and achieve convergence. The functions that generate the proper 
next solution based on the previous one are the key to successful, quick and accurate 
solving. They use knowledge about the problem and reuse information of the specific 
inconsistent constraints to generate an improved solution in the neighbourhood of the 
current one. Exact generation of improved solutions based on previous inconsistencies 
showed useful up to the moment when a deadlock occurs. A stochastic component in the 
solving process proved effective in avoiding deadlocks and guiding toward the final 
solution. 
To test and implement the hybrid algorithms and their use over constraint modelled 
problems, a broader software framework was necessary. Therefore we developed and 
implemented a universal Constraint Solving Engine (CSE) and a Constraint Programming 
Library (CPL). We developed a set of constraint types for modelling different problem types 
and a mechanism for selection an optimal algorithm for the given problem. CPL contains 
different algorithms, including Simulated Annealing, Tabu search, Arc consistency etc., as 
well as their hybrids.  
This approach offers several advantages. The tool can be applied on different problems by 
cost of very little to no further programming at all. For the user it is only necessary to model 
a new problem with given constraint types, choose an algorithm, and initiate the solution 
process. The engine can be easily implemented in any commercial problem solving 
software. Our solving engine has substantial theoretical implications, too. The use of object-
oriented approach provides a mechanism for adding and testing new algorithms based on 
the same problem description. This system enables comparing efficiency, and results of 
different algorithms as well.  
Part 2 of the chapter gives an overview of Constraint Programming and Constraint 
Optimization where the origins, the definitions and the basic concepts are explained. Part 3 
of the chapter gives an overview of the concept of hybridization of heuristic algorithms. 
Some strategies are explained and examples are given. Part 4 of the chapter gives a short 



Solving the High School Scheduling Problem Modelled with Constraints Satisfaction  
using Hybrid Heuristic Algorithms 

 

531 

description of the constraint solving engine with multiple optimization algorithms that we 
developed and used for simulations. Part 5 gives the model of the high school scheduling 
problem expressed in terms of mathematical constraints. The hybrid heuristic algorithm that 
we developed is explained in part 6 of the chapter. Finally, part 7 of the chapter contains the 
closing remarks and ideas for future work.  

2. Constraint programming and constraint optimization  
During the seventies of the 20th century, David Waltz within one of his algorithms set the 
basic concept of the technique of Constraint Propagation (Kumar, 1992). Ever since, the 
concept has evolved surpassing the boundaries of artificial intelligence and affecting wide 
range of research areas. Today, an increasing number of explorers in the area of 
programming logic, knowledge representation, expert systems, theoretical computer 
science, operational research, and other similar fields explore the use of constraint 
programming techniques, both as theoretical basis as well as true practical applications. In 
time, it is understood that constraint satisfaction is the main problem of a wasp area of 
problems like time reasoning, spatial planning, configuration planning, timetable 
generation, telecommunications, even in databases (Der-Rong & Tseng, 2001). The main 
reason for the increased interest and success of constraints processing techniques is their 
ability for good declarative formulation of problems as well as efficient solving (Meyer, 
1994). 
A constraint is simply a logical relation among several unknowns (or variables), each taking 
a value in a given domain (Bartak, 1999). More formal definition states: 
 

Definition 1: (Gavanelli, 2002) 
A Constraint Satisfaction Problem (CSP) is a triple P = {X, D, C} where: 
X= {X1, X2, ..., Xn} is a set of unknown variables, 
D = {D1, D2, ..., Dn} is a set of domains and 
C = {c1, c2, ..., cn} is a set of constraints. 

Each c1(Xi1, ..., Xik) is a relation, i.e., a subset of the Cartesian product  Di1×··· × Dik. 
An assignment A={X1->d1, …, Xn->dn} (where d1∈ D1, …, d1∈ Dn1) is a solution if it satisfies 
all constraints.  
 

In the declaration phase of Constraint Programming, the user describes the data and the 
constraints of the problem without explicitly solving it. When using constraints, the 
problems can simply be defined with a set of variables and a set of constraints. The 
constraints specify a certain relation over a subset of variables. The relations limit the values 
that the variable can have. Different constraints engage different variables making a 
network of constraints. The problem that requires to be solved is finding a relation over the 
entire network of variables that simultaneously satisfies all constraints. The derived problem 
type is named Constraint Satisfaction Problem – CSP. This methodology is perfectly suited 
for schedule generation, since the entities engaged can be defined and the expected correct 
schedule can be declaratively expressed. If the object-oriented approach is added, the result 
will be general, in the same time having the possibilities for exact specialization.  
Constraint programming is a term close to mathematical programming (Sedgewick, 1983). 
Mathematical programmes contain a set of variables interconnected by a set of mathematical 
equations called constraints and an objective function that calculates the quality of the 
solution represented by certain combination of values for the variables. If all equations are 



 Advances in Greedy Algorithms 

 

532 

only linear combinations of variables, the problem is a special case named linear 
programming.  
After the problem is modelled with constraints, the state space derived from the variable 
domain and the constraints requires to be searched for the best solution. The algorithms for 
searching the state space are a key phase in the solving process. 
Constraint Optimization Problems (COP), also known as Constraint Relaxation Problem – 
CRP (Yoshikawa, 1996), can be defined as common problems of constraint satisfaction in 
which the level of satisfaction of every constraint can be measured. The goal is to find a 
solution that maximises the sum of constraint satisfactions. Also, constraint optimization 
problems can be defined as constraint satisfaction problems upgraded with several local cost 
functions. The goal of the optimization is finding a solution whose cost, evaluated as a sum 
of all cost functions, should be maximal or minimal. Regular constraints are called hard, 
while cost functions are known as soft constraints. Names illustrate that hard constraints 
must be satisfied, while the soft ones only express preferability toward some solutions. 

3. Metaheuristic algorithms and their hybridization 
In recent decades we have witnessed the development of a new kind of approximative 
algorithms that combine basic heuristic methods in frameworks designed for efficient and 
effective search of the state space. These methods are named metaheuristics. The term was 
suggested by Glover in 1986, based on the ancient words: “heuristic” meaning “to discover”, 
and the prefix “meta” meaning “above, higher level”. These groups include, among others: 
Ant Colony Optimization (ACO), Evolutionary Computation (EC) – like Genetic Algorithms 
(GA), Iterated Local Search (ILS), Simulated Annealing (SA), Tabu Search (TS), Brute-force 
search, Random optimization, Local search, Greedy algorithm, hill-climbing, Random-
restart hill climbing, Greedy best-first search, Branch and bound, Swarm intelligence - Ant 
colony optimization, Greedy Randomized Adaptive Search Procedure – GRASP etc. There is 
no strict definition for what metaheuristic is, but main axioms found in literature state that 
metaheuristics are a group of strategies that guide the search process. They search for an 
optimal or near optimal solution aproximatively and non-deterministically (Blum & Roli 
2003).  
The combination of different heuristic can be done in several ways. Various heuristic 
methods can be chronologically applied in different phases of the search, when their 
advantages are required the most. Besides chronological sequential application of different 
search methods, the algorithms themselves can be a hybrid of more metaheuristic or basic 
optimization approaches. 
There are various forms of hybridization of algorithms. The first form advocates integration 
of components from one metaheuristic into another. The second form includes systems 
known as cooperative search. They are consisted of various algorithms that exchange 
information. The third option is integration of approximative and systematic (complete) 
methods. By emphasizing the advantages and flaws of different metaheuristic approaches, it 
is evident that hybridization and integration of different heuristic algorithms might result in 
better solutions to problems. 
Since schedule generation is a NP hard problem, methods for exhaustive search are not an 
option. Algorithms like Tabu search, Genetic Algorithms and Simulated Annealing have been 
previously applied to such problems. Although they all have advantages, no one solves the 
problem completely. The goal of our research was to implement combinations of algorithms.  



Solving the High School Scheduling Problem Modelled with Constraints Satisfaction  
using Hybrid Heuristic Algorithms 

 

533 

3.1 Exchange of components between metaheuristics 
A popular way of hybridization is the use of trajectory methods with populations based 
methods (Blum et al., 2005). The most successful applications of evolutionary algorithms 
and ant-colony optimization use procedures for local search. The reasons are obvious when 
the appropriate advantages of trajectory and population methods are analysed.  
The power of population methods is based on recombining solutions to derive new ones. 
Evolutionary algorithms and Scatter search implement explicit recombination with one or 
more operators (Glover et al., 2003). In Ant-colony optimization and some evolutions 
algorithms, the recombination is implicit, because new solutions are generated by using a 
distribution in the state-space, based on the previous populations. This allows guided steps 
in the search space that are usually bigger than steps made in trajectory methods. That 
means the solution based on recombination in population methods is more “different” from 
the parents as opposed to a solution derived with one move from the previous solution. 
There can also be “big steps” in trajectory methods, like iterated local search and variable 
neighbourhood search, but, in these methods the steps are not guided (these steps are called 
trials or perturbations to emphasise the lack of guidance). In every population based 
method, there are mechanisms that use the good solutions that have been found to influence 
the search to find even better solutions. The idea has been explicitly implemented in the 
Path Relinking algorithm (Blum et al., 2005). There, the basic elements are initial solutions 
and guiding solutions (the best found so far). New solutions are derived by applying moves 
to decrease the distance between the resulting and the guiding solution. Evolution 
algorithms achieve the same effect by keeping the best found solutions so far in the 
population. The approach is called an evolution process with stable states. Scatter search 
performs a process with stable states. In some implementations of ant colony optimization, 
there is a schedule for updating the pheromones that uses only the best found solution 
when the algorithm converges toward the end. It corresponds with changing the direction of 
the search process toward a good solution hoping to find better on the way. 
The power of trajectory methods is the way that they search the promising regions in the 
state space. Since local search is the main component, a promising part of the search space is 
searched in a more structural way than in population based methods. This approach 
reduces the possibility of missing the optimal solution when the search is near it, as opposed 
to population methods. The conclusion is that population methods are better in identifying 
promising regions in the search space, while trajectory methods are better in exploring the 
promising area. Therefore, metaheuristic methods that combine the advantages of 
population and trajectory methods are successful. 

3.2 Cooperative search  
A loose form of hybridization is achieved in joint search (Hogg & Huberman, 1993) which 
consists of searching by various algorithms that exchange information for states, models, 
entire sub problems, solutions or other specifics of the search space. Usually, the solving 
process is based on parallel execution of algorithms with different level of communication. 
The algorithms may be entirely different, or instances of the same algorithm functioning on 
different models or different configuration parameters. The algorithms that make the joint 
search can be aproximative or complete, or a mixture of aproximative and complete 
methods. Cooperative search receives increased interest because of the interest in 
parallelisation of metaheuristic.   



 Advances in Greedy Algorithms 

 

534 

3.3 Integration of metaheuristic and systematic methods 
The approach of integration of metaheuristic and systematic methods is quite effective when 
used over practical problems. The discussion about similarities, differences and possible 
integration of metaheuristic and systematic methods can be found in (Glover & Laguna, 
1997). Recent research papers suggest that integration of metaheuristic and constraint 
programming is proving especially useful and successful. (Duong & Lam, 2004), (Gomes et 
al., 2005), (Crawford et al., 2007)  

3.4 Hybridization with parallelization 
Some of the heuristic algorithms are inherently easily executed in parallel, while others 
require sophisticated strategies for parallel execution. Generally, genetic algorithms (GA) 
are easy to execute in parallel, while SA is sequential by nature. On the other hand, there is a 
mathematical proof that SA slowly, but surely converges toward the final solution. Since 
there is no such proof for the GA, a hybrid SA with operators from genetic algorithms is a 
good approach. 
There are various Parallel Genetic Simulated Annealing Algorithms – HGSA. In literature 
[Ohlidal 2004] there are a couple of published versions: 
- S. W. Mahfoud and D. E. Goldberg suggest a concept of a GA using a Metropolis 

algorithm in the selection process. 
- M. Krajic describes a hybrid parallel SA based on genetic operators (mutation and 

cross-reference). 
- N. Mori, J. Yoshida and H. Kita use a thermodynamic rule for selection. 
Czech describes a parallel implementation of SA without GA. (Czech et al., 2006) 

3.4.1 Parallel SA with a Boltzmann synchronization function  
Within our research we experimented with parallel execution of SA and developed parallel 
SA with a Boltzmann synchronization function. (Chorbev et al., 2006) 
The cooperation of more processors can be used either to speed up the sequential annealing 
algorithm or to achieve a higher accuracy of solutions to a problem. In this work we 
considered both goals. The accuracy of a solution is meant as its proximity to the global 
optimum solution.  
We designed a system with r available processors and each of them is capable of generating 
its own annealing process. The architecture includes a master computer and given number 
of slave computers, interconnected in a Local Area Network. The starting - master computer 
P1 imports the initialization data, generates the first proposed solution and passes data to r-1 
remaining computers. All remaining computers – processors start independent annealing 
process after receiving the initial data. All processors communicate by exchanging current 
best solutions during annealing processes, at a chosen rate. The scheme of communication is 
given in the figure 1. 

 
Fig. 1. Processor communication  



Solving the High School Scheduling Problem Modelled with Constraints Satisfaction  
using Hybrid Heuristic Algorithms 

 

535 

The communication model used is synchronized point-to point. Before the temperature is 
decreased, every process sends its best found solution to the remaining r-2 processes, and 
waits the best found solutions from all other processes, too. Once all data is received, each 
process calls its acceptance function to decide whether to accept the best solution from all 
other processes or continue with the one found by the process itself. With this architecture, 
the master computer only starts the solving process and eventually, collects best solutions 
from slave computers. It serves no purpose during solving iterations and information 
exchange; therefore its functions could be performed by some of the slaves. Keeping 
master’s functions limited excludes it being a bottleneck in the architecture. 
We analyzed a possible problem of certain faster converging processes to wait for slower 
processes to send their best solutions. This architecture is only as fast as the slowest of the 
included computers. However, we consider this not to be a setback. All computers used in 
the network are of same type, design and performance. Also, all computers execute the same 
annealing algorithm; use the same temperature decrement coefficient, the same number of 
iterations during each temperature and the same metropolis function. The only difference is 
the independent random generation of the next proposed solution in every computer. This 
provides different search paths through the solution space in every parallel process and 
increase diversity of the search. Therefore, all computers are expected to make at average 
the same number of acceptance and declination of new proposed solutions (due to the 
metropolis function). The cumulative result is roughly the same computational effort (time 
of execution) in each computer. Sometimes some processors might converge faster toward a 
local optimum, but the necessary broad search of the domain that this parallel architecture 
brings is worth waiting. 
The acceptance function (the decision in every processor to accept the best solution from 
others or continue with its own) was also a subject of interest in our research. We tried: 
always accepting the best solution from all others, randomly accepting any of the given 
solutions from other processes and eventually accepting solutions using the Boltzmann 
distribution. We got the best results using the Boltzmann distribution. This probability 
function is fundamental for SA and it seems natural for it to be part of SA’s parallelization. 
There are other points among the algorithm steps where parallel processes could 
communicate, i.e. different rates of communication. Data could be exchanged within the 
inner annealing iteration at every nth iteration or after certain number of temperature 
decreasing iterations. In our parallel SA the processes P2, P3, …, Pr cooperate among each 
other at every temperature decreasing iteration. 
Implementation of the parallel SA is the following: 
 

Process P0: 
INITIALIZE; 
Dispatch initial solution to processes Pp, p=2, 3, …, r 
Wait until final solutions from processes Pp, p=2, 3,…, r are received 
Choose and display the best solution from processes Pp, p=2, 3,…, r 
Process Pp, p=2, 3,…, r: 
INITIALIZE;//receive initially proposed solution 
repeat 
               repeat 
                              PERTUB(solution(i) -> solution(j), Δcostij); 
                              if METROPOLIS(Δcostij) then accept 



 Advances in Greedy Algorithms 

 

536 

                              if accept then UPDATE(solution(j)); 
               until predefined number of iterations; 
               Send current solution s(p) to other processes Pq,  q=2, 3,…, r, q≠p 
               Receive solutions from all proc. Pq, q=2, 3,…, r, q≠p 
               Choose the best solution s(q) from received solutions 
               if exp(-Δcostpq/TEMP) > random[0; 1) //Boltzmann 
               then accept; 
               if accept then UPDATE (solution s(j)); 
               TEMP+1 = f (TEMP); //Decrease temperature 
until stop criterion = true (system is frozen);  
 

A crucial component when designing a parallel algorithm is finding the best tradeoff 
between the amount of communication and every processor’s independence. 
Communication of the parallel processes within the inner annealing cycle causes extensive 
communication slowing the overall performance. On the other hand, delaying the 
communication for every nth temperature iteration gave worse solution quality because of 
lack of sufficient information exchange. The experimental results given in figure 2 show that 
best results are attained when communicating at every temperature iteration. This graph is 
generated with 5, 10 and 20 processors. 
 

 
Fig. 2. Course of solution quality versus the rate of communication among processes. The 
horizontal axis is the number of temperature iterations between the processes 
communication. The vertical axis is the solution cost. The dashed line is the optimal solution  
 

1

1,2

1,4

1,6

1,8

2

2,2

0 10 20 30 40 50 60 70 80
0

0,2

0,4

0,6

0,8

1

1,2

Number of processors

Speedup Efficiency

speedup

efficiency

 
Fig. 3. Course of speedup and efficiency versus the number of processors. 

7500

7550

7600

7650

7700

7750

7800

7850

7900

7950

1 5 10 20 35 50 75 100

Cost Function  

5 processors

10 processors

20 processors

Communication Rate (temperature iterations) 



Solving the High School Scheduling Problem Modelled with Constraints Satisfaction  
using Hybrid Heuristic Algorithms 

 

537 

Besides increasing solution quality, main reason for parallelization is the expected speedup. 
Speedup is defined as the ratio of solving time using single processor versus multiple 
parallel processors solving time. Efficiency is defined as the ratio of speedup versus the 
number of processors used. Efficiency gives the utilization of the processors. According to 
experimental results in figure 3, the speedup is obviously increasing when going from one 
processor toward five or ten. Further increasing of the number of processors brings no 
advantage since large amount of communication among processes slows the overall 
performance. According to experimental results, our parallel SA implementation achieves 
best speedup at 10 – 20 processors. However, if we take the efficiency into consideration, 
using more than 10 processors is highly inefficient. 

4. Constraint solving engine with multiple optimization algorithms 
The research presented in this chapter is performed using a Constraint Programming 
Library (CPL) (Jolevski et al. 2005a). The software library is consisted of a set of classes – 
generic constraint types for modeling different problem types and a mechanism for selection 
an optimal algorithm for the given problem. This approach is required because the 
Constraint Solving Engine (CSE) is developed to enable solution of problems with different 
nature. The engine is modular, allowing specific heuristics for certain problems to be 
implemented in overridden functions. Every step of the problem solving process could be 
implemented either with existing components or with newly added modules overriding 
those already contained in the basic object-oriented system. 
The CSE is based on the concept of variables and their domains. The domains are bounded 
by the existing constraints in the moment of their creation, making the search space smaller. 
Later in the process of proposing new solutions, the constraints evaluate the extent of 
satisfaction and measure the progress toward the best (final) solution. 
The main constraint class provides an integrated interface to all its children. The inherited 
interface enables algorithms to use the constraints, gives them their variables and checks the 
consistency of conditions. The constraints return Boolean or in some cases a quantitative 
measure of the constraint satisfaction. 
In our model, the solution cost originates from the level of satisfaction of every constraint. 
Every constraint has an implemented function for calculation of the amount of its 
dissatisfaction. Additional multipliers to the dissatisfaction levels exist, to increase the 
influence of certain constraint over others in the total cost.  
The set of given constraints is appropriate for modeling different problems. That is so 
because most of the problems can be divided into smaller and simpler ones that later can be 
modeled and solved. From mathematical point of view a broad variety of common, 
appearing different from the outside, problems are turned into the same or similar tasks. 
When modeling a problem it can always be expressed through a mathematical language. 
Very often, the problem can be expressed as a couple of arrays of integer values that comply 
with certain rules. For the user, those model arrays are converted into understandable 
solution data like the shortest path for a traveling salesman or into the most optimal high 
school schedule. In the background, in the mathematical model, the problem rules transform 
into constraints like: "no two elements of the array can have the same value" or "the sum of 
all elements of the array must always be a constant value." All rules and value checks are 
done by methods within the constraints classes.  



 Advances in Greedy Algorithms 

 

538 

5. Constraints modelling of the high school scheduling problem 
Scheduling covers a wide area of problems with temporal and spatial distribution of 
resources. Three broad families of scheduling problems can be distinguished depending on 
the degrees of freedom in positioning resource supply and resource demand intervals in 
time (Abramson, 1991): pure scheduling problems, pure resource allocation and finally, joint 
scheduling and resource allocation problems. High School scheduling is a composite 
problem. 
In case of School Scheduling, the model includes means for temporal and spatial 
distribution of resources. It is required to implement priorities among constraints, providing 
methods for satisfying primarily more important rules followed by less significant. 
The main interest of constraint programming lies in actively using the constraints to reduce 
the computational effort required to solve a problem, in the same time achieving good 
declarative problem formulation. Constraints are used not only to test the validity of a 
solution, but also in a constructive mode to deduce new constraints and detect 
inconsistencies. This process is called constraint propagation. 
This problem domain falls within the category of Constraint Optimization Problems (COP), 
where the constraint(s) satisfaction requires to be evaluated (in opposition to those problems 
where they can only be satisfied or unsatisfied, called constraint satisfaction problems, CSP) 
(Penya et al., 2005). Application of algorithms like Simulated Annealing (SA) demands a 
solution cost function that the algorithm will tend to decrease (Leenen et al., 2003). 
Therefore, the implemented constraints of the model are capable of producing a numerical 
measurement of their satisfaction. Abramson (Abramson, 1991) in his model separates the 
total cost to three parts: teacher cost, class and room cost as a result of clashes in the trial 
solutions on those three bases. 
Schedule generation has been formalized as a problem of optimizing constraints, or 
Constraint Relaxation Problem – CRP by (Yoshikawa et al., 1996). They focused on using the 
min-conflict heuristics to generate an initial solution for solving both school and university 
timetabling problems. After a fairly good-quality initial solution is generated by an Arc-
Consistency algorithm, their proposal relies on a heuristic billiard-move operator to 
iteratively repair the current solution and complete assignment of lessons for 
school/university timetabling. The min-conflicts heuristic (MCH) tries to examine each 
variable to assign a value with the minimum number of constraint violations. Tam and Ting 
(Tam & Ting, 2003) combine the min-conflicts and look-forward heuristics used in local 
search methods to effectively solve general university timetabling problems. 

5.1 Notation 
The problem in our case is modeled as follows: There are G·D·N (G – Groups, D – Days, N – 
lessons per day) variables (items) that define the assignment of lessons to groups and rooms. 
Variables are grouped in blocks of D·N variables. Every block corresponds to the timetable 
for one group.  
Let’s denote the set of all lessons in a timetable by T = {t0, t1, …, tT-1} , where T = |T | = 
G·D·N is the number of lessons in a timetable. Lessons are grouped in blocks of N lessons 
that are all in the same day. Lessons are ordered in an increasing day order. 
The next stage, before actually turning the constraints into program code, is creating the 
mathematical model. For that purpose, an exact notation was required, part of which is 
defined as follows:  



Solving the High School Scheduling Problem Modelled with Constraints Satisfaction  
using Hybrid Heuristic Algorithms 

 

539 

Π = {π0, π1, …, πP-1}   set of teachers;  
Β = {β0, β1, …, βB-1}   set of subjects;  
Ψ = {ψ0, ψ1, …, ψY-1}   set of school years;  
Δ = {δ0=0, δ1=1, …, δD=D-1} set of working days;  
Γ = {γ0, γ1, …, γG-1}    set of groups; 
Χ = {χ0, χ1, …, χC-1}   set of rooms; 
Ι = {Imin, Imin+1, …, N}   set of number of lessons in a day; 
Imin minimum number of lessons in a day; and 
N maximum number of lessons in a day. 

5.2 Data 
The algorithm works using existing data. The data has to be previously entered in the 
program (in the relational database through an intuitive user interface of the scheduling 
software (Jolevski et al., 2005d)), and prepared in the specified format. Certain data is 
exploitive in more than one constraint. Our model contains eight previously entered data 
structures. They are: 
1. Number of weekly lessons x per subject β per group γ is defined by the following set of 

ordered triples: ΒΓ = {(βi, γj, x) | i = 0, …, B-1; j = 0, …, G-1}. 
Function x = Xβγ(β, γ): Β×Γ → Z+ returns the required number of lessons for subject β for 
group γ. 
Function x = wγ(γ): Γ → Z+ returns the required number of weekly lessons for group γ. 

2. All combinations of groups and subjects that a particular teacher can teach are given in 
the following set. Teacher π who teaches subject β for group γ is defined by the 
following set of ordered triples: ΠΒΓ = {(πk, βi, γl) = | k = 0, …, P-1; i = 0, …, B-1; l = 0, …, 
G-1}. 
Function π = Pβγ(β, γ): Β×Γ → Π returns the teacher π for subject β for group γ.  

3. Subjects β that can be taught in a room χ is defined by the following set of ordered 
pairs: ΒΧ = {(βi, χj) | i = 0, …, B-1; j = 0, …, C-1}. 
Function Tβχ(β, χ): Β×Χ → {0, 1} returns 1 if subject β can be taught in room χ, otherwise 
returns 0. 

4. Maximum number m of groups that can share a room χ is defined by the following set 
of ordered pairs:  
Χ M = {(χi, m) | i = 0, …, C-1}. 
Function Mχ(χ): Χ → Z+ returns the maximum number of groups that can share room χ 
at any point in time.  

5. If a subject β should be taught in blocks of 2 consecutive lessons, than there is an 
appropriate element in the set C = {β | β ∈ Β} 
The function cβ(β): Β → {0,1} returns 1 if the subject β can be taught in blocks of 2 
lessons, because β ∈ C, else returns 0 meaning β ∉ C. 

6. The availability of the teacher in a particular time slot during the week is kept in this 
set.  A teacher πi available to teach a class a on a day δj in a shift μk is defined with the 
following set:  

Α = {(πi, δj, μk, a) | i = 0, …, P – 1; j = 0, …, D – 1; k = 0, …, M – 1} 



 Advances in Greedy Algorithms 

 

540 

If elements exist for a professor in the set ΠΔΜ, then these elements hold the availability 
of the teacher. If there is no element for the particular teacher in the set ΠΔΜ the teacher 
is available at any time in the week. 
The function aα(πi, δj, μk, a): Α → {0,1} returns 1 if the teacher πi is available to teach the 
subject a in the day δj in shift μk , that is (πi, δj, μk, a) ∈ Α, else returns 0 meaning (πi, δj, μk, 
a) ∉ ΒΑ. 

7. The subject β can not be taught in a lesson j: 

 ΒΑ = {(β, j) | β ∈ Β; j ∈ {1, …, N}}.  
The function Bα(β, j): Β → {0,1} returns 1 if the subject β can be taught in the lesson  j, 
meaning (β, j) ∉ ΒΑ, else returns 0 meaning (β, j) ∈ ΒΑ. 

8. The set of elective subjects is Ε = {β | β ∈ Β}.  
The function eβ(β): Β → {0,1} returns 1 if β is elective subject or β ∈ Ε, else returns  0 
meaning β ∉ Ε. 

5.3 Constraints 
The problem is modeled by representing it through 16 constraints. They are defined as follows:  

1. 
1

( ) )(
i D N

k j
k i

bτ βτ
+ ⋅ −

=

=∑ =Xβγ(βj, γi) for i =0,D·N,2·D·N,…, (G-1)·D·N and j = 1, 2, …, B, where 

the sum represents the number of weekly lessons for subject βj in group γi. The number 
of weekly lessons per subject in a group is defined by a set in the entered data.  
When this constraint was coded with the given tools in the Constraint Solving Engine, 
in the implementation, the generic constraint class CSetCover was used. The generic 
constraint classes are developed universally so that they could be used in different 
forms to express different real problem constraints. The CSetCover constraint class, as 
all other in the CSL, inherits from the basic constraint class (Chorbev et al., 2007). Its 
task is to check the number of occurrences of a certain value for a given variable 
coordinate in the array of variables (the “subject” value of the complex time slot 
variable in this case). When the number of occurrences of the given value in the variable 
is adequate, the constraint is “covered”. The set of values to be covered was equal to the 
set of courses Β. Every set value requires to be covered exactly Xβγ(β,γ) times. Since the 
set to be covered can be different for different groups, a separate instance of the 
CSetCover class is necessary to be created for every group. 

2. 
1

( ) ( ) 1)(
i D

k k
k i

l fν νν ν
+ −

=

− +∑ = wγ(γm) for i = 0, D, 2·D, …, (G-1)·D, m = i/D, where the sum is 

the number of weekly lessons for group γm. Number of weekly lessons per group is 
defined by a set in the entered data.  

3. Tβχ(bτ(τi), rτ(τi)) = 1 for i = 0, 1, 2, …, G·D·N-1 
Subjects are always taught in appropriate rooms as defined by the input data. 

4. aτ(τj) = 0 for i≤ j < i+f and i+l+1 < j ≤ i+N-1 for k = 0, 1, …, G-1 and  l = 0, 1, …, D-1, i = 
k·D·N +l·N, where n = k·D+l, f = fν(νn), l = lν(νn). There can be no timetable breaks. Empty 
lessons are determined by variables νn.  

5. aτ(τj) = 1 for i+f ≤ j ≤ i+l for for k = 0, 1, …, G-1 and  l = 0, 1, …, D-1, i = k·D·N +l·N, where 
n = k·D+l, f = fν(νn), l = lν(νn). There can be no timetable breaks. Non-empty lessons are 
determined by variables νn.  



Solving the High School Scheduling Problem Modelled with Constraints Satisfaction  
using Hybrid Heuristic Algorithms 

 

541 

6. ( 1)

1 ( 1)

0 ( )
1 ( )

G
i D N l j

i i D N l j

if r
if r

τ

τ

τ χ
τ χ

− ⋅ ⋅ +

= − ⋅ ⋅ +

≠⎧
⎨ =⎩

∑ ≤ Mχ(χj) for j = 1, 2, …, C and  l = 1, 2, 3, …, D·N 

At any point in time l, room χj can have at most Mχ(χj) groups as defined by the set Χ M 
in the input entered data.  
As it was described in the previously published material (Chorbev et al., 2007, Jolevski 
et al., 2005b) the constraints classes implemented in the Constraint Solving Library 
(CSL) were created to be universal and applicable to different problems. Therefore, in 
this constraint the class CSetCover (generic constraint) was used. The set of values to be 
covered was ΧM. In the constraint-variable network, practically the model of the 
problem, there were D·N copies of this constraint. There was a copy for each time slot 
(lesson) in the work week. However, every copy is in fact the same instance of the 
generic CSetCover constraint, since the set of values to be covered was always ΧM. In 
every different copy, the classroom coordinate of the variables for different groups for 
that lesson was taken in consideration.  

7. bτ(τi) ∈ Α ∧ i ≠ lν(νk) ∧ (bτ(τi)≠bτ(τi-1) ∨ i = fν(νk))⇒ bτ(τi+1) = bτ(τi) for i = 0, 1, …, G·D·N-1, 
and k = i div N. 
If subject bτ(τi) must be taught in blocks of 2 lessons, and τi is not the last lesson in the 
day k, and subject bτ(τi) is different from the previous subject bτ(τi-1) or τi is the first 
lesson in a day, then the next lesson needs to be for the same subject bτ(τi+1). 

8. bτ(τi) ≠ bτ(τj) for k = 0, 1, …, G-1 and  l = 0, 1, …, D-2, where i = lν(νn) and j = fν(νn+1), n = 
k·D+l. n is the index of the variable νn that defines the index i for the last lesson τi in day 
l for group γk. 
Subject bτ(τi) for the last lesson in a day except for the last day in the week (usually Friday) 
and subject bτ(τj) for the first lesson in the previous day for any group must be different.  

9. bτ(τi+f) ≠ bτ(τi+f+1) ≠ … ≠ bτ(τi+l) for all bτ(τ) ∉ Α, for k = 0, 1, …, G-1 and  l = 0, 1, …, D-1, i 
= k·D·N +l·N, where n = k·D+l, f = fν(νn), l = lν(νn). n is the index of the variable νn that 
defines the indices for the first and last lessons τi+l and τi+l in day l for group γk. 
Subjects for all lessons τi+f to τi+l in a day l must be different for all subjects that can not 
be taught in blocks of two lessons bτ(τ) ∉ Α. 

10. aα(pτ(τi), j, mλ(λl), k) = 1 for l = 0, 1, …, G-1; j = 0, 1, 2, …, D-1; k = 0, 1, 2, …, N-1; where i 
= l·D·N +j·N+k. 
For all groups (l = 0, 1, …, G-1), all days (j = 0, 1, …, G·D-1), and all lessons (k = 0, 1, 2, 
…, N-1), the teacher pτ(τi) must be available for the lesson τi. 

11. Bα(bτ(τi·N+j), j) = 1 for i = 0, 1, …, G·D-1; j = 1, 2, …, N. 
For all groups and all days (i = 0, 1, …, G·D-1), the subject bτ(τi·N+j) taught at any lesson (j 
= 1, 2, …, N) must be allowed by the set ΒΑ. 

12. eβ(bτ(τf·D·N +j·N+k))= eβ(bτ(τ(f+1)·D·N +j·N+k))=…= eβ(bτ(τl·D·N +j·N+k)) for i = 0, 1, …, Y-1; j = 0, 1, …, 
D-1; k = 0, 1, 2, …, N-1; where f=fψ(ψi) and l=lψ(ψi ). 
For all school years (i = 0, 1, …, Y-1) and all days (j = 0, 1, …, D-1), and all lessons in a 
day (k = 0, 1, 2, …, N-1), the elective/non-elective property of the subject is equal for all 
groups.  

13. yγ(γi) = yγ(γj) ⇒ sλ(γi) = sλ(γi) for i = 0, 1, …, G-1; j = 0, 1, …, G-1; i ≠ j 
If two groups γi and γj are in the same school year yγ(γi) = yγ(γj), then they are in the same 
shift sλ(γi) = sλ(γi).  



 Advances in Greedy Algorithms 

 

542 

14. rτ(τi+k) = rτ(τj+k) ∧ sλ(γm) = sλ(γn) ⇒ bτ(τi+k) = bτ(τj+k) for i = 0, D·N, 2·D·N,…, (G·D-1)·N; j = 
0, D·N, 2·D·N,…, (G·D-1)·N; i ≠ j; m = i/(D·N); n = j/(D·N); k = 0, 1, …, D·N-1. 
If two groups γm and γn from the same shift sλ(γm) = sλ(γn) are scheduled to share room 
rτ(τi+k) = rτ(τj+k) during lesson k, then lesson’s subject will be same for both groups. 

15. rτ(τi+k) ≠ rτ(τj+k) ∧ sλ(γm) = sλ(γn) ⇒ pτ(τi+k) ≠ pτ(τj+k) for i = 0, D·N, 2·D·N,…, (G·D-1)·N; j = 
0, D·N, 2·D·N,…, (G·D-1)·N; i ≠ j; m = i/(D·N); n = j/(D·N); k = 0, 1, …, D·N-1. 
If two lessons τi+k and τj+k that happen at the same time k and in the same shift sλ(γm) = 
sλ(γn) are held in different rooms rτ(τi+k) ≠ rτ(τj+k), the teachers must be different pτ(τi+k) ≠ 
pτ(τj+k). 

16. Timetable breaks for teachers are minimized.  

6. Implementation of a hybrid simulated annealing algorithm 
When solving the school scheduling problem, we attempted to add additional 
functionalities from other optimization algorithms in Simulated Annealing (SA). We started 
by SA knowing of its power to avoid local optima and its theoretical guaranty to find the 
global optimum. SA has been extensively researched and has shown satisfactory results in 
solving problems of combinatorial optimization and temporal and spatial scheduling 
(Duong & Lam, 2004), (Abramson, 1991), (Aarts et al., 2003), (Czech et al., 2006). In the 
software library, we implemented a combined version of the SA algorithm. It has elements 
of memory from the Tabu Search as well as a complex neighborhood function for local 
search similar to the Guided Search algorithm. 
Detailed explanation of the algorithm follows after the pseudo code: 
 

initialSol ← ConstructAsCorrectInitSolutAsPossible(); 
SolutionNeighborhood.SetSolution( initialSol ); 
{listOfVarsToChange, currentEnergy} ← CalculateEnergy(initialSol); 
temp = InitialTemperature; 
do 
do 
SolutionNeighborhood.GenerateCandidateSol ( currentSol, listOfVarsToChange); 
FindAffectedConstraints(); 
{listOfVarsToChange,newEnergy} ←   CalcEnergy(SolNeighborhood.Candidate); 
 

if  ( Metropoliten(newEnergy - currentEnergy,temp)) 
  SolutionNeighborhood.AcceptCandidate(); 
else 
  SolutionNeighborhood.RefuseCandidate(); 
endif 
 
while ( !stopSearch and (trials < saMaxTrials )  
  and successfulTrials < saMaxSuccessfulTrials  
  and smallestEnergy > lowerEnergyBound ); 
 
temp = TempSchedule.GetNewTemperature(); 
 
while ( !stopSearch  



Solving the High School Scheduling Problem Modelled with Constraints Satisfaction  
using Hybrid Heuristic Algorithms 

 

543 

 and numberOfTempDecreases < MaxTempDecreases 
 and SolutionCount < MaxNumberOfSolutionsToFind  
 and smallestEnergy > lowerEnergyBound 
 and consecutiveNoSuccess < MaxConsecNoSuccess )  
 
return SolutionNeighborhood.ReturnBestFoundSolution(); 
 
The algorithm initially constructs the solution in a way that as many as possible constraints 
are satisfied, and the cost - energy is reduced to minimum. In the particular high school 
schedule generation, for every group, in the available time slots, the appropriate number of 
classes per subject is filled. A teacher is assigned for every subject. All lessons are inserted in 
the time slots continually, until the appropriate numbers of classes per subject per group are 
achieved. The remaining task for the algorithm is to move the items (group, subject, teacher) 
in other time slots during the week, so that the remaining constraints are satisfied (not 
repetition of the same subject twice in the same day etc.) 
In the meantime, an object from the CNeighborhood class is generated (Jolevski et al., 
2005a). This object holds the current solution, and when asked for, generates a new proposal 
solution in the neighborhood of the current one. This is the place where the local search in 
the search space is performed. 
After the neighborhood function generates a new solution, the algorithm invokes the 
function FindAffectedConstraints(). It detects the constraints whose satisfaction has been 
changed during the previous solution perturbation. Having this information, the function 
CalculateEnergy() calculates only the participation of the affected constraints within the 
overall energy, as opposed to recalculating the entire cost. Additionally, the function 
CalculateEnergy() generates a new list listOfVarsToChange. The list states which variables 
to change in the next solution perturbation so that a better solution is derived. 
The Metropoliten() function implements the Metropolis probability distribution function. 
Considering the difference of energies of the previous and actual solution, as well as the 
temperature parameter, it decides whether to accept or reject the new solution. 

⎪⎩

⎪
⎨
⎧

Δ
−

<=Δ
=Δ

otherwise
T

XE
XE

XEPT ),)(exp(

0)(,1
))((

 

The inner iterations continue executing at constant temperature until one of the given 
conditions is met. Execution stops when the predefined maximal number of iterations per 
temperature is achieved, the maximally allowed number of accepted solutions is achieved, 
or the expected minimal energy is evaluated. 
After ending the internal iterations, the function myTempSchedule.GetNewTemperature() is 
invoked. Depending on the chosen temperature schedule, a new value for the parameter 
temperature is derived. Having the new temperature, a new cycle of the internal iterations 
follows. If the conditions for ending the entire solving are met, the algorithm returns the 
best found solution. The ending conditions consist of achieving predefined number of 
temperature iterations, achieving minimal energy or achieving a predefined number of 
iterations where the metropolis function has not accepted any solution proposals. 
In the presented implementation of SA we included functionalities from other metaheuristic 
algorithms. Memorizing and using the list of previously affected variables in the new 



 Advances in Greedy Algorithms 

 

544 

solution proposal in our algorithm includes memory in the solving. Memory is an element 
from Tabu Search. The list of affected variables helps in guiding the search and avoiding 
cycles. Generating a new solution proposal based on knowledge of the problem and 
previous experience adds elements of Guided search. 

6.1 Neighborhood function for generation of an improved solution 
Despite the effort to build a universal solving engine, there are certain parts of the system 
that seriously benefit from specialization. We estimated that the best part to implement 
specialization, in respect to both modularity and performance, is the neighborhood function.  
A neighborhood generation function is required to generate a new solution similar to, or in 
the "neighborhood" of, the previous one. The new solution is expected to have a lower cost 
(energy), meaning that the level of constraint satisfaction is higher. Presumably, the next 
solution should keep the qualities of the former and hopefully correct its weaknesses. The 
new solution proposal sometimes might have worse qualities than the previous one, but it 
still might be accepted as base of future solutions. Such acceptance has to be allowed to 
escape local in the pursuit of the global optima. 
There are numerous ways to implement new trial solution generation. We used several 
combined approaches. The first method that we used, mainly during the first iterations of 
the solving process, is random based variable permutation. The method at the beginning 
considers how big part of the current solution should be changed in each iteration. We 
experimented with numbers from two variables up to 10% of the overall variables. The 
number of improvements in the solution during algorithm iteration increased as we 
decreased the number of changed variables. This behavior implies that a small change in the 
new solution is easier to find wrong and undo, while massive changes in the solution might 
compensate both corrections and faults, to a minor collective change in overall cost. 
Therefore, changing a small number of variables in each iteration makes the cost function an 
objective measure of progress or regress.      
The neighborhood function randomly chooses which variables to change, keeps an array of 
changed variables and randomly assigns new values to the chosen variables from their 
domain. The array of changed variables is later used to calculate the new cost as a difference 
with the former one. Other approaches found in literature (Abramson, 1991) consist of 
swapping values of two variables. Nevertheless, for the sake of speed, the tendency is to 
always achieve calculation of the new cost as a difference with the last one. 

6.2 Intelligent generation of the initial solution 
The first place to implement intelligence in the solving process is the initial solution of the 
search. Significant number of iterations is avoided if the initial solution is not generated 
randomly, but in respect to the imposed constraints. Naturally, not all constraints could be 
satisfied at the start, otherwise, no search would have been necessary. We decided to satisfy 
as many constraints as possible at the beginning. Later during the solving process, initially 
satisfied constraints are not even checked for consistency, sparing many calculations in the 
evaluation step. This behavior is only possible if the neighborhood function includes special 
precaution. The functions must not dissatisfy these initial rules while generation of the next 
solution.  
For example, all groups are initially given the right number of classes per subject. Therefore, 
no additional checks are necessary for this constraint, assuming the neighborhood function 



Solving the High School Scheduling Problem Modelled with Constraints Satisfaction  
using Hybrid Heuristic Algorithms 

 

545 

only swaps positions of those classes in the available time and space slots. The 
neighborhood function must not add or subtract new classes per subject per group. Also, the 
classes are initially placed in rooms that they can be taught in. 

6.3 Guided generation of new trial solutions 
Different algorithm hybridizations based on SA for solving constraint modeled non-linear 
problems have been previously proposed. An example algorithm is CSAGA by Wah et. al 
(Wah & Chen, 2001). They combine SA and Genetic Algorithms (GA). The participation of 
the GA is in the creation of new solution proposals. A new generation of solution proposals 
is generated with genetic operators in each SA iteration. Every proposal is evaluated by 
multiplying its Lagrange-multipliers. The best proposal is selected with a GA.  
In our SA implementation, additional intelligence was implemented in the neighborhood 
function. In the generation of the next solution, the neighborhood function uses 
listOfVarsToChange, the list of variables that it should change. The list of variables is 
derived when checking the constraint satisfaction and the particular variables that 
participate in the unsatisfied constraints. During the evaluation of the previous solution, the 
algorithm remembers which constraint generated the most of the unwanted cost. Knowing 
the variables that participate in the given constraint, the algorithm knows which variables 
should be changed to correct the current solution. This is how intensification of the search is 
achieved. Diversification is achieved by occasionally invoking a more complex 
neighborhood function, in a way explained later in the text. 
One could favor the idea of generating the new solution by forcing changes in the variables 
that make the most of the unwanted cost at that point. However, we face two setbacks: the 
increased intelligence in the neighborhood function will decelerate the iterations; and the 
danger of trapping in local minima is increased. Nevertheless, random generation not 
always succeeds to find the final correct solution and therefore guided search is required to 
be implemented. Guided local search has already proven effective in solving the scheduling 
problem (Tsang et al., 1999). 
We implemented guided search that includes different algorithms of swapping variable 
values. Depending on the constraint that has been dissatisfied, adequate neighborhood sub 
function is invoked. The neighborhood function swaps values of variables either in 
informed manner, generating a better solution, or in random position. For instance, if an 
empty class is spotted in-between classes, this empty time slot has to be filled with a class, 
so the last class of that day for the group is placed in that position, pushing the empty 
classes at the end. If two identical classes are found next to each other, one of them has to go 
in a different day. Swapping is performed between this class and a class from the next day, 
separating identical classes in different days. 
Figure 4 presents the invoking of particular neighborhood sub-functions during algorithm 
iterations. The horizontal axis represents the algorithm iterations, while the vertical axes 
contains all 16 constraints that model the problem. Clearly, some constraints that were 
satisfied in the construction of the initial solution never have their sub-functions invoked 
later. The remaining constraints (5, 6, 7, 8, 15) are invoked with variable frequencies. 
Figure 5 shows the distribution of calls of the particular constraint’s sub-functions during 
the solutions search. The horizontal axis represents the constraints invoked during solving, 
and the vertical axis gives the number of calls of the given constraint. The most invoked 
constraint is the 15th, the collision when one teacher is placed to teach in two classrooms in 



 Advances in Greedy Algorithms 

 

546 

the same time. Because of its frequent invocations, a rather simple algorithm for correction 
has been developed. Two lessons from two time slots of one of the groups in the collision 
are chosen and swapped. For example, one of the collided lessons and another random 
lesson from the same group exchange their time slots. It is important to emphasize the 
random component that forces diversification in the solution search. 
 

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000 1200 1400

Iterations

Constraints

 
Fig. 4. Calls for evaluation of particular constraints of the model in every iteration of the 
solution search 
 

0

100

200

300

400

500

600

700

800

900

15 4 5 6 7 8

Constraints

N
um

be
r o

f c
al

ls

 
Fig. 5. Distribution of calls toward particular constraint's sub-functions during solving  

6.4 Deadlocks 
Practice has shown that simple variable swapping often brings to deadlocks. Initially a 
certain constraint is dissatisfied causing the appropriate swapping neighborhood function to 
swap values. The new solution dissatisfies a different constraint causing its swapping 
function to make the previous swap rollback. At this point a cyclic deadlock starts, with no 
possibility of ending. We solved this problem rather simply, but effectively. Every 
neighborhood function contains more than one swapping algorithm that triggers randomly, 
with different probability.  
Certain more effective and easily calculable swapping methods are executed more often. 
Since they tend to cause deadlocks, once in a while, another different neighborhood function 
is triggered for the same constraint dissatisfaction (equation 1). For instance, if rnd is a 
randomly generated number such that 1≤ rnd ≤1000, then:  



Solving the High School Scheduling Problem Modelled with Constraints Satisfaction  
using Hybrid Heuristic Algorithms 

 

547 

⎩
⎨
⎧

=
<<

=
1),(

10001),(
rndifOldSolpComplexSwa

rndifOldSolSimpleSwap
NewSol  

Varying the probability of triggering different neighborhood functions evidently influences 
solving time and result quality. Table 1 shows the dependences of solving speed and 
solution quality from the probability of using a more thorough permutation opposite to 
simple swap in the neighborhood function. A measure of solving quality is achieved 
minimal cost, number of made improvements, number of temperature decreases (SA 
parameter) and duration of the search. 
 

Probabil. Min. Cost Number Improve. Nr.Temp 
Decreases Duration (msec) 

1/5 315 68 2926 335857 
1/10 355 80 5558 306890 

1/100 326 86 3434 137983 
1/1000 201 99 4273 133300 
1/5000 297 99 4440 238560 

1/10000 300 83 3214 259314 

Table 1. Dependences of solving from the probability of using a complex neighborhood 
Extremely high probabilities (0.2, 0.1) do not achieve the lowest solution cost, and solving 
duration is prolonged. Here the complex and thorough permutation is triggered too often 
and convergence toward the final solution is interrupted even when there is no deadlock. 
Extremely low probabilities (0.0001) also give unsatisfactory results because with such low 
probabilities, the thorough permutation is not triggered even when there is a deadlock 
going on. We chose to use a probability 1/1000 = 0.001, because it seems, the required 
neighborhood function triggers exactly when a deadlock happens. 
Figure 6 shows the dependences of cost - energy in terms of SA, number of improvements 
and temperature decreases from the probability of using a complex neighborhood. It is 
visually evident that the chosen probability of 1/1000 = 0.001 gives the maximal number of 
improvements and the minimal energy - cost. 

0

1000

2000

3000

4000

5000

6000

0,2000 0,1000 0,0100 0,0010 0,0002 0,0001

Probability of using a complex neighborhood

Te
m

pe
ra

tu
re

 D
ec

re
as

es

0

50

100

150

200

250

300

350

400

Im
pr

ov
em

en
ts

Temp. dec. Improvements Energy

 
Fig. 6. Dependences of improvements, cost and energy from the probability of using a 
complex permutation. 



 Advances in Greedy Algorithms 

 

548 

Some of the parameters of SA must be functionally dependant from the input parameters of 
the problem. For instance, the number of iterations of the inner loop of SA or the number of 
overall temperature decrements of SA is a multiple of 100 and the number of variables in the 
problem model. The maximal number of algorithm executions without accepting new 
solutions is 100. 

6.5 Impact of guided search 
Our search through the solution space is guided in a manner such that the neighborhood 
function accepts the old solution proposal, along with the constraint that generates most of 
the cost function. Since the neighborhood function includes specific algorithms for solution 
improvement of each constraint, the appropriate one is triggered. The neighborhood 
function generates a new solution in the “neighborhood” of the current one, precisely 
marking the changed variables. Only the participation of the changed variables is 
recalculated into the overall solution cost. The recalculation function marks the constraint 
that contributes most to the cost. 
Every constraint involves a different number of variables that create the problem model. 
Hence, every new solution generation changes a different number of variables depending 
on the constraint scope. We already determined (Chorbev et al., 2007) that changing a 
smaller amount of variables in every iteration gives better results. Still, letting the affected 
constraint decide the degree of change in the new iteration, allows appearing of occasional 
jumps in the search space. Massive change among the variables means jumping to new 
solution neighborhoods, when previous local search is exhausted. 
The experimental results are generated from solving a school scheduling problem with 60 
groups, 75 teachers, 37 rooms (utilized on two shifts) and 45 different subjects. Figure 7 
shows the variations of the solution cost (energy) during the first 100 iterations of the 
solving process. 

0
200
400
600
800

1000
1200
1400
1600
1800

0 33 50 63 80 11
0

15
7

22
0

25
0

31
3

65
7

98
7

13
47

16
73

20
17

23
00

26
73

Time(msec)

E
ne

rg
y-

C
os

t

 
Fig. 7. Variation of solution cost in time during the first 100 iterations 
The graph on figure 7 shows that informed - guided search in the beginning quickly directs 
the solution toward a lower solution cost. At that point the algorithm performs exact solving 
rather than heuristic search in each iteration. The neighborhood function exactly changes the 
dissatisfying variable for the most influential constraint to an accurate value. However, this 
process does not last long, quickly getting to a situation where every intervention among 
variables causes another equally influential constraint to become dissatisfied. In each 
succeeding iteration of the optimization algorithm, a triggered neighborhood corrects one, 
but dissatisfies other constraints. 



Solving the High School Scheduling Problem Modelled with Constraints Satisfaction  
using Hybrid Heuristic Algorithms 

 

549 

This period of averagely constant cost, with a very small overall cost decrement lasts for 
most of the solving process (figure 8). During this period, swift jumps and depressions 
characterize the graph. The neighborhood function easily jumps to often completely new 
solutions. This behavior is inherited from Simulated Annealing, because high “temperature” 
allows the probability for acceptance of worse solutions to remain significantly big. As 
temperature decreases in SA and many of the neighborhoods have been tested, jumps start 
happening rarely. The search is directed in the neighborhood that has shown best potential 
for the final solution. The entire solving process can be seen at figure 8. 

0
200
400
600
800

1000
1200
1400
1600
1800

0

12
67

59
23

96
27

13
69

0

17
50

0

21
40

7

25
40

7

29
44

0

33
33

0

37
33

0

41
25

0

45
25

0

49
36

0

53
54

7

57
62

7

61
81

3

65
50

0

Time (msec)

En
er

gy

 
Fig. 8. Variation of solution cost in time during entire schedule generation 
In this process, resulting from the nature of the algorithm SA, worsened solutions are 
accepted as bases for further improvement, therefore managing to escape the emerging 
deadlocks. Although the search is guided, and the functions change specific error variable 
values, randomness must still be present. The neighborhood functions swap values between 
time slots in the schedule, but often new positions for swapping values are given randomly. 
The randomness is controlled with the domain of the variables and the goal to satisfy other 
constraints. The combination of worse solution acceptance and randomness in new solution 
generation is the key to avoiding trapping in local optima and escaping deadlocks.  

7. Conclusion 
The chapter deals with description of the heuristic algorithm that we implemented to build 
a school scheduling software. The scheduling software is based on a Constraint Solving 
Engine (CSE) and a Constraint Programming Library (CPL) which we previously developed 
(Chorbev et al., 2007). Various simulations and tests of the solving process implied the 
required corrections to the model (Jolevski et al., 2005c) and the algorithms. 
Every mentioned heuristic algorithm has certain advantages that come in handy in specific 
circumstances and specific problems. The goal in our research was to extract the best ideas and 
develop a novel hybrid algorithm that will achieve better performances. In this particular case, 
we tried to add additional functionalities from other optimization algorithms in Simulated 
Annealing as basis. We started from SA knowing of its power to avoid local optima and its 
theoretical guaranty to find the global optimum. We combined the memory from Tabu search, 
the intelligence of guided search and the completeness of GAC-CBJ. Initially we tested and 
fine tuned the algorithms on trivial problems like the traveling salesman, quadratic 
assignment or the n-queens problem. Eventually we took the schedule generation problem as 
a way to give practical implementation of the developed hybrid algorithms. 



 Advances in Greedy Algorithms 

 

550 

The area of constraint programming is quite perspective in the sense that it can use a lot of 
knowledge previously gathered from analysis in logical programming (Prolog). 
Furthermore, new better heuristic algorithms are implemented for solving problems 
modeled with constraints turning the constraint satisfaction into a perspective strategy.  
Even in worse case scenario, if solving through constraints does not give the promised 
results, the universal mathematical modeling of problems is a contribution by itself. Having 
the problem modeled in a reusable way is a base for implementing new ideas in future.  
The modularity of the concept, the clear distinction between the model and the algorithm 
leaves room for separate independent corrections and enhancements. The concept of 
universality that results from the modularity is exceptionally useful. Having the model and 
the algorithm separated, they can both be replaced. The algorithm can be used for another 
problem, or the modeled problem can be solved with another algorithm, with only minor 
additional interventions. Enhancing and optimizing the clearly distinct model is easier. The 
separated model can be used for testing new algorithms and getting better results. 
When building a solving engine, the universal algorithms and functions are implemented 
manage to give a solution. However, certain customizations and integration of small 
heuristic drastically accelerate the solving process. Adding guided search of the solution 
space showed significant improvement opposed to simple random solution proposal. 
However, a stochastic component is useful to avoid deadlocks and trapping in local optima.     
By limiting the involvement of appropriate heuristic for the given problem type to modular 
components in the engine, the universality of the library is maintained. At the same time the 
performance is significantly increased. Finding a balance between universal optimizing 
functions and problem dependent heuristics, improves the engine for further more or less 
similar tasks. 

7. References 
Aarts, E. H. L., Korst, J. H. M., Laarhoven, P. J. M. V. (2003). Simulated annealing In Local 

Search in Combinatorial Optimization, Princeton University Press, ISBN: 0691115222, 
Princeton, New Jersey 08540 USA. 

Abramson D. (1991) Constructing School Timetables using Simulated Annealing: Sequential 
and Parallel Algorithms, Management Science, Volume 37, Issue 1, pages 98 – 113 

Bartak, R. (1999): Constraint Programming: In Pursuit of the Holy Grail, Proceedings of 
WDS99, Part IV, June 1999, pp. 555-564, MatFyzPress, Prague. 

Blum C., Roli A., (2003) Metaheuristics in Combinatorial Optimization: Overview and 
Conceptual Comparison. ACM Computing Surveys, Vol. 35, No. 3, pp. 268–308. 

Blum C., Roli A., Alba E., (2005), Parallel Metaheuristics, Wiley Book Series on Parallel and 
Distributed Computing, John Wiley & Sons, ISBN: 9780471739388 

Cave A., Nahavandi S., Kouzani A. (2002) Simulation Optimization for Process Scheduling 
through Simulated Annealing, Proceedings of the 2002 Winter Simulation Conference, 
2002, San Diego, California, USA, pages 1269-1273. 

Chorbev I., Dimitrovski I., Mihajlov D., Loskovska S. (2007) Hybrid Heuristics for Solving 
the Constraints Modeled High School Scheduling Problem, Proc. of IEEE Region 8 
Eurocon 2007 Conf., pages 2242-2249, ISBN: 978-1-4244-0813-9, Warsaw, Poland.  

Chorbev I., Dimitrovski I., Loskovska S., Mihajlov D.(2006), А parallel implementation of 
Simulated annealing with a Boltzmann synchronization function and its application 
to solve the traveling salesman problem, Proc IS2006, pp 14-17, Ljubljana, Slovenija 



Solving the High School Scheduling Problem Modelled with Constraints Satisfaction  
using Hybrid Heuristic Algorithms 

 

551 

Crawford B., Castro C., Monfroy E., (2007) Integration of Constraint Programming and 
Metaheuristics, Lecture Notes in Computer Scienc, Abstraction, Reformulation, and 
Approximation, Springer Berlin / Heidelberg, pp 397-398, ISBN 9783540735793 

Czech Z., Wieczorek B.(2006) Solving bicriterion optimization problems by parallel 
simulated annealing, Proceedings of the 14th Euromicro Workshop on Parallel, 
Distributed and Network –based Processing, pp:7-14, ISBN ~ ISSN:1066-6192 , 0-7695-
2513-X, 15-17 Feb. 2006, IEEE Computer Society  Washington, DC, USA  

Der-Rong Din, Tseng, S.S. (2001): Heuristic and Simulated Annealing Algorithms for 
Extended Cell Assignment Problem in Wireless ATM Network; Journal of 
Information Science and Engineering, Vol.17 No.4, pp.647-665 

Duong T., Lam K. (2004), Combining Constraint Programming and Simulated Annealing on 
University Exam Timetabling, Int. Conf. RIVF'04, pages 205-210, Hanoi, Vietnam. 

Gavanelli, M. (2002): Interactive Constraint Satisfaction Problems for Artificial Vision, in 
Ph.D. thesis, Department of Engineering, University of Ferrara, Italy. 

Glover F. and M. Laguna (1997), Tabu Search, Kluwer Academic Publishers, Boston, ISBN 0 
7923 8187 4. 

Glover F., Laguna M. and Martí R., (2003), Advances in Evolutionary Computation: Theory and 
Applications, A. Ghosh and S. Tsutsui (Eds.), pp. 519-537, Springer-Verlag, ISBN:3-
540-43330-9  

Gomes N., Vale Z., Ramos C. (2005) Combining metaheuristics and constraint programming 
to solve a scheduling problem, P. of the 4th WSEAS Int. Conf. on Applied Mathematics 
and Computer Science, Article No. 5, ISBN:960-8457-17-3, Rio de Janeiro, Brazil, 2005 

Hao J., Pannier J., (1998) Simulated Annealing and Tabu Search for Constraint Solving, in 
Fifth Intl. Symposium on Artificial Intelligence and Mathematics, 

Hogg, T. and Huberman, A. (1993), Better than the best: The power of cooperation. 1992 
Lectures in Complex Systems, pp. 163–184, Addison-Wesley, Reading, MA. 

Jolevski I., Loskovska S., Chorbev I., Mihajlov D., (a 2005) An Overview of a Constraint 
Solving Engine with Multiple Optimization Algorithms, Proc. of the 27th 
International Conference on Information Technology Interfaces, pp: 602- 608, ISBN: 953-
7138-02-X, Cavtat, Croatia, June 20-23, 2005. 

Jolevski I., Loskovska S., Chorbev I., Mihajlov D., Murgovski N., (c 2005) Constraints 
Modeling of the High School Scheduling Problem, The Int. Conf. on Computer as a 
Tool, EUROCON 2005, pp: 748-751, ISBN: 1-4244-0049-X, Belgrade, Serbia and 
Montenegro, 2005.  

Jolevski I., Loskovska S., Chorbev I., Mihajlov D.,(b 2005) A Solution of N Queen Problem 
using a Constraint Solving Engine with Multiple Optimization Algorithms, Proc. of 
ETAI 2005, pages I56-I61, Ohrid, R. of Macedonia, 2005. 

Jolevski I., Loskovska S., Murgovski N., Chorbev I., Mihajlov D.,(d 2005) Development of a 
user interface for a school scheduling application, ETAI, Ohrid, R. of Macedonia, 
Proc. of ETAI 2005, pages I4-4,I90–I95, Ohrid, R. of Macedonia, 2005. 

Kumar, V. (1992): Algorithms for Constraint - Satisfaction Problems: A Survey, in AI 
Magazine, Volume 13, Issue 1, Spring 1992, pp: 32 - 44, American Association for 
Artificial Intelligence, ISSN:0738-4602, Menlo Park, CA, USA, 

Leenen L., Venter L., Britz K.,(2003) A Pre-processing Algorithm for solving Constraint 
Satisfaction Optimization Problems, Proceedings of the 2003 annual research conference 
of the South African institute of computer scientists and information technologists on 



 Advances in Greedy Algorithms 

 

552 

Enablement through technology, p.11-15, ISBN:1-58113-774-5, September 17-19, 2003, 
South African Institute for Computer Scientists and Information Technologists 

Meyer, M., (1994), Finite Domain Constraints: Declarativity meets Efficiency, in Doctor 
Dissertation 

Ohlidal M., Schwarz J. (2004), Hybrid Parallel Simulated Annealing Using Genetic 
Operations, Mendel 10th Internacional Conference on Soft Computing, pp. 89-94, ISBN: 
80-214-2676-4, Brno, Czech Republic, FSI VUT, 2004.  

Penya Y. K., Jennings N. R., Neumann G. (2005) An Optimal Distributed Constraint 
Optimization Algorithm for Efficient Energy Management, Proc. of Computational 
Intelligence for Modelling, Control and Automation, 2005 and International Conference on 
Intelligent Agents, Web Technologies and Internet Commerce, pp: 17- 182, ISBN: 0-7695-
2504-0, 28-30 Nov. 2005, Addison-Wesley Publishing Company, Inc.  

Tam V. and Ting D.,(2003) Combining the Min-Conflicts and Look-Forward Heuristics to 
Effectively Solve A Set of Hard University Timetabling Problems, Proc. of the 15th 
IEEE International Conference on Tools with Artificial Intelligence, p. 492, 1082-3409/03 

Tsang, Wang, Davenport, Voudouris & Lau.(1999) A family of stochastic methods for 
constraint satisfaction and optimization, The First International Conference on The 
PACLP, London, pages 359-383  

Wah B., Chen Y.,(2001) Hybrid Constrained Simulated Annealing and Genetic Algorithms 
for Nonlinear Constrained Optimization, Congress on Evolutionary Computation, 
IEEE, pages. 925-932, Volume 2, 2001 

Yoshikawa M., Kaneko K., Yamanouchi T., Watanabe M.,(1996) A Constraint Based High 
School Scheduling System, Intelligent Systems and Their Applications, pp 63 - 72, Vol. 
11, Issue 1, ISSN:0885-9000, IEEE Educational Activities Department, NJ, USA 

Zervoudakis K., Stamatopoulos P..(2001) A Generic Object-Oriented Constraint Based 
Model for University Course Timetabling, Proc. of the 3rd International Conference on 
the Practice and Theory of Automated Timetabling PATAT 2000, Lecture Notes In 
Computer Science; Vol. 2079, pp 28 - 47, ISBN:3-540-42421-0, Springer-Verlag  
London, UK, 2000 

Zhaohui F. and A. Lim, (2000) Heuristics for the Exam Scheduling Problem, Proc. of the 12th 
IEEE International Conference on Tools with Artificial Intelligence (ICTAI’00), pp 172-
175, ISBN: 0-7695-0909-6. 



29 

Toward Improving b-Coloring based Clustering 
using a Greedy re-Coloring Algorithm 

Tetsuya Yoshida1, Haytham Elghazel2, Véronique Deslandres2,  
Mohand-Said Hacid3 and Alain Dussauchoy2 

1 Graduate School of Information Science and Technology, Hokkaido University,  
2 Université de Lyon, Lyon, F-69003, France ; université Lyon 1, EA4125, LIESP 

3 Université de Lyon, Lyon, F-69003, France ; université Lyon 1, LIRIS, 
1Japan 

2,3France 

1. Introduction     
Clustering is an important task in the process of data analysis which can be viewed as a data 
modeling technique that provides an attractive mechanism to automatically find the hidden 
structure of large data sets (Jain et al., 1999). Informally, this task consists of the division of 
data items (objects, instances, etc.) into groups or categories, such that all objects in the same 
group are similar to each other, while dissimilar from objects in the other groups. Clustering 
plays an important role in data mining applications such as Web analysis, information 
retrieval, medical diagnosis, and many other domains.  
Recently, we have proposed a clustering method based on the concept of b-coloring of a 
graph (Irving & Manlov, 1999). A graph b-coloring is an assignment of colors to the vertices 
of the graph such that:  
i. no two adjacent vertices (vertices joined by an weighted edge representing the 

dissimilarity between objects) have the same color (proper coloring) 
ii. for each color, there exists at least one vertex which is adjacent (has a sufficient 

dissimilarity degree) to all other colors. This vertex is called a dominating vertex; there 
can be many within the same class. 

Both (i) and (ii) are the constraints in b-coloring of a graph. 
The b-coloring based clustering method enables to build a fine partition of the dataset into 
clusters even when the number of clusters is not specified in advance. The previous 
clustering algorithm in (Elghazel et al., 2006) conducts the following two steps in greedy 
fashion:  
1. initalizes the colors of vertices so that the colors satisfy proper coloring, and  
2. removes, by a greedy procedure, the colors that have no dominating vertices, until each 

color has at least one dominating vertex. 
These steps correspond to the above two constraints in b-coloring. Although it returns a b-
coloring of a graph, it does not explicitly consider the quality of the clusters in the algorithm. 
Thus, besides satisfying the above constraints, it was difficult to explicitly generate better 
clusters of the given data items. 



 Advances in Greedy Algorithms 

 

554 

In order to alleviate this weakness, we have proposed a greedy algorithm which realizes the 
re-coloring of data items (vertices) to improve the quality of the constructed partition 
(Elghazel et al., 2007). Informally, our algorithm selects at each stage the vertex with the 
maximum degree of "outlier" and which do not affects the dominant vertices in the b-
coloring. The color of the selected vertex is changed while guaranteeing that the quality of 
the re-colored partition is monotonically improved. The selection of vertices as well as that 
of the assigned colors are conducted in greedy fashion. Our greedy algorithm exhibits the 
following characteristics: 
1. it realizes the update of b-coloring based clustering while satisfying the constraints in b-

coloring, 
2. it monotonically increases the quality of clusters (the quality clusters needs to be  

measured by some objective function). This enables to realize a compromise between 
the intra-cluster cohesion and intercluster separation, and  

3. it employs a simple greedy strategy, in order to reduce its time complexity. 
Thus, the proposed greedy algorithm can complement the weakness of the previous method  
by improving the constructed partition.  
To evaluate the effectiveness of the proposed greedy algorithm, we tested it over benchmark 
datasets from the UCI repository (Blake & Merz, 1998). The detailed results of the 
evaluations are reported and discussed in this paper. Through this evaluation, the 
effectiveness of the proposed greedy algorithm is confirmed.  
This paper is organized as follows. Section 2 presents the related work. Section 3 explains 
the approach of b-coloring based clustering and validity indices for estimating the quality of 
clustering in general. Section 4 describes the details of the proposed greedy algorithm. 
Section 5 reports the results of the experiments to evaluate the proposed algorithm. Section 6 
discusses our approach in terms of the greedy strategy and other possible improvements. 
Section 7 gives a brief conclusion.  

2. Related work 
Generally speaking, clustering of data can be divided into two approaches: a hierarchical 
approach and a partitioning approach. The hierarchical approach builds a cluster hierarchy, 
or a tree of clusters (which is called a dendrogram) whose leaves are the data points and 
whose internal nodes represent nested clusters of various sizes (Guha et al., 1998). On the 
other hand, the partitioning approach give a single partition of the data by fixing some 
parameters (number of clusters, thresholds, etc.). Each cluster is represented by its centroid 
(Hartigan & Wong, 1979) or by one of its objects located near its center (e.g., monoid) (Ng & 
and Han, 2002). When the distances (or, dissimilarities) among all the pairs of data can be 
estimated, these can be represented as a weighed dissimilarity matrix in which each element   
stores the corresponding dissimilarity. Based on the dissimilarity matrix, the data can also 
be conceived as a graph where each vertex   corresponds to a data item and each edge 
corresponds to a pair of data items with their dissimilarity as its label.  
Other techniques for realizing the clustering of data include graph-theoretic clustering 
approaches. Many graph-theoretic clustering algorithms basically consist of searching for 
certain combinatorial structures in the similarity graph. In this case, some hierarchical 
approaches are related to graph-theoretic clustering. The best-known graph-theoretic 
divisive clustering algorithm (the single-link algorithm) is based on construction of the 
Minimal Spanning Tree (MST) of the data (Zahn, 1971), and then deleting the MST edges 



Toward Improving b-Coloring based Clustering using a Greedy re-Coloring Algorithm 

 

555 

with the largest lengths to generate single-link clusters. The complete-link algorithms are 
also reduced to a search for a maximal complete subgraph, namely a clique which is the 
strictest definition of a cluster. Some authors have proposed to use the vertex coloring of 
graphs for the hierarchical classification purpose. (Guenoche et al, 1991) proposed a divisive 
classification method based on dissimilarity tables, where the iterative algorithm consists, at 
each step, in finding a partition by subdividing the cluster with the largest diameter into 
two clusters in order to exhibit a new partition with the minimal diameter. By mapping each 
data item to the corresponding vertex, the subdivision is obtained by a 2-coloring of the 
vertices of the maximum spanning tree built from the dissimilarity table. The derived 
classification structure is a hierarchy.  
On the other hand, the partitioning methods are also related to graph-theoretic clustering. 
The method in (Hansen & Delattre, 1978) reduced the partitioning problem of a data set into   
clusters with minimal diameter, to the minimal coloring problem of a superior threshold 
graph. The edges of this graph are the pairs of vertices distanced from more than a given 
threshold. In such a graph, each color corresponds to one cluster and the number of colors is 
minimal. Unfortunately, while this method tends to build a partition of the data set with 
effectively compact clusters, it does not give any importance to the cluster-separation.  

3. b-coloring based clustering 
We use a bold italic capital letter to denote a set. For instance, V represents a set of vertices. 
In addition, |V| represents the cardinality of V, i.e., the number of vertices in V. 
Our approach for the clustering of data assumes that some dissimilarity function for a pair 
of data to be handled is specified. By denoting the set of data to be handled as V, the 
dissimilarity of a pairs of data vi, vj ∈ V is calculated by some function d: V x V → R+. We 
also assume that this function is symmetric.  
Based on the dissimilarity function, the set of data V can be transformed into the 
corresponding graph-structured data by:  
1. mapping each data to a vertex, and 
2. connecting each pair of vertices vi and vj ∈ V  by the  edge (vi, vj) with label d(vi, vj). 
The above transformation results in an undirected complete edge-weighted graph. The b-
coloring of this complete graph is not interesting in terms of the clustering problem. Indeed, 
each data will be assigned to one and the only one cluster, which is meaningless as the 
clustering of data. To alleviate this, we also require another parameter θ. This parameter 
works as the threshold value for defining the edges in the graph. Formally, a pair of vertices 
(vi, vj ∈ V) are connected with the edge (vi, vj) in the graph iff d(vi, vj) > θ for the specified 
threshold θ. The constructed graph G(V,E) is called a superior threshold graph. 
The above notations are summarized in Table 1. 
 

Symbol Description 
V a set of vertices (each vertex corresponds to a data item) 
θ a threshold value 
E the set of edges among V for d(,) and θ 
P a set of clusters 

d(vi, vj) a dissimilarity function between vertices vi and vj 

Table 1. Notations for a threshold graph 



 Advances in Greedy Algorithms 

 

556 

3.1 An example 
Suppose a set of data with the dissimilarities in Table 2 is given, which is represented as a 
dissimilarity matrix for the data. Fig. 1 shows the superior threshold graph for Table 2 
where the threshold θ is set to 0.15. The edges are labeled with the corresponding 
dissimilarities in the matrix. 
 

vertex A B C D E F G H I 
A 0         
B 0.20 0        
C 0.10 0.30 0       
D 0.10 0.20 0.25 0      
E 0.20 0.20 0.15 0.40 0     
F 0.20 0.20 0.20 0.25 0.65 0    
G 0.15 0.10 0.15 0.10 0.10 0.75 0   
H 0.10 0.20 0.10 0.10 0.05 0.05 0.05   
I 0.40 0.075 0.15 0.15 0.15 0.15 0.15 0.15 0 

Table 2. A weighted  dissimilarity matrix 

 

Fig. 1. A threshold graph for Table 1 (θ=0.15) 

The previous b-coloring based clustering algorithm works with the following two stages:  
1. initializing the colors of vertices so that the colors satisfy proper coloring, and  
2. removing, by a greedy procedure, the colors without any dominating vertex.  
Here, these stages are conducted with greedy fashion, because finding the maximum 
number of colors for b-coloring of a graph is known to be computationally too expensive.  
Utilization of a greedy strategy is a realistic approach for dealing with real-world data, 
especially for large scale data. 
For instance, the proper coloring in Fig.2 is obtained from the graph in Fig.1 with step 1). 
After that, a b-coloring of the graph is obtained by step 2). The result is illustrated in Fig. 3. 
The vertices with the same color (shape) are grouped into the same cluster. This realizes the 

0.2

0.25

0.4
0.65

0.2
0.25

0.75

0.2

0.4

0.3

0.2
0.2

0.2

0.2

0.2

B

C

D

G

A

E

H

I

F



Toward Improving b-Coloring based Clustering using a Greedy re-Coloring Algorithm 

 

557 

clustering of data in Table 1. In this example, the sets of vertices {A,D}, {B}, {C,E,G,I}, {F} are 
the clusters. 
 

 

Fig. 2. A proper coloring of the graph in Fig.1 

 

Fig. 3. A b-coloring of the graph in Fig.1 based on Fig.2. 

3.2 Validation Indices 
Many validation indices for clustering have been proposed (Bezdek & Pal, 1998) and 
adapted to the symbolic framework (Kalyani & Sushmit, 2003). Among them, we focus on a 

0.2

0.25

0.4
0.65

0.2
0.25

0.75

0.2

0.4

0.3

0.2
0.2

0.2

0.2

0.2

B

C

D

F

G

A

E

H

I

Color 1
Color 2
Color 3
Color 4
Color 5
Color 6
Color 7

0.25 

0.2 

0.25 

0.4 
0.65 

0.2 

0.75 

0.2 

0.4 

0.3 

0.2 
0.2 

0.2 

0.2 

0.2 

B

C

D

 

G

A

E

H

I 

F

Color 1
Color 2
Color 3
Color 6



 Advances in Greedy Algorithms 

 

558 

validation index called generalized Dunn’s index. This index is denoted as DunnG hereafter 
in this paper. This index is designed to offer a compromise between the inter-cluster 
separation and the intra-cluster cohesion. The former corresponds to the compactness of the 
clusters, the latter corresponds to what extent the clusters are well-separated each other. 
Suppose a set of vertices V (which correspond to the data items) are clustered or grouped 
into a partition P = {C1,C2,…,Ck}. Here, each cluster or group is denoted as Ci, and the 
partition P satisfies the constraint: ∀Ci,Cj ∈ P, Ci,∩Cj  =∅ for i ≠ j. We abuse the notation of P 
to represent both a set of clusters as well as a set of colors, because each cluster Ci ∈ P 
corresponds to a color in our approach and no cluster share the same color. 
 For ∀Ch ∈ P, an average within-cluster dissimilarity is defined as  

 
1 1

1( ) ( ) 
( 1)

h h

a h o o
o oh h

S C d v v
η η

η η ′
′= =

= ,
− ∑∑  (1) 

where ηh  = |Ch|, vo, vo’ ∈ Ch . 
For ∀Ci,Cj ∈ P, an average between-cluster dissimilarity is defined as  

 
1 1

1( ) ( )
ji

a i j p q
p qi j

d C C d v v
ηη

ηη = =

, = ,∑∑  (2) 

whereηi  = |Ci| andηj  = |Cj|, vp ∈Ci, vq ∈Cj. 
Dunn’s generalized index for a partition P  is defined as  

 ( )min
( )

( )max

a i j
i j i j

G
a h

h

d C C
Dunn P

S C
, , ≠

,
=  (3) 

where Ch, Ci, Cj ∈ P. 
Basically, the partition P with the largest DunnG (P) is regarded as the best clustering.  
The above notations are summarized in Table 3. 
 

Symbol Description 
Sa(Ch) an average within-cluster dissimilarity of a cluster Ch 

da(Ci, Cj) an average between-cluster dissimilarity between Ci and Cj 
DunnG (P) generalized Dunn’s index of a partition P 

Table 3. Notations for evaluating a partition. 

4. A greedy re-coloring algorithm 
4.1 A motivating example 
As explained in Section 3, for the data in Table 2, the previous approach returns the partition 
in Fig. 3 as its best b-coloring of the corresponding superior threshold graph. However, even 
for the same number of clusters, the graph in Fig. 1 can have other different b-colorings with 
better quality of clustering (e.g., with larger value of DunnG index). Actually, there is another 
b-coloring with better quality of clusters. An example is shown in Fig. 4. Obviously, the 
colors in Fig.4 satisfy the constraints in b-coloring and thus it is a b-coloring of the graph in  
Fig.1. Furthermore, the partition in Fig. 4 is better than that in Fig.3, since it has the value 
DunnG =1.538, which is larger than the previous value (1.522) in Fig. 3. 



Toward Improving b-Coloring based Clustering using a Greedy re-Coloring Algorithm 

 

559 

 

Fig. 4. Another b-coloring with better quality 

As illustrated in the above example, even when the previous approach described in 
Section 3 returns a partition P based on the b-coloring of a given graph G(V,E), there can be 
other partitions for the same graph with better quality, while satisfying the constraints in b-
coloring. To construct a better partition, it is also important to find a partition with better 
quality, while satisfying the constraints b-coloring.   
However, as described above, directly trying to find out a better b-coloring can be 
computationally too expensive. Even if a better partition can be obtained, it will not scale up 
for large data. To cope with this problem, we take the following approach: instead of 
directly finding out a better partition, by utilizing a partition which satisfies the constraints, 
try to find out better ones. This approach is formalized as follows.  
[Definition 1]  Re-Coloring Problem in b-Coloring based Clustering  
For a given graph G(V,E) and a b-coloring partition P of G(V,E), find another b-coloring 
partition P’ of  G(V,E) such that P’ is equal to or better than P for some clustering validity 
index. 
In our current approach, the quality of a partition P is measured with DunnG(P) in Section 
3.2. In the following, we describe the details of our approach to tackle this problem.  

4.2 Notations 
In addition to the notations in Table3, to characterize a vertex v∈ V  in a graph G(V,E), we 
use the following functions for in the description of our greedy algorithm. A function N(v) 
returns the set of neighboring vertices in G(V,E). A function c(v) returns the assigned color of 
the vertex v. A function Nc(v) returns the set of neighborhood colors for the vertex v. 
Furthermore, a function Cp(v) is defined as Cp(v) = P\Nc(v) for v. Here, P\Nc(v) represents 
the set difference. Note that Cp(v) contains the originally assigned color c(v) of the vertex v. 
These are summarized in Table 4. 

Color 1
Color 2
Color 3
Color 6

0.2 

0.25 

0.4 
0.65 

0.2 
0.25 

0.75 

0.2 

0.4 

0.3 

0.2 
0.2 

0.2 

0.2 

0.2 
B

C

D

 

G

A

E

H

I

F



 Advances in Greedy Algorithms 

 

560 

Symbol Description 
N(v) the set of neighborhood vertices for a vertex v∈ V  in G(V,E) 
c(v) the assigned color of a vertex v∈ V  in G(V,E) 

Nc(v) the set of neighborhood colors for a vertex v∈ V  in G(V,E) 
Cp(v) Cp(v) = P\ Nc(v) for a vertex v∈ V  in G(V,E) 

Table 4. Several functions for a vertex in a graph 

4.2.1 Types of vertex 
A set of vertices Vd contain the dominating vertices in a b-coloring of a graph G(V,E). For 
each vertex v ∈ Vd, if a vertex vs is the only vertex with the color c(vs) in Nc(v), vs is called a 
supporting vertex of v. 
We divide the set of vertices V into two disjoint subsets Vc and Vnc such that Vc ∪ Vnc = V and 
Vc ∩Vnc = ∅. Each vertex in Vc is called a critical vertex, and each vertex in Vnc  is called a 
non-critical vertex. The vertices in Vc are critical in the sense that their colors cannot be 
changed (or, would not be changed in our current approach). On the other hand, the vertices 
in Vnc are not critical and thus considered as the candidates for the re-coloring. Vc is further 
divided into three disjoint sets of vertices Vd ∪ Vs ∪ Vf . Here, Vf  is called a set of finished 
vertices, and contains the already checked vertices for re-coloring. More detailed discussions 
about why it is important to define these sets of vertices are given in Section 4.3, with 
respect to the greedy nature of our algorithm. Furthermore, for ∀v∈ V, ∀Ci ∈ P, an average 
dissimilarity between a vertex v and a cluster Ci  is defined: 

 
1

1( ) ( )
i

a i p
pi

d v C d v v
η

η =

, = ,∑  (4) 

where  ηi  = |Ci|vp ∈Ci. 
The above notations are summarized in Table 5. 
 

Symbol Description 
Vc the set of critical vertices 
Vnc the set of non-critical vertices 
Vd the set of dominating vertices 
Vs the set of supporting vertices 
Vf the a set of finished vertices 

da(v, Ci) an average dissimilarity between a vertex v and a cluster Ci 

Table 5.  Notations for the vertices in a graph 

4.3 A greedy re-coloring algorithm 
4.3.1  Why greedy algorithm? 
By definition, since each dominating vertex is connected to the vertices with all the other 
colors (clusters), it is far away from the other clusters (at least greater than the specified 
threshold θ. This means that, dominating vertices contribute to increase the inter-cluster 
dissimilarity, which is important for better clustering. 
Likewise, by definition, each supporting vertices is necessary (important) to ``keep’’ some 
dominating vertex, since without its color the dominance property will be lost. Thus, these 
vertices also contributes to increase the inter-cluster dissimilarity. 



Toward Improving b-Coloring based Clustering using a Greedy re-Coloring Algorithm 

 

561 

Based on the above reasons, in our current approach, the colors of the vertices in Vd  and Vs 
are fixed (not changed) to sustain the inter-cluster dissimilarity. Furthermore, to guarantee 
the termination of the processing, re-coloring of vertices is tried at most once. To realize this, 
when a vertex is tested (checked) for re-coloring, the vertex is moved into the finished 
vertices Vf  in order to avoid the repetition.  
In summary, we consider re-coloring of the vertices in V \{Vd ∪ Vs∪ Vs }, namely the set of 
non-critical vertices Vnc. In addition, whenever a vertex is checked for re-coloring, it is 
moved into the finished vertices Vf so that its color is fixed in the latter processing. Thus, 
since the size |Vnc | is monotonically decreased at each re-coloring of some vertex in G(V,E), 
the termination of the processing is guaranteed. 
Since the color of a vertex v is fixed once it is inserted into Vc, and other possibilities are not 
explored in later processing, our algorithm works in a greedy fashion. This is important, 
both for reducing the time complexity of the algorithm and to guarantee its termination. 
Admittedly there can be other approach to solve the re-coloring problem. For instance, it 
might be possible to incorporate some kind of back-tracking for the re-coloring, e.g., to 
consider further re-coloing of the vertices in Vf. However, in compensation for the possibly 
better quality, such an approach will require much more computation time and more 
dedicated mechanism to guarantee the termination. 

4.3.2  A vertex selection criterion 
As explained in Section 4.3.1, our approach considers the vertices in Vnc for re-coloing. The 
next question is, which vertices should be considered for re-coloring and in what order. Our 
criterion for the vertex selection is as follows. 
Among the vertices in Vnc, we select the vertex with the maximal average within-cluster 
dissimilarity. Thus, the following vertex v* is selected.  

 ( ( ))* arg max
nc

a
v V

d v c vv
∈

,=  (5) 

Here, the value of da(v,c(v)) defined in equation (4)  corresponds to the degree of “outlier” of 
the vertex v, because it represents the average within-cluster dissimilarity when it is 
assigned to the cluster c(v) (note that a color also corresponds to a cluster). 
On the contrary, suppose other vertex v’ which is not  with the maximal value in equation 
(4) is selected and re-colored. In that case, the size of the cluster |Cp(v)| can decrease, since 
some other vertex might be moved into the set of critical vertices Vc  due to the re-coloring 
of v’. This amounts to putting more constraints into the re-coloring processing and 
restricting the possibilities of new color for v*. For instance, the increase in the size of 
neighboring vertices |Nc(v*)| means more constraints, and thus leads to decreasing the 
possible colors for  v*.  
Based on the above argument, among the vertices in Vnc, we select the vertex with the 
maximal average within-cluster dissimilarity for re-coloring.  

4.3.3  A color selection criterion 
After selecting a vertex as the candidate for re-coloring, the next question is, which color the 
vertex should be assigned. Note that our objective is to increase the quality of a partition, 
while preserving the constraints. The second constraint, namely the preservation of the 
dominating vertices is guaranteed by our vertex selection strategy in Section 4.3.1. Thus, we 
need to select the color which satisfy the first constraint, namely the proper coloring, and 
which leads to the better quality of the resulting partition. 



 Advances in Greedy Algorithms 

 

562 

Our color selection criterion is as follows. When the vertex v* is selected for re-coloring, we 
check the colors in Cp(v*), since it represents the colors which satisfy the proper coloring 
constraint for v*.  Among these colors, we select the one with the maximal DunnG in 
equation (3), since it evaluates the quality of the resulting partition. 

4.3.4  The algorithm 
We need to take into account the fact that the color of non-critical vertices Vnc might be 
changed through their re-coloring in the latter processing. This means that, reflecting the 
colors of Vnc to evaluate the quality of the current partition can be an unreliable. Thus, we 
exclude the non-critical vertices to evaluate the quality of the current partition in the re-
coloring process, and utilize only the fixed colors in critical vertices Vc. 
Furthermore, when the color c(v) of a vertex v is re-colored to some other color c, some 
vertex vnc ∈ Vnc might become new critical vertices. This is because some other vertices can 
become dominating vertices or supporting ones, due to the re-coloring of v. To reflect the 
change of colors in the graph G(V,E) due to the re-coloring of the vertex v, we also define a 
set of vertices Vctmp(v, c). Vctmp(v, c) represents the set of vertices which become new critical 
vertices induced from this re-coloring. In addition, we denote the resulting partition of 
G(V,E) as P(v, c). Here, in P(v, c), only the originally assigned color c(v) of the vertex v is re-
colored to c, and the colors of the other remaining vertices are not changed. These notations 
are summarized in Table 6. 
 

Symbol Description 
Vctmp(v, c) the a set of new critical vertices by changing the color of v to c 

P(v, c) the new partition by changing the color of v to c 

Table 6.  additional notations for the algorithm 
Based on the above, our greedy re-coloring algorithm is summarized as the Algorithm re-
coloring() in Fig. 5. In the selection of vertex or color, there can be multiple candidates with 
exactly the same value. In that case, since the candidates are indistinguishable with respect 
to our criteria, one of them is selected at random.  

4.3.5  Properties of the algorithm 
The proposed algorithm has the following desirable properties for clustering.  We explain 
the properties with their proofs in this subsection. 
[Proposition  1] 
Algorithm re-coloring() returns a proper coloring of G(V,E) from P. 
Proof  
Algorithm re-coloring() can change the color of a vertex v* only to some color in Cp(v*). By 
definition of the function Cp() in Table, all the colors in Cp(v*)  satisfy the proper coloring for 
the vertex v*. 
[Proposition  2] 
Algorithm re-coloring() returns a b-coloring of G(V,E) from P. 
Proof  
From Proposition 1, proper coloring is guaranteed. We need to show that there is at least 
one dominating vertex for each color. By definition, this property is satisfied in P. As 
explained in Section 4.3.3, since Algorithm re-coloring() does not change the colors of 
dominating vertices nor those of the supporting vertices, there is at least one dominating 
vertex for each color.  



Toward Improving b-Coloring based Clustering using a Greedy re-Coloring Algorithm 

 

563 

 
Fig.5. the greedy re-coloring algorithm 
[Proposition  3] 
Algorithm re-coloring() monotonically improve the quality of partition. 
Proof  
As explained above, the color which maximizes the quality (here, DunnG is utilized)[ is 
selected by modifying the originally assigned color. Note that it is allowed that the 
originally assigned color is selected and thus unchanged. Since this re-coloring is repeated 
for all the non-critical vertices, when Algorithm re-coloring() terminates, the quality of 
partition will be monotonically improved. 

5. Evaluations 
The proposed greedy algorithm (Algorithm re-coloring() in Fig.) was tested by considering 
two relevant benchmark data sets, viz., Zoo, and Mushroom from the UCI Machine Learning 
Repository (Blake & Merz, 1998). To evaluate the quality of the partition discovered by the 
greedy algorithm (called Improved b-coloring Partition), the results are compared with that 
of the best partition returned by the previous b-coloring clustering algorithm as the one 
maximizing the DunnG value (denoted as original b-coloring), the Hansen’s method based 
on minimal coloring technique (Hansen & Delattre, 1978) and the Agglomerative Single-link 
method  (Jain et al., 1999).  
In addition to the value of Generalized Dunn’s index, we also evaluated the results based on 
a probability matching scheme called Distinctness  (Kalyani & Sushmita, 2003). This 
evaluation index is useful in the cluster validation problem, since it is independent of  



 Advances in Greedy Algorithms 

 

564 

1. the number of clusters, and  
2. the dissimilarity between objects.  
For a partition P with p clusters {C1,C2,..,Cp}, the Distinctness is defined as the inter-cluster 
dissimilarity using a probability match measure, namely the variance of the distribution 
match. The variance of the distribution match between clusters Ck and Cl in a given partition 
is measured as:  

 ( ) ( )( )2

k l
1( , ) |C |C  

m

k l i ij i ij
i j

Var C C P a V P a V
m

= = − =∑∑  (6) 

where m is the number of attributes ai characterizing the objects. P(ai=Vij|Ck) is the 
conditional probability of ai to take value Vij in class Ck. 
The above equation assumes that each data has only one value per attribute (represented by 
j∈ ai). The greater this value, the more dissimilar are the two clusters being compared. Thus, 
the concepts they represent are also dissimilar. 
The Distinctness of a partition P is calculated as the average variance between clusters as: 

 1 1

( , )

( 1)

p p

k l
k l

Var C C
Distinctness

p p
= ==

−

∑∑
 (7) 

When comparing two partitions, the one with larger distinctness would be considered as 
better one, with respect to this index, since the clusters in such a partition represent more 
distinct concepts. 

5.1 Zoo dataset 
The Zoo dataset includes 100 instances of animals with 17 features and 7 output classes. The 
name of the animal constitutes the first attribute. There are 15 boolean features 
corresponding to the presence of hair, feathers, eggs, milk, backbone, fins, tail; and whether 
airborne, aquatic, predator, toothed, breathes, venomous, domestic, catsize. The numeric 
attribute corresponds to the number of legs.  
Table 7 summarizes the clustering results. The Distinctness measure indicates better 
partitioning for the clusters generated by the b-coloring clustering approach (for the original 
partition as well as for the improved partition). This confirms that the utilization of 
dominating vertices finds more meaningful and well-separated clusters. In the other hand, 
the improved partition has the larger value. This indicates the pertinence of the greedy 
algorithm to improve the original b-coloring partition. 
 

method # Clusters Distinctness DunnG 
re-coloring based 7 0.652 1.120 

original b-coloring 7 0.612 1.071 
agglomerative single-link 2 0.506 0.852 

Hansen 4 0.547 1.028 

Table 7. the result of Zoo dataset. 



Toward Improving b-Coloring based Clustering using a Greedy re-Coloring Algorithm 

 

565 

5.2 Mushroom dataset 
Each data record contains information that describes the 21 physical properties (e.g., color, 
odor, size, shape) of a single mushroom. A record also contains a poisonous or edible label for 
the mushroom. All attributes are categorical; for instance, the values that the size attribute 
takes are narrow and broad, while the values of shape can be bell, at, conical or convex, and 
odor is one of spicy, almond, foul, fishy, pungent etc. The mushroom database has many 
data items (the number of data items is 8124).The number of edible and poisonous mushrooms 
in the data set is 4208 and 3916, respectively. There are 23 species of mushrooms in this data 
set. Each species is then identified as definitely edible, definitely poisonous, or of unknown 
edibility and not recommended. This latter class was combined with the poisonous one. 
Table 8 summarizes the results of the clustering obtained, over the mushroom data using 
the different clustering approaches.   
 

method # Clusters Distinctness DunnG 
re-coloring based 17 0.728 0.995 

original b-coloring 17 0.713 0.891 
agglomerative single-link 20 0.615 0.866 

Hansen 19 0.677 0.911 

Table 8. he result of Mushroom dataset. 

Furthermore, we also analyzed the assigned objects in the clusters. Table 9 and Table 10 
show the membership differences among the clusters by the previous b-coloring approach 
and the proposed approach in this paper. The clusters with bold italic characters represent 
the so-called non-pure clusters. These clusters are called non-pure, since they contain both 
poisonous and edible data items (mushrooms), and fail to separate them solely based on 
their features. 
 

Cluster 
ID 

# of 
Edible 

# of 
Poisonous 

Cluster 
ID 

# of 
Edible 

# of 
Poisonous 

1 0 36 11 139 0 
2 96 464 12 18 0 
3 695 72 13 0 1296 
4 768 0 14 224 0 
5 1510 0 15 0 1728 
6 220 0 16 48 32 
7 145 0 17 192 0 
8 0 288    
9 144 0    

10 9 0    

Table 9.  details of cluster assignment for Mushroom dataset by the original approach  

From these tables, we observe that almost all the clusters generated by both approaches are 
pure, except for the three clusters (Cluster 2, 3 and 16). This result also confirms that the 



 Advances in Greedy Algorithms 

 

566 

utilization of dominating vertex contributes to generating to more meaningful and well-
separated clusters. 
 

Cluster 
ID 

# of 
Edible 

# of 
Poisonous 

Cluster 
ID 

# of 
Edible 

# of 
Poisonous 

1 0 36 11 107 0 
2 96 464 12 16 0 
3 475 72 13 0 1296 
4 768 0 14 288 0 
5 1728 0 15 0 1728 
6 192 0 16 48 32 
7 145 0 17 192 0 
8 0 288    
9 144 0    

10 9 0    
Table 10. details of cluster assignment for Mushroom dataset by the proposed approach 

6. Discussions 
In our current approach we employ a greedy strategy tackle the re-coloring problem defined 
in Section 4.1.  The major reasons for utilizing a greedy strategy is, as in other many 
approaches based on some greedy algorithms, we believe that it is useful as well as crucial 
for handling real world data, especially for large scale data. Based on this hypothesis, both 
the selection of vertex to be re-colored and the selection of the color to be assigned, is 
conducted in greedy fashion.  
The other side of our greedy algorithm is that, besides it tries to improve the quality of 
partition while satisfying the constraints, there can still be better solutions for the re-coloring 
problem. If finding out better solutions is the most important (and, the only) interest, then, it 
would be possible to seek other much more expensive approaches. For instance, it might be 
possible to incorporate some kind of back-tracking for the re-coloring of the vertices. Such a 
recursive approach might be useful, both for the conceptual simplicity of the algorithm as 
well as the quality of the obtained solutions, in compensation for the incurred 
computational complexity. 
In addition, there are many interesting issues to pursue:  
1. more experiments and comparison for our algorithm on real world datasets, and 
2. extension of our re-coloring approach for the critical vertices 
As for (1), medical datasets or large scale image datasets seem interesting. As for (2), 
relaxing the constraints on the critical vertices seems promising for finding out better 
partition. 

7. Conclusions 
This paper has proposed a new greedy algorithm to improve the quality of clustering, while 
satisfying the constraints in the b-coloring of a specified graph. The previous b-coloring 



Toward Improving b-Coloring based Clustering using a Greedy re-Coloring Algorithm 

 

567 

based clustering approach enables to build a fine partition of the data set (classical or 
symbolic) into clusters even when the number of clusters is not pre-defined. However, since 
it does not consider the quality of the clusters, besides obtaining the clusters in terms of the 
b-coloring of the graph, it was difficult to obtain better clusters explicitly. The proposed 
algorithm in this paper can complement this weakness. It conducts the re-coloring of the 
vertices (which correspond to data items) to improve the quality of the clusters, while 
satisfying the constraints.  A greedy strategy is employed in the re-coloring process, both for 
the selection of vertex to be re-colored and the selection of the color to be assigned. We 
believe that utilization of a greedy strategy is useful as well as crucial for handling real 
world data, especially for large scale data. 
The proposed greedy algorithm was tested over benchmark datasets from the UCI 
repository. The detailed results of the evaluations are reported and discussed. Through this 
evaluation, the effectiveness of the proposed greedy algorithm is confirmed.  Especially, the 
results of experiments indicate that our approach is useful to offers a compromise between 
the inter-cluster separation and the intra-cluster cohesion.  

8. Acknowledgments 
The first author was supported by Canon Foundation in Europe Research Fellowship for his 
stay in France. The second author was supported by JSPS, Japan (PE 07555) for his stay in 
Japan. The authors are grateful to these grants. This work is partially supported by the 
grant-in-aid for scientific research (No. 20500123) funded by MEXT, Japan. 

9. References 
Bezdek, J.C. & Pal, N.R. (1998). Some new indexes of cluster validity. IEEE Transactions on 

Systems, Man and Cybernetics, Vol. 28, No.3, 1998, pp.301-315 
Elghazel, H.; Deslandres, V., Hacid, M.S., Dussauchoy, A. & Kheddouci, H.  (2006).  A new 

clustering approach for symbolic data and its validation: Application to the 
healthcare data. Proceedings of ISMIS2006, pp.473–482, Springer Verlag 

Elghazel, H.; Yoshida, T., Deslandres, V., Hacid, M.S. & Dussauchoy, A. (2007).  A new 
Greedy Algorithm for improving b-Coloirng Clustering. Proceedings of GbR2007, 
pp.228-239, Springer Verlag 

Guenoche, A.; Hansen, P. & Jaumard, B. (1991).   Efficient algorithms for divisive 
hierarchical clustering with the diameter criterion.  Journal of Classification, Vol.8, 
pp.5-30 

Guha, S.; Rastogi, R. & Shim, K. (1998). Cure: An efficient clustering algorithm for large 
databases. Proceedings of the ACM SIGMOD Conference, pp.73-84 

Hansen, P. & Delattre, M. (1978). Complete-link cluster analysis by graph coloring.  Journal 
of the American Statistical Association, Vol.73, pp.397-403 

Hartigan, J. & Wong, M. (1979). Algorithm as136: A k-means clustering algorithm. Journal of 
Applied Statistics, Vol.28, pp.100-108 

Blake, C.L. & Merz, C.J. (1998). UCI repository of machine learning database. University of 
California, Irvine. http://www.ics.uci.edu/~mlearn/MLRepository.html 

Irving, W. & Manlov, D. F. (1999). The b-chromatic number of a graph. Discrete Applied 
Mathematics, Vol.91, pp.127-141 



 Advances in Greedy Algorithms 

 

568 

Jain, A.K.; Murty, M.N. & Flynn, P.J. (1999). Data clustering: A review. ACM Computing 
Surveys, Vol.31, pp.264-323 

Kalyani, M. & Sushmita, M. (2003). Clustering and its validation in a symbolic framework. 
Pattern Recognition Letters, Vol.24, No.14, pp.2367-2376 

Ng, R. & and Han, J. (2002). Clarans: a method for clustering objects for spatial data mining. 
IEEE Transactions on Knowledge and Data Engineering, Vol.14, No.5, pp.1003-1016 

Zahn, C.T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters. 
IEEE Transactions on Computers, Vol.20, pp.68-86 



30 

WDM Optical Networks Planning  
using Greedy Algorithms 

Nina Skorin-Kapov 
Faculty of Electrical Engineering and Computing, University of Zagreb 

Croatia 

1. Introduction      
Optical networks have been established as the enabling technology for today’s high-speed 
communication networks.  Wavelength Division Multiplexing (WDM) enables the efficient 
utilization of optical fibers by dividing its tremendous bandwidth into a set of disjoint 
wavelength bands, referred to as wavelengths. Each wavelength supports one 
communication channel which corresponds to an end user operating at an arbitrary speed, 
e.g. peak electronic speed. This helps to overcome the opto-electronic mismatch between the 
multiple terabit-per-second bandwidth of optical fibers and the gigabit-per-second 
electronic processing speeds at end users.  
In wavelength-routed WDM networks, all-optical directed channels, called lightpaths, can be 
established between pairs of nodes which are not necessarily neighboring in the physical 
topology. A set of lightpaths creates a so-called virtual topology over the physical 
interconnection of fibers. Packet-switched traffic is then routed over this virtual topology, 
independent of the physical topology. Traffic send via a lightpath is transmitted in the 
optical domain with no opto-electronic conversion at intermediate nodes.  Establishing a 
lightpath requires a transmitter and receiver at the source and destination nodes, 
respectively, and includes routing it over the physical topology and assigning to it a 
wavelength.  
One of the main challenges in wavelength-routed WDM networks is to successfully solve 
the Virtual Topology Design (VTD) problem. This problem is usually divided into the 
following four sub-problems. The first is to determine the set of lightpaths which is to form 
the virtual topology. This set of lightpaths can be static, scheduled or dynamic. Static 
lightpaths are established semi-permanently and chosen on the basis of a traffic matrix 
representing the estimated average traffic floes between node pairs. Scheduled lightpaths, 
on the other hand, try to exploit the periodic nature of traffic by defining a schedule for 
establishing and tearing down lightpaths based on periodic traffic trends. Lastly, dynamic 
lightpaths are established as connection requests arrive with no a priori information 
regarding traffic demands. Unless specified otherwise, the VTD problem usually refers to 
the static case which we will be discussing in the remainder of this chapter. Thus, we use 
these terms interchangeably. 
The second sub-problem in VTD is to find for each lightpath a corresponding route in the 
physical topology, while the third is to assign to each a wavelength subject to certain 
constraints. Lightpaths routed over the same physical links at the same time cannot be 



 Advances in Greedy Algorithms 

 

570 

assigned the same wavelength. This is called the wavelength clash constraint. If there are no 
wavelength converters available, which is often the case due to their high prices, the entire 
lightpath must be established the same wavelength. This is known as the wavelength 
continuity constraint. Sub-problems two and three are commonly referred to as the Routing 
and Wavelength Assignment (RWA) problem. The RWA problem is often solved separately 
with the objective to minimize wavelengths and/or lightpath congestion, or maximize the 
number of established lightpaths subject to a limited number of wavelengths. An example of 
a 4-node wavelength-routed network, an RWA scheme, and its corresponding virtual 
topology with five established lightpaths is shown in Fig. 1. 
 

 
Fig. 1. An example of solving the Routing and Wavelength Assignment problem 

Finally, after determining the set of lightpaths and successfully solving the RWA problem, 
packet-switched traffic must be routed over the virtual topology which is the fourth sub-
problem in VTD. Objectives include minimizing the average packet and virtual hop 
distances, the number of transceivers used, and congestion. 
The Virtual Topology Design problem, as well as the RWA problem, is NP-complete. Thus, 
heuristic algorithms are needed to find sub-optimal solutions for larger problem instances. 
In this chapter we discuss greedy algorithms based on bin packing for static RWA. 
Furthermore, we present greedy approaches for solving the first three sub-problems of 
Virtual Topology Design, which we refer to as the VRWA problem, in conjunction with a 
linear program for traffic routing (the fourth sub-problem of VTD).  

2. The RWA problem 
2.1 Problem definition 
The Routing and Wavelength Assignment problem is as follows. Given is a graph G=(V,E), 
where V is the set of nodes and E is the set of bidirectional edges representing a fiber in each 
direction. Since we are considering the static case, we are given a set of lightpath demands, τ 
= {(s1,d1), …, (sn,dn)}, where si, di in V, i=1,…,n, are the source and destination nodes, 
respectively. These lightpaths are to be established semi-permanently. To solve the RWA 
problem, we need to find a set of directed paths P={P1,…,Pn} in G, each corresponding to one 
lightpath demand and assign to each a wavelength subject to the following constraints. Two 
paths that share a common physical link (in the same direction) cannot be assigned the same 
wavelength (the wavelength clash constraint). Furthermore, we assume that there are no 



WDM Optical Networks Planning using Greedy Algorithms 

 

571 

wavelength converters and thus the entire physical path corresponding to a single lightpath 
must be assigned a unique wavelength (the wavelength continuity constraint). Furthermore, 
we constrain the length in hops of the paths in P by a parameter H.   
Our objective is to minimize the number of wavelengths needed to establish the given set of 
lightpath demands. A secondary objective we consider is minimizing the physical lengths of 
the lightpaths which is desirable due to transmission impairments and delay. 

2.2 Related work 
The Routing and Wavelength Assignment problem has been widely studied in the 
literature. This problem has been proven to be NP-complete (Chlamtac et al., 1992) and 
several heuristic approaches have been developed to help solve it sub-optimally. Variations 
have been studied, such as the static, scheduled and dynamic cases, with (un)limited 
wavelengths, with(out) wavelength converters and/or considering physical impairments in 
optical fibres ((Choi et al., 2000), (Jia et al., 2002), (Mukherjee, 1997), (Murthy & Gurusamy, 
2002)). 
In (Ramaswami & Sivarajan, 1995), a mixed integer linear formulation is given for the RWA 
problem which is highly intractable and, thus, heuristics are needed. Alternative 
formulations are given in (Ozdaglar & Bertsekas, 2003) which consider a quasi-static view 
and introduce a cost function which is such that it tends to give integral solutions even 
when the problem is relaxed.  
Most heuristic approaches divide the problem into two sub-problems solved 
subsequently: the first is to route the set of lightpaths and the second is to assign 
wavelengths. Given a routing scheme, wavelength assignment is equivalent to the graph 
coloring problem so existing heuristics for graph coloring are often used. In (Banerjee & 
Mukherjee, 1996), the authors suggest a multi-commodity flow formulation for routing 
which is relaxed and then rounded using a randomized approach. Wavelength 
assignment is solved using graph coloring heuristics. Local random search is used to solve 
the routing sub-problem in (Hyytia & Virtamo, 1998) while a greedy graph coloring 
algorithm assigns wavelengths for the obtained routing solution. In (Noronha & Ribeiro, 
2006), a tabu search algorithm suggested for color-partitioning is used to perform 
wavelength assignment on a set of previously calculated alternative routes. Two-step 
algorithms, such as those mentioned above, can give good results but may have longer 
execution times than one-step algorithms.  
A one-step approach is suggested in (Lee et al., 2002) which gives an integer formulation 
solved using column generation. This, however, is not practical for larger problems. A 
simple yet highly efficient greedy algorithm, called Greedy_EDP_RWA is suggested in 
(Manohar et al., 2002). This approach is based on edge disjoint paths and runs as follows. 
The algorithm creates a partition of the set of lightpaths where each element of the partition 
contains a subset of the given lightpaths routed on mutually edge disjoint paths which can, 
thus, be assigned the same wavelength. Hence, the number of wavelengths required is equal 
to the number of elements in the partition. This algorithm has been shown to give better 
results than (Banerjee & Mukherjee, 1996) and yet is much faster. We suggested improved 
greedy algorithms based on bin packing in (Skorin-Kapov, 2006.a) which will be described 
in more detail in the next subsection. Efficient implementations of these greedy bin packing 
algorithms were suggested in (Noronha et al., 2008). 



 Advances in Greedy Algorithms 

 

572 

  
Fig. 2. Analogies between the Bin Packing Problem and Routing and Wavelength 
Assignment 

2.3 Greedy algorithms based on bin packing 
In order to efficiently solve RWA using fast greedy algorithms, we adapt classical bin 
packing heuristics to meet the specific demands of our problem. Bin packing is a well-
known NP-hard optimization problem which attempts to pack a given set of items of 
various sizes into the minimum number of bins of equal size. Various heuristic algorithms 
have been proposed for bin packing and surveys can be found in (Coffman et el., 1996) and 
(Coffman et al., 2002). Widely-used greedy heuristics for this problem are the First Fit (FF), 
Best Fit (BF), First Fit Decreasing (FFD), and Best Fit Decreasing (BFD) algorithms. The First 
Fit algorithm packs items into the first bin into which it fits, while the Best Fit algorithm 
pack items into the bin which leaves the least room left over after including the item. Both 
algorithms pack items in random order, and as such can be used as online algorithms which 
pack items in the order that they appear.  
The FFD and BFD algorithms, on the other hand, must have a priori knowledge of the entire 
set of items to be packed. Namely, they sort items in non-increasing order of their size and 
then pack them according to the FF or BF strategies, respectively. The motivation for this is 
that first packing the larger items, which are more difficult to pack, and then filling up 
remaining spaces with smaller items often lead to fewer bins needed. The FFD and BFD 
algorithms can only be used as offline algorithms since they require complete knowledge of 
the problem (i.e. the set of items), but give much better results than the corresponding 
online algorithms. 
We apply these ideas to help develop efficient greedy algorithms for the static RWA 
problem. We call these heuristics the FF_RWA, BF_RWA, FFD_RWA, and BFD_RWA 
algorithms. To apply the Bin Packing Problem (BPP) to RWA, we have to define items and 
bins in terms of optical networks which we do as follows. Items represent lightpath 
demands while bins represent layers or copies of the physical topology, i.e., graph G, each 
corresponding to one wavelength. Our objective is to route all the lightpath demands on 
the minimum number of layers such that lightpaths routed on the same layer are edge 
disjoint.  



WDM Optical Networks Planning using Greedy Algorithms 

 

573 

2.3.1 The FF_RWA algorithm 
The First Fit Routing and Wavelength Assignment (FF_RWA) algorithm runs as follows. 
Lightpath demands (i.e., items) are selected at random and routed on the lowest-indexed 
layer1 of graph G  (i.e., bin) that has a feasible path available and assigns to it the wavelength 
corresponding to that layer. If there is no feasible path available on any existing layer, i.e. a 
path shorter than the hop bound H, a new layer is added. Once a path is found, its 
corresponding edges are deleted, i.e., are marked as used for that wavelength. Note that, 
using this approach, a lightpath may be routed on a longer path on a lower-indexed layer 
than might be available on a higher layer. Lightpaths in RWA, as opposed to items in BPP, 
are not of fixed size but depend on the available links in each layer. This algorithm is 
basically equivalent to the Greedy_EDP_RWA algorithm from (Manohar et al., 2002), 
differing only in the order in which some steps are executed, but yielding the same results. 

2.3.2 The BF_RWA algorithm 
The Best Fit Routing and Wavelength Assignment (BF_RWA) algorithm also starts with a 
single layer and routes lightpath demands in random order. However, instead of routing 
lightpaths on the first layer on which there is an available path, lightpaths are routed on the 
layer on which it ‘fits best’. By best fit, we do not mean the layer with the least room left over 
as in BPP, but rather the one on which the lightpath can be routed on the shortest path. If 
there are multiple layers which can offer routes of the same path length, the lowest–indexed 
one is chosen. If there is no feasible path available on any layer, a new one is added. The 
main motivation for this approach is to use fewer resources for individual lightpaths leaving 
more room for future demands and ultimately minimizing the number of wavelengths used. 
Additionally, this approach helps to minimize the physical lengths of the lightpaths.  

2.3.3 The FFD_RWA and BFD_RWA algorithms 
The First Fit and Best Fit Decreasing Routing and Wavelength Assignment (FFD_RWA and 
BFD_RWA) algorithms sort the lightpath demands in non-increasing order of the lengths of 
their shortest paths in G and then proceed according to the FF and BF strategies, 
respectively.  We use a lightpath’s shortest path in G as a measure of its size, even though 
the lightpath will not necessarily be routed on this path. The motivation for this method of 
sorting is that if ‘longer’ lightpaths (i.e. those that are harder to route) are routed first, when 
most resources are still available, they can be routed on their shortest paths using up less 
space. ‘Shorter’ lightpaths are then more easily routed over the remaining links which can 
ultimately lead to fewer wavelengths used. 

2.4 Lower bounds 
To asses the value of the obtained solutions we compare with simple lower bounds which can 
be easily calculated even for larger problems. A lower bound on the number of wavelengths is: 
 

                                                   1
( )

max ,
2 | |maxW

n

j
jl

pi V

l SP
LB

E
=

∈

Δ
=

Δ

⎧ ⎫⎡ ⎤
⎡ ⎤⎪ ⎪⎢ ⎥

⎨ ⎬⎢ ⎥ ⎢ ⎥
⎢ ⎥⎪ ⎪⎢ ⎥

⎢ ⎥⎩ ⎭

∑
                                  (1) 

                                                 
1 Initially, only one layer of G is considered. 



 Advances in Greedy Algorithms 

 

574 

The first element represents the maximum ratio of logical in (or out) degree Δl to physical in 
(or out) degree Δp rounded to the highest integer. The second element represent the sum of 
the lengths in hops of the shortest paths l(SPj) for all lightpath demands, divided by the total 
number of edges |E|, multiplied by 2 (since they are bidirectional).  
A simple lower on the average physical lengths is simply the sum of all the shortest paths 
l(SPj) divide by the number of lightpaths n: 

 1

( )
n

j
j

H

l SP
LB

n
==
∑

 (2) 

2.5 Computational results 
The Greedy_EDP_RWA algorithm from (Manohar et al., 2002) and the BF_RWA, FFD_RWA, 
and BFD_RWA were implemented in C++ and run on a PC powered by a P4 2.8GHz 
processor.2 Series of 5 random 100-node networks were created with average degrees of 3, 4, 
and 5. Sets of random lightpath requests were generated where the probability Pl of there 
being a lightpath between two nodes ranged from 0.2 to 1, in 0.2 increments. The upper 
bound on the physical hop length H was set to max(diam(G), √|E|) as in (Manohar et al., 
2002). All algorithms were run with 10 different seeds for each test case. 
 

 
Table 1. The number of wavelengths obtained by the greedy RWA algorithms and the lower 
bound for 100-node networks with an average degree of 4. 

                                                 
2 The FF_RWA algorithm was not implemented due to its basic equivalency with Greedy_EDP_RWA. 



WDM Optical Networks Planning using Greedy Algorithms 

 

575 

  
Table 2. The average lightpath length (in hops) of the solutions obtained by the greedy RWA 
algorithms and the lower bound for 100-node networks with an average degree of 4. 

In Table 1, the average number of wavelengths of the solutions obtained by the 
implemented algorithms and the lower bounds for networks with an average degree of 4 are 
shown. Furthermore, the lowest and highest values for each test case are shown in 
parenthesis while the best obtained solutions among the tested algorithms are marked in 
bold. Those solutions which are equal to the lower bound, i.e. that are known to be optimal, 
are marked as ‘*’. We can see that the FFD_RWA and BFD_RWA algorithms significantly 
outperform Greedy_EDP_RWA and BF_RWA and give optimal solution for all but two test 
cases.  
In order to further asses the quality of the obtained solutions, we recorded the average path 
lengths of the lightpaths established for each test case. Table 2 shows the results for 
networks with an average degree of 4. We can see that here the ‘Best Fit’ strategy helps 
obtain significantly shorter lightpaths than the ‘First Fit’ strategy, while the BFD_RWA 
algorithm gives the best results in all test cases.  The results for networks with average 
degree of 3 and 5 are omitted for lack of space but can be found in (Skorin-Kapov, 2006.a).   
Although all four algorithms are very fast and tractable, running under half a second for the 
cases tested, the Greedy_EDP_RWA and BF_RWA are slightly faster than the FFD_RWA and 
BFD_RWA algorithms due to the time spent sorting the lightpaths in the latter. However, as 
a result of sorting lightpaths,  FFD_RWA and BFD_RWA usually give the same results for 
any order of lightpaths (unless all lightpaths are of the same length) and thus only need to 



 Advances in Greedy Algorithms 

 

576 

be run once, while Greedy_EDP_RWA and BF_RWA should be run as multi-start algorithms 
in order to obtain good solutions. 

3. The VTD problem 
3.1 Problem definition 
The Virtual Topology Design problem includes determining the set of lightpaths to be 
established on the basis of a traffic matrix, performing RWA, and lastly routing packet-
switched traffic over the established virtual topology. Given is the a graph G=(V, E) 
representing the physical topology and a long-term traffic matrix Λ representing the 
estimated average traffic flows between pairs of nodes. Furthermore, we have given a 
limited number of transmitters and receivers, commonly referred to as transceivers T, a 
maximum number of wavelengths W, as well as an upper bound on the number of hops H 
in the physical paths of lightpaths.  
Various objectives can be considered. The most common optimization criteria used for 
Virtual Topology Design are the minimization of congestion and average packet hop 
distance. Congestion is defined as the maximum traffic load on any lightpath. The average 
packet hop distance is the average number of lightpaths a packet or unit of traffic traverses 
on its way from source to destination. Traversing multiple lightpaths incurs additional 
delay due to opto-electronic and electro-optic conversion encountered when going from one 
lightpath to the next. Both congestion and average packet hop distance are functions of the 
virtual topology and the traffic matrix, while they are independent of the physical topology 
and RWA scheme.  
An objective criterion which has been gaining more and more attention lately is the 
minimization of transmitters and receivers since they make up for most of the network cost.  
An additional objective was proposed in (Skorin-Kapov, 2007), called the virtual hop 
distance, which minimizes the average hop distance between any two nodes in the virtual 
topology. Minimizing this criterion ensures that the virtual topology is well connected for 
all node-pairs, which can postpone costly reconfiguration in case of changing traffic trends. 
Minimizing the physical lengths of lightpaths is also desirable due to delay and, more 
importantly, physical impairments which can cause signal degradation. Considering all 
these objectives and their trade-offs is important to successfully solving the VTD problem. 

3.2 Related work 
Several approaches have been proposed to solve VTD or a combination of its sub-problems 
using mixed-integer linear formulations (MILPs) with various constraints. A formulation for 
complete VTD with the objective to minimize the average packet hop distance with full 
wavelength conversion is given in (Banerjee & Mukherjee, 2000). Heuristics for the same 
problem are given in (Mukherjee et al., 1996).  The problem with no wavelength conversion 
is formulated in (Ramaswami & Sivarajan, 1996) with the objective to minimize congestion, 
but with no a constraint on the number of wavelengths available. Since the formulation is 
intractable for larger problems, the authors suggest various heuristic algorithms. One of 
them is the LP Logical Design Algorithm (LPLDA) which solves a relaxation of the 
proposed MILP and rounds the virtual topology variables; RWA is not considered. 
Alternative rounding schemes to obtain better solutions from LP-relaxations were proposed 
in (Skorin-Kapov, 2007).  



WDM Optical Networks Planning using Greedy Algorithms 

 

577 

Another heuristic suggested in (Ramaswami & Sivarajan, 1996), which is best-known, is the 
Heuristic Topology Design Algorithm (HLDA). HLDA is a greedy algorithm for the VRWA 
problem with a limited number of wavelengths and no wavelength conversion. Recall that 
Virtual topology and Routing and Wavelength Assignment (VRWA) problem consists of the 
first three sub-problems in Virtual Topology Design. The fourth sub-problem, Traffic 
Routing (TR), is solved subsequently using an LP formulation with the objective to 
minimize congestion. HLDA attempts to establish lightpaths between nodes in decreasing 
order of their estimated traffic, where each lightpath is routed on its shortest path and 
assigned the lowest-indexed wavelength available. After establishing a lightpaths, the value 
of its corresponding traffic is decreased by the value of the next highest traffic demand (or 
set to zero if the next highest traffic demand is higher) and then the traffic demands are re-
sorted. This enables multiple lightpaths to be established between pairs of nodes with high 
traffic. Once the procedure ends, additional lightpaths are set up at random between nodes 
with left-over transmitters and receivers.  This algorithm is simple, and yet performs very 
well with respect to congestion for which it was tested. 
In (Krishnaswamy & Sivarajan, 2001), a MILP formulation for VTD including a limit on the 
number of wavelengths and allowing no wavelength conversion is given. Since the 
formulation is intractable, its relaxation is solved iteratively 25 times using a cutting plane, 
after which the lightpath selection and lightpath routing variables are rounded. Wavelength 
assignment is performed subsequently using a heuristic, while traffic routing over 
lightpaths is solved with an LP composed of only the traffic constraints from their MILP for 
VTD. This method gives good results but can be computationally prohibitive and does not 
guarantee a solution with the constrained number of wavelengths due to the subsequent 
wavelength assignment heuristic. 
In (Zang & Acampora, 1995), the VRWA problem is solved by constraining potential 
lightpath routes to their shortest paths, and then assigning wavelength subsequently to as 
many lightpaths as possible in descending order or traffic, subject to the wavelength clash 
and continuity constraints. This approach utilizes resources well, but significantly limits 
possibilities by using predetermined shortest paths. In (Puech et al., 2002) a method to 
reduce the complexity of the first and last sub-problems of Virtual Topology design, i.e. 
lightpath selection and traffic routing, are given. In (Kuri et al., 2002), a tabu-search 
algorithm for lightpath selection and traffic routing is presented, while the trade-offs 
concerning cost and congestion are studied.  

3.3 Greedy algorithms each aimed to optimize different objective criteria 
Due to the many aspects and evaluation criteria important for VTD and its sub-problems, it 
is challenging to develop heuristics which perform well for all criteria. We propose 4 greedy 
heuristics for the VRWA problem (Skorin-Kapov, 2008), each aimed to optimize various 
optimization criteria, and then solve Traffic Routing using an LP formulation from 
(Krishnaswamy & Sivarajan, 2001) which minimizes congestion.  

3.3.1 The TSO_SP algorithm 
The first greedy algorithm considers Traffic Sorted Overall and routes it on the Shortest Path 
available (the TSO_SP algorithm). A layered graph approach is used, as in the bin packing 



 Advances in Greedy Algorithms 

 

578 

algorithms for RWA, but with a limited number of layers W. First the traffic demands are 
sorted in non-increasing order giving us an ordering of node-pairs which will be considered 
as potential lightpath demands. For each node pair in the defined order, a lightpath is 
established on the layer on which there is the shortest path available. If there is no feasible 
route available on any of the W layers, the lightpath between the node-pair in question is 
simply not established. If a lightpath is set up, the links along its path are deleted from the 
corresponding layer, i.e. are marked as used. This approach is similar to HLDA except that 
multiple lightpaths are not established between pairs of nodes and the transmitters and 
receivers not used initially are not subsequently assigned to random lightpaths since one of 
our objectives is to minimize transceiver cost. 

3.3.2 The TSO_FS algorithm 
The TSO_FS algorithm also Sorts Traffic Overall, but routes lightpaths on the First 
Satisfactory path available. Basically traffic demands are sorted in non-increasing order and 
corresponding potential lightpaths are routed on the lowest-indexed layer on which there is 
a satisfactory path available. We consider a path satisfactory of its length is less than the 
upper bound on the hop length H. If there is no satisfactory path available, the lightpath is 
dropped. The motivation for ‘filling up’ lower-indexed layers is to leave higher layers empty 
and potentially minimize the total number of layers used, i.e. the total number of 
wavelengths used.  

3.3.3 The TSBS_SP algorithm 
In the TSBS_SP algorithms, Traffic is Sorted By Source and routed on the Shortest Path 
available. Instead of sorting traffic between all node pairs, or potential lightpaths, in non-
increasing order we do the following. For each node separately, we sort the traffic demands 
originating from that node to all other nodes (i.e. the row in the traffic matrix corresponding 
to the node in question) in non-increasing order. Then we make a single ordering of traffic 
demands, i.e. node pairs, by taking the highest traffic demand from each node, starting with 
the highest one overall and continuing in decreasing order. Then we take the next highest 
traffic demand, and the third, and so on until all traffic demands are included in the list.  An 
example of such a method of sorting is shown in Fig. 3. Once the traffic demands are sorted, 
the algorithm tries to establish lightpaths in the specified order by routing them on the layer 
with the shortest path available.  The motivation for this approach, with respect to sorting 
the lightpaths, is to create a virtual topology which is spread out more evenly and not only 
concentrated around a few nodes with very high traffic. This could lower the average virtual 
hop distance as well as prevent unconnected virtual topologies when resources are very 
scarce which can cause traffic to be blocked between certain nodes, i.e. giving infeasible 
solutions to the VTD problem.  

3.3.4 The TSBS_FS algorithm 
The TSBS_FS algorithm also considers Traffic Sorted By Source but routes lightpaths on the 
First Satisfactory path available. Basically, after sorting the node pairs according to the TSBS 
strategy, lightpaths are established on the lowest-indexed layer that has a satisfactory path 
available.  



WDM Optical Networks Planning using Greedy Algorithms 

 

579 

 
Fig. 3. An example of sorting a traffic matrix using the TSBS method. 

3.4 Lower bounds 
Lower bounds on the average packet hop distance and congestion were developed in 
(Ramaswami & Sivarajan, 1996) and are as follows. Assuming P = (psd) is the average traffic 
distribution matrix, where  psd is the probability that there is a packet from s to d, Πi for 1 ≤ i 
≤ N is a permutation of  (1,2,…,N) such that pi Πi (j) ≥ pi Πi (j’) if j ≤ j’. If Δl is the maximum 
degree of the virtual topology, the lower bound on the average packet hop distance was 
shown to be 

 ∑∑ ∑
= =

−

+= −

=
N

i

m

k

N

nj
)j(i

LB
p

k
i

pH
1 1

1

11

π  (3) 

where m is the largest integer such that 

 
1
11 1

−

−
=+++> −

l

m
lm

llN
Δ
Δ

ΔΔ …  (4) 

and  

 ,n
k

i

i
lk ∑

=
=

1
Δ for 011 0 =−=−≤≤ n,Nn,mki m . (5) 



 Advances in Greedy Algorithms 

 

580 

Since we consider a limited number of wavelengths W on each link, the virtual degree 
cannot exceed W*Δp, where Δp is the maximum degree of the physical topology, we define 
the maximum degree of the virtual topology Δl to be 

 ).W,Trmin( pl ΔΔ ⋅=  (6) 

Using the lower bound for the average packet hop distance described above, a lower bound 
on congestion was derived in (Ramaswami & Sivarajan, 1996)  as 

 
E
Hr LB

pLB
max

⋅
=λ , (7) 

where r is the total arrival rate of packets to the network and E is the number of directed 
links in the virtual topology.  
A lower bound on the average virtual hop distance was derived in (Skorin-Kapov, 2007) as 
follows. Since the average virtual hop distance is independent of the traffic matrix, the lower 
bound on the average virtual hop distance from any node s in V to all the other nodes in the 
network is the same for each node s. As noted in (Ramaswami & Sivarajan, 1996), if a 
network has a maximum logical degree of Δl , for some node s in V there can be at most Δl 
nodes one hop away from s, at most Δl2 nodes two hops away, at most Δl3 nodes three hops 
away, etc. An ideal virtual topology with respect to virtual hop distance from some node s 
to the remaining nodes in the network would be such a topology in which node s had Δl  
neighbors, each of which had Δl neighbors of their own without creating a cycle, and so on, 
until all the nodes were connected.  
Let m be the largest integer such that N ≥ 1+ Δl +…+ Δlm-1 = (Δlm - 1)/( Δl -1) holds. In the ideal 
virtual topology with respect to virtual hop distance from node s, Δl nodes would be one 
hop away from s, Δl2 nodes would be two hops away, etc., up until Δlm-1 nodes that would be 
(m-1) hops away. The remaining (N-1)-( Δl +… + Δlm-1) nodes would be m hops away. It 
follows that the lower bound on the average virtual hop distance would be  

 
( )

( )
( )

1

1
1

1

11

1
1

2

1

1
1

1
1

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
−+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

+−−

=
−

−−+
=

−

−
=

−
= ∑∑

N

Nmmm

N
N[mk

H
l

m
l

l

m
l

m
l

l
m
k

k
l

m
k

k
lLB

v

Δ
Δ

Δ

ΔΔ
Δ

ΔΔ
 (8) 

Lower bounds on the number of wavelengths, transceivers and average physical hop 
lengths of the lightpaths are not relevant for our particular problem, i.e., they would be zero 
since there is no minimum number of lightpaths which must be established.  

3.5 Computational results 
The greedy algorithms for the VRWA problem described above were implemented in C++ 
and run on a PC with a P4 2.8 GHz processor. CPLEXv6 solver was used to solve the LP for 
Traffic Routing. The algorithms were tested on a 14-node reference European core network 
topology from (Inkret et al., 2003) shown in Fig. 3. The algorithms were tested for two 
different traffic matrices, p1 and p2, used in (Ramaswami & Sivarajan, 1996) and 
(Krishnaswamy & Sivarajan, 2001) to test VTD. In traffic matrix p1, most of the traffic is 



WDM Optical Networks Planning using Greedy Algorithms 

 

581 

concentrated around 42 pairs, while traffic in p2 is more evenly distributed.  The number of 
transmitters and receivers per node ranged from T= 2 to 13 each, while the number of 
wavelengths ranged from W=T-1 to W=T+1. The upper bound on the number of physical 
hops was set to H = max(diam(G), √|E|) as for the RWA problem in Section 2. 
 

 

AmsterdamLondon

Brussels

Paris

Zurich

Milan

Berlin

Vienna 

Prague
Munich

Rome

Hamburg

Frankfurt

Zagreb

 
Fig. 3. A reference European core topology from (Inkret et al., 2003). 

 In Fig. 4, the (a) congestion, (b) average packet hop distance, (c) average virtual hop 
distance, and (d) number of transceivers used in the solutions obtained for traffic matrix p2 
are shown. The results for traffic matrix p1 are similar and are, thus, omitted for the sake of 
brevity.3 All four algorithms give similar results for congestion (Fig. 4.(a)), most of which are 
very close to the lower bound. The exception is for cases with a very small number of 
transceivers and wavelengths where the algorithms, particularly the TSO algorithms, gave 
unconnected virtual topologies. For the average packet hop distance, the bound is not very 
tight so it is difficult to assess their quality (Fig. 4.(b)). Still, we can see that the TSO 
algorithms tend to perform slightly better than the TSBS algorithms. On the other hand, the 
TSBS algorithms give better results than the TSO algorithms with respect to the virtual hop 
distance (Fig. 4.(c)). Here, the bound is fairly tight so we can see that the results are at least 
near-optimal. However, to establish better connected virtual topologies, the TSBS algorithms 
use more transceivers than the TSO algorithms (Fig. 4.(d)). 
For the European core network, the algorithms usually terminated when all of the available 
wavelengths were exhausted, and as a result the same number of distinct wavelengths was 
used by all the algorithms. Furthermore, since the network is fairly small, the physical paths 
could not differ significantly between solutions. To assess how the algorithms behave with 
respect to RWA, further testing was done on 5 randomly generated 30-node networks, 

                                                 
3 Additional numerical results for these algorithms can be found in (Skorin-Kapov, 2008) 
 
 



 Advances in Greedy Algorithms 

 

582 

where the probability of there being an edge between two nodes was set to Pl=0.2 creating 
fairly dense networks. Traffic matrices were generated using the method suggested in 
(Banerjee & Mukherjee, 2000) where a fraction F of the traffic is uniformly distributed over 
[0,C/a], while the remaining traffic is uniformly distributed over [0, C*ψ/a].  The values were 
set to C=1250, a=20, ψ =10 and F=0.7 as in (Banerjee & Mukherjee, 2000). 

0

50

100

150

200

250

300

350

400

450

500

W 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 10 11 10 11 12 11 12 13 12 13 14

T 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13

Wavelengths (W) and Tranceivers (T)

C
on

ge
st

io
n

TSO_SP
TSO_FS
TSBS_SP
TSBS_FS
LB

0

0.5

1

1.5

2

2.5

3

3.5

W 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 10 11 10 11 12 11 12 13 12 13 14

T 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13

Wavelengths (W) and Tranceivers (T)
A

ve
ra

ge
 p

ac
ke

t h
op

 d
is

ta
nc

e

TSO_SP
TSO_FS
TSBS_SP
TSBS_FS
LB

 
                                           (a)                                                                             (b) 

0

0.5

1

1.5

2

2.5

3

3.5

W 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 10 11 10 11 12 11 12 13 12 13 14

T 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13

Wavelengths (W) and Tranceivers (T)

A
ve

ra
ge

 v
ir

tu
al

 h
op

 d
is

ta
nc

e

TSO_SP
TSO_FS
TSBS_SP
TSBS_FS
LB

0

50

100

150

200

250

300

350

W 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 10 11 10 11 12 11 12 13 12 13 14

T 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13

Wavelengths (W) and Tranceivers (T)

Tr
an

ce
iv

er
s 

us
ed

TSO_SP
TSO_FS
TSBS_SP
TSBS_FS

 
                                            (c)                                                                              (d) 

Fig. 4. The (a) congestion, (b) average packet hop distance, (c) average virtual hop distance, 
and (d) transceivers used by the proposed algorithms for the reference European core 
network for traffic matrix p2. 

The number of wavelengths used and the lengths of the physical paths are shown in Figs. 5 
(a) and (b), respectively. We can see that the FS algorithms use significantly fewer 
wavelengths than the SP algorithms (Fig. 5 (a)). The results for congestion, average packet 
and virtual hop distance, and the number of transceivers were almost the same for all 
algorithms indicating that to establish virtual topologies which perform equally well, the FS 
algorithms use fewer wavelengths leaving more room for expansion of the virtual topology 
However since the FS algorithms route paths on the first satisfactory path and not the 
shortest path, they tend to establish longer lightpaths (Fig. 5 (b)). 
From the obtained results, we can see that when sorting traffic demands differently (i.e., 
TSO vs. TSBS), the TSO algorithms obtain slightly better results for congestion and packet 
hop distance while TSBS obtains better connected virtual topologies overall. Creating better 



WDM Optical Networks Planning using Greedy Algorithms 

 

583 

connected topologies might be desirable if traffic is prone to change since it can perform 
well, not only for current traffic trends, but for changing traffic.  However, this is a trade-off 
with cost since establishing well-connected virtual topologies usually requires more 
transceivers, raising the network cost. Furthermore, if transceivers are very scarce, TSBS 
could help prevent from establishing unconnected virtual topologies which leave some 
node-pairs completely disconnected. 

0

2

4

6

8

10

12

W 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 10 11 10 11 12 11 12 13 12 13 14

T 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13

Wavelengths (W) and Tranceivers (T)

W
av

el
en

gt
hs

 u
se

d

TSO_SP
TSO_FS
TSBS_SP
TSBS_FS

0

0.5

1

1.5

2

2.5

3

W 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 10 11 10 11 12 11 12 13 12 13 14

T 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13

Wavelengths (W) and Tranceivers (T)

A
ve

ra
ge

 li
gh

tp
at

h 
le

ng
th

 (p
hy

si
ca

l h
op

s)

TSO_SP
TSO_FS
TSBS_SP
TSBS_FS

 
                                          (a)                                                                           (b) 

Fig. 5. The (a) number of wavelengths used and the (b) physical lengths of lightpaths for the 
30-node networks. 

The method of routing and assigning wavelengths (i.e., FS vs. SP) does not significantly 
affect the objective criteria which are functions of the virtual topology (i.e., congestion, 
average packet and virtual hop distances). The main advantage of the FS algorithms over 
the SP algorithms is that they use fewer distinct wavelengths for RWA, particularly in dense 
networks. However, this is a trade-off with the physical length of lightpaths, which might be 
critical due to physical impairments. 

4. Current and future work 
Our current work on Routing and Wavelength Assignment is based on developing routing 
and wavelength assignment schemes aimed to increase robustness against malicious 
crosstalk and jamming attacks in transparent optical networks. While faults (i.e., component 
malfunctions) only affect the connections passing directly through them, attacks can spread 
and propagate throughout the network, making them more destructive and harder to locate 
and isolate. Our objective is to arrange lightpath demands in such a way as to minimize the 
propagation capabilities of such attacks. Furthermore, we aim to minimize the upper bound 
on the number of wavelengths required for successful wavelength assignment and reduce 
lightpath congestion. We are currently developing greedy algorithms based on bin packing 
for attack-aware wavelength assignment. Future work will include extending it to include 
the routing sub-problem to help obtain improved solutions for the RWA problem. 
Furthermore, we are investigating the problem of scheduled Virtual Topology Design. 
Recall that scheduled VTD involves defining an a priori schedule for setting up and tearing 
down lightpaths based on periodic traffic trends. We proposed efficient greedy algorithms 
for scheduled RWA in (Skorin-Kapov, 2006.b) which route and assign wavelengths to 



 Advances in Greedy Algorithms 

 

584 

lightpaths according to a predefined schedule. Currently, in collaboration with P. Pavon-
Marino et al. from UPCT, Spain, we are focused on developing algorithms for lightpath 
selection and scheduling, as well as traffic routing. Preliminary testing of our MILP 
formulation for the problem was performed using MatPlan WDM (Pavon-Marino et al., 
2007). Since this formulation is intractable for larger problem instances, we are working on 
greedy heuristic approaches to find suboptimal solutions. 

5. Conclusions 
WDM optical network planning, particularly Virtual Topology Design, is a complex 
problem and several variations can be considered. Since even the sub-problems of VTD 
themselves are hard, solving the combined problem for larger instances using exact methods 
is infeasible. Greedy algorithms have been shown to obtain solutions comparable to those of 
more complex algorithms in very short time. In the first part of this chapter, we discuss 
highly-efficient greedy approaches for the static Routing and Wavelength Assignment 
problem based on bin packing. Suggested are methods of sorting and routing lightpaths 
which not only reduce the required number of wavelengths, but also reduce the average 
physical length of established lightpaths. Numerical results indicate that the proposed 
methods obtain optimal or near-optimal solutions in many cases, and significantly 
outperform efficient existing algorithms for the same problem. Furthermore, the heuristics 
are robust and highly tractable and can, thus, be used to solve large problem instances in 
reasonable time.  
In the second part of the chapter, we propose greedy algorithms for the first three sub-
problems of Virtual Topology Design, i.e. lightpath selection and RWA, which we call 
VRWA. Traffic routing is solved subsequently using a linear programming formulation. The 
greedy algorithms differ with respect to the order in which lightpaths are established, and 
the method of routing and assigning wavelengths. These variations are intended to improve 
the performance of the algorithms with respect to different objective criteria such as 
congestion, average virtual, physical, and packet hop distances, and the number of 
transceivers and distinct wavelengths used. The fact that they are fast and simple, and can 
be tailored to meet the needs of the network in question, makes them very attractive for 
practical use. In general, greedy algorithms have been shown to be very promising 
candidates for solving complex optical networks planning problems and will play a key role 
in our future work on scheduled VTD and attack-aware RWA. 

6. References 
Banerjee, D. & Mukherjee, B. (1996), A Practical Approach for Routing and Wavelength 

Assignment in Large Wavelength-Routed Optical Newtorks, IEEE Journal of Selected 
Areas in Communications, Vol. 14, (June 1996) pp. 903-908. 

Chlamtac, I.; Ganz, A. & Karmi, G. (1992). Lightpath communications: An approach to high-
bandwidth optical WANs, IEEE Transactions on Communications, Vol. 40, (1992) pp. 
1171-1182. 

Choi, J. S.; Golmie, N.; Lapeyere, F. ; Mouveaux, F. & Su, D. (2000). A Functional 
Classification Of Routing and Wavelength Assignment Schemes in DWDM 
Networks: Static Case, Proceedings of VII Int. Conf. on Optical Communication and 
Networks, Nagoya, Japan, Jan. 2000. 



WDM Optical Networks Planning using Greedy Algorithms 

 

585 

Coffman, E. G.; Garey, M. R. & Johnson, D. S. (1996). Packing Approximation Algorithms: A 
Survey, In: Approximation Algorithms for NP-Hard Problems, D. Hochbaum (Ed.), 
PWS Publishing Co., Boston, MA. 

Coffman, E. G.; Csirik, J. & Woeginger, G. (2002). Bin Packing Theory, In: Handbook of Applied 
Optimization, Pardalos, P. & Resende, M. G. C. (Eds.), Oxford University Press, New 
York. 

Hyytia, E. & Virtamo, J. (1998). Wavelength assignment and routing in WDM networks, 
Nordic Telegraffic Seminar 14 (1998) pp. 31-40. 
Inkret, R.; Kuchar, A. & Mikac, B., Advanced Infrastructure for Photonic Networks: Extended 

Final Report of COST Action 266, Faculty of Electrical Engineering and Computing, 
University of Zagreb, Zagreb, Croatia, pp.19-21. 

Jia, X.; Hu, X.-D. & Du, D.-Z. (2002). Multiwavelength Optical Networks, Kluwer Academic 
Publishers, Norwell, MA. 

Krishnaswamy, R. M. & Sivarajan, K. N. (2001). Design of logical topologies: a linear 
formulation for wavelength-routed optical networks with no wavelength changers, 
IEEE/ACM Transactions on Networking, Vol. 9, No. 2, (April 2001), pp. 186-198. 

Kuri, J.; Puech, N. & Gagnaire, M. (2002). A Tabu search algorithm to solve a logical 
topology design problem in WDM networks considering implementations costs, 
Proceedings of SPIE Asian Pacific Optical Conference, Shangai, China, Oct. 2002. 

Lee, K.; Kang, K. C.; Lee, T. & Park, S. (2002). An Optimization Approach to Routing and 
Wavelength Assignment in WDM All-Optical Mesh Networks without Wavelength 
Conversion", ETRI Journal, Vol 24, No. 2, (2002) pp. 131-141. 

Manohar, P.; Manjunath, D. & Shevgaonkar, R. K. (2002). Routing and Wavelength 
Assignment in Optical Networks From Edge Disjoint Paths Algorithms", IEEE 
Communication Letters, Vol. 6, No. 5, (May 2002) (pp. 211-213). 

Mukherjee, B. (1997). Optical Communication Networks, McGraw-Hill, New York. 
Murthy, C. S. R. & Gurusamy, M. (2002), WDM Optical Networks: Concepts, Design, and 

Algorithms, Prentice Hall, New Jersey. 
Mukherjee, B.;  Banerjee, D.;  Ramamurthy, S. & Mukherjee, A. (1996). Some Principles for 

Designing a Wide-area WDM Optical Network, IEEE/ACM Transactions on 
Networking, Vol. 4, No. 5, (Oct 1996), pp. 684-696. 

Noronha, T. F. & Ribeiro, C. C. (2004). Routing and wavelength assignment by partition 
coloring, European Journal of Operational Research, Vol 171, No. 3  (June 2006, 
available online Dec. 2004) pp. 797-810. 

Noronha, T.F.; Resende, M.G.C.& Ribeiro C.C. (2008). Efficient implementations of heuristics 
for routing and wavelength assignment, Proceedings of 7th International Workshop on 
Experimental Algorithms (WEA 2008), C.C. McGeoch (Ed.), LNCS, Springer, vol. 
5038,(2008) pp. 169-180. 

Ozdaglar, A. & Bertsekas, D. (2003). Routing and Wavelength Assignment in Optical 
Networks", IEEE/ACM Transactions on Networking, Vol 11, No. 2, (April 2003) pp. 
259-272. 

Pavon-Marino, P.; Aparicio-Pardo, R.; Moreno-Munoz, G.; Garcia-Haro, J. & Veiga-Gontan, 
J. (2007). MatPlan WDM: An Educational Tool for Network Planning in 
Wavelength-Routing Networks, Lecture Notes in Computer Science, 4534, Springer-
Verlag, pp. 58-67. 



 Advances in Greedy Algorithms 

 

586 

Puech, N.; Kuri, J. & Gagnaire, M. (2002). Topological Design and Lightpath Routing in 
WDM Mesh Networks: A Combined Approach, Photonic Network Communications, 
Vol. 4, No. 3/4, (July 2002) pp. 443-456. 

Ramaswami, R. & Sivarajan, K. N. (1995), Routine and Wavelength Assignment in All-
Optical Networks, IEEE/ACM Transactions on Networking, Vol. 3, No. 5, (Oct. 
1995), pp. 489-500.  

Ramaswami, R. & Sivarajan, K. N. (1996), Design of Logical Topologies for Wavelength-
Routed Optical Networks, IEEE Journal of Selected Areas in Communications, Vol. 14, 
No. 5, (June 1996), pp 840-851. 

Skorin-Kapov, N. (2006). Heuristic Algorithms for the Routing and Wavelength Assignment 
of Scheduled Lightpath Demands in Optical Networks, IEEE Journal of Selected 
Areas in Communications, Vol. 24, No. 8, (August 2006) , pp. 2-15. 

Skorin-Kapov, N. (2007a). Routing and Wavelength Assignment in Optical Networks Using 
Bin Packing Based algorithms, European Journal of Operational Research, Vol. 177, 
Issue 2, (March 2007) , pp. 1167-1179. 

Skorin-Kapov, N. (2007b), A New Objective Criterion and Rounding Techniques for 
Determining Virtual Topologies in Optical Networks, IEEE Communication Letters, 
Vol. 11, No. 6, (June 2007), pp.540-542. 

Skorin-Kapov, N. (2008). Virtual Topology Design in WDM Optical Networks: Greedy 
Algorithms and a Study of Various Objectives, (Submitted to: Telecommunications 
Systems). 

Zang, Z. & Acampora, A. S. (1995). A Heuristic Wavelength Assignment Algorithm for 
Multihop WDM Networks with Wavelength Routing and Wavelength Re-Use, 
IEEE/ACM Transactions on Networking, Vol 3, No. 3, (June 1995) pp. 281-288. 


	Preface&Contents_Greedy_Algorithms
	01_Chen_Mao
	02_Bejerano
	03_Bouhmala
	04_Takahara
	05_Huo
	06_Lidoris
	07_Akujuobi
	08_Haider
	09_Vidrighin
	10_Mingyu
	11_Jones
	12_Farah
	13_Cheng
	14_Meghanathan
	15_Liu
	16_Gutin
	17_Chen
	18_Bednorz
	19_Yoshikawa
	20_Nghia
	21_Ciftcioglu
	22_Fukuta
	23_Wei
	24_He
	25_Kempner
	26_Bellur
	27_Ho
	28_Chorbev
	29_Yoshida
	30_Skorin-Kapov


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


