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Preface

Bioinformatics is a growing multidisciplinary field of science comprising biology,
computer science, and mathematics. It is the theoretical and computational arm of
modern biology. In other words, bioinformatics is a tool in the hands of biologists for
analyzing huge amount of biological data available on mainstream public databases.
Currently, bioinformatics has gained variety of applications in agriculture, medicine,
engineering, and natural science. This book discusses a small portion of these
applications along with basic concepts and fundamental techniques in bioinformatics.

The first section is a review of history of bioinformatics and the pace of its
development in modern biology specifically in Europe. Section 2 and section 3 focus
on fundamental principles of data integration and data mining as basic skills in
bioinformatics. Data integration is now perceived a requirement in biology as the
volume of biological data continues to grow. Section 2 provides an overview on
integration of biomedical data using semantic web technologies and current efforts
and challenges. Data mining is another basic tool to search databases for conserved
regions, motifs, and regulatory modules effective in variety of diseases. Section 3
discusses these applications and basic approaches in data mining such as vector space
information. Section 4 concentrates on another aspect of bioinformatics, sequence
analysis. Sequences are analyzed to search for distribution of motifs, and search for
domains. Basic tool for this analysis is sequence alignment which is discussed in this
section in detail. Section 5 contains chapters on identification of specific structures in
proteins such as endosomal sorting complex, chaperons, and human receptors. These
structures are involved in different metabolic activities within the cell. Section 6 covers
those chapters that discuss role of bioinformatics in genomic studies. Some
applications of computational techniques in analysis of genomes such as SNP patterns,
CPG islands, and virtual genomes have been described in this section. Section 7
focuses on regulatory machinery and the role micro RNAs in this system. Micro RNAs
have recently been found to be important in regulatory networks. Some applications
have been discussed in chapters within this section. Gene expression and system level
understanding of expression process is one of the most interesting topics in
bioinformatics. Section 8 contains fundamental principles of identification of
differentially expressed genes from microarray data. The chapters in this section are
suitable for those who seek basic information on gene expression and integration of
this information into biological systems. Section 9 contains more advanced topics in



Xl

Preface

bioinformatics including next generation sequencing. In this section the authors
discuss more recent advances and technologies utilized in deep sequencing. The last
section describes one of the growing practical applications of bioinformatics i.e. drug
design. The ultimate goal of all theoretical analysis of biological data ought to be a
product that improves lives of human. This section discusses one of thousands of
efforts in designing a new drug for cancer treatment by means of bioinformatics.

Therefore, this book targets two types of readers: those who are new to bioinformatics
and are interested in basic methods and fundamental principles and those who seek
new approaches in bioinformatics. Both parties will benefit from studying this book.

In closing I wish to express my sincere sense of gratitude to all contributing authors,
publishing process manager, Petra Nenadic and publishing staff.

Mahmood A. Mahdavi
Ferdowsi University of Mashhad (FUM), Mashhad
Iran









Part 1

Bioinformatics in Biology






Concepts, Historical Milestones and the Central
Place of Bioinformatics in Modern Biology:
A European Perspective

T.K. Attwood!, A. Gisel?, N-E. Eriksson® and E. Bongcam-Rudloff*
IFaculty of Life Sciences & School of Computer Science, University of Manchester
2Institute for Biomedical Technologies, CNR

3Uppsala Biomedical Centre (BMC), University of Uppsala

4Department of Animal Breeding and Genetics,

Swedish University of Agricultural Sciences

UK

2[taly

34Sweden

1. Introduction

The origins of bioinformatics, both as a term and as a discipline, are difficult to pinpoint.
The expression was used as early as 1977 by Dutch theoretical biologist Paulien Hogeweg
when she described her main field of research as bioinformatics, and established a
bioinformatics group at the University of Utrecht (Hogeweg, 1978; Hogeweg & Hesper,
1978). Nevertheless, the term had little traction in the community for at least another decade.
In Europe, the turning point seems to have been circa 1990, with the planning of the
“Bioinformatics in the 90s” conference, which was held in Maastricht in 1991. At this time, the
National Center for Biotechnology Information (NCBI) had been newly established in the
United States of America (USA) (Benson et al., 1990). Despite this, there was still a sense that
the nation lacked a “long-term biology ‘informatics’ strategy”, particularly regarding
postdoctoral interdisciplinary training in computer science and molecular biology (Smith,
1990). Interestingly, Smith spoke here of ‘biology informatics’, not bioinformatics; and the
NCBI was a “center for biotechnology information’, not a bioinformatics centre.

The discipline itself ultimately grew organically from the needs of researchers to access and
analyse (primarily biomedical) data, which appeared to be accumulating at alarming rates
simultaneously in different parts of the world. The rapid collection of data was a direct
consequence of a series of enormous technological leaps that yielded what was considered,
at the time, unprecedented quantities of biological sequence information. Hot on the heels of
these developments was the concomitant wide-scale blossoming of algorithms and
computational resources necessary to analyse, manipulate and store these growing
quantities of data. Together, these advances gave birth to the field we now refer to as
bioinformatics.

When we look back, it’s clear that certain concepts and historical milestones were crucial to
the evolution of this new field. Those we think most important, and consequently
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remember, depend largely on the perspective from which we view the emerging
bioinformatics landscape. This chapter takes a largely European standpoint, while
recognising that the development of bioinformatics in Europe was intimately coupled with
parallel advances elsewhere in the world, and especially in the USA. The history is intricate.
Here, we endeavour to recount the story as it unfolded along a number of tightly
interwoven paths, including the rise and spread of some of the technological developments
that spawned the data deluge and facilitated its world-wide propagation; of some of the
databases that developed in order to store the rapidly accumulating data; and of some of the
organisations and infrastructural initiatives that emerged to try to put some of those pivotal
databases on a more solid financial footing.

2. The seeds of bioinformatics

It is hard to pinpoint where and when the seeds of bioinformatics were originally sown.
Does the story start with Franklin and Gosling’s foundational work towards the elucidation
of the structure of DNA (Franklin & Gosling, 1953a, b, c), or with the opportunistic
interpretation of their data by Watson and Crick (Watson & Crick, 1953)? Do we fast-
forward to the ground-breaking work of Kendrew et al. (1958) and of Muirhead & Perutz
(1963) in determining the first three-dimensional (3D) structures of proteins? Or do we step
back, and focus on the painstaking work of Sanger, who, in 1955, determined the amino acid
sequence of the first peptide hormone? Or again, do we jump ahead to the progenitors of the
first databases of macromolecular structures and sequences in the mid-1960s and early ‘70s?
This era clearly heralded some of the most significant advances in molecular biology, as
witnessed by a string of Nobel Prizes at the time: e.g., Sanger’s Prize in Chemistry in 1958;
Watson, Crick and Wilkins’ shared Prize in Physiology or Medicine in 1962, following
Franklin’s death; and Perutz and Kendrew’s Prize in Chemistry, also in 1962. Clearly, in its
own way, each of these advances played an important part in the emergence of the vibrant
new field that we recognise today as ‘bioinformatics’.

As a humbling reference point, we have chosen to begin our story in the mid 1940s, with
Fred Sanger’s pioneering work on insulin. Sanger used a range of chemical and enzymatic
techniques to elucidate, for the first time, the order of amino acids in the primary structure
of a protein. Back then, this was a tremendously complex puzzle to tackle, and its
completion required the successful resolution of many different challenges over several
years. That this was a difficult incremental process is illustrated by the fact that, between
1945 and 1955, each step was published in a separate, stand-alone article. All in all,
something like 10 papers detail the series of experiments that led to the eventual
determination of the sequences of bovine insulin (e.g., Sanger, 1945; Sanger & Tuppy, 1951a,
b; Sanger & Thompson, 1953a,b; Sanger et al., 1955; Ryle et al., 1955) and of ovine and
porcine insulins (Brown et al., 1955). This was ground-breaking work, and had taken 10
years to complete. Incredibly, the 3D structure would not be known for another 14 years
(Adams et al., 1969). The primary and tertiary structures of this historical protein are
illustrated in Figure 1.

Such was the enormity of manual sequencing projects that it was many years before the
sequence of the first enzyme (ribonuclease) was determined. Work on this protein began in
1955. After preliminary studies in 1957 and 1958, the first full ‘draft sequence” was published
in 1960 (Hirs et al., 1960). During the months that followed, the draft was meticulously
refined, and a final version was published 3 years later (Smyth et al., 1963). Crucially, this 8-
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year project paved the way for the elucidation of the protein’s 3D structure - indeed,
without the sequence information, the electron density maps could not have been
meaningfully interpreted (Wyckoff et al., 1967). Knowledge of the primary structure of this
small protein thus provided a vital piece of a 3D jigsaw puzzle that was to take a further 4

GIVEQCCASVCSLYQLENYCN A chain, 21 amino acids
a)

FVNQHLCGSHLVEALYLVCGERGFFYTPKA B chain, 30 amino acids

Fig. 1. Illustration of a) the primary structure of bovine insulin, showing intra- and
interchain disulphide bonds connecting the a and b chains; and b) its zinc-coordinated
tertiary structure (2INS), revealing two molecules in the asymmetric unit, and a hexameric
biological assembly.

years to solve. Viewed in the light of the high-throughput sequence and structure
determinations of today, these prolonged time-scales now seem almost inconceivable.
Notwithstanding the challenges, however, the potential of peptide sequencing technology to
aid our understanding of the biochemical functions and evolutionary histories of particular
proteins, and to facilitate their structural analysis, was compelling. Consequently, the
sequences of many other proteins were soon deduced. In the early ‘60s, amongst the first to
appreciate the value of biological sequences, and particularly the ability to deduce
evolutionary relationships from them, was Margaret Dayhoff. To facilitate her research and
the work of others in the field, she began to collect all protein sequences then available,
ultimately publishing them in book form - this was the first Atlas of Protein Sequence and
Structure (Dayhoff et al., 1965), often simply referred to as the Atlas. It may seem amusing to
us now, but in a letter she wrote in 1967, she observed, “There is a tremendous amount of
information regarding the evolutionary history and biochemical function implicit in each sequence
and the number of known sequences is growing explosively [our emphasis]. We feel it is
important to collect this significant information, correlate it into a unified whole and interpret it”
(Dayhoff, 1967; Strasser, 2008). With the publication of the first Atlas, that ‘explosive growth’
amounted to 65 sequences!
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In the decade that followed, time-consuming manual processes were gradually superseded
with the advent of automated peptide sequencers, which increased the rate of sequence
determination considerably. Meanwhile, another revolution was taking place, heralded by
the elucidation of the 3D structures of the first proteins, those of myoglobin and
haemoglobin, respectively (Kendrew et al., 1958; Muirhead and Perutz, 1963). Building on
the ongoing sequencing work, this advance set the scene for an exciting new era in which
structure determination took centre stage in our quest to understand the biophysical
mechanisms that underpin biochemical and evolutionary processes. In fact, so seductive
was this approach that many more structural studies were initiated, and the numbers of
deduced protein structures grew accordingly.

3. The development and spread of databases, organisations and
infrastructures

Key to handling this burgeoning information was the recruitment of computers to help
systematically analyse and store the accumulating sequence and structure data. At this time,
the idea that molecular information could be collected within, and distributed from,
electronic repositories was not only very new but also posed significant challenges. Just
consider, for a moment, that concepts we take for granted today (email, the Internet, the
World Wide Web) had not yet emerged; there was therefore no easy way to distribute data
from a central database, other than by posting computer tapes and disks to individual users,
at their request. This model of data distribution was clearly rather cumbersome and slow; it
was also relatively costly, and led some of the first database pioneers to adopt pricing
and/or data-sharing policies that threatened to drive away many of their potential users.

3.1 The Protein Data Bank (PDB)

One of the earliest, and hence now oldest, of scientific databases was established in 1965 at
the Cambridge Crystallographic Data Centre (CCDC), under the direction of Olga Kennard
(Kennard et al., 1972; Allen et al., 1991) - this was a repository of small-molecule crystal
structures termed the Cambridge Structural Database, or CSD. The CSD, which originated
as a traditional printed dissemination, ultimately assumed an electronic form so that
Kennard could fulfill a dream, which she shared with J.D.Bernal, to be able to use data
collections to discover new knowledge, above and beyond the results yielded by individual
experiments (Kennard, 1997).

In 1971, a few years after the creation of the CSD, at a Cold Spring Harbor Symposium on
the “Structure and Function of Proteins at the Three Dimensional Level”, Walter Hamilton and
colleagues discussed the possibility of creating a similar kind of ‘bank’ for protein
coordinate data. Key to their proposal was that this archive should be mirrored at sites in
the UK and the USA (Berman, 2008). Consequently, Hamilton volunteered to set up the
‘master copy’ of the American bank at the Brookhaven National Laboratory (BNL), while
Kennard subsequently agreed to host the European copy and to extend the CCDC small
molecule format to accommodate protein structural data (Kennard et al., 1972; Meyer, 1997).
Thus was born the Protein Data Bank (PDB); this was to be operated jointly by the CCDC
and BNL, and where possible, distributed on magnetic tape in machine-readable form.
News of its establishment was announced in a short bulletin in October that year (Protein
Data Bank, 1971); its first release held 7 structures (Berman et al.,, 2000). Interestingly,
Kennard viewed the PDB as a prototype for the EMBL data library, which was to materialise
a decade later (Smith, 1990).
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By 1973, the PDB was fully operational (Protein Data Bank, 1973). In August that year, the
body of data it had been established to store amounted to 9 structures (see Table 1). Kennard
and co-workers knew that the success of the resource was ultimately dependent on the
support of the crystallography community in providing their data; but gaining sufficient
community momentum to back the initiative was clearly a long, drawn-out process: note,
for example, that the structure of ribonuclease, which had been determined 6 years earlier,
was not yet listed amongst its holdings.

Protein structures

Cyanide methaemoglobin V from sea lamprey
Cytochrome bs

Basic pancreatic trypsin inhibitor

Subtilisin BPN (Novo)

Tosyl a-chymotrypsin

Bovine carboxypeptidase Ao

L-Lactate dehydrogenase

Myoglobin

Rubredoxin

Table 1. PDB holdings, August 1973.

R |N[CI |V

\O

Over the next 4 years, the number of structures acquired by the PDB grew slowly. By 1977,
the archive also included the structure of a transfer RNA (tRNA), and hence the name
Protein Data Bank was thought something of a misnomer (Bernstein et al., 1977).
Nevertheless, despite this reservation, the name stuck, and the resource (which today
includes more than 5,000 nucleic acid and protein-nucleic acid complexes) is still referred to
as the PDB. Interestingly, at that time, the database contained 77 sets of atomic coordinates
relating to 47 macromolecules, highlighting a significant level of redundancy. Coupled with
their ongoing concerns about the pace of growth of the archive, perhaps this explains why
the Berstein ef al. paper was published verbatim in May and November of 1977, and again in
January 1978, in three different journals (Bernstein ef al., 1977a, b; 1978)? Whatever the real
reasons, growth of the PDB compared to the CSD (~6,000 vs. ~150,000 structures in 1996)
was slow (Kennard, 1997), and the number of unique structures remained relatively small -
by 1992, the level of redundancy in the resource had been calculated to be ~7-fold (Berman,
2008; Hobohm et al., 1992).

In 1996, shortly after the establishment of the European Bioinformatics Institute (EBI) near
Cambridge, UK, a new database of macromolecular structures was created - this was the E-
MSD (Boutselakis et al., 2003). Building directly on PDB data, E-MSD was originally
conceived as a pilot study to explore the feasibility of exploiting relational database
technologies to manage structural data more effectively. In the end, the pilot project led to
the creation of a database that was successful in its own right, and the E-MSD thereby
became established as a major EBI resource.

During this period, a concerted effort was made to hasten the pace of knowledge acquisition
from structural studies. Part of the motivation was to build on the still-limited number of
structures available in the PDB, and partly also to address its growing level of redundancy.
The idea was to establish a program of high-throughput X-ray crystallography - the so-
called Structural Genomics Initiative (SGI) (Burley et al., 1999). Several feasibility studies had
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already been launched and, in light of the broad-sweeping vision of the SGI, it had become
clear that coping with high-throughput structure-determination pipelines would require
new ways of gathering, storing, distributing and ‘serving’ the data to end users. One of the
PDB’s responses to this, and to the many challenges that lay ahead, was the formation of a
new management structure. This was to be embodied in a 3-membered Research
Collaboratory for Structural Bioinformatics (RCSB): the consortium included Rutgers, The
State University of New Jersey; the San Diego Supercomputer Center at the University of
California; and the Center for Advanced Research in Biotechnology of the National Institute
of Standards and Technology (Berman et al., 2000; Berman et al., 2003). Once the consortium
was established, the BNL PDB ceased operations and the RCSB formally took the helm on 1
July, 1999.

With the RCSB PDB in the USA, the E-MSD established in Europe, and a sister resource
(PDBj) subsequently announced in Japan (Nakamura et al., 2002), structure collection efforts
had clearly taken on an international dimension. In consequence, in 2003, the 3 repositories
were brought together beneath an umbrella organisation known as the worldwide Protein
Data Bank (wwPDB), to streamline their activities and maintain a single, global, publicly
available archive of macromolecular structural data (Berman et al., 2003). By 2009, perhaps
to align its nomenclature in a more obvious way with its consortium partners, E-MSD was
renamed PDBe (Velankar ef al., 2009). Today, the RCSB remains the ‘archive keeper’, with
sole write-access to the PDB, controlling its contents, and distributing new PDB identifiers to
all deposition sites. In February 2011, the archive housed 71,415 structures.

3.2 The EMBL nucleotide sequence data library

Despite the advances in protein sequence- and structure-determination technologies
between the mid-1940s and -70s, sequencing nucleic acids had remained problematic. The
key issues related to size and ease of molecular purification. It had proved possible to
sequence tRNAs, largely because they’re short (typically less than 100 nucleotides long) and
individual molecules could, with some effort, be purified; but chromosomal DNA molecules
are in a different league, containing many millions of nucleotides. Even if such molecules
could be broken down into smaller chunks, purification was a major challenge. The longest
fragment that could then be sequenced in a single experiment was ~500bp; and yields of
potentially around half a million fragments per chromosome were simply beyond the
technology of the day to handle.

During the mid ‘70s, however, Sanger had developed a technology (to become known as the
‘Sanger method’) that made it possible to work with much longer nucleotide fragments: this
allowed completion of the sequencing of the 5,386 bases of the single-stranded
bacteriophage ¢X174 (Sanger et al., 1978), subsequently permitting rapid and accurate
sequencing of even longer sequences - an achievement of sufficient magnitude to earn him
his second Nobel Prize in Chemistry, in 1980. With this technique, he went on to sequence
human mitochondrial DNA (Anderson et al., 1981) and bacteriophage A (Sanger et al., 1982).
These were landmark achievements (see Table 2), providing the first direct evidence of the
phenomenon of overlapping gene sequences and of the non-universality of the genetic code
(Sanger, 1988; Dodson, 2005). But it was automation of these techniques from the mid-‘80s
that significantly increased productivity, and began to make the human genome a realistic
target.

Together, these advances prepared the way for a new revolution, one that would rock the
foundations of molecular biology and make the gathered fruits of all sequencing efforts
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before it appear utterly inconsequential. Here, then, was a dramatic turning point: for the
first time, it dawned on scientists that the new sequencing machines were shunting the
bottlenecks away from data production per se and onto the requirements of data
management: “the rate limiting step in the process of nucleic acid sequencing is now shifting from
data acquisition towards the organization and analysis of that data” (Gingeras & Roberts, 1980).
This realisation had profound consequences in both Europe and the USA, as a centralised
data bank now seemed inescapable as a tool for managing nucleic acid sequence
information efficiently.

Year | Protein RNA DNA No. of residues
1935 | Insulin 1

1945 | Insulin 2

1947 | Gramicidin S 5

1949 | Insulin 9

1955 | Insulin 51

1960 | Ribonuclease 120

1965 tRNAAL 75

1967 55 RNA 120

1968 Bacteriophage A 12

1977 Bacteriophage ¢X 174 | 5,375

1978 Bacteriophage ¢X 174 | 5,386

1981 Mitochondria 16,569
1982 Bacteriophage A 48,502
1984 Epstein-Barr virus 172,282
2004 Homo sapiens 2.85 billion

Table 2. Sequencing landmarks.

So, the race was on to establish the first nucleotide sequence database. First past the post, in
1980, was the European Molecular Biology Laboratory (EMBL) in Heidelberg, who set up
the EMBL data library. After an initial pilot period, the first release of 568 sequences was
made in June 1982. The aim of this new resource was not only to make nucleic acid sequence
data publicly available and encourage standardisation and free exchange of data, but also to
provide a European focus for computational and biological data services (Hamm &
Cameron, 1986).

From the outset, it was recognised that maintenance of such a centralised repository, and of
its attendant services, would require international collaboration. In the UK, a copy of the
EMBL library was being maintained at Cambridge University, together with its manual,
indices and associated sequence analysis, and search and retrieval software. This integrated
system also provided access to the library of sequences then being developed at Los Alamos,
GenBank (Kanehisa et al., 1984). It makes fascinating reading to learn that, “this system is
presently being used by over 30 researchers in eight departments in the University and in local
research institutes. These users can keep in touch with each other via the MAIL command”! With the
support of the Medical Research Council (MRC), the Cambridge services were extended to
the wider UK community on the Joint Academic network (JANET) (Kneale & Kennard,
1984). As with the PDB before it, it was important not only to push the data out to
researchers, but also to pull their data in. Hence, a further planned development was to
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centralise collection of nucleic acid data from UK research groups, and to periodically
transfer the information to the EMBL library. It was hoped that this would minimise both
data-entry errors and the workload of EMBL staff at a time when the number of sequence
determinations was predicted to “increase greatly” (Kneale & Kennard, 1984). Of course, the
size of this ‘great increase’ could hardly have been predicted; in December 2010, the
database contained 199,720,869 entries.

3.3 GenBank

The birth of GenBank, in December 1982, brought 606 sequences into the public domain. A
consensus had emerged on the necessity of creating an international nucleic acid sequence
repository at a scientific meeting at Rockefeller University in New York, in March 1979. At
that time, several groups had expressed a desire to be a part of this endeavour, including
those led by Dayhoff at the National Biomedical Research Foundation (NBRF); Walter Goad
at Los Alamos National Laboratories; Doug Brutlag at Stanford; Olga Kennard and Fred
Sanger at the MRC Laboratory in Cambridge; and Ken Murray and Hans Lehrach at the
EMBL (Smith, 1990), all of whom had begun to create their own nucleotide sequence
collections. However, it took the best part of 3 years for an appropriate funding model to
emerge from the US National Institutes of Health (NIH), by which time the EMBL data
library had already been publicly available for 6 months under the direction of Greg Hamm.
By then, 3 proposals remained on the table for NIH support: 2 of these were from Los
Alamos (one with Bolt, Beranek and Newman (BBN), the other with IntelliGenetics), and the
third from NBRF. To the surprise of many, the decision was made in June 1982 to establish
the new GenBank resource at Los Alamos (in collaboration with BBN, Inc.) rather than at the
NBRF (Smith, 1990; Strasser, 2008).

Although there was a general sense of relief that a decision had finally been made, some
members of the community (and doubtless Dayhoff herself) felt that the NBRF would have
been a more appropriate home for GenBank, particularly given Dayhoff’s successful track
record as a curator of protein sequence data (Smith, 1990). Los Alamos, by contrast,
although undoubtedly offering excellent computer facilities, was probably best known for
its role in the creation of atomic weapons - this was not an obvious environment in which to
establish the nation’s first public nucleotide sequence database. The crux of the matter
seemed to rest with the different philosophical approaches embodied in the NBRF and Los
Alamos proposals, particularly as they related to scientific priority, data sharing/privacy
and intellectual property policies. Dayhoff had intended to continue gathering sequences
directly from literature sources and from bench scientists, and wasn’t interested in matters
of history or priority (Eck & Dayhoff, 1966); the Los Alamos team, on the other hand,
advocated the collaboration of journal editors in making the publication of articles
contingent on authors yielding their sequence data to the database. This latter approach was
particularly compelling, as it would allow scientists to assert priority, and to keep their
research results private until formally published and their provenance established; perhaps
more importantly, it was unencumbered by proprietary interest in the data. Unfortunately,
the fact that Dayhoff had prevented redistribution of NBRF’s protein sequence library and
sought revenues from its sales (albeit only to cover costs) worked against her - allowing the
data to become the private hunting grounds of any one group of researchers was considered
antithetical to the spirit of open access (Strasser, 2008). That the data and associated software
tools should be free and open was thus paramount; it is perhaps ironic, then, that the site
chosen for the database was within the secured area of what many in the community may
have darkly perceived as “The Atomic City” (en.wikipedia.org/wiki/The_Atomic_City).
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As an aside, it's interesting that the vision of free data and programs was advocated so
strongly at this time, not least because there was no funding model to support it! And
precisely the same arguments are still being vehemently propounded today with regard to
free databases, free software and free literature (e.g., Lathrop et al., 2011). But even now,
database funding remains an unsolved and controversial issue: as Olga Kennard put it
almost 15 years ago, “Free access to validated and enhanced data worldwide is a beautiful dream.
The reality, however, is more complex” (Kennard, 1997).

Returning to our theme, perhaps the final nail in the coffin of Dayhoff’s proposal was that
the NBRF had only limited means of data distribution (via modems), whereas the Los
Alamos outfit had the enormous benefit of being able to distribute their data via ARPANET,
the computer network of the US Department of Defense. Together, these advantages were
sufficient to swing the pendulum in favour of the Los Alamos team.

But the new GenBank did not, indeed could not, function in isolation. From its inception, it
evolved in close collaboration with the EMBL data library and, from 1986 onwards, also
with the DNA Data Bank of Japan. Although the databases were not identical (each with its
own format, naming convention, and so on), the teams adopted common data-entry
standards and data-exchange protocols in order to improve data quality and to manage both
the growth of the resource and the annotation of its entries more effectively. Of this
collaborative process, Temple Smith commented in 1990, “By working out a division of labor
with the EMBL and newer Japanese database efforts, and by involving the authors and journal
editors, GenBank and the EMBL databases are currently keeping pace with the literature.” Today,
the boot seems to be very much on the other foot, as the literature can no longer keep up
with the data: by February 2011, GenBank contained 132,015,054 entries, presenting
insurmountable annotation hurdles! (Note that this appears smaller than the size of the
EMBL data library because GenBank doesn’t report sequences from Whole Genome
Shotgun projects in its total). Perhaps not surprisingly, the initial funding for GenBank was
insufficient to adequately maintain this growing mass of data; hence, responsibility for its
maintenance, with increased funding under a new contract, passed to IntelliGenetics in
1987; then, in 1992, it became the responsibility of the NCBI, where it remains today (Benson
et al., 1993; Smith, 1990).

3.4 The PIR-PSD

To some extent, the gathering momentum of nucleic acid sequence-collection efforts had
begun to overshadow the steady progress being made in the world of protein sequences,
most notably with the Atlas. By October 1981, this had run into its fifth volume, a large book
with three supplements, listing more than 1,660 proteins. This information, as with all data
collections, required constant updating and revision in the light both of new knowledge and
of new data appearing in the literature. Moreover, as the community had become
increasingly keen to harness the efficiency gains of central data repositories, and more
databases were appearing on the horizon, making and maintaining cross-references to
database entries, of necessity, had to become part of data-annotation and update processes if
scientists were to be able to exploit new and existing sequence data fully. Under the
circumstances, continued publication of the Atlas in paper form simply became untenable:
the time was ripe to exploit the advances in computer technology that had given rise to the
CSD, the PDB, the EMBL data library and GenBank. In 1984, the Atlas was consequently
made available on computer tape as the Protein Sequence Database (PSD).



12 Bioinformatics - Trends and Methodologies

Later, in 1986, in order to facilitate protein sequence analysis more broadly, the NBRF
established the Protein Identification Resource (PIR) (George et al., 1986). This new online
system included the PSD, several bespoke query and analysis tools (e.g., the Protein
Sequence Query (PSQ), SEARCH and ALIGN programs), and a new, efficient search
program, FASTP. The latter was a modification of an earlier algorithm for searching protein
and nucleic acid sequences (Wilbur & Lipman, 1983). Interestingly, given that the number of
deduced sequences had, by that time, grown into the thousands, the great advantage of
Wilbur and Lipman’s method was considered to be its speed. Indeed, their paper reported a
“substantial reduction in the time required to search a data bank”. Improving on this even further,
the new FASTP algorithm was able to compare a 200-amino-acid sequence to the 2,677
sequences of the PSD in “less than 2 minutes on a minicomputer, and less than 10 minutes on a
microcomputer (IBM PC)” (Lipman & Pearson, 1985). Looking back, such search times on
such small numbers of sequences seem incredibly slow; at the time (when a contemporary
algorithm required 8 hours for the same search), they were revolutionary.

As the PIR was built on NBRF's existing resources, it also made available its DNA databank
(Dayhoff et al., 1981a) and associated software tools, together with copies of GenBank and
the EMBL data library; it also retained the NBRF’s cost-recovery model, levying a charge for
copies of its databases on magnetic tape and an annual subscription fee for use of its online
services - in 1988, these amounted to $200 per tape release and $350 per annum respectively
(Dayhoff et al., 1981b; Sidman et al., 1988). By 1992, the PSD had shown steady growth, with
increasing contributions from European and Asian protein sequence centres - most notably,
from MIPS (Martinsried, Germany) and from JIPID (Tokyo, Japan). Accordingly, a tripartite
collaboration was established, termed PIR-International, to formalise these relationships and
establish and disseminate a comprehensive set of protein sequences (Barker ef al., 1992). By
this time, charging for access to the resource was no longer mentioned, possibly both as a
consequence of this more formal distribution arrangement and the advent of browsers like
Mosaic, which had suddenly and dramatically changed the way that information could be
broadcast and received over the World Wide Web (or, simply, the Web). In 1997 PIR
changed its name to the Protein Information Resource (George et al., 1997) and, by 2003,
with 283,000 sequences (Wu et al., 2003), the PSD was the most comprehensive protein
sequence database in the world.

3.5 Swiss-prot

While these events were taking place, a newly qualified Swiss student (who, as a teenager,
had been interested in space exploration and the search for extraterrestrial life) attempted to
embark on a Masters project involving both ‘wet” and “dry” work - this was Amos Bairoch.
The experimental side of his project immediately hit problems when it was discovered that
the new mass spectrometer he was to have used didn’t work properly. He therefore set to
work instead developing protein sequence analysis programs on the computer system
running the spectrometer. These were the first steps towards creating the software system
that was later to be known as PC/Gene, and was to become the most widely used PC-based
sequence analysis package of its day (Bairoch, 2000).

Part of what made this software suite unique was its focus on proteins at a time when the
analysis of nucleotide sequences was very much in vogue. In creating these tools, Bairoch
entered >1,000 protein sequences into his computer by hand: some of these he gleaned from
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the literature; most were taken from the Atlas, which had not yet been released in electronic
form. Of course, this was an immensely tedious process, and was also highly error-prone.
Realising this, and anxious to avoid such problems for others in future, he wrote a letter to
the Biochemical Journal recommending that researchers publishing protein and peptide
sequences should compute checksums to “facilitate the detection of typographical and keyboard
errors” (Bairoch, 1982). As part of the letter, he illustrated the computation of such a
‘checking number’ for an imaginary peptide, as shown in Figure 2. Although this
recommendation was never widely adopted in publishing circles, Bairoch was at least able
to ensure that it was implemented in his own database.

Peptide HELPIHATEMATH

CN computation: CN= 1-9+2-7+3-114+4-15+5-10+6-9+7-1+8-17
+9.-7+10-13+11-1+12-17+13-9="788

COMP = AR ND(CQoE,GoH;l,L KM FP,ST,WoY,V,
NR =13 MMP = 1186.66 CN =188

Fig. 2. Computation of a ‘checking number’ (CN) for an imaginary peptide, as published in a
letter to the Biochemical Journal in 1982. The journal editors either didn’t notice, or chose to
ignore, the hidden message in the peptide. Reproduced with permission, from Bairoch, A.
(1982), Biochemical Journal, 203, 527-528. © the Biochemical Society

Several other important developments were to emerge from the work of this enthusiastic
and industrious student. For the analysis software he was developing, he needed to
distribute both a nucleotide and a protein sequence database. In 1983, he acquired a
computer tape containing 811 sequences in version 2 of the EMBL data library; for his
protein sequence database, he initially used the sequences he’d typed in for his Masters
project. However, the following year, he received the first electronic copy of the Atlas. He
was quick to appreciate the advantages and disadvantages of the PIR and EMBL formats,
recognising that converting the manually annotated data of the former into something like
the semi-structured format of the latter could produce a resource with the strengths of both
- he called this PIR+ and released it side-by-side with his software package, PC/Gene,
which by that time he’d commercialised through IntelliGenetics (Bairoch, 2000).

Use of the publicly available PIR data-set in this way was not without its problems.
Amongst other, deeper, issues were the difficulty of parsing PIR files to extract specific
information (e.g., relating to post-translational modifications (PTMs), etc.); the lack of
functional annotations for some of the newer entries; the lack of cross-referencing to the
parent DNA of a given protein sequence; and so on. Somewhat ironically, given what he
went on to achieve, Bairoch has written of this period, “As I was not interested in building up
databases I kept sending letters to PIR to ask them to remedy this situation”. But his pleas met
with little success. In the summer of 1986, in the face of increasing demand for
unencumbered access to his database, he decided to release PIR+ independently of
PC/Gene, to make it freely available to the entire research community. The new, public
version of the database was released on 21 July 1986 and contained ~3,900 sequences (the
exact number is unknown as the original floppy disks have been lost!) This new resource
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was called Swiss-Prot (Bairoch & Boeckmann, 1991), and was to become the foremost
manually annotated database of protein sequences in the world.

3.6 The European Molecular Biology Network (EMBnet)

It is interesting that, during this era, the distribution of databases like the EMBL data library,
PIR, Swiss-Prot and so on, was still largely effected by the exchange of computer tapes and
disks. By this time, a variety of computer networks had begun to evolve: the first such
network, ARPANET (which began life with 4 nodes in late 1969), was the progenitor of the
Internet, and was superseded by it in 1983 - recall, it was partly owing to the existence of
ARPANET that GenBank was established at Los Alamos. Other networks that offered
gateways into the Internet later merged with it, including Usenet and BITNET; commercial
and educational networks, such as Telenet (or Sprintnet), Tymnet, Compuserve and JANET,
were interconnected with it in the 1980s.

In 1988, Chris Sander at the EMBL helped to establish a new network, EMBnet, to
disseminate data, knowledge and services, to support and advance molecular biology and
biotechnology research across Europe. A major driver for creating EMBnet was the need for
local access to databases such as the EMBL data library from centralised sources. Essentially,
this is because scientists were now demanding to use client workstations with Graphical
User Interfaces (GUIs) that provided real-time interaction with their back-end data/analysis
servers. At the time, high-speed data communication across Europe was in its infancy, and
access to remote computers using ordinary command-line oriented terminals was too slow.
It was clear that communication delays could be eliminated if servers held copies of data
locally; the sheer amount of compute resources needed for European research in this field
also pointed to a distributed solution (note that computer cluster technology only gained
widespread acceptance much later). Thus, an organised way of distributing data and
resources from the EMBL to its member states had to be established.

The concept of a network of national ‘nodes’, each serving its country with up-to-date
biological databases and also providing compute resources for data analysis, was
formulated. It was given the name the European Molecular Biology network, EMBnet. The
first practical steps were taken in the spring of 1988 to solicit feedback from scientists
around Europe; and in July 1988, the first EMBnet Workshop was organised at EMBL, with
participants from EMBL, Daresbury (UK), CITI2 (France), the CAOS/CAMM Centre (the
Netherlands) and Hoffmann-La Roche. In November of that year, the EMBL Director
General corresponded with EMBL Council members, encouraging them to stimulate local
processes to identify regional EMBnet nodes. As more countries joined the network (France,
Sweden, the UK, the Netherlands, Spain, Israel, Norway, Italy and Denmark, with
Switzerland, West Germany, Austria, Greece and Finland waiting in the wings), EMBnet
received its first European grant under the BRIDGE framework, in 1991.

The principal project objective was to promote EMBnet as a computer network for European
bioinformatics. Service provision and knowledge sharing was to be orchestrated primarily
by 'National Nodes', with government mandates to support their local communities,
especially by providing access to bioinformatics data synchronised with the EMBL,
GenBank and DDB]J central data repositories - in time, the network also attracted a number
of ‘Specialist’ and ‘Industrial’ Nodes, whose resources and know-how were seen to
complement those of its National Nodes (this arrangement of cooperating Nodes is
illustrated in Figure 3).

Most EMBnet Nodes had VAX computers, and the original intention was to use DECNET as
the underlying transport protocol. However, after a short, but expensive, period of using
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X25/DataPak, this was replaced by a TCP/IP-package called MultiNet, which was licensed
for all EMBnet Nodes from SRI (Stanford Research Institute). FTP-transmissions of database
updates were often interrupted by network problems, and, to overcome the need for
frequent re-transmissions, the NDT (Network Data Transfer, later xXNDT for extended NDT)
protocol was developed at the Swedish EMBnet Node at Uppsala Biomedical Centre, by
Peter Gad. It was given a so-called 'systems well-known port' (embl-ndt, 394/udp,# EMBL
Nucleic Data Transfer) by the Internet authorities, and is thus in good company with, for
example, Telnet (port 23) and FTP (ports 20, 21). For a few years, (x)NDT, and its
accompanying suite of client-server programs, was the method par preference, used at
almost all EMBnet Nodes to keep their local databases updated. NDT took care of the
transmission (database) entry by entry and didn’t have to re-start following network
interruptions. The Greek node, situated in Crete, only had a modem connection to the
mainland, and benefited hugely from using the xNDT-suite. Indeed, at the time the
European Bioinformatics Institute was established (when the EMBL Data Library moved
from Heidelberg to Cambridge), most of the nucleotide sequence database update traffic in
Europe was routed via the Swedish node using xNDT.

Fig. 3. lllustration of the relationship between the different Nodes of the early EMBnet: some
National Nodes had either Specialist or Industrial Nodes affiliated with them; some had
both; some had neither. Today, 31 National and Specialist Nodes contribute to the Network.
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By the early ‘90s, biomolecular databases could be accessed across the Internet by means of
the WAIS and Gopher network retrieval systems; and, under the auspices of EMBnet,
Reinhard Doetlz had developed a new network access protocol, HASSLE, the Hierarchical
Access System for Sequence Libraries in Europe (Doelz, 1994). But it was the advent of
graphical Web browsers (first, Mosaic from the National Center for Supercomputing
Applications in 1993, and then Netscape Navigator in 1994) that revolutionised the
processes of database dissemination and information consumption - literally, at the click of
a mouse button.

Of course, browsers allowed data and documents of all kinds to be instantly shared, and
individuals and organisations across the globe were quick to establish their own unique
‘Web presence’. EMBnet was no exception, and embraced the Web as a means of
communicating more effectively with its widening community, in particular by publishing a
regular newsletter, EMBnet.news. The newsletter was designed to provide reports and
updates on its internal and international activities and achievements, together with technical
and scientific papers on new developments in bioinformatics, computational biology and
biocomputing. In 2000, the organisation provided an educational grant to help support the
creation of the peer-reviewed journal Briefings in Bioinformatics (BiB) and, as a mark of its
own success, EMBnet.news is also now in the process of transitioning to a peer-reviewed
journal.

From the outset, EMBnet has promoted the development of distributed computing services
to share workload among international servers; it has contributed to the development and
maintenance of advanced database systems; it has been an advocate of the deployment of
Grid technologies for the life sciences through its contributions to major European Grid
projects; it developed, and continues to promote the use of, an e-learning system both to
support distance learning in bioinformatics and to complement face-to-face bioinformatics
teaching and training; and it is committed to bringing the latest software and algorithms to
users, free of charge.

The combined expertise of its Nodes has allowed EMBnet to provide services to its local
European life science communities with far greater effect than could be achieved by any of
its individual Nodes in isolation. Following this success, a variety of Nodes world-wide
have joined EMBnet such that, today, the network is global, with many countries from Asia,
Africa and America joining in recent years (including Sri Lanka, Pakistan, Kenya and Costa
Rica). Currently, the network connects 31 member Nodes extending over 27 countries;
together, the Nodes continue to work to disseminate data, to share compute resources and
to provide training support, reaching out to many thousands of users.

3.7 PROSITE

While EMBnet was being conceived, before the Internet had truly taken off, and while
bioinformatics was still in the throes of been born, the computer savvy molecular biologists
of the day were still busily swapping biomolecular databases on magnetic tapes and
computer disks. Perhaps an inevitable consequence of the systematic collection of protein
and nucleotide sequences in this way was the need to organise and classify these molecular
entities in meaningful ways. The first endeavour to categorise protein sequences into
evolutionarily related families, and to provide the diagnostic means to detect potential new
family members, arose once again as a derivative of the PC/Gene suite. Inspired by the
sequence analysis primer, Of URFs and ORFs (Doolittle, 1986), Bairoch began to amass
examples of short sequences, characteristic of particular binding and active sites, and
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developed a program to scan his growing collection of sequence ‘patterns’. This part-
program, part-database chimera he named PROSITE (Bairoch, 1991). In March 1988, as part
of PC/Gene, the first release of this new resource contained 58 entries.

As with Swiss-Prot before it, PROSITE swiftly gained popularity. Its growing band of users
began not only to suggest additional patterns that could be included in the database, but
also to pressure Bairoch into giving PROSITE an independent life of its own, outside
PC/Gene. Consequently, the availability of a new public version was announced in October
1989, and formally released the following month with 202 entries (version 4.0).
Diagnostically, it was clear that sequence patterns had certain limitations. In particular,
matching a pattern is a binary ‘match/no-match’ event: even the most trivial difference (a
single amino acid) results in a mis-match. As Swiss-Prot expanded and accommodated more
and more divergent members of its various superfamilies, the more evident this particular
weakness became. One solution to this problem emerged in the form of position-specific
weight matrices, or profiles. Built from comprehensive sequence alignments, profiles are
tolerant both of amino acid substitutions and of insertions/deletions; they therefore allow
the relationships between families of sequences to be modelled more ‘realistically’.
Accordingly, with the help of Phillipp Bucher, Bairoch began to augment PROSITE with
sequence profiles - the first release to include them came with version 12.0, in June 1994
(Bairoch & Bucher, 1994).

Another solution, which arose (at least methodologically) independently from PROSITE,
was the development of protein family ‘fingerprints’. Fingerprints are groups of conserved
motifs, evident in multiple sequence alignments, whose unique inter-relationships provide
distinctive signatures for particular protein families and structural/functional domains.
They are diagnostically more powerful and flexible than patterns, because they can tolerate
mis-matches at the level both of individual motifs and of the fingerprint as a whole.
Fingerprints formed the basis of a database that began life as the Features Database, part of
the SERPENT information storage and analysis resource for protein sequences established at
the University of Leeds (Akrigg et al., 1992). Its first release, in October 1991, contained 29
entries: two thirds of these were linked to equivalent entries in PROSITE, which by then
held 441 family descriptions.

Although disparate in size, the Features and PROSITE databases had various aspects in
common; most notable amongst these was the principle of added-value through hand-
crafted annotation of their diagnostic signatures. In March 1991, Bairoch met Terri Attwood
for the first time at the British Crystallographic Association spring meeting in Sheffield.
Faced with the same, relentlessly time-consuming, manual-annotation burdens, they shared
their woes and discussed the wisdom of unifying the PROSITE and Features databases.
Motivated by common ideals, they later formalised their ideas in the guise of their first
European grant proposal to merge their databases into an integrated protein family
annotation resource. This was 1992; they were not successful.

In the meantime, inspired by PROSITE, a range of other signature databases began to
emerge. One of the earliest of these was Blocks, first described by Steve and Jorja Henikoff
in December 1991 (Henikoff & Henikoff, 1991). Later came ProDom (Sonnhammer &
Kahn, 1994), and later still Pfam (Sonnhammer et al., 1997). Initially linked closely to the
annotation of predicted proteins from genomic sequencing of Caenorhabditis elegans, Pfam
was to become one of the most widely used protein family databases across Europe and
the USA.
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3.8 The European Bioinformatics Institute (EBI)

Notwithstanding the proliferation of databases in the ‘80s, funding for their maintenance
was becoming a significant problem. By the early ‘90s, supporting the EMBL data library
was becoming increasingly difficult, and there was growing awareness that a more efficient
European bioinformatics infrastructure would be needed to sustain it in future. In 1992, the
EMBL concluded that the most robust solution would be to establish a new outstation,
devoted to bioinformatics. The vision of creating a European Bioinformatics Institute (EBI)
quickly took hold and, in December that year, the EMBL Governing Council published a call
for proposals to host the new facility. The deadline was extremely short (February 1993);
despite the interest of many countries, therefore, few were able to submit bids in time.

In a study by PA Consulting Group, commissioned by the EC’s DGXII, a plan had been
developed for a European Nucleotide Sequence Centre (ENSC). The EMBL Council decided
to “negotiate with the EC for the inclusion of the ENSC within the EBI”; the EBI “would provide
bioinformatics services for European scientists, be a home for the Data Library, and include
expansions in research and development necessary for long-term viability and strengthening of
neglected areas such as user support” (Philipson, 1992).

In EMBL'’s proposal for an EBI from October 1992, worries were expressed that Europe was
lagging behind the USA: “Over the last decade increments in US support for such resources have
far outstripped those in Europe,” and the EBI was conceived “to ensure that European research
needs are satisfied in a way which is appropriate to this global competitive context” (EMBL, 1992).
The need for supportive relations between EBI and the European scientific community was
emphasised, as “It would be impossible and undesirable for the EBI to be the sole bioinformatics
resource in Europe”. It was noted that support should be given to “major European interest
groups such as software developers, database hosts and other bioinformatics institutes”; more
specifically, “In recognition of the need for strong national bioinformatics activities, the EBI will
give technical and organisational support to the EMBnet Nodes, as is currently done by the EMBL
Data Library” (EMBL, 1992).

Among the bidders for the EBI were Germany, Sweden and the UK. Very favourable
conditions were offered from all three. The Swedish bid for an EBI close to Uppsala
Biomedical Centre, included, for example, sufficient office space, free of rent, and high-
speed network connections. But Michael Ashburner led a more compelling UK bid. The
proposal was to host the EBI on a park, newly purchased by the Wellcome Trust, at Hinxton,
on the outskirts of Cambridge. The Trust and MRC had agreed each to fund half of the
initial capital costs of creating a complete genomics infrastructure on this site, which would
also include the newly established Sanger Centre (which, by then, had become embroiled in
the HGP) and the Human Genome Mapping Project Resource Centre (Dickson & Abbott,
1993). With its “clear commitment from all levels of the UK scientific community and Government”,
the UK bid won over both Uppsala and the alternative location in Heidelberg, directly
adjacent to the EMBL; it was accepted by Council in March 1993. Paulo Zanella (who had
directed the CERN Data Handling Division) was subsequently appointed as EBI’s first
director (Bairoch, 2000).

The EBI became fully operational after completion of the new building in September 1995 -
this will no doubt have come as a great relief to the EMBL data library group, who had been
accommodated in portable cabins on the Hinxton site since the end of 1994! The new facility
had 3 broad divisions: research, industry and services, the latter being mostly devoted to
provision and maintenance of the EMBL data library and Swiss-Prot (Bairoch, 2000). The
EBI's mission was to ensure that the growing corpus of data from molecular biology and
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genome research was placed in the public domain and was freely accessible to the entire
scientific community in order to promote scientific progress. Today, with its original 3-fold
structure still largely in place, the Institute builds, maintains and disseminates databases
and information services relevant to molecular biology, genetics, medicine and agriculture,
and undertakes leading-edge research in bioinformatics and computational biology.

Despite its pivotal role as Europe’s main bio-database provider, four years later, the EBI was in
financial trouble. While the Wellcome Trust and MRC had financed the initial capital costs, the
Institute relied on the EU for almost half its budget. In March 1999, however, the member
states had advised the Commission that core funding and operational costs for infrastructure
should not qualify for funding; the EBI’s application for Framework funds was consequently
rejected for being out of scope. Graham Cameron, by then joint Head of the Institute with
Michael Ashburner, was quick to point out that without an immediate solution, "we will have to
abandon major projects like the DNA database, the draft human genome, the macromolecular structure
database and the microarray expression database" (Butler, 1999). The EBI was in a tricky situation,
and Britain had shot itself in the foot: it could hardly contest the Commission’s ruling against
supporting the EBI because, a Commission official pointed out, “it was among the countries most
against funding infrastructure directly” (Butler, 1999). The situation was neatly summed up in an
editorial Nature ran at the time, “If this Kafkaesque affair has any merit, it is that it has exposed the
absence of a clear mechanism for the planning and support of research infrastructure at the European
level” (Nature Editorial, 1999). The cries for new mechanisms for infrastructural support, with
stable partners, stable financing and long-term political commitment, doubtless helped to sew
the seeds that in 2008 grew into the preparatory phase of ELIXIR, the European Life Science
Infrastructure for Biological Information project.

3.9 Global data overload

The late ‘80s and early ‘90s were fertile years, giving rise to a flourishing number of new
molecular structures and sequences, to new breeds of protein family signatures, and to new
databases in which to store them. Looking back at this period of fervent activity, it's
incredible to reflect that two major developments had yet to take place: together, these
would not only seed an overwhelming explosion of biological data but would also spur
their global dissemination - they were the advent of the Web and the arrival of high-
throughput DNA sequencing. The latter made whole-genome sequencing practically
feasible for the first time. Seizing this opportunity, there followed an unprecedented burst of
sequencing activity, yielding, in quick succession, for example, the genomes of Haemophilus
influenzae and Mycoplasma genitalium in 1995 (Fleischmann et al., 1995; Fraser et al., 1995), of
Methanococcus jannachii and Saccharomyces cerevisiae in 1996 (Bult et al., 1996; Goffeau et al.,
1996), of Caenorhabditis elegans in 1998 (C.elegans sequencing consortium, 1998), of Drosophila
melanogaster in 2000 (Adams et al., 2000) and, the ultimate prize, of Homo sapiens in 2001
(Lander et al., 2001; Venter ef al., 2001; IHGSC, 2004). Hundreds of genomes have been
sequenced since this fruitful dawn.

Hand-in-hand with these activities came the development of numerous organism-specific
databases to store the emerging genomic data: for example, FlyBase (Ashburner & Drysdale,
1994), ACeDB (Eeckman & Durbin, 1995), SGD (Cherry et al., 1998), TAIR (Huala et al., 2001),
Ensembl (Hubbard et al., 2002), DictyBase (Kreppel et al., 2004) and, of course, many more. For
some, the value of this genomic ‘gold rush’ was not entirely clear: with much of the amassed
data seemingly impossible to characterise, and vast amounts of it non-coding, the hoped-for
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treasure troves were beginning to look about as inspiring as large-scale collections of
butterflies (Strasser, 2008), and perhaps suggested that molecular biology had entered a
somewhat vacuous era of “high-tech stamp collecting” (Hunter, 2006). Arguments like this
characterised some of the early opposition to the establishment of GenBank, and to the
substantial resistance to the Human Genome Project (HGP) a few years later (Strasser, 2008).
Perhaps inevitably, then, the HGP was an extraordinarily high-profile affair. This was partly
for the reasons outlined above, coupled with its considerable price-tag (estimated at $3 billion
from 1990-2003), but in part also because of the public-private race between Francis Collins
(who was directing the NIH National Human Genome Research Institute contributions to the
HGP) and Craig Venter (then Head of Celera Genomics) to obtain the first rough draft of
man’s genetic blueprint. This intensely political ‘drama’ had been preceded by a similar
struggle to be the first to sequence Drosophila, which served as a kind of ‘warm up” battle for
the human genome (Ashburner, 2006); it also had an intriguing parallel in the competition
between two public-private corporations to sequence the genome of the commercially valuable
Agrobacterium tumefaciens (Goodner et al., 2001; Wood et al., 2001; Harvey & McMeekin, 2004).
The principal tension between these public and private, and public-private hybrid, enterprises
arose not just from the race to be first to complete the sequencing: the struggle was as much
about making the results public, on the one hand, and obtaining the property rights (for
commercial exploitation, including gene patenting), on the other. Like the concerns in the early
‘80s surrounding NBRF’s proprietary interest in protein sequences culled from the public
domain, such conflicts raised serious questions about the duty of public science to ensure that
genome sequences were made available for the public good; moreover, they challenged such
wasteful competition, resulting in the acquisition of duplicate data-sets and, usually, back-to-
back publications in high-profile journals (Harvey & McMeekin, 2004).

Another, more tangible, consequence of this intense orgy of genomic sequencing was the
generation of more data than could realistically be managed and annotated by hand - and
this was just the tip of an enormous future iceberg. As illustrated in Figure 4, with each
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Fig. 4. Growth of the EMBL data library (millions of entries) since its inception (red curve).
Also shown are the corresponding growth of the manually-annotated Swiss-Prot (green
line), and of structures deposited in the PDB (this line is too small to be visible!).
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passing year from the mid ‘90s, there was a widening gulf both between the volume of
accumulating uncharacterised genomic sequence data and the fraction of this that it was
possible to annotate, and between the quantities of deposited biomolecular sequence and
structure data. Against this backdrop, Bairoch announced the development of a separate,
automatically generated counterpart to augment Swiss-Prot, to help disseminate the fruits of
the increasingly abundant genome projects more efficiently, without compromising the
quality of Swiss-Prot by including within it substantial quantities of uncharacterised data.

3.10 TrEMBL

By 1996, the first shock-waves from the impact of whole genome sequencing were beginning
to be felt. The aftermath was greatest for databases whose maintenance involved significant
amounts of manual annotation. Some did not recover. Swiss-Prot did survive the quake, but
to do so, new processes had to be put in place.

At the time, Swiss-Prot had the highest standard of annotation of any publicly available
protein sequence database: from the outset, one of its leading goals was to provide critical
analyses for all of its constituent sequences. To this end, each entry was accompanied by a
significant amount of annotation, derived primarily from original publications and review
articles by an expanding group of curators, with occasional input from an international
panel of experts. This high degree of meticulous manual annotation had always been the
rate-limiting step for each release of the resource; however, faced with the increased data
flow from the growing number of genome projects, this hugely labour-intensive process
simply became untenable.

To keep up, it was clear that a new approach was needed. The products of genomic
sequences had to be made available more swiftly; but how could this be achieved without
compromising the high quality of the existing Swiss-Prot data, or eroding the editorial
standards of the database in future? The answer was to prepare a computer-generated
supplement, with entries in a Swiss-Prot-like format, derived by translation of coding
sequences in the EMBL library - this was TrEMBL, first released in October 1996 (Bairoch &
Apweiler, 1996). TTEMBL 1.0 contained almost 105,000 entries, not far off twice the size of
Swiss-Prot 34.0 (59,000 entries), with which it was released in parallel.

Initially, TrEMBL was an unannotated supplement to Swiss-Prot. Over the years, however,
to accelerate the process of upgrading TrEMBL entries to the Swiss-Prot standard, automatic
protocols have been established to annotate sequences with information about their
potential functions, metabolic pathways, active sites, cofactors, binding sites, domains,
subcellular location, and so on. Such information was derived from similarity and motif
searches, initially using patterns, profiles, fingerprints and so on from databases like
PROSITE, PRINTS and Pfam, and later using the amalgamated protein family resource,
InterPro. By February 2011, with many millions of entries, TrEMBL was almost 26 times
larger than Swiss-Prot, illustrating the vast disparity between manual and computer-
assisted annotation strategies.

3.11 InterPro

Rolf Apweiler was to spearhead the development of TrEMBL at the EBI in collaboration
with Bairoch at the Swiss Institute of Bioinformatics (SIB). In 1997, Michael Ashburner (then
Director of the EBI) awarded Attwood an EBI Visiting Fellowship. This entailed weekly
visits from London, and led to frequent discussions between Apweiler, Attwood and
Bairoch about sequence annotation. The feasibility of uniting PROSITE and PRINTS again
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reared its head, but this time primarily as an instrument to help analyse and functionally
annotate the growing numbers of uncharacterised genomic sequences. Compared to the
original proposal in 1992, the case was much stronger, especially as there were now other
related databases to bring into the picture: Daniel Kahn had released ProDom in 1994, and
Richard Durbin had just announced Pfam. A new proposal was therefore submitted to the
European Commission, and the vision of an integrated protein family database was finally
funded.

In October 1999, a beta release of the unified resource was made with 2,423 entries
(representing 615 domains, 1776 families, 27 repeats and 8 sites of PTM), based on Swiss-
Prot 38.0 and TrEMBL 11.0 - this was InterPro (Apweiler et al., 2001). By that time, PROSITE
and the Features Database had both undergone significant changes: PROSITE had seen 3-
fold growth to 1,370 entries (release 16.0); meanwhile, the Features Database had grown 40-
fold to 1,157 entries (release 23.1) and had been renamed ‘PRINTS (Attwood et al., 1994).
The first release of InterPro therefore combined the contents of PROSITE 16.0 and PRINTS
23.1; it also incorporated descriptors from 241 profiles, together with 1,465 hidden Markov
models from Pfam 4.0.

Fig. 5. Stylised illustration of the relationship between the InterPro integrating hub, its
founding databases and its later additional partners, all of which contribute diagnostic
signatures and, in some cases, protein family and domain annotation. The arrows indicate
that information is shared both between satellite databases and between satellites and the
central hub. See Table 3 for further details.
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ProDom, although part of the original consortium (see Figure 5), was not included in the
first release, initially because there was no obvious way of doing so. ProDom is built from
automatically generated sequence clusters: it isn’t a true signature database, in the sense that
it doesn’t exploit diagnostic discriminators; moreover, its sequence clusters need not have
precise biological correlations, so can change between database releases. Assigning stable
accession numbers to its entries was therefore impossible; this issue had to be addressed
before it could be meaningfully included in InterPro. Other factors rendered a step-wise
approach to the development of InterPro desirable. The scale of amalgamating just
PROSITE, PRINTS and Pfam was immense. Trying to sensibly merge apparently equivalent
database entries that, in fact, defined specific families, domains within those families, or
even repeats within those domains, presented enormous challenges. In the beginning,
InterPro therefore focused on amalgamating databases that offered some level of annotation,
to facilitate the integration process.

Over the years, further partners joined the InterPro consortium, as illustrated in Figure 5.
Today, with 12 primary sources, the integration challenges are legion (some of the
complexity can be understood from the list of partners, and the numbers of their signatures
that InterPro has incorporated, shown in Table 3)! With 21,185 entries in February 2011
(release 31.0), it is the most comprehensive integrated protein family database in the world
(Hunter et al., 2009).

Signature Database Version Signatures Integrated Signatures
GENE3D 3.3.0 2,386 1,377
HAMAP 021210 1,675 1,429
PANTHER 7.0 80,933 1,777
PIRSF 2.74 3,248 2,791
PRINTS 411 2,050 2,009
PROSITE patterns 20.66 1,308 1,292
PROSITE profiles 20.66 901 877
Pfam 24.0 11,912 11,465
ProDom 2006.1 1,894 1,008
SMART 6.1 895 882
SUPERFAMILY 1.73 1,774 1,154
TIGRFAMs 9.0 3,808 3,796

Table 3. InterPro release 31.0, February 2011.

3.12 UniProt

The year 2004 marked a turning point for the way in which protein sequence data were to be
collected and disseminated globally. The PIR-PSD, which had evolved from Dayhoff’s Atlas,
had been available online since 1986; Swiss-Prot, which originally built on PIR data, also
became available in 1986; and TrEMBL had been released in 1996. The ongoing maintenance
of these disparate resources over so many years had posed major funding headaches. For
PIR, some of the difficulties were mitigated, at least in the early years, by charging for copies
of their databases and for online access to their software; later, the international
collaboration with MIPS and JIPID, supported by NSF and European grants, no doubt
helped to sustain the resource.
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Swiss-Prot, meanwhile, had had a rocky ride and had had to be rescued from the brink of
closure, following a procedural ‘catch-22" catastrophe: viewing Swiss-Prot as an
international resource, the Swiss government declined to provide further support unless the
database also gained a financial injection from a European Union (EU) grant; a joint
proposal with the EBI for an EU infrastructure grant, however, was declined because Swiss-
Prot was not being supported by the Swiss government! In May 1996, with only 2 months of
salary remaining for the Swiss-Prot entourage, an Internet appeal was launched announcing
the forthcoming closure, on 30 June, of Swiss-Prot and its associated databases and software
tools, owing to lack of funding. This appeal stimulated a storm of protest on the Internet, in
high-profile academic journals, and in the media. Such was the barrage that the Swiss
government stepped in, offering interim funding until the end of the year. In the
negotiations that followed, the need to create a stable vehicle for long-term funding both of
Swiss-Prot and of the Swiss EMBnet Node was discussed, and resulted in the drafting of
outline plans to establish a Swiss Institute of Bioinformatics (Bairoch, 2000).

Against this background, in 2002, with multinational funding from NIH, the NSF, the Swiss
federal government and the EU, Swiss-Prot, TTEMBL and the PIR-PSD joined forces as the
UniProt consortium. In forming the consortium, the idea was to build on the partners” many
years of foundational work, by providing a stable, high-quality, unified database. This
would serve as the world’s most comprehensive protein sequence knowledgebase, replete
with accurate annotations and extensive cross-references, and accompanied by freely-
available, easy-to-use querying interfaces.

Under its hood, UniProt initially consisted of 3 separate database layers: the UniProt
Archive (UniParc), to provide a complete, non-redundant collection of all publicly available
protein sequence data; the UniProt Knowledgebase (UniProt), consisting of Swiss-Prot and
TrEMBL, to act as the central database of protein sequences, with accurate, consistent and
rich sequence and functional annotation; and the UniProt NREF databases (UniRef), to
provide non-redundant subsets of the UniProt Knowledgebase, for efficient database
searching (Apweiler ef al., 2004). By 2011, UniProt also included a Metagenomic and
Environmental Sequence component, termed UniMES (The UniProt Consortium, 2011); by
this time, UniProtKB:Swiss-Prot contained 525,207 entries, accompanied by
UniProtKB:TrEMBL, with a staggering 13,499,622 entries.

3.13 The Swiss Institute of Bioinformatics (SIB)

Like the EBI, the need for which largely grew out of high-level negotiations to try to put the

EMBL data library on a more stable financial footing, the Swiss Institute of Bioinformatics

(SIB) grew out of similar high-level negotiations to establish long-term financial support for

Swiss-Prot. At the time of the Swiss-Prot funding crisis, Bairoch was aware that the Swiss

scientific authorities had been emphasising the need to establish centres of excellence in

economically important, interdisciplinary areas that would be crucial for ‘tomorrow’s

society’. Seizing upon this, together with Ron Appel, Philipp Bucher, Victor Jongeneel and

Manuel Peitsch, he submitted a proposal to create a Swiss bioinformatics institute, whose

goals were to:

e  promote the development of bioinformatics software tools and databases;

¢  sustain high-quality bioinformatics research;

e collaborate with academic partners to provide a curriculum to train research scientists
in the field of bioinformatics; and

e  offer services to its user community through the Swiss Node of EMBnet.
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After a lengthy period of consultation, the SIB was finally created as a non-profit foundation
in March 1998, with Victor Jongeneel as the first director. The founders then went on to win
funds for some of the SIB’s activities from the Swiss Federal government: by law, only 50%
of the Institute’s work could be funded in this way - the rest had to come from other
sources, preferably by commercial exploitation of its research.

Partly in response to this stipulation, but partly also because it had become clear that Swiss-
Prot could not be reliably sustained solely with public funding, the decision was made to
ask commercial users of the database to pay a licence fee. Various models for achieving this
were tested; in the end, in 1997, Bairoch, Appel and Denis Hochstrasser decided that the best
way forward was to set up a new company - this was Geneva Bioinformatics SA (GeneBio).
Up to three quarters of the revenues now generated by GeneBio from sales of annual
database and software licences are returned to SIB, thereby helping to bolster the work of
the Swiss-Prot groups (Bairoch, 2000).

Today, the SIB leads and coordinates the field of bioinformatics in Switzerland: its vision, to
help shape the future of the life sciences through excellence in bioinformatics services,
research and education; its mission, to provide world-class core bioinformatics resources to
both national and international research communities in fields spanning genomics,
proteomics and systems biology. Many of its core activities, including maintenance of
databases such as UniProt and InterPro, are carried out in close collaboration with the EBI.

3.14 The European Nucleotide Archive (ENA)

Meanwhile, with the advent of large-scale sequencing projects and the dawn of Next
Generation Sequencing (NGS) technologies, a mounting tsunami of nucleotide sequence
data was growing force across the globe; a number of important developments were to take
place in its wake. By 2003, it was clear that there was a need to provide access not only to the
most recent versions of sequences, but also to their historical artifacts - following the rush to
patent genetic information, issues of priority became increasingly important, and it was vital
to be able to see sequence entries exactly as they appeared in the past. Accordingly, the EBI
established a Sequence Version Archive (Leinonen et al., 2003), to store both current and
earlier versions of entries in the EMBL data library (which, by then, had been dubbed
EMBL-Bank).

By September 2004, EMBL-Bank had grown prodigiously, with more than 42 million entries
(Kanz et al., 2005) and, by 2007, was accompanied by the Ensembl Trace Archive (ETA) - the
ETA was set up to provide a permanent archive for single-pass DNA sequencing reads
(from whole-genome shotgun, EST and other large-scale sequencing projects) and associated
traces and quality values. Together, EMBL-Bank and the ETA became known as ENA, the
European Nucleotide Archive, Europe’s primary nucleotide-sequence repository (Cochrane
et al., 2008). Throughout 2007, ENA continued to grow in terms both of its volume and of the
nature of data it contained such that, by October of that year, it included more than 1.7
billion records (comprising ~1.7 trillion (1.7x1012) base pairs of sequence) (Cochrane et al.,
2008). By 2010, ENA had embraced a third component - the Sequence Read Archive (SRA) -
and now contained ~500 billion raw and assembled sequences, comprising 50x1012 base
pairs; this is a phenomenal growth in just 3 years! During this period, NGS reads held in the
SRA had become the largest and fastest growing source of new data, and accounted for
~95% of all base pairs made available by ENA (Leinonen et al., 2011). Contributing to this
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mass of data were the completed genomes of more than 1,400 cellular organisms, and 3,000
viruses and phages.

But such enormous progress comes at a cost, challenging current IT infrastructures to the
limit. Some of the oldest data in ENA date back to the early ‘80s, with the inception of the
EMBL data library. As an aside, it is somewhat ironic that, even in those days, there were
distribution headaches. Bairoch, for example, relates how difficult it was to transfer
version 2 of the EMBL data library from computer tape to a mainframe computer and
thence to his microcomputer, because the mainframe had no communication protocol to
talk to a microcomputer - he therefore had to spend the night transferring the data, screen
by screen, using a 300 baud acoustic modem (Bairoch, 2000). To put this in perspective,
this version of EMBL-Bank contained 811 nucleotide sequences (with more than 1 million
base pairs) - this is about the same amount of data that currently enters ENA every 2
seconds.

Today, ENA holds more than 20 terabases of nucleotide sequence data, which, combined
with its annotation information, and so on, occupies more than 230 terabytes of disk
space. The infrastructure required to store, maintain and service such a vast archive, and
the cost of doing so, is beyond anything that either the originators of the first databases,
or the developers of the new sequencing technologies could have conceived. Interestingly,
in February 2011, the NCBI announced that it would be discontinuing its Sequence Read
and Trace Archives for high-throughput sequence data, owing to budget constraints. The
closure of the databases is to be phased, and completed within 12 months. The NCBI is
still committed to supporting and developing information resources for biological data
derived from NGS technologies (genotypes, variations, assemblies, gene expression data,
and so on), but will need to find new funding strategies for access to and storage of the
existing data.

3.15 ELIXIR

The opportunities NGS technologies present for advancing life science research (especially
in areas such as healthcare, food security, energy diversification and environmental
protection) are incredibly exciting; but these opportunities will be lost if they are not
underpinned by a robust, effective and sustainable information infrastructure. The best
estimates today suggest that, by 2020, NGS technologies will be producing data at up to a
million times the current rate. Development of an appropriate infrastructure to manage the
data deluge is therefore paramount.

The ELIXIR project is the realisation of this urgent need. Recognising that the task is of such
magnitude that it cannot be tackled by a single organisation, it is a call to arms for
international cooperation in building a pan-European infrastructure to help extract the
maximum value from the investments that have already been made, and from those that
will be made in future, in this area. The plan is for the ELIXIR infrastructure to be
distributed across a variety of ‘Nodes” hosted by centres of excellence across Europe, and for
each of these to be connected to the EBI central ‘Hub’. It is expected that some of the Nodes
will act as national coordination centres to expedite interactions both with the Hub and with
local funders; Nodes that perform similar functions will be expected to collaborate to form
ELIXIR service networks, providing data or compute resources, or training, according to
their speciality, as depicted in Figure 6.
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Fig. 6. Proposed topology of the ELIXIR Hub and Nodes. In an arrangement reminiscent of
EMBnet 23 years before it, some of the Nodes are expected to serve as national
bioinformatics centres; others, with similar functions, will collaborate as service networks,
for example to provide data or compute resources, or training.

Initially, the numbers of Nodes is expected to be small, growing to ~20 during the first 5
years of the initiative (during the preparatory phase, more than 50 institutions submitted
expressions of interest in becoming ELIXIR Nodes), at a cost of several hundred million
euro. To garner support for the business case, governments of the European Member States
have been invited to sign a non-binding Memorandum of Understanding (MoU) in order to
initiate negotiations to construct ELIXIR; the MoU will become effective once 5 countries
and the EMBL have signed. Europe’s databases (estimated to number around 500),
especially those hosted by the EBI, will become the foundation of the new ELIXIR
infrastructure as part of its mission, “to construct and operate a sustainable infrastructure for
biological information in Europe to support life science research and its translation to medicine and
the environment, the bio-industries and society” (Thornton, 2011).

4. The development and spread of tools to keep pace with the new
technologies

With the sequencing of biopolymers and subsequent organisation of the growing mass of
biosequences in databases, visual comparison techniques became tedious, not least because
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“the determination of the significance of a given result usually is left to intuitive rationalization”
(Needleman & Wunsch 1971). To reduce reliance on manual (often subjective) interpretation
and put sequence analysis on a more systematic footing, algorithms to analyse and compare
sequences began to emerge. As early as 1966, Fitch proposed computational analysis to
study evolutionary homology, using mutation values to indicate how many nucleotides in
the genomic code must change in order to introduce change (mutation) at the amino acid
level. In 1970, Needleman and Wunsch described the first algorithm to quantify the
similarity between two protein sequences (so-called global alignment) - today, this
algorithm is still used to identify similarities between two sequences and infer likely
ancestry. Years later, Smith and Waterman (1981) presented an algorithm to find local
similarities: "to find a pair of segments, one from each of two long sequences, such that there is no
other pair of segments with greater similarity”. In time, more efficient methods were required to
compare newly sequenced proteins against the rapidly expanding databases. FASTP was
the first ‘fast’ algorithm (Lipman & Pearson 1985).

Search algorithms like this afforded many of the earliest and most exciting discoveries
attributable to ‘bioinformatics’. For example, one of the first observations that gave a clue to
the molecular mechanism of neoplastic transformation was provided by the finding of a
near identity in amino acid sequence between the platelet-derived growth factor (PDGF) B-
chain and a region in the transforming protein, p28sis, of simian sarcoma virus (SSV), an
agent that causes sarcomas and gliomas in experimental animals (Waterfield et al., 1983).
This finding arose from computer searches using the Wilbur and Lipman algorithm on the,
at the time (1983) available, NEWAT protein database created by Doolittle et al. This first
success story, where simple sequence comparison led to the completely new concept of
gene-oncogene, showed the medical community the enormous potential of computer
techniques for sequence comparison and analysis.

In a similar way, DNA sequencing having been revolutionised by Sanger and by subsequent
improvements of his technique, and having given rise to the growing number of nucleotide
sequences being collected in data repositories like the EMBL data library and GenBank, so
too algorithms to search these databases became a necessity. FASTA was a more sensitive
modification of FASTP, and had the advantage of being able to search nucleotide sequence
databases with either a nucleic acid or protein sequence by translating the DNA database
during the search (Pearson & Lipman 1988). Later, somewhat overshadowing these
developments, came the Basic Local Alignment Search Tool, BLAST (Altschul et al., 1990);
this offered an extended tool-set to apply any kind of sequence database search, and is still
the most widely used tool in bioinformatics. The success of BLAST spawned a number of
more specialised sequence search methods, such as PSI-BLAST, PHI-BLAST, BLAT, and so
on, and is itself still in continuous development (Camacho et al., 2009).

Aside from these very popular database search tools, many other sequence, annotation and
expression analysis tools were developed for a broad range of applications: e.g., for pattern
recognition, for protein and RNA secondary structure prediction, for microarray data
analysis, for proteome and genome annotation, and so on. In the early ‘90s, building on the
existing University of Wisconsin Genetics Computer Group (UWGCG, or simply GCG)
package, several such algorithms were collected at the EMBL and packaged as "GCGEMBL
Utilities’, later known as "Extended GCG’. However, GCG was then commercialised and its
distribution policy changed. Reacting against the new policies, in 1998 several software
developers founded EMBOSS, the European Molecular Biology Open Software Suite. Their
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aim was to develop new sequence analysis tools, by “replacing popular but obsolete EGCG
applications,” and integrating with SRS, ACEDB, and a range of other publicly available
software interfaces and tools. The idea was to encourage other developers to use the
EMBOSS software libraries, and especially to harness the expertise and potential additional
manpower at EMBnet Nodes (e.g., in Germany, Italy, France, The Netherlands, Austria,
Russia, Switzerland, Israel, Spain, Norway, and so on). Target users of the resource included
those at the Sanger Centre, those served by EMBnet, and those in academic and
pharmaceutical settings. Funded by the Wellcome Trust for 3 years, the project was a
collaborative effort of the Sanger Centre, EMBnet UK (SEQNET), the EBI and CNRS
Montpellier.

With the pivotal support of EMBnet, EMBOSS quickly became a comprehensive
bioinformatics resource (Rice et al., 2000). There are now several incarnations of the suite
with different GUIs, including the EMBOSS team’s Java-based interface, jJEMBOSS; the
Belgian and Argentinian EMBnet Nodes” wEMBOSS; and the EMBOSS GUI from the
National Research Council of Canada. Today, EMBOSS is still being developed, adopting
new specific file formats and algorithms in order to embrace the world of NGS data
analysis.

Another important development driven by the EMBL was the Sequence Retrieval System
(SRS), an information indexing system applied to flat-file databases, such as the EMBL data
library, Swiss-Prot and PROSITE (Etzold and Argos, 1993). SRS became the most widely
used data-retrieval system for flat-file systems, with an extended GUI to extract not only
sequences but all related information, via an exhaustive sequence query and export system
(Zdobnov et al., 2002).

Europe-wide, there are vast numbers of other specialised biological data-analysis, data-
visualisation and data-retrieval tools available: many of these are provided by the EBIL;
others by the SIB’s ExXPASy Proteomics Server; some are offered via the National and
Specialist Nodes of EMBnet; others are available as Web services collected in the
BioCatalogue (Bhagat et al., 2010). The BioCatalogue evolved from the EMBRACE registry
(Pettifer et al., 2010), one of the end products of the EMBRACE project (European Model for
Bioinformatics Research and Community Education) - this was a 5-year FP7 Network of
Excellence, whose main goal was to orchestrate highly integrated access to a broad range of
bio-molecular data and software packages. Achieving this required standardised access to
tools and databases; to this end, the decision was to use Web services. In consequence, many
of the project partners adapted their tools and database-access protocols, and logged their
Web services in a common registry. At the end of EMBRACE, in 2010, the registry was
handed over to the BioCatalogue, which is now being maintained in collaboration with
myExperiment, myGrid, seekda and BioMoby, and hosts 2,053 services from 147 service
providers and 505 members.

5. The central place of bioinformatics in modern biology

Clearly, we have travelled a very long way since Jensen and Evans positioned a single
amino acid (a terminal phenylalanine) in insulin (Jensen & Evans, 1935; Sanger, 1945;
Sanger, 1988) and Sanger elucidated its complete sequence, the first of any protein (recall
Table 2). In a story spanning something like 70 years, bioinformatics has given us the first
‘complete’ catalogues of DNA and protein sequences, including the genomes and proteomes
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of organisms across the entire Tree of Life; it has furnished the requisite software to help
analyse biological data on an unprecedented scale; it has hence yielded the possibilities to
understand more about evolutionary processes in general, our place in the Tree of Life in
particular, and ultimately, a great deal more about health, disease and disease processes.
Figure 7 offers a summary of some of the most important landmarks that have charted the
development of bioinformatics in Europe and helped to place it at the heart of 21st century
biology.

Fig. 7. Historical milestones that have placed bioinformatics at the heart of 21st century
biology, from the determination of the first amino acid sequence, to the development of an
archive of 500 billion nucleotide sequences. Some major milestones are denoted in black; key
computing innovations are indicated in purple; example databases are indicated in blue;
organisations and institutions in green; numbers of sequences in red, the growing mass of
which is highlighted both in the red curve and the background gradient - the impact of
genomic sequencing in the mid ‘90s is clear.

6. Conclusion — European bioinformatics goes global

The history of bioinformatics has clearly been a convoluted interplay between events in
Europe, the USA, Japan and across the globe. Here, we have attempted to recount the story
primarily from a European perspective as it unfolded largely from the point of view of
sequence data: in terms of the technological innovations that spawned their extraordinary



Concepts, Historical Milestones and
the Central Place of Bioinformatics in Modern Biology: A European Perspective 31

growth and dissemination, of the databases that grew up to manage and analyse them, and
of the institutions and infrastructural initiatives that arose to try to give those databases
some measure of financial stability. In so doing, we accept that we've only scratched the
surface, and we regret any shortcomings that may have arisen from the necessary omission
of so many of the other important details and perspectives.

Clearly, the evolution and impact of bioinformatics reaches far beyond Europe, and there
are now many organisations world-wide with missions to bring life science data to their
local communities, to make freely available easy-to-use software tools with which to analyse
the data, and to provide training, both to users of bioinformatics databases and software,
and to new generations of bioinformatics trainers (Schneider et al., 2010). In this context,
EMBnet, for example, which began life as the European Molecular Biology Network, is now
a global bioinformatics network, maintaining fruitful cooperations with the Iberoamerican
(SolBio) and Asia Pacific (APBioNet) bioinformatics networks, as well as with the USA-
based International Society for Computational Biology (ISCB); it has also established close
ties with the African Society for Bioinformatics and Computational Biology (ASBCB), and
synergies with other relevant groups in northern Africa are now developing. Interestingly,
33 years ago, Joshua Lederberg observed that, “the claim of science to universal validity is
supportable only by virtue of a strenuous commitment to global communication” (Lederberg, 1978).
Today, this is a commitment that EMBnet vigorously pursues; in a similar spirit, we can be
quite sure that the contribution of Europe to the future evolution of bioinformatics will
continue in a global arena.
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1. Introduction

With the rapid advancements in next-generation sequencing (NGS) technologies and the
consequently fast-growing volume of biological data, a diversity of data sources (databases
and web servers) have been created to facilitate data management, accessibility, and
analysis. A prerequisite of bioinformatics research has been the ability to find, maneuver
and access data deposited in various data sources. For a given bioinformatic task,
researchers often need to be skillful in interrogating these data sources, and in the use of
extracted information for further data analysis/information search. For example, one must
obtain data from one data source, reformat the data and submit to another data source for
analysis, parse the analyzed result, and then combine the result with data obtained from the
third data source, etc. Undisputedly, data integration becomes tedious and time-consuming,
especially regarding the import and export of enormous files of modern NGS and other
data. Thus, integration of data from distributed, heterogeneous and voluminous data
sources turns out to be a significant obstacle to fully exploit the wealth of big biological data
(Davidson, et al., 1995; Stein, 2002). The importance of the integration component of research
stemming from studies based on high-throughput technologies (such as NGS), is twofold:
(1) due to the great level of automation of the actual experimental procedures, the effort of
obtaining the experimental data takes only about 20% or less of the overall research effort in
an NGS project; approximately four fifths of the effort goes to the integration and analysis of
a collection of the experimental data (Mardis, 2010); (2) the answers to the most important,
complex biological questions today are rarely provided directly through the experimental
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results; to bring potential answers to the surface, downstream bioinformatics analysis often
involves the integration of diverse data from multiple data sources.

The objective of data integration in bioinformatics is to establish automated and efficient ways
to integrate large, heterogeneous biological datasets from multiple sources. However, this
objective is challenged by data sources that are geographically distributed and heterogeneous
in terms of their functions, structures, data access methods and dissemination formats.
According to the 2010 update on the Bioinformatics Links Directory (Brazas, et al., 2010), there
are almost 1500 unique publicly-available data sources. Based on their functions, data sources
can be classified into diverse categories: (1) sequence databases, e.g., GenBank (Benson, et al.,
2006), RefSeq (Pruitt, et al., 2009), CMR (Comprehensive Microbial Resource) (Davidsen, et al.,
2010); (2) functional genomics databases, e.g., ArrayExpress (Parkinson, et al., 2011), FFGED
(Filamentous Fungal Gene Expression Database) (Zhang and Townsend, 2010), GEO (Gene
Expression Omnibus) (Barrett, et al., 2011); (3) protein-protein interaction databases, e.g., BIND
(Biomolecular Interaction Network Database) (Bader, et al., 2003), DIP (Database of Interacting
Proteins) (Salwinski, et al., 2004), IntAct (Aranda, et al., 2010), MINT (Molecular Interactions
Database) (Ceol, et al., 2010); (4) pathway databases, e.g., KEGG (Kyoto Encyclopedia of Genes
and Genomes) (Kanehisa, et al., 2010); (5) structure databases, e.g., CATH (Greene, et al., 2007),
PDB (Protein Data Bank) (Rose, et al., 2011); (6) annotation databases, e.g., GO (Gene
Ontology) (Ashburner, et al., 2000), NCBI Taxonomy (Sayers, et al., 2011). Moreover, data
sources differ in data accessibility and dissemination. That is, different levels of provision are
made by the data source managers for human-reading, computer-reading, or both. Certainly,
data sources can also be classified by species of interest, such as, filamentous fungi (Zhang and
Townsend, 2010), fly (Gilbert, 2007), mouse (Blake, et al., 2011), and yeast (Engel, et al., 2010).
Despite the challenges, the promise of data integration is high: heterogeneous data sources
provide biological data encompassing a wide range of research fields. Therefore, data
integration has the potential to facilitate a better and more comprehensive scope of inference
for biological studies. Although efforts have been devoted to biological data integration over
the past two decades, it remains challenging and laborious. Here we review current efforts
and illustrate several approaches used for data integration. With a specific consideration of
the exponentially-growing NGS data, we also describe challenges in this context and discuss
potential trends.

2. Current efforts of data integration in bioinformatics

Several major approaches have been proposed for data integration, which can be roughly
classified into five groups (Goble and Stevens, 2008; Zhang, et al., 2009): data warehousing,
federated databasing, service-oriented integration, semantic integration and wiki-based
integration. Across all of these groups, to a significant extent, an increasingly important
component of data integration is the community effort in developing a variety of biomedical
ontologies (see Section 3.2), to deal in a more specific manner with the technicality and
globality of descriptors and identifiers of information that has to be shared and integrated
across various resources (Antezana, et al., 2009; Maojo, et al., 2011; Rubin, et al., 2008).

2.1 Data warehousing

The data warehouse approach offers a “one-stop shop” solution to ease access and
management of a large variety of biological data from different data sources. Data
warehouses focus on data translation, fetching all accessible data from many disparate data
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sources, transforming the data and importing it into the data warehouse. Representative

examples of data warehousing include:

e Atlas (Shah, et al., 2005) is a biological data warehouse that locally stores and integrates
biological sequences, molecular interactions, homology information, functional
annotations of genes, and biological ontologies. It includes data from BIND, DIP, Entrez
Gene (Maglott, et al., 2011), GO, GenBank, HomoloGene, HPRD (Human Protein
Reference Database) (Keshava Prasad, et al., 2009), IntAct, LocusLink (Pruitt and
Maglott, 2001), MINT, RefSeq, OMIM (Online Mendelian Inheritance in Man)
(Amberger, et al., 2009), Taxonomy, and UniProt (The UniProt Consortium, 2011).

e BioWarehouse (Lee, et al, 2006) is an open source toolkit for constructing data
warehouses. It incorporates data from BioCyc (Karp, et al., 2005), CMR, ENZYME
(Bairoch, 2000), GenBank, GO, KEGG, Taxonomy, and UniProt and integrates its
component databases into a common representational framework within a single
database management system.

e BIOZON (Birkland and Yona, 2006) is a unified biological resource on DNA sequences,
proteins, complexes and cellular pathways. It relies on an extensive database schema
that integrates information at the macro-molecular level as well as at the cellular level
from a variety of data sources, including BIND, DIP, Genbank, InterPro (Hunter, et al.,
2009), KEGG, PDB, RefSeq, Swiss-Prot (Bairoch, et al., 2004), UniGene (Sayers, et al.,
2011), and UniProt.

e COLUMBA (Trissl, et al., 2005) is an integrated database of information on proteins,
structures and annotations. It integrates twelve different databases, including CATH,
ENZYME, GO, KEGG, PDB, SCOP (Andreeva, et al., 2008), and Swiss-Prot.

e VINEdb (Hariharaputran, et al., 2007) is a data warehouse for integration and
interactive exploration of life science data. It manages diverse data from GO, IntAct,
KEGG, OMIM, and UniProt and emphasizes the visualization of the integrated data in a
comprehensible manner.

The data warehouse approach has several advantages. (1) The user does not need to access
many web sites for multiple data sources. Data warehouses provide one single access point
to conveniently manipulate a large variety of data. (2) All queries requested by users are
executed within the data warehouse (rather than on distributed data sources) and therefore,
data warehousing eliminates network bottlenecks and obtains high performance with fast
response. (3) Due to data storage at a single managed point, data warehousing obtains
benefits in data control, yielding easy customization to meet users’ needs.
Despite its advantages, the data warehouse approach has a major problem; it requires
continuous and often human-guided updates to keep the data comprehensive of the
evolution of data sources, resulting in high costs for maintenance. In general, there are two
kinds of changes. (1) Changes in data volume or revisions of data. Whenever extant data is
revised or the volume of data in any data source is changed, the data warehouse must
monitor for such remote changes and update the warehouse to store the new data. (2)
Changes in data structure, including adding new data types and tables, changing database
tables and their relationships, and changing output formats. Many biological data sources
change their data structures roughly twice a year (Stein, 2003). Whenever the data sources
change their data structures, consequent data translation into the data warehouse must be
updated in response. Usually, modification of data translation is labor-intensive and
expensive.
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2.2 Federated databasing
Unlike data warehousing (with its focus on data translation), federated databasing focuses
on query translation. The federated databasing approach executes all queries on the
distributed sources by translating a query against the federated database into a query
against many data sources. The federated database fetches the data from disparate data
sources and then displays the fetched data for its user base. Representative examples for
federated databasing include:

e BioMart (Haider, et al., 2009) is a query-oriented data integration system developed
jointly by the Ontario Institute for Cancer Research (OICR) and the European
Bioinformatics Institute (EBI). It provides a user-friendly and unified way to retrieve
data from one or multiple data sources located at diverse geographical locations,
including Ensembl (Flicek, et al., 2011), HGNC, Uniprot, Reactome (Croft, et al., 2011),
Wormbase, and PRIDE (Jones, et al., 2008).

e DiscoveryLink (Haas, et al., 2001) developed by IBM is a system for integrated access to
life sciences data from heterogeneous data sources, including GenBank, MedLine and
Swiss-Prot. It features query optimization and cross-source queries that access relational
databases and retrieve the data from diverse data sources.

e K2/Kleisli (Chung and Wong, 1999; Davidson, et al., 2001) is a federated database
system, integrating data from EcoCyc (Keseler, et al., 2011), GenBank, GSDB (Harger, et
al., 1998), dbEST (Boguski, et al., 1993), GDB (Letovsky, et al., 1998), KEGG and SRS-
indexed databases. Kleisli uses a high-level query language called Collection
Programming Language (CPL) as its query language, which was developed specifically
for parsing, optimizing and executing queries. K2 is the newer version of Kleisli and
replaces CPL by a powerful and easy-to-use SQL-like query language, Object Query
Language (OQL).

e MRS (Hekkelman and Vriend, 2005) allows for very rapid queries in a large number of
flat-file data banks, including EMBL, UniProt, OMIM, dbEST, PDB, KEGG. It combines
a fast and reliable backend with a very user-friendly implementation of all the
commonly used information retrieval facilities.

e QIS (Query Integrator System) is based on a set of distributed network-based servers,
data source servers, integration servers, and ontology servers and relies on a
combination of SQL-like syntax and XML (eXtensible Markup Language; a widely used
standard for data description and exchange), to formulate a query (Marenco, et al.,
2004). It stores diverse queries for data integration from continuously changing
heterogeneous data sources in the biosciences, including CellPropDB (Crasto and
Shepherd, 2007), Brain Architecture Management System (Bota and Swanson, 2010),
Yale Microarray Database (Cheung, et al., 2002), a local Gene Annotation Database and
GO.

e SRS (Sequence Retrieval System) is an index-based integration system and combines
some features of data warehousing and federated databasing (Zdobnov, et al., 2002).
SRS uses a keyword-based indexing language ICARUS to describe each integrated data
source and locally creates a full-text index over all data sources. Meanwhile, it allows a
single query to execute on multiple data sources based on local indexed entries. SRS
contains a number of biological databases (see details in http://srs.ebi.ac.uk/
srsbin/ cgi-bin/wgetz?-page+databanks+-noSession).

e TAMBIS (Transparent Access to Multiple Bioinformatics Information Sources) is an
integration application to perform bioinformatics tasks over multiple data sources by
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using an ontology of biological concepts (Stevens, et al., 2000). The prototype version of

TAMBIS contains five data sources, viz., BLAST, CATH, ENZYME, PROSITE (Sigrist, et

al., 2010) , and Swiss-Prot.
Queries in federated databases are executed within remote data sources and results
displayed in federated databases are extracted remotely from the data sources. Due to this
capability, federated databasing has two major advantages. (1) Federated databases can be
regarded as an on-demand approach to provide immediate access to up-to-date data
deposited in multiple data sources. (2) Compared with data warehousing, federated
databasing does not replicate data in data sources; therefore, it presents relatively
inexpensive costs for storage and curation. However, federated databasing still has to
update its query translation to keep pace with data access methods at diverse remote data
sources. In addition, since data is retrieved from remote data sources, federated databasing
depends heavily on network connectivity and query complexity, which may lead to low
efficiency and speed in data retrieval.

2.3 Service-oriented integration
Data warehousing and federated databasing both focus on centralizing data access, through
data translation and query translation, respectively. They confront some similar problems
stemming from data storage and curation, frequent updates, and high costs for data
exchange and/or maintenance. In part to evade these issues, a decentralized approach has
also been advanced, in which individual data sources agree to open their data via Web
Services (WS). WS are designed for communication between computers over the Web and
described by the Web Services Description Language (WSDL). There are several different
protocols for WS, e.g., SOAP (Simple Object Access Protocol; a protocol for exchanging
XML-based messages over computer networks), REST (REpresentational State Transfer; a
simple protocol implemented using HTTP methods). WS support computer-to-computer
interaction through Web Application Programming Interface (Web API) (Shi, 2007) and can
perform a database query or computation. In the context of data integration, data can be
programmatically accessed via WS and data sources serve as service providers. Therefore,
this approach can be seen as a service-oriented approach. The service-oriented approach
enables data integration from multiple heterogeneous data sources through computer
interoperability. Several representative examples for service-oriented integration include:

e BioMOBY (Kawas, et al., 2006; Wilkinson and Links, 2002; Wilkinson, et al., 2008) is an
open source ontology-based integration system for accessing distributed and
heterogeneous data sources via WS. It implements a WS registry and uses standard
ontology terms to annotate WS. BioMOBY adopts SOAP for data exchange and allows
interoperability among different data sources to achieve automated data integration
and sharing (Neerincx and Leunissen, 2005).

e DAS (Distributed Annotation System) is a client-server system to provide access to
complete distributed genome annotations using SOAP-based WS (Dowell, et al., 2001;
Katayama, et al., 2010; Olason, 2005). It allows a single machine to collect all annotations
from multiple distributed data sources and display them to the user in a single view.
DAS is widely used in the genome annotation community
(http:/ /en.wikipedia.org/wiki/Distributed_Annotation_System) and adopted by
several systems, including Ensembl, WormBase, and the Berkeley Drosophila Genome
Project (Jenkinson, et al., 2008; Messina and Sonnhammer, 2009; Olason, 2005).
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e Taverna (Oinn, et al., 2004), a part of MyGrid (Stevens, et al., 2003), is a graphical
workflow workbench application, aiming to integrate the growing number of molecular
biology tools and databases (Hull, et al., 2006). Workflows in Taverna, written by a
custom XML-based language called Simple Conceptual Unified Flow Language
(SCUFL), can automatically record all data involved, provenance metadata, and results,
facilitating complex data processing in a dynamic distributed environment.

The service-oriented approach features data integration through computer-to-computer

communication via Web API and up-to-date data retrieval from diverse data sources. Thus,

it befits well with the dynamic nature of bioinformatics. However, it remains challenging,
primarily because its success in heterogeneous data integration requires that many data
sources should become service providers by opening their data via WS and by
standardizing data identities and nomenclature to ease data exchange and analysis. In
addition, a unified WS registry is also necessitated, not only to establish standards for WS
registration, but also to formulate standards for service-oriented workflows or pipelines
(Zhang;, et al., 2009).

2.4 Semantic integration

Most web pages in biological data sources are designed for human reading (e.g., HTML).

The Semantic Web (Dibernardo, et al., 2008; Good and Wilkinson, 2006; Hendler, 2003; Lord,

et al., 2004) aims to describe data in a way that computers can understand and to build an

interconnected network that computers can easily and unambiguously process. According
to the statement of definition from the World Wide Web Consortium (W3C), the purpose of
the Semantic Web is to create a universal medium for the exchange of data using several
standards, including Resource Description Framework (RDF; http://www.w3.org/RDF),

RDF schema (RDFS—RDF Vocabulary Description Language; http:/ /www.w3.org/TR/rdf-

schema), Web Ontology Language (OWL; http://www.w3.org/owl), and standard Web

query language SPARQL (http://www.w3.org/TR/rdf-sparql-query) for RDF. RDF

provides standard formats (e.g, XML format) for data interchange and describes data as a

simple statement, containing a set of triples: a subject, a predicate and an object. Any two

statements can be linked by an identical subject or object. OWL builds on RDF and Uniform

Resource Identifier (URI) and describes data structure and meaning based on ontology,

which enables automated data reasoning and inferences by computers. The Semantic Web

provides an machine-readable way for data representation and interoperability (Antezana,
et al.,, 2009). Several studies have applied the Semantic Web technologies in data integration
and representative examples of semantic integration are described below.

e  Bio2RDF (Belleau, et al., 2008) is a mashup system that creates an integrated space of
RDF documents linked together with normalized URIs. Bio2RDF applies the Semantic
Web technologies to multiple data sources, such as Entrez Gene, HGNC, KEGG, MGI,
OMIM PDB, PubMed and UniProt, and converts data into RDF format based on
RDFizer (a set of tools for converting various data formats into RDEF;
http:/ /simile.mit.edu/wiki/RDFizers), Sesame (an open source framework for storage,
inference and querying of RDF data; http:/ /www.openrdf.org) and OWL ontology. In
Bio2RDF, each RDF document is expressed as a URL. When a query is requested to
Bio2RDF for a given URI, for example, http://bio2rdf.org/go:0004396, the URI
identifies RDF triples containing the GO term of Hexokinase (GO:0004396). Bio2RDF
supports query via SPARQL.
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e  HCLS (The Health Care and Life Sciences Interest Group;
http:/ /www.w3.0rg/2001/sw/hcls/), established by W3C, aims to explore the
potential benefits of the Semantic Web in the health care and life sciences domains
(Cheung;, et al., 2008) and advocates the application of the Semantic Web for advancing
translational research (Ruttenberg, et al., 2007). The HCLS Knowledge Base (HCLS-KB;
http:/ /www.w3.org/TR/hcls-kb) is a Semantic Web system that imports data from
many data sources in multiple domains of life sciences, including not only general
sources, e.g., Entrez Gene, GO, HomoloGene, but also domain-specific sources, e.g.,
Allen Brain Atlas (an interactive, genome-wide image database of gene expression in
the mouse brain; http:/ /www.brain-map.org) (Lein, et al., 2007), SenseLab (a collection
of neuroscience data; http://neuroweb.med.yale.edu/senselab) (Crasto, et al., 2007)
and SWAN (Semantic Web Applications in Neuromedicine; aiming to organize and
annotate scientific knowledge about Alzheimer disease and other neurodegenerative
disorders) (Ciccarese, et al., 2008; Clark and Kinoshita, 2007; Kinoshita and Clark, 2007).
¢  YeastHub (Cheung, et al., 2005) is an integrated database in RDF format for the yeast
community. It creates a RDF repository for RDF storage and provides a utility to
convert tabular format into RDF format. YeastHub integrates different types of yeast
data provided by different data sources (SGD, YGDP, MIPS, BIND, GO and TRIPLES)
and supports RDF-based queries to retrieve and query the data.
Application of the Semantic Web technologies to biological data integration is a significant
advancement for bioinformatics, enabling automated data processing and reasoning. The
semantic integration uses ontologies for data description and thus represents ontology-
based integration (Noy, 2004). However, the Semantic Web continues to evolve and its
application in biological data integration has several limitations. The semantic integration
locally stores a large collection of RDF documents, by copying data from multiple data
sources and converting data into RDF format. From this view, the semantic integration can
be regarded as a special data warehouse with data in RDF format. As a consequence, it
inherits the pros and cons of data warehousing and is vulnerable to updates in data sources.
To keep the RDF documents up-to-date, it requires tedious and periodical data retrieval and
RDF conversion. In addition, once any data source changes data structure, the RDF
conversion scripts must be updated consequently.
Currently, there is an ongoing project, the World Wide Web Consortium's SWEO (Semantic
Web Education and Outreach) Linking Open Data Project (Bizer, 2009; Zhao, et al., 2009)
that uses the Semantic Web technologies to connect related distributed data across the Web.
Technically, linked data rely on RDF to create typed links between data from different data
sources. Linked data is machine-readable, explicitly defined, and inter-linked to other data,
promising to facilitate data integration, exposure, sharing, and connecting.

2.5 Wiki-based integration

A weakness common to all the above approaches is that the quantity of users’ participations
in the process is inadequate. With the increasing volume of biological data, data integration
inevitably will require a large number of users’ participations. A successful example that
harnesses collective intelligence for data aggregation and knowledge collection is
Wikipedia, an online encyclopedia (http://www.wikipedia.org) that allows any user to
create and edit content. Wikipedia features collaborative integration, continuous and
frequent update, up-to-date content, huge content coverage and low cost for maintenance
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(McLean, et al., 2007). Although there are fears of inconsistency and inaccuracy since users
can freely and anonymously change any content and/or add new content in the wiki (Arita,
2009; Bidartondo, 2008), it is testified that Wikipedia outperforms the traditional
Encyclopedia in accuracy (Giles, 2005).

In consideration of the success of Wikipedia, a wiki-based approach has been on the horizon
to store, manage and organize biological data (Giles, 2007; Salzberg, 2007; Waldrop, 2008;
Yager, 2006). The wiki-based integration makes full use of collective intelligence and efforts
for biological data integration. Representative examples include: WikiGenes (a wiki system
that combines gene annotation with explicit authorship; Hoffmann, 2008), WikiProteins (a
wiki-based system for protein annotation; Mons, et al., 2008), BOWiki (a ontology-based
wiki for data annotation and knowledge integration; Hoehndorf, et al., 2009), Gene Wiki (a
wiki for human gene annotation; Huss, et al.,, 2010; Huss, et al., 2008) and PDBWiki (a
scientific wiki for the community annotation of protein structures; Stehr, et al., 2010).
However, the wiki-based integration has its own shortcomings, including the unstructured
data generated, the lack of a standard format for data exchange, the lack of credit for
authorship and vulnerability to malicious editing (Lee, 2008; Potthast, et al., 2008).

3. Challenges ahead

Although a number of current efforts have been devoted to data integration, none of them
have achieved a pre-eminent impact on their field yet. Since NGS data are growing at an
exponential rate, the need for data integration is continually demanding and challenges for
data integration are greatly increasing.

3.1 Data as a service

The low-cost and high-throughput NGS technologies can generate huge amounts of data at
a relatively short period. To keep pace with the revolution of sequencing technologies,
genome sequencing projects have transitioned from classical model organisms (e.g., fly,
mouse, yeast), to other organisms (e.g., camel, dog, panda) and eventually, to sequencing
individuals within populations, exemplified by the 1000 Genomes Project—a collection of
the genomes of 1,000 humans (http://www.1000genomes.org) and the Genome 10K
Project—a genomic zoo of genome sequences of 10,000 vertebrate species
(http:/ /www.genomelOk.org). The era of $1000 personal genome sequencing is
approaching within the following years and would produce unparalleled large-scale data,
presenting considerable challenges for data integration.

It is infeasible to integrate such large amounts of data into a single point (such as a data
warehouse). Data sources are developed for different purposes and fulfill different
functions. Therefore, it is promising to establish an efficient way for data exchange among
these distributed and heterogeneous data sources. However, a dozen of data sources are
designed merely for data storage, but not for data exchange. The growing volume of
biological data also requires “computer-readable” approaches for data integration. To ease
data integration, data sources need to turn into service providers. In other words, data
sources should not only serve as data providers that provide data for human reading with
web interfaces (e.g.,, HTML), but also function as service providers that provide data for
computer interoperability via WS. Service providers supply data as a WS, facilitating
computer-to-computer interactions and thus enabling automated data integration from
multiple data sources (Hansen, et al.,, 2003). As mentioned, there are several different
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protocols that can be used for creating WS. Among them, SOAP and REST have been widely
adopted (Figure 1). SOAP is a well-defined standard with XML-structured messaging for
request and response, whereas REST is relatively lightweight, relying on HTTP methods
(viz., POST, GET, PUT or DELETE). Most commercial applications expose their services as
RESTful Web APIs (Figure 1), largely due to its simplicity and easy implementation.

Protocol Usage by APIs

B REST (73%)

[ SOAP (16%)

[ 1avaScript (6%)
[ XML-RPC (2%)
O Atom (1%)

FProgrammableweb.com 02/27/11

Fig. 1. Statistics of Web API protocols (obtained from
http:/ /www.programmableweb.com/apis, which collects more than 3,000 Web APIs; last
access: February 27, 2011).

3.2 Standards for biological data

Due to the complex nature of biology, there are a wide variety of biological data types, e.g.,
sequence data, gene expression data, protein-protein interaction data, pathway data
(Karasavvas, et al., 2004). Data sources store different data types as different formats (Li,
2006): flat file (e.g., tab-delimited file), sequence file (e.g., FASTA), structure file (e.g., PSF—
Protein Structure File), and XML file (e.g., KGML —KEGG Markup Language for describing
graph objects). Data sources often adopt their preferable data formats; even for a same data
type, data formats in different sources are often incompatible. It is also noted that new data
formats are often invented along with the development of related technologies. Examples of
newly invented file formats include SAM (Sequence Alignment/MAP; a generic nucleotide
alignment format that describes the alignment of query sequences or sequencing reads to a
reference sequence or assembly; Li, et al., 2009), and GVF (Genome Variation Format; a
simple tab-delimited format for describing genome variation data; Reese, et al., 2010). In
addition, data sources output their data in diverse formats, such as HTML, raw file formats,
and XML-based file formats. Taken together, diverse and heterogeneous data formats
complicate data exchange, posing challenges for data integration.

Standards for biological data formats can ease data exchange and integration. There has
been a successful attempt for standardizing biological pathway data. Pathway-related data
sources differed in their data representation, making data integration difficult and
inefficient. For this reason, BioPAX (Demir, et al., 2010) has been developed to deliver a
compatible standard, facilitating integration, exchange, visualization and analysis of
biological pathway data. Another effort related to cope with data incompatibilities of
bioinformatics repositories has been devoted to the standardization issues of data exchange
formats and WS (Katayama, et al., 2010). In short, establishing standard formats for
biological data can realize efficient data exchange and integration. In return, standard data
formats facilitate subsequent data analysis and visualization as well as downstream
software development.
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Equally important, data integration also requires standardizing nomenclature and
ontologies for biological data (Rubin, et al., 2008). Suppose two data sources need to
exchange gene annotations. They must share a standard regarding gene name. Otherwise,
any ambiguity or inconsistency in nomenclature would bring a burden to data integration.
Attention has been paid to standardizing nomenclature and ontologies for biological data,
e.g., BioPortal (Noy, et al., 2009; Rubin, et al., 2006) for integrating and sharing biomedical
ontologies in National Center for Biomedical Ontology, GO (Ashburner, et al., 2000) for
standardizing the representation of gene and gene product attributes, HGNC (Seal, et al.,
2011) for standardizing human gene symbols and names, OBO (Open Biomedical
Ontologies) (Smith, et al., 2007) for creating a suite of orthogonal interoperable reference
ontologies in the biomedical domain. However, a centralized system for nomenclature and
ontologies standardization may not keep good pace with the rapid accumulation of
biological data and any gap in standardization would provoke difficulties for data
integration. A wiki-based system might be promising to harness all communities” efforts in
standardizing nomenclature and ontologies collaboratively and efficiently.

3.3 WS-based pipelines

The goal of data integration is to enable combining information from different resources in
an automated fashion without human intervention, so as to handle the increasing
accumulation of biological data (Sarkar, et al., 2008). Towards this goal, data to be integrated
should be re-defined in a broader manner, which include not merely sequences and other
raw data, but also methods, tools, algorithms, analyzed results, discovered knowledge (see a
paper for knowledge integration; Clark, 2007) and even connections among people (Zhang,
et al., 2009). All kinds of data can be provided as a service. That is, raw data should be
accessible via WS, methods, tools, and algorithms that are used to analyze data should be
offered as WS (that is SaaS, Software as a Service), and analyzed results and discovered
knowledge should be also delivered as WS (Zhang, et al., 2009). As a result, WS perform a
variety of data manipulation, including data retrieval, integration, analysis, visualization,
and sharing.

A pipeline with a combination of multiple WS can achieve data integration (Zhang, et al.,
2009). Such WS-based pipelines lower technological entrance barriers and provide users
with a lightweight programming environment. WS-based pipelines feature computer-to-
computer data exchange, simplify data integration and analysis, maximize the scope of
sharing and reuse, and function as a medium to link users located anywhere with similar
research interests, and finally to form a scientific social community (SSC). SSC reflects
several key elements of Web 2.0 and enables data integration, analysis and sharing with
greater convenience, speed and efficiency (Zhang, et al., 2009). Any user may easily create
WS-based pipelines (adding value), publish them online, and subscribe to pipelines created
by other users. Consequently, pipelines may be widely shared, re-used and even integrated
into other pipelines. As a result, communications and collaborations among users in SSC can
be greatly increased, making knowledge discovery through collective intelligence possible.
In addition, SSC can also serve as a registry for collecting WS (Bhagat, et al., 2010; Pettifer, et
al., 2010).

3.4 Semantic Web Services
The ever-evolving next-generation Web (NGW), characterized as the Semantic Web, aims to
provide information not only for human, but also for computers to semantically process
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large-scale data and automatically discover knowledge. From this view, the Semantic Web
befits well with the exponential growth of biological data and promises in providing
solutions for data integration and advancing translational research (Ruttenberg, et al., 2007).
Semantic Web technologies have been applied for data integration as mentioned above.
Nevertheless, these applications in essence belong to semantic warehouses and still have
pains for integrating dynamic data. One potential solution is to combine WS with Semantic
Web technologies and to provide Semantic WS (Matos, et al., 2010; Vandervalk, et al., 2009),
namely, RDF-based WS for automated data processing and reasoning. As mentioned, WS
are designed not only to perform a query, but also to conduct a computation. Considering
that NGS technologies can swiftly generate hundreds of gigabases of sequencing data, WS
would become increasingly data-intensive and computation-intensive (e.g., alignment of
multiple large-scale sequences). Therefore, to deal with such large-scale data management
and analysis, Semantic WS necessitate to adopt advances in high performance computing
(Schadt, et al., 2010), such as, cloud/grid computing (Bateman and Wood, 2009; Stein, 2010)
and Service-Oriented Computing (Papazoglou, et al., 2008). In addition, a Semantic WS
framework (Wilkinson, et al., 2010) is also needed, in order to set up Semantic WS
workflows or pipelines.

4. Conclusions

As a critical topic in bioinformatics, data integration bears fundamental significance for
biological studies. Efforts have been devoted to this topic and the corresponding approaches
for data integration have moved from traditional ones, e.g., data warehousing and federated
databasing, to modern ones based on several advanced technologies, e.g., Web Service,
Semantic Web and Wiki. The rapid development of sequencing technologies poses
tremendous challenges for data integration. Integration of large-scale data not only requires
adoption of informatics advances, but also needs communications and collaborations among
people in related biological communities to maximize data openness via WS, set up
standards for biological data, create Semantic WS-based pipelines and form a scientific
social community. Such community harnesses collective intelligence and collaborative
efforts for data integration, analysis and sharing, having the potential to be an ideal
community of the people, by the people, and for the people.

5. References

Amberger, J., et al. (2009) McKusick's Online Mendelian Inheritance in Man (OMIM), Nucleic
Acids Res, 37, D793-796.

Andreeva, A. ef al. (2008) Data growth and its impact on the SCOP database: new
developments, Nucleic Acids Res, 36, D419-425.

Antezana, E., et al. (2009) Biological knowledge management: the emerging role of the
Semantic Web technologies, Brief Bioinform, 10, 392-407.

Aranda, B, et al. (2010) The IntAct molecular interaction database in 2010, Nucleic Acids Res,
38, D525-531.

Arita, M. (2009) A pitfall of wiki solution for biological databases, Brief Bioinform, 10, 295-
296.

Ashburner, M., et al. (2000) Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium, Nat Genet, 25, 25-29.



52 Bioinformatics — Trends and Methodologies

Bader, G.D., et al. (2003) BIND: the Biomolecular Interaction Network Database, Nucleic
Acids Res, 31, 248-250.

Bairoch, A. (2000) The ENZYME database in 2000, Nucleic Acids Res, 28, 304-305.

Bairoch, A., et al. (2004) Swiss-Prot: juggling between evolution and stability, Brief Bioinform,
5, 39-55.

Barrett, T., et al. (2011) NCBI GEO: archive for functional genomics data sets--10 years on,
Nucleic Acids Res, 39, D1005-1010.

Bateman, A. and Wood, M. (2009) Cloud computing, Bioinformatics, 25, 1475.

Belleau, F., et al. (2008) Bio2RDF: towards a mashup to build bioinformatics knowledge
systems, | Biomed Inform, 41, 706-716.

Benson, D.A., et al. (2006) GenBank, Nucleic Acids Res, 34, D16-20.

Bhagat, J., ef al. (2010) BioCatalogue: a universal catalogue of web services for the life
sciences, Nucleic Acids Res, 38, W689-694.

Bidartondo, MLI. (2008) Preserving accuracy in GenBank, Science, 319, 1616.

Birkland, A. and Yona, G. (2006) BIOZON: a hub of heterogeneous biological data, Nucleic
acids research, 34, D235-242.

Bizer, C. (2009) The Emerging Web of Linked Data, leee Intell Syst, 24, 87-92.

Blake, J.A., et al. (2011) The Mouse Genome Database (MGD): premier model organism
resource for mammalian genomics and genetics, Nucleic Acids Res, 39, D842-848.

Boguski, M.S,, et al. (1993) dbEST--database for "expressed sequence tags", Nat Genet, 4, 332-
333.

Bota, M. and Swanson, L.W. (2010) Collating and Curating Neuroanatomical
Nomenclatures: Principles and Use of the Brain Architecture Knowledge
Management System (BAMS), Front Neuroinformatics, 4, 3.

Brazas, M.D., et al. (2010) Providing web servers and training in Bioinformatics: 2010 update
on the Bioinformatics Links Directory, Nucleic Acids Res, 38, W3-6.

Ceol, A, et al. (2010) MINT, the molecular interaction database: 2009 update, Nucleic Acids
Res, 38, D532-539.

Cheung, K.H., et al. (2002) YMD: a microarray database for large-scale gene expression
analysis, Proc AMIA Symp, 140-144.

Cheung, K.H,, et al. (2005) YeastHub: a semantic web use case for integrating data in the life
sciences domain, Bioinformatics, 21 Suppl 1, i85-96.

Cheung, K.H,, et al. (2008) HCLS 2.0/3.0: health care and life sciences data mashup using
Web 2.0/3.0, ] Biomed Inform, 41, 694-705.

Chung, S.Y. and Wong, L. (1999) Kleisli: a new tool for data integration in biology, Trends
Biotechnol, 17, 351-355.

Ciccarese, P., et al. (2008) The SWAN biomedical discourse ontology, | Biomed Inform, 41, 739-
751.

Clark, T. (2007) Knowledge Integration in Biomedicine: Technology and Community,
Briefings in bioinformatics, 8, E1-E3.

Clark, T. and Kinoshita, J. (2007) Alzforum and SWAN: the present and future of scientific
web communities, Briefings in bioinformatics, 8, 163-171.

Crasto, C.J., et al. (2007) SenseLab: new developments in disseminating neuroscience
information, Brief Bioinform, 8, 150-162.

Crasto, C.J. and Shepherd, G.M. (2007) Managing knowledge in neuroscience, Methods Mol
Biol, 401, 3-21.



Data Integration in Bioinformatics: Current Efforts and Challenges 53

Croft, D., et al. (2011) Reactome: a database of reactions, pathways and biological processes,
Nucleic Acids Res, 39, D691-697.

Davidsen, T., et al. (2010) The comprehensive microbial resource, Nucleic Acids Res, 38, D340-
345.

Davidson, S.B., et al. (2001) K2/Kleisli and GUS: Experiments in integrated access to
genomic data sources, Ibm Syst |, 40, 512-531.

Davidson, S.B., et al. (1995) Challenges in integrating biological data sources, | Comput Biol,
2, 557-572.

Demir, E., et al. (2010) The BioPAX community standard for pathway data sharing, Nat
Biotechnol, 28, 935-942.

Dibernardo, M., et al. (2008) Semi-automatic web service composition for the life sciences
using the BioMoby semantic web framework, Journal of biomedical informatics.

Dowell, R.D.,, et al. (2001) The distributed annotation system, BMC bioinformatics, 2, 7.

Engel, S.R,, et al. (2010) Saccharomyces Genome Database provides mutant phenotype data,
Nucleic Acids Res, 38, D433-436.

Flicek, P., et al. (2011) Ensembl 2011, Nucleic Acids Res, 39, D800-806.

Gilbert, D.G. (2007) DroSpeGe: rapid access database for new Drosophila species genomes,
Nucleic Acids Res, 35, D480-485.

Giles, J. (2005) Internet encyclopaedias go head to head, Nature, 438, 900-901.

Giles, J. (2007) Key biology databases go wiki, Nature, 445, 691.

Goble, C. and Stevens, R. (2008) State of the nation in data integration for bioinformatics, |
Biomed Inform, 41, 687-693.

Good, B.M. and Wilkinson, M.D. (2006) The Life Sciences Semantic Web is full of creeps!,
Briefings in bioinformatics, 7, 275-286.

Greene, L.H., ef al. (2007) The CATH domain structure database: new protocols and
classification levels give a more comprehensive resource for exploring evolution,
Nucleic Acids Res, 35, D291-297.

Haas, L.M,, et al. (2001) DiscoveryLink: A system for integrated access to life sciences data
sources, Ibm Syst ], 40, 489-511.

Haider, S., et al. (2009) BioMart Central Portal--unified access to biological data, Nucleic Acids
Res, 37, W23-27.

Hansen, M., et al. (2003) Data integration using Web Services, Lect Notes Comput Sc, 2590,
165-182.

Harger, C., et al. (1998) The Genome Sequence DataBase (GSDB): improving data quality
and data access, Nucleic Acids Res, 26, 21-26.

Hariharaputran, S., et al. (2007) VINEdb: a data warehouse for integration and interactive
exploration of life science data, Journal of Integrative Bioinformatics, 4, 63.

Hekkelman, M.L. and Vriend, G. (2005) MRS: a fast and compact retrieval system for
biological data, Nucleic Acids Res, 33, W766-769.

Hendler, J. (2003) Science and the semantic web, Science (New York, N.Y, 299, 520-521.

Hoehndorf, R., et al. (2009) BOWiki: an ontology-based wiki for annotation of data and
integration of knowledge in biology, BMC Bioinformatics, 10 Suppl 5, S5.

Hoffmann, R. (2008) A wiki for the life sciences where authorship matters, Nat Genet, 40,
1047-1051.

Hull, D,, et al. (2006) Taverna: a tool for building and running workflows of services, Nucleic
acids research, 34, W729-732.



54 Bioinformatics — Trends and Methodologies

Hunter, S,, et al. (2009) InterPro: the integrative protein signature database, Nucleic Acids Res,
37, D211-215.

Huss, ] W., 3rd, et al. (2010) The Gene Wiki: community intelligence applied to human gene
annotation, Nucleic Acids Res, 38, D633-639.

Huss, J.W., 3rd, et al. (2008) A gene wiki for community annotation of gene function, PLoS
biology, 6, €175.

Jenkinson, A.M., et al. (2008) Integrating biological data--the Distributed Annotation System,
BMC Bioinformatics, 9 Suppl 8, S3.

Jones, P., et al. (2008) PRIDE: new developments and new datasets, Nucleic Acids Res, 36,
D878-883.

Kanehisa, M., et al. (2010) KEGG for representation and analysis of molecular networks
involving diseases and drugs, Nucleic Acids Res, 38, D355-360.

Karasavvas, K.A., et al. (2004) Bioinformatics integration and agent technology, | Biomed
Inform, 37, 205-219.

Karp, P.D.,, et al. (2005) Expansion of the BioCyc collection of pathway/genome databases to
160 genomes, Nucleic Acids Res, 33, 6083-6089.

Katayama, T., et al. (2010) The DBCLS BioHackathon: standardization and interoperability
for bioinformatics web services and workflows. The DBCLS BioHackathon
Consortium?*, | Biomed Semantics, 1, 8.

Kawas, E., et al. (2006) BioMoby extensions to the Taverna workflow management and
enactment software, BMC bioinformatics, 7, 523.

Keseler, LM.,, et al. (2011) EcoCyc: a comprehensive database of Escherichia coli biology,
Nucleic Acids Res, 39, D583-590.

Keshava Prasad, T.S., et al. (2009) Human Protein Reference Database--2009 update, Nucleic
Acids Res, 37, D767-772.

Kinoshita, J. and Clark, T. (2007) Alzforum, Methods in molecular biology (Clifton, N.], 401, 365-
381.

Lee, T.J., et al. (2006) BioWarehouse: a bioinformatics database warehouse toolkit, BMC
bioinformatics, 7, 170.

Lee, T.L. (2008) Big data: open-source format needed to aid wiki collaboration, Nature, 455,
461.

Lein, E.S, et al. (2007) Genome-wide atlas of gene expression in the adult mouse brain,
Nature, 445, 168-176.

Letovsky, S.I, et al. (1998) GDB: the Human Genome Database, Nucleic Acids Res, 26, 94-99.

Li, A. (2006) Facing the challenges of data integreation in biosciences, Engineering Letters, 13,
EL_13_13_13.

Li, H,, et al. (2009) The Sequence Alignment/Map format and SAMtools, Bioinformatics, 25,
2078-2079.

Lord, P, et al. (2004) Applying Semantic Web services to bioinformatics: Experiences gained,
lessons learnt, Semantic Web - Iswc 2004, Proceedings, 3298, 350-364.

Maglott, D., et al. (2011) Entrez Gene: gene-centered information at NCBI, Nucleic Acids Res,
39, D52-57.

Maojo, V., et al. (2011) Biomedical Ontologies: Toward Scientific Debate, Methods Inf Med, 50,
[Epub ahead of print].

Mardis, E.R. (2010) The $1,000 genome, the $100,000 analysis?, Genome Med, 2, 84.



Data Integration in Bioinformatics: Current Efforts and Challenges 55

Marenco, L., et al. (2004) QIS: A framework for biomedical database federation, | Am Med
Inform Assoc, 11, 523-534.

Matos, E.E,, et al. (2010) CelOWS: an ontology based framework for the provision of
semantic web services related to biological models, | Biomed Inform, 43, 125-136.

McLean, R., et al. (2007) The effect of Web 2.0 on the future of medical practice and
education: Darwikinian evolution or folksonomic revolution?, Medical Journal of
Australia, 187,174-177.

Messina, D.N. and Sonnhammer, E.L. (2009) DASher: a stand-alone protein sequence client
for DAS, the Distributed Annotation System, Bioinformatics, 25, 1333-1334.

Mons, B., et al. (2008) Calling on a million minds for community annotation in WikiProteins,
Genome Biol, 9, R89.

Neerincx, P.B. and Leunissen, J.A. (2005) Evolution of web services in bioinformatics, Brief
Bioinform, 6, 178-188.

Noy, N.F. (2004) Semantic integration: A survey of ontology-based approaches, Sigmod
Record, 33, 65-70.

Noy, N.F., et al. (2009) BioPortal: ontologies and integrated data resources at the click of a
mouse, Nucleic Acids Res, 37, W170-173.

Oinn, T, et al. (2004) Taverna: a tool for the composition and enactment of bioinformatics
workflows, Bioinformatics, 20, 3045-3054.

Olason, P.I. (2005) Integrating protein annotation resources through the Distributed
Annotation System, Nucleic acids research, 33, W468-470.

Papazoglou, M.P,, et al. (2008) Service-oriented computing: a research roadmap, International
Journal of Cooperative Information Systems, 17, 223-255.

Parkinson, H., et al. (2011) ArrayExpress update--an archive of microarray and high-
throughput sequencing-based functional genomics experiments, Nucleic Acids Res,
39, D1002-1004.

Pettifer, S., et al. (2010) The EMBRACE web service collection, Nucleic Acids Res, 38, W683-
688.

Potthast, M., et al. (2008) Automatic vandalism detection in Wikipedia, Advances in
Information Retrieval, 4956, 663-668.

Pruitt, K.D. and Maglott, D.R. (2001) RefSeq and LocusLink: NCBI gene-centered resources,
Nucleic Acids Res, 29, 137-140.

Pruitt, K.D., ef al. (2009) NCBI Reference Sequences: current status, policy and new
initiatives, Nucleic Acids Res, 37, D32-36.

Reese, M.G,, ef al. (2010) A standard variation file format for human genome sequences,
Genome Biol, 11, R88.

Rose, P.W., et al. (2011) The RCSB Protein Data Bank: redesigned web site and web services,
Nucleic Acids Res, 39, D392-401.

Rubin, D.L,, et al. (2006) National Center for Biomedical Ontology: advancing biomedicine
through structured organization of scientific knowledge, OMICS, 10, 185-198.

Rubin, D.L,, et al. (2008) Biomedical ontologies: a functional perspective, Brief Bioinform, 9,
75-90.

Ruttenberg, A., et al. (2007) Advancing translational research with the Semantic Web, BMC
Bioinformatics, 8 Suppl 3, S2.

Salwinski, L., ef al. (2004) The Database of Interacting Proteins: 2004 update, Nucleic Acids
Res, 32, D449-451.



56 Bioinformatics — Trends and Methodologies

Salzberg, S.L. (2007) Genome re-annotation: a wiki solution?, Genome biology, 8, 102.

Sarkar, LN., et al. (2008) Automated simultaneous analysis phylogenetics (ASAP): an
enabling tool for phlyogenomics, BMC bioinformatics, 9, 103.

Sayers, EEW., et al. (2011) Database resources of the National Center for Biotechnology
Information, Nucleic Acids Res, 39, D38-51.

Schadt, E.E., et al. (2010) Computational solutions to large-scale data management and
analysis, Nat Rev Genet, 11, 647-657.

Seal, R.L. et al. (2011) genenames.org: the HGNC resources in 2011, Nucleic Acids Res, 39,
D514-519.

Shah, S.P., et al. (2005) Atlas - a data warehouse for integrative bioinformatics, BMC
Bioinformatics, 6, 34.

Shi, X. (2007) Semantic Web Services: An Unfulfilled Promise, IEEE IT Professional, 9, 42-45.

Sigrist, C.J., et al. (2010) PROSITE, a protein domain database for functional characterization
and annotation, Nucleic Acids Res, 38, D161-166.

Smith, B., et al. (2007) The OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration, Nat Biotechnol, 25, 1251-1255.

Stehr, H., et al. (2010) PDBWiki: added value through community annotation of the Protein
Data Bank, Database (Oxford), 2010, baq009.

Stein, L. (2002) Creating a bioinformatics nation, Nature, 417, 119-120.

Stein, L.D. (2003) Integrating biological databases, Nat Rev Genet, 4, 337-345.

Stein, L.D. (2010) The case for cloud computing in genome informatics, Genome Biol, 11, 207.

Stevens, R., et al. (2000) TAMBIS: transparent access to multiple bioinformatics information
sources, Bioinformatics, 16, 184-185.

Stevens, R.D., et al. (2003) myGrid: personalised bioinformatics on the information grid,
Bioinformatics (Oxford, England), 19 Suppl 1, i302-304.

The UniProt Consortium (2011) Ongoing and future developments at the Universal Protein
Resource, Nucleic Acids Res, 39, D214-219.

Trissl, S., et al. (2005) Columba: an integrated database of proteins, structures, and
annotations, BMC Bioinformatics, 6, 81.

Vandervalk, B.P., et al. (2009) Moby and Moby 2: creatures of the deep (web), Brief Bioinform,
10, 114-128.

Waldrop, M. (2008) Big data: Wikiomics, Nature, 455, 22-25.

Wilkinson, M.D. and Links, M. (2002) BioMOBY: an open source biological web services
proposal, Briefings in bioinformatics, 3, 331-341.

Wilkinson, M.D., et al. (2010) SADI, SHARE, and the in silico scientific method, BMC
Bioinformatics, 11 Suppl 12, S7.

Wilkinson, M.D., et al. (2008) Interoperability with Moby 1.0--it's better than sharing your
toothbrush!, Briefings in bioinformatics, 9, 220-231.

Yager, K. (2006) Wiki ware could harness the Internet for science, Nature, 440, 278.

Zdobnov, EMM,, et al. (2002) The EBI SRS server--recent developments, Bioinformatics, 18, 368-
373.

Zhang, Z., et al. (2009) Bringing Web 2.0 to bioinformatics, Brief Bioinform, 10, 1-10.

Zhang, Z. and Townsend, J.P. (2010) The filamentous fungal gene expression database
(FFGED), Fungal Genet Biol, 47, 199-204.

Zhao, J., et al. (2009) Linked data and provenance in biological data webs, Brief Bioinform, 10,
139-152.



3

Semantic Data Integration on Biomedical Data
Using Semantic Web Technologies

Roland Kienast and Christian Baumgartner

Institute of Electrical, Electronic and Bioengineering

University for Health Sciences, Medical Informatics and Technology
Austria

1. Introduction

Contemporary life sciences research requires an understanding of systems across wide ranges
of scale and distribution. Therefore, there is an urgent need to integrate biomedical knowledge
generated by different communities and separate subfields (Shadbolt et al., 2006). Scientific
publications and curated databases together hold a vast amount of this useable knowledge.
Additionally the number, size, and complexity of life science databases continues to grow
(Kei-Hoi et al., 2009). Therefore scientists in the field of genomics, proteomics, metabolomics,
clinical medicine and drug discovery need a concept to integrate their data, (Shadbolt et al.,
2006) which is a prominent problem (Kei-Hoi et al., 2009). But to generate such a uniform
data integration concept there are still some challenges to overcome such as handling the
variety and amount of available data, inconsistency with data heterogeneity from the different
sources, the autonomy and differing capabilities of the sources and a lack of standards for such
an integration concept. Many heterogeneity conflicts remain in data integration due to the
lack of semantics (Gagnon, 2007). In order, to efficiently exploit the knowledge from different
resources, it will be important to connect the sources in a manner that machine processes can
traverse and intelligently identify these links (Neumann et al., 2004). A promising approach
to integrate heterogeneous data sources could be the use of Semantic Web technologies. They
provide a framework to deal with the afore mentioned problems and fulfil the requirements
for machine processing.

This book chapter provides an overview of data integration on biomedical data using
Semantic Web technologies including existing techniques (standards, specifications and
methods), challenges, approaches and projects.

2. Basics of data integration

Data integration is the task of “combining the data residing at different sources, and providing
the user with a unified view of the data” (Cali et al., 2001; 2003). But to accomplish the task of
combining different heterogeneous sources there are some challenges to be overcome.

2.1 Challenges in integrating information from heterogeneous data sources

In the dictionary! heterogeneity is defined as “the quality of being diverse and not comparable in
kind”. In computer science this inability to compare can be divided into four different classes
(Ouksel & Sheth, 1999):

1 Webster’s Online Dictionary http: //www.websters—online-dictionary.org
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* System heterogeneity is a result of different hardware platforms and operation systems.
* Syntactic heterogeneity is a difference of data representation formats.

e Structural heterogeneity rises from different data models or structure in various data
sources.

¢ Semantic heterogeneity results from differences in the interpretation of the meaning of
different resources.

This heterogeneity leads to some challenges in integrating information from multiple data
sources. Some general problems are (Cheung et al., 2007):

* Locating Resources: To be able to integrate data it is important to find relevant and
inter-operable data sources. But to find such sources it is beneficial to have a widely
accepted standard for describing the content of data.

¢ Different data formats: Different resources often provide heterogeneous data formats. For
example:

— structured data: e.g. different databases
— semi-structured data: e.g. HTML, XML data
— unstructured data: e.g text documents, images

¢ Identify Synonyms and Homonyms: Before large scale databases where created,
researchers independently named biological entities. As a consequence many synonyms
exist. The ability to distinguish between synonyms and homonyms is very important for
data integration.

* Detect Ambiguity: Different terms can be used to represent different concepts. For
example the term insulin can represent the concept hormone or drug.

* Recognize Granularity: Different biological data sources may provide knowledge at
different levels of granularity. For example one source provides information about
different genetic diseases and their symptoms. Another source might only contain detailed
information about haemophilia®.

¢ Scaling conflicts: These conflicts occur when different reference systems are used to
measure a value e.g., different date formats or size measures.

2.2 Different integration approaches
There are different approaches to integrate different data sources by using warehousing,
mediation or a combination of both.

Warehouse integration consists in catalouging the data from multiple sources into a local
database called the warehouse. All queries are executed on the data contained in the
warehouse (Hernandez & Kambhampati, 2004; Kugler et al., 2008; Pfeifer et al., 2007).
The task of importing data from a source into the warehouse is called the ETL (Extract -
Transform - Load) process.

* Advantages: Warehousing eliminates various problems such as network bottlenecks,
low response times, and temporarily unavailable sources. It allows to filter, validate,
modify, and annotate the data obtained from the sources (Davidson et al., 1995).

2 Haemophilia is a genetic disease which interferes with blood clotting.
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* Disadvantages: It is necessary to build and maintain the warehouse and there is a
danger of antiquated data. Therefore the warehouse system must regularly check the
underlying sources for new or updated data and modify the local copy of the data if
required (Davidson et al., 1995).

Mediator based integration concentrates on query translation. A mediator is a system which
provides a query translation from a single mediated schema to the local schema of the
underlying data source (Hernandez & Kambhampati, 2004). The data flow between
mediators and data sources is provided by software components called Wrappers. Unlike
warehousing, data is not centrally stored but it is accessed directly from the distributed
sources.

* Advantages: The data is always up to date and there is no need to maintain a storage
system.

® Disadvantages: Mediator based integration is sensitive to network bottlenecks, low
response times and temporarily unavailable sources.

An other possibility is using Semantic Web technologies. The goal of the Semantic Web
approach to data integration is to add machine readable metadata to resources and to define
and describe relations among them. This makes it easier to automatically process and
integrate information available within the different resources (W3C, 2004a) (see figure 1).

Semantic Web Technologies
[ Ontologies (OWL) ]

[ Query (SPARQL) J

H © \ Data (RDF, RDFS) ]
s
% T
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Different i?) " @ =
databases * 2 ‘:") %% i}) ‘;)

o
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Fig. 1. The goal of data integration using Semantic Web technologies. Right: The user must
consult several resources individually through different user interfaces to derive a result.
Left: Semantic Web technology allows the integration of various heterogeneous resources.
The system can process the data and provide the results to the user.

3. Semantic Web in a nutshell

Tim Berners-Lee , the director of the World Wide Web Consortium (W3C), coined the term
Semantic Web (Berners-Lee et al., 2001) and it is mainly used to describe the model and
technologies provided by the W3C which is the main international standards organization for
the World Wide Web. The aim of the Semantic Web is to add structured meta-information to
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existing documents and data in order to give it a well defined semantic meaning. This enables
machines to process semantic information but “not human speech and writings” (Berners-Lee
et al., 2001). This semantic extension makes it easier for machines to automatically process
and integrate information available on the Web (W3C, 2004a).

The basic idea behind the Semantic Web is to add machine readable metadata® to resources
within the World Wide Web to define and describe relations among them. Semantic Web
technologies are able to assimilate this gained information. Furthermore, they do not build a
separate web, but function as an extension of the current web. The Semantic Web technology
consists of a hierarchical use of various standards and technology in which each layer uses the
capabilities of the layers below. The architecture of the semantic web is illustrated in figure 2.
A brief description of each layer is summarized below:

‘ User interface and applications

Unifying Logic I

Ontology: . o
Query: OWL. Rules: RIF S
SPARQL 5
Taxonomies: RDFS Q
S
=l
T
‘ Syntax: XML ‘
e Character set:
‘ Identifiers: URI H UNICODE ‘

Fig. 2. Semantic Web stack

® Character Set: UNICODE defines a fundamental coding standard for data.
e Identifiers: URI is a standard for the identification of resources.
¢ Syntax: XML provides a fundamental syntax for structured documents.

e Data interchange: RDF is a data model for resources and relations between them. It uses
the XML syntax.

¢ Taxonomies: RDFS is an extension of RDF and provides a vocabulary for describing RDF
resources.

e Rules: RIF defines the rules of semantic data.

* Ontologies: OWL offers more opportunities to add semantic information to resources than
RDFS.

* Query: SPARQL is a protocol and a query language for RDF.
¢ Unifying Logic allows to draw a conclusion.
* Proof attempts to verify the conclusions.

¢ Trust provides trusted principles and authentification methods between different agents.

3 According to the Dictionary of Computing (http://dictionary.reference.com/browse/
meta-data) metadata is “definitional data that provides information about or documentation of other data
managed within an application or environment.” In relation to the Semantic Web Tim Berners-Lee defines
metadata as (Berners-Lee, 1997): “machine understandable information about web resources or other thing”.
In short, metadata is data about data.
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4. Semantic Web approach to data integration

The W3C defines the abilities of the Semantic Web as follows (W3C, 2011):

“The Semantic Web is about two things. It is about common formats for integration and combination
of data drawn from diverse sources, where on the original Web mainly concentrated on the interchange
of documents. It is also about language for recording how the data relates to real world objects. That
allows a person, or a machine, to start off in one database, and then move through an unending set of
databases which are connected not by wires but by being about the same thing.”

Semantic Web approach to data integration can deal with heterogeneity by providing
structured meta-information to existing documents and data. A key feature integrating
information is the use of semantics which gives meaning to a word or concept (Gardner, 2005).
Semantics can solve the problem of homonyms and synonyms between different sources
because it is able to ensure the equivalence of two concepts which might have different names
and forms (synonyms) or the dissimilarity of two concepts which might have the same name
and form (homonyms). Semantics describe relationships between concepts. This enables a
fully descriptive representation of the available information, showing the interaction between
concepts and allows inferences. Semantic Web technologies provide a tool to describe such
semantic: The use of Ontologies. In order to achieve a beneficial use of ontologies, it is
important to link the data to its semantic knowledge. In other words, it is important to
annotate instances to ontologies. But these data often have different data formats (relational
databases, text files, web sites, etc.). Adding metadata can solve this problem. But to benefit
from this metadata, it should be standardized and machine readable. Such a kind of metadata
provided by the Semantic Web technology is based on the Extensible Markup Language
(XML).

4.1 Important technologies for data integration in greater detail
This section describes the most important technologies which are needed for a semantic data
integration based on Semantic Web technologies.

4.1.1 URI (Uniform Resource Identifiers)

A URI is defined in RFC3986 (Berners-Lee et al., 2005): “A Uniform Resource Identifier (URI) is
a compact sequence of characters that identifies an abstract or physical resource.” In the web URIs
typically refer to websites or other data. But in general URIs can be used to generate unique
identifiers for different resources. For example the namespaces of a XML (Extensible Markup
Language) document are identified by URI references. Also, in RDF (Resource Description
Framework), URIs are used to refer to resources (Hitzler et al., 2008).

4.1.2 XML (eXtensible Markup Language)

XML is a machine readable, standardized meta-language. It is an important basic technology
for the Semantic Web (W3C, 2001) with which it is possible to create structured documents.
These documents are text based and provide their data in a hierarchical and logically
structured form which can be read by humans and by machines. It is an markup based
language and uses tags for this purpose. In Informatics markup languages are used to extend
parts of an document with additional information to describe it in more detail. This additional
information is also called metadata.

Problems with XML and data integration:

XML is standardized, machine readable and defines the syntactical structure of a document.
But in the view of the Semantic Web, XML tags are not much better than the natural language
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(Hitzler et al., 2008). These tags can be ambiguous, their relationship is not clearly defined
and they provide no meaning for machines.

4.1.3 RDF (Resource Description Framework)

Originally RDF was designed for adding metadata to web resources but it has become a
framework for adding semantic information to resources. RDF is machine readable. Therefore
it enables the encoding, exchange, and reuse of structured metadata and allows structured
and semi-structured data to be mixed, exposed and shared across different applications(W3C,
2010a) which can make use of the semantic information (Fensel, 2004).

RDF provides a simple data model for describing relationships between resources in terms
of named properties and their values. While XML can only describe documents in a tree
structure, RDF is a framework for representing information about resources in the form of a
directed graph. An edge of this graph describes the relationship between two resources. RDF
documents can be written in Notation 3 (N3) (W3C, 2005), N-Triples (W3C, 2004d), Turtle
(W3C, 2008¢) syntax or in a XML syntax. This XML syntax is called RDF/XML (W3C, 2004f).
But XML can only describe a tree structure whereas RDF represents a graph. Therefore it
is necessary to serialize these complex data objects into strings. RDF uses so-called “triples”
(3-tuples) to describe relationships between resources to serialize the graph. A RDF-triple
consists of only three elements (W3C, 2004g):

1. The subject: Is a RDF URI reference or a blank node.
2. The predicate: Is a RDF URI reference.
3. The object: Is a RDF URI reference, a blank node or a literal.

A triple is conventionally written in the order subject, predicate, object and can be illustrated
by a node and directed arc diagram (see figure 3). A set of these triples form a directed graph.
A problem in RDF is that URI references can not describe a conclusive semantic interpretation

subject predicate—>  object

Fig. 3. Illustration of a triple

of RDF coded information (Hitzler et al., 2008) because a URI can also be a homonym or
synonym of another URI. This principle is also known as Non Unique Name Assumption. A
solution to this problem is to use thematic vocabularies such as FOAF (Friend of a Friend)
vocabulary which can be used for linking people and information about them (Brickley &
Miller, 2010).

4.1.4 Ontologies to share semantic information

(Gruber, 1993) defines an ontology as: “An ontology is an explicit specification of a
conceptualization.” This definition was slightly modified by (Studer et al., 1998): “An ontology
is a formal, explicit specification of a shared conceptualization.”

A conceptualization refers to an abstract model of a phenomenon in the world which identifies
the relevant concepts of that phenomenon. Explicit correlates to the formed types of concepts
and their limitations, which are defined explicitly. Formal is based on the fact that an
ontology should be machine readable. Shared means that an ontology should cover matching
knowledge. This knowledge is not limited to an individual and is accepted by a group (Fensel,
2004; Studer et al., 1998).
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This abstract definition is understandable on the basis of a simple example. It contains a brief
abstract of the ontology of animals (see figure 4).
The abstract model includes the terms animal, fish, mammal and puma. These terms come from

animal
N R p
[ ]
fish mammal

] puma ‘

Fig. 4. A brief abstract of the ontology of animals.

the “phenomenon” of animals. Every term is explicit. The term puma is explicitly defined
as a animal. It cannot be confused with the clothing brand Puma. Puma also have clear
limitations: a puma is an organism which is a mammal and not a fish and belongs to the
animals. An ontology is represented as a directed graph. A graph is formal and machine
readable. The ontology is also shared because not only one individual can infer knowledge
and it is accepted by a group of biologists.

The structure of an ontology is a directed acyclic graph. That makes it possible to support
complex relationships which allow terms to have more than one parent. For example the
Gene Ontology* term GO:0070229 : negative regulation of lymphocyte apoptosis is a subclass of
GO:2000107 : negative regulation of leukocyte apoptosis and GO:0070228 : requlation of lymphocyte
apoptosis. Ontologies are able to describe the semantic of the information sources in order to
make their content explicit. A basic module of ontologies is the so called “triple”. Broadly
defined, a triple contains two terms and a relation between them®. With these elements an
ontology can be represented as a directed graph. The terms are the nodes and the relations are
the edges of the graph (Smith et al., 2005).

4.1.5 RDFS (RDF Schema)

Like XML, RDF only provides a syntax for exchanging data. RDF properties can be considered
as attributes of resources and also represent relationships between them. But it provides
no mechanisms for adding a vocabulary to describing these attributes or relationships.
RDFS, or also called RDF Vocabulary Description Language, extends RDF to describe such
vocabularies (W3C, 2004c;e) and add terminological knowledge (schema knowledge) to this
vocabulary. For that reason it can be seen as a semantic extension of RDE. RDF Schema
vocabulary descriptions are written in RDF syntax (W3C, 2004e). It makes statements
about the semantic relationship between terms within an arbitrarily defined vocabulary
inside a RDFS document. This ability to define terminological knowledge allows RDFS to
create “light-weight” ontologies (Hitzler et al., 2008; Volz et al., 2003) to describe semantic
dependences within a domain.

Figure 4 shows a simple RDFS document in graph representation. RDEFS organize RDF
statements hierarchically into classes (terminological knowledge) and instances (assertional
knowledge). Properties are used to describe relationships between classes. The terminological
part includes the ontology while the assertional part presents conclusions about concrete

4 see section 5.3.2
5 see section 4.1.3 for a detailed description
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qualities of the subject. This ontology describes, for example, that the class cell is a subclass
of the class organ and that every cell consumes energy. Further, it is possible to derive
implicit knowledge. If the muscle cell is an instance of the class cell and the ATP (Adenosine
Tri-Phosphate) is an instance of high energy chemical bond, then it is possible to infer that a
muscle cell is part of a human and ATP is a kind of energy.

> Class
> Property

@ @» Instance
rdfs:subClassOf

L

© rdfs:subPropertyOf

L8 ex:Organ

Sow

230 ex:consumes_energy

€ 8 rdfsisubClassOf rdfs:subClassOf
g~ rdfs:domain rdfs:range

ex:high-
energy_chemical_bond

J

5
T Q@ |
g %’ o rdf:type rdf:type
23X (musclecell }—-— ex:consumes_enery————»
L] (predicate)

(subject) (object)

Fig. 5. Simple RDFS-Ontology in graph representation

4.1.6 OWL (Web Ontology Language)

OWL is designed to enable machine processing of information content. OWL can explicitly
represent the meaning in terms of vocabularies and their relationship with each other to build
an ontology. Since October 2009 the version OWL 2 is recommended from W3C(W3C, 2009a).
In contrast to RDFS, OWL has more opportunities to expressing meaning and semantics.
Therefore OWL can be seen as an extension of RDFS (W3C, 2004b). An OWL ontology is
an RDF graph which consists as a set of triples. It also can be written in different syntactic
forms but the most common syntax is RDF/XML for representing these triples.

OWL provides three increasingly expressive sub-languages (Alesso & Smith, 2006):

1. OWL Lite to generate a classification hierarchy and simplify constraints. -> Easily
implementable

2. OWL DL (description logic) supports maximum expressiveness while retaining
computational completeness and decidability. -> Mechanizable logic

3. OWL Full provides maximum expression and syntactic freedom of RDF but with no
computational guarantees. -> Complete Logic

Since OWL is an extension of RDFS and therefore also from RDF, any RDF document
will generally be in OWL Full. OWL DL and OWL Lite also extend the RDF vocabulary,
but they put restrictions on the use of this vocabulary (W3C, 2004a;b) for better machine
processing. These restrictions guarantee computational completeness and decidability of
reasoning systems like FaCT++ (Tsarkov & Horrocks, 2006) and the Pellet (Sirin et al., 2007)
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which are able to reason over OWL 2 ontologies (Grau et al., 2008). This is achieved because
OWL Lite and DL are basically very expressive description logics (DL) where OWL DL is
based on the SHOZN (D)DL (Hitzler et al., 2008) and OWL Lite to the slightly simpler
SHIF(D)DL.

Description Logics (DL) stem from semantic networks (Donini et al., 1996). They model
concepts (equal to a class in OWL), roles (equal to a property in OWL) and individuals (equal
to a object in OWL), and their relationships. Therefore they can be used to represent the
knowledge of a specific domain in a formal and structured way. Here the context of ontologies
is clearly visible. As described in 4.1.4 an ontology consists of axioms, which are used
to provide information about classes and properties of a specific domain. The knowledge
which is provided by DL is divided into a TBox and an ABox (Donini et al., 1996). The
TBox (terminological box) contains sentences describing concept hierarchies and the ABox
(assertional box) contains sentences about the individuals and where they are in the hierarchy
(Van Harmelen et al., 2008). For example the statement “Every protein is made of amino acids”
belongs to the TBox, while the statement “Leucine is a amino acid” belongs to the ABox.

The drawing of logical conclusions in OWL are based on the concept of the so-called Open
World Assumption (OWA). In contrast to the Closed World Assumption (CWA), this assumption
specifies that statements are neither true nor false if they can not be derived from a set of facts
based on inference rules. The OWA does not assume that a answer is false unless it can be
absolutely proven that the answer is false (Pollock, 2009). Listing 1 shows an example of both
assumptions.

Listing 1. Example for the open- and closed world assumption

Knowledge Base: The protein p53 is involved in apoptosis.
Query: Is the protein p53 involved in cell repair?
Answer: CWA: No.

OWA: Maybe or unknown.

4.1.7 SPARQL (Simple Protocol and RDF Query Language)

SPARQL is a protocol and query language for RDF which since January 2008 is an official W3C
recommendation (W3C, 2008a). SPARQL queries often contain a set of triple patterns. These
patterns, or also called basic graph patterns, look like RDF triples. The difference is that every
subject, predicate or object, can be expressed as a variable. A match can be found by replacing
variables through substituting RDF terms. If the result of the substitution is equivalent to a
subgraph of the RDF data a match is found. For example, to find the meaning of the acronym
ATP and where it is produced, the SPARQL query would look like Listening 2.

Listing 2. Simple SPARQL query

PREFIX ex: <http://example.com/>
SELECT ?longName ?part

WHERE
{ex:ATP ex:hasLongName °?name.
?name ex:producedIn ?part}

The SELECT clause defines the variables which appear in the result and the WHERE clause
provides the basic graph pattern. In this case the graph pattern consists of two triple patterns
with two single variables.

As a simple knowledge basis following RDF data (see Listing3) in Turtle notation is used.
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Fig. 6. Classification of ontologies. The reusability decreases with increasing specification.
The availability behaves exactly opposite.

Listing 3. Simple RDF data

PREFIX ex: <http://example.com/cell>
ex:ATP ex:hasLongName "Adenosine_ Tri-Phosphate"
ex:ATP ex:producedIn ex:mitochondrion

Querying this RDF 3 data with the SPARQL query 2 obtained the result shown in table 1. It

name part
“Adenosine Tri-Phosphate” | http://example.org/cell/mitochondrion/

Table 1. Result of SPARQL Query 2 on RDF Data 3

is also possible to generate complex graph patterns out of a number of simple patterns or to
define filters to restrict the result. SPARQL provides four query forms which form a result
SELECT, ASK set or RDF graphs CONSTRUCT, DESCRIBE out of the pattern matching. To
serialize a result from a SELECT or from an ASK query into a XML document the SPARQL
Variable Binding Results XML Format(W3C, 2008b) can be used.

5. Using ontologies for data integration

Biomedical ontologies play an important role in the process of data integration and support
both approaches for data integration: warehousing and meditation (Bodenreider, 2008).
Ontologies are a type of controlled vocabulary that attempt to capture the knowledge
of a specific domain. This is the standardization required from warehousing approaches,
where different sources are transformed into a common format and converted to a common
vocabulary. On the other hand, the mediation-based approach ontologies can be used for defining
global schema and mapping between the global schema and local schemes of the sources to
integrate. An example of a system using this approach is ONTOFUSION (Perez-Rey et al.,
2006). The terminological part of ontologies, which contain a list of names for the entities
represented in these ontologies, is also an important resource for natural language processing
(Altman et al., 2008).

Based on their granularity, ontologies can be divided into four classes (see figure 6):

¢ Top-level ontologies describe very general concepts which are independent of a particular
problem or domain (Guarino, 1998) and are highly reusable across specific domains.
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¢ Top-domain ontologies contains core concepts of a given domain. For example: Organism
or Cell for a biological domain. They work like an interface between top-level and domain
ontologies (Stenzhorn et al., 2008).

¢ Domain ontologies include only domain specific concepts and therefore only describe a
certain domain.

¢ Local ontologies describe the semantic of a single information resource.

The ability of ontologies to provide a map of concepts in relationships enables semantic data
integration. In this context, ontologies are used to describe the semantics of the data sources
in order to make their content explicit (Boury-Brisset, 2003). The integration can take place
on an extremely granular level to map data from different resources, no mater if the resources
contain structured or unstructured data (Gardner, 2005).

Ontology-based approaches to data integration usually provide a three-layer architecture
where a semantic layer working as a mediator is between the presentation layer and the
physical layer. This semantic mediator exploits mapping models and transforms queries into
execution plans. Wrappers exploit the description of the data sources at the physical layer.
This enables a transparent access to diverse data sources by using a unified query language
(Boury-Brisset, 2003) like SPARQL. Ontologies are used in the mediator layer because they
provide a common vocabulary for the integration of data, where each concept has a unique
defined name, associated properties and clearly defined synonyms. Furthermore, an ontology
is not a rigid structure, it can grow with time and can be connected to other ontologies.
Wache (Wache et al., 2001) describes three approaches for ontology-based data integration:

¢ Single ontology approach: This approach uses only a single global ontology to integrate
different sources. All information sources are related to the global ontology. The global
ontology can be a combination of different specialized ontologies. This approach requires
data sources with a similar view on the domain and a similar granularity. A disadvantage
of this approach is that the integration of new information sources can lead to big changes
in the used ontology.

e Multiple ontologies approach: The semantic of an source is described by its own local
ontology. There is no common vocabulary and therefore inter-ontology mapping is
required. An advantage of this approach is that new data sources, and their local
ontologies, can be easily integrated. But the lack of common vocabulary can make the
mapping between ontologies very difficult to define.

* Hybrid approach: This is a combination of the two preceding approaches. As with the
multiple ontologies approach, resources are also described by local ontologies. But to
avoid the disadvantages and to make these ontologies comparable, they are built from
a shared global vocabulary. This vocabulary contains basic terms of a domain and allows
querying through a shared vocabulary. The vocabulary can also be an ontology. Then it is
also possible to dispense with the mapping between the local ontologies and only define
mappings between the shared global ontology and the local ones. New sources can be
easily added with no need to modify existing mappings.

An example of using ontologies for data integration in biomedicine is the Gene Ontology
Annotation (GOA) © project run by the European Bioinformatics Institute (EBI). GOA is based
on the single ontology approach and has as target to provide “high quality electronic and
manual” annotations to the UniProt knowledgebase 7 (UniProtKB)(Barrell et al., 2009). For

®http://www.ebi.ac.uk/GOA
7 http://www.ebi.ac.uk/uniprot
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this purpose, GOA uses the standardized vocabulary of the Gene Ontology (GO) 5.3.2 and the
International Protein Index (IPI) (Camon et al., 2004). The IPI offers complete, non redundant
data sets representing the human, mouse and rat proteomes (Kersey et al., 2004).

Another advantageous feature of ontologies is that terms are organized in a hierarchical
manner (Stein, 2003). That means more specific terms are specializations of more general
terms. This could help to find the most specific common term shared by two data sources. An
example of such a benefit could look like the following:

One research group might create a database in which gene products annotated to the “negative
requlation of T cell apoptosis”-class of the Gene Ontology. Another group might identify gene
products which negatively regulate the programmed cell death. If both groups use the terms
of the GO, the two databases can be integrated by finding the most specific common term by
traversing up the hierarchy (see figure 7). Without such an organized hierarchy of common
concepts, the integration task comes down to tedious and error-prone work by hand (Stein,
2003).

most specific common term

B G0:0060548 © negative regulation of cell death [IWQeme products]
Source BE B G0:0043069 ; negative regulation of programmed cell death [1873 gene
B G0:0043086 : negative requiation of apoptosis [1829 gene products
B G0:2000107 © negative requiation of leukocyte apoptosis [39 gene
B 50:0070229 : negative regulation of lymphacyte apoptosis [39
Source A @ B 60:0070233 : negative requlation of T cell apoptosis [2

traversing up

Fig. 7. Find the most specific common term by traversing up the hierarchy.
(This figure shows an extract of the Gene Ontology http://www.geneontology.org)

5.1 Examples of existing top-level ontologies

5.1.1 Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE)

DOLCE is the first module of the WonderWeb & foundational ontologies library. "It aims
at capturing the ontological categories underlying natural language and human commonsense.”
(Masolo et al., 2003). The Dolce foundational ontology and its extensions provide a
domain-independent framework to build ontologies on the basis of highly-reusable patterns.

5.1.2 Basic Formal Ontology (BFO)

The BFO is narrowly focused on the task of providing a genuine upper ontology which can
be used in support of domain ontologies developed for scientific research, for example in
biomedicine within the framework of the OBO Foundry (IFOMIS, Saarland University, 2010).

5.2 Examples of existing top-domain ontologies

5.2.1 The Unified Medical Language System (UMLS)

Having identified terminology is a key factor for data integration (Bodenreider, 2004)
therefore the UMLS was developed by the National Library of Medicine (NLM)? and consists
of three knowledge Sources which can be used separately or together (U.S. National Library
of Medicine, 2010):

* Lexical resources: SPECIALIST lexicon: Intends to be a general English lexicon which
includes many biomedical terms.

8 http://wonderweb.semanticweb.org
http://www.nlm.nih.gov
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¢ Terminological resources: Metathesaurus: Includes biomedical and health related source
vocabularies, concepts and the relationships between them.

¢ Ontological resources: Semantic Network: Contains categorization of all concepts
represented in the UMLS Metathesaurus and relationships between these categories.

The Semantic Network (SN) can be seen as a collection of ontologies. In order to use these
with Semantic Web technologies it is necessary to convert the SN to OWL DL. There are
some approaches to map or convert UMLS SN to RDF (Zeng & Bodenreider, 2007), to OWL
(Kashyap & Borgida, 2003; Schulz et al., 2009) or only parts to OWL (Chabalier et al., 2007).
But there are formalism problems concerning this task like the complex semantics or the rich
attribute set of the UMLS SN.

5.2.2 BioTop

BioTop is a top-domain ontology for the Life Sciences with the goal to provide “an ontologically
sound layer for linking and integrating various specific domain ontologies from the life sciences
domain.” (Beisswanger et al., 2008).

5.3 Examples of existing domain ontologies

5.3.1 Open Biological and Biomedical Ontologies (OBO)

The OBO Foundry is a collaborative experiment involving science based ontology developers.
The goal is to create orthogonal inter-operable reference ontologies in the biomedical domain
(OBO Foundry, n.d.). These ontologies typically have the OBO flat file format. Like OWL,
OBO is also an ontology representation languag (Richter, 2006). Ontologies based on the OBO
flat file format can be bi-directionally converted to the OWL-DL format (Aranguren et al.,
2007; Hoehndorf et al., 2010; Smith B. et al., 2007). The two most significant OBO are the Gene
Ontology (GO), which contains the principle attributes of gene products, and the Sequence
Ontology, which describes the features of biological sequences.

5.3.2 Gene Ontology (GO)
The GO project'? contains defined terms which represent gene product properties. The GO
covers three aspects of separate ontologies(Gene Ontology, n.d.):

® Molecular function: the elemental activities of a gene product at the molecular level, such
as binding or catalysis.

¢ Biological process: operations or sets of molecular events with a defined beginning and
end, pertinent to the functioning of integrated living units: cells, tissues, organs and
organisms.

® Cellular component: the parts of a cell or its extracellular environment.

5.3.3 Sequence Ontology (SO)
The SO Project!! contains defined terms which describe the features and properties of

biological sequences. SO is a sister project of the GO and also part of OBO (Eilbeck et al.,
2005).

O pttp://www.geneontology.org
" http://www.sequenceontology.org
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6. Relational database integration using the Semantic Web Approach

A lot of biomedical data is available to the scientific community on the web. Much of this
information is stored in a variety of different databases. The content of these databases differ
from the type of biological data they provide (Baker & Cheung, 2007). For example:

* Sequence databases like EMBL Nucleotide Sequence Database (EBI, n.d.a) or NCBI's
GenBank (NCBI, 2004).

® Microarray gene expression databases like the EMBL ArrayExpress Archive (EMBL-EBI, n.d.),
NCBI's Gene Expression Omnibus (GEO)(NCBI, n.d.) or the Stanford Microarray Database
(SMD) (Stanford University, n.d.).

e Pathway databases like KEGG (Kanehisa-Laboratories, n.d.) or the Human Protein
Reference Database (HPRD) (Keshava Prasad et al., 2008).

e Proteomic Databases like the UniProt (EBI, n.d.b).

Computational analyses of biological data often require using multiple datasets. Currently,
the integration of different data sets usually happens manually. This approach is very time
consuming which requires integrated datasets with rich, flexible and efficient interfaces (Smith
A. et al., 2007).

6.1 Problems of heterogeneous database integration
e Technical heterogeneity results from different access protocols, file formats, query
languages and so on.

¢ Data model heterogeneity arises because of different models storing the same data.

¢ Semantic heterogeneity occurs during combination of different databases with various
but related data. For example combine a gene database to a protein database. A gene may
have gene products and therefore these two databases are related.

Resolving such heterogeneity and enabling database integration is a key problem which
the Semantic Web aims to address (Baker & Cheung, 2007). Therefore a mapping language
between RDF and relational databases called RDB2RDF is under development.

6.2 RDB2RDF

A workshop hosted by the W3C on “RDF accesses to Relational Databases” in October 2007
resulted in creating a RDB2RDF Incubator Group (W3C, 2010b), which operated from 2008 to
2009. The objective of this group was to create a group to develop a standardized mapping
language between RDF and relational databases (W3C, 2009c). The resulting RDB2RDF
working group started in 2009 with: “ The mission of the RDB2RDF Working Group, part of the
Semantic Web Activity, is to standardize a language for mapping relational data and relational database
schemas into RDF and OWL, tentatively called the RDB2RDF Mapping Language, R2ZRML.” (W3C,
2009b). The results of this working group are scheduled for release September 30t 2011.

The RDB2RDF mapping language could be used in two ways (see figure 8):

1. To extract the data from the relational database and store the content in RDF. In this
case the data is physically converted to RDF in a ETL (Extract-Transform-Load) and then
stored in a RDF triple store. An advantage of this approach is its easy implementation. A
disadvantage is that there is always a separate copy of the relational data.

2. To generate virtual mapping between the Semantic Web technologies and the relational
database. This virtual mapping queries via SPARQL which will be translated into SQL
queries on the underlying relational data.
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Fig. 8. Two approaches which use the RDB2RDF mapping language

7. Data integration and knowledge acquisition from biomedical literature

The quantity of biomedical literature is steadily growing with a rate of several thousand
papers per week (Ananiadou et al., 2006). A large percentage of information is encoded in
literature (Krallinger et al., 2008). But for a scientist it is next to impossible to read all relevant
literature on a specific topic. Therefore it is important to extract semantic information out of
literature to enable machine processing. This section provides an overview of how Semantic
Web technologies support this task. Ontologies in particular are able to handle this influx of
information and enable the data integration of biomedical literature (Spasic et al., 2005). Basic
techniques to extract information from natural language are text mining (TM) and natural
language processing (NLP).

Sections of TM are:

1. Information retrieval (IR): Retrieve of relevant documents.
2. Information extraction (IE): Extraction of relevant information from the document.

3. Data mining (DM): Discover of associations between information extracted by IE.

7.1 Information retrieval (IR)

The process of IR can be improved by adding a semantic layer. This layer formulates semantic
queries, offering a higher expressive power than keyword matching (Spasic et al., 2005).
However, adding semantic information to enhance the process of finding relevant information
is generally a main part of Semantic Web technology. An example of such query systems are:

* GoPubMed (www.gopubmed.orq): This system submits keywords to PubMed!2. The
resulting abstracts are matched against Gene Ontology and Medical Subject Headings
(MeSH) (Doms & Schroeder, 2005) to be classified. To find a match, a term extraction
algorithm based on local sequence alignment is used (Delfs et al., 2004). In other words
GoPubMed organize the results of a PubMed search using the GO.

12 PubMed (http://www.pubmed.gov) is a literature database provided by the National Library of
Medicine and the National Institutes of Health.
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e Textpresso (http://www.textpresso.org): A tool for neuroscience which has its own
literature filled database. It uses a custom ontology to query nine different categories
(Miiller et al., 2008).

7.2 Information Extraction (IE), Data Mining (DM)
There are two ways to enhance the process of IE respectively, use TM and NLP supporting
“literature data integration” based on Semantic Web technologies:

1. Ontology assisted extraction of meta-information from literature.

2. Semi-automatic or automatic engineering of ontologies by a specific domain based on
information extracted from literature.

Generally, text mining is used to aid experts in extracting knowledge from a large volume of
text by automatically filtering relevant information. A known problem is to find terms which
represent specific classes of biomedical entities (e.g. protein names). This process is called
Named Entity Recognition (NER). The integration of knowledge, supported by ontologies, can
improve NER. The goal is to extract terms and map them to concepts of a domain specific
ontology. A challenge in this process is the myriad variations of terms used to describe things
in natural language. Approximately one third of term occurrences are variants (Jacquemin,
2001) and therefore only synonyms of known terms. Another problem is the specific
terminology in biomedical texts. To have terminological knowledge is of vital importance
to TM for characterizing knowledge in the domain. This knowledge is stored in ontologies
and can enhance the process of IE by (Spasic et al., 2005):

¢ Using Ontology as a training set for NER by reducing it to a list of classified terms. This
can be done in two ways:
- Passive ontology use (Ontology-based IE): The goal of this approach is to map recognized
terms in ontology concepts by look-up.
— Active ontology use(Ontology-driven IE): involves ontologies directly in the process of
term recognition.

¢ Using ontologies to improve machine learning approaches for TM tasks, such as term
classification, term clustering and term relation extraction.

7.3 Semi-automatic or automatic ontology engineering

An advanced task is semi-automatic or automatic engineering of ontologies from a specific
domain on the basis of information extracted from literature. Currently the development of
ontologies “is largely a manual process, based on personal experience and intuition” (Alexopoulou
et al., 2008). Two primary parts of this process are:

1. Extracting terms which represent a concept in the specific domain.
2. Finding relationships between different concepts.

For an automatic terminology development it is important to extract terms from a text. This
automatic identification of possible candidates for terms is called automatic term recognition
(ATR). At the moment ATR is not able to fully automate the process of ontology design, but
it can speed up this process by providing lists of useful domain-specific terms extracted from
domain specific literature. Therefore it can support a semi-automatic creation of ontologies
(Alexopoulou et al., 2008). Examples of frameworks which support ATR and further identify
the semantic relations between them are:
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e Text2O0nto: This is a framework for ontology learning from textual resources. It is based on
algorithms calculating the relative term frequency (Cimiano & Volker, 2005).

* OntoLearn: OntoLearn is based on a linguistic processor and a syntactic parser. It is able
to extract syntactically plausible terminological noun phrases (Navigli & Velardi, 2004;
Velardi et al., 2005).

8. Challenges in data integration using Semantic Web technologies

8.1 Uniform naming

A challenge faced by data integration is the individual naming of objects. For example a
KEGG!3 entry refers to a collection of proteins involved in a pathway whereas a UniProt
entry refers to a class of proteins, a class of variant proteins or some viral protein. To integrate
these two resources mapping is required. One approach is to designate an authoritative
names commission to manage the definitive list of such names (Stein, 2003). An example
is the HUGO Gene Nomenclature Committee 4 for gene names and symbols (short-form
abbreviation). But because of the dynamic in the field of biomedical research this approach
rarely work in practice (Stein, 2003).

Another way could be the creation of globally unique biological identifiers. For this purpose
URIs can be used which allows for the unique identifying of resources. This is central for
the use of Semantic Web technologies. Therefore a process is needed which routinely assigns
URIs to objects (Shadbolt et al., 2006) to create common, shared identities and names (Goble
& Stevens, 2008).

8.2 Extraction of the semantic information out of existing knowledge

For efficient use of Semantic Web technologies, it would be useful to automatically or
semi-automatically extract the semantic information from existing sources. Therefore a big
challenge is to develop methods which support such a task. This would aid two main tasks in
data integration using Semantic Web technologies:

1. Annotate sources to existing ontologies: This is a process which extracts information from
the data source to automatically or semi-automatically annotate this source to an existing
ontology.

2. Creation process of ontologies: This is a task which extracts information from
different data sources belonging to a specific domain. The goal is to automatically or
semi-automatically create an ontology based on the extracted domain information.

A large percentage of information encoded in literature (Krallinger et al., 2008) is in the
form of natural language. Some approaches for such “semantic information extraction” from
literature can be found in section 7.

8.3 Ontology development, maintenance and quality

Ontologies must be developed, managed and endorsed by committed practice communities
(Shadbolt et al., 2006). Furthermore, an ontology is a “living structure” which means that
concepts can change constantly because of new knowledge. They can be added, changed,
replaced or removed. Therefore ontologies are not fixed for all time and must be constantly
maintained. Another problem is the quality assurance (QA) of ontologies. According to
Gruber (Gruber, 1995) design and quality criteria for ontologies should be:

13 KEGG: Kyoto Encyclopedia of Genes and Genomes (http://www.genome. jp/kegg/)
14 http://www.hugo-international.org/comm_genenomenclaturecommittee.php
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1. Clarity: The intended meaning should be clearly defined and the definitions should be
objective.

2. Extendibility: The effort needed to extend an ontology without invalidating it.

3. Minimal encoding bias: No particular symbol-level encoding should be used to specify
terms.

4. Minimal ontological commitment: An ontology should use as few terms and relationships as
possible to describe the domain being modeled.

5. Coherence: The content of the ontology should be coherent. In other words inferences
should never contradicts a definition.

The quality of an ontology can be checked either collaboratively by users or centrally, by
experts. To test the coherence of an ontology Ontology-Reasoners like Pellet' could be used.
Ontology Reasoning is a process of automated logical inference of knowledge with ontologies.
It is used to check the consistency of knowledge models and to infer new knowledge in
accordance with the laws of logic.

8.4 Mapping, merging, alighment and integration of ontologies

Many individual ontologies are created and therefore the semantic mapping between different
ontologies has become a core issue for the Semantic Web and data integration using its
technology. To handle the increasing number of ontologies it is necessary to develop
semi-automatic or automatic approaches (Ehrig & Sure, 2004).

The problem with the mapping of ontologies is their heterogeneity which can be divided into
metadata heterogeneity and instance heterogeneity (Tang et al., 2006). Metadata heterogeneity is
concerned with the intended meaning of the information held in different ontologies and deal
with structural conflicts and name conflicts. Structural conflicts arise from ontologies which
cover the same domain but have different taxonomies (Ehrig & Sure, 2004), and naming
conflicts concern homonyms and synonyms between concepts of different ontologies. For
instance heterogeneity referreds to the variation in notation different e.g. different date
formats.

Merging, aligning and integration is an ontology reuse process to create a new ontology. The
task of each process is as follows (Choi et al., 2006; Ding et al., 2002):

* Merging is the task of generating a single ontology by merging two or more different
ontologies of the same domain.

e Alignment is a process of creating links between two ontologies when the sources are
consistent but kept separate. This addresses the problem of mapping between ontologies.

¢ Integration generates a single ontology by combining two ore more different ontologies in
different subjects.

Data which covers different domains can not often be described by only one ontology.
Therefore it is necessary to map different ontologies. There are different strategies for
mapping various ontologies:

* Ontology mapping between a global ontology and local ontologies (Beneventano et al., 2003):
Defines mapping between concepts in local ontologies to global ontology.

®  Mapping between local ontologies: These strategies define mapping between local ontologies.

15 Pellet is a OWL 2 Reasoner for Java (http://clarkparsia.com/pellet).
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8.5 Query RDF data

SPARQL overcomes the old problem of different, non standard query languages. Now it is
possible to query RDF data using a standard query language (Quilitz & Leser, 2008). But it is
important that content providers integrate SPARQL-endpoints to make their data available.
Such endpoints provide a machine-friendly interface towards the knowledge base and enables
queries using the SPARQL language. One challenge is to query more than just one endpoint
at the same time with only one query. There are several approaches which can be divided into
two groups (Haase et al., 2010; Kei-Hoi et al., 2009):

¢ Warehousing: This approach stores all RDF data from the different resources in one central
database. This database is typically a triple store which is designed to efficiently store and
handle RDF data.

* Federated query: A query engine decomposes a single query into sub-queries. Each
of these queries can be answered by an individual endpoint. After that, all results are
combined again into one and represented to the user.

Two examples of Java frameworks are Sesame'® witch supports the warehouse approach and
the ARQ! extension of the Jena Ontology API'8 which provides the federated query approach.

8.6 Visualization

The semantic integration of different resources results in increasing the amount of
semantically linked data. Semantic Web technologies use RDEF, defining links between data.
Therefore the challenge is to create an interface to visualize and navigate a massive RDF graph
without information overload. The visualization should help the user to easily explore and
quickly find relevant information (Le Grand & Soto, 2002) in the structure.

8.7 Availability

There are two issues: The availability of ontologies and content. A key to integrating data
using Semantic Web technologies is the availability of ontologies. Many ontologies are freely
available but concerns arise if an ontology is commercial or only partially released. For
example a license is necessary to access UMLS!®. On the other side it is important to access
content which is annotated to ontologies. But this may cause problems if this content is not
available due to technical problems, deleted static web sites and legal restrictions, etc.

8.8 Different ontology formats

The Semantic Web defines ontologies in the OWL format. But other ontologies exists with
different formats (for example the UMLS Rich Release Format (RRF) or the OBO format).
Therefore, mapping must be defined to convert these different formats to OWL.

8.9 Multilingualism

A challenge is also multilingualism when using Semantic Web technologies (Borner, 2006).
It plays a role in ontology development, annotation of data and representing multilingual
informations in user interfaces (Benjamins et al., 2002). For example, a scenario that leads to a
problem because of multilingualism:

User A annotates a document in French to Term A of an ontology designed in English. User B

6 pnttp://www.openrdf.org/

17 http:/ /jena.sourceforge.net/ ARQ/

B yttp://jena.sourceforge.net

19 This license is freely available for research purposes
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searches for Term A in English and finds a document related to what he is interested in, but it
is written in French.

9. Discussion

The idea behind the Semantic Web is to transform the Web into a global knowledge
base (Kei-Hoi et al., 2009). The key to make this possible is data integration. Therefore
Semantic Web technologies offer a more or less standardized hierarchical framework for data
integration and enable a decentralized semantic integration of different heterogeneous data
sources. For this integration, it is not necessary to change the structure of the data to assemble
knowledge from structured and unstructured sources. This technology extends the source
by adding machine readable semantic metadata using the Resource Description Framework
(RDF). This metadata contains sets of relations between data and concepts. This will
enable people to clearly and commonly define the concepts and logic within any document
(Neumann et al., 2004). Furthermore, Semantic Web technologies support an automatic
traverse of the connected resources. This queries the integrated sources or even infers new
knowledge using the standard query language SPARQL. The prerequisite for meaningful
semantic data integration is the presence of ontologies. They enable a unique identification
of entities in heterogeneous information systems and provide semantic data integration on
different granular levels. Semantic Web technologies provide standard languages including
the RDF Schema (RDFS), and the Web Ontology Language (OWL) for creating ontologies. The
quality of the data integration is tightly correlated with the quality of the used ontologies. But
in recent years, many high quality open access biomedical ontologies have been created, such
as the Gene Ontology, the Open Biological and Biomedical Ontologies.

In summary, Semantic Web technologies are a promising tool for data integration but there
are still some challenges to be overcome such as uniform naming, extraction of the semantic
information out of existing knowledge, ontology development, ontology maintenance or
query RDF data (see section 8).

10. Additionally

A public available example software, termed OBOBrowsA, can be downloaded following
the link http://www.umit.at/page.cfm?vpath=departments/technik/iebe/
tools/obobrowsagswitchLocale=en_US. It is able to load and display OBO files? in
tree or graph representation. The software further allows the user to interactively browse
through the ontology, search for ontology classes and annotate textual data. The manual and
application examples are included in the help function.
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1. Introduction

Information retrieval (IR) can be defined as the set of processes involved in querying a
collection of objects in order to extract relevant data and information Dominich (2010);
Grossman & Frieder (2004). Within this paradigm, various models ranging from deterministic
to probabilistic have been applied. The goal of this chapter is to invoke a mathematical
structure on bioinformatics database objects that facilitates the use of vector space techniques
typically encountered in text mining and information retrieval systems Berry & Browne
(2005); Langville & Meyer (2006).

Several choices and approaches exist for encoding bioinformatics data such that database
objects are transformed and embedded in a linear vector space Baldi & Brunak (1998). Hence,
part of the key to developing such an approach lies in invoking an algebraic structure that
accurately reflects relevant features within a given database. Some attention must therefore
be devoted to the numerical encoding of bioinformatics objects such that relevant biological
and chemical characteristics are preserved. Furthermore, the structure must also prove useful
for operations typical of data mining such as clustering, knowledge discovery and pattern
classification. Under these circumstances, the vector space approach affords us the latitude
to explore techniques analogous to those applied in text information retrieval Elden (2004);
Feldman & Sanger (2007); Grossman & Frieder (2004).

While the methods presented in this chapter are quite general and readily applicable to
various categories of bioinformatics data such as text, sequence, or structural objects, we
focus this work on amino acid sequence data. Specifically, we apply the BLOCKS protein
sequence database Henikoff et al. (2000); Pietrokovski et al. (1996) as the template for testing
the applied techniques. It is demonstrated that the vector space approach is consistent with
pattern search and classification methodologies commonly applied within the bioinformatics
literature Baldi & Brunak (1998); Durbin et al. (2004); Wang et al. (2005). In addition, various
subspace decomposition approaches are presented and applied to the pattern search and
pattern classification problems.

To summarize, the main contribution of this work is directed towards bioinformatics data
mining. We demonstrate that information measures derived from the vector space approach
are consistent with and, in many cases, reduce to those typically applied in the bioinformatics
literature. In addition, we apply the BLOCKS database in order to demonstrate database
search and information retrieval techniques such as

e Pattern Classification
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¢ Compositional Inferences from the Vector Space Models
¢ Clustering
¢ Knowledge Discovery

The chapter is outlined in Figure 1 as follows. Section 2 provides basic background
regarding information retrieval and bioinformatics techniques applied in this work. Given
this foundation, Section 3 presents various approaches to encoding bioinformatics sequence
data. Section 4 then introduces the subspace decomposition methodology for the vector space
approach. Finally, Section 5 develops the approach in the context of various applications listed
in Figure 1.

Applications
Consensus Sequence
Vector PSSM
Encode

Sequence _, | Space Sequence Alignment
Data (Section 3) Formulation

) Pattern Classification
(Section 4)

Clustering
Database Search

(Section 5)

Fig. 1. Flowchart for the chapter

2. Overview and notation

Part of the goal of this chapter is to phrase the bioinformatics database mining problem in
terms of vector space IR (information retrieval) techniques; hence, this section is devoted
toward reviewing terms and concepts relevant to this work. In addition, definitions,
mathematical notation and conventions for elements such as vectors and matrices are
introduced.

2.1 Vector space approach to information retrieval

Information retrieval can be thought of as a collection of techniques designed to search
through a set of objects (e.g. contained within a database, on the internet, etc) in order to
extract information that is relevant to the query. Such techniques are applicable, for example,
to the design of search engines, as well as performing data mining, text mining, and text
categorization Berry & Browne (2005); Elden (2004); Feldman & Sanger (2007); Hand et al.
(2001); Langville & Meyer (2006); Weiss et al. (2005). One specific category of this field that has
proven useful for the design of search engines and constructing vector space models for text
retrieval is known as Latent Semantic Indexing (LSI) Berry et al. (1999; 1995); Deerwester et al.
(1990); Salton & Buckley (1990). Using the LSI approach, textual data is transformed (or
‘encoded’) into numeric vectors. Matrix analysis techniques Golub & Van Loan (1989) are then
applied in order to quantify semantic relationships within the textual data.
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Document 1|Document 2| Document 3|Document 4
Term 1 1 0 1 0
Term 2 0 1 1 0
Term 3 1 1 0 1
Term 4 1 1 0 1
Term 5 1 0 1 0

Table 1. Example of a 5 x 4 term-document matrix.

Consider categorizing a set of m documents based upon the presence or absence of a list
of n selected terms. Under these circumstances, an n X m term-document matrix can be
constructed where each entry in the matrix might reflect the weighted frequency of occurrence
of each term of interest. Table 1 provides an example; in this case, a matrix column vector
defines the frequency of occurrence of each term in a given document. Such a construction
immediately facilitates the application of matrix analysis for the sake of quantifying the
degree of similarity between a query vector and the document vectors contained within the
term-document matrix.

Given an n x m term-document matrix A, consider an n x 1 vector g constructed from a query
document whose components reflect the presence or absence of entries in the same list of
n terms used to construct the matrix A. The question then naturally arises how one might
quantify the similarity between the query vector g and the term-document matrix A. Defining
such a similarity measure would immediately lead to a scoring scheme that can be used to
order results from most relevant to least relevant (ie induce a 'relevance score’).

Given the vector space approach, a natural measure of similarity arises from the inner
product. Assuming an {,-norm, if both g and the columns of A have been normalized to
unit magnitude, then the inner product between g and the j column vector of A becomes

qTa]- = lql| Hﬂj||C059]- = cos b W

(where the 'T” superscript denotes the transpose). Since all components of g and A are
non-negative, all inner products will evaluate to a value such that 0 < cos Gj < 1. Similar
queries approach a value of one indicating a small angle between the query and column
vector, dissimilar queries approach a value of zero indicating orthogonality. This specific

measure is called the "cosine similarity’ and is abbreviated as
cosf = qTA (2)

where cos 6 represents a row vector whose components quantify the relevance between the
query and each column vector of A.

Given the vector space approach, LSI (latent semantic indexing) goes a step further in
order to infer semantic dependencies that are not immediately obvious from the raw data
contained in the term-document matrix. In terms of linear algebra, the LSI methodology
translates into characterizing the column space of A based upon some preferred matrix
decomposition. A tool commonly applied in this arena is the Singular Value Decomposition
(SVD) Golub & Van Loan (1989) where the term-document matrix is factored as follows:

A=UuxzvT (3)
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where U is an n x n orthogonal matrix (i.e. u-'=u’), vVisan m x m orthogonal matrix (i.e.
V=1 = vT). Furthermore, ¥ is an n x m diagonal matrix of singular values such that

o >0m> - >20>0 4)

where r = rank(A) and 0; = X;. It turns out that the first r columns of U define an
orthonormal basis for the column space of the matrix A. This basis defines the underlying
character of the document vectors and can be used to infer linear dependencies between them.
Furthermore, it is possible to expand the matrix A in terms of the SVD:

A= Z U]-u]-va )

where u; and v; represent the j columns of U and V. This expansion weights each product
u ]'Z)]T by the associated singular value 0j. Hence, if there is a substantial decreasing trend in the
singular values such that ¢;/07 << 1forall j > L, one is then led to truncate the above series
in order to focus on the first L terms that are responsible for a non-negligible contribution to
the expansion. This truncation is called the low rank approximation to A:

L
Ay ol (6)

The low rank approximation describes, among other aspects, the degree to which each basis
vector in U contributes to the matrix A. Furthermore, the subspace defined by the first L
columns of U is useful for inferring linear dependencies in the original document space.

2.2 Bioinformatics

Given this abbreviated overview of vector space approaches to information retrieval, we now
put it in the context of bioinformatics research. In particular, the SVD has been applied
in many contexts as it can be thought of as a deterministic version of principal component
analysis Wall et al. (2003). One specific area of honorable mention is pioneering work dealing
with the analysis of microarray data Alter et al. (2000a;b); Kuruvilla et al. (2004).

With regard to information retrieval and LSI in bioinformatics Done (2009); Khatri et al.
(2005); Klie et al. (2008), research in this area devoted to phylogenetics and multiple sequence
alignment Couto et al. (2007); Stuart & Berry (2004); Stuart, Moffett & Baker (2002) has been
reported. Much of this work can be traced back to initial foundations where the encoding
of protein sequences has been performed using the frequency of occurrence of amino acid
k-grams Stuart, Moffett & Leader (2002). Using the k-gram approach, column vectors in the
data matrix (i.e. what was previously referred to as the "term-document matrix’) are encoded
amino acid sequences and their components are the frequency of occurrence of each possible
k-gram within each sequence. For example, if amino acids are taken k = 3 at a time, then
there exist 1 = 20F = 8000 possible 3-grams. Assuming there are 7 amino acid sequences, the
associated data matrix will be n x m = 8000 x m. For each amino acid sequence, a sliding,
overlapping window of length k is used to count the frequency of occurrence of each k-gram
and entered into the data matrix A.

The goal of this chapter is to build upon the IR and bioinformatics foundation in order
to introduce novel perspectives on operations and computations commonly encountered in
bioinformatics such as the consensus sequence, position specific scoring matrices (PSSM),
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database searches, pattern classification, clustering and multiple alignments. In doing so, it
is our intent that the reader’s view of these tools will be expanded toward novel applications
beyond those presented here.

3. Sequence encoding

Many choices exist for the encoding of and weighting of entries within the term-document
matrix; in addition, there exist a wide range of possibilities for matrix decompositions as
well as the construction of similarity and scoring measures Elden (2004); Feldman & Sanger
(2007); Hand et al. (2001); Weiss et al. (2005). The goal of this chapter is not to expand on the
set of choices for the sake of text retrieval and generic data mining; instead, we must focus
on techniques and approaches that are relevant to bioinformatics. Specifically, our attention
in this section is devoted toward developing and presenting novel encoding schemes that
preserve relevant biological and chemical properties of genomic data.

An assortment of methods have been proposed and studied for converting a protein from
its amino acid sequence space into a numerical vector Bacardit et al. (2009); Baldi & Brunak
(1998); Bordo & Argos (1991); Stuart, Moffett & Leader (2002). Scalar techniques generally
assign a real number that relates an amino acid to some physically measurable property (e.g. -
volume, charge, hydrophobicity) Andorf et al. (2002); Eisenberg et al. (1984); Kyte & Doolittle
(1982); Wimley & White (1996). On the other hand, orthogonal or ‘standard” vector encoding
techniques Baldi & Brunak (1998) embed each amino acid into a k dimensional vector space
where k is the number of symbols. For example, if k = 20 (as it would be for the complete
amino acid alphabet), the j amino acid where 1 < j < 20 is represented by a 20 dimensional
vector that is assigned a one at the j position and zero in every other position. In general,
standard encoding transforms a sequence of length L into an n = Lk dimensional vector. As
an example consider the DNA alphabet A = {A,G,C, T}. In this case k = 4 and standard
encoding transforms the alphabet symbols as

A= . G= . T= @)

O = OO

0
0
0
1

OO = O

1
0
0
0

Therefore, for an example sequence s = AT with L = 2, this encoding method yields the
following vector of dimension n = Lk = 8:

xI'=(10000001).

Observe that, for typical values of L, assuming a data set of m sequences, standard encoding
leads to an 1 x m data matrix that is sparse.

In bioinformatics, given the limitations on biological measurement, the number of
experimental observations tends to be limited and values of m are often small with respect
to n. Under these conditions, it is often the case that vector encoding methodologies lead
to sparse data matrices (as is the case for text retrieval applications) in high dimensional
vector spaces. Observe, for example, that the k-gram method reviewed in Section 2.2 fits
this description.

We can expand upon the standard encoding approach by categorizing the standard amino
acid alphabet into families that take into account physical and chemical characteristics derived
from the literature Andorf etal. (2002); Baldi & Brunak (1998). In addition, entries within
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the data matrix can be weighted based upon their hydrophobicity Eisenberg et al. (1984);
Kyte & Doolittle (1982). Table 2 introduces alphabet symbols used to group amino acids
according to hydrophobicity, charge and volume. Tables 3-5 show examples of various
encoding schemes that we apply for this analysis.

Hydrophobicity R=hydrophobic, H=hydrophilic
Charge P=positive, N=negative, U=uncharged
Volume S=smal, M=medium, ML=medium-large, L=medium

Table 2. Encoding symbols applied in Tables 3-5

RI1|ALLMEPW,V,D,E
H R/H/K/N/C/Q/G/S/ T/Y

€M)

Table 3. Hydrophobic/Hydrophilic Encoding

RUITIA,LLM,EP W,V
HN |2 D,E

HP |3 R, H K
HU|4| N,C,Q,G,S, T Y

Table 4. Charged Hydrophobic/Hydrophilic Encoding

RUS |1 A
RUM |2 F
RUML |3 |LL,M,V
RUL (4| EW
HPML|5| R, H,K
HNM | 6 D
HNML| 7 E
HUS |8| G,S
HUM 9| N,C, V
HUML |10 Q
HUL |11 Y

Table 5. Volume/Charged Hydrophobic/Hydrophilic Encoding

4. Subspace decompositions for pattern classification

LSI techniques necessarily require the application of matrix decompositions such as the SVD
to infer column vector dependencies in the data matrix. Decompositions of this kind can
lead to the construction of subspaces that can mathematically categorize subsets of sequences
into families. Furthermore, since these families define specific classes of data, they can be
used as training data in order to perform database searches and pattern classification. The
application of linear subspaces for the sake of pattern classification Oja (1983) consists of
applying orthogonal projection operators based upon the training classes (an orthogonal
projection operator P obeys P = PT and P? = P).
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4.1 Orthogonal projections

To begin, let us assume there are training sequences of known classification that can be
categorized into M distinct classes and that the i’ class contains m; encoded vectors of
dimension n. For each class, an n x m; matrix A; can be constructed (assuming the training
vectors are column vectors). To characterize the linear subspace generated by each class, we
can apply the singular value decomposition (SVD) Golub & Van Loan (1989). In addition to
providing us with an orthonormal basis for each class, we can also glean some information
about the influence of the singular values and singular vectors from the rank approximants.
Class data matrices are therefore decomposed as

A=z vil ®)

where U; is n x n orthogonal matrix, ; is n x m; whose diagonal contains the singular values
and V; is an m; x m; orthogonal matrix. Assume the rank of each data matrix A; is r; and let
Q; denote the n x r; matrix formed from first r; columns of U;. Given the properties of the
SVD, the columns of Q; define an orthonormal basis for the column space of A;. Hence, an

orthogonal projection operator for the i class is established by computing

P, = Q;Q. ©)

(given that the SVD induces UIT = Uu; 1 it is straightforward to check that P1.2 = P; and
Pl =P).

Consider an n x 1 query vector x whose classification is unknown. The class membership of
x can be ascertained by identifying the class yielding the maximum projection norm:

C(x) = argmax||Px||. (10)
i=1,-,M

One computational convenience of constructing the orthonormal bases Q; is that it is not
necessary to compute the projections when making this decision. Given any Q with
orthonormal columns and orthogonal projection P = QQT such that P2 = P and P = PT,
observe that

||Px||> = xTPTPx = xTP?x
=xTPx = xTQQ"x (11)
=[1Q"x[]> = [|xTQl*
Under these circumstances, to decide class membership, Equation (10) reduces to

C(x) = argmax ||xTQ;]|. (12)
i=1,-- M

Furthermore, the values ||xT Q;|| immediately yield relevance scores and confidence measures
for each class.
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4.2 Characterization of the orthogonal complement
It is important to note that the union of all the class subspaces need not be equal to the n
dimensional vector space from which all data vectors are derived. To perform a complete
orthogonal decomposition of the n dimensional vector space in terms of the data, we first
define the matrix

A=[A -+ Ayl (13)

The goal then is to characterize the null space N'(AT), the subspace which is orthogonal to the
column space of A. Assuming the rank of A is r 4, computing the SVD

A=Upz,V] (14)

and forming the matrix Q4 from the the first r4 columns of U, yields an orthogonal
decomposition of the subspace generated by all class vectors. Hence, a projection operator
for this subspace is constructed as

Pg = QaQh (15)
In addition, a projection for the orthogonal complement N (QZ;) of A is then easily formed via

Pyr=1I,— Py (16)

where I, is the n x n identity matrix. A complete orthogonal decomposition Lay (2005) of a
vector x € R" can then be determined from

x = Pgx+Pyix. (17)

4.3 Information retrieval

Before attempting to decide the class membership of a vector x € R" based upon Equation
(12), it is sensible to characterize the portion of the vector that contributes to the class subspace
defined by Q4. Given Equation (17), this is most easily done by comparing ||[P4x|| with
[Py.x|| as

_ |[Pgux]|
tan(¢) = TP x| (18)

where ¢ is the angle between x and the subspace defined by Q4. Ideally, if the class
subspaces have been completely characterized, tan(¢) should be small. Conversely, larger
values of tan(¢) would indicate that x is a member of a class subspace that has not yet been
defined. Under these circumstances, the orthogonal complement would have to be further
characterized and partitioned in order to define more classes beyond the known M existing
classes.

It is also possible to phrase the tangent measure as a scalar version of the more familiar cosine
similarity defined above in Equation (2). If ||x|| = 1, the cosine similarity measure takes on a
convenient form

cos(¢) = [|x"Qall. (19)
To see why, consider the inner product
x(Pax) = x - Ppx = ||x|| || Pax|| cos(¢p). (20)
If ||x|| =1, then
T
cos(g) = A e1)

|[Pax||”
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However, since P4 is an orthogonal projection

||Pax|| = \/xTP]Pax = VX Pax (22)

and Equation (21) can therefore be rewritten as

cos(¢p) = 1/ xTPyx. (23)

On the other hand, by applying Equation (11) to Equation (22), it follows that

1xTQall = \/xTPax (24)

as well; hence, the equality of Equations (23) and (24) establishes Equation (19).
Equation (19) should also be clear from the geometric fact that
_ |[Pax]|

cos(¢) = (25)

[Ix[]

Assuming ||x|| = 1, Equation (19) then easily follows by applying Equation (11) to Equation
(25). Equations (23) and (24) are presented in order to offer additional insight by relating the
inner product to the projection operator.

Of central focus in the next section will be to apply the above projection framework to
information retrieval in bioinformatics. Since the classification problem will be of significance,
we note that, given the identity in Equation (19), Equation (12) can be rephrased in term of the
cosine similarity measure

C(x) = argmax cos(¢;) (26)
i=1,--,M
where
cos(¢i) = ||x"Qill- (27)

In addition, this measure of class membership becomes more reliable if the contribution of x
to the orthogonal complement of the data set is small. For instance, when ¢ is small, cos(¢)
in Equation (19) approaches unity. Therefore, cos(¢) can be applied as a measure of data
set reliability while cos(¢;) can be used to produce relevance scores fori = 1,--- , M. These
conclusions are summarized in Table 6.

Similarity Measure Purpose Reference
cos(¢) Data Set Reliability| ~ Equation (19)
cos(¢;) Relevance Score |Equations (26) - (27)

Table 6. Reliability and relevance measures to be applied in Section 5

5. Applications

In bioinformatics, families with similar biological function are often formed from sets of
protein or nucleic acid sequences. For example, databases such as Pfam Finn et al. (2010),
PROSITE Sigrist et al. (2010) and BLOCKS Pietrokovski et al. (1996) categorize sequence
domains of similar function into distinct classes. Given the encodings discussed in Section 3,
we seek to demonstrate how Equations (19) and (26) can applied in order to perform sequence
modeling, pattern classification and database search computations typically encountered in
bioinformatics Baxevanis & Ouellette (2005); Durbin et al. (2004); Mount (2004).
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5.1 Consensus sequence

A set of m sequences of length L having some related function (e.g. DNA promoter sites
for a common sigma factor) is often represented in the form of an m x L matrix where each
column refers to a common position in each sequence. A consensus sequence sc of length
L is constructed by extracting the symbol having the highest frequency in each column.
This approach to sequence model construction, while quite rudimentary, is often useful for
visualizing obvious qualitative relationships amongst sequence elements.

Using the vector space approach, it is possible to recover the consensus sequence. Assuming
each sequence symbol is encoded into a k dimensional vector, each sequence will be encoded
into a vector of length n = Lk (see Section 3). Hence the original m x L matrix of sequences
will be transformed into an n x m data matrix of the form described in Section 2.1. In this case,
each column vector in the data matrix represents an encoded amino acid sequence.

To recover the consensus, it is useful to introduce notation for describing an empirically
derived average vector 14 from an n X m data matrix A as follows:

pa=()Ae (28)

where e and m x 1 vector of ones. Then, 14 is an n x 1 column vector made up of L contiguous
’subvectors’ of dimension k where the value of k depends upon the encoding method applied.
Letv; fori = 1,---, L represent each subvector in i 4; then, the ith symbol in the consensus
sequence sc (i) can be inferred by associating the component of v; yielding the highest average
with the originally encoded symbol. To be precise, let the alphabet of k sequence symbols (e.g.
DNA, amino acids, structural, text, etc) be defined as

AE{ﬂl,ﬂz,---,ﬂk} (29)

and let the jth component of v; be written as v;; for j = 1,--- k. The subscript index of the
component with the maximum average in v; can therefore be extracted as

] = arg maxv;; (30)
j=1, k

and the associated alphabet symbol is entered into the i position of the consensus sequence
as

sc(i) = ay (31)
where a; € A. The algorithm for recovering the consensus sequence can be summarized as
follows:

1. Given the n x m encoded data matrix A, compute y 4.
2. For each v; wherei =1,---, L, apply Equation (30).

3. Given the alphabet 4, apply Equation (31) in order to construct the consensus sequence
Sc-

5.2 Position specific scoring matrix

The consensus sequence, while qualitatively useful, is an incomplete sequence model in
that it does not consider cases where two or more symbols in a given position are close to
equiprobable. Under these circumstances, one is forced to arbitrarily choose one symbol for
the consensus at the expense of loosing information about the other symbols. In contrast,
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the position specific scoring matrix (PSSM) is a sequence model that considers the frequency
of occurrence of all symbols in each position. Furthermore, the PSSM can be used to score
and rank sequences of unknown function in order to quantify their similarity to the sequence
model.

Given an m x L matrix of of m related sequences of length L and an alphabet of k symbols, a
k x L "profile’ matrix of empirical probabilities is first constructed by computing the symbol
frequency for each position. The profile matrix can be thought of as the preimage of the PSSM.
While it can provide important statistical details regarding the sequence model, it does not
have the capability to score sequences in an additive fashion position by position. To do
this requires converting the profile into a k x L PSSM of additive information scores. Given
a sequence s of length L, the PSSM can then be used to compute a score for s in order to
determine its relationship to the sequence model.

Recovering the PSSM from the vector space approach is straightforward. Given an n x m data
matrix of encoded sequences, the i’ subvector v; in the average vector ji4 computed from
Equation (28) is equivalent to the i column in the k x L profile matrix. Simply reshaping the
kL x 1 vector y 4 into a k x L matrix recovers the profile. However, since the goal is to score
sequences of unknown function, we are more interested in showing how p 4 can be applied to
recover a PSSM score. Assume that the components of jz 4 have been transformed by applying
the same information measure Zpggy; used to convert the profile to the PSSM. Assuming an
encoding alphabet with k symbols, a query sequence s of length L can be encoded to form a
kL x 1 vector x. The PSSM score Spgsy of x can then be recovered via the inner product:

Spssm = X Ipssp(ia) (32)

where Zpgspr(p 4) represents the conversion of a probability vector into an vector of additive
information scores.

The similarity of Equation (32) with Equation (2) is worth noting. Assume several families of
sequences of equal length L are encoded into separate data matrices A; wherei =1,--- , M
and M is the number of families. It should be clear that the relevance score for the query
vector x can be produced using the cosine similarity according to

Spssm = X" Ipssu (33)

where

Tpssm = [Zpssm(pa,) Ipssm(pa,) - pssm(piay,)] (34)
is the n x M information matrix that describes the sequence families.
It is of important theoretical interest that the vector space approach recovers both the PSSM
and its information capacity to score sequences. However, it is more useful to observe
that invoking an algebraic structure on a set of sequences induces a spectrum of novel
possibilities. For instance, the SVD can be applied to the data matrix and a scoring scheme
can be derived from the computed orthogonal basis. In addition, as mentioned at the end of
Section 3, it is possible to weight both the data matrix and the encoded sequence according
to more biologically significant measures such as hydrophobicity. Finally, and probably
most importantly, the vector space formulation allows for powerful optimization techniques
Golub & Van Loan (1989); Luenberger (1969) to be applied in order to maximize the scoring
capacity of the sequence model.



96 Bioinformatics — Trends and Methodologies

5.3 Clustering

Our goal in this section is to investigate how clustering encoded sets of vectors will partition
an existing set of data. While there are several approaches to performing data clustering
Theodoridis & Koutroumbas (2003), we choose to invoke techniques that characterize the
mean behavior of a data cluster. Specifically, we analyze one supervised method (Section 5.3.2)
and one unsupervised method (Section 5.3.3). As we shall see, these approaches will enable
us to construct ‘fuzzy’ regular expressions capable of algebraically describing the behavior
of a given data set. It will become clear that this approach will offer additional insight to
sequence clustering techniques typically encountered in the literature Henikoff & Henikoff
(1991); Smith et al. (1990). As the BLOCKS database Henikoff et al. (2000); Pietrokovski et al.
(1996) has been constructed from sequence clusters using ungapped multiple alignment, we
choose to apply this database as the template in order to compare it against the vector space
model.

5.3.1 The BLOCKS database

The BLOCKS database consists of approximately 3000 protein families (or 'blocks’). Each
family has a varying number of sequences that have been derived from ungapped alignments.
Therefore, while sequence lengths between two different families may differ, sequences
contained within each family, by the definition of a "block’, must all have the same length.
Furthermore, the number of sequences in each family can vary and there is can be a
considerable degree of redundancy within some families; hence, it is sensible to analyze how
the data is distributed with respect to each BLOCKS family.

The histogram in Figure 2 illustrates the number of BLOCKS families as function of sequence
length. For example, there are 90 families containing sequences of length L = 40. From this
figure, we can conclude that it is generally possible to find at least 40 families containing
nominal sequence lengths. It is also important to characterize how the number of sequences
contained within each family is distributed throughout the database. The histogram in Figure
3 illustrates the number of BLOCKS families as function of the number of sequences contained
within each family. From this figure, we observe that many families contain somewhere
between 9 and 20 representative sequences. Finally, for the sake of clarity, we restrict our
attention to sequences having the same lengths. The extension of these results to variable
length sequences is the subject of current research based upon existing methodologies cited in
the literature Couto et al. (2007); T. Rodrigues (2004). The histogram in Figure 4 illustrates the
number of BLOCKS families as function of the number of sequences contained within in each
family; however, observe that this representative sample has been restricted to those families
containing sequences of equal length (in this case L = 30). The behavior in this graph is typical
in that most families contain on the order of 10-12 sequences of equal length. For the purposes
of illustration and without loss of generality, we choose to demonstrate the techniques in the
upcoming sections using families containing sequences of equal length.

5.3.2 Centroid approach

In this section, we cluster sequences whose BLOCKS classification is known a priori in order
to algebraically characterize each family. To do this, each family in the analysis is encoded
separately and Equation (28) is applied to each family data matrix in order to derive a family
centroid. Since the families are already partitioned, this approach is a supervised clustering
technique that will enable us to derive symbol contributions from the centroid vectors.
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Fig. 2. Histogram of the number of BLOCKS families as function of sequence length.
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Fig. 3. Histogram of the number of BLOCKS families as function of the number of sequences
contained in each family.



98 Bioinformatics — Trends and Methodologies

20 T T T T

18l Restricted to Families with Sequence Length L=30

16 1

Number of BLOCKS families

0 5 10 15 20 25
Number of sequences

Fig. 4. Histogram of the number of BLOCKS families as function of the number of sequences
contained in each family (restricted to families with sequences of length L=30)

For this numerical experiment, we apply Table 5 as the encoding scheme and choose the
BLOCKS family sequence length to be L = 30. Under these conditions, sequences will be
encoded into column vectors of dimension n = (30)(11) = 330. In addition, all encoded data
vectors are normalized to have unit magnitude.

There are 73 families in the BLOCKS database that have block length L = 30. Furthermore,
there are a total of 910 sequences distributed amongst the 73 families. As mentioned above,
there is a small degree of sequence redundancy within some BLOCKS families. After
removing redundant sequences, a total of ] = 755 sequences of length L = 30 are distributed
amongst I = 73 families. Given the encoding method, the dimensions of the non-redundant
data matrix A will be 330 x 755.

Figure 5 shows the results of computing the distance between all centroids. From this
histogram, we observe that database families are fairly well-separated since the minimum
distance between any two centroids is greater than 0.6.

In order to analyze the performance of the encoding method, we apply the inner product.
Specifically, each data vector v; is classified by choosing the family associated with the
centroid yielding the largest inner product:

C(vj) = argmax v}r/\/l. (35)
i=1,,1
wherej=1,---,]and
M= [a, Ha, - 14 (36)

For standard encoding (i.e. k = 20, n = 600), all 755 data vectors were classified correctly
using Equation (35). On the other hand, when applying the encoding method in Table 5, there
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was one misclassification. Figure 6 illustrates that data vector number 431 (which as member
of family 30, "HlyD family secretion proteins’) was misclassified into family 54 (Osteopontin
proteins). So, while the vector dimension is reduced from 600 to 330 (because k is reduced from
20 to 11), a minor cost in classification accuracy is incurred. At the same time, we observe a
substantial reduction in dimensionality.

We note one final application of the centroid approach for deriving ‘fuzzy’ regular expressions
extracted from the vector components of the centroid vectors. Consider the sum normalized
i" family centroid

NAI = (m) HA; (37)

For each subvector associated with each sequence position in Ny, it is then possible to
write an expression describing the percentage contribution of each symbol to analytically
characterize the i sequence family.

5.3.3 K-means approach

In contrast to the supervised approach, we now wish to take all sequences of length L in the
database and investigate how they are clustered when the unsupervised K-means algorithm
is applied. When this algorithm is applied to small numbers of families (e.g. < 10), our results
indicate that this algorithm will accurately determine the sequence families for the encoding
method presented. However, as the number of data vectors grow, the high-dimensionality
of the encoding method tends to obscure distances and, hence, can obscure the clusters. We
briefly address this issue in the conclusions section of this chapter.
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5.4 Database search and pattern classification

We now come to what is arguably one of the most important applications in this chapter.
In this section, we will apply the reliability and relevance measures summarized in Table 6
to perform BLOCKS database searches and pattern classification Bishop (2006); Hand et al.
(2001).

5.4.1 Characterization of BLOCKS orthogonal complement

When constructing a database, it is critical to understand and analytically characterize the
spectrum of objects not contained within the database. This task is easily achieved by
considering the orthogonal complement. As first step, we consider families with sequence
lengths L = 15 (70 families) and L = 30 (73 families). Furthermore, we compare encodings
from Table 3 and Table 5 with standard encoding. Specifically, for each encoding method,
an n x m non-redundant data matrix A consisting of all data vectors of from all families with
sequence length L is constructed. The SVD is then applied to construct an orthogonal basis Q 4
for the column space of A. The rank r of A (r=D[Q 4]) and the dimension of the null space of A
are then compared (D[N (QZ‘)]). Using this approach, it is then possible to assess the quantity
n — D[Q4] to determine the size of the subspace left uncharacterized by the database. Table
7 summarizes the results. From this table, it is clear that, after redundant encoded vectors
are removed, the BLOCKS database thoroughly spans the pattern space. Furthermore, the
histogram in Figure 5 further indicates that, while the sequence subspace is well represented,
there is also a good degree of separation between the family classes.

5.4.2 Pattern classification
Another important database characterization is to examine how the projection method
classifies data vectors after the class subspace bases have been constructed using the SVD.
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renewcommand11.2

Sequence Length|Encoding Method| n | m [D[Q4][DINV(Q])]
L=15 Standard 3001949, 286 14
L=15 Table 5 165(949| 165 0
L=15 Table 3 30 1936 30 0
L =30 Standard 600|785, 576 13
L =30 Table 5 330|785| 330 0
L =30 Table 3 60 |774| 60 0

Table 7. Characterization of BLOCKS orthogonal complement for various sequence lengths

and encodings

In a manner similar to Figure 6, we classify all encoded data vectors in order to determine
their family membership by applying Equation (26). Figures 7 - 8 show results where the
L = 15 and L = 30 cases have been tested. For the L = 15 case, as the vector space
dimension decreases more classification errors arise since a reduced encoding will result in
more non-unique vectors. The L = 30 case leads to longer vectors, hence, it is more robust to

reduced encodings.
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5.4.3 BLOCKS database search

In this section, we demonstrate how to perform database searches using the relvance and
reliability equations summarized in Table 6. Database search examples have been reported
using the BLOCKS database Henikoff & Henikoff (1994). In this work, we analyze the effect of
randomly mutating sequences within the BLOCKS database to analyze family recognition as a
function sequence mutation. For the purposes of illustration, we consider a test sequence from
the Enolase protein family (BL00164D) in order to examine relevancy and database reliability.
For this test sequence with L = 15, amino acids are randomly changed where the number of
positions mutated is gradually increased from 0 to 12. Furthermore, encodings from Table 3
are compared with standard encoding.

For this series of tests, the reliability always gives a value of cos(¢) = 1, implying that the
randomization test did not result in a vector outside the subspace defined by the database.
This corroborates conclusions drawn in Section 5.4.1. Figure 9 shows that the classification
remains stable for both encodings until about 5-6 positions out of 15 have been mutated (the
family index for the original test sequence is 10). In addition, the relevance can be summarized
by computing the difference between the maximum value of cos(¢;) and the second largest
value. For the sake of illustration, if the BLOCKS family with index 10 does not yield the
maximum projection, then the relevance difference is assigned a negative value. Figure 10
show the results of this computation. In this test, we observe a consistent decrease in the
relevance difference indicating that secondary occurrences are gaining influence against the
family class of the test sequence.



Vector Space Information Retrieval Techniques for Bioinformatics Data Mining 103

12

10 b

Family Index

6 . . . . .
0 2 4 6 8 10 12

Number of Positions (Standard Encode)

20

15 h

Family Index

5 . . . . .
0 2 4 6 8 10 12

Number of Positions (Volume/Charge/Hydro Encode)

Fig. 9. Family classification as a function of the number of positions randomized.

3 1

c

o

(]

£

o

[]

(2]

c

©

>

°

[}]

o _0.5 . . . . .

0 2 4 6 8 10 12

Number of Positions (Standard Encode)

3 1

c

o

o

£

o

]

o

c

©

>

o9

[

£ _05 I I I I I

0 2 4 6 8 10 12

Number of Positions (Volume/Charge/Hydrod Encode)

Fig. 10. Relevance differential as a function of the number of positions randomized.



104 Bioinformatics — Trends and Methodologies

6. Conclusions

This chapter has elaborated upon the application of information retrieval techniques to
various computational approaches in bioinformatics such as sequence modeling, clustering,
pattern classification and database searching. While extensions to multiple sequence
alignment have been alluded to in the literature Couto et al. (2007); Stuart, Moffett & Baker
(2002), there is a need to include and model gaps in the approaches proposed in this body of
work. Extensions to the vector space methods outlined in this chapter might involve including
a new symbol to represent a gap. Regardless of the symbol set employed, it is clear that the
approach described can lead to sparse elements embedded in high dimensional vector spaces.
While data sets of this kind can be potentially problematic Beyer et al. (1999); Hinneburg et al.
(2000); Houle et al. (2010); Steinbach et al. (2003), subspace dimension reduction techniques
are derivable from LSI approaches such as the SVD.

The IR techniques introduced above are readily applicable in any setting where bioinformatics
data (sequence, structural, symbolic, etc) can be encoded. This work has focused primarily
on amino acid sequence data; however, given existing structural encoding techniques
Bowie etal. (1991); Zhangetal. (2010), future work might be directed toward vector
space approaches to structural data. The methods outlined in this chapter allow for
novel biologically meaningful weighting schemes, algebraic regular expressions, matrix
factorizations for subspace reduction as well as numerical optimization techniques applicable
to high dimensional vector spaces.
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1. Introduction

Understanding the mechanisms that regulate gene expression is a major challenge in
biology. Motif finding problem is considered an important task in this challenge.
Addressing the complexity nature of the problem together with being very data intensive
has encouraged introducing field programmable gate arrays (FPGAs) to the problem.
FPGAs are very powerful in such computationally intensive tasks.

Many Algorithms are introduced to solve this problem. They can be categorized into
pattern-based and profile-based algorithms [1]. Pattern-based algorithms include
PROJECTIONTJ4], MULTIPROFILER[6], and MITRA[3]. Profile-based algorithms includes
CONSENSUS[7], MEME]2] and Gibbs sampling[5]. Although these algorithms show good
performance, they still can fail to identify all the possible motifs in the sequences. They also
show poor performance when trying to solve the challenge problem presented by Pvzner
and Sze[8]. Some of them fail due to local search, others which are based on statistical
measures fail to separate the motif from the background sequences.

We can also categorize Motif finding algorithms due to the solution they provide. Some
algorithms provide exact solution others provide approximate one. Brute Force algorithm is
an exact algorithm but it suffers from the intractability of its running time. It increases
exponentially with the size of the required motif. This makes the Brute Force unsuitable for
long motifs.

Our enhanced Brute Force algorithm, skip Brute Force, can predict the quality of the
computed motif. The algorithm skips those iterations which will lead to a poor scored motif,
thus leads to a better running time than the original Brute Force. This enhancement
guarantees the same exactness of the Brute Force. But, it still suffers from the intractable
running time for long motifs.

Many approaches can be applied to speed up the running time of any algorithm using
hardware; examples include chip multiprocessors, graphics processing units (GPUs) and
(FPGAs). GPUs are inexpensive, commodity parallel devices and have already been
employed as powerful coprocessors for a large number of applications. However, GPUs
have limited instructions and limited parallelism relative to FPGA's configurability. The
research in [10] employed acceleration using GPU. Another approach uses clusters of
workstations [12]. However, clusters typically have high maintenance and energy costs



108 Bioinformatics — Trends and Methodologies

when compared to single node solutions. Others use special hardware [9][11], where a cost
performance ratio would be fairer for comparison [9].

The repetitive nature of the algorithm and the locality of the data encourage the use of
FPGAs. Many operations can be done concurrently to enhance the running time. FPGAs
proved to successfully accelerate sequential algorithms minimum by one or two orders of
magnitude. They also have been widely used to accelerate bioinformatics problems such as
Smith-Waterman and BLAST algorithms. This research offers an enhanced Brute Force
algorithm hardware accelerated using Field Programmable Gate Arrays (FPGAs). Our
research leads to a speed up by 1.5MX and thus boosting the running time without
sacrificing the accuracy.

The rest of this chapter is organized as follows: In Section 2 we describe the motif finding
problem and presents our enhanced Brute Force algorithm; skip Brute Force. Section 3
presents the hardware implementation of our novel approach with a detailed view to its
components. Performance evaluation is presented in section 4. Finally, section 5 concludes
our work and presents future enhancements.

2. Skip brute force algorithm

Brute-force search or exhaustive search, also known as generate and test, is a very general
problem solving technique that consists of systematically enumerating all possible
candidates for the solution and checking whether each candidate satisfies the problem's
statement.

The motif finding problem can be summarized as follows:

Planted (I,d)- Motif Problem: Find the motif consensus M which is a fixed but unknown
nucleotide sequence of length I. Suppose that M occurs once in each of t background
sequences of common length n. Each occurrence of M is mutated by exactly d point
substitutions in positions chosen independently at random. Given the ¢ sequences, recover
the motif occurrences and the consensus M.

Pevzner and Sze[8] presented the challenge problem(15,4) which makes a particular
parameterization to the panted motif problem. The motif we are searching for is of length
=15, the allowed mutations d=4 and the number of sequences we are searching in is =20
each of size n=600. The parameters of the challenge problem are typical values for finding
transcription factor binding sites in co-regulated gene promoter regions yeast [4].

The Brute Force algorithm solves the motif finding problem by considering the set of all 4/
possible I-mers. It computes the total distance of each I-mer in that set to all other I-mers in all ¢
sequences. The correct motif is the one that have the smallest total distance along all the other
I-mers. The run time of this algorithm is O(4'nt). The running time for finding a motif of [=11 is
about 5hrs and it fails to handle longer motifs in reasonable time. To solve the challenge
problem, the running time of the Brute Force algorithm would obviously be too slow.

The idea behind our skip Brute Force algorithm is that it skips all the iterations that will not
lead to a correct solution. The algorithm is forced to skip over the remaining iterations in two
cases. The algorithm generates all possible 4/ [-mers. It then iterates over all the sequences
examining that generated I-mer with all the windows in each sequence. For each sequence
iteration, the current score is initialized with the allowed mutation and then the score of each
window is computed; i.e. the hamming distance between that window and the current I-mer.
If this distance beats the current score then we would suspect the current window to be an
implanted motif until another window in the same sequence with a higher score beats it.



Massively Parallelized DNA Motif Search on FPGA 109

The planted motif problem guarantees to find the motif in each sequence. Based on this fact
the skip algorithm skips the iterations over the remaining sequences if it reached the end of
the current sequence without finding any window that matches the current I-mer (this I-mer
can not be the motif) and jumps to the next [-mer. Assuming a single solution, the algorithm
also skips the iterations over the remaining [-mers if it reaches the last sequence (=20)
without skipping any iteration (the solution is found).

A pseudo code of the skip Brute Force algorithm is shown below in Figure 1.

1. for L = 0 to 4-meifSize _ 1 dg % examine all possible /-mers

2. for Ti= 1to t_sequences do % loop on all ¢ sequences

3. motif_found =0;

4. current_score =d_mutations;

5. for W= 1 to n_seqSize-l_motifSize+1 do % loop on all windows
6. dist = compute_distance ( L, W);

7. ifdist<= current_score

8. solutionmotif = Li; % this can be the motif

9. solution.posit(Ti) = W; % save its position

10. motif found = 1; % a suspected motif was found

11. current_score = dist;

12. if Ti =t _sequences % we reached the last sequence
13. solution_found =1;

14. end

15. %% break; %% (does not guarantee to find best solution)
16. end

17. ifmotif_found ==0

18. break; % Skip that Lj, it is nol the Motif

19. end

20. end

21. end

22. if solution_found

23. break;

24, end

25. end

Fig. 1. Pseudo Code of the skip Brute Force Algorithm. If the commented break command is
applied, then algorithm will skip-more.

2.1 Skip-more brute force

In our early implementation of the skip algorithm, we did not consider scores for the motifs
found. We forced to skip the current sequence if a single motif is found that has d mutations
within the allowed range (line 15). Here the algorithm fails to find the best motif as more
windows in the current sequence can reveal occurrences of motifs with lower mutations.
The complexity of this algorithm is O(4/nt) at its worst case, just as the Brute Force.

3. Hardware implementation of skip brute force

Our design benefits from the concurrent nature of the FPGAs as a hardware platform;
control, multiplexing, matching and decision making are all occurring on the same clock
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edge. We used VHDL to model our design preserving its extendibility for more complex
challenging problems in future. Figure 2 shows the system block diagram.

Challenging Problem

. Solution
20*600 (Motif + Positions)
J'IROM" ﬁ
<L
Sequence f/ h
Multiplexor
4 Motif
Generator Sh|fter Logical
Control
| Clk
l Mutation Score | Rst
e

Fig. 2. Block diagram of the skip Brute Force - running on an FPGA with one matching unit.

All t-sequences are first loaded into an on-chip read-only memory 'ROM' as shown in Figure
3. On the contrary, the set of all 4/ I-mers are not stored, but locally generated. Gaining from
encoding each nucleotide into 2-bit symbol, the 4/ Motif Generator is a simple controlled
binary counter. The shifter block is fed by the currently needed sequence and only reveals a
sliding I-sized window of it at a time. The matching block compares the revealed window to
the generated [-mer and outputs the hamming distance as the mutation score. The logical
control unit synchronizes the system to properly implement the skip Brute Force algorithm.
More details are found in the following subsections.

Current Sequence Number

@ibits
Challenging Problem 20*600
HROM”

11200-bits

Current Sequence

Fig. 3. The ROM Block holding the challenging problem sequence.

3.1 Sequence multiplexor
The sequence multiplexor gets one sequence at a time. The Logical control issues the signal
to the multiplexor to load the sequence from the ROM and feed the shifter.

3.2 Sequence shifter
The sequence shifter block has the following inputs: clk, reset and the sequence to be shifted.
The shifter outputs an [-sized motif each clock cycle through a windowing approach.
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The shifter outputs (n-I+1) motifs for each sequence unless it is interrupted by resetting it.
Our skip Brute Force resets the shifter in one case; when the shifter has generated all the (n-
[+1) I-mers for this sequence. The shifter is reset to be fed with new sequence to generate the
newly suspected motifs (I-mers) from this sequence.

Sequence
: @Zﬂo-bits

Sequence Shifter 4.

Rst
ﬁ-bl’ts

Current Window

Fig. 4. Sequence Shifter block diagram.

The skip-more algorithm resets the shifter in two cases. The first case is the one previously
explained. The second case happens when the matching unit finds an [ to be within the d
allowed mutations. In this case the system resets the shifter as the motif is considered to be
found. Block diagram of Sequence Shifter is shown in Figure 4.

3.3 Motif generator

The set of all 4/ [-mers starting with AA ... A to TT ...T is not stored in the system. The four
DNA nucleotides {A,C,G, T} are easily encoded into the 2-bit symbols 00,01,10 and 11
respectively. The system locally generates all the possible -mers by a simple controlled
binary counter of size [ bits.

That is, in a system with /=3 we would like to generate AAA, AAC, AAG, AAT, .., TTT.
According to the encoding mentioned above; we would like to generate a series of 6-bits
each as follows 000000, 000001, 000010, 000011, ..., 111111. The relation between these
encoded bits can be obtained by a simple binary counter of size [ bits.

3.4 Matching block

The matching block consists of many sub-blocks; xoring units, an I-bit adder and a
comparison block. The matching block takes two I-sized sequences and compares them. If
the difference between the two sequences is less than or equal to the allowed mutation
(the two sequences have less than or equal to d different nucleotides), it outputs a match
signal.

The matching block uses a series of xoring gates to determine if two | nucletoids are
identical. The I-bit adder is used to count the differences between them. Finally, a
comparison block is used to compare the value obtained from the adder with the d allowed
mutation.

The matching block also outputs the score of the matching process. This score is used by the
logical control to determine the quality of the motif obtained. The Matching block diagram
is shown in Figure 5. Detailed Matching block diagram is shown in Figure 6.
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Current Window Current Suspected Motif

Matcher

! !4—bits ;-bit

Score Match

Fig. 5. Matching block diagram.

Our design is meant to be extendible by instantiating more of the matching units. Thus, its
circuit implementation has to be highly optimized. Classical hamming distance circuits start
with an array of XOR gates to determine matching nucleotides, followed by I sequential
adders to compute the required distance. This approach leads to long circuit delays that will
cause the system maximum frequency to drop, degrading the performance.

Our design replaces the sequential adders with a specially designed adders tree. For the (15, 4)
problem, the proposed design shortens the critical path from fifteen 4-bit adders to only four
full adders and two half adders. Figure 7 shows the optimized adder tree.

3
3
kS

motif score |
7 match
4-bit
comparator
score
d
mutations

1

Fig. 6. Matching block components - xoring units are double the size of the motif.
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3.5 Adder tree

The [-bit adder takes a pattern of size [, calculates the number of ones in this pattern and
outputs the count in a logy! bits. For [=15, the adder would accept a 15 bit input signal and
ouputs a 4-bit output signal. A 15-bit input signals needs five full adders; this would be
stage 0. Stage 0 outputs 5 sum signals and 5 carry signals. Stage 1 needs 1 full adder and 1
half-adder for the output sum signals and the same for the output carry signals.
Accordingly, stage 2 needs only 4 half adders, stage 3 needs 2 full adder and stage 4 needs 1
half adder. The final stage needs 1 full adder.

my,mys my; my,my, My mgm;mg msm,m; m;m; m,

L1 111 L1 11

Full Full Full Full Full
Adder Adder Adder Adder Adder
[ [ ] I | |

= = — g

[ Half Half Full

Adder Adder Adder

Fig. 7. The six stages adder tree - The critical path involves 4 full adders and 2 half adders.

3.6 Logical control

The system is managed by the logical control. Reset signals are issued to the motif generator
and to the sequence shifter to control the flow of the sequences to be compared. As
explained earlier, the logical control issues this signal under certain events. The logical
control outputs the best motif which is determined by the scoring function.

3.7 Multiple matching units

It is clear that scaling up the design by utilizing more matching units in parallel will speed
up the overall performance by the factor of extra units. Slight modifications and some logic
duplication will be introduced for proper functionality and synchronization. The only
limiting factor to the performance boost is the FPGA resources.
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Figure 8 shows the block diagram of the skip Brute force running on an FPGA with multiple
matching units. All t sequences are also loaded into an on-chip read-only memory ROM as
the previous architecture. The sequence multiplexor feeds n series of sequence shifter
followed by a matching unit. The matching unit takes its two I-sized sequences one from the
shifter and the other from the logical unit which contains the motif generator. The outputs of
the matching unit in each series are ANDed to determine the value of solution found. The
number of the series of sequence shifter followed by matching unit is equal to n, where # is
the number of the examined sequences. In the previous architecture, the system has to loop
over all the sequences for each generated motif. This corresponds to n.t.4! loops. In this
enhanced architecture, the system loops only 7 . 4.

Solution

[ Challenging Problem 20*600 ]
(Motif)

“ROM”

Sequence Multiplexor

{} {} {F sequence
( shifter | [ shifter | * * * [ shifter | window

4 Motif

g Fd= 7 T Generator

Control 4

Solution Found

| Rst

~—

Fig. 8. Block diagram of the skip Brute Force - running on an FPGA with multiple matching
units.

4. Performance evaluation and results

We tested the performances of Brute Force algorithm and skip Brute Force on synthetic
problem instances generated according to the planted (I,d)-motif model. We followed the
FM model described by Pvzner and Sze [8] to generate synthetic data to test our work. We
produced problem instances as follows:

First, a motif consensus M of length [ is chosen by picking I bases at random. Second, = 20
occurrences of the motif are created by randomly choosing d positions per occurrence
(without replacement) and mutating the base at each chosen position to a different,
randomly chosen base. Third, we construct ¢ background sequences of length n=600 using
n*t bases chosen at random. Finally, we assign each motif occurrence to a random position
in a background sequence, one occurrence per sequence. All random choices are made
uniformly and independently with equal base frequencies.

The skip Brute Force achieves an average speedup of 9.11X. Both Brute Force and skip Brute
Force algorithms were modelled and implemented on MatlabR2006b[15]. All the
experiments ran on an AMD 5500 X2+ processor with 2GB RAM. For fair comparison, it is
reported in literature that the Matlab platform is about 5 to 6 times slower than an
optimized C coded program.

To evaluate the hardware implementation; we need to define the expected number of
matching operations. First, we define the probability to find a random [-mer in a given
sequence with up to d mutations as:



Massively Parallelized DNA Motif Search on FPGA 115

d 3 1
_ Iy P vip Z o=
P, _Zu(“(ﬂ (7)
i=

Additionally, we define the expected number of required matching operations to find the
correct implanted motif as:

-l'r t—1 .
SO =1+ +3F)

i=1

E(ld) =

We then deduce for a problem of size =600, t=20, the expected matching operations to be as
shown in table 1.

L D Expected Matching
Operations
9 2 7.7699 x 107
11 3 1.2388 x 10°
12 3 4.9428 x 10°
13 4 1.9750 x 1010
14 4 7.8813 x 1010
15 4 3.1464 x 101
17 5 5.0170 x 1012

Table 1. Expected matching operations for different (I,d) problems.

We synthesized our design for multiple matching units (MU). Synthesis results of one, five,
ten and twenty matching units need further analysis. Figure 9 shows the area utilization of
the FPGA. The FPGA utilization increases almost linearly with increasing the number of
MUs.

Area
Utilization (%)
20
19%
18
16
14
12
10 9%
8
N 5%
4
2
0 1% . Matching
Units

12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

Fig. 9. FPGA area utilization - increases almost linearly.

The design of multiple MUs inherits parallelization; this means the system critical path
remains the same even after increasing the number of MUs. Unfortunately, the system
maximum frequency decreases with increasing the number of MUs. This is due to the
increased complexity of the FPGA interconnects. Over 80% of transistors inside the FPGA
are dedicated to the programmable routing network as programmable switches and buffers.
The increased complexity of the interconnects leads to FPGA resource starvation.
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170 Matching
Units
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

Fig. 10. Maximum system frequency - decreases due to interconnects complexity.

Furthermore, It is well known that interconnects in FPGA dominate the system performance
and power consumption.

Depending on the architecture, 60% to 80% of the FPGA critical path delay is due to the
routing between logic blocks. Long interconnects exhibit a substantial delay and often lead
to timing violation and require further optimizations. In a recent study [13], it was found
that FPGA interconnects is poorly scaled. Based on the extrapolation of future device
performance, interconnects will become the performance bottleneck, of which the clock rate
will be slowed down to 17 MHz in a 13 nm process. Figure 10 shows degradation in the
maximum frequency of the system with increasing the number of matching units.

We define the system throughput as the number of matching operations per second. Figure
11 shows the curve of the system throughput. The throughput increases by increasing the
number of MUs. The curve tends to be linear but the degradation in the maximum
frequency alters this linearity.

Million Matching
Operations /sec
4000
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Fig. 11. System throughput - increases almost linearly.

Figure 12 compares the running time of Brute Force, skip Brute Force, skip Brute Force
running on FPGA with one matching unit and with 20 matching units of different challenge
problems. The running time of Brute Force in all challenge problems is the highest. Our skip
Brute Force algorithm running on an FPGA has the best running time.
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Time (sec)
1E+10
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@20 Matching Units @1 Matching Unit B skip-Brute Force EBrute Force

Fig. 12. Running time of various challenge problems - skip Brute Force running on an FPGA
based architecture with 20 matching units has the fastest running time.

Utilizing one matching unit leads to a speedup by 9800X over pure software running time of
skip Brute Force. It is clear that scaling up the design by utilizing more matching units in
parallel will speed up the overall performance nearly by the factor of extra units. We used
20 matching units and achieved a speed up factor 16.88X over one matching unit.

Thus, applying the skip Brute Force (9.11X) on 20 matching units (16.88X) running on an
FPGA-based architecture (9800X) would offer 1.5MX boosting in the performance.

Figure 13 illustrates these observations.

Ny

1E+07

18406 EFPGA 20

1E+05 matching
units (x16.88)

1E+04

1E+03 % FPGA 1

1E+02 matching unit
(x9800)

1E+01

1E+00 1 Mskip-Brute

Total Speedup Force (x9.11)

(x1507000)

Fig. 13. Speedup factors of our accelerating designs - Total speedup is 1.5MX.
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RTL synthesis and Place and route were accomplished using Quartus tool on the Stratix III
FPGA technology, a product from Altera[14]. The skip Brute Force FPGA design does not
use any of the FPGA memory blocks. The PowerPlay tool showed a total of power
consumption of 400mW.

5. Conclusion and future work

This chapter presents a proof-of-concept parallization of motif finding on FPGA to achieve
high performance at low cost. Among all Motif Finding Algorithms, Brute Force is known to
be the most accurate. This is mainly because it searches the space of all possible motifs. The
major drawback of Brute Force is the intractability of its running time. The algorithm
running time grows exponentially with the length of the motif. This makes the Brute Force
unsuitable for long motifs. The algorithm can not be used to solve the (15,4) challenge
problem in a reasonable time.

In order to find the correct solution for the planted motif problem; we have to over-come
two main problems. We have to be able to identify the motif from background sequences by
applying an exact algorithm such as the Brute Force that guarantees to always find the
correct motif. We also have to overcome its running time and memory complexities through
acceleration by enhancement in the algorithm itself and by hardware implementation. Our
research presented here addresses these two issues.

We presented an enhanced Brute Force algorithm; skip Brute Force, which can predict the
quality of the obtained motif. The algorithm skips those iterations which will lead to a poor
scored motif, thus leads to a better running time. This enhancement guarantees the same
exactness of the Brute Force. Our enhanced algorithm showed a speedup factor of average
9.11X.

The repetitive nature of the algorithm and the locality of the data encourage the use of
FPGAs. Many operations can be done concurrently to enhance the running time. FPGAs
proved to successfully accelerate sequential algorithms minimum by one or two orders of
magnitude. They also have been widely used to accelerate bioinformatics problems such as
Smith-Waterman and BLAST algorithms. This research offers an enhanced Brute Force
algorithm hardware accelerated using Field Programmable Gate Arrays (FPGAs).

We designed an FPGA-based architecture to accelerate our skip Brute Force algorithm. The
core of the skip Brute Force algorithm is its matching unit. Utilizing one matching unit leads
to a speedup by 9800X over pure software running time of skip Brute Force. It is clear that
scaling up the design by utilizing more matching units in parallel will speed up the overall
performance nearly by the factor of extra units. We used 20 matching units and achieved a
speed up factor 16.88X over one matching unit.

Thus, applying the skip Brute Force (9.11X) on 20 matching units (16.88X) running on an
FPGA-based architecture (9800X) would offer 1.5MX boosting in the performance.
Obviously, the real boosting in the performance (9800X) is achieved by introducing FPGA to
the algorithm. It is neither the effect of enhancing the Brute Force algorithm, nor the effect of
applying more matching units.

Many motif finding algorithms achieves better running time on the expense of the motif
accuracy obtained. We succeeded to accelerate the motif finding problem without sacrificing
the accuracy by applying an exact algorithm; skip Brute Force.

Our work can be extended to accelerate other motif finding algorithms that have shown
better performance to solve the motif finding problem. Algorithms such as Projection [4]
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and MEME [2] proved to have high accuracy and much better running time. Introducing
these algorithms to hardware acceleration will offer more boosting to its running time.

An embedded processor can be added on the FPGA to run the algorithm on chip. This
approach will eliminate the communication overheads which is the bottleneck in most
hardware-software co-designs.

Furthermore, our approach can be applied to other biological applications. One of the most
important problems in the biological research is the tertiary structure prediction of a protein
using amino acid information. This is particularly important in the context of designer
proteins in the area of drug discovery. Graph analysis of biological networks is also
computationally intensive.
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1. Introduction

Bioactive peptides play critical roles in regulating most biological processes in animals, and
they have considerable biological, medical and industrial importance. Peptides belonging to
the same family are often characterized by a typical short sequence motif (pattern) that is
highly functionally preserved among the family members. In this chapter, we design a
pattern search method to facilitate the detection of such conserved motifs. First, all known
bioactive peptides annotated in Uniprot are collected and classified, and the program Pratt
is used to search these unaligned peptide sequences in each family for conserved patterns.
The obtained patterns are then refined by taking into account the information on amino
acids at important functional sites collected from literature, and are further tested by
scanning them against all the Uniprot proteins. The diagnostic power of the patterns is
demonstrated by the fact that, while the false positive is kept to zero to ensure that the
signatures are exclusive to peptides and their precursors, nearly 94% of all known peptide
family members accommodate one or several of the identified patterns.

In total, we brought to light 155 novel peptide patterns in addition to the 56 established ones
in the PROSITE database. All the patterns represent 110 peptide families; among which 55
are not characterized by PROSITE and 12 are also dismissed by other existing motif
databases, such as Pfam. Using the newly uncovered peptide patterns as a search tool, we
predicted 95 hypothetical proteins as putative peptides or peptide precursors.

2. Problem statement and background

Whole genome sequencing projects have made available immense sequence data at a pace
that far supersedes their rate of annotation. As a result, out of 1.7 million protein sequences,
which are currently available for all the completely sequenced metazoan genomes, nearly
15% could not be assigned to any putative function. Although several tools/algorithms are
available to contribute towards the putative functional assignments of the proteins, yet large
numbers of proteins remain un-elucidated. In most cases this is due to the low degrees of
sequence similarities with known proteins; alternatively, the existing similarities can be
confined to only very small part(s) of the entire protein. The latter is especially true for
precursor proteins coding for bioactive peptides. Consequently, there is still a need for
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bioinformatic tools to predict the function of the enormously large number of the unknown
protein sequences.

Bioactive peptides occur in the whole animal kingdom, from the least evolved phyla to the
highest vertebrates (Filipsson et al., 2001, Masashi et al., 2001). They play key roles as
signaling molecules in many, if not all physiological processes, for instance as a peptidergic
neurotransmitter or neurohormone, as a peptidergic toxin, or as a growth factor (Boonen et
al., 2007; Boonen et al., 2010). They are synthesized in the cell in the form of large
preproproteins (precursors), which are a special class of proteins as they undergo extensive
post-translational processing prior to producing final mature bioactive peptides (Schoofs &
Baggerman, 2003). Peptides and their precursors that are structurally and functionally
related have been classified into peptide families; each family of proteins is assumed to be
derived from a common ancestor (Husson et al., 2009). During the evolutionary process, the
protein sequences may have much diverged, but the essential amino acids involved in the
biologically important activities are still present. These conserved amino acids along with
their particular sequential order form the functional foundation and represent the motif
(pattern) of a peptide family.

However, over the course of natural adaptation, different peptide families have diverged at
different rates. While for some peptide families, the similarity extends over a much longer
region even over the entire peptide precursor sequences; for many others, a short highly
conserved motif is responsible for the function of the precursor proteins throughout the
family members, and the sequence fragments outside the conserved regions often display no
significant similarities (Baggerman et al., 2005). The latter conserved sequence characteristics
can be further exposed by many short but biologically important functional peptides
released from known large precursors as annotated in Uniprot, such as the 3-amino-acid
thyroliberin peptide ‘QHPamide’ (Vandenborne et al, 2005) and 4-amino-acid
neuropeptides ‘FMRFamide’ (Baggerman et al., 2002). For some mature peptides, the
precursor proteins (genes) are unknown, such as the 2-amino-acid neuropeptide ‘GWamide’
(P83570) from Sepia officinalis (Henry et al., 1997) and the human growth-modulating
peptide ‘GHK’ (P01157) (Schlesinger et al., 1977). The existence of numerous short bioactive
peptides within the precursor proteins implies that only a very small conserved peptide
motif may be a biologically important functional portion of the precursors.

Due to the fact that only short sequence regions are conserved, peptides or their precursors
are sometimes not identified by existing sequence alignment algorithms e.g. BLAST or by
motif search methods. While BLAST programs (Altschul et al., 1997) are very suitable to
scan databases for homologous proteins, they are far less efficient at finding similarities to
short conserved regions which can be only a few amino acids in length, when the whole
genome sequence is scanned. For large precursors which are usually a few hundred amino
acids in length and for which the biologically conserved regions are limited, the important
domains are often masked by long randomly unrelated sequence regions. This is because for
any two random large protein sequences, BLAST usually can find a relative long local
alignment, at least longer than the short conserved peptide motif, and BLAST tends to
assign a higher score to a longer alignment (Durbin et al.,, 1998). In addition, if a pair of
homologues involves a short independent peptide molecule, which may be either an
unknown peptide sequence as query or a known mature peptide as target from a protein
database, it is difficult for BLAST to detect the pair of homologues, because the involvement
of a short sequence makes the pairwise sequence alignment less likely to obtain a significant
BLAST score (e.g., e-value < 0.01).
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Like BLAST, motif search methods are important tools to search for a protein in a database,
nevertheless, they are also limited to detect all members from a characterized peptide
family. Most of the motifs in the existing databases, e.g. PROSITE (Hulo et al., 2004) and
Pfam (Finn et al, 2010), cover the entire precursor sequences or sequence domains which are
much longer than the conserved bioactive peptide regions. Therefore, the database motifs
show their weakness when they are used to detect short mature peptides for which the
precursors are unknown and the information on the sequences outside the peptide regions
is thus missing. In addition, the construction of these motifs requires a good multiple
protein sequence alignment in order to produce an accurate signature. This works well
when the sequences are easy to align. However, for some peptide families for which the
conserved regions are very short and the bulk of peptide precursor sequences is not very
well preserved, the multiple alignment is very difficult to obtain or evaluate. The overall
precursor protein sequence identity, especially in distantly related homologues, may be too
low for an accurate alignment. In some cases, the short conserved regions are repeated
within a precursor, making it even more challenging to build a unique alignment that truly
reflects the evolutionary relationship.

In this chapter, we have followed an alternative approach, taking unaligned sequences as a
starting point. We then used a pattern search program to look for conserved patterns. We
first collected all currently annotated peptides and peptide precursor proteins in Metazoa
through a search in Uniprot and classified them into peptide families. Next, we extracted
peptide sequences in each family and used the program Pratt to search the sequences for
representative patterns. Such patterns consist of highly conserved positions that can be
separated by fixed or variable spacing. The patterns are then refined by incorporating the
information that is available in literature on the important amino acids contained within the
biologically active site(s) of the peptides. The specificity of the generated patterns are further
verified by scanning them against Uniprot in order to ascertain that proteins picked up by
the patterns are either annotated as peptides or peptide precursor proteins or have an
unknown function.

3. Data collection

3.1 Peptide precursor collection and classification

A protein was collected into a peptide-precursor database if it is annotated in the Uniprot
protein database (release 6.6) consisting of Swiss-Prot (release 48.6) and TrEMBL (release
31.6) with one of the following keywords: hormone, antimicrobial, toxin. The hormone
includes bombesin, bradykinin, cytokine, glucagon, growth factor, hormone, hypotensive
agent, insulin, neuropeptide, neurotransmitter, opioid peptide, pyrokinin, tachykinin,
thyroid hormone, vasoactive, vasoconstrictor and vasodilator (the definition of the
keywords can be referred to in this database). The antimicrobial consists of antibiotic,
antiviral defense, defensin and fungicide; while the toxin includes naturally produced and
secreted poisonous proteins that damage or kill other cells. However, when the protein is
also characterized by non-peptide keywords, such as receptor, signal-anchor,
transmembrane, binding protein, DNA binding, nuclear protein, transport, collagen,
enzyme or words ending in “ase’” (excluding ‘disease’), it is excluded, in order to avoid the
selection of proteins which are not peptides or peptide precursors.

Stand-alone PSI-BLAST (ftp:/ /ftp.ncbi.nih.gov/blast/executables/) is then used to align all
the assembled sequences with all the Uniprot proteins except the ones which are already in
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the peptide-precursor database. Based on the conserved sequence characteristics of peptide
families, the score matrix PAM30 is used and the word size is set to 2, allowing for the
search for short but strong similarities. The proteins, which show significant similarities (e-
value <0.01) with the known peptides or precursors, are retained. The obtained list is then
checked manually in terms of the proteins’ cellular location, molecular function and
biological process as stated by GO (gene ontology) terms or in literature. As a result, 1345
more proteins which have as yet not been annotated in Uniprot are added to the peptide-
precursor database.

Proteins collected in this database are automatically classified into peptide families if their
family classification information is available in Uniprot that is based on a significant match
to an existing motif or based on sequence similarities. Otherwise, proteins that display
sequence similarities with a significant BLAST score, are clustered into the same family. A
protein can also be assigned to a particular family based on its molecular function described
in literature.

3.2 In silicon extraction of peptides

From each precursor protein in a peptide family, the bioactive peptide sequences are
extracted in silicon from the beginning and ending positions of the subsequences that are
annotated as ‘peptide’ or ‘chain’ in ‘feature’ line in the corresponding protein file in Uniprot.
The conserved basic cleavage sites flanking the peptides, which contribute to the
endoproteolytic cleavage process of the peptides from their precursors, such as the
monobasic site (G)R or (G)K, the dibasic sites (G)KR, (G)RR, (G)KK or (G)RK, or a
combination of consecutive K or R, are also withdrawn along with the subsequences (Liu &
Wets, 2005; Rouille et al., 1995).

Entries in the family that only constitute the peptide sequence, i.e. in those cases where the
precursor is unknown, are also retained. Proteins less than 200aa (amino acids) in length,
which contain an N-terminal signal peptide and for which no mature peptides have as yet
been identified, presumably contain a single peptide and are therefore also deposited after
in silicon removal of the N-terminal signal peptide. According to the statistics on all
annotated bioactive peptide sequences in Uniprot, 97% are no longer than the 200aa
threshold value. The presence of a signal peptide is assumed when it is indicated in Uniprot;
in other cases, it is forecasted by the signal peptide prediction program signalP
(http:/ /www.cbs.dtu.dk/services/SignalP/).

In total, 110 datasets of peptide families are formed with each including at least 10 peptide
sequences. All the extracted peptide sequences in each of the families were scanned
independently for patterns conserved in the corresponding family.

4. Method

Different software available on the internet provides users the tools to search for patterns
conserved in a set of unaligned protein sequences. Pratt (http://www.ebi.ac.uk/pratt/#)
(Jonassen et al., 1995) is a flexible pattern search tool in the number of parameters that can
be controlled by users. It allows searching for patterns of conserved positions with limited
variable length spacing, which is important because even in well-conserved peptide regions,
variable loop sizes can occur. Pratt is run on each of the peptide family datasets, and the
searching parameters are set based on maximum pattern length and pattern flexibilities
found in the existing peptide patterns in PROSITE.
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For each Pratt run which starts with the minimum percentage of sequences to match the
pattern (the parameter C%) equal to 90%, the most significant pattern, which is the one with
the highest fitness in the Pratt output list, is retained. The obtained pattern is then refined by
integrating the information on the important functional sites in the matched peptide
sequences depicted in literature. The amino acids occurring at these sites are added to the
pattern if they are absent at the corresponding sites in the pattern.

The pattern is further verified by scanning it against all the Uniprot proteins using the
ScanProsite tool (http://www.expasy.org/tools/scanprosite/). Two possible cases occur:
(1) If the pattern is not contained in any known non-peptide protein, it is retained as a
conserved peptide pattern. (2) Otherwise, if the pattern is matched by both peptide and non-
peptide proteins (further referred to as true and false positive hits, respectively), it is
subsequently processed as follows. (2a)If the pattern does not include any wildcard region
where any amino acid is accepted, the positions where the pattern is located in all matching
protein sequences are checked. If the pattern exclusively occurs at the N- or C-terminus of
the true positive hits, or if the peptide proteins are all small molecules, the pattern is
retained with a constraint (‘<” or “>") imposed at the N- or C-terminus of the pattern to limit
the maximum distance between the conserved pattern region and the N- or C-terminus of
the peptide or precursor protein. If the pattern with such a restriction cannot distinguish the
true positives from the false ones, the pattern is eliminated. (2b)Or, if the pattern has
wildcard regions, the sequence fragments corresponding to the pattern in all the matching
sequences are extracted and aligned. If the two groups of amino acids in a wildcard region X
in this alignment have different physicochemical properties between the true and the false
positive hits, the region X is replaced by the group of amino acids distinctively occurring in
the true positive proteins. In the other case, when the two groups of amino acids share
identical physicochemical properties, the pattern is discarded. The amino acid symbol sets:
DE, KRH, NQ, ST, ILV, FWY, AG, C, M and P, which are classified based on the
physiochemical nature of the side groups (Smith & Smith), are used.

If a conserved pattern cannot be obtained, the parameter C% is reduced by 10%, and Pratt is
re-run against the same dataset. As the percentage of sequences to match the pattern
decreases, a pattern which is usually longer and contains more sites than the previously one
is shown up and processed by similar refinement and verification. The procedure is
repeated until a pattern, which represents the majority of a group of related peptide
sequences and rules out any known non-peptide proteins, is discovered.

Once a conserved pattern is identified in the peptide family dataset, the program ps-scan
(ftp:/ / ftp.expasy.org/ databases/ prosite/tools/ps_scan/sources/) is run locally on the
pattern against this dataset. The sequence regions which match the pattern are removed
from the original peptides. Each of the two remaining parts of the peptide sequences at their
N- and C-terminus is left to form an independent sequence if it is not less than 4aa in length,
given the assumption that the minimum length of the peptide pattern we search for is not
less than this value. Thus, a reduced dataset is created including not only the peptides
which are not covered by the identified pattern, but also the remaining sequences of the
original peptides that match the pattern. This methodology is based on the fact that a
peptide precursor protein may contain several conserved regions, and that our extracted
peptide sequences include long peptide chains which may contain a few shorter, unrelated,
bioactive peptides. The reduced peptide family dataset is then scanned by Pratt to discover
the next pattern. The search procedure is repeated until the parameter C% is less than 50%.
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This means that the remaining dataset contains no more patterns representing the majority
of the sequences.

Fig. 1 represents the scheme of the described pattern searching procedure which is aimed to
examine short bioactive peptide sequences rather than their large precursor molecules, and
to take into account not only the biologically functional sites of each individual peptide
discussed in literature, but also the general information which is extracted by the
computational tool Pratt from all related peptides in a family.

5. Results

5.1 ‘PeptideMotif’ database

We have built a peptide-precursor database consisting of 11,688 peptides and precursor
proteins originated from 1420 metazoan organisms; of which 11,437 proteins (98%) are
categorized into 110 distinctive peptide families. Based on bioactive peptide sequences
drawn from the peptide families, we uncovered in total 211 conserved patterns which are
assembled into the peptide motif database ‘PeptideMotif’.

All the patterns range between 4 and 52 amino acids (column) in length with 78 (37%) no
longer than 10aa. While each of the patterns covers most of the peptides or precursors
belonging to the corresponding family, the false positives are kept to zero because it is
guaranteed by the criterion that a known protein matching the pattern is indeed a peptide or
precursor protein from this family.

5.2 Comparison with the other motif databases

The PROSITE database (http://ca.expasy.org/prosite) is a motif database of protein families
and domains. It consists of biologically significant sites, patterns and profiles that help to
reliably identify to which known protein family (if any) a new sequence belongs. Its 19.9
release contains 56 entries (patterns) describing 55 peptide families in Metazoa (the omega-
atracotoxin family has two patterns) belonging to categories of cytokines and growth
factors, hormones and active peptides, and toxins. All the 55 families are also covered by
patterns in the ‘PeptideMotif’ database, and these peptide patterns (Table 1) share the
similar length to their PROSITE counterparts. However, in terms of conserved sequence
characteristics revealed in both database motifs, more amino acids are imposed at the
conserved sites or wildcard regions in the ‘PeptideMotif” patterns. This is due to the fact that
the identified peptide patterns are not only trained by running them against the Swiss-Prot
protein database which is also used as the test dataset by PROSITE, but also against the
TrEMBL database, in which many proteins are also annotated by keywords or literature. In
addition, for 25 of the 56 families, we have found 34 additional novel patterns and they are
marked as ‘new’ in Table 1.

The remaining 121 ‘PeptideMotif” patterns presented in Table 2 allow the identification of 55
peptide families that are untouched by PROSITE signatures; they cover 3866 bioactive
peptide sequences cleaved from 3572 precursors. Among the patterns, 28 representing 12
families are also not characterized by any other motif database, such as Pfam (Bateman et
al., 2004) and CDD (Marchler-Bauer et al., 2005). The sequence reminiscence for these
families is short and often occurs repeatedly within a same precursor protein. The sequences
outside the conserved region are not well preserved, and thus a probability model based on
protein sequence alignments cannot efficiently characterize such peptide families.
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Fig. 1. Procedure for searching patterns in peptide sequences.
Note: The parameters are set as follows: the maximum pattern length (PL) is 52, the
maximum length of a wildcard (PX) is 15, the maximum number of flexible wildcards (FN)
is 3, the maximum flexibility of a flexible wild card (FL) is 8, the upper limit on the product
of flexibilities for a pattern (FP) is 48, the minimum percentage of sequences to match the
pattern (C%) is 90, 80, 70, 60 and 50%, respectively, and all other parameters are at default.
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Cytokines and growth factors
(1) Granulins; (1) C-x-D-x(2)-H-C-C-{LIVM}-x(4)-C; {42, 241, 2}; {Q616A1, Q7JKP2, Q9U362}

(2HBGE/FGF; 1) G-x-[LIVM]-{AGNP}-[STAGP]-{AGC}-{C}-x-{KRHNDE}-{WPC}-x-
[STAGDENKRHQ](0,1)-[AGST](0,1)-[DENAJ-C-{QP}-[FYLIVM]-{C}-[EQH]-x-{P}-{C}-{LIVM]}-
[DENKRHL]-(PLIVMDE}-[YHF]; (2) [GR]-[LIVM]-[LIVM]-{CWPDE}-[LIVM]-{PST}-{QLIVM]}-x-
[KRDEVIAGQFYNCS]-[STAGLMHQ]-{CP}-{ AGDEN}-[FY]-[LIVM]-| AGSC]-[MLIV]-[NSTDEK]-
[GAKRSTNDEQ]-[EDNKRHSTQA]-G(new); (3)  G-S-[RHKQ]-[LIVM]-{CWPDE}-[LIVM]-{PST}-
{QLIVM}-x-[KRDEVIAGQFYNCS]-[STAGLMHQ]-{CP}-{AGDEN}-[FY]-[LIVM]-[AGSC]-[MLIV]-
[NSTDEK]-[GAKRSTNDEQ]-[EDNKRHSTQA]-G (new); {300,530,44}

(3) PTN/MK heparin-binding; (1) S-[DE]-C-x-[DE]-W-x-W-x(2)-C-x-P-x-[SN]-x-D-C-G-[LIVMA]-G-
x-R-E-G (identical); (2) C-[KR]-[YF]-x-[KRFY]-x(2)-W-[AGST]-x-C-[DENST] (new); {51, 84, 1}

(4) Nerve growth factor; (1) [GSRAED]-[CR]-[KRLIVM]-G-[LIVAT]-[DE]-{C}-x(2)-[YW]-{P}-S-x-[CR];
(2) [SAP]-[LIVA]-C-[DEY]-[SAG]-{WM}-[STDENC]-x-W-[VE]-[AGSTNI] (new); {321, 471, 12}

(5)Platelet-derived growth factor (PDGEF); (1) P-[PSRAKQGL]-C-[LIVMFYAGST]-x(3)-[RQ]-C-
[AGSTMLIVN]-G-5(0,1)-[CN]-C; {158, 158, 23}

(6)Small cytokines C-x-C; (1) C-x-C-{CFYW}-{CW}-x(3)-{P}-x(2)-{C}(8)-x(5,8)-C-x(2,3)-[EQMA]-
[LIVMTE]-[LIVMF]-x(9,14)-C-[LIVMRK]-[DENH]; {206, 206, 18}; { Q6DUZ6, Q6GLX8, Q4T8B9}

(7) Small cytokines (intercrine/chemokine) C-C; (1) C-C-[LIVMFYSTQRKHDE]-{P}(2)-{CDE}-{C}(7)-
x(2,5)-{P}-[FYWAC]-{C}(2)-x(3,6)-C-{KM}-{C}(1,3)-[SAG]-[LIVMTS]-[LIVMRTDE]-[FYLIVDE]-
{C}(7,10)-C-[STAGVILMY]; {234, 234,27}; { Q3ZBN3, Q32L58}

(8)TGF-beta; (1)  [WFYSTKRHL]-[LIVM]-[LIVMKRHF]-{CPNL}-P-{FY}-{PCW}-[FYILVA]-{C}-
{QCWKRH]}-{PA}-{PAGC}-C-{C}-[GE]-{C}-C; {766, 766, 59}

(9)interferon alpha, beta and delta; (1) [FYH]-[FY]-{CP}-[GNRKCDSTI]-[LIVM]-{W}-{AGC}-
[KRN](0,1)-[FYLVIMN]-L-{PAG}-{C}-{PST}-{PFYW}-[FYHDEN]-x-{QY}-[CYQE]-[AT]-W; (2) L-
{QKR}-x(0,4)-[GAEDVI]-[LVI]-[QHNDEFY]-[RQ]-[QH]-[LMIV]-[DENQVSTR]-x-L-[ DENKRQ]-x-C-
[LIVMKRQG] (new); {272, 442, 29}

(10)Granulocyte-macrophage colony-stimulating factor; (1) C-P-[LP]-T-{ST}-E-x-{QLIVMT}-C; {25,
25, 1}; {Q4G094}

(11) Interleukin-1; (1) [LIVSTNDEFH]-[YESTMVIR]-[LFC]-{AGCFYL}-[SA]-[ASLV]-{CFY}-
[CFYWH]-[PKRST]-{FYLC}-[WHLIVM]-[FYL]-[LI]-[SCA]-[TSVG]-x(6)-[PKRHCLIVMT]-x(0,2)-
[LIVM]-[AGSTCVINDE]; {128, 128, 24}

(12) Interleukin_2; (1) [ST]-E-[LF]-x(2)-L-x-C-L-x-[EDN]-E-L; {74, 74, 14}

(13) Interleukin_4_13; (1) [LI]-x-E-[LIVM](2)-{Q}(4)-x(0,1)-[LIVM]-[TL]-x(5,7)-C-x(2)-[LMIVST]-x-
[IV]-x-[DNS]-[LIVMA]; (2) [KREV]-N-[STA]-[STED]-[DEAG]-{C}(3,4)-C-[RKT]-[AV]-x(11,17)-C
(new); {73, 119, 4}

(14) Interleukin_6; (1) C-x(9)-C-[FYLIVM]-x(5)-G-L-x(2)-[FY]-x(3)-L; {69, 69, 8}

(15) Interleukin_7_9; (1) N-[DAT]-[LAPS]-[SCT]-F-L-K-{AGDE}-L-L; {20, 20, 2}

(16) Interleukin_10; (1)[KQSN]-{C}(4)-C-[QYCH]-x(4)-[LIVM](2)-x-[FL]-[FYT]-[LMVRT]-x-[DERST]-
[IV]-[LMF]; {75,75,12}

(17) LIF / OSM; (1) [PSTA]-x(4)-F-[NQ]-x-K-x(3)-[CG]-x-[LF]-L-x(2)-Y-[HK] ; {24, 24, 4}

(18) Osteopontin; (1) P-x(1,5)-[KQ]-x-[TA]-x(2)-[GA]-5-S-E-E-K; {27, 27, 0}

Hormones

(19) Adipokinetic (1) [AGC]-Q-[LVI]-[NT]-[FY]-[ST]-[PASTKR]-[AGWSDEN]-W-[AGNDEST]; (2)
<Q-[LVI]-[NT]-[FY]-[ST]-[PASTKR]-[AGWSDEN]-W-[AGNDEST>] (new); {45, 45, 0} {Q5TTQ9}

(20) Bombesin-like peptides (1) [HLIVMQ]-W-A-[STIVRK]-G-[SH]-[LF]-M; {42, 42, 1}

(21) Calcitonin/CGRP/IAPP (1) [KR]-R-x(0,1)-C-[SAGDNT]-[STNG]-x(0,1)-[STAGVIL]-[TS]-C-
[VMALI]-x(3)-[LYF]x(3)-[LYFVI]; ~ (2)  <x(0,1)-C-[SAGDNT]-[STNG]-x(0,1)-[STAGVIL]-[TS]-C-
[VMALI]-x(3)-[LYF]-x(3)-[LYFVI] (new); {83, 84, 7}
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(22) Corticotropin-releasing factor (1) [KR]-R-x(0,28)-[PQASLVIG]-[STPI]-[LIVM]-S-[LIVM]-x-
[LIVMNAG]-[PST]-[LIVMFT]-x-[LIVM]-[LM]-[RN]-x(2)-[LIVMWEF]; (2) <x(0,8)-[PQASLVIG]-[STPI]-
[LIVM]-S-[LIVM]-x-[LIVMNAG]-[PST]-[LIVMFT]-x-[ LIVM]-[LM]-[RN]-x(2)-[LIVMWF] (new); (3) T-
R-[PQASLVIG]-[STPI]-[LIVM]-S-[LIVM]-x-[LIVMNAG]-[PST]-[LIVMFT]-x-[ LIVM]-[LM]-[RN]-x(2)-
[LIVMWF] (new); {64, 64, 9}; {Q4RWF4}

(23) Arthropod CHH/MIH/GIH neurohormones (1) [LIVM]-{C}-x(2)-C-[KR]-{FY}-[DENGRKHQ]-C-
[FY]-{C}-{AGKRC}-{C}(2)-[FYILVM]-{C}-{CP}-C; {135, 135, 5} {Q23247}

(24) Erythropoietin/thrombopoeitin (1) P-x(4)-C-D-x-R-[LIVM](2)-x-[KRH]-x(14)-C; {34, 34, 8, 0}
(25)Granins  (1){DEF}-[DE]-[SN]-L-[SAN]-[AD]-[LIMVKR]-[DE]-[AGLSTQJ-E-L; (2) [LIVM]-x-
[KHR]-C-[LIVM](2)-[ED]-[LIVM](2)-x(5)-[KRH]-[STP]-x(3)-[PST]-x(4)-C (new); (3) K-R-[STAG]-
[NDEST]-[ED]-x(2)-[DE]-[DEGA]-[QKR]-Y-[AGST]-P-Q (new); {63, 96, 5}; {Q86T07, Q4RYYS,
Q566G8}

(26) Galanin (1) G-W-[ST]-L-N-[ST]-[AG]-[AG]-[FY]-[LIVM]-[LIVM]-G-P; (2) <L-N-[ST]-[AG]-[AG]-
[FY]-[LIVM]-[LIVM]-G-P (new); {31, 31, 1}

(27) Gastrin/cholecystokinin (1) [FY]-x(0,2)-[GADN]-[AS](0,1)-[WH]-[MFLIV]-[DR]-F-G-[KR]-[RS];
(2) Y-x(0,2)-[GA]-[AS](0,1)-[WH]-[MFL]-[DR]-F> (new); {88, 102, 4}

(28)Glucagon/GIP/secretin/VIP 1) [YH]-[STAIVGD]-[DENQ]-[AGF]-[LIVMSTE]-[FY]-
{QLPAGDEKR}-[DENSTAK]-[DENSTA]-[LIVMFYG]-[RKSTDEN]-x(3)-{P}-{P}-x(2)-[AGSTLIVMQ]-
[KREQL]-[KRDENQL]-[LVFYWG]-[LIVQ]; {202, 305, 8}

(29) Glycoprotein hormones alpha chain (1) C-x-G-C-C-[FY]-S-x-A-[FY]-P-T-P; {109, 109, 4}

(30) Glycoprotein hormones beta chain (1)C-{C}(2)-[CW]-{C}(7,9)-C-[STAGMLIVED]-G-[HFYLRS]-
C-{C}-[STA]; (2) <x(0,8)-C-[STAGMDEVLI]-G-[HFYL]-C-{CKRH}-[ST] (new); (3) <x-[CW]-{C}(7,9)-C-
[STAGDEVLIM]-G-[HFYL]-C-{C}-[ST] (new); {341, 341, 13}

(31) Gonadotropin-releasing hormones (1) Q-[HY]-[FYW]-S5-x(4)-P-G-G-[KR]-R; (2) Q-[HY]-[FYW]-
S-x(4)-P-G> (new); {178, 188, 4}

(32) Insulin (1){C}(2)-[[VLMPSTAFYR]-{CNE}-x-{C}-C-C-{CPM}-{P}-{CHW}-C-[STDNEKIGQI-{C}(2)-
{CPAG}-[LIVMFSQ]-{CD}-{CPW}-{CHDEP}-C; (2) <x(0,205)-C-G-{FYILVMQW}-{CWPSTLIVM}-
[LIVFY]-[VILMASTPH]-{AGHCFYPQW!-{CPQSW}-[LIVMRKHQWEF]-{CNP}-{WCQP}-[LVIMATC]-
C-{LM}-x(0,204)> (new);{507, 877, 52} {Q32L79, Q621L6, Q61VN2, Q61GN7, Q4T1R8}

(33) Natriuretic peptides (1) C-F-G-x(3)-[DEA]-[RH]-I-x(3)-[ST]-x(2)-G-C; {155, 155,10}

(34) Neurohypophysial hormones (1) C-[LIFY]-[LIFYV]-x-N-C-P-x-G; (2) C-x(2,6)-[CW]-G-x(4,6)-C-
[FYAGLIVM]-x(3)-[LIVFY]-C-C (new); {112, 259, 4}

(35) Neuromedin U and S (1) [FY]-[LIVMF]-[FY]-R-P-R-N-G-[KR]; (2) [FY]-[LIVMF]-[FY]-R-P-R-N>
(new); {24, 24, 3}

(36) Pancreatic (1) [FY]-x(2)-{LIVM}-[LIVM]-x(2)-[YK]-x(3)-[LIVMFYRHK]-x-R-[PQVH]-R-[YF]-
[GD]-[KR-[RS]; (2)  [FY]x(3)-[LIVM]x(2)-[ YK]-x(3)-[LIVMFYRHK]-x-R-[PQVH]-R-[YF]-x(0,1)>
(new); {118, 118, 7}

(37) Parathyroid hormone (1) [KR]-R-x-[VI]-[STAGFYN]-[EH]-x-Q-x(2)-H-[DEN]-x-[GR]; {54, 54, 3}
(38) Pyrokinins (1) [AGHNQDEST]-{FYST}-[PQVIWFYED]-[FY]-[AGST]-P-R-[LI]-G-[KR]-R; (2)
[AGHNQDEST]-{FYST}-[PQVIWFYED]-[FY]-[AGST]-P-R-[LI]> (new); {72, 89, 4} {Q7PTL2, Q5TV14}
(39) Somatotropin (1) C-{KRAG}-[STNRAC]-x(2)-[LIVMFYSRNW]-x-[LIVMSTAGY]-P-x(2)-{FYW}-
x(2)-[TALIVMSHN]-x(7)-[LIVMFYP]-x(2)-{QHKR}-{KRHP}-{NW}-x-[ LIVMFYR]-[LIVMSTC]-x-
[STACVLMIG]-W; (2)  C-[LIVMFG]-x-[KHRSNDEQVI]-[DEN]-{CNDEPQ}-{AGLMVI}-[KRMT]-
{DENKRHPQ}-x-[STNALIVMF]-[FYLIVMKS]-[LIMVT]-x-{NDEKRH}-[LIVMATE]-[KRNEQTA]-C
(new); (3) [ED]-K-L-L-[DE]-R-[VIA]-[IV]-x-H-[AT]-E-L (new); (4) C-F-[KRH](2)-[DEN]-[LIVMAG]-
[HKR](2)-[LIVM]-[DEQ]-[ST]-[FYLIVM]-x(0,1)> (new); {633, 1093, 45}

(40) Tachykinin (1) [AGSTQKRFY]-[SF]-[IVFYTHQ]-G-[LVIM]-M-G-[KR]-[RS]; (2) [AGSTQKRFY]-
F-[IVLMFYSHQ]-G-[LVIMS]-R-G-K-R (new); (3) <x(0,9)-F-[[VLMFYTHQ]-G-[LVIMSTAG]-[RM]>
(new); {104, 124,6}
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(41)Urotensin II (1) C-F-W-K-Y-C (identical); {30, 30,1}

(42) Endothelin (1 ) C}(4)-D-{C}(2)-C-{C}(2)-[FY]-C; {50, 104, 2}

(43) Agouti (1) C (6) C (6) -C-CH{ C}(2) C C}(2)-C-{C}-C-{C}(5,6)-C-{C}-C-{C}(6,9)-C; (2) C-
{C}(6)-C-{C}(6)-C- C C}(2)-C-{C}(2)-C-{C}-C- {C}(5 6)-C-{C}-C-{C}(0,8)> (new); (3) C-{C}(6)-C-{C}(6)-C-
C—{C}(z)—C—{C}<2)—C> (new); (4) C—{C}(6)—C—{C}<6)—C—C—{C}(2>—C—{C}(2)—6—{C}—C—{C}<5,6>—C(0,1)> (new);
{37,37,7}

Antimicrobial
(44) Cecropin (1) W-[KDN]-{QNDEGAKRW}-[FYGA]-K-[KRE]-[LIVM]-E-[RKHAGN]-x-[AGVI]; (2)
[GS]-[WRKHG]-[LIVMST]-[KRST]-K-{QNDEGAKRW}-[FYGA]-K-[KRED]-[LIVM]-E-[RKHAGN]-x-
[AGVI] (new); {96, 96, 3} {Q5TWES5}
(45) Mammalian defensins (1) C-{C}-C-{C}(3,5)-C-{C}(6)-{CP}-[GARKSTW]-x-[SC]-{C}(6,10)-C-C; (2)
C-[PR]-x-C-x(2,5)-C-x(2)-C-[PQ]-x-C-[PQ]-x-C (new); {119, 145, 5}
(46) Arthropod defensins (1) [CG]-x(0,1)-{C}-{CQ}-[HNSEDRY]-C-x(3)-{C}(0,1)-[GR]-{A}-x
[GRQAY]-[GAL]-x-C-{FY}-x(3,4)-C-{C}-C; (2) [CG]-x(0,1)-{C}(2)-[HNSEDRY]-C-x(3)-{C}(0,1)-[GR]-
{A}-x-[GRQAY]-[GAL]-x-C-{FY}-x(6)-C-{C}-C (new); {103, 105, 7}; {Q6XD83}
(47) Cathelicidins (1) Y-{LIVM}-[EDQN]-[AVI]-[LMVI]-{HKRG}-[RKHQ]J-A-[LIVMA]-[DQGEN]-x-
[LIVMFY]-N-[DEQ]; {58, 58, 0}

Toxin

(48) Snake toxins (1) C-{CKRPL}-x(0,2)-C-[PRTFG]- {C}(5)-x(0,6)-C-C-{P}-x-[PDEN]-x-C-[NDEY];
{352, 352, 20}
(49) Myotoxins (1) K-x-C-H-x-K-x(2)—H-C-x(2)-K-x(3)—C x(8)-K-x(2)-C; {15, 15, 0}
(50) Scorpion short toxin 1 (1) C-{C}(4,5)-C-{ PC} {CQ}-{C}-C-x(3)-{C}-{CPWA}-x(1,4)-[GASEDN]-
[KRAVISNDE]-C-[VIMQTDK]- [NG x(1,2)-{P}-C-[HKRDENVI|-C; {77, 77, 6}
(51) Alpha-conotoxin (1) < x(O 35)-{C}(15)-C-C-[SHYNDE]-{C}(2,3)-C-{C}(3,7)-C-{C}(0,12)>; (2)

<{C}(0,14)-C-C-[SHYNDE]-{C}(2,3)-C-{C}(3,7)-C-[G>]> (new); {34, 34, 1}

(52) I-superfamily conotoxin (1) C-{C}(6)-C-{C}(5)-C-C-{C}(1,3)-C-C-{C}(2,4)-C-{C}(3,10)-C (identical);
(37,37, 0}

(53) Mu-agatoxin and spider toxin SFI (1) C-{C}(2)-[DEKR]-{C}(3)-C-{C}(4,7)-C-C-{C}(2,4)-C-{C}-C-
{C}(4,15)-C-{C}-C-x(0,10)>; {36, 36, 2}

(54) Omega-atracotoxin (ACTX) (1)C-[IT]-P-S-G-Q-P-C (identical); (2)C-C-[GE]-[ML]-T-P-x-C
(identical); {13, 13, 0}

(55) Ergtoxin (1) C-{C}(5)-C-x(8)-C-{C}(2)-C-C-x(9)-C-x(4)-C-{C}-C {25, 25, 0}

Table 1. The conserved peptide patterns similar to PROSITE signatures.

Cytokines and growth factors
(1) Interferon gamma (1) [RHSG]-[KRQ]-A-[AGFYLIVM]-x-[DE]-[LIVFY]-{QPAG}-x-[VI]-[VMLIY]-
{LVIM}-x(1,4)-L-[STAGPKRLIVM]-{Q}-x(1,9)-[AGKR]-[KR]-R; (2) [RHSG]-[KRQ]-A-[AGFYLIVM]-x-
[DE]-[LIVFY]-{QPAG}-x-[ VI]-[VMLIY]-{LVIM}-x(1,4)-L-S-P-x(1,7)>; {91, 91, 44}
() Interleukin_3 (1) [CVLIM]-[LIVM]-P-x-[AGPST]-x(2)-[STAGDENRKH]-x(12,14)-[DE]-F-[RKQ]-
(NDEAGQST}-K-L; {20, 20, 0}
(3) Interleukin_5 (1) [HDE]-x(2)-C-x(3)-[IVLM]-F-x-G-[LIVMST]-x(2)-L-x-[NST]; {23, 23, 1}
(4) Interleukin_12 alpha (1) [KRHE]-[LM]-C-x(2)-[LM]-[KRHQ]-[AG]-x(3)-R-x(2)-T-x(2)-[KR]-x(3)-Y-
[LMIV]; {34, 34, 7}
(5) Interleukin_15(1)C-{C}(4)-[LM]-{C}-C-[FY]-[LIVFYQ]-x-| DE]-[LIVM]-x(2)-[LIVM]-x(2)-[ED];
44,1}
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(6) Interleukin_17 (1) [RLM]-{QKR}-[PS]-{P}-x-|[LIVMFY]-{RKH]}-{CP}-[AS]-x-Cx-[CHKRNDESTFY]-
x-[GRKHFY]-C-[LIVM]; {47, 47, 4}

(7) Interleukin_18 (1) [EQ]-[SY]-S-[SL]-x(2)-[GS]-x-[FY]-L-[AST]-[CF]; {41, 41, 3}

(8) Receptivity factor (1) L-[LIVMPAG]-x(2)-[YF]-[LIVM]-x(2)-[QLIVM]-[GA]-x-P-[LIVMFY]-x-
[DENHKRLIVM]-[PAG]-[DEAGST]-[FY]; {204, 204, 0}

(9) GMF-beta (1) [FY]-[LIVM](2)-x-[STAG]-[FYWH]-x(5)-[ DE]-x(5)-P-[LIVM]-x(2)-[LIVM]-[FYWN]-
x(2)-P; {29, 29, 1}; {QIVJL6, Q2INM1}

Hormones

(10) ACTH_domain and opioid neuropeptides (1) K-R-[YF]-G-G-F-[LIVMT]-[STGKRIV]-
[AGKRSTLIVMPY]; (2) K-R-[YF]-G-G-F-[LIVMT]>; (3) K-[KN]-[YF]-G-G-F-M-[KR]; (4) <[YF]-G-G-F-
[LIVMT]-[STGKRIV]-{AGKRSTLIVMPY]; (5){CFYWHM]}-Y-x-[MIVSTFY]-{FY}-H-E-R-W; (6) <Y-x-
[MIVSTFY]-{FY}-H-F-R-W; {397, 1045, 4}

(11)FMRFamide and related neuropeptides (D{LCFY}-{LCFYQWST}-{LCFYQWH]}-
{LCDEFYKRQW}-[LVMI]-[MLIV]-R-F-G-K-R;(2){LCFY}-{LCFYQWSTLIVM}-{LCFYQWHKR}-
{LCDEFYKRQWLIVM}-[LM]-[MIV]-R-F-GR-[ASPD]-{LCFYHKR}-{LCQST};(3)<x(0,8)-[LVMI]-
[MLIV]-R-F>;(4){CLIVM}-{CAGLIVMW}-{QCFYLW}-[FY]-[MLIV]-R-F-G-K-R;  (5){CHIV}-x-{CQN}-
{HIV}-{CLIVMY}-{CAGLIVMW}-{QCFYLWIV}-[FY]-[MLIV]-R-F-G-R-[DNESTAG]J;(6)<x(0,9)-[FY]-
[MLIV]-R-F>;(7)[AGED]-[LIVMFY]-Q-G-R-F-G-R-[DEN];(8)P-[AGST]-[LIVM]-R-[MLIV]-R-F>;(9)N-
Q-[VI]-R-F-G-K-R; (10) [STG]-[LVMI]-F-R-F-G-K-R; (11)[RD]-[QPH]-F-[FY]-R-F-G-[KR]-{FWYL};
(12)[RD]-[QPH]-F-[FY]-R-F>;  (13)R-P-[VI]-G-R-F-G-[KR]-[RS];  (14)S-A-[LM]-A-R-F-G-[KR]-[RS];
(15)[PQ]-[HL]-[LMFY]-R-G-R-F-G-R; (16 )[STNFYH]-[LQ]-PQ-R-F-G-[KR]-{LC}; (17)F-M-[NH]-F-G-
K-R; (18)[AGNQ]-[GLE]-P-[LI]-R-F-G-[KR]-{QLIVMAG}; (19)P-[RK]-P-L-R-F-G>; (20)[FL]-G-T-M-R-
F-G-[KR]-[RS]; (21)Q-[WL]-[LMIV]-[AGKRST]-G-R-F-G-[KR]; (22)[GA]-[GA]-[FY]-[ST]-[FY]-R-F-G-
[RK]; (23)[GA]-[GA]-F-[ST]-[FY]-R-F>; {214,605,2};, {Q7YWT6, Q622X3,Q61P51, Q616K2, Q613X6,
Q21656, P34405, Q60ZQ9, Q618S3, Q620F8, Q620P9, Q7PUD4, Q618T6, Q705]7, Q3SXL4, Q3KNG4,
Q60YH4, Q622X1, Q28702, Q297C5, Q28702}

(12) Neuropeptide-like protein* (1) G-M-Y-G-G-[FYW]-G-R; (2) A-Q-[FW]-G-Y-G-[GY]-x(2)-
[KRFYG); (3) G-[FYW]-G-G-Y-G-G-Y-G-R-G; (4) P-L-Q-F-GK-R; (5) [STRIV]-M-S-F-G-K-R; (6)
[AGIV]-M-[AG]-F-G-K-R; (7) [DE]-K-R-G-G-A-R-A-[FYLIVM]; (8) R-x-G-[FML]-R-PG-K-R; (9)
[RFYM]-[AGTR]-F-A-F-A-K-R; {33, 84, 7}; {Q60NA1, Q619H9, Q624T4, Q61BN3, Q62715, Q60MJS,
Q625G9, Q622L1, Q6221L.2}

(13) Wamide neuropeptides* (1) [QRKED]-{P}-[KRPQN]-[IVP]-G-[LM]-W-G-R-[RDESA]; (2)
[ANPRKQ]-x-[AGLQP]-[RHKLIVP]-G-[LM]-W-G-K-R; (3) K-[KR]-x(1,5)-W-x(6)-W-G-[KR]-R; {10, 86,
1} {Q7Q4X3, Q8T3G1, Q60TK?2, Q2LZGI}

(14) Thyroliberin (1)[KR]-[HKR]-Q-H-P-G-[KR]-R; {12, 78, 1}

(15) Neurotensin/neuromedin N (1)[KR]-[IVTRK]-P-Y-I-L-K-R; (2) [KR]-[IVTRK]-P-Y-I-L>; {14, 24, 0}

(16)Allatostatin* (1) [KR]-R-{NCKRFY}-x(0,11)-[FY]-[DENAGST]-[FY]-G-[LIVM]-G-[KR]-R;  (2)
<x(0,11)-[FY]-[DENAGST]-[FY]-G-[LIVM]>; (3) [KR]-R-x(0,3)-[FY]-[DENAGST]-[FY]-G-[LIVM]>; {52,
222, 3}; {Q7QAG2, Q29BZ8}

(17) Egg-laying hormone (1) K-R-R-[LIVM]-R-F-[HNY]-[KR]-R; (2) P-R-[LIVM]-R-F-[HNY]-
[PSTDEN]-x-[KRG]-[KR]-[KR]; (3) P-R-[LIVM]-R-F-[HNY]-[PSTDEN]-x(1,2)>; {21, 32, 2}

(18)Periviscerokinin (1)<x(0,1)-[AG]-x(0,3)-[GS]-[LIVM]-[LIFY]-x-[FY AMV]-[AGPM]-R-x>;{59, 59, 0}

(19) Somatostatin (1) C-[KRM]-[NSIV]-[FY]-[FY]-W-[KRDE]-[STG]-x-[ST]-x-C; {71, 71, 2}

(20) Orcokinin* (1) [KR]-R-N-F-[DE]-[DE]-[IV]-[DE]-[KR]; (2) <N-F-[DE]-[DE]-[IV]-[DE]-[KR]; {3, 22,
0}; {Q7Q025, Q7QNH4, QIW1F8, Q292P8}

(21) Allatotropin® (1)N-x(4)-[STIV]-A-R-G-[FY]-G-[KR]-R; (2)N-x(4)-[STIV]-A-R-G-[FY]>; {15, 18, 1};
{Q7QKW9, Q7PZX1}
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(22) Ghrelin and Motilinrelated peptide (1) G-[STL]-[ST]-F-[LIVM]-[ST]-P-x(0,1)-[AGSTDE]-
[FYQHMI-[QRK]; (2) [FY]-[VILM]-P-x-[FY]-[TS]-x(2)-[DE]-[LIVM]-[QRK]-[RK]-x-[QRK]-[ED]-[KR];
{68, 68, 12}

(23) ADM (1) [AG]-C-{P}-x-[AGFY]-[STMLIV]-C-[AGQIVT]-[VMLIFYHKR]-[QH]-x-[LIVM]; {23, 23,
1}; {Q4RDH?7, Q6IFS9}

(24) Hepcidin* (1) C-[CGW]-x-C-C-{C}(4,5)-[CG]-G-x-C-C; {44, 44, 1}; {Q4RUL1, Q4RUL2}

(25) Achatin* (1) K-R-G-F-[AGF]-[DG]-K-R; (2) <G-F-[AGF]-[DG]>; {5, 20, 0}

(26) Cocaine- and amphetamineregulated transcript protein (1) C-x-C-x(5)-C-x(3)-[LIVM]-L-K-[C>];
{11, 11, 2}; {Q4RMR3, Q568S2, Q68EU1, Q4SGG2, Q4T695, Q4TBI3}

(27)Bradykinin (1) P-[PAT]-G-[FW]-[ST]-P-[FL]-R; {58, 84, 7}; {Q5X]76}

(28) GBP/PSP1/paralytic (1) N-[FY]-x(2)-[GA]-C-x(2)-[GA]-[FY]-x-[RK]-[TS]-x-[DE]-[GA]-[RK]-C-
[KR]-x-[TS]; {18, 18, 0}

(29) Stanniocalcin (1) C-L-x(2,6)-[GA]-C-x(2,5)-F-x-C-x(4)-[ST]-[CS]; {45, 45, 1}

(30) Resistin (1) C-x-C-x(3)-C-x(2)-W-x(7)-C-x-C-x-C-x(4)-W-x(4)-C-C; {22, 22, 2}

(31) Pro-MCH (1) [RK]-R-x(2,6)-[LMIV]-x-C-[MLIV](2)-[GA]-[RK]-[VLIM]-[FY]-x(2)-C-W; (2) R-[ED]-
x(2)-[DE](3)-N-[ST]-[AG]-x-[FY]-[PK]-[IV]-[GDI]-[RK]-R; {29, 39, 4}

(32) Pigment dispersing hormone (1) K-R-N-[ST]-[DEGA]-[LIVM](2)-N-[STAG]-[LIVM](2); (2) <N-
[ST]-[DEGA]-[LIVM](2)-N-[STAG]-[LIVM](2); {21, 21, 1}; {Q298P6}

(33) Orexin (1) [HQ]-A-A-G-[IV]-L-T-[LIVM]-G-[KR]-R; (2) [HQ]-A-AG-[IV]-L-T-[LIVM]>; {11, 18, 0}

(34)Leucokinin* (1) [PQAGSTKRH]-x-F-[HYN]-[AGSP]-W-[GA]-G-K-R; (2) <x-[PQAGSTKRH]-x-F-
[HYN]-[AGSP]-W-[GA]>; {11, 11, 0}; {Q60MR3, Q8MNU5}

(35)Myomodulin* (1) [LIVM]-[HQPST]-M-L-R-L-G-K-R; {3, 29, 0}

(36)Nitrophorin (1) C-[ST]-x(9,10)-[KRH]-x(2)-[FYW](2)-x(3,4)-[FYW](2)-x-[TS]-x-[FY]-x(4,5)-[PTS];
{11, 11,1}

(37)Prokineticin (1) Q-C-x(4)-[CFY]-C-x(2)-[ST]-x(3)-[KR]-x-[LIVM]-[RK]-x-C-x-P-x-[GA]-x(2)-[GA]-
x(2)-C-[HYF]-P; {35, 35, 1}

(38) Leptin (1)L-x-[VIT]-[FY]-[QRH]-[QKA]-[IV]-[LIVMH]-x-[SNG]-|[LM]-[PHQS]; {68, 68, 13}

Antimicrobial

(39)Bombinin (1) K-R-[LIVM](2)-G-P-[LIVM](2)-x(2)-[VILM]-[STG]-x(2)-[LIVM]-x(2)-[LIVM](2); (2)
<[LIVM](2)-G-P-[LIVM](2)-x(2)-[VILM]-[STG]-x(2)-[LIVM]-x(2)-[LIVM](2); (3) [SG]-IG-x(0,3)-[LIV]-
x(2,7)-K-[STAGIV]-[AGFYIV]-[LIVF]-[KR]-[GAC]-[AGFYL]-[AGLVIM]-[KRN]; {59, 110, 0}

(40) Brevinin, Dermaseptin, Aurein, Caeridin, Caerin, Dahlein, Temporin Ponericin and Uperin
1)  <x(7)-{C}(2)-x(0,68)-C-[KSTAGLVE]-[LIVA]-[STAKYD]-[KRYGN]-[KRDESTQLG]-C>; (2) C-
[KSTAGLVE]-[LIVA]-[STAKYD]-[KRYGN]-[KRDESTQLG]-C-R-x>; (3) <[DGA]-[LIVF]-[LIVMFW]-
[DNESAGQKPLM]-[STLIVMKFAGDN]-[LVIMAGTEF]-[KRAGSTVIL]-[KRHDENGASTQ)]-
[LIVMAGKFYSTW]-[IVLMAGFKRH]-[AGKRHSTDENQLIV]-{W}-x(0,2)>;  (4)  <[DGA]-[LIVF]-
[LIVMFW]-[DNESAGQKPLM]-[STLIVMKFAGDN]-[LVIMAGTF]-[KRAGSTVIL]-
[KRHDENGASTQ]-[LIVMAGKFYSTW]-[IVLMAGFKRH]-[AGKRHSTDENQLIV]-{W}-{CP}(2)-
x(0,35)>; (5) <x(0,45)-{QAGR}-{FYLQKRST}-K-R-[DGA]-[LIVFW]-[LIVMFW]-[DNESAGQKPLFM]-
[STLIVMKFAGDN]-[LVIMAGTFY]-[KRAGSTVIL]-[KRHDENGASTQ]-[LIVMAGKFYSTW]-
[IVLMAGFYKRH]-[AGKRHSTDENQLIV]-{W}-x(0,37)>; (6) <x(0,1)-[FIVLM]-[LIVMFYST]-[PGAQ]-
x-[LIVMFY]-[AGSTIVLM]-[KRSTNDEMLIV]-[LIVMAGFY](0,1)-[LIVMAG](0,1)-x(0,2)-[ GKRDEST]-
[LIVM](2)>; (7) K-R-[FIVLM]-[LIVMFYST]-[PGAQ]-x-[LIVMFY]-[AGSTIVLM]-[KRSTNDEMLIV]-
[LIVMAGFY](0,1)-[LIVMAG](0,1)-x(0,2)-[GKRDEST]-[LIVM] (2)-G-K>; {278, 310, 25}

(41) Dermorphin (1) K-R-Y-A-F-x-[YVLI]-[PVILM]-x-[RG];(2) <Y-A-F-x-[YVLI]-[PVILM]-x>; {6, 22, 0}

(42) Termicin* (1) C-x(4)-C-W-x(2)-C-x(12)-C-x(4)-C-x-C; {21, 21, 0}
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(43)Liver-expressed antimicrobial (1) [KR]-P-x(4)-C-x(5)-C-x(3)-[LIVM]-C-[KR]-x(2)-[RKHQ]-[CQ];
{15, 15, 0}; {Q4SXZ9, Q5M917}

(44) Penaeidin (1) [CR]-x(1,3)-C-{C}(2)-[LIVM]-{C}(7)-[CYF]-[CST]-{C} 3)-[GA]-x-C-C; {40, 40, 0}

(45) Ceratotoxin* (1) [ST]-[LIVM]-[GA]-[ST]-[AG]-x-[KR]-[KR]-[AG]-[LIVM]-P-[LIVM]-[AG]-[KR](2);
{10, 10, 3}

@6)Attacin (1)  [GTS]-[AGVMLI]-[AGFYST](0,1)-[FYLIV]-[AGDEL]-{GMQWKRHNDE}-{PKR}-
[NKG]-[ADENHIV](0,1)-[NDEKR](0,1)-[GSR]-[HFL]-[GAS]-[GAL]-[STAED]-[LIVM]-[ TSMQ]-
[KRHDNEGA]-[TSEAG]-[HKRQGT] (2) Y-x-Q-[KRH]-L-[PG]-G-P-Y-G-N-S-x-P; {50, 50, 1}; {Q290V6,
Q291C0, Q295K8, Q29QF8, Q29QG5}

(47)Beta-defensin (1) <x(0 79)-{WP}-x-C-{C}-{CP}-{CW}-{CA}-{C}(0,4)-C-{CP}-{C}-{CW}-{C}(0,2)-C-
{C}(3)-{CP}(2)-{C}(2)-{CP}-{C}(1,5)-C-{C}(0,3)-{C}(4)-C-C-{CDENFWYP}-x(0,128)>; {326, 326, 13};
{Q32P86, Q2XXN6, Q2XXN7, Q2XXN8, Q2XXNO9}

48) 4 kDa defensin®* (1) G-[CGA]-P-x(2)-[HQP]-x(2)-[CRK]-[DE]-x-[HP]-[CRWK]-[KR]-G-
[MLIVEDN]; {27, 27, 0}

Toxin

(49)Conotoxin scaffold III/IV, muconotoxin and M conotoxin (1) <x(0,62)-{C}-x(2)-{C}(10)-C-C-
{C}(2,6)-C-{C}(2,5)-C-{C}(1,5)-C-{C}(0,3)-C-{C}(0,3)>; (2) <(C}(0,9)-C-C-{C}(2,6)-C-{C}(2,5)-C-{C}(1,5)-
C-{C}(0,1)-C-{C}(0,3)>; {62, 62, 0}

(50)Conotoxin scaffold IX and tau conotoxin (1) <x(0, 49) {C}(12)-{CDEFY}-{C}(2)-C-C-{C}(4,7)-C
{C}(0,2)-C-{C}(0,9)>; (2) <{C}(0,14)-C-C-{C}(4,7)-C-{C}(0,2)-C-{C}(0,9)>; {80, 80, 1}

(51)Conotoxin scaffold VI/VII, four-loop conotoxin, Splder potassmm channel 1nh1b1tory toxin, O
superfamily (1) <x-{PA}-x(0,17)-{C}(0,21)-{C}(2)-{CQ}-{C}(11)-{CI}- }{C} {CH}-C-{C}(3,6)-C-{QC}-
C)(3,9)-C-C-{C}(2,8)-C-{CQ}-{C) (2.9)-C-{C}(0.9)>;(2)<(C (0 16)-{ CQ (25)c QPC}{ -
{CY}(2)-{C}(0,6)-C-C-{C}(2,8)-C-{CQ}-{C}(2,9)-C-{C}(0,9)>; (3) <C- CI (2 5)-C-{QPC}-{C}-{CY}(2)-
{C}(0,6)-C-C-{C}(2,8)-C-{CQ}-{C}(2,9)-C-{C}(0,9)>; {408, 408, 25}

(52) Scorpion toxin (1) [CKDEN]-{C}(3)-[CI]-{CDEN}-{C}(2)-C-{ (3) -C-{C (6 10)-G-{C}(1,2)-[CF]-x-
CJ(3,11)-C-[WYF]-C; (2) [CKDENI-{C}(3)-[CI]-{ CDEN C}(4,9)-C-{C}(3)- c C}(6,10)-G-{C}(1,2)-[CF]-
-{C}(3,11)-C-[WYF]-C; {223, 223, 14}; {Q2TSD9}

(53) Scorpion short toxin 2 (1) C-x-P-C-x(10)-C-x(2)-C-C-x(5,7)-C-x(2,3)-Q-C-LIVM]-C; {14, 14, 0}

(54) Anenome neurotoxin (1) C-x-C-{C}(4)-P-x(6,8)-G-x(5,13)-C-x(6,9)-C-x(6,9)-C-C; {25, 25, 0}

(55) Melittin (1) [LIVM]-[GA]-x(2)-[LIVM]-[KR]-[LIVM]; (2)-x(3)-[LIVM]-P-x-[LIVM](2)-x-W-
[LIVM]; {11, 11, 0}

Table 2. The novel conserved peptide patterns.

Note: each family is described in the following items: (1) the name of the family; (2) all
identified patterns; patterns marked with ‘identical” are completely identical to their
PROSITE counterpart and the ones marked as ‘new” are novel to PROSITE in Table 1; (3) the
number of true positive peptide or precursor proteins, the number of matches to the pattern,
and the number of false negative hits, all these numbers are in a bracket; (4) if there are
novel putative peptides or precursors predicted by the patterns of the family, they are listed
in a second bracket.

6. Case study

Patterns respectively representing the family of opioid and POMC-derived peptides as well
as the FMRFamide and related neuropeptides (FARPs) are here shown as test cases in order
to provide insights into the conserved sequence characteristics in many know peptide
families and how the peptide patterns deduced based on these characteristics perform.
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6.1 Opioid and POMC-derived peptides

The family includes subfamilies of opioid peptides and pro-opiomelanocortin (POMC)
proteins, and proteins in this family vary in length ranging from large precursors with a few
hundred amino acids, e.g. Q805B5 in Chimaera phantasma (325aa), to short peptides or partial
sequence fragments, e.g. Q7M2Z6 in Sheep (13aa).

6.1.1 The subfamily of opioid peptides

Opioid peptides are neuropeptides that are involved in pain control mechanisms in
vertebrates, and they consist of proenkephalin (PENK), nociceptin (PNOC) and
prodynorphin (PDYN) (Comb et al., 1982). The 41-column PROSITE pattern PS01252 ‘C-
x(3)-C-x(2)-C-x(2)-[KRH]-x(6,7)-[ LIF]-[ DNS]-x(3)-C-x-[LIVM]-[EQ]-C-[EQ]-x(8)-W-x(2)-C’
matches 39 Uniprot proteins. However, 92 remaining sequences from the subfamily are
disregarded; including nine full peptide precursors e.g. zebrafish Q7T3L0 and 83 peptides or
sequence fragments e.g. human Q9BYY3.

The subfamily is also described by a 71-column Pfam motif PF01160. When querying this
motif against all proteins in the subfamily by means of “both global (Is) and fragment (fs)’
search modes (http://www.sanger.ac.uk/Software/Pfam/search.shtml), 78 precursors are
singled out. But, the other 53 opioid proteins, e.g. cat Q28409, zebrafish Q8AX66 and
QI9W687 from Acipenser transmontanus, cannot be recognized by the Pfam motif with a score
higher than a gathering threshold.

A further investigation into the proteins missed by the Pfam motif is conducted by
comparing them with all proteins in the non-redundant protein sequence database nr using
BLAST (http:/ /www.ncbinlm.nih.gov/BLAST). The alignments with Q28409 (Fig. 2) reveal
that, while the similarities between the two Mammal precursors Q28409 and P01210 are
conserved along the entire sequences, the resemblances between Q28409 and
Q8AX66/Q4RIZ7 from the remote phylum of Actinopterygii are confined to a limited region
identified as ‘[KR]-[KR]-Y-G-G-F-[ML]-[KR]-[KR]". The few highly conserved amino acids
are also observed from the alignments between Q9W687 and Q5Y3C6 from Chondrichthyes
and Q6SYA7 from Dipnoi (Fig. 3). However, this conserved region is too short to produce a
significant score, and therefore BLAST comparison alone will fail to detect the limited
similarity preserved among the distant homologues with a critical confidence level.

The existing PROSITE pattern and the Pfam motif both characterize only the conserved N-
terminal region of the peptide precursors, they are thus not sufficient in identifying all short
bioactive opioid peptides or sequence fragments which are cleaved from their large
precursors and do not carry the N-terminal part of the proteins, but nevertheless bring the
crucial conserved peptide sequence region with them and preserve the fundamental
function of the peptide subfamily. Therefore, although the sequences, e.g. Q28409, Q8AX66
and QI9W687, cannot be identified by the existing motifs, they all share the pattern ‘[KR]-
[KR]-Y-G-G-F-[ML]-[KR]-[KR]" from our ‘PeptideMotif’ database. The pattern, which is
derived from the bioactive peptide sequences, could be more functionally conserved and
more performable in identifying opioid peptides or entire precursor proteins.

6.1.2 The subfamily of POMC-derived peptides

The subfamily shares similar peptide sequences with opioid precursors, but also contains
other non-opioid peptides such as ACTH and alpha-MSH, which are involved in the stress
response and stimulate corticosteroid release (Arends et al., 1998).
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Query=Q28409 | PENK_FELCA Proenkephalin A-Felis silvestris catus(Mammalia) Length=187

> P01210|PENK HUMAN Proenkephalin A precursor - Homo sapiens (Mammalia)
Length=267 Score = 429 bits (1004), Expect = le-118

Query WETCKEFLKLSQLEIPQDGTSALRESS-PEESHALRKKYGGFMKRYGGFMKKMDELYPQE
WETCKE L+LS+ E+PQDGTS LRE+S PEESH L K+YGGFMKRYGGFMKKMDELYP E
Sbjct WETCKELLQLSKPELPQDGTSTLRENSKPEESHLLAKRYGGFMKRYGGFMKKMDELYPME

Query PEEEAP-AEILAKRYGGFMKKDAEEEEDALASSSDLLKELLGPGETETAAAPRGR-—-—-—--—

PEEEA +EILAKRYGGFMKKDAEE+ D+LA+SSDLLKELL G+ R R
Sbjct PEEEANGSEILAKRYGGFMKKDAEED-DSLANSSDLLKELLETGDN-----— RERSHHQD
Query ---DDEDVSKSHGGFMRALKGSPQLAQEAKMLQOKRYGGFMRRVGRPEWWMDYQKRYGGFL

++E+VSK +GGFMR LK SPQL EAK LQKRYGGFMRRVGRPEWWMDYQKRYGGFL
Sbjct GSDNEEEVSKRYGGFMRGLKRSPQLEDEAKELQKRYGGFMRRVGRPEWWMDYQKRYGGFL

Query KRFADSLPSDEEGESYS
KRFA++LPSDEEGESYS
Sbjct KRFAEALPSDEEGESYS

> Q8AX66|Q8AX66_ BRARE Proenkephalin (Fragment) - Brachydanio rerio (Actinopterygii)

Length=216 Score = 140 bits (324), Expect = 9e-32

Query KKYGGFMKRYGGFMKKMDELYPQEPEEEAPAEILAKRYGGFMKKDAE----EEED-—-—-—-—
KKYGGFMKR +E L KRYGGFMKK AE E ED

Sbjct KKYGGFMKR--———-——=————————————— SESLIKRYGGFMKKAAEFYGLESEDVDQGR

Query ALASSSDLLKELLGP----- GETETAAAPRGRDDED-VSKSHGGFMR-—-—-—-— ALKGSPQL
A+ ++ D+ E+L GE E AA R + E+ +K +GGFMR AL

Sbjct AILTNHDV--EMLANQVEADGEREEAALTRSKGGEEGTAKRYGGFMRRGGLYAL-—---—--—

Query AQEA--KMLQKRYGGFMRRVGRPEWWMDYQ--KRYGGFLKRFADSLPSDEEGE

E+ + LOKRYGGFMRRVGRP+WW QO KRYGGFLKR S E+ E
Sbjct --ESGVRELQKRYGGFMRRVGRPDWW---QESKRYGGFLKR------ SQEQDE
> Q4RIZ7|Q4RIZ7_TETNG Chromosome undetermined SCAF15040 - Tetraodon nigroviridis
(Actinopterygii) Length=246 Score = 123 bits (283), Expect = 2e-26
Query KKYGGFMKRYGGFMKKMD------— ELYPQEPEEEA--PAEIL-—-————————————————
KKYGGFMKRYGGFM + D E +P +P+EE EIL
Sbjct KKYGGFMKRYGGFMSRRDVPEGALE-HPSDPDEEENIRLEILKILNAAAVHGSEGGGKAG
Query --AKRYGGFMKKDAEEEEDALASSSDLLKELLGPGETETAAAPRGRDDEDVSKSHGGEMR
KRYGGFM++ AEE A+ DLL+ +LG R
Sbjct EEGKRYGGFMRR-AEEG----AAQGDLLEAVLG-——=——=——=——=————————————— R
Query ALKGSPQLAQEAKMLQKRYGGFMRRVGRPEW-----—-—=—=—————— WM---DYQKRYGGFL
LK KRYGGFMRRVGRPEW w D QKRYGGF+
Sbjct GLK-—-=-—=-=—=-—-- KRYGGFMRRVGRPEWLVDSSKRGGVLKRAWGSDNDLQKRYGGEM

Fig. 2. Sequence alignments between Q28409 and 01210/ Q8AX66/Q4RIZ7 by BLAST.
Notes: the conserved opioid peptide sequence similarities are in bold.

No signature represents the subfamily in PROSITE; three Pfam motifs explain the proteins
including PF08384 (45 columns), PF00976 (41 columns) and PF08035 (31 columns). These
motifs capture separate conserved regions located respectively at the N-ternimus of the
precursors after the removal of the signal peptide, at the sequences coding for ACTH and
for ‘beta-endorphin’ peptides. However, the remaining parts of the precursors encoding for
peptides of gamma-MSH (12aa) and beta-MSH (17aa) are left untouched. As a result, 27
mature peptides or sequence fragments, e.g. Q9PRN3 from the Sea lamprey, horse P01202
and leech P41989, cannot be detected by any of these Pfam motifs.
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Query= Q9W687|Q9W687 ACITR Proenkephalin (Fragment)-Acipenser
transmontanus (Actinopterygii) Length=45

> Q5Y3C6|Q5Y3C6 HETPO Proenkephalin - Heterodontus portusjacksoni

(Chondrichthyes) Length=264 Score = 39.2 bits (85), Expect = 0.032

Query 14 RYDGFSKQ-----— PEHTDSKEITSEEV---EKRYGGFM 43
RY GF K+ P D EI S+EV EKRYGGFM
Sbjct 225 RYGGFMKRWNDILVPSDEDG-EIYSKEVPELEKRYGGFM 262
Score = 31.2 bits (66), Expect = 8.7
Query 14 RYDGFSKQPEHTDSKE--ITSEEVE-———==————— KRYGGEFM 43
RY GF K+ DS + I+ EV+ KRYGGFM
Sbjct 105 RYGGFMKK---ADSGDMYIS--EVDDENKGREILSKRYGGFM 141
> Q6SYAT7|Q6SYA7 PROAN Prodynorphin (Fragment) - Protopterus annectens
(Dipnoi) Length=191 Score = 33.7 bits (72), Expect = 1.5

Query 33 EEVEKRYGGFM 43
EE++KRYGGFM
Sbjct 169 EELQKRYGGFM 179

Fig. 3. Sequence alignments between Q9W687 and Q5Y3C6/Q6SYA7 by BLAST.
Note: the conserved opioid peptide sequence similarities are in bold.

The BLAST alignment between Q9PRN3 and all proteins in the nr database unveils that,
although QI9PRN3 cannot be identified by the Pfam motifs, it shares the highly conserved
‘PeptideMotif’ pattern "Y-x-[MV]-x-H-F-R-W” with other POMC subfamily members, e.g.,
Q2L6A9 from Hyperoartia, P01193 and Q53WY7 from Mammalia, and Q32U15 from
Amphibia (Fig. 4). This 8-column peptide pattern is a part of the 41-column Pfam motif
PF00976. While the sequence region, which is described by this Pfam motif, may be an entire
functional or structural domain, this peptide pattern contained within the longer domain is
probably the most essentially functional part.

In total, our procedure identifies six novel peptide patterns in the combination of these two
subfamilies. Among all the 397 proteins in this family, 113 were found to contain two of the
peptide patterns, and the rest match one of them. These patterns characterize conserved
domains located at different regions of a precursor sequence, and each of them can
exclusively represent an opioid or POMC peptide or its precursor protein.

6.2 FMRFamide and related neuropeptides (FARPs)

It is widely known that FARPs occur throughout the whole animal kingdom and therefore
this family is an ideally suited test case to check whether the disclosed pattern is capable of
retrieving FARPs from all metazoan species (Ubuka et al.,, 2009). In total, 23 conserved
peptide patterns have been uncovered from the family, and they match 214 FARPs
sequences with 605 hits due to the presence of multiple copies of the conserved patterns
within some precursor proteins. The identified FARPs distribute among a wide range of
phyla, including Nematoda (85), Arthropoda (50), Mollusca (24), Annelida (9),
Platyhelminthes (1), Cnidaria (10) and Chordata (35).

An 11-column Pfam motif PF01581 characterizes FARPs from all above-mentioned phyla
except Chordata, e.g. human QIHCQ7 and mouse QIWVAS. In addition, conversely to the
‘PeptideMotif’ patterns, 49 FARP peptides or precursor proteins in these characterized
phyla, e.g., Q9TWD2 from Lymnaea stagnalis and Q95QP2 from Caenorhabditis elegans, cannot
be revealed by the Pfam motif with a significant score (e-value <0.01).
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Query= Q9PRN3|Q9PRN3 PETMA Melanotropin MSH-B - Petromyzon marinus
(Hyperoartia) Length=20

>Q2L6A9|Q2L6A9 MORMR Proopiomelanotropin (Fragment) - Mordacia mordax
(Hyperoartia) Length=154 Score = 51.5 bits (114), Expect = 5e-06

Query 2 QESADGYRMQHFRWGQPLP 20
QE+ D YR+QHFRWG+PLP
Sbjct 11 QENPDAYRIQHFRWGEPLP 29

> P01193|COLI MOUSE Corticotropin-lipotropin precursor (Pro-
opiomelanocortin) (POMC) - Mus musculus (Mammalia) Length=235
Score = 32.5 bits (69), Expect = 2.4

Query 8 YRMQHFRWGQP 18
Y M+HFRWG+P
Sbjct 125 YSMEHFRWGKP 135

Score = 30.8 bits (65), Expect = 7.7

Query 3 ESADG-YRMQHFRWGQP 18
E DG YR++HFRW P
Sbjct 183 EKDDGPYRVEHFRWSNP 199

Score = 22.3 bits (45), Expect = 2753

Query 8 YRMQHFRW 15
Y M HFRW
Sbjct 77 YVMGHFRW 84

> Q53WY7|Q53WY7_ HUMAN Proopiomelanocortin (Fragment) - Homo sapiens
(Mammalia) Length=30 Score = 22.3 bits (45), Expect = 2753

Query 8  YRMQHFRW 15
Y M HFRW
Sbjct 3 YVMGHFRW 10

> Q32U15|Q32U15 9NEOB Proopiomelanocortin A (Fragment) - Trachycephalus
jordani (Amphibia) Length=82 Score = 23.1 bits (47), Expect = 1529

Query 8 YRMQHFRW 15
Y M HFRW
Sbjct 23 YVMSHFRW 30

Fig. 4. Sequence alignments between Q9PRN3 and P01193/Q53WY7/Q32U15 by BLAST.
Note: the conserved peptide sequence similarities are in bold.

The Clustal-W multi-alignment of all these FARP sequences together or within each of the
seven phyla using default parameters (http://www.ebi.ac.uk/clustalw/) shows that the
FARP precursors display sequence similarities within the mature peptide regions,
particularly in the area containing the conserved peptide patterns, and that the remaining
parts of the precursor sequences display rather low similarities. The FARP peptide
precursors also differ from each other by the number of peptide repeat units within the
sequences, which is thought to have arisen by unequal crossover events (Lee et al., 1998). In
addition, we also observed that most of the mature FARP peptides share common C-
terminal sequences but have much mutated N-terminal extensions. All these make it
problematic to construct an accurate multiple alignment in order to derive a statistical
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model which represents distantly related proteins from various phyla throughout the
evolutionary history of the FARP peptide family.

7. Conclusion

Protein domains are highly conserved throughout evolution and there are several databases
available that catalogue protein families and domains. Such motif and domain databases are
very useful in assigning a putative function to an unknown protein. Peptide precursor
proteins are a distinctive class of molecules because they undertake various
posttranslational modifications in order to ultimately synthesize stabilized and functional
mature peptides, making the annotation of peptides and peptide precursor proteins
challenging. This is illustrated by the fact that many metazoan peptides and peptide
precursors are not represented by the motifs currently present in the widely used motif
database such as PROSITE.

Because of the tremendously increasing number of protein sequences and because of the
wide range of peptide families, a comprehensive database of conserved patterns typical for
endogenously occurring mature peptides is of great value in identifying new peptides and
precursor proteins to catch up with their sequencing rate. We therefore have designed a
searching procedure to find conserved patterns within the known peptides, and as a result,
we have constructed a ‘PeptideMotif’ database that is representative of most currently
known peptide families.

Many peptides have been isolated and sequenced as mature peptides and their precursor
proteins are often unknown as yet. Therefore, these small peptides are difficult to be
identified by other motif databases. Motifs in databases such as Pfam contain two Hidden
Marcov Models (HMMs) for each family based on a multiple protein sequence alignment,
one built to find complete domains (Is mode) and the other to match fragments of
domains (fs mode) (Durbin et al., 1998). These motifs are sensitive at identifying complete
domains and thus they can efficiently detect the proteins which have similarities that
cover the full length protein sequence or at least contain a complete domain. However,
these motifs do not work very well when they encounter short peptides which lack
information on amino acids at the sites outside the peptide sequences, or when the
conserved regions are limited, especially in distantly related proteins where the overall-
length sequence similarity may be not well preserved. In contrast, the patterns derived
directly from the mature peptide sequences grasp the highly preserved region of the
precursor proteins and thus are able to identify not only the peptide precursor molecules
but also the fully processed peptides.

Conservative peptide sequence patterns correspond to functionally and structurally
important parts of the peptides, i.e. the binding site to specific receptors, the disulphide
bonds for stability and tertiary structure. The discovery of peptide motifs will be
undoubtedly of great value for any peptide-related studies ranging from the identification
of putative peptides and precursor proteins to the annotation of critical functional
residues (Husson et al., 2010), to the complement of peptidomic research in detecting and
verifying peptides in vitro (Baggerman et al., 2004; Boonen et al., 2008; Menschaert et al.,
2010). For example, scanning the peptide patterns against Uniprot revealed 95 proteins
(listed in Tables 1 and 2) which are not as yet annotated as putative peptides or precursor
proteins.
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When determining short functional patterns for peptide sequences, we have to evaluate how
representative the peptide motifs are in the 110 characterized peptide families. Short motifs
often have some degree of degeneracy and the presence of a motif in a protein may reflect a
conserved functional role, a yet to be discovered structural functional role or a non-
functional role. When using the short currently identified peptide patterns, while the false
positives are kept to zero, we observe that 440 (3.8%) of the mature peptides or sequence
fragments and 282 (2.5%) of the peptide precursor proteins in these described families
cannot be recognized by the peptide patterns. Many of them could be determined by
combining the peptide pattern search procedure with the structural hallmarks of bioactive
peptides and their precursors (Liu et al., 2006), such as the length of a peptide precursor
which is usually not longer than 500 amino acids, the presence of a signal peptide which
directs a precursor protein into the secretary pathway of the cell, and the presence of typical
cleavage sites flanking the mature peptides. To be even more successful in identifying all
false negatives while eliminating all false positives because of the short length and
degeneracy of most short motifs, it may be possible to make use of 3D structural patterns
when they become available for peptide precursor proteins. Patterns that integrate 3D
structural information of the sequences will be more sensitive in identifying peptides and
peptide precursors (Gribskov et al., 1988; Taylor et al., 2004).

While the majority of known peptide families have been profiled by the established peptide
patterns, the remaining ones accounting for in total 251 peptides and precursor proteins (2%
of all the proteins in the peptide-precursor database) are not processed by the pattern search
procedure. They are from small peptide families, such as eclosion hormones, ecdysis-
triggering hormones and apelin, which have only a few homologies so far. A pattern based
on the small number of peptides usually cannot gain enough confidence in representing the
family, and also cannot sufficiently reflect the sequence divergence accumulated in the
evolutionary course of the family member. As more peptides and precursor proteins are
sequenced, our patterns search procedure can be applied to the corresponding families and
the ‘PeptideMotif’ database will be updated accordingly, keeping the peptide pattern
database widely applicable for the identification of critical functional residues and for the
annotation of hypothetical molecules in various peptide families.
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1. Introduction

Cardiovascular disease (CVD) is a leading cause of mortality in developed countries (Jan et
al.,, 2010; Yang et al., 2008). Despite a long held understanding and strong characterization of
the traditional and non-traditional risk factors for CVD, some mechanisms of CVD onset
have only recently been uncovered. As a chronic inflammatory autoimmune disease,
atherosclerosis and its progression involve innate and adaptive immune systems. Using new
concepts and technologies to improve the current understandings of the molecular
pathogenesis of inflammatory and immune responses would lead to the future development
of novel therapeutics for these diseases.

Biomedical literature and databases, available in electronic forms, contain a vast amount of
knowledge resulting from experimental research (Ishii et al., 2007; Palakal et al., 2007). In the
past decade, both traditional hypothesis-driven research and discovery-driven “-omics”
research, including genomics, transcriptomics (Liang et al., 2005), proteinomics,
metabolomics, glycomics, lipidomics, localizomics, protein-DNA interactomics, protein-
protein interactomics, fluxomics, phenomics (Joyce & Palsson, 2006), and antigen-omics
(http:/ /www.cancerimmunity.org/links/databases.htm) (Houle et al., 2010; Shimokawa et
al.,, 2010; Weinstein, 1998;2002), has generated a tremendous amount of data and established
many experimental data-based searchable databases. These databases include PubMed,
nucleotide database, protein database, and other databases generated by the National
Institutes of Health (NIH)/National Center for Biotechnology Information (NCBI) (see the
NCBI handbook at http://www.ncbi.nlm.nih.gov/books/NBK21101/) and other
institutions. This development has not only provided resources, but also raised
unprecedented challenges and opportunities for biomedical scientists to develop more
systemic and panoramic approaches to analyze the data contained in the databases and
generate new hypotheses. The inconsistency between the vast amount of experimental data,
various searchable databases, and relatively smaller numbers of database-mining research
papers (< 50 papers on database mining in inflammation and immune responses listed in
the PubMed) indicate the challenges that experimental biomedical scientists face, which
include both technical/ methodological difficulties and out-of-date concepts.

Traditionally, medical literature search using the Index Medicus was the major approach for
biomedical scientists to identify knowledge gaps and preparing new hypotheses. However,
this approach has been significantly enhanced by more systemic approaches such as 1)
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NCBI-PubMed search and Google Scholar search; 2) experimentally screening cDNA
libraries and various arrays (nucleic acid arrays, antibody arrays, protein arrays and
metabolic arrays) (King et al., 2005; Loza et al., 2007; Pandey et al., 2004; Warner &
Dieckgraefe, 2002); and 3) mining experimental databases (Chen et al., 2010; Jan et al., 2010;
Ng et al.,, 2004; Yang et al., 2006a; Yang et al., 2006b; Yin et al., 2009). The screening analysis
of microarray data often requires bioinformatic methods, algorithms, and expertise. In
comparison, database mining offers many advantages. First, database mining requires much
less bioinformatic assistance in each laboratory when compared to the generation of
algorithms required in microarray analyses, since the purpose of generating databases is to
use bioinformatic approaches to mine easily organize the experimental data for biomedical
scientists to mine (Spasic et al., 2005). Second, database mining enables full-value extraction
from costly experimental data, and third, it provides panoramic analyses on existing
knowledge gaps by generating new hypotheses for further experimental research. However,
database mining requires biomedical scientists to have more conceptual advances than
technical assistances. The purpose of database mining is to analyze experimental data
deposited by various research projects, rather than predicting theoretic results based on
pure theoretical bioinformatic studies. Thus, database mining is not limited to sequence
comparisons of nucleic acids and proteins (Mount, 2004), sequence alignments, analysis of
hydrophobicity index and functional domain prediction of proteins. Additionally, database
mining has not generally been listed as a required course for graduate and postdoctoral
studies, which presents a challenge of properly training young biomedical scientists with
essential database mining techniques. On top of these aforementioned challenges, reviewers
from peer-reviewed database mining publications often mistakenly regard the experimental
data in electronic forms deposited in databases as “non-experimental or theoretical” and
demand ridiculous additional verifying experiments to be performed, even requiring the
use of outdated experimental techniques or methods. To overcome these difficulties,
bioinformatic scientists will have to work together with biomedical colleagues and delve
into the biological significance of database mining projects, rather than sticking to an
argument of “no algorithms means no bioinformatics”. Already, more and more database
mining papers have been published as scientists put aside their differences. For example, the
2011 (18th) database issue of the journal “Nucleic Acid Research” features descriptions of 96
new and 83 updated online databases covering various areas of molecular biology (Galperin
& Cochrane, 2011). The Nucleic Acids Research online Database Collection, available at:
http:/ /www.oxfordjournals.org/nar/database/a/, now lists 1330 carefully selected
molecular biology databases. In addition, 32 databases and analysis resources of
immunological interest have been established (Salimi et al., 2010). Moreover, our recent
invited review lists 11 B cell antigen epitope databases and 13 T cell antigen epitope analysis
resources (Jan et al., 2010). These progresses suggest that a data mining approach has
gradually been accepted as mainstream practice in analyzing experimental data and
generating new hypotheses for various projects (Salimi et al., 2010).

Our lab has successfully pioneered major advances in database mining in the fields of
adaptive immune reactions, innate immune responses, and inflammation (Chen et al., 2010;
Jan et al., 2010; Ng et al., 2004; Virtue, 2011; Yang et al., 2006a; Yang et al., 2006b; Yin et al.,
2009). In this chapter, we will summarize the general approaches, principles, and databases
used and new working models proposed in our database mining research. This discussion
will prove to be important and useful for most biomedical scientists, since many are not
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often involved in the bioinformatic algorithm generation, but may want to use database
mining methods in their research either as parts of existing experimental studies or as free-
standing projects. Of note, the database mining concept is not “brand new”. Medical
research has a long history in full-value extraction from costly data. For example, a meta-
analysis uses a statistical approach to combine the results of several epidemiological studies
that address a set of related research hypotheses. This practice started well over 100 years
ago and has been widely used in various disease-related researches
(http:/ /en.wikipedia.org/wiki/Meta-analysis) (Egger & Smith, 1997; Egger et al., 1997). We
believe that the practice of database mining will become a routine exercise to identify
existing knowledge gaps and to generate new hypotheses.

2. Principles of database mining

In recent years, many databases regarding immune responses and inflammation have been
established (Jan et al., 2010; Yang et al., 2006a), which have expanded the scope and depth of
a publicly searchable online repertoire of tools. The results derived from the database
mining analyses have become parts of many research papers or free-standing papers.
Although projects may vary in format, database mining approaches follow the same set of
principles (Fig. 1): 1) Hypothesis: A clearly-presented hypothesis based on the current
biomedical literature search in a given field and previous experimental data in the lab is
required to carry on a database mining project as we reported (Ng et al., 2004; Yan et al.,
2004), which is similar to that of experimental projects. Of note, the database mining referred
here focuses on database mining as a free standing project rather than as a part of
experimental research; 2) Scope: Database mining scopes in terms of gene numbers are far
more than that examined in experimental approaches. For example, our own research will
examine mRNA transcript expressions of about 30 genes including all the reported toll-like
receptors, NOD-like receptors, and inflammatory caspases in more than ten tissues. This
scope allows us to obtain a panoramic view on the expressions of inflammatory pathways
without focusing on a single gene in many tissues (Yin et al., 2009); 3) Suitable databases:
Databases that are suitable for examining the hypothesis are available for online analytic
search, which is also similar to the methods and reagents for experimental projects; 4)
Sizable experimentally verified data for generating confidence intervals with statistical
significance: To consolidate the results generated from database mining, the experimentally
verified data are published by various laboratories, which can be used to generate
statistically significant confidence intervals by using the same online analysis tools as we
reported (Virtue, 2011). In this study, our analysis in the TargetScan yielded 524
microRNAs, which were predicted to participate in 1368 unique interactions with the 33
inflammatory gene mRNAs. To ensure relevance, we examined the context value and
percentage of experimentally verified microRNAs. Confidence intervals were generated
from 45 interactions between 28 experimentally verified human microRNAs and 36 genes
found within the Tarbase, an online database of experimentally verified microRNAs
(http:/ /diana.cslab.ece.ntua.gr/tarbase/) (Papadopoulos et al., 2009; Sethupathy et al.,
2006). These experimental interactions were also selected based on their confirmation by

luciferase reporter assays and single site specificity. The 45 microRNA-mRNA interactions
that met these criteria were then evaluated in TargetScan to determine the microRNA
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Develop awell-presented hypothesis based on experimental data and
analysis on cumrent knowledge gap

&

Determine the scope, focus, and pathway fordatabase mining

&

Find suitable databases that contain experimental data, which are
organized with ap propriate bioinformatic expertise

&=

Find sizable experimental data for generating confidence intervals,
which are consolidated with statistical tools of sample size
determination

&

Identify verifiable exp erimental methods

!

Propose a new working hypothesis/working model for further
experimental research

Fig. 1. Detabase mining flow-chart and principles.

context values and percentages. Analysis of this data yielded a mean and standard deviation
(SD) of -0.25 + 0.12 and 76.07 + 19.07 for context value and context percentage, respectively.
The intervals were then constructed and the lower limits (the mean - 2 x standard
deviations) were calculated for context percentage (76.07-1.96 (19.07/SQRT (46)) = 76.07 -
5,51 = 70.56) and context value (-0.25-1.96(0.12/SQRT (46) = - 0.25 - 0.04= -0.22). All
predicted microRNAs interactions with a context value <-0.22 and context percentage =70
were accepted. Using the lower limit thresholds for context value and percentage, 297 out of
the 524 predicted microRNAs met the criteria and were considered equivalent to the
experimentally verified microRNAs. In order to generate valid confidence intervals, sample
sizes have to be estimated with statistical tools of sample size determination (Rosner, 2000)
as we reported (Ng et al., 2004); 5) Verifiable methods: Experimental methods are available
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to verify the data generated by the database mining (Yan et al., 2004); and 6) A new working
model/hypothesis: Through database mining, a new knowledge gap will be identified, and
a new hypothesis will be proposed to test fewer, much more-focused genes in further
experiments. The following sections will illustrate these principles in our own publications
(Chen et al., 2010; Jan et al., 2010; Ng et al., 2004; Virtue, 2011; Yang et al., 2006a; Yang et al.,
2006b; Yin et al., 2009).

3. Database mining example 1: Stimulation-responsive alternative splicing is
an important mechanism in generating self-antigen epitopes (Ng et al., 2004;
Xiong et al., 2006; Yan et al., 2004; Yang et al., 2006a; Yang, 2007)

In our invited review, we pointed out that the identification and molecular characterization of
self-antigens expressed by human malignancies, that are capable of elicitation of anti-tumor
immune responses in patients, have been an active field in tumor immunology (Yang & Yang,
2005). More than 2,000 tumor antigens have been identified, and most of these antigens are
self-antigens (Yang & Yang, 2005). Despite this, the important question of how non-mutated
self-protein antigens, generated from normal cells and tumor cells, gain immunogenicity and
trigger immune recognition remained unanswered (Yang & Yang, 2005). Mutations may be
responsible for some aspects of elevated immunogenicity underlying certain tumor-specific
antigens (p53 and Ras), while chromosome translocations and abnormalities, such as
expression of the fusion oncogene Bcr-Abl in chronic myelogenous leukemia (Clark et al., 2001;
Pinilla-Ibarz et al., 2000; Yotnda et al., 1998; Zorn, 2001) (Yang et al., 2002; Yang et al., 2001) are
responsible for other aspects. However, the mechanism underlying the immunogenicity of
most non-mutated self-tumor antigens is their aberrant overexpression in tumors (Yang &
Yang, 2005). Zinkernagel et al (Zinkernagel & Hengartner, 2001) suggested that the
overexpression of self-antigens or novel antigenic structure, overcomes the threshold of
antigen concentration at which an immune response is initiated (Shlomchik et al., 2001). This
threshold might be lower for certain untolerized regions of certain antigen epitopes.
Overexpressed genes, often encode tumor antigens up to 100 fold. These genes are identified
by serological identification of self-antigens by screening a cDNA library with patients’ sera
(SEREX) (Sahin et al., 1995), which may reflect the inherent methodological bias for the
detection of abundant transcript (Preuss et al., 2002). The overexpression of tumor antigens in
tumors may result from transcriptional and post-transcriptional mechanisms. We recently
demonstrated that overexpression of tumor antigen CML66L in leukemia cells and tumor cells
via alternative splicing is the mechanism for its immunogenicity in patients with tumors (Yan
et al., 2004; Yang et al., 2001). This not only illustrates the principle of overexpression of tumor
antigen, but also elucidated alternative splicing as its molecular mechanism (Yan et al., 2004).
A significant proportion of the SEREX-defined self-tumor antigens are autoantigens (Chen,
2004), for example, CML28 that we identified is autoantigen Rrp46p (Yang et al., 2002). Using
this information gathered from SEREX, we hypothesized that alternative splicing is a general
mechanism for the overexpression of untolerized self-antigen epitopes in tumors and
autoimmune diseases. In order to test this hypothesis, we database mined the NIH-NCBI
AceView database to examine the potential mechanisms of how non-mutated self-proteins
gain new untolerized structures that trigger immune recognition (Ng et al., 2004). The
AceView database provides a curated, comprehensive, and non-redundant sequence
representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single
pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first
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co-aligned on the genome, and then clustered into a minimal number of alternative transcript
variants and grouped into genes (http://www.ncbinlm.nih.gov/IEB/Research/ Acembly/).
Our results showed that alternative splicing occurs in 100% of autoantigen transcripts. This is
significantly higher than the approximately 42% rate of alternative splicing observed in the
9554 randomly selected human gene transcripts (p<0.001). Within the isoform-specific regions
of the autoantigens, 92% and 88% encoded MHC class I and class Il-restricted T-cell antigen
epitopes, respectively, and 70% encoded antibody binding domains. Alternative splicing can
be canonical or non-canonical. Canonical splicing removes introns that have 5GT and 3'AG
consensus flanking sequences (GT-AG rule) (Lewin, 2000). Our results demonstrated that 80%
of the autoantigen transcripts undergo non-canonical alternative splicing, which is
significantly higher than the less than 1% rate in randomly selected gene transcripts (p<0.001).
These studies suggest that non-canonical alternative splicing may be an important mechanism
for the generation of untolerized epitopes that may lead to autoimmunity. Furthermore, the
product of a transcript that does not undergo alternative splicing is unlikely to be a target
antigen in autoimmunity (Ng et al., 2004). To consolidate this finding, we also examined the
effect of proinflammatory cytokine tumor necrosis factor-a (TNF-a) on the prototypic
alternative splicing factor (ASF)/SF2 in the splicing machinery. Our results show that TNF-a
downregulates ASF/SF2 expression in cultured muscle cells. This result correlates with our
finding of reduced expression of ASF/SF2 in inflamed muscle cells from patients
with autoimmune myositis (Xiong et al., 2006). Based on our and others’ data, we
recently proposed a new model of stimulation-responsive splicing for the selection of
autoantigens and self-tumor antigens (Yang et al, 2006a) [also see Fig. 1 at
(http:/ / preview.ncbinlm.nih.gov/pubmed/16890493)]. Our new model theorizes that the
significantly higher rates of alternative splicing of autoantigen and self-tumor antigen
transcripts that occur in response to stimuli, such as proinflammatory cytokines, could induce
extra-thymic expression of untolerized antigen epitopes to elicit autoimmune and anti-tumor
responses. By using B lymphocyte (B cell) antigen epitope analysis databases and T cell
antigen epitope analysis databases listed in Tables in our recent invited review
(http:/ /www.ncbi.nlm.nih.gov/pmc/articles/ PMC2858284 / pdf/JBB2010-459798.pdf) (Jan et
al., 2010), we showed that protein sequences encoded by alternatively spliced exons are
sufficient to equip antibody-binding antigen epitopes and major histocompatibility complex
(MHC) class I- and MHC Il-restricted T cell antigen epitopes to stimulate B lymphocytes and T
lymphocytes, respectively (Ng et al., 2004). Of note, our model not only applies to non-
mutated self-tumor antigens associated tumors and autoantigens associated with various
autoimmune diseases, but also to the composition and expansion of the self-antigen repertoire
of stem cells. Our additional database mining study has generated a new model of differential
epitope processing for MHC class I-restricted viral antigen epitopes and tumor antigen
epitopes (Yang et al., 2006b). Our reports have demonstrated the principles of database mining
in adaptive immune responses.

4. Database mining example 2: Three-tier model for inflammasome/caspase-1
activation and inflammation privilege of tissues are important mechanisms
underlying the differences in the readiness of inflammation initiation in
tissues

Atherosclerosis is the leading cause of morbidity and mortality in industrialized society.
Several “traditional” risk factors have been identified for atherosclerosis including
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hyperlipidemia, oxidized low density lipoprotein, cigarette smoking, diabetes,
hypertension, obesity (Ross, 1992), and hyperhomocysteinemia (HHcy), etc. Chronic
vascular inflammation is an essential requirement for the progression of atherosclerosis in
patients (Hansson, 2005). Recent progress in characterizing pathogen-associated molecular
patterns” (PAMPs) receptor families (PAMP-Rs) and inflammasomes (the protein complex
for activation of caspase-1) has further emphasized the importance of proinflammatory
cytokine interleukin-1p (IL-1P) signaling in bridging proatherogenic risk factors to initiate
inflammation (Yang et al., 2008). However, constitutive expression levels and expression
readiness of PAMP-Rs, inflammasome components and proinflammtory caspases in tissues
remained poorly defined. We hypothesized that PAMP-Rs, inflammasome components,
proinflammatory caspases, IL-1, and IL-18 are differentially expressed in cardiovascular
tissues. To examine this hypothesis, we mined the NCBI-UniGene database, analyzed cDNA
cloning and DNA sequencing data from tissue cDNA libraries and studied expression
profiles of Toll-like receptors (TLRs), cytosolic nucleotide binding and oligomerization
domain (NOD)-like receptors (NLRs), inflammasome components, inflammatory caspases,
and caspase-1 cleavable inflammatory cytokines. The UniGene database provides an
organized view of the transcriptome with information on protein similarities, gene
expression, cDNA clone reagents, and genomic location
(http:/ /www.ncbinlm.nih.gov/unigene), in which each UniGene entry is a set of transcript
sequences that appear to come from the same transcription locus (gene or expressed
pseudogene). After analyzing the data from the UniGene database, we made several
important findings: (1) Among 11 tissues examined, vascular tissues and heart express fewer
types of TLRs and NLRs than immune system tissues including blood, lymph nodes,
thymus, and trachea; (2) Brain, lymph nodes, and thymus do not express proinflammatory
cytokines IL-1p and IL-18 constitutively, suggesting that these two cytokines need to be
upregulated in response to inflammatory stimuli in the tissues; and (3) based on the
expression data of three characterized inflammasomes (NALP1, NALP3 and IPAF
inflammasomes), the examined tissues can be classified into three tiers: the first tier tissues
including brain, placenta, blood, and thymus express inflammasome(s) in constitutive
status; the second tier tissues have inflammasome(s) in nearly-ready expression status (with
the requirement of upregulation of one component); and the third tier tissues like heart and
bone marrow, require upregulation of at least two components in order to assemble
functional inflammasomes. Based on the expression readiness of inflammasomes in tissues,
we propose a new working model of three-tier responsive expression of inflammasomes in
tissues and suggest a new concept of third tier tissues’ inflammatory privilege, which
provides an insight on the differences of tissues in initiating acute inflammations. This
model suggests that (a) first-tier tissues with constitutively expressed inflammasomes
initiate inflammation quicker than second and third-tier tissues; and (b) second tier tissues
(requiring one component of upregulation) including vascular tissue, and third tier tissues
including heart (requiring more than one component upregulation) are in an inducible
expression status of inflammasomes. The inducible expressions of inflammasomes are
presumably mediated through various signal pathways that initiate inflammation, and the
interplay between the signal pathways, may take a longer time and overcome a higher
threshold than first tier tissues. Traditional concepts of immune privilege suggests a
protective mechanism from autoimmune destruction based on the lack of expression of
antigen-presenting self-major compatibility complex (MHC) molecules in tissues (Yang &
Yang, 2005). The lack of expression of self-MHCs in immune privileged tissues including
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testis results in the failure of self-antigen presentation that stimulates the hosts’” immune
system, thereby protecting immune privileged tissues from autoimmune destruction.
Similarly, we proposed a new concept of tissues” inflammatory privileges that emphasize a
protective mechanism against tissue destruction mediated by inflammasome/IL-1{3-based
innate immune responses. In our new concept of tissues’” inflammatory privilege, vascular
tissue and heart disproportionally express fewer types of TLRs and NLRs and may only
inducibly express inflammasomes, thus preventing against uncontrolled inflammatory
destruction mediated by inflammasome-based innate immune responses (Streilein & Stein-
Streilein, 2000). Our new concept and model may also explain the potential differences
between cardiovascular tissues and other tissues in initiating acute inflammation. The first-
tier tissues may have a higher probability of experiencing acute inflammation than the
second-tier and third-tier tissues.

We and others showed that elevated levels of plasma homocysteine (Hcy), termed
hyperhomocysteinemia (HHcy), is an independent risk factor, equivalent to hyperlipidemia,
for cardiovascular diseases (CVD) including coronary heart disease and stroke (Maron &
Loscalzo, 2009; Wang et al., 2003; Zhang et al., 2009). Recently, we performed an additional
database mining study using to examine the expression of more than 20 homocysteine
metabolic enzymes and methylation enzymes in >20 tissues in humans and mouse (Chen et
al.,, 2010). We generated a new model of how hypomethylation (a post-translational protein
modification) modulates the expressions of homocysteine-metabolizing enzymes (Chen et
al.,, 2010). Taken together, our studies have demonstrated the principles of database mining
in innate immune reactions.

5. Database mining example 3: A group of anti-inflammatory microRNAs may
play critical roles in inhibiting the expression of proatherogenic molecules

Previous research has established that numerous genes are upregulated in atherogenesis
through epigenetic or genetic transcriptional mechanisms (Turunen et al., 2009). However,
transcription-independent mechanisms have received far less scrutiny. Recent publications
suggest that microRNAs, a newly characterized class of short (18-24 nucleotide long),
endogenous, non-coding RNAs (Bartel, 2009), contribute to the development of particular
disease states by regulating diverse biological processes such as cell growth, differentiation,
proliferation, and apoptosis (Zhang, 2008). This biological control is accomplished by post-
transcriptional gene silencing (Naeem et al., 2010) through Watson and Crick base-pairing
predominately at the 3’-untranslated region (3"UTR) of messenger RNAs (mRNAs) (Cordes
et al., 2009; Rasmussen et al., 2010). This pairing can be further characterized as “perfect” or
“near perfect”, leading to target mRNA cleavage and degradation, or “imperfect”, causing
the inhibition of mRNA translation (Naeem et al., 2010). With the identification and
sequencing of more than 800 human microRNAs thus far, it is thought that up to 30% of
human genes may be regulated by microRNAs (Cheng et al., 2010; Zhang, 2008). Supporting
evidence suggests that microRNAs function as key players during critical stages of cellular
development and finely tune gene expression in the maintenance of routine cellular
functioning (Baek et al., 2008). Furthermore, microRNAs can act on transcription factors,
which lead to a broad indirect cellular effect as a result of their widespread gene modulating
nature. In addition, the recent research has demonstrated that changes in microRNAs
expression patterns are connected to several pathological conditions including
cardiovascular disease and atherosclerosis. These studies primarily focused on
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characterizing microRNAs in atherosclerosis disease models, which had been previously
reported to have elevated expression in disease conditions (Haver et al., 2010; Rink &
Khanna, 2010). Thus, current microRNAs research has failed to provide a panoramic view of
how microRNAs regulate proatherogenic inflammatory genes in a panoramic view and
whether upregulation of proatherogenic inflammatory genes is the result of anti-
inflammatory microRNA downregulation. To address these issues, we hypothesized that a
group of anti-inflammatory microRNAs may regulate the expressions of proatherogenic
molecules (Virtue, 2011). We then developed a novel database mining approach using three
types of databases including the online microRNA target prediction software TargetScan
(http:/ /www.targetscan.org/) (Dong et al., 2010; Rosero et al., 2010; Vickers & Remaley,
2010), the Tarbase, an online database of experimentally verified microRNAs
(http:/ /diana.cslab.ece.ntua.gr/tarbase/) (Papadopoulos et al., 2009; Sethupathy et al.,
2006), and the online microRNA.org expression database (http://www.microrna.org/
microrna/home.do) (Betel et al., 2008), in concert with a statistical analysis strategy
established in our previous database mining publications (Chen et al., 2010; Ng et al., 2004;
Shen et al., 2010; Yang et al., 2006b; Yin et al., 2009). Our unique research using database
mining yielded several key findings. First, we discovered that the expression of 33
inflammatory genes (mRNAs) is upregulated in atherosclerotic lesions and second, that the
mRNAs of those genes contain structural features in their 3'UTR for potential regulation by
microRNAs. Furthermore, these structural features are statistically identical to
experimentally verified 3'UTR microRNAs binding sites. Third, 21 out of the 33
inflammatory genes (64%) are targeted by highly expressed microRNAs while the
remaining 12 inflammatory genes (36%) are targeted by normally expressed microRNAs.
Fourth, it was also established that 10 of the 21 highly expressed microRNA-targeted
inflammatory genes (48%) were targeted by a single microRNA, suggesting the specificity of
microRNA regulation. Meanwhile, 12 out of the 25 highly expressed microRNAs (48%)
targeted single inflammatory genes while the other 13 microRNAs targeted multiple
inflammatory genes. Finally, it was determined that the microRNAs targeting
atherosclerotic inflammatory genes use statistically higher numbers of “poorly conserved”
binding interactions than the control group of microRNAs from the confidence interval.
These results suggest that the microRNAs regulating atherosclerotic inflammatory genes
possess special features (Virtue, 2011).

Previous research has shown that microRNAs participate in modulating atherosclerosis-
related processes including hyperlipidemia (microRNA-33, microRNA-125a-5p),
hypertension (microRNA-155), plaque rupture (microRNA-222, microRNA-210), and
atherosclerosis itself (microRNA-21, microRNA-126) (Rink & Khanna, 2010). However,
whether certain microRNAs play a role in preventing the disease development remains
unknown. One of the most interesting findings from our study is that the 25 microRNAs
that are highly expressed under normal untreated conditions target 21 out of the 33 (64%)
atherosclerosis-upregulated inflammatory genes. The important result suggests a novel
mechanism where a group of highly expressed anti-inflammatory microRNAs suppress the
upregulation of proatherogenic inflammatory genes under normal physiological conditions.
It has been well established that microRNAs play important roles in fine-tuning
developmental processes and participate in the development of diseases such as cancer. Our
results are the first to suggest that microRNAs may play a protective role by suppressing
proatherogenic genes to maintain healthy arteries. Our conclusion is supported by other
publications, which show that 7 out of the 20 microRNAs identified in this study were
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downregulated in the experimental studies by various proatherogenic factors (Chen et al.,
2009; Elia et al., 2009; Ji et al., 2007). Together, our studies have demonstrated the principles
of database mining in inflammation.

6. Conclusion

Active research in human and mouse genomes, transcriptomes, microRNAs transcriptomes,
proteomes, and antigen-omes in the past decade has generated a tremendous amount of
data and established many experimental data-based searchable databases. This provides
unprecedented opportunities for biomedical scientists to develop more systemic and
panoramic approaches to analyze the databases and generate new hypotheses. In this
chapter, we briefly summarize our pioneering efforts in using our new database mining
methods to address important questions in inflammatory and immunological diseases. The
new principles and basic methodologies of database mining developed in our laboratories
are elucidated in the following studies: 1) stimulation-responsive alternative splicing model
for the generation of untolerized autoantigen epitopes; 2) a three-tier model for
inflammasome/ caspase-1 activation and inflammatory privileges of tissues; and 3) a group
of anti-inflammatory microRNAs in inhibiting proatherogenic gene expression during
atherogenesis. With recent technological breakthroughs, database mining has provided
significant new insights and hypotheses in specifying the novel directions for experimental
research.
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1. Introduction

Glioblastoma multiforme (GBM) is the most common form of malignant brain cancer and
persist as serious clinical and scientific problems. The current standard of therapy for GBM
patients, include surgery, radiotherapy and chemotherapy with temozolomide, produces a
median survival of only 14.6 months (Stupp et al, 2005). Now, new intervention is
increasingly being tested, particularly with inhibitors of neo-angiogenesis and growth factor
receptors, and high throughout profiling studies are leading to the discovery of novel
genetic alterations and signaling pathways. The Cancer Genome Atlas Network recently
catalogs recurrent genomic abnormalities in GBM, and proposes a molecular classification of
GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrates
multidimensional genomic data to establish patterns of somatic mutations and DNA copy
number (Verhaak et al., 2010). In recent years, microRNAs (miRNAs), small noncoding RNA
molecules, have been identified in the progression of various human cancers and used to a
notable molecular label to cancers. In glioma, miR-21, miR-221, miR-222, miR-181a and miR-
125b have been proven to play critical roles in gliomagenesis and proposed as novel targets
for antiglioma therapies (Shi et al., 2008; Shi et al., 2010; Zhang et al., 2009b; Zhang et al.,
2010c; Zhou et al., 2010a; Zhou et al., 2010b). Thus, molecular regulation of glioma is
comprehensive and still unclear and under further investigation.

Biomedical literature is growing at a double-exponential pace, with approximately 20
million publications in MEDLINE. Up to now, there have been more than 50 thousand of
glioma-related publications in MEDLINE (Pubmed with: glioma). Thus, a massive wealth of
information is embedded in the literature and waiting to be discovered and extracted.
Literature mining is a promising strategy to utilize this untapped information for
knowledge discovery and has been applied successfully to various biological problems
including the discovery and characterization of molecular interactions (protein-protein,
gene-protein, gene-drug, protein sorting and molecular binding) (Friedman et al., 2001;
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Rindflesch et al., 2000; Sekimizu et al., 1998). As no searchable records are available to
efficiently retrieve information relevant to molecular network in glioma, we extracted
glioma-related genes and miRNAs by data mining Pubmed abstracts and established glioma
associated network based on these genes and miRNAs to identify key signalings and
miRNA regulatory module in glioma.

2. Results

2.1 Identification of glioma-related genes and miRNAs

For glioma we queried Pubmed with: glioma[title] AND ("1980/01/01"[PDAT]
"2010/04/01"[PDAT]). It led to the identification a total of 670 genes and 14 miRNAs that
interacted with glioma. The top 10 glioma-related genes were listed in Table 1. These 14
glioma-related miRNAs were miR-21, miR-34a, miR-221, miR-222, miR-10b, miR-125b, miR-
128, miR-146b, miR-15b, miR-181a, miR-196a, miR-26a, miR-451 and miR-9. Additionally,
we score the journals describing these genes and miRNAs, and the top 10 journals were
listed in Table 2.

Gene PubMed Count
EGFR 130
VEGF 123
GFAP 87
TRAIL 71
CD9%5 52
JNK 52
ERK 49
IFN 48
PTEN 47
NGF 47

Table 1. The top 10 glioma-related genes.

Journal Count
Cancer Res. 133

J. Neurooncol. 103
Oncogene 53

J. Neurochem. 46

J. Neurosurg,. 38
Int. J. Cancer 37

J. Biol. Chem. 36
Biochem. Biophys. Res. Commun. 33
Clin. Cancer Res. 33

Table 2. The top 10 journals describing glioma-related genes and miRNAs.
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2.2 Biological function of glioma-related genes

To better understand the biological role of glioma-related genes, the catalogued genes were
visualized using Gene Ontology (GO) terms and pathway analysis. The Gene Ontology
(GO) provides a structured and controlled ontology for describing gene products in terms of
their associated molecular function, biological process, or cellular component in a species-
independent manner. The molecular function enrichment revealed that 22 GO terms
appeared to be significantly enriched and most glioma-associated genes encode for protein
binding. In the biological process category, the genes mainly participated in signaling
transduction, response stress, cell differentiation and regulation of cell proliferation. Finally,
the cellular component category found that products of these genes were active mainly in
cytoplasm membrane (Table 3).

Category GO term

protein binding, protein dimerization activity, signal transducer
activity, cytokine activity, enzyme binding, growth factor activity,
growth factor binding, receptor activity, protein kinase activity,
molecular glycosaminoglycan binding, kinase binding, enzyme regulator activity,
function G-protein-coupled receptor binding, carbohydrate binding, peptide
receptor activity, collagen binding, polysaccharide binding, kinase
activity, ATP binding, enzyme inhibitor activity, transmembrane
receptor protein tyrosine kinase activity, adenyl nucleotide binding
response to stress, regulation of cell proliferation, cell differentiation,
regulation of phosphorylation, regulation of immune system process,
negative regulation of cell proliferation, cell proliferation, anti-
biological apoptosis, apoptosis, neurogenesis, response to hormone stimulus,
process hemopoiesis, regulation of protein kinase activity, immune response,
signal transduction, inflammatory response, cell migration,
angiogenesis, cell communication, phosphorylation, gliogenesis, cell
cycle process
intrinsic to plasma membrane, integral to plasma membrane, plasma
cellular membrane, extracellular region, cell projection, vesicle, nucleoplasm,
component cytosol, cell soma, secretory granule, platelet alpha granule,
transcription factor complex, apical plasma membrane

Over-represented GO terms were identified after multiple testing adjustments (P-value<0.05).

Table 3. Set of GO terms with highly enriched genes.

To further explore the pathway involved in these genes, we searched KEGG database for
their pathway information. 16 pathways whose P-value was less than 0.01 were kept (Table
4). The most top enriched pathway is p53 signaling pathway, including 27 genes and Toll-
like receptor signaling pathway including 33 genes.

2.3 Interaction network of glioma-related genes
To uncover the potential interaction networks or synergistic effects of these glioma-related
genes, we employed each gene set as queries and searched for their interaction partners by
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accessing the database STRING. STRING integrates different public databases containing
information on direct and indirect functional protein-protein associations by benchmarking
them against the common reference set, KEGG pathway database. 204 genes had
interactions in the database STRING. We next tried to connect these genes into a network to
identify biologically informative linker genes which were statistically enriched for
connections to member of glioma-related gene list. Figure 1A summarized PIK3CA, PIK3CB
and JAK2 three queries served as "hubs" (label with red circle), which has high connection
and was an indicator for essentialness in a network. Surprisingly, further analysis found that
PIK3CA, PIK3CB and JAK2 were associated with signaling transduction, MAPK pathway,
growth factor, cell apoptosis, cell proliferation, cell adhesion and cell migration (Figure 1B).
Given that PIK3CA and PIK3CB encode the protein PI3K subunit p110a and pl10p,
respectively, these data suggested that PI3K and JAK2 signalings provided excellent
biomarkers for glioma aggressiveness.

Pathway Count Enrichment P-value
p53 signaling pathway 27 0
Toll-like receptor signaling pathway 33 0
Apoptosis 30 9.80E-10
Cytokine-cytokine receptor interaction 65 2.48E-09
Glioma 23 8.80E-08
MAPK signaling pathway 51 1.24E-06
ErbB signaling pathway 24 1.02E-05
Focal adhesion 40 1.12E-05
Cell cycle 28 1.28E-05
T cell receptor signaling pathway 27 1.47E-05
Adipocytokine signaling pathway 20 3.11E-05
Chemokine signaling pathway 38 3.22E-05
Neurotrophin signaling pathway 29 4.10E-05
VEGEF signaling pathway 18 0.003731
Adherens junction 18 0.003731

Over-represented KEGG pathways were identified after multiple testing adjustments (P-value<0.05).
Table 4. Set of signaling pathways with highly enriched genes.
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Fig. 1. Visualization of glioma-related gene interaction network.

(A) Connectivity analysis was performed using the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) to generate glioma-related gene knowledge-driven
network, as described in Methods. Analysis revealed PI3KCA, PI3KCB and JAK2 are hub
genes with P-value<0.001, which had an influential role in network stability.

(B) PI3BK and JAK2 hub signalings located at the key status of glioma-related gene
knowledge-driven network, and exerted a wide effect on kinds of biological functions and
pathways, including signaling transduction, MAPK pathway, growth factor, cell apoptosis,
cell proliferation, cell adhesion and cell migration. Purple lines correspond to activation,
blue lines to inhibition, and yellow lines to association. Red circles (PI3KCA, PI3KCB and
JAK?2) are indicated for hub genes.

2.4 Glioma-related miRNA pathway
Because each miRNA target prediction program uses a different computer-aided algorithm
for prediction, encompassing all these methods will probably produce a more reliable model
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of target prediction. Thus, a union target gene list of 14 glioma-related miRNAs was
generated from 3 target prediction programs (PicTar, TargetScan and miRanda). To further
explore the signaling pathway in these target genes, pathway analysis was performed. Table
5 showed that p53 signaling pathway, Apoptosis, Focal adhesion, MAPK signaling pathway,
Toll-like receptor signaling pathway and Cell cycle pathways were significantly over-
represented. Actually, these 6 pathways were included in the pathways of glioma-related
genes. These findings imply that glioma-related genes and miRNAs prefer a common set of
signaling pathways.

Pathway Count  Enrichment P-value
p53 signaling pathway 19 8.67E-09

Apoptosis 21 2.4E-08

Focal adhesion 26 0.000123

MAPXK signaling pathway 30 0.000499

Toll-like receptor signaling pathway 15 0.005773

Cell cycle 16 0.006547

Over-represented KEGG pathways were identified after multiple testing adjustments (P-value<0.05).
Table 5. Set of signaling pathways with highly enriched microRNA targets.

In order to construct the network between glioma-related miRNAs and the signaling
pathway, integrated analysis of the targets of glioma-related miRNAs was performed. This
procedure obtained 6 miRNA-pathway networks. For instance, p53 signaling pathway
network contained 12 miRNAs (miR-21, miR-34a, miR-221, miR-222, et al) and 19 genes
(PTEN, CDKS6, BBC3, et al) (Fig.2).
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Fig. 2. Visualization of miRNA-p53 pathway network in glioma.
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The network was visualized with Medusa software. Blue quadrangles represent glioma-
related miRNAs. Red circles represent miRNA targets that were overlapped by glioma-
related geges.

3. Discussion

The overall utility of our data mining approach, including the strategy for constructing
interaction networks, is to explore biological mechanisms involved in glioma progression. In
this study, we obtained 670 genes and 14 miRNAs that interacted with glioma and
generated interaction networks from abstract-based text mining. Importantly, our analysis
identified PI3K and JAK2 hub signalings and miRNA regulatory module in glioma.

3.1 Core signalings in glioma

By integration of PubMed text mining, homology prediction, gene neighbor, protein-protein
interaction, gene fusion and other data sources, we constructed glioma-related genes
knowledge-driven network. Further analysis revealed that PI3K and JAK2 hub signalings
that had an influential role in network stability, located at the key status of glioma-related
genes knowledge-driven network. These signaling exerted a wide effect on kinds of
biological functions and pathways, including signaling transduction, MAPK pathway,
growth factor, cell apoptosis, cell proliferation, cell adhesion and cell migration. Further,
integrating GO and pathway analysis, data revealed that proliferation without control and
invasive growth were the essential characteristic of glioma.

PI3Ks are heterodimers comprised of a regulatory subunit (p85) and a catalytic subunit
(p110). Activated receptor tyrosine kinases recruit the PI3 kinase complex to the membrane
via the p85 regulatory subunit, thereby activating the catalytic subunit p110, which then
phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-
trisphosphate (PIP3). PIP3 recruits protein AKT to the plasma membrane where AKT is
phosphorylated at Thr308 and Ser473 (Cheng et al., 2009). A high frequency of mutations in
PIK3CA, the gene encoding the pll0Oalpha subunit of PI3K, was found in glioblastoma
(Gallia et al., 2006; Kita et al., 2007). Our recent data showed that PI3K activity were greatly
increased with the ascending of tumor grade and correlated positively with AKT2
expression (Wang et al.,, 2010). Activation of PI3K/Akt signaling cascade results in cell
survival and proliferation as well as inhibition of cell apoptosis through regulating
downstream targets. AKT contributes to glioma cell migration and invasion by regulating
the formation of cytoskeleton, influencing adhesion and MMP2/9 expression (Pu et al., 2004;
Zhang et al., 2009a; Zhang et al., 2010d). AKT promotes the cell cycle progression by
suppression of cyclin-dependent kinase inhibitors p21 and p27 and increase of Cyclin D1
(Guillard et al., 2009; Koul et al.,, 2010; Pu et al., 2006). AKT inhibits cell apoptosis by
inactivation of caspase pathway, and activation of BCL2, NFkB and mTOR signaling cascade
(Jiang et al., 2009; Ruano et al., 2008; Zhang et al., 2010d). Further, prosurvival signaling by
PI3K contributes to therapeutic resistance in the setting of established antiglioma therapies.
Several studies have shown that PI3K inhibition sensitizes glioma cells to radiation and
chemical therapy (Opel et al., 2008; Prevo et al., 2008). Additionally, our study recently has
showed that co-suppression of PI3K and AKT exerts significant proliferation and invasion
inhibition effects on glioma cells (Fu et al., 2009). In the current study, we found that is PI3K
is a molecular hub in glioma-related genes knowledge-driven network, and associated with
a wide variety of cell biological functions and signaling pathways. Therefore, it is urgent to
develop novel therapies for targeting PI3K/AKT signaling in glioma treatment.
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In our case, network analysis also identifies a new candidate hub gene JAK2 in
glioblastoma. JAKs, which have four members, JAK1, JAK2, JAK3 and Tyrosine kinase 2
(Tyk2) in mammals, are non-receptor tyrosine kinases involved in upstream intracellular
signaling pathways that become activated after extracellular ligand binding to a variety of
cytokine and growth-factor receptors (Pesu et al., 2008). JAK2 is known to be able to
phosphorylate members of the signal transducers and activators of the transcription (STAT)
protein family, subsequently leading them to translocate to the nucleus and bind to specific
DNA sequences in the promoters of multiple responsive genes (Ghoreschi et al., 2009; Rane
and Reddy, 2000). STAT family has been reported to be involved in the development of
glioma. Of note, STAT3, is aberrantly activated in human glioblastoma tissues, and this
activation is implicated in controlling critical cellular events thought to be involved in
gliomagenesis, such as cell cycle progression, apoptosis and angiogenesis (Brantley and
Benveniste, 2008). Recently, a glioma-specific regulatory network has revealed the
transcriptional module that activates expression of mesenchymal genes in malignant glioma
and STAT3 is one of key transcription factors necessary in human glioma cells for
mesenchymal transformation (Carro et al., 2010). Additionally, nuclear staining of phospho-
STATS5 is overexpressed in glioma tissues, and cytoplasm staining of STAT5b is markedly
increased in glioblastoma multiforme compared with that in normal brain (Kondyli et al.,
2010; Liang et al., 2009). Reduction of STAT5b inhibits glioma cell growth, cell cycle
progression, invasion and migration through regulation of gene expression, such as Bcl-2,
p21, p27 and VEGF (Liang et al., 2009). As another member of STAT family, STAT1 is up-
regulated in the majority of glioblastomas (Haybaeck et al., 2007). Little evidence exists to
show the mechanism of JAK2 (upstream regulator of STAT family) involved in
glomagenesis. However, data mining analysis displays that JAK2 occupies a core regulatory
node of glioma-related genes knowledge-driven network. These data indicate that
modulation of the mechanism responsible for JAK2 in glioma would help us to elucidate the
development of glioma and inhibition of JAK2/STAT signaling could be used as a new
therapeutic strategy to treatment glioma. The JAK/STAT pathway plays a central role in
principal cell fate decisions, regulating the processes of innate immunity, adaptive
immunity, cell proliferation, differentiation, and apoptosis.

In addition, we found the gene CTNNBI1 (encoding P-catenin) at the lower right corner of
Fig.1 would warrant further investigation. p-catenin and Tcf-4 are the core components of
the canonical Wnt/p-catenin/Tcf pathway, which is a crucial factor in the development of
many cancers (MacDonald et al., 2009; Ying and Tao, 2009). p-catenin accumulates in the
nucleus, where it interacts with coregulators of transcription including Tcf-4 and Lef-1 to
form a P-catenin/Tcf/Lef complex. This complex regulates transcription of multiple genes
involved in cellular proliferation, differentiation, survival and apoptosis, including Fra-1, c-
myc and Cyclin D (Wang et al., 2002; Yochum et al., 2008). Recently several reports have
showed that aberrant activation of Wnt/p-catenin/Tcf signaling pathway is an important
contributing factor in gliomas (Liu et al., 2010; Pu et al., 2009; Sareddy et al., 2009). 3-catenin
and Tcf-4 were up-regulated in glioma tissues in comparison to normal brain tissues.
Knockdown of p-catenin by siRNA in human glioma cells inhibited cell proliferation and
invasive ability, induced apoptotic cell death and delayed the tumor growth (Pu et al., 2009).
However, up to now, little direct evidence exists to show the mechanism of p-catenin and
Tcf-4 involved in gliomagenesis.

Actually, our data doses not well confirm the update results of The Cancer Genome Atlas
Network (TCGA) (Verhaak et al., 2010). TCGA catalogs recurrent genomic abnormalities in



Data Mining Pubmed Identifies Core Signalings and miRNA Regulatory Module in Glioma 165

GBM, and describes a gene expression-based molecular classification of GBM into
Proneural, Neural, Classical, and Mesenchymal subtypes. Aberrations and gene expression
of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural
subtypes, respectively. Despite of the differences of two studies, our data showed another
approach to explore the mechanism involved in glioma using existing data.

3.2 MiRNA regulatory module in glioma

miRNAs are a new class of small, non-coding RNAs located in noncoding regions or the
introns of the genome, and regulate gene expression by binding to the 3’-untranslated
region (3’-UTR) of specific mRNAs. Extensive studies have indicated that miRNAs could
function as oncogenic miRNAs or tumor suppressor miRNAs, playing crucial roles in
carcinogenesis. Expression profiling of glioma has unveiled miRNA signatures that not only
distinguish glioma from normal tissues, but can also differentiate histotypes or molecular
subtypes with altered genetic pathways (Ciafre et al., 2005; Lavon et al., 2010). Our data
mining analysis showed that 6 pathways involved in 14 glioma-related miRNAs, in line
with the pathway analysis of glioma-related genes, indicating that glioma-related genes and
miRNAs exert an effect on a common set of signaling pathways. Moreover, we found that
the pathway regulatory control mediated by miRNAs differs from pathway to pathway and
the targets of a specific miRNA are significantly enriched in multiple pathways. In p53
signaling pathway network, 12 miRNAs and 19 genes are involved. Among these miRNA
and target gene relationships, MDM2, CDK6, CDKN2A and CCNE1 are successfully
identified as direct targets of miR-221, miR-34a, miR-125b and miR-15b, respectively (Kim et
al., 2010; Pogue et al., 2010; Sun et al., 2008; Xia et al., 2009). Our data recently showed that
miR-221 and miR-222 directly modulate PTEN expression via targeting PTEN 3’-UTR
(Zhang et al., 2010a). In addition, we have also evidenced that BBC3, also named p53 up-
regulated modulator of apoptosis (PUMA), is a new target of miR-221, consistent with
bioinformatics analysis (Zhang et al., 2010b). Further, a recent publication revealed that
miR-21 can impair p53-mediated apoptosis in response to chemotherapeutic (doxorubicin)-
induced DNA damage, therefore contributing to drug resistance in glioblastoma cells
(Papagiannakopoulos et al., 2008). Thus, modulation of these p53-related targets by miR-21
may potentially explain previous observation that p53 signaling pathway were up-regulated
in response to miR-21 knockdown (Frankel et al., 2008). These exciting results prompt us to
further elucidate the intricacy of the interaction between miRNAs and the signaling
pathway.

In conclusion, using data mining analysis, we construct glioma-related genes knowledge-
driven network and show that PI3K and JAK2 hub signalings are key steps leading to
oncogenesis in glioma, and further propose miRNA regulatory module in glioma. These
data demonstrate the power of data mining strategies as tools for biological discovery and
identify core signalings and miRNA regulatory module in glioma, suggesting that the
application of this strategy to consolidate all existing data for other diseases may yield
important discoveries in disease pathogenesis.

4. Experimental procedures

4.1 Natural language processing (NLP) system
Medline/PubMed is used as information source for bioinformatics text mining. Medline
abstracts were retrieved using National Center for Biotechnology Information (NCBI)
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PubMed portal. We queried Pubmed with: gliomaltitle] AND ("1980/01/01"[PDAT] :
"2010/04/01"[PDAT]). All abstracts were downloaded as HTML text without images and
then converted into XML documents. Sentence tokenization was performed with Lingpipe
tools. Subsequent analysis is based on the sentence as the basic units. Gene mentions were
tagged using ABNER (Settles, 2005). To solve the matter of plethora of gene aliases, all gene
mentions were normalized to Entrez gene (http://www.ncbi.nlm.nih.gov/Entrez/) official
gene symbols. Only sentences with glioma, the genes were selected.

In order to test the null hypothesis 'the relationship between glioma and the gene is
random', hypergeometric distribution test was employed. Let N be the total number of
PubMed abstracts and m, n be the number mentions in PubMed for glioma and a related
gene, respectively.

k=1
p=1-3 p(ilnmN)

i=0

Where

n!(N —n)!m!(N —m)!
(n=i)tiY(n—m)(N-n—m+i)!N!

p(iln,mN)=

The "glioma-gene" relations with P-value<0.05 were then summarized and subjected to a
relational database for further analysis.

4.2 Gene ontology analysis

Gene ontology analysis was performed by GSEA Base package of BioConductor
(http:/ /www.bioconductor.org/). The glioma-related genes were performed a gene set
enrichment analysis based on the gene ontology (GO) categories.

4.3 Pathway analysis

Expression Analysis Systematic Explorer (EASE) (Hosack et al., 2003) was used to analyze
KEGG pathways. Over representation of genes in a KEGG pathway is present if a larger
fraction of genes within that pathway is differentially expressed compared with all genes in
the genome. The "glioma-gene" relationships retrieved by our NLP system were filtered by
pathway enrichment analysis. The links between glioma and related genes were then
visualized in Cytoscape software (Cline et al., 2007) (http://www.cytoscape.org/). Genes
were grouped according to pathways. Genes that involves in multiple pathways are
assigned to a single pathway with the smallest enrichment P-value.

4.4 Gene network analysis

Integrating PubMed text mining, homology prediction, gene neighbor, protein-protein
interaction, gene fusion and other data sources through the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING), we created glioma-related genes knowledge-driven
network (von Mering et al., 2005). Linker genes below a P-value threshold of 0.01 were
identified as "hubs". The results from the search are saved in data files describing links
between two genes and then handled in Medusa software.
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4.5 Target gene prediction and pathway analysis of miRNAs

Three computational tools: TargetScan v5.1 (http://www.targetscan.org/), miRanda v5
(http:/ /microrna.sanger.ac.uk/), PicTar ver. March 26, 2007 (http://pictar.mdc- berlin.de/)
were utilized to identify miRNA targets in 3'-UTR of genes. The union of these results was
listed for further analysis. These targets were used to analyze KEGG pathways.

4.6 MiRNA-target network analysis

The overlap of target genes of glioma-related miRNAs predicted by computational tools and
glioma related genes derived from NLP analysis was calculated. A bipartite network of
microRNAs and corresponding target genes was constructed. The network was displayed in
separated pathways.
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1. Introduction

In Bioinformatics, it is common to search biological sequences (DNA, RNA, proteins) for
functional motifs such as cross-over hotspot instigators (chi), restriction sites, regulation
motifs, binding sites, active sites in proteins, etc. (Beaudoing et al., 2000; Brazma et al.,
1998; El Karoui et al., 1999; Frith et al.,, 2002; Hampson et al., 2002; Karlin et al., 1992;
Leonardo Marino-Ramirez & Landsman, 2004; van Helden et al., 1998). Due to evolution
pressure, functional motifs are likely to be more conserved than non-functional motifs. As
a consequence, it is a natural strategy to search biological sequences for motifs which are
statistically exceptional (ex: over- or under-represented).

Given M a motif of interest (from simple strings to complex regular expressions), a recurrent
question is: “how surprising is it to observe n occurrences of M in my dataset ”. In statistical
terms, this is equivalent to compute the p-value of observation 7 in respect with a relevant
reference model. More precisely, if X7 = Xj ... Xy is a length ¢ random sequence generated
by our reference model, and if N denotes the random number of occurrences of M in X4, for
any n > 0 our objective is to compute the significance score of observation n:

_ [ +1logy P(N < n) if n <E[N]
Stn) = { “logyg P(N > n) if n > E[N] M

this score representing the p-value in a decimal log-scale, negative (resp. positive) values
being associated to under- (resp. over-) representation events.

In order to compute such a score for a given motif M and a given dataset, one needs two
essential steps:

1) Counting: count the observed number n of occurrences of motif M in the dataset;
2) Significance: compute the p-value of observation n with respect to a reference model.

In this chapter, we give all the necessary details to perform these two steps using state of the
art approaches including some unpublished results.

2. Counting motifs

2.1 Biological motifs
We can see on Fig. 1 various examples of the kind of biological motifs we usually deal with in
Bioinformatics. In most cases, these motifs are built from a set of active sequences (putative
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AGCGG GSTGGTIGG CCWGG CTGCAG GAATTC CAYNNNNNRTG

CPRRRGRQTYTRFQTLELEKEFHEF........... NHYLTRRRRIEIAHAL.........
CPRRRGRQTYTRFQTLELEKEFHF . .......... NHYLTRRRRIEIAHAL.........
VSVRKKRKPYSKFQTLELEKEFLE........... NAYVSKQKRWELARNL. ........
————————————————— LTKYENK...........QPYPTRREIEKLAASL.........
77777777777777777 LTKYFNK...........QPYPTRREIEKLAASL.........
————————————————— LTKYFNK...........QPYPTRREIEKLAASL.........
SGKRRRRGNLPKESVQILRDWLYEhr........ yNAYPSEQEKVLLSRQT.........
SKKRRHRTTFTSLQLEELEKVFQK........... THYPDVYVREQLALRT . ........
SKKRRHRTTFTSLQLEELEKVFQK........... THYPDVYVREQLALRT . ........

PS00027 / #=1318

s [10AN
S —

H-D-[LIVMFY]-x-H-x-[AG] —x(2) - [NQ] —-x—[LIVMFY]

A [ 32125 0 024 1 0]
c [13 1 0 0 5 0 0 01
G (4 0 0 O O 1 0 2]
T [ 5 3 02520 0 24 23 ]

Fig. 1. Various kind of biological motifs. From top to bottom: strings in IUPAC
(Cornish-Bowden, 1985) alphabet (DNA), multiple alignment (proteins), sequence logo
(proteins), consensus pattern (proteins), and frequency matrix (DNA). Various sources
including ReBase (Roberts et al., 2010), PROSITE (Sigrist et al., 2010), and JASPAR databases
(Bryne et al., 2008).

or confirmed by experiments) in the form of a multiple alignment or a frequency matrix from
which can be derived a consensus. This consensus could sometimes be a simple string (ex:
AGCGG the chi site of B. subtilis) but in most cases it is a degenerated pattern (ex: CAYNNNNNRTG a
restriction site in the IUPAC alphabet, PROSITE signatures). In all cases however, it is possible
to consider our biological motif M as a (possibly large) set of strings.

Formally, let M be a finite set of strings over a finite alphabet A. Ex: A = {4,C,G, T} for
DNA sequences; this is the alphabet we are going to use from now on in our examples. Let
X1.¢ = X3 ... X be an observed sequence of length ¢ over A. Then the number N (M; Xy.p) of
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start ° A @ start ° ¢ @ start ° G @

(a) NFA for A (b) NFA for C (c) NFA for G

D
start ° T

(d) NFA for T (e) NFA for (C|T)

start
start

(g) NFA for A(C|T)* (h) NFA for A(C|T)*|G

Fig. 2. Glushkov’s construction for A(C|T)*|G. (a), (b), (c), and (d) are singletons; (e) results
from the union of (b) and (d); (f) results from the Kleene’s closure of (e); (g) results from the
concatenation of (a) and (f); (h) results from the union of (g) and (c).

matching positions of M in X;.s, is defined by

¢
N(M;X1) = Y 1x,eaMm (2
i

A* M being the set of all finite sequences over A ending with one element of W (this notation
will be explained in the next section), and where 14 is the indicator function of event A.

In the particular case where M contains no strings that are included into each other (which
is a common assumption), the number N of matching position corresponds exactly to the
number of occurrences. However, there is no need to put any restriction on M as long as we
are interested in the number of matching positions like we do.

From now on, if the sequence Xj.y is observed, we denote by the number of matching positions
by n, and if the sequence X, is random, we simply denote by N the random number of
matching positions.

2.2 Regular languages

Let us denote by A* the set of all finite sequences over A. Any subset £L C A* is then called
a language over A. We denote by P(.A*) the set of all possible languages over .A. We denote
by e € A* the empty sequence, and for the sake of simplicity, the singletons of P(A*) will be
simply denoted by their element. Ex: A instead of {A}, TGC instead of {TGC}, ¢ instead of {¢}.
We define on these languages three reqular operations:

Union (|): for all £1,£, € P(A*), L1]£2 = £1 U L. The neutral element of the binary
operator | is @. Ex: {AT,GA}|{T,GA, TT} = {AT, T, GA, TT}.
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Require: remove first all states that are not reachable from ¢ or that cannot reach any element
of F

1W<« {F,Q\F}land P + {F,Q\ F}

2: while W is not empty do

3:  select and remove V from W

4:  foralla € Ado

5: S={g€ Q,é(g,a) eV}

6: forall R € Psuchas RNS # @and R ¢ S do

7 replace Rin Pby R1 + RNSand Ry + R\ R4
8
9

if R € W then
: replace R in P by R and R,
10: else
11: if |Rq| < |R,| then add Rq to W else add R, to W end if
12: end if
13: end for
14:  end for

15: end while

Algorithm 1. Performs Hopcroft’s reduction on NFA (A4, 9, ¢, F,§). W (working set) and P
(partition set) are two sets of set of NFA states. The resulting complexity is O(|Q|log | Q]).

Concatenation (-): for all £1,£, € P(A*), L1- Ly = {xy,x € L1,y € L3}. The neutral
element of the binary operator - is €. For all £ € P(A*), L0 = ¢ (convention), £ = £,
£? = £ - £ and the notation extends recursively to £F for any k > 3. Ex: {G,GA} - {AT, T} =
{GAT, GT, GAAT}; {G,GA}® = {GGG, GGGA, GGAG, GGAGA, GAGG, GAGGA, GAGAG, GAGAGA}. For the
sake of simplicity, - is implicitly used when the operator is omitted.. Ex: AL means A - L.

Kleene’s closure (*): For all £ € 7P(A%), £ = YLk Ex:  {AT}* =
{€& AT, ATAT, ATATAT, .. .}.

The precedence rule of these operations is: | (lowest precedence), - (associative operator), *
(highest precedence). Ex: A|[C- T* = (A|(C(-T*)), TT - A|C* -G = ((TT - A)|((C*) - G)).

We call reqular expression over A any algebric expression over P(.A*) defined from singleton
elements and a finite number of regular operations. The resulting language is called a
reqular language. Ex: any finite language is a regular language, A* is a regular language,
(A|C|G|T)*GGATG is a regular language, {AG, AAGG, AAAGGG, . ..} is not a regular language.

2.3 Non-deterministic finite automaton

A Non-deterministic Finite Automaton (NFA) is defined as a 5-tuple (A, Q, 0, F, ) where: Aisa
finite alphabet, Q is a finite state space, o € Q is the starting state, 7 C Q is the set of final states,
and 6 : Q@ x A — P(Q) is the transition function. An element X., € A* is accepted by this NFA
if and only if it exists a path from the starting state to one of the final state that sequentially
use the letters X;. in the transitions. More formally, it means that it exists a sequence of states
(ie: elements of Q) qo = 0,941,492 ---,9¢-1,9¢ € F suchas g; € §(q;_1,X;) forall 1 <i < {. The
language of a NFA is the set of all elements of A* it accepts.

Theorem 1. For any language £ € P(A*): L regular <= it exists a NFA whose language is
L.

We admit that the language of a NFA is always regular (see Hopcroft et al., 2001, for the
formal proof) but we will prove the reciprocal with the Glushkov’s construction (Allauzen &
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Mobhri, 2006). This construction provides a simple way to build the NFA directly from the
regular expression of the language. The idea is to treat the regular expression as any algebraic
expression with a stack of operands (NFAs) and a stack of operators (regular operations).
Since a regular expression is by definition built from singleton elements of .A* and the three
regular operations, we only need to give the construction of a NFA corresponding to singleton
elements, and the constructions corresponding to the regular operations.

Singleton: for any X;., € A* we build the NFA (A4, Q,0, F,J) with @ = {0,1,...,¢},0 =0,
F={f},and (i —1,X;) = {i} forall1 <i < L.

Union: the union (A, Q, 0, F,6) of two NFAs (A, Q1,01, F1,01) and (A, Q, 0, F», 83 is given
by: Q=01U QQ\{U’z},U:(Tl,]:: JF1UJF, and

01(01,8) Ud1(0n,a) ifqg =0y
o(q,a) = 1 d1(q,a) ifge Q1 \{m} . 3)
d2(q,a) ifge O\ {m}

Concatenation: the concatenation (A4, Q,c,F,8) of two NFAs (A, Qy,01,F1,6,) and
(A, Q, UQ,.FQ,&Q) is given by: Q=0,U9, \ {0’2}, =0, F =Fand

o1(q,a) ifqge Q\ A
8(q,a) = < 6a(om,a) ifqge Fy . 4)
5(q,a) ifg e Q\ {0}

Kleene’s closure: the Kleene’s closure (A, Q,0, F,6) of NFA (A, Q1,01, F1,61) is given by:
Q=0,0=0,F=FU{r}and

01(q,a) ifqge Q1 \Fy

oa.a) = {51((71,a) ifge A . ©)

Using Glushkov’s construction, it is then possible to build a NFA whose language correspond
to the regular expression of our choice. However in general, this construction is not optimal
in terms of number of states. Fortunately, the reduction algorithm (Algorithm 1) due to
Hopcroft provides a (partial) solution to this problem. Note that finding a minimal NFA
for a given regular expression is a difficult task in general, but that Hopcroft’s reduction is
a good heuristic (we will see later that in the case of DFA, Hopcroft’s reduction is indeed a
minimization).

2.4 Counting with NFA

NFAs provide with Algorithm 2 an extremely efficient way to look for matching positions
of any motif M (in fact, any regular expression) in a sequence Xj.,. The algorithm directly
results from the definition of the language of a NFA.

Let us illustrate this algorithm with a toy example: how to find all matching positions of M =
G(G|C)G in X71.10 = AGCGGTGGGCGA ? We first use Glushkov’s construction and Algorithm 1 to
obtain on Fig. 3 a minimal NFA whose language is (A|C|G|T)*G(G|C)G. Then we directly apply
Algorithm 2 starting with S = {0}:

e i=1,X; =48+ 6({0},4) = {0};
e i=2,X,=0,8 + 6({0},6¢) ={0,1};
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Require: (A, Q,0, F,J) be a (minimal) NFA whose language is A* M
1: S {0’}
2: fori=1...4do
3 S« quS(S(q, X;)
4.  if SNF # @ then

5: report i as a matching position
6: end if
7: end for

Algorithm 2. NFA pattern matching. Returns all matching positions of motif M in Xj.p.
Complexity is O(] Q| x ¢).

AC.GT

Fig. 3. Minimal NFA whose language is (4|C|G|T)*G(G|C)G.

e i=3,X3=C 8+ 6({0,1},c) ={0,2};

e i=4,X4=68+6({0,2},6) = {0,1,3}, matching position;

e i=5X5=6,8+6({0,1,3},6) ={0,1,2};

¢ i=6Xe=T,8« 5({0,1,2},T) = {0};

e i=7,X;=6,8+«46({0},6) ={0,1};

o i=8X3=08« 6({0,1},6) = {0,1,2};

e i=9,X9=0G8+«4({0,1,2},6) = {0,1,2,3}, matching position;
e i=10,X5=C S « 5({0,1,2,3},¢) = {0,2}.

e i=11,X1; =68« ({0,2},G6) = {0,1,3}, matching position;

e i=12,X;,=4,5+5({0,1,3},4) = {0}.

We hence return three matching positions: 4, 9 and 11.

One should note in this example that in twice occasions, we need to recompute a previously
computed transition (i = 7 and i = 11). Obviously, this kind of event is likely to appear
very often when working with longer sequences. It is hence a natural idea to store in memory
previously computed transitions. This approach, known as lazy determinization (Green et al.,
2004), speeds up considerably pattern matching (reducing the complexity from O(|Q| x ¢) to
O(¥)) at the expense of a higher memory usage. We will see later that the amount of memory
needed can increase exponentially with the NFA size |Q|; this problem is usually addressed
by allocating a fixed amount of memory to a buffer of computed transitions which is flushed
when full.

3. Significance

Since we now have efficient algorithms to count the number of occurrence of a motif M in a
sequence Xy.y, let us deal with the significance of an observation .
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3.1 Reference model

The choice of a reference model is obviously a key point. Since biological sequences like DNA
or proteins are known to have unbalanced letter compositions, it is hence clear that our model
should at least take into account this source of bias. A natural parametric approach lis hence
to model Xy.p as a i.i.d. sequence with P(X; = a) = n(a) Va € A with all 7t(a) € [0,1] and
Y se 7t(a) = 1. This model is called model MO with parameter 7.

For example, in the complete genome of HIV1 (Genbank AF033819) we observe the following
counts: 3272 A, 1642 C, 2225 G, and 2042 T. The maximum likelihood estimates of a M0 model
based on this observation is then: 7T(A) = 3272/9181 ~ 35.64%, 71(C) = 1642/9181 ~ 17.88%,
ﬁ(G) = 2225/9181 ~ 24.23%, and F((T) = 2042/9181 ~ 22.24%.

But if we look now to the frequencies of di-nucleotides on the same HIV1 genome, we observe
considerable bias as well:

AA 1087 |AC 524 |AG 971|AT 690
CA 754|CC 378|CG 82|CT 427
GA 769|GC 425|GG 625|GT 406
TA 662|TC 315|TG 546|TT 519

For example, we observe 971/3272 = 29.68% of G after a A, but a G occurs after a C only
82/1641 = 16.41% of the time. This phenomenon is directly explained by the fact that the
di-nucleotide CG tend to be easily methylated (see CpG island, Fatemi et al., 2005). Is hence
tempting to take into account the frequencies of di-nucleotides in our reference model, or
tri-nucleotides, or more, which naturally leads to Markov models.

For any d > 0, we denote by Md the (homogeneous) Markov model of order d defined for any

i>d+1,a€ A% and b € Aby:

P(X; = b|X;_gj—1 = a) = r(a,b) (6)

where 71 denotes the transition matrix of Md. This model is clearly defined conditionally to
Xl:d'
The maximum likelihood estimator 7 is then given for all a € A%, and b € A by:

7t(a,b) = _ Mab 7
(@) Yire A aby 7
where n,, are the observed counts of word ab in the training dataset.
When working with Markov model and biological sequences, a recurrent question is: what
order d should I choose for my reference model ? This is a classical model selection problem
which can easily be solved using penalized likelihood criteria like BIC or AIC (Liddle, 2007).
For example, using the BIC criterion, one would select d = 1 for the complete genome of
HIV1 (¢ ~ 10kb), and d = 5 for the complete genome of E. coli (¢ ~ 4.6Mb). However, since
our objective is the significance of motifs counts rather than the modelization of biological
sequence in itself, we suggest a different approach.
First, it is critical to realize than working with a model Md as reference model allows to take
into account the sequence composition bias in (d + 1)-mers. Hence, with d = 1 one takes into
account the composition bias in di-nucleotides, and with d = 5, one takes into account the
composition bias in hexa-nucleotides. The decision could then be based on the information
one wishes to include in the reference model; working on coding sequences, one might wish
to take into account at least the codon bias hence resulting in the choice of 4 > 2. On the other

1 An alternative non-parametric approach, the shuffling, consists in performing uniformly a random
permutation of the original sequence; this approach is not treated here.
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Require: (A, Q1,0,F,01) aNFA
1: qO%{U},LHl/Q2H{qO}/'F2<;®
2: fori=0...L—1do

3: foralla € Ado

4 S &1(qi,a)

5 if 3j,q; = S then

6: 52(‘71'/‘1) =4qj

7 else

8 qL%S,L(—L-Fl,Qz(—QzU{qL}
9 if SN Fe then F, +— Fr U {q.} end if
10: end if

11:  end for

12: end for

Output: return (A, Oy, qo, F2,62)

Algorithm 3. Determinization. Build a DFA which recognizes the same language than the
original NFA.

hand, it would obviously be pointless to use a reference model of order d = 7 to study a motif
of length 8 or less.

Another critical point to keep in mind is that motif significance is by nature very sensitive to
the parameters of the reference model. In order to convince us, let us a consider the following
simple example with M = GGATG, a reference model MO of parameter 7, and ¢ = 1,000, 000. If
7(A) = 7(T) = 0.10 and 77(C) = 7(G) = 0.40 we get E[N;] = ¢ x 0.40% x 0.10 ~ 640.0. Now
if 7(A) = 77(T) = 0.08 and 71(C) = 71(G) = 0.42 then E[N;] = £ x 0.423 x 0.08? ~ 474.2. If we
admit that the standard deviation of Ny is roughly equal to ¢ = 25 (we will see later on how
to perform such computation), an observation of n = 550 could be interpreted as a significant
over-representation with the first parameters, and a significant under-representation with the
second parameters (observation 7 deviates from the expectation by more than three standard
deviations in both cases). The reason behind this is that parameter values are typically
involved in complex products when evaluating the significance of an observation, and that
such operations usually increase small variations rather than averaging them (like with sums).
This problem have been investigated in Nuel (2006¢c) where it is shown that unwise choices of
d might lead to many false positive results.

3.2 Monte-Carlo simulations

Since the theoretical distribution of N not easy to obtain, it is tempting to study it from
the empirical point of view by performing simple simulations. The approach is quite
straightforward:

1) generate a random dataset i according to the reference model;
2) count the number of occurrence n; of M in the dataset;
3) repeat 1) and 2) until we have a sample ny,ny, ..., 1.

Once a reference sample have been obtained, we can derive the empirical p-value of the
observation 1 using:

Z:":l 1ni<n ]’I\)(N > n) _ Z,rzl lniZVI

P(N <n) =
( 1’1) T r

®)
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start

Fig. 4. Minimal DFA whose language is (A|C|G|T)*G(G|C)G.

or, alternatively, one might use this sample to derive empirical expectation, variance, and
z-score:
= n— ‘u . ~ 1 r ~2 1 r ~\2
Z(n) = with =-) n, and 0°= - n;— ). 9
(n) = — p=- ,:21 i 3 (ni— i) ©)

If this approach is quite simple, it suffers several drawbacks: 1) it is slow; 2) sample size must
be large to obtain accurate results. Indeed, if the true p-value is p, then p ~ B(r, p) where r
is the sample size. The following table gives a 90% upper bound confidence for p for several
value of 7 in the case where p = 107>:

r | 108 10t 10° 10° 107 108
bound|1.00 x 1073 1.00 x 10~% 3.00 x 10> 1.50 x 107> 1.14 x 10> 1.04 x 10>

we clearly see that it requires at least ¥ = 10° samples to obtain the first accurate digit in p,
and a prohibitive r = 10% samples for the second digit. Considering that very small p-value
are easily encountered in motif significance (ex: 1020, 10750, 10~199) it is clear that empirical
p-value have a limited interest in this context.

Empirical z-score does not suffer the same drawback but makes the implicit assumption that
N has a Gaussian distribution which is highly questionable as we will see later on.

For completeness, let us point out that importance sampling techniques might solve the
estimation problem by sampling N using a tailored dataset distribution (Chan et al., 2010).
However, these sophisticated numerical techniques are slow and requires a good skills to be
implemented.

3.3 Markov chain embedding

The key to perform any motif significance computation if first to embed the original problem
into an order 1 Markov chain taking into account all the combinatoric complexity. This
technique, called Markov chain embedding have been used by many authors in the context
of motif significance Antzoulakos (2001); Boeva et al. (2005); Chang (2005); Fu (1996); Nuel
(2006a), but it is only recently that its connexion to NFA and Deterministic Finite Automata
(DFA) have been pointed out (Crochemore & Stefanov, 2003; Lladser, 2007; Nicodéme et al.,
2002; Nuel, 2008a; Nuel & Prum, 2007; Ribeca & Raineri, 2008).
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We start with a NFA whose language is A*M from which we build a DFA (A4, Q, gy, F, )
using the determinization algorithm (Algorithm 3). A DFA differs from an NFA only by the
definition of its transition function: § : @ x A — P(Q) foraNFA,and 6 : 9 x A — Q
for a DFA. For example, we can see on Figure 4, a (minimal) DFA whose language is
(Alc|G|T)*G(G|C)G. This DFA has more states (6) than the corresponding NFA (4). In fact,
since the state space Q; of a DFA corresponds to a subset of the parts of the original NFA state

space Q1, we have |Q,| < 2191, Fortunately, this upper bound is seldom reached in practice.
Theorem 2 (Markov chain embedding for Model M0). Let (A, Q,0,F,d) be a (minimal)
DFA whose language is A*M. Let X;. be a random sequence generated by the M0 model

of parameter 77. We consider the sequence Zy.; recursively defined by Zy = o, and Z; =
6(Z;_1,X;) forall1 < i < £. Then Zy, is an order 1 Markov chain whose transition matrix T

is defined for all p,q € Q by:
T(pg)= ) 7 (10)
acAb(pa)=q
and having the following property forall 1 <i < £: Xy, € AAM = Z; € F.

For example, if we consider the DNA motif G(G|C)G and the corresponding DFA of Figure 4,
we get the following transition matrix:

n(A)+n(C)+n(T)(¢g) 0 0 0 O
rt(A) + 7(T) 0 n(c)n(G) 0 O
T n(A)+mn(C)+mn(T) 0 0 0 m@G O
- 7t(8) + 7(T) 0 n(c) 0 0 n(G)
7(A) + 7(T) 0 n(c)m(G) 0 O
7t(A) + 7t(T) 0 n(c) 0 0 mn(G)

In order to extend Theorem 2 to order Md with d > 0 it is necessary to build DFA
(A, Q,0,F,0) be a (minimal) DFA whose language is A* M and with the property that for
allg € Q, past(q) = {a € A%, 3p € Q,5(p,a) = q} is either empty or a singleton. A DFA
having this property is called a order d DFA by Lladser (2007), and is called non d-ambiguous
by Nuel (2008a). The construction of such a (minimal) DFA is not very complicated but is a
bit technical. A possible approach suggested by Nuel (2008a) consists in starting from a DFA
without this property and duplicating any "ambiguous" state. Another more straightforward
approach consists in adding the elements of A*A“ to the original language with a specific
label for the final states corresponding to each elements of A4 and to keep these labels during
minimization and determinization algorithms.

Theorem 3 (Markov chain embedding for Model Md). Let (A, Q, o, F, §) be a (minimal) order
d DFA whose language is A* M. Let X;.y be a random sequence generated by the Md model
of parameter 7t. We consider the sequence Z;.; recursively defined by Z; = (o, X1.4), and
Z;i = 6(Z;_1,X;) forall 1 < i < {. Then Z;, is an order 1 Markov chain whose transition
matrix T is defined for all p, g € Q by:

T(pq)= ), 7n(past(p),a) (11)
acAd(pa)=q

and having the following property forall 1 <i < £: X3, € AAM — Z; € F.

One should note that Z;., is defined on (o, .Ad.A*) which could be slightly smaller than Q.
This subset corresponds to the states of Q having a order d past. If we consider the DFA
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start

Fig. 5. Minimal order 1 DFA whose language is (A|C|G|T)*G(G|C)G. The order 1 past of each
state is indicated in the state itself. Diamond-shaped states correspond to the elements of

5(0, A1).

of Figure 5, d = 1, and with X; = A, we see that the Markov chain Z;, is defined on
{1,2,3,4,5,6,7,8} by Z; = 1 and the following transition matrix:

7t(A,A) t(A,C) 7t(A,G) (A, T) O 0 0 0

n(c,A) nt(c,c) n(c,G) m(C,T) O 0 0 0

(G, A) 0 0 n(GT) n(G,C) n(GG) O 0

T — n(T,A) n(T,C) (T,G) (T, T) O 0 0 0

| m(c,A) m(c,c) O m(cT) O 0 mn(c,g) 0
(G,A) 0 0 n(GT) m(gC) O 0 (GG

(G,A) 0 0 n(GT) n(g,C) n(GG) O 0
(G, A) 0 0 n(GT) m(gC) O 0 n(GG)

From now on, we assume that our motif problem with Md reference model is embedded into
the Markov chain Z;., whose transition matrix is decomposed into T = P 4 Q where matrices
P and Q are defined for all p,q by: P(p,q) = T(p,q)1;¢7, and Q(p,q) = T(p,9)14e 7

3.4 Main results

We present here the main results that are then used to derive exact computations and various
approximations of S(n). In all this section, we assume that N is the random number of
occurrences of M in Xj.y, a sequence generated by a Md model (X;.; being fixed) with d > 0.
we denote by T = P + Q be the transition (L x L) matrix of the Markov chain embedding of
the corresponding problem. We also introduce two vectors: ua 1 x L vector filled with ‘0" and
having a ‘1" in the position corresponding to Xj.5, and v a L x 1 vector of “1".

Proposition 4 (probability generating function). If we denote by G(y) = E[yN] the probability
generating function (pgf) of N, then we have:

G(y)= Y P(N=n)y" =u(P+yQ) v (12)

n=0
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Proof. The first equality derives directly from the definition of G(y). For the second equality
now, it is clear that u(P + Q)¢ gives the marginal distribution of Z,. We then connect this
distribution to N by counting the number of times we use the transitions of Q with the dummy
variable y so that u(P + yQ)‘~ gives the joint distribution of (Z;, N). Finally, we sum up the

contributions of all states using the product with v. O
For example, let us consider M = G(G|C)G and Xj.1o» generated by a M0 model with
parameters 7t(4) = 71(T) = 0.10 and 7r(C) = 71(G) = 0.40. Proposition 4 hence gives:
06040 0 0 0\2 /1
02 00404 0 O 1
. 06 0 0 004y O 1
Gy) = (100000)x 105 0040 0 04y 1 (13)
02 0 0404 0 O 1
02 0040 0 04y 1
= 0.33369 + 0.31148y + 0.19357y> + 0.09681y> + 0.04140y* + 0.01569y°
++0.00528y° + 0.00157y” + 0.00042y8 + 0.00008y° + 0.00002y/°. (14)

From this result, we have the whole distribution of N: supportis {0,1,...,10}, P(N = 0) =
0.33369, P(N = 1) = 0.31148, ..., P(N = 10) = 0.00002. We can also easily derive moments
of N from this distribution: E[N] = 1.28, ¢[N] = 1.29.

Lemma 5 (derivatives of the pgf). For any k < 0, the order k derivative of the pgf G is given
by:
GO(y) = K u(P+yQ+2Q)" v (15)

where the [zX] operator denotes the extraction of the coefficient of z¥ in the expression.

Proof. The formal proof can be found in Nuel (2010) in a slightly less general case. Here we
prove it only for the first two derivatives in the particular case where ¢ — d = 3. Starting from

G(y) = u(P + yQ)3v we get:
G'(y) = u (Q(P+yQ)*+ (P+yQ)Q(P + Q) + (P+yQ)*Q) v (16)

and

G"(y) = 2u (QX(P+yQ) + Q(P +yQ)Q+ (P +yQ)Q?) v (17)
which are easily connected to the terms coefficients of z! and z2 in u(P +yQ +2zQ)/~%v. O

If we denote for all k > 0 the k-th factorial moment of N by F, = E[N!/(N — k)!], then, by the
definition of the pgf, it is clear that F, = G*)(0), and thanks to Lemma 5 we get:

Fe = K[ZMu(T + zQ)!v. (18)

And if we now denote the moment generating function (mgf) of N by M(t) = E[e!N] = G(e!),
and the cumulant generating function (cgf) of N by A(t) = log E[e!N] = log M(t) = log G(e'),
we get directly the k-th moment of N: E[N¥] = M) (0); and the k-th cumulant of N: x; =
AR(0).
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Corollary 6 (characteristics moments). If we denote by y = 1 the expectation of N, by o = /%,
the standard deviation of N, by v; = x3/ o the skewness of N, and by 71 = x4/ o* the excess
kurtosis of N, then we get: p = Fy, 0> = F, + F; — F%,

35, —3F} + F; — 3R L +2F + F

m= 73 , (19)
and
7F, — 7F? + 6F3 — 18 F, + 12F} + Fy — 4F 3 — 3F5 + 12F2F, — 6F} + Fy
o = = . (0)
Proof. On just need to compute the derivatives A1) (0), A (0), A®)(0), and A®)(0). O
If we consider again M = G(G|C)G and Xj.1» generated by a MO model with parameters
nt(A) = 7(T) = 0.10 and 71(C) = 7(G) = 0.40. Eq. (18) hence gives:
06040 0 0 0 2
02 0 0404 0 0 1
Fy 06 0 0 0 04+04y 0 1
;;T* 100000) x| 05 g 04 0 0 04+04y 1 1)
k<0 02 0 0404 0 0 1
02 0 04 0 0  04+04y 1
= 1+ 1.28y + 1.01683y> 4 0.61211y° + 0.29709y* + 0.11835y°
+0.03845y° + 0.00992y” + 0.00193y® + 0.00025y° 4 0.00002y°. (22)

From this result, we can get all factorial moments of N: E(1) = Fy = 1, E(N) = F; = 1.2,
E(N(N—-1)) = F, = 2.033664, E(N(N —1)(N —2)) = F3 = 3.6726374, E(N(N — 1)(N —
2)(N —3)) = Fy = 7.1302266, ..., E(N!/(N — 10)!) = Fy = 60.881161. Thanks to Corollary 6
we get the following characteristic moments: y = 1.28, o = 1.294320, v; = 1.163783, v, =
1.492661.

3.5 Exact computations
As we have seen above, Proposition 4 provides a way to obtain the whole distribution of N
by computing G(y) = u(P + yQ)‘~v from which we can easily derive S(n) for any n > 0:

S(n) = +logyg Z?:o[y"]G(y)> if n < E[N] .
~logy (551G () if n > E[N]

From the algorithmic point of view, there are basically two approaches to compute S(n) using
Expression (12). The first one, called power, consists in computing (P 4 yQ)‘~¢ using the
power method and a binary decomposition of £ —d. Ex: if £ —d = 1097 then { —d =
210 4 26 4 23 4+ 20 We then just have to recursively compute Dy(y) = (P + yQ)?" using the
relation Dy 1(y) = Dy (y) x Dg(y) for all k > 0. Since in the computation of S(n) we are only
interested in terms of degree 1 or less (or 7 or more), we can easily truncate 2 all polynomials at
degree n thus dramatically reducing the computational costs of polynomial products. We end

2 In the case of over-representation, all contributions of degree n or more are summed into the term of
degree 1.
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up with a O(log, ¢ x n? x L3) complexity in time where L is the order of the transition matrix
T = P+ Q. The corresponding memory complexity is O(log, ¢ x n x L?). Since the length ¢ of
the dataset appears in a logarithmic scale in these complexity, the power approach is obviously
suitable for large datasets (ex: £ = 10° or £ = 10%). Unfortunately, the cubic complexity
with L (quadratic in memory) prevents the approach to deal with complex motifs with high
L. One should also note that the quadratic complexity in n could really be a problem when
dealing with frequent motifs and/or large datasets. In order to overcome this problem, Ribeca
& Raineri (2008) suggested to use fast Fourier transforms (FFT) to perform all polynomial
product hence replacing n? by nlog, n in the time complexity. However appealing at first
glance, this approach is not recommended in practice since the FFT products in floating-point
arithmetics induce numerical instabilities that make totally unreliable the smallest coefficients
of the polynomials. And unfortunately, these coefficients are precisely the one needed to study
the tail distribution of N. ‘
Another interesting approach called full recursion, consists in computing v; = (P + yQ)'v for
all 0 < i < £ —drecursively using the relation v; 1 = (P +yQ)v;. There are two main interests
for this approach: 1) we have only products between polynomials of degree 1 and polynomials
of degree n (by dropping terms of degree greater than n like in the power approach); 2) we can
take full advantage of the sparse structure (only L x |.A| non-zero terms in the worst case) of
the transition matrix T = P + Q. The resulting complexity is O(¢ x L x |.A| x n) in time, and
O(L x n) in memory. Since these complexities are linear with L, this approach is able to handle
very complex motifs. The drawback is that the approach can be very slow when dealing with
large ¢ and n. It exists a sophisticated version of this recursion called partial recursion (see Nuel
& Dumas, 2010) which allows to replace ¢ x 1 by log ¢ x n? in the time complexity. However,
the quadratic complexity in #n and numerical instabilities in floating-point arithmetic restrains
its use to small n (ex: n < 10).

For completeness, let us point out another approach to the problem. The idea is that we can
derive from Expression (12) the following expression:

G(y,z) =Y, Y P(N, = n)y"z" = uz?(I- Pz +yzQ) v (23)

n=200>d

where I is the identity matrix and Ny the number of matching position in Xj.,. It is then
possible to obtain IP(N, = n) for any ¢ and n using (fast) Taylor expansions of G(y, z). For the
mathematician, this approach is so “natural” that it is often referred as the “golden” approach
to the problem of motif significance (Nicodeme et al., 2002). However, this approach suffers
several severe drawbacks that dramatically limits its practical interest: 1) the approach needs
sophisticated computer algebra systems to be implemented (rather than simple floating point
arithmetic for the previous approaches); 2) the explicit computation of (I — Pz + yzQ)~! could
be very time (and memory) consuming; 3) even if the explicit computation of the inverse
matrix is avoided (which is highly advisable), the coefficient extraction using state of the
art techniques (like high-order lifting for example) is often slower than the much simpler
alternative developed above (see Nuel & Dumas, 2010, for details).

Considering either the power or the recursion approaches we obtain easy to implement
algorithms allowing to compute the exact value of S(n) in all cases except when dealing with
high complexity motifs (large L) and/or frequent motifs (large n). But even if we stick to
more tractable cases, exact computations could be slow. The question hence is: is it possible
to compute fast and reliable approximations of S(n) ?
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{ expectation std. dev. skewness e. kurtosis time (s)
12 1.280000 1.294320 1.163783  1.492661  0.01
120 15.104000 4585724 0.361328  0.149974  0.02

1200 153.344000 14.648033 0.113920  0.014936  0.03
12000  1535.744000 46.367282 0.036014  0.001492  0.04
120000 15359.744000 146.640798 0.011394 —0.000410 0.05

Table 1. Characteristic moments the number N of occurrences of motif M = G(G|C)G in a
sequence X;.; generated by a MO model with parameters 7r(4) = 71(T) = 0.10 and
7(C) = 7(G) = 0.40. Computation performed using the power approach.

3.6 Near-Gaussian approximations

Since the random count N is basically defined by Eq. (2) as large sum of Bernouilli variables,
the idea of approximating the distribution of N using Gaussian approximation sounds
appealing. Indeed, Gaussian approximations are historically the first ones to have been
suggested for this problem (Cowan, 1991; Kleffe & Borodovski, 1997; Pevzner et al., 1989;
Prum et al,, 1995). From the theoretical point of view, Central Limit Theorems (CLT) for
weakly dependent variables ensure that N is asymptotically normal distributed. On Table 1,
we can see the characteristic moments of N for motif M = G(G|C)G and various value of the
sequence lengths ¢. According to theory, we observe that the skewness and excess kurtosis
both decease toward 0 when ¢ grows (a normal distribution has null skewness and excess
kurtosis). But it is also clear that N is not normally distributed for small values of ¢. As a
consequence, the quality of a Gaussian approximation for S(n) is expected to be questionable
at finite distance.

In order to overcome this issue, Nuel (2010) suggested to consider near Gaussian
approximations instead of simple Gaussian approximations for this problem. The idea is
simply to perform a higher order asymptotic development that exploits more than the two
first moments of N. This technique is known as the Edgeworth’s expansion. Blinnikov &
Moessner (1998) gives a general (and rather complicated) formula for this expansion. For
practical purpose, we present the result only up to order 3 expansions.

Proposition 7 (Edgeworth’s expansion). If we denote by ¢(z) = exp(—z2/2)/v/2r the
probability distribution function (pdf) of a standard Gaussian, then for all n > 0 we have
the following approximation:

PN =)~ 28 () +0C(2) +2Ca() + C3(2)) (4)
with
Co(x) =1 Ci(z) = 2Hy(z) Calz) = 2H Sh 25
0(2) =1 Ci(z) = FHs(z) Colz) = 7, Ha(z) + = He(2) (25)
s3
Ca(2) = S Hs(2) + "2t Hy(2) + 122 Hol2) (26)

where = E[N], o = \/V[N],z = (n— )/, S = xx /0?2 for all k > 1, and where Hy(z)
are the Hermite polynomials defined recursively by Hy(z) = 1 and Hi(z) = zHg_1(z) —
H; ,(z)forallk >1.
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Fig. 6. Reliability of NG approximations for M = G(G|C)G on a random sequence X1y
generated by a MO model with parameters 77(4) = 77(T) = 0.10 and 77(C) = 71(G) = 0.40, and
with ¢ = 1200. The error NG, (n) — S(n) is given on Figure (a); and the relative error
(log-scale) —log;, NGy, (1) — S(n)|/|S(n)| on Figure (b). The horizontal rule indicates the
null error on Figure (a), and the threshold corresponding to two correct digits on Figure (b).

For hh € {0,1,2,3} we define the Near Gaussian (NG) approximation of order h of S(n) by:

"] (k- ho k- ,
+log;, Z;q) (Ty) ZU']C]' (Ty) if n <E[N]
NG, (n) = k=0 =0 @)

=21 k—u\ & (k- .
—logyg kz P (Ty) Y. G (Ty) if n > E[N]
=n

j=0

We can see on Figure 6 the reliability of NG approximations. In solid black, the order 0
approximation corresponds to the classical Gaussian approximation. Unsurprisingly, this
central limit approximation is accurate for the center of the distribution (1 close to the
expectation y = 153.3), the reliability quickly deceases when |n — | increases.

Central limit theorems (CLT) for N have established long ago that N should be asymptotically
Gaussian distributed. The problem however with CLT theorems is that the quality of
the resulting approximation dramatically decreases at finite distance when considering tail
distribution events. Here we try to overcome the issue by considering Near-Gaussian
approximations that exploits higher moments of N to improve the quality of the
approximations. In order to do this, a critical problem is first to obtain the first k-th moments
of N. Of course we can access these moments by computing the full distribution of N, but
if it is possible to do so, why bothering with approximations. We hence need an method to
compute the moments of N whose complexity should be somehow significantly smaller than
the complete exact computations. With higher order approximation, we can see a dramatic
improvement of reliability of the results, with a noticeable increase of the region where at
least two digits are correct (up to n € [80;240] for NG3).
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Fig. 7. Reliability of CB and BR approximations for M = G(G|C)G on a random sequence X .y
generated by a MO model with parameters 77(4) = 77(T) = 0.10 and 77(C) = 71(G) = 0.40, and
with ¢ = 1200. The error CB(n) — S(n) or BR(n) — S(n) is given on Figure (a); and the
relative error (log-scale) —log;, [CB(1) — S(n)|/|S(n)| or —logy, [BR(n) — S(n)|/|S(n)| on
Figure (b). The horizontal rule indicates the null error on Figure (a), and the threshold
corresponding to two correct digits on Figure (b).

From the computational point of view, the order h approximation requires the cumulants of
N up to order 1 + 2. Using the power approach, the resulting complexity is hence O(log, £ x
h? x L3) in time and O(log, £ x (h+2) x L?) in memory. Using the recursion, the complexity
resulting complexity is O(¢ x L x | A| x h) in time, and O(L x h) in memory. In both cases,
the computational time drops significantly from the exact computations.

Thanks to NG approximations, we hence have a fast and reliable way to compute an
approximation of S(n) when n falls in the center of the distribution (ex: |S(n)| < 3.0), but
NG approximations unfortunately remain totally unreliable for tail distribution events (ex:
[S(n)| > 3.0), which are moreover often precisely the event of interest. Fortunately we have a
solution to this problem.

3.7 Bahadur-Rao

We want here to study specifically the tail distribution of N with events on the form P(N > n)
with large n (or P(N < n) with small n). For all t > 0 let us first notice that we can use the
Markov inequality to write: P(N > n) = P(e!N > ) < E[e'N]/e!" = exp(A(t) — tn). By
taking the smallest of these bounds for + > 0 we hence get: logIP(N > n) < A(T) — tn with
T defined by A’(t) = n. This upper bound, known as the Chernoff’s Bound (CB), is often
surprisingly sharp for events located in the tail distribution. By dealing symmetrically with
IP(N < n) and t < 0 we hence obtain the following approximation for S(n):

™ — A(7T)

CB(n) = o log(10)

(28)

where 6, = —1if n <E[N], and é, = +1if n > E[N].
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From the computational point of view, the solution T of A’(T) = 1 can be easily determined
numerically using (for example) using the Newton-Raphson sequence (Press et al., 1992).
Starting for a first guess #y (ex: tg = 0), one performs t;,1 = t; + (n — A'(t;)) /AN (t;) for
i > 0 until convergence to T. The computation of A, A’, and A” being possible thanks to
Lemma 5 and the following formulas:

_e'G/(e")
 Gle)

2t 11 2t 1 (12 1
A = ¢ tGG(ef)et) - eé((;ef)tz) + etg(e(f)t) (29)

A(t) = G(ef) A(t)

with G(e!) = [2%]u(P + ' Q +zQ) v = u(P +¢!Q) v, G'(¢!) = [z |u(P 4 e!Q +zQ) v,
and G” (') = 2[22]u(P +€!Q +zQ) v.

Moreover, this bound can be further refined using the Bahadur-Rao Theorem (Bahadur & Rao,
1960) and gives the following approximation for S(n):

BR(n) = CB(n) + 8, log 10 { (1 —e~ITh\/2nA" (1) ) . (30)

From the computational point of view, CB(n) and BR(n) can be computed either with the
power approach with complexities O(log, ¢ x L3) in time and O(log, ¢ x L?) in memory;
or with the recursion approach with complexities O(¢ x L x |.A]) in time and O(L X |.A|) in
memory.

On Figure 7 we can see the reliability of the approximations CB(n) and BR(n). Unsurprisingly,
the farther from the center of the distribution, the better are both approximations. We also
observe that BR(n) is a dramatic improvement over CB(n) since it obtains at least two
correct digits of S(n) for all n but on [120,200]. At the end of previous section, we have
seen that the order 3 NG approximation achieves the same precision for region [80;240],
hence, by combining both NG3(#n) (for the center of the distribution) and BR(n) (for the tail
distributions), one can achieve at least two correct digits of S(n) on the whole bulk of the
distribution for a modest computational cost.

4. Discussion

Obtaining the distribution of motif count in random sequences is a very challenging problem
that has attracted considerable attention from mathematicians and computer scientists in the
last fifty years. Recently however, a significant advance has been obtained by connecting
the well-known theory of pattern matching and automata to the Markov chain embedding
technique Lladser (2007); Nuel (2008a); Nuel & Prum (2007). Thanks to this finding, it is now
possible to deal with simple (runs of 1 in binary sequences, single words, etc.) or complex
motifs (PROSITE signature, gapped motifs, etc.) using the same general framework.

Using exact approaches, it is possible to obtain efficiently the first moments of any motif count
N, and even the complete distribution of N. As a consequence, the computation of S(n) is
now tractable for a wide range of motif problems including large datasets or complex motifs.
However, the case of complex frequent motifs in large datasets remains an open problem
(Nuel & Dumas, 2010).

As an alternative to exact computations, a wide range of approximations have been
developed (see Lothaire, 2005; Nuel, 2006b; Reignier, 2000, for a review). We can basically
classify these approximations in three categories: 1) Gaussian approximations (Cowan, 1991;
Kleffe & Borodovski, 1997; Nuel, 2010; Pevzner et al., 1989; Prum et al., 1995); 2) Poisson
approximations Erhardsson (2000); Geske et al. (1995); Godbole (1991); Reinert & Schbath
(1999); Roquain & Schbath (2007); 3) large deviations approximations Denise et al. (2001);
Nuel (2004).
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Fig. 8. Relative error in log-scale for various approximations of S(n) (n =0,...,200) in a

sequence X;.y generated by a MO model with parameters 7t(4) = 7(T) = 10 and
n(C) = m(G) = 0.40.

In this chapter we deliberately left aside the Poisson-based approximations and considered
only two of these approximations: the (Near-) Gaussian approximations with NGy, (1), and the
large deviations based approximations with CB(n) and BR(#). The reason why Poisson-based
approximations are not considered here is basically practical, these approximations cannot be
directly derived from the formalism of this manuscript and require the introduction of many
tedious notions like clumps, overlapping words and so on. However, we compare here the
performance of all these approximations (including compound Poisson approximations) in
the case where Xj., generated by a M0 model with parameters 71(A) = 7(T) = 0.10 and
7(C) = 7t(G) = 0.40 i.i.d. DNA sequence, and for two motifs: the frequent G(G|C)G, and the
rare A(A|T)A.

We can see on Figure 8 the relative error (in log-scale) for all approximations. For Gaussian
approximations, performances are only good in the very center of the distribution (for n very
close to E(n)) for the frequent motif G(G|C)G, and performances are poor almost everywhere
for the rare motif T(A|T)T. This observation to consistent with the well known claim that
“Gaussian approximations a more suitable for frequent motif” (Lothaire, 2005). It has however
to be pointed out that even in the most favorable case (with highly frequent motif), Gaussian
approximations totally fail to capture the tail distribution of N and hence not suitable for the
highly significant observations we usually encounter in biological sequences (Nuel, 2006b).
If we consider now the near-Gaussian approximation, taking into account more moments
of N dramatically improve the result for both motifs, but the failure to deal with extreme
distribution events remains.

Compound Poisson approximations are known to be extremely sensitive to the relative
abundance of the motif of interest in the sequence, being more accurate for rare motifs
(Lothaire, 2005; Roquain & Schbath, 2007). It is hence not a surprise to see that Poisson
approximations are totally unreliable for the frequent motif G(G|C)G. For the rare motif T(A|T)T
we naturally obtain much better results but like for Gaussian approximations, and even in
this favorable case, reliability decreases in the tail distribution. Considering that Poisson
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approximations are not easily generalizable to motifs defined by regular expressions, that their
computations could be complicated and time consuming, and that their reliability is highly
questionable in some configurations, it seems advisable to avoid their use is most cases.

With large deviations based approximations, we unsurprisingly get a low reliability in the
center of the distribution, but a high reliability in the tail distribution. With Bahadur-Rao
precise approximations, the improvement over the classical Chernoff’s bound is quite
impressive, and the complementarity with Near-Gaussian approximations clearly shows
that a combination of both approaches could be a very efficient way to obtain reliable
approximations of S(n) for all n.

In this chapter we gave all the necessary ingredients to assess the significance score of motif
in a biological sequence using state of the art results, including several unpublished ones:
Lemma 5 which is an extension of the results of Nuel (2010), and the complete “Bahadur-Rao”
Section which provides interesting improvements over previous large deviations work
(Denise et al., 2001; Nuel, 2004).

Let us finally point out that for the sake of compactness, we have left aside some interesting
questions and extensions like: approximate matching Hopcroft et al. (2001), renewal
occurrences (Nuel, 2006b; Roquain & Schbath, 2007), joint distributions (Nuel, 2008b; Stefanov
& Szpankowski, 2007), dataset with many sequences (Nuel et al., 2010), and sensitivity to
parameter estimation (Nuel, 2006c). Even if some results are already available for these
problems, many questions still have to be answered in the exciting and challenging field of
the distribution of motifs in random sequences.
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1. Introduction

The biological function of proteins is largely determined by their individual component
domains, which are segments within the protein sequence that are self-contained and
spatially arranged. These can be catalytic or structural, and define a number of different
features of proteins such as their enzymatic activity, interactions with other proteins, sugars
or lipids, and determine the cellular localization of the proteins that contain them. A number
of intracellular three-dimensionally-arranged domains, such as Src-homology (SH) or
Pleckstrin-homology (PH) domains, define the nature of protein interactions with other
components of the cell, and enable them to interact with their substrates or binding partners.
The specificity of interactions that is given by the domain is unique to its protein. Similarly,
the extracellular part of most membrane-bound or secreted proteins of eukaryotic cells is
also organized in semi-autonomously-arranged blocks that potentially confer multiple
diverse functions to a particular protein. These domains have been classified and grouped
into protein superfamilies depending on the similarity they have with domains of
prototypical proteins, for example immunoglobulin, fibronectin or C-type lectin domains.
Members of these groups are believed to be homologous and to have arisen by divergent
evolution from a common ancestor. Many membrane-bound or extracellular proteins are
comprised of several domains of the same type, but it is not uncommon to find mosaic
proteins containing domains from different superfamilies.

The scavenger receptor cysteine-rich (SRCR) superfamily comprises a group of proteins that
contain one or multiple domains structurally similar to the membrane distal domain of the
type I scavenger receptor expressed by human macrophages (Freeman et al., 1990). Proteins
classified as belonging to this superfamily may contain other types of domains additionally
to the dominant SRCR modules, such as EGF, CUB, LCCL, or other domains. In mammals,
SRCR proteins are typically expressed in cells of the immune system (Resnick et al., 1994),
although some members can be also expressed in non-immune cells and organs, including
liver, kidney, placenta, stomach, brain and heart (Sarrias et al., 2004). Group A domain-
containing SRCR proteins are present in phyla from the most primitive metazoan to
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vertebrates, whereas group B domain containing SRCR proteins are only found in
vertebrates. Intriguingly, although SRCR proteins can include other domains, no proteins
have been reported to contain group A and B domains simultaneously.

In mammalian species, SRCR group B orthologs are usually very well conserved and
regarding some of the proteins, a high level of conservation is extended to birds and fish.
However, in some cases a human SRCR protein apparently has no corresponding ortholog
in some mammals, and conversely, there are examples of SRCR group B proteins that are
well characterized in a few mammalian species, that have not been described in humans. By
analyzing the human genome, we can now identify all the remaining, still undescribed
genes encoding SRCR group B domains, which will allow us to perform phylogenetic
analysis of the complete set of group B domains. By comprehensive and systematic whole
genome analysis we have found two new putative transcriptional units containing clusters
of potential SRCR domains, and additionally a further putative gene that contains a single
domain. After our thorough search, we are now confident that all proteins containing group
B SRCR domains in the human genome have been identified.

2. The scavenger receptor cysteine-rich group B family

2.1 Biological function of SRCR group B proteins

The cell surface antigens CD5 and CD6, which function in T lymphocytes, are probably the
most well characterized of the family, each containing three extracellular SRCR domains
(Aruffo et al., 1991; Jones et al., 1986). CD5 and CD6 co-associate with each other at the
surface of T cells (Castro et al., 2003; Gimferrer et al.,, 2003), and are involved in the
regulation of T cell receptor-mediated activation. The extensive characterization of the
interaction of CD6 with its ligand CD166, expressed by antigen presenting cells (Aruffo et
al., 1997), and the identification of different binding partners for CD5 (Biancone et al., 1996;
Calvo et al., 1999; Pospisil et al., 2000; Van de Velde et al., 1991), had initially suggested that
SRCR group B domains participate in intercellular contacts via protein-protein interactions.
Also, the three SRCR domain-containing soluble protein Spo. (Gebe et al., 1997) has been
reported to bind to cells of myeloid and lymphoid origin. Also known as AIM (apoptosis
inhibitor expressed by macrophages), API6 (apoptosis inhibitor 6) or CD5L (CD5-like
molecule), Spa. is best known for promoting macrophage survival. Therefore, this sub-group
of small SRCR-containing proteins may be described as having a role in cellular
communication, differentiation and activation. However, for most of the remaining
members of the family no such clear function has been established. In particular the lack of
cellular ligands for most of these proteins raises the possibility that a totally different
function for SRCR domains may exist, if indeed SRCR domain proteins share any common
function.

In addition to CD5, CD6 and Spa, the group B SRCR family presently contains five other
proteins, of which two, CD163 and M160, are membrane bound and expressed by
macrophages. CD163 (Law et al., 1993) and M160 (CD163L1) (Gronlund et al., 2000), which
were both identified in human monocytes, are considered a subgroup of the SRCR group B
molecules. No definitive function has been established for these molecules, although CD163
has been described as binding to, and internalizing, tumor necrosis factor-like weak inducer
of apoptosis (TWEAK), thus having a potential role in atherosclerosis (Moreno et al., 2009).
Additionally, CD163 has a detoxifying role in iron metabolism, where by binding to
hemoglobin-complexed haptoglobin it is able to remove hemoglobin from the plasma
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(Graversen et al., 2002; Kristiansen et al., 2001). The remaining three members of the group B
SRCR family are secreted glycoproteins of different sizes and structural complexity. DMBT1,
which was identified on the basis of its deletion in a medulloblastoma cell line, is the largest
member of the family, comprising 14 SRCR domains separated by SRCR-interspacing
domains (Mollenhauer et al., 1997). Apart from being secreted, DMBT1 is also found in
association with the plasma membrane of macrophages, although it is not clear whether
there is a specific receptor or the poorly characterized DMBT1 gene may encode a
transmembrane sequence. Once in the membrane, DMBT1 is a ligand for Surfactant protein
D (SP-D), a C-type lectin that binds to exposed carbohydrates (Holmskov et al., 1999). The
SRCR soluble proteins S4D-SRCRB and SSc5D have four and five group B domains,
respectively, and little is known of their functional or binding properties (Gongalves et al.,
2009; Padilla et al., 2002).

However, it has been recently suggested that Spa (Sarrias et al., 2005), DMBT1 (Bikker et al.,
2002), CD163 (Fabriek et al., 2009), CD5 (Vera et al., 2009) and CD6 (Sarrias et al., 2007) are
capable of detecting microbe-associated molecular patterns, and could bind and clear
bacteria or fungi, reaffirming a scavenger-like role for this group of molecules. These
developments notwithstanding, SRCR superfamily proteins may prove to have very diverse
functions, to the extent that the structural properties of the highly conserved SRCR domains
may be the only unifying feature of the family.

2.2 Structure and organization of SRCR domains

Typically, the 100-110 amino acid-long SRCR domains possess a characteristic pattern of
cysteine residues that establish intra-domain disulfide bridges and contribute to the overall
architecture of the compact domain. The number of cysteine residues and their distribution,
together with the organization of the genomic sequence encoding each domain, divide the
SRCR family into two groups, A and B. Group A domains are encoded by split exons, and
typically have six cysteine residues establishing three disulfide bonds. Group B domains, on
the other hand, are encoded by a single exon and have eight cysteine residues, whose
distribution is remarkably conserved in nearly all known domains (Fig. 1).

So far, eight human SRCR group B proteins have been described, Spa, CD5, CD6, 54D,
SSc5D, CD163, M160 and DMBT1 that contain three to fourteen SRCR domains. Their
encoding genes are dispersed throughout the genome, however a few highly similar pairs
such as CD5-CD6 and CD163-M160 are located on the same chromosome. The identity
between individual domains of different SRCR group B proteins varies from 20 to 80%, and
phylogenetic analysis suggests that they have evolved by sequential intragene duplication,
although there are examples that suggest they may have evolved in some cases by inter-
protein domain shuffling. Only four SRCR domains have been characterized by X-ray
crystallography, and of these three are group A SRCR domains, those of hepsin, a cell
surface serine protease involved in cell growth and maintenance of cellular morphology
(Somoza et al., 2003), M2bp, a tumor associated antigen and matrix protein (Hohenester et
al,, 1999), and MARCO, a trimeric SRCR group A protein expressed by macrophages and
dendritic cells that recognizes polyanionic particles and pathogens (Ojala et al., 2007). The
crystal structure of the membrane proximal domain of CD5 (Rodamilans et al., 2007),
together with an NMR solution structure of domain 1 of CD5 (Garza-Garcia et al., 2008)
constitute the only sources of structural information of SRCR group B domains. Comparing
the structures, it is however apparent that the 3D assembly of the different domains in the
two groups is overall conserved, all displaying a very similar fold.
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Fig. 1. Sequence alignment of domains from group B SRCR superfamily members.

SRCR domains are typically sequences of 100-110 amino acids in length compacted into a
heart-shaped fold, where a six/seven-stranded B-sheet cradles an a-helix. Strands 1, B3 and
B4, together with B7, form a curved sheet that wraps around the core al helix. From (4
onwards, the structures start to diverge. It is the sequence of amino acids between the
beginning of the domain and the B4 strand that is best conserved between group A and
group B domains, and that roughly corresponds in the group A proteins to the first of two
exons that encode a full SRCR A domain, and in group B proteins to the first 50 amino acids
of the domain.
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2.3 Homology between SRCR domains

The level of amino acid identity among human SRCR group B domains from different
molecules varies from 20% to 80%, but within the same molecule this level can be higher
and even be identical in some domains (e.g. domains 3 and 7, and 10 and 11 of DMBT1).
Similarly, some molecules are remarkably conserved between species, especially among
mammals, although it appears that some level of conservation can be extended to birds, fish
and amphibians in a few specific cases. There are good indications for there being orthologs
of CD6 in the genomes of T. guttata and D. rerio, and some other examples. Nevertheless, the
structure of SRCR group B-containing molecules is best preserved in mammalian species.
The strong homology of SSc5D domains dates back to the divergence of egg- and non-egg-
laying mammals, while CD163 has clearly conserved orthologs in all mammals, including
non-placental species (Table 1).

P. troglodytes

C. jacchus

O. cuniculus

R. norvegicus 78 75 82 75 83 81 84 70 g
M. musculus 78 76 I 75 83 76 81 70 79
C. familiaris 88 87 88 89 81 86
E. caballus 85 84 89 87 87 87 87
B. taurus 82 86 87 85 89 7 85
M. domestica 76 60 70
0. anatinus 36 28 36 ND 64 70

Table 1. Homology between human and other mammalian CD163 domains. Numbers
represent percentage of identity between each domain, compared to the human sequence.

The significantly conserved homology of some SRCR orthologs is suggestive of profound
functional constraints acting on these proteins. On the other hand, it appears that not all
human SRCR B group molecules have described orthologs in all mammalian species, and
conversely, that there are some SRCR proteins described in different animals that have not
been reported in man.

Noticeably, bovine WC1 (Wijngaard et al., 1992) does not have a human counterpart, nor do
the mouse SCART molecules (Kisielow et al.,, 2008). Similarly, the human macrophage
specific receptor M160 is not found in all mammalian species, while the closely related
molecule CD163, also specific to the monocytic/ macrophage lineage, is clearly present in all
genomes that we have examined. We have compared the similarity between individual
domains of known and characterized members of the SRCR B group, and the corresponding
domains in the bovine proteins (Table 2). While proteins such as S4D, SSc5D and CD163
show high levels of identity between human and bovine sequences, others like CD5 and Spa
are more distantly related. M160 does not have a straightforward ortholog in cattle, so the
bovine sequence used was of the related molecule M160-like, that is related in turn to the
SCART 1 and 2 molecules present in the mouse.
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CD5 CDé6

Spa

S4D SSc5D CD163 M160 DMBT1

D1
D2 83

ND

62

D3

D4
D5
D6
D7
D8
D9
D10
D11

D12

D13

D14

82 ND ND
86 ND ND
ND
86
ND
86
ND
86
85
88
84
82
85
83

Table 2. Similarity between human and bovine corresponding SRCR domains. Percentage
identity between each domain is indicated.

T CD5
L CD5
I CD6
' CDé6
Spa
Spa
I 55c¢5D
l SSc5D
M160-like
wC1
(D163
L— (D163
M160
— $4D
——54D Homo sapiens
I DMBT1
| DMBT1 Bos taurus

Fig. 2. Relationships between human and bovine SRCR molecules.

There are three groups of genes in the CD163 family: CD163 itself (CD163a), present in all
mammals; M160 (CD163b), so far only found in the genomes of primates and in horses; and
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SCART (CD163c), of which there are two genes found in the mouse, and the bovine gene
M160-like (Herzig et al., 2010). These sets of genes are related to WC1 genes expressed in
cattle, sheep and swine. To obtain a better idea of the relationship between these families of
genes, we aligned the full sequences of known human and bovine proteins containing SRCR
group B domains using ClustalW and drew the corresponding phylogram (Fig. 2). As can be
seen, there are no direct links between human M160, bovine M160L and bovine WC1,
raising the possibility that either some genes were lost during mammalian evolution, or that
the complete characterization and annotation of the genomes has still not been fully
achieved. Clearly, either hypothesis does not exclude the other.

3. A systematic and thorough search for SRCR domains in the genome

Our hope is that the evolution and function of SRCR domains would emerge when all
members of this protein family have been identified. The advent of the human genome
sequence has allowed us to screen, using bioinformatics-based approaches, for new SRCR
proteins still not described or characterized. We decided to focus on group B molecules,
given that proteins of this type are more conserved, restricted in number, and their
specialized function, in this case immune-related, seems better defined. We performed
searches for new members of the SRCR-SF in the completed human genome sequence by
interrogating the genome wusing TBLASTN 2220+ (Altschul et al, 1997;
http:/ /www.ncbi.nlm.nih.gov/BLAST). Initially, we screened for new sequences exhibiting
similarity with any or all of the SRCR domains comprising the then known SRCR
superfamily proteins (Gongalves et al., 2009). We expected that, for a given TBLASTN run,
bona fide new SRCR domains would have smaller E values than the best matches of the
search sequence with Group A SRCR domains. According to this criterion, the search
identified the sequences encoding domains within already known and characterized
proteins i.e. CD5, CD6, Spa, S4D, CD163, M160 and DMBT1. Additionally, we identified a
cluster of five new SRCR domains, which we further investigated and that later resulted in
the cloning and characterization of SSc5D, a molecule secreted by macrophages and that
comprises five SRCR group B domains (Gongalves et al., 2009).

A caveat in our methodology was that not all group B domains were identified using this
strategy. The most divergent domains, namely those of CD5, were not retrieved in all
searches, and in particular CD5-d1 was rarely identified as having a clear homology with
any other group B domain. Sequence alignment of all group B domains (Fig. 1) highlights
the striking differences of CD5 sequences, and also to some extent of the CD6 domains,
when compared with other sequences that are remarkably similar to each other. In order
to perform a more rigorous search for all putative SRCR group B domains, we conducted
a comprehensive systematic search using PSI-BLAST (Altschul et al., 1997) to find distant
homologs. All known SRCR domains were used as queries to search iteratively against
human non-redundant database with the target sequence length set to 250. BLOSUM62
amino acid substitution matrix with gap open penalty 11, and extension penalty 1, was
used. Sequence masking was disabled and the PSI-BLAST threshold was set to 0.005.
While searching, each PSI-BLAST query was iterated including new hits from the
previous search until it converged, i.e. no new hits were found in subsequent searches.
After each search iteration, results were checked for new SRCR proteins. This meticulous
and robust method picked up all known SRCR domain-containing proteins along with
novel proteins (Table 3).
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Protein Number of SRCR Domains Chromosome
Spa 3 3
S4D 4 7

DMBT1 17* 10
CD5 3 11
CD6 3 11

CD163 9 12

M160 12 12
SSc5D 5 19
8D 8 10
D11# 11 10
HHIPL1 1 14

Table 3. List of SRCR-containing proteins. * - DMBT1 has been described as containing 14
SRCR domains; # - annotated as a pseudogene; in red denotes new SRCR domains from
uncharacterized proteins.

From this genome-wide search we obtained a total of 76 SRCR group B domains distributed
in 11 genes, each putatively encoding a varying number of SRCR domains. The eleven genes
are spread across the genome on seven different chromosomes: chromosome 10 contains
three SRCR group B-encoding genes, chromosomes 11 and 12 contain two each, and
chromosomes 1, 7, 14 and 19 each contain a copy of just one SRCR-encoding gene. Among
these genes and in addition to known domains from characterized genes, our search has
uncovered 23 new putative group B domains, three of which represent previously
unreported domains localized within the DMBT1 gene. The DMBT1 gene thus putatively
encodes a maximum of 17 SRCR domains. Some controversy has existed on the number of
SRCR domains within the DMBT1 molecule. Like other SRCR-containing proteins (Castro et
al., 2007; Padilla et al., 2002), DMBT1 can be expressed as different isoforms arising by
alternative splicing, which include or exclude individual SRCR domains (Mollenhauer et al.,
1999). It is possible that the new DMBT1 domains have not been previously reported
because they are not expressed in the tissues or cells investigated, however it is also
plausible that the exons coding for these domains have been silenced during evolution and
are now non-functional.

The remaining new domains belong to 3 new putative genes, one 8 domain-encoding gene
(8D), one gene, annotated as a DMBT1-like pseudo-gene, that encodes 11 fragments of SRCR
domains of variable lengths (D11), and a gene encoding a putative Hedgehog interacting
protein-like 1 molecule (HHIP-like 1), which contains a single SRCR domain.

In order to analyze the sequence conservation and diversity of SRCR domains, we aligned
all individual 76 SRCR group B domains using ClustalW2 (Thompson et al., 1994) with the
default substitution matrix (Gonnet series) and gap opening and extension penalties of 10
and 0.2 respectively. Due to the sequence diversity in SRCR domains, several insertions and
deletions were found in the multiple sequence alignment (Fig. 3).

To locate sequence patterns as well as conserved amino acids, the multiple sequence
alignment was used to create a WebLogo (Crooks et al., 2004; http:/ /weblogo.berkeley.edu).



A Systematic and Thorough Search for Domains
of the Scavenger Receptor Cysteine-Rich Group-B Family in the Human Genome 203

1%1&4%1§J

EEr]

E EEERSEEEEEEEECELREEL)

PHK - - - L5 08 RELWE
unnpucrsulclun:---- -ms‘nu

Fig. 3. Multiple sequence alignment of all SRCR domains.

The overall height of the stack indicates the sequence conservation at that position, while the
height of symbols within the stack indicates the relative frequency of each amino acid at that
position. It is apparent from the WebLogo that, although sequences vary substantially
between SRCR domains, all cysteine residues (colored in red) are conserved across the
family (Fig. 4).

weblogo.berkeley.edu

Fig. 4. Multiple sequence alignment of SRCR domains in WebLogo format.
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In order to estimate evolutionary relationships among SRCR domains, we performed a
phylogenetic analysis utilizing the maximum likelihood phylogenetic reconstruction
method (proml) available in the phylip phylogenetic package (Felsenstein, 1989). Gaps were
trimmed from the SRCR multiple sequence alignment prior to tree building and the Jones-
Taylor-Thornton probability model employed with constant rate of change among sites. The
reliability of internal branches was subsequently evaluated using 100 bootstrap samplings.
SRCR domains exhibit very complex evolutionary relationships (Fig. 5). In the reconstructed
phylogenetic tree, intra-protein domain clustering as well as inter-protein domain clusters
were observed. Intra-domain clustering, as in the case of DMBT1, strongly suggests the
evolution of these domains via sequential intragenic duplication. At the same time it is
difficult to understand the inter-protein domain similarities. CD5, CD6, Spo, M160 and
CD163 exhibit more diverse relationships. Among them, SRCR domains show greater inter
than intra protein similarities. Given their low sequence similarities, it is uncertain whether
the domains evolved through gene duplication and accumulated mutations have reduced
sequence similarity, or if it is through a convergent evolution mechanism subsequent to
domain shuffling. The similarities of domain pairs M160_d4-CD163_d1, M160_d7-CD163_d4
M160_d8-CD163_d5, M160_d9-CD163_d6, M160_d10-CD163_d7, M160_d11-CD163_d8,
M160_d12-CD163_d9, CD5_d1-CD6_d3 and CD5_d2-S4D_d4 are strongly suggestive of
inter-protein domain shuffling.

4. Concluding remarks - the completion of the SRCR group B family

In contrast to the complexity and variety of large protein families such as the G protein
coupled receptor (GPCR) superfamily, which has nearly 800 genes in the human genome,
corresponding to roughly 4% of the full protein-encoding genome, group B of the scavenger
receptor cysteine-rich superfamily appears to be much more limited. So far it includes only 8
members in the entire human genome, although there are additionally 3 proteins described
in other mammalians; SCART1 and SCART?2 initially found in mice, and the 11 SRCR
domain-containing protein WC1 expressed in cattle, sheep and swine. Also, the function of
mammalian SRCR proteins seems to be restricted to the immune system, although the exact
nature or biological role of the family is still to be fully determined.

In this study we set out to identify the remaining members of the SRCR group B family in
order to obtain a clear understanding of the biological significance of this important group
of proteins and to clarify some as yet unresolved questions regarding their evolution in
mammalian species. We searched the human genome for the presence of SRCR-encoding
genes using as probes the amino acid sequence of all reported human SRCR domains.
Interestingly, one of the new members we have identified, HHIP-like 1, contains a single
SRCR domain, which is unknown in the family. Moreover, the amino acid sequence
corresponding to the SRCR domain constitutes only a small fraction of the total of the
putative protein (13%). This is in contrast with most other members, whose amino acid
content corresponding to SRCR domains relative to the whole of the protein is significantly
higher, varying between 32% (SSc5D) and 92% (Spa). HHIP-like 1 is related to Hedgehog
interacting protein, a regulatory component of the Hedgehog signaling pathway (Chuang
and McMahon, 1999). However, unlike HHIP-like 1, HHIP does not contain an SRCR
domain.
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Fig. 5. Maximum likelihood phylogenetic estimation of human SRCR domains. Internal
branch reliability was assessed using bootstrapping method (100 bootstrap replicates).
Branches observed in more than 75 of 100 bootstrapped re-sampling are shown in red.

The second cluster of SRCR domains we have uncovered is located on chromosome 10 and
includes 8 such domains, thus we provisionally termed it 8D. Using the predicted exon-
derived protein sequence, we BLAST-searched other mammalian genomes and the proteins
that we retrieved which were most similar to human 8D were mouse SCART1, bovine
M160L, and mouse SCART2, whose ClustalW alignment scores were 70, 66 and 57,
respectively (Fig. 6). Human 8D and mouse SCART1 have 64% identity for the entire
sequence, while some individual SRCR domains share identities of close to, and even above
80%. We thus believe that 8D is the human ortholog of mouse SCARTI. It remains to be seen
whether human 8D can be expressed and produce a mature and functional protein,
although we have detected several 8D transcripts of different sizes (C Gongalves and A

Carmo, unpublished).
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Fig. 6. Sequence alignment of mouse SCART1, human 8D and bovine M160-like protein.

The last new set of domains we have identified is located in a gene also on chromosome 10,
but has been annotated as a non-coding pseudogene. Analysis of its putative sequence
derived from the exon-like sequences in fact reveal that some stretches of several of the
SRCR domains are missing, adding to a number of frameshifts and premature stop codons.
Curiously, 11 SRCR-like domains can be identified, exactly the same number as the typical
bovine WC1 protein. Comparison between the two sequences has failed however to
definitely determine whether these two genes have the same evolutionary origin, as
individually identifiable SRCR or SRCR-type domains seem to have already drifted apart
significantly.

With the recognition of the three new genes, albeit none of them proven to be functional as
yet together with the detection of three new putative SRCR-encoding sequences present in
the DMBT1 gene, we are confident that we have completed the identification of the full set
of scavenger receptor cysteine-rich group B domains in the human genome.
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1. Introduction

Bioinformatics and molecular evolutionary analyses most often start with comparing DNA
or amino acid sequences by aligning them. Pairwise alignment, for example, is used to
measure the similarities between a query sequence and each of those in a database in BLAST
similarity search, the most used bioinformatics tool (Altschul et al., 1990; Camacho et al.,
2009). Evolutionary history among sequences can be reflected better when more than two
sequences are aligned, in a multiple sequence alignment (MSA). When building an MSA, we
assume that the sequences compared are derived from a common ancestral sequence. Then
the process of MSA building is to infer homologous positions between the input sequences
and place gaps in the sequences in order to align these homologous positions. These gaps
represent evolutionary events of their own. Gaps (also called indels) are caused by either
insertions or deletions of characters (nucleotides or amino acids) on a particular lineage of
sequences during the evolution. Building an MSA is, therefore, to reconstruct the
evolutionary history of the sequences involved. While it is easy to understand that the
quality of MSAs affects the quality of phylogenetic tree reconstruction, the effect of MSA
quality reaches far beyond this. Some examples of bioinformatics methods that utilize
information extracted from MSAs include: profile building in similarity search (e.g., PSI-
BLAST: Altschul et al., 1997), motif/profile recognition (e.g., PROSITE: Hulo et al., 2008),
profile hidden Markov models for protein families/domains (e.g., Pfam: Finn et al., 2010),
and protein secondary-structure prediction (for review, see Pirovano & Heringa, 2010).
There are numerous bioinformatics and molecular evolutionary analyses that are affected by
MSA quality and they can be benefited by having reliable MSAs.

Despite the significance of having good MSAs, assessing MSA quality is far from
straightforward. Measuring the quality of MSAs requires two components: a benchmark
dataset and a scoring method. A benchmark dataset includes reference alignments. These
alignments are considered to represent the evolutionary history of the sequences truthfully.
The same set of sequences included in a reference alignment is then aligned using the MSA
methods to be tested. The reconstructed MSA can be compared with the reference MSA using
a scoring method and the quality of the reconstructed MSA is assessed compared to the
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reference MSA. Problems exist both in benchmark MSA datasets as well as in the methods
used to measure the MSA quality.

The majority of benchmark MSA datasets are built on real sequences by aligning structural
elements and in some cases with hand-curation (e.g., PREFAB: Edgar, 2004b; OXBench:
Raghava et al., 2003; HOMSTRAD: Stebbings & Mizuguchi, 2004; BAIiBASE: Thompson et
al., 2005; Thompson et al., 2011; SABmark: Van Walle et al., 2005). Since the true evolutionary
history of the sequences included in these datasets is unknown, positional homologies
among sequences are unknown and the accuracy of these reference MSAs is subjective
(some issues on benchmark datasets, see Edgar, 2010). Some other benchmark datasets are
generated by simulating sequence evolution based on specific molecular evolutionary
models (e.g., IRMBASE: Subramanian et al., 2005). The advantage of these simulated datasets
is that the evolutionary history of sequences (the guide tree) is known and the true
alignment is given as an outcome of the simulation. Since the evolutionary history is known,
these datasets can be used to assess the quality of both MSAs as well as phylogenetic
reconstruction methods. The disadvantage is that the biological correctness of the simulation
relies solely on the evolutionary models used.

Issues also exist in the methods used to measure the quality of MSAs. While a number of
statistics has been proposed (e.g., Position Shift Error score: Cline et al., 2002; sum-of-pairs
score and column score: Thompson ef al., 1999), there is no definite answer how to measure
'biological correctness' of MSAs. It remains for the end user to incorporate the statistics into
their evaluation of this 'biological correctness'.

Due to its significant impact on many bioinformatics and molecular evolutionary studies,
MSA is one of the most scrutinized bioinformatics fields (Kemena & Notredame, 2009;
Thompson et al., 2011). However, assessment of MSAs is usually reserved for power users.
Often regular users simply run one MSA method and proceed to the next analysis without
examining their alignment output (Morrison, 2009b). Considering how MSA quality affects
the outcomes of further analysis, assessment of MSAs, however, should be included as
regular part of sequence analysis. In order to facilitate comparative analysis of MSAs, we
recently developed a software package called SuiteMSA (Anderson et al., 2011). SuiteMSA
provides several alignment-viewing tools that allow the user to compare MSAs both
visually and quantitatively. SuiteMSA also includes a feature-rich biological sequence
simulator, indel-Seq-Gen v2.1 (Strope et al., 2009), with a user-friendly graphical interface,
allowing the users to generate their own benchmark alignments for testing various MSAs.

In this chapter, we first review some of the statistics used to assess the quality of MSAs
focusing on those used in SuiteMSA. We then describe how MSA comparison can be
actually performed using various MSA viewers available in SuiteMSA. Five examples are
chosen from diverse types of alignment problems: proteins with secondary structures,
transmembrane proteins, proteins with length variation, simulated protein sequences, and
ribosomal DNAs. These comparisons illustrate how various MSA methods perform
differently based on their underlying assumptions. We also discuss how different alignment
statistics should be used for assessing MSAs and their limitations.!

T All input files and alignments shown in this chapter are available from the following website:
http:/ /bioinfolab.unl.edu/~canderson/SuiteMSA / supplement.html
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2. Statistics used to assess multiple sequence alignments

There are two types of alignment statistics. The first type of statistics is used to characterize
a single alignment for the level of conservation in each alignment position and for various
gap measures. These are descriptive measures for a specific alignment and should not be
interpreted as a measure of the alignment quality. The second type of statistics can be used
to compare any two alignments containing the same sequences.

2.1 Descriptive statistics on a single multiple sequence alignment
We describe the following two descriptive statistics: information content and average
hydrophobicity. Both are calculated on a per column basis.

2.1.1 Information content

The Shannon entropy is a measure of the amount of uncertainty (Shannon, 1948). When it is
applied to MSA analysis, it is interpreted as a measure of the diversity of characters within a
given alignment column (Schneider & Stephens, 1990). The amount of information
conveyed, or information content, is given by the decrease in this uncertainty and represents
the level of sequence conservation within a column.

Formally defined, the entropy for the kth column of an alignment is given as:

H(k)=-3_ f(s,k)log, f(s,k), @
sek
where s is any character contained in column k and f{s,k) is the frequency of s as it appears in
column k. If there are x; of the character s in the column that has x of non-gap characters,
f(s,k) is calculated as xy/x. The information content in the kth column is given as:

I(k)=log,S—H(k), @

where S is the number of character types for an alignment (4 for a nucleotide alignment and
20 for an amino acid alignment). Both H(k) and I(k) have their units in bits.

It can be seen from these equations that the higher the number of distinct characters within a
column, the higher the entropy value (H) and thus, the lower the information content (I) in
the column. For a completely conserved column ¢, one which contains only one type of
characters, the entropy H(c) is 0; thus it contains the maximum amount of information. For a
nucleotide alignment this maximum value is 2, while for an amino acid alignment it is 4.32.
Note that gaps are not considered in calculating f(s,k) in equation (1). Excluding gaps from
calculation could inflate the information content for a column that contains many gaps. A
single character in a column of gaps, for example, can be erroneously attributed a maximum
information content. In order to compensate for this situation, the column information
calculation is normalized by multiplying each column’s information content by the
proportion of non-gap characters present in the column (Schneider & Stephens, 1990).

While the information content is a measure applicable to a single alignment, it can be useful
to compare the information statistics among alternate alignments for trends.

2.1.2 Average hydrophobicity
Hydrophobicity is one of the most useful properties of amino acid residues, which is
directly related to the function and structure of proteins. Many different types of
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hydrophobicity indices are available (Kawashima et al., 2008). By plotting hydrophobicity
values along the sequence, the presence of functional/structural regions (e.g., membrane-
spanning regions in transmembrane proteins or core regions in globular proteins) can be
predicted. For MSA analysis, comparing the distribution of hydrophobicity along the
alignment among different MSAs can provide a visual aid for evaluating the consistency
between alignments. Equation (3) below shows how the average hydrophobicity for column
k, h(k), is calculated for an alignment containing N sequences:

2
h(k)=~=-

N

, ®)

where h; is the hydrophobicity index value of it residue of column k. In SuiteMSA, the
hydrophobicity index provided by Kyte and Doolittle (1982) is used and the value of 0 is
assigned for a gap.

2.2 Measuring the similarity between two multiple sequence alignments

As mentioned earlier, many statistics have been proposed to compare two MSAs. The sum-
of-pairs score (SPS) and the column score (CS) are the two used most often. Both scores were
proposed by Thompson et al. (1999). The values of these two scores react differently to
varying inconsistency between MSAs compared.

When comparing two alignments, one is referred to as the reference alignment and the other
the test alignment. The test alignment is compared against the reference. If the reference
alignment is known to be 'correct!, these statistics can be used to measure the alignment
quality. As mentioned before, however, the 'correctness' of an alignment can be highly
subjective in the case of many available benchmark datasets. An alignment can be said to be
truly 'correct' only if its exact evolutionary history is known and if the alignment reflects it
correctly. Usually it is possible only if the alignment was generated by a sequence evolution
simulator. Even if the 'true' alignment can be obtained by sequence simulation, however,
'biological realism' of the evolutionary model used with the simulation becomes an issue. In
this chapter, SPS and CS are thus used more as general comparison measures.

2.2.1 Sum-of-pairs score (SPS)

To calculate the SPS for a test MSA against the reference MSA, each pair of characters within

an alignment column is treated as an alignment unit. The per-column SPS is the number of

alignment units within a specific column of the test alignment that are also aligned in the
same column of the reference alignment. The total of all per-column scores from the entire
alignment is obtained and normalized by dividing by the total number of character pairs.

This is formally defined as follows:

i.  Let an alignment of length M containing N sequences be an N by M array, A. Then the
character in the ith sequence and kth column of the alignment is identified as Aj.

ii. Let there be two alignments for comparison: alignment A (referred to as the reference
alignment) of length M, containing N sequences and alignment A (referred to as the test
alignment) of length M containing N sequence, where M, and M can be but are not
required to be equal.

iii. To examine the kth column of A, consisting of elements A, Aa, ... Au, let pij be defined
as:
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Pix = 1if A, and A].k of alignment A are in the same column of A ,

P = 0 otherwise.

iv. Then the score for ki column of A is defined as:
N N
5k=zzp,yk' ®)
i=1 j=isl

v. The score for the full alignment A is given as:
M
2.5,
_\k=
SPS=M N ©)
zsrk

where Sy is the score for the reference alignment, A,. This reference score is calculated
as Sy = x(x-1)/2 where x is the number of characters in column k excluding gaps.
The maximum possible SPS is a value of 1.0 when A = A, The SPS is not symmetric in that
the score will be different if the reference and test alignments are switched.

2.2.2 Column score (CS)

To calculate the CS, the test and reference alignments are compared column-wise. The
column score is the number of 'matched' columns between the test alignment and the
reference alignment divided by the total number of 'considered' columns in the test
alignment. This is formally defined as follows:

i.  For the kth column of A:

{Ck = 1if all the characters in the column k of alignment A are matched in alignment A, @)

C, =0 otherwise.

ii. The column score for the full alignment A is given as:

2l
cs=\ ®

In SuiteMSA, two types of CS are calculated: un-gapped and gapped.

Un-gapped CS: This score considers only un-gapped columns (columns that have no gaps),
where M of equation (8) equals the number of un-gapped columns in the alignment (shown
in red in Fig. 1). For example, if an alignment has 500 columns and only 200 contain no gaps
and of these 200, 150 columns are exactly as they appear in the reference alignment, then the
un-gapped CS is given as 150/200 = 0.75. The disadvantage to these criteria is that very
gappy alignments with very few un-gapped columns can still produce a high column score
if those un-gapped columns are all 'matched'. For instance, a test alignment of any length,
even if only one column is un-gapped and matches a column in the reference alignment, will
yield a column score of 1.0.
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Reference alignment Test alignment
11 11

12345678901 12345678901

Tl A-WCD-EFG-X Tl A-WCD-EFG-X
T2 AW-CD-EFG-X T2 AW-C-DEF-GX
T3 AW-CDEF--GX T3 AW-C-DEF-GX
T4 AW-CDEF--GX T4 AW-C-DEF-GX
T5 A-WCD-EF-GX T5 A-WC-DEF-GX
T6 A-WCD-EFG-X T6 A-WC-DEFGX-
T7 A-WCD-EFG-X T7 A-WC-DEFG-X

+4+++

Fig. 1. Illustration of the column score calculation. In the Test alignment, 'un-gapped'
columns are shown in red. 'Un-gapped matched' columns are indicated with red '+' under
the alignment. For 'gapped' CS, all but 5th column of the Test alignment are considered and
these columns are shown in blue as well as red. However, only those columns indicated
with '+' (both red and blue) are counted as 'matched' against the Reference alignment. In this
example, 'un-gapped' CS is 0.5 (2 out of 4 columns are matched) and 'gapped' CSis 0.4 (4 out
of 10 columns are considered to be matched).

Gapped CS: This score considers columns that contain more than 20% non-gap characters. To
be 'matched' the characters that appear in a column of the test alignment must appear in a
column of the reference alignment with no additional characters. For example, in Fig. 1, all
but 5th column of the Test alignment are considered. The columns 6-11 are not counted as
'matched'. This is because, for example, while in the Test alignment, 'G' of T1 position 9 is
aligned only with 'G' of T6 and T7, in the Reference alignment, 'G' of T1 position 9 is aligned
with 'G' of T2 as well as T6 and T7. The advantage to 'gapped' CS is that it allows more
columns to be considered; columns with gaps can be matched if the same non-gap
characters (but no other characters) are aligned in the reference alignment. This does offset
the disadvantage of the potentially inflated un-gapped CS mentioned before.

Exclusion of any alignment columns that include gaps can be justified since gaps represent
evolutionary events that are often not traceable. They are either the insertion of new
characters, the deletion of existing characters, or a combination of the two. Therefore, while
they are represented by the same gap symbol in the alignment, they are not equivalent. It is
often not possible to infer if a gap in one alignment was generated by the same event as a
gap in the second alignment. On the other hand, excluding all alignment positions with gaps
even for those containing only a small number of gaps may not be desirable. In SuiteMSA, as
described above, a column is considered as long as it contains a number of non-gap
characters above the 20% threshold. A third column score is also provided in SuiteMSA as '%
consistency', which considers all columns regardless of the number of gaps. Comparing these
values can help assessing the difference between two alignments.

2.2.3 Implementation of SPS and CS

In addition to SuiteMSA, several implementations of SPS and CS are available as listed in
Table 1. Note that not all of these programs generate the same value for the same alignment.
The difference is caused by different criteria used to define, for example, 'matched' columns
and which columns should be 'considered' for counting. When comparing scores, due to this
inconsistency among programs, it is necessary to use the same implementation of scoring
methods.
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Program Reference Note

bali_score (Thompson et standalone; C program; MSF format.
al., 1999)

gscore (Edgar, 2004b) standalone; C++ program; calculates Q score (SPS), TC (CS),
Modeler score, and Shift scores; fasta format.

VerAlign available from http:/ /www.ibi.vu.nl/ programs/veralignwww
MSF format.
SuiteMSA (Anderson et part of the GUI software; fasta format.
al., 2011)

Table 1. Programs available to calculate SPS and CS. The actual SPS and CS values for
alignments discussed in this chapter given by different programs are available from our
website (see footnote 1).

3. Visual inspection of MSAs

In the following sections, using various examples, we will show how MSAs can be
compared using SuiteMSA's visual tools and statistics. See Anderson ef al. (2011) and
SuiteMSA User's Manual for detailed description of various tools available in SuiteMSA.
Among the numerous MSA methods currently available, we chose seven MSA methods
listed in Table 2 for comparative analysis. We chose these methods based on their general
popularity in various bioinformatics analyses, their availability, and some of their features
useful for aligning particular types of proteins (e.g., transmembrane proteins).

Method Reference Description
(version)
ClustalW2  (Larkin et al., Progressive alignment; weights sequences based on
(2.1) 2007) branch lengths and adjusts gap penalties; one of the

earliest methods implemented. http:/ /www.clustal.org/

MUSCLE (Edgar, 2004a, Progressive alignment; fast distance estimation using
(3.8.31) 2004b) kmer counting; iterative refinement using tree-dependent
restricted partitioning. http:/ /www.drive5.com/muscle/

MAFFT (Katoh & Toh,  Progressive alignment; L-INS-i method is used for
(6.843) 2008) iterative refinement incorporating local pairwise
alignment information in this study.
http:/ /mafft.cbrc.jp/alignment/software/

Probalign  (Roshan & Uses partition function posterior probability estimates to
(1.4) Livesay, 2006)  compute maximum expected accuracy alignments.
[eProbalign] http:/ / probalign.njit.edu/probalign/login

PRANK  (Loytynoja & Phylogeny-aware gap handling; not meant for divergent
(web version) Goldman, 2005, sequences; recognizes insertions and deletions as distinct
2008) evolutionary events.
[webPRANK] http:/ /www.ebi.ac.uk/goldman-srv/
webprank/
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Method Reference Description
(version)

PRALINE (Pirovano etal., Progressive alignment with profile pre-processing;
(web version) 2008) incorporates secondary structure and transmembrane
information; PSIPRED and Phobious (for GPCR
alignment) chosen for this study.
http:/ /www.ibi.vu.nl/ programs/ pralinewww/

PROMALS (Pei & Grishin, Progressive alignment enhanced with profiles and
(web version) 2007) secondary structure information; a hidden Markov model
using a combined scoring of amino acids and secondary
structures. http:/ / prodata.swmed.edu/promals/

Table 2. The seven MSA methods compared in this study. All methods are used with the
default options unless noted otherwise.

3.1 Examining a protein MSA with secondary structure prediction

When protein sequences are aligned, it is useful to identify the location of their functional or
structural landmarks to determine if such landmarks are aligned properly. Useful
landmarks include secondary structures, transmembrane regions, and conserved domains
or motifs. Color-coding MSAs based on properties of amino acids also helps determine if the
distribution of different types of amino acids is consistent or varied among sequences.

3.1.1 Inspecting a single MSA

In Fig. 2, eight protein sequences of the lipocalin family (Pfam PF00061; Finn et al., 2010) are
aligned. The lipocalin family proteins are highly divergent at the sequence level yet highly
conserved at the structure level (Flower et al., 2000). The common structural feature among
these proteins is a single eight-stranded antiparallel beta-barrel. The MSA shown in Fig. 2
was originally produced using PROMALS3D (Pei et al., 2008) with manual adjustment
(Strope et al., 2009). Using SuiteMSA's secondary structure viewer, we aligned the lipocalin
MSA with the secondary structures predicted from the eight sequences using PSIPRED
(Jones, 1999). It can be seen in Fig. 2 that eight beta-strand regions (shown as brown-colored
clusters of 'E' letters) are clearly well aligned with very few gaps.

Fig. 2 also shows the per-column information content displayed as a blue bar chart below
the MSA. The information content reflects the level of conservation for each column. This
display is especially useful when dealing with alignments containing a large number of
sequences and/or long sequences. When comparing such large alignments, the information
content display can be used to quickly scan along the alignment to search for, e.g., high
conservation areas (indicated as high information content regions). In Fig. 2, fully conserved
columns (positions 51, 53, 148, 150, and 179 are readily identifiable by the full-height bars. In
fact, these positions are part of the three conserved motifs shared among lipocalin proteins.
These motifs (indicated as M1, M2, and M3 in Fig. 2) are described as "structurally
conserved regions" (SCR1, 2, and 3, respectively) by Flower et al. (2000). SCR1 corresponds
to PROSITE lipocalin motif (PS00213; Hulo et al., 2008).

Several summary statistics are given at the top of MSA Viewer window (Fig. 2). The
following statistics are available:
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Fig. 2. The alignment of eight protein sequences from the lipocalin family. The MSA Viewer
is used to display the MSA aligned with the predicted secondary structures. Black thick
lines marked with M1, M2, and M3 indicate the locations of the three conserved motifs.
Symbols used for the secondary structure prediction are: H (green) for helix, C (cream) for
coil, and E (brown) for beta-strand. The alignment statistics are shown above the MSA. The
column information content is displayed as a blue bar chart at the bottom indicating the
level of conservation for each column.

¢ % gaps. The number of gap symbols within the alignment divided by the total number
of characters within the alignment (alignment length times number of sequences). This
should not be confused with the number of insertion/deletion events in the alignment
since an individual event can span multiple positions.

e % conserved. The number of completely conserved columns divided by the total number
of columns. A conserved column is defined as an un-gapped column containing a single
type of characters.

¢ % columns un-gapped. The number of un-gapped columns divided by the total number
of columns.

o  The histogram of character count per column. This histogram represents the gappiness
of the MSA using a non-gap character frequency distribution (the inverse of gap
frequency distribution). For the lipocalin MSA, 73% of the columns have no gap (this is
also shown as % columns un-gapped).

3.1.2 Comparing two MSAs

In Fig. 3A, we compared the previously shown lipocalin MSA (listed as 'Reference') with the
MSA generated by ClustalW2 using the MSA Comparator. Under the blue selection bar and
the green range bar, alignment positions are color-coded for the consistency with respect to
the reference MSA. Blue characters illustrate where completely consistent columns are, and
red characters depict those inconsistently aligned. Compared against the reference,
ClustalW2 MSA is more compacted with very few gaps, making the alignment shorter (201
positions compared to 219 in the reference). We further examined the ClustalW2 MSA using
the secondary structure display function of the MSA Viewer. As illustrated in Fig. 3B, the
ClustalW2 MSA does not have the beta-strand regions (shown as brown-colored clusters of
'E' letters) aligned as well as the reference MSA does.

As mentioned earlier, the information content is the indicator of sequence divergence within a
single MSA, and not a direct comparison between two alignments. However, as shown in Fig.
3A, the informa