THEORY AND NOVEL APPLICATIONS OF
MAGCHINE LEARNING

THEORY AND NOVEL APFPLICATIONS OF
MACHINE LEARNING

EDITED BY

MENG JOO ER
AND
Y1 ZHOU

I-Tech

Published by In-Teh

In-Teh is Croatian branch of I-Tech Education and Publishing KG, Vienna, Austria.

Abstracting and non-profit use of the material is permitted with credit to the source. Statements and
opinions expressed in the chapters are these of the individual contributors and not necessarily those of
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or
property arising out of the use of any materials, instructions, methods or ideas contained inside. After
this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in
any publication of which they are an author or editor, and the make other personal use of the work.

© 2009 In-teh

www.in-teh.org

Additional copies can be obtained from:
publication@ars-journal.com

First published February 2009
Printed in Croatia

p. cm.
ISBN 978-3-902613-55-4
1. Theory and Novel Applications of Machine Learning, Meng Joo Er and Yi Zhou

Preface

Even since computers were invented many decades ago, many researchers have been
trying to understand how human beings learn and many interesting paradigms and
approaches towards emulating human learning abilities have been proposed. The ability of
learning is one of the central features of human intelligence, which makes it an important
ingredient in both traditional Artificial Intelligence (Al) and emerging Cognitive Science.

Machine Learning (ML) draws upon ideas from a diverse set of disciplines, including
Al, Probability and Statistics, Computational Complexity, Information Theory, Psychology
and Neurobiology, Control Theory and Philosophy. ML involves broad topics including
Fuzzy Logic, Neural Networks (NNs), Evolutionary Algorithms (EAs), Probability and
Statistics, Decision Trees, etc. Real-world applications of ML are widespread such as Pattern
Recognition, Data Mining, Gaming, Bio-science, Telecommunications, Control and Robotics
applications.

Designing an intelligent machine involves a number of design choices, including the
type of training experience, the target performance function to be learned, a representation
of this target function and an algorithm for learning the target function from training.
Depending on the resources of training, ML is always categorized as Supervised Learning
(SL), Unsupervised Learning (UL) and Reinforcement Learning (RL). It is interesting to note
that human beings adopt more or less these three learning paradigms in our learning
process.

This books reports the latest developments and futuristic trends in ML. New theory and
novel applications of ML by many excellent researchers have been organized into 23
chapters.

SL is a ML technique for creating a function from training data with pairs of input
objects and desired outputs. The task of a SL is to predict the value of the function for any
valid input object after having seen a number of training examples (i.e. pairs of inputs and
desired outputs). Towards this end, the essence of SL is to generalize from the presented
data to unseen situations in a "reasonable" way. The key characteristic of SL is the existence
of a "teacher" and the training input-output data. The primary objective of SL is to minimize
the system error between the predicated output from the system and the actual output. New
developments of SL paradigms are presented in Chapters 1-3.

UL is a ML methodology whereby a model is fit to observations by typically treating
input objects as a set of random variables and building a joint density model. It is
distinguished from SL by the fact that there is no a priori output required. Novel clustering
and classification approaches are reported in Chapters 4 and 5.

Distinguished from SL, Reinforcement Learning (RL) is a learning process without
explicit teacher for any correct instructions. The RL methodology is also different from other
UL approaches as it learns from an evaluative feedback of the system. RL has been accepted

\

as a fundamental paradigm for ML with particular emphasis on computational aspects of
learning.

The RL paradigm is a good ML framework to emulate human way of learning from
interactions to achieve a certain goal. The learner is termed an agent who interacts with the
environment. The agent selects appropriate actions to interact with the environment and the
environment responses to these actions and presents new states to the agent and these
interactions are continuous. In this book, novel algorithms and latest developments of RL
have been included. To be more specific, the proposed methodologies for enhancing Q-
learning have been reported in Chapters 6-11.

Evolutionary approaches in ML are presented in Chapter 12-14 and real-world
applications of ML have been reported in the rest of the chapters.

Editors

Meng Joo Er

School of Electrical and Electronic Engineering,
Nanyang Technological University

Singapore

Yi Zhou

School of Electrical and Electronic Engineering,
Singapore Polytechnic

Singapore

Preface

. A Drawing-Aid System using Supervised Learning
Kei Eguchi

Supervised Learning with Hybrid Global Optimisation Methods.

Case Study: Automated Recognition and Classification of Cork Tiles

Antoniya Georgieva and lvan Jordanov

Supervised Rule Learning and Reinforcement Learning
in A Multi-Agent System for the Fish Banks Game
Barttomiej Sniezyriski

Clustering, Classification and Explanatory Rules
from Harmonic Monitoring Data
Ali Asheibi, David Stirling, Danny Sutanto and Duane Robinson

Discriminative Cluster Analysis
Fernando De la Torre and Takeo Kanade

Influence Value Q-Learning: A Reinforcement Learning Algorithm
for Multi Agent Systems
Dennis Barrios-Aranibar and Luiz M. G. Gongalves

Reinforcement Learning in Generating Fuzzy Systems
Yi Zhou and Meng Joo Er

Incremental-Topological-Preserving-Map-Based
Fuzzy Q-Learning (ITPM-FQL)
Meng Joo Er, Linn San and Yi Zhou

. A Q-learning with Selective Generalization Capability
and its Application to Layout Planning of Chemical Plants
Yoichi Hirashima

Contents
V

001

011

033

045

069

081

099

117

131

Vil

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A FAST-Based Q-Learning Algorithm
Kao-Shing Hwang, Yuan-Pao Hsu and Hsin-Yi Lin

Constrained Reinforcement Learning from Intrinsic
and Extrinsic Rewards
Eiji Uchibe and Kenji Doya

TempUnit: A Bio-Inspired Spiking Neural Network
Olivier F. L. Manette

Proposal and Evaluation of the Improved Penalty Avoiding
Rational Policy Making Algorithm
Kazuteru Miyazaki, Takuji Namatame and Hiroaki Kobayashi

A Generic Framework
for Soft Subspace Pattern Recognition
Dat Tran, Wanli Ma, Dharmendra Sharma, Len Bui and Trung Le

Data Mining Applications in Higher Education
and Academic Intelligence Management
Vasile Paul Bresfelean

Solving POMDPs with Automatic Discovery of Subgoals
Le Tien Dung, Takashi Komeda and Motoki Takagi

Anomaly-based Fault Detection with Interaction Analysis
Using State Interface
Byoung Uk Kim

Machine Learning Approaches
for Music Information Retrieval
Tao Li, Mitsunori Ogihara, Bo Shao and DingdingWang

LS-Draughts: Using Databases to Treat Endgame Loops
in a Hybrid Evolutionary Learning System

Henrique Castro Neto, Rita Maria Silva Julia and Gutierrez Soares Caixeta

Blur Identification for Content Aware Processing in Images
Jéréme Da Rugna and Hubert Konik

An Adaptive Markov Game Model
for Cyber Threat Intent Inference

Dan Shen, Genshe Chen, Jose B. Cruz, Jr., Erik Blasch, and Khanh Pham

145

155

167

181

197

209

229

239

259

279

299

317

22. Life-long Learning Through Task Rehearsal
and Selective Knowledge Transfer
Daniel L. Silver and Robert E. Mercer

23. Machine Learning for Video Repeat Mining
Xianfeng Yang and Qi Tian

335

357

A Drawing-Aid System using
Supervised Learning

Kei Eguchi
Shizuoka University

Japan

1. Introduction

In an educational front, learning support for handicapped students is important. For these
students, several types of support systems and devices have been studied (Fujioka et al.,
2006; Uesugi et al., 2005; Ezaki et al., 2005a, 2005b; Kiyota et al., 2005; Burke et al., 2005; Ito,
2004; Nawate et al., 2004, 2005). Among others, for the student suffering from paralysis of a
body, drawing on a computer is widely used as occupational therapy. The drawing on a
computer usually employs the control devices such as a track ball, a mouse controller, and
so on. However, some handicapped students have difficulty in operating these control
devices. For this reason, the development of drawing-aid systems has been receiving much
attention (Ezaki et al., 2005a, 2005b; Kiyota et al., 2005; Burke et al., 2005; Ito, 2004; Nawate et
al., 2004, 2005). In the development of drawing-aid systems, two types of approaches have
been studied: a hardware approach and a software approach. In the hardware approach
(Ezaki et al., 2005a, 2005b; Kiyota et al., 2005; Burke et al., 2005; Ito, 2004), exclusive control
devices must be developed depending on the conditions of handicapped students. Therefore
we focused on a software approach (Ito, 2004; Nawate et al., 2004, 2005). In the software
approach, the involuntary motion of the hand in device operations is compensated for to
draw clear and smooth figures. The influence of the involuntary contraction of muscles
caused by the body paralysis can be separated into hand trembling and sudden action.

In previous studies of the software approach, several types of compensation methods have
been proposed (Ito, 2004; Nawate et al., 2004, 2005; Morimoto & Nawate, 2005; Igarashi et
al.,, 1997; Yu, 2003; Fujioka et al., 2005) to draw clear and smooth figures in real time. Among
others, a moving average method (Nawate et al., 2004) is one of the simplest of methods that
do not include the difficulty such as figure recognition or realization of natural shapes. The
simple algorithm of this method enables drawing-aid in real time. However, this method
has difficulty in tracing the tracks of a cursor, because the cursor points in the track are
averaged without distinguishing sudden actions from hand trembling. For this reason, a
compulsory elimination method (Nawate et al., 2004) is incorporated with the moving
average method. In the compulsory elimination method, the points with large differences in
angle are eliminated by calculating a movement direction of the track. The judgement of this
elimination is determined by a threshold parameter. However, to eliminate the influence of
sudden actions, it has difficulty in determining the threshold parameter. Since the degree of
sudden action and hand trembling depends on the conditions of handicapped students, the

2 Theory and Novel Applications of Machine Learning

threshold parameter must be determined by preliminary experiments. Therefore, this
method is very troublesome.

In this paper, a drawing-aid system to support handicapped students with nerve paralysis is
proposed. The proposed system compensates for the influence of involuntary motions of the
hand in mouse operations. Different from the conventional method such as a moving
average method, the proposed method alleviates the influence of involuntary motions of the
hand by using weight functions. Depending on the conditions of handicapped students, the
shape of the weight function is determined automatically by using supervised learning
based on a fuzzy scheme. Therefore, the proposed method can alleviate the influence of
sudden movement of the hand without preliminary experiments, unlike conventional
methods, which have difficulty in reducing it. The validity of the proposed algorithm is
confirmed by computer simulations.

2. Conventional method

2.1 Moving average method
The compensation using the moving average method is based on the following equations:

I

Q) - (0
out (t) = al d out (t) = ’ 1
w0 L w0 B o

where x(t) and y(t) are t-th coordinates of mouse points in a track, X, (t) and you(t) are
coordinate values after compensation, I is the present time, and N is the number of averaged
points. Figure 1 shows the smoothing of involuntary motions by Eq.(1). In Fig.1, the broken
line shows a straight line affected by involuntary motions caused by body paralysis, and the
solid line is a smoothed track obtained by the conventional method. As Eq.(1) and Fig.1 (a)
show, small trembling of the track can be smoothed off by averaging the coordinate values
of cursor points. In this method, however, the parameter N must be increased to alleviate
the influence of sudden action in the track of a cursor. As Fig.2 shows, when the parameter
N is small, the influence of sudden actions strongly remains in the smoothed track. The
increase of parameter N causes the difficulty in realizing accurate tracing of the track.
Furthermore, another problem occurs in drawing sharp corners when the parameter N is
large. In proportion to the increase of the parameter N, the sharp corner becomes a smooth
curve due to averaging points.

To reduce the influence of sudden action, the following method is incorporated in the
moving average method.

'-‘“’:\

o (x(t),¥(t)))

o 1 (xout(t), yout(t)) Suddendction
o : (x(t), ¥(t)) i Input
o (xout(t), your(t)) - I;Imt Influence of suddanac,tiu—n _ “/

@))

Fig. 1. Smoothing of influence of involuntary motions by using moving average method.
(a) Hand trembling. (b) Sudden action.

A Drawing-Aid System using Supervised Learning 3

o @ [x(t), y(t))
o (xout(t), yout(t))

— Large deviation

; Output

Pr-10
Fig. 2. Elimination of sudden action by using compulsory elimination method.

2.2 Compulsory elimination method

The compulsory elimination method proposed in (Nawate et al., 2004) is as follows. First, for
the present point Pj, a moving direction of a track is calculated by averaging the points from
Pr.20 to Pr.10. According to the moving direction, the points with large difference in angle are
eliminated as shown in Fig.2. The judgement of this elimination is determined by a
threshold parameter. Therefore, this method has difficulty in determining the threshold
parameter, because the degree of sudden action and hand trembling depends on the
individual conditions of handicapped students. The adverse effect of sudden action is
caused when the threshold value is larger than the value of the calculated angle. Depending
on the degree of handicap of a student, the threshold parameter must be determined by
preliminary experiments. Therefore, this method is very troublesome.

3. Proposed method

3.1 Main concept
Compensation using the proposed method is based on the following equations:

S, (0,0l >, (0, (b0)

Yout (t) - my— and Yout (t) = 1:17/\//— ! 2
> (D, (t)) S, (0, (1))
t=I-N =

(m.(D,()elo, 1] and W, (D,())elo, 1])
where W,(D.(t)) and W, (D,(t)) denote the weight functions for the input coordinates x(#) and
y(t), respectively. The weight functions Wy(D(t)) and W,(D,(t)) in Eq.(2) are given by

O e PR OE Y
oo ®

- 1 +exp{a(Dy (t)—TH)} ’

and W, (Dy (t))

where

D, (z) = min{lx(t)— x(t— 1),|x(z + 1)— x(t]}

and D, (t) = minﬂy(t)f y(z - 1],|y(t + 1)7 y(t]} ,

4 Theory and Novel Applications of Machine Learning

In Egs.(3) and (4), ais a damping factor, TH denotes a threshold parameter, and min denotes
a minimum operation. As Eq.(2) shows, different from the conventional method, the
proposed method can alleviate the influence of involuntary motions continuously. Figure 3
shows an example of the weight function. When a sudden action arises, the value of D(t) (or
Dy(t)) becomes large as shown in Eq.(4). Therefore, the weight Wy(Dx(t)) (or Wy(Dy(t)))
becomes small when the sudden action arises. As Egs.(2) and (3) show, the influence of a
sudden action can be alleviated according to the decrease of Wi(Dx(t)) (or Wy (Dy(1))).
However, the optimal shape of the weight functions depends on the condition of the
handicapped student. Thus the shape of the weight function is determined by using
supervised learning based on a fuzzy scheme.

The learning algorithm will be described in the following subsection.

Normal state
J, Veight for hand trembling

Wx(Dx(1))

Fig. 3. Weight function.

Mzx2(t) Mz3(t) Mza(t) Mzs(t)
u Mz,1(t) /’\‘1 ,’\“1 /\1 f‘\}
v SN \ \
¥ / 4 7 % 7 \
= \ S vy \
& / / \ 7 \
2 iy i ¥
£ ‘rf \ ff " 1
2 / / / \
= K \ / \ \
= |/ / S \

y \ / \ v

W N N
Dx(t)

Fig. 4. Examples of triangular membership functions.

3.2 Determination of weight function
Weight functions are approximated as piecewise-linear functions. For inputs D.(t) and D, (t),

matching degrees M, ,(t) and M,,,(t) are determined by the following equations:
M., =p.,(D,0) and M, O=u,(D,0) 5)

respectively, where the parameter n (=1, 2, ... ,k) denotes the fuzzy label (Zadeh, 1965)for
inputs Dy(t) and D,(), and pxn(Dx(t)) and py.(Dy(t)) are triangular membership functions
(Zadeh, 1968). Figure 4 shows an example of the triangular membership function when n=>5.
The output fuzzy sets

A Drawing-Aid System using Supervised Learning 5

Mx,l (t) Mx,k (t) My,l (t) My,k (t)
oot and +eeet ,
Sx,l (t) Sx,k (t) Sy,l (t) Sy,k (t)
are defuzzified by the centre-of-gravity method (Zadeh, 1973), where S,,(t) and S,,(t) are

singleton's elements [17-18], /is Zadeh's separator, and + is a union operation. The defuzzified
outputs Wy(Dx(t)) and Wy(D,(t)) corresponding to the weight functions are given by

k k
> S, (OM,, (1) DS, (OM,, (1)
Wv(Dx(t)):n:]k— and Wy Dy (t)):n:lk—’ (6)
> M., DM, @)
n=1 n=1

respectively. To simplify the above-mentioned operations, the membership functions are
chosen such that the summation of the matching degrees becomes 1. Thus, Eq.(6) can be
rewritten as

k k
W(D()=Y5,, (M, () and W,(D,()=>5,,0OM,,0. @)
n=1 n=l
As Egs.(6) and (7) show, the weight functions are approximated as piecewise-linear
functions. Figure 5 shows an example of the piecewise-linear function. In Fig.5, B, and By,
denote sample inputs which correspond to the coordinate values of the horizontal axis of
boundary points. The shape of the piecewise-linear functions depends on Sy ,(t) and S,,.(%).

Piecewise-linear function
1 — obtained by supervised learning
_—
.
+—
g
>
[l
g
=
Sﬁpe:m'sor signal
0 t 1 t t t

Bzi Bxz2 Bz3 Bxz4 Bzs Bzs
Dx(t)
Fig. 5. Weight function obtained by supervised learning.

The singleton's elements Sy,(t) and S,.(t) are determined by supervised learning. The
learning dynamics for S,.(t) and Sy, .(t) are given by

S, M) if M,,(0)%0),
S O+miH,, S0 i M,,0)=0)
S, (O +mM,, (1) Eif My,mi(%
S, O+miH,, =S, if M,,0)=0

S t+)= {

S, ,@+1) :{

6 Theory and Novel Applications of Machine Learning

where S, ,(t) and S, (t) satisfy

1 (i s,.,0)>0)
S”(t):{o (i S, (0)<0)

respectively. In Eq.(8), 1 (<1) and #; (<1) denote learning parameters, and H., and H,,, are
supervisor signals. The initial values of Sy,(t) and S,,.(t) are set to S, ,(0)=0.5 and S,,,(0)=0.5,
respectively, because the optimal shape of the weight function changes according to the
condition of the handicapped student.
When all the matching degrees M,.(t)'s and M,,(t)'s satisfy M..()#0 and M,.(t)#0,
respectively, Eq.(8) can be rewritten as

1 i S, (>0
Elf y,n(>>i o

and S, ()= {0 ¥ oSa®<0

S+ =S, @O+mM, (1) and S (+D)=S, (O+mM,,). (10)
To save space, let us consider only the behaviour of S ,(t). Since S, .(t) is expressed by

Sx,n (1) = Sx,n (0) + nlMx,n (0)
Sx,n (2) = Sx,n (1) + 771Mx,n (1)

Sx,n (1 - l) = Sx,n (1 - 2) + 771Mx,n (1 - 2)

Sx,n(l):Sx,n(1_1)+771Mx,n(1_1)/

the following equation can be obtained:

I-1

SenD)=8,,0)+m D M, (1) (11)
t=0

As Egs.(9) and (11) show, the singleton's elements S,.(f) and S,.(t) become S ,(t)=1 and

Syn(t)=1, respectively, when I—c. Hence, S..(t) (or S,.(t)) becomes large when D.(t)'s (or

Dy(1)'s) are close values.

On the other hand, when all the matching degrees M, ,(1)'s and M,,,(t)'s satisfy M, ,(t)=0 and

M,,.(t)=0, respectively, Eq.(8) is rewritten as

Sea(t+1) =8, () +m{H,, - S, , 0]

and S,,(t+)=5,,(O0+miH,, -5, 0] 12
From Eq.(12), the learning dynamics can be expressed by
Sx,n (t + 1) - Hx,n = (l /)){Sx,n (t) - Hx,n }
(12)

and S,,(t+)-H,,=1-m1S,,(0)-H,,|.
Since S,u(t) of Eq.(13) is expressed by

Sx,n (1) - Hx,n = (1 -1){Sx,n (0) - Hx,n }
Sx,n (2) - Hx,n = (1 —1){Sx,n (1) - Hx,n }

A Drawing-Aid System using Supervised Learning 7

Sx,n(l_l)_Hx,n :(l_ﬂz){SX,n(I_z)_HX,n}

Sx,n(l)_Hx,n = (I_UZ){Sx,n ([_1)_Hx,n }/

the following equation can be obtained:

Sx,n (I) - Hx,n = (1 - 772)I {Sx,n (0) - Hx,n } (14)

As Eq.(14) shows, the singleton's elements Sy.(t) and Sy.(t) become S..(t)=H,, and
Syn(t)=H,,, respectively, when the conditions obtain that 0<#,<I and [—c. Hence, S, ,(t) and
Syn(t) approach H,, and Hy, respectively, when D,(t)'s (or D,(t)'s) are not close values.
From Egs.(11) and (14), the singleton's elements satisfy the following conditions:

S..meld,,. 1| and s,,0¢clH,,. 1. (15)

For the sample inputs B, and B,,, which correspond to the boundary points of piecewise-
linear functions, the supervisor signals Hy,, and H,,, are chosen as

L@ n=1), L@ n=1),
0 (if n=1), 0 (if n=1),

respectively (see Fig.5). The weight functions which satisfy S..(t)=H,. and S,.(t)=H,,, are
the worst case.

H,,0)= { and H,,(0)= { (16)

4. Numerical simulation

To confirm the validity of the proposed algorithm, numerical simulations were performed
by assuming a screen with 8,000%8,000 pixels.

Figure 6 (a) shows the simulation result of the moving average method incorporated with
the compulsory elimination method. The simulation of Fig.6 (a) was performed under the
conditions where the number of the averaged points N=20 and the threshold value is 5

4500 T i T 4500
4000 - { 5 4000 : |
s IUIE N [Input
3500 | | —— Cutput ™ et | 3500 | | —— Output ™ gt |
Sudden action | Sudden action :
#3000 g 43000 ¢ 1
> t = b
T ! T
S 2500 ¢ E B S 2500 ¢ B
2000 B 2000 |
1500 5 1500 |
1000 1 ! L 1 L L 1000 L ! L L L L
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
X-axis X-axis
(a) (b)

Fig. 6. Simulation results. (a) Conventional method. (b) Proposed method.

8 Theory and Novel Applications of Machine Learning

pixels (Nawate et al., 2004). As Fig.6 shows, preliminary experiments are necessary for the
conventional method in order to determine the threshold value.

Figure 6 (b) shows the simulation result of the proposed method. The simulation shown in
Fig.6 (b) was performed under conditions where the number of averaged points N=20, the
number of singleton's elements k=8, and the learning parameter 7;=0.1 and #,=0.01. The
number of boundary points in the weight function depends on the parameter k. In
proportion to the increase of k, the flexibility of the weight function is improved. However,
the flexibility of the function has the relation of a trade-off with computational complexity.
In the meaning of an approximation of the sigmoid function of Fig.3, parameter k must be
larger than 4.

The membership functions p,.(Dx(t)) and py,.(Dy(t)) used in the simulation shown in Fig.6
(b) are

D.(1)-50(n—1)/50 (i 1>|D,(t)-50(n 1]/50;
(

1—
/ux,n(DX(t))_{ 0 (i 1<|p,@)-50 50

n—1
1—|Dy (t)—50(n— 1)| /50 i 1> |Dy (t)-50(n -1
0 if 1§|Dy(t)—50(n—1

(n=1...8),

and u,, (Dy (t)) = {

respectively. As Fig.6 (b) shows, the proposed method can alleviate the influence of sudden
actions effectively. For the input image of Fig.6 (b), the weight functions shown in Fig.7
were obtained by supervised learning. Figure 8 shows the behaviour of singleton's elements.
As Fig.8 shows, to adjust the shape of the weight functions, the values of the singleton's
elements change dynamically. In Figs.7 and 8, the values of S.3(t) - Sys(t) and Sy 5(f) - Sys(t)
are very small. This result means that the influence of involuntary action is alleviated when
D(t)>100 or D, ()>100. Of course, depending on the condition of handicapped students, the
values of S.,(t) and S,.(t) are adjusted automatically by supervised learning. As Fig.8
shows, the rough shape of the weight function is almost determined within #=100.

1r T 1t T T T
08 b 08 [4
Piecewise-linear function : Piecewise-linear function
—_ obtained by supervised learning —_ ; obtained by supervised learning
= =
s 06 1 £ 061 4
= ES
2. 2,
= =
=04 1 = o041 8
02r Sﬁpervisor 1 02r Sﬁpervisor b
signal signal
0 “1} . 3) 0 E‘;A} . b g
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Duity Dy(ty
@) (b)

Fig. 7. Weight functions obtained by supervised learning. (a) Wx(D«(t)). (b) Wy(Dy(t)).

A Drawing-Aid System using Supervised Learning 9

1.2 . : . 1.2
Sy.(t
u o1 cmren e e I R - y() AL
g os E g 08 k A
Q . 2
o 3]
w06 i B 06 7
g i o
8 2 !
o o4r 1L 04 l
2 2o [Syan 5790 Sys(t)
A i Skxt) 4 @ 02} & ‘ 8
R SxA(D), Sx3(0), Sx6(t), . J() = g Sy.3(D) A}kLSy,G(t) 'L{:‘\
0 SO [T L R s S e
0 100 200 300 400 500 0 100 200 300 400 500
Time t Time t
(@) (b)

Fig. 8. Learning processes of singleton's elements. (a) Sxu(f). (b) Sy,u(%).

5. Conclusion

A drawing-aid system to support handicapped students with nerve paralysis has been
proposed in this paper. By using the weight functions which are determined by supervised
learning, the proposed method continuously alleviates the influence of involuntary motions
of the hand.

The characteristics of the proposed algorithm were analyzed theoretically. Furthermore,
numerical simulations showed that the proposed method can alleviate the influence of hand
trembling and sudden action without preliminary experiments.

Hardware implementation of the proposed algorithm is left to a future study.

6. References

Fujioka, H. ; Kano, H. ; Egerstedt, M. & Martin, C.F. (2006). Skill-assist control of an omni-
directional neuro-fuzzy systems using attendants' force input, International Journal
of Innovative Computing, Information and Control, Vol.2, No.6, pp.1219-1248, ISSN
1349-4198

Uesugi, K. ; Hattori, T. ; Iwata, D. ; Kiyota, K. ; Adachi, Y. & Suzuki, S. (2005). Development
of gait training system using the virtual environment simulator based on bio-
information, Journal of International Society of Life Information Science, Vol.23, No.1,
pp-49-59, ISSN 1341-9226

Ezaki, N.; Minh, B.T.; Kiyota, K.; Bulacu, M. & Schomaker, L. (2005a). Improved text-
detection methods for a camera-based text reading system for blind persons,
Proceedings of the 8th International Conference on Document Analysis and Recognition,
pp-257-261, Korea, September, IEEE Computer Society, Gyeongju

Ezaki, N.; Kiyota, K. ; Nagano, K. & Yamamoto, S. (2005b). Evaluation of pen-based PDA
system for visually impaired, Proceedings of the 11th International Conference on
Human-Computer Interaction, CD-ROM, USA, July 2005, Lawrence Erlbaum
Associates, Inc., Las Vegas

Kiyota, K. ; Hirasaki, L. K. & Ezaki, N. (2005). Pen-based menu system for visually impaired,
Proceedings of the 11th International Conference on Human-Computer Interaction, CD-
ROM, USA, July 2005, Lawrence Erlbaum Associates, Inc., Las Vegas

10 Theory and Novel Applications of Machine Learning

Burke, E. ; Paor, A.D. & McDarby, G. (2004). A vocalisation-based drawing interface for
disabled children, Advances in Electrical and Electronic Engineering (Slovakia), Vol.3,
No.2, pp.205-208, ISSN 1336-1376

Ito, E. (2004). Interface device for the user with diversity function (in Japanese), Journal of the
Japanese Society for Artificial Intelligence, Vol.19, No.5, pp.588-592, ISSN 0912-8085

Nawate, M. ; Morimoto, D. ; Fukuma, S. & Honda, S. (2004). A painting tool with blurring
compensation for people having involuntary hand motion, Proceedings of the 2004
International Technical Conference on Circuits/Systems Computers and Communications,
pp.TD1L-2-1 - 4, Japan, July, Miyagi

Nawate, M. ; Fukuda, K. ; Sato, M. & Morimoto, D. (2005). Upper limb motion evaluation
using pointing device operation for disabled, Proceedings of the First International
Conference on Complex Medical Engineering, CD-ROM, Japan, May, Takamatsu

Morimoto, D. & Nawate, M. (2005). FFT analysis on mouse dragging trajectory of people
with upper limb disability, Proceedings of the First International Conference on Complex
Medical Engineering, CD-ROM, Japan, May, Takamatsu

Igarashi, T.; Matsuoka, S. ; Kawachiya, S. & Tanaka, H. (1997). Interactive beautification: a
technique for rapid geometric design, Proceedings of ACM Annual Symposium on
User Interface Software and Technology, pp.105-114, Canada, October, ACM, Banff

Yu, B. (2003). Recognition of freehand sketches using mean shift, Proceedings of the 8th
International Conference on Intelligent User Interface, pp.204-210, USA, January, ACM,
Miami

Fujioka, H. ; Kano, H. ; Egerstedt, M. & Martin, C.F. (2005). Smoothing spline curves and
surfaces for sampled data, International Journal of Innovative Computing, Information
and Control, Vol.1, No.3, pp.429-449, ISSN 1349-4198

Zadeh, L.A. (1965). Fuzzy sets, Information Control, Vol.12, Issue 2, pp.94-102, ISSN 0019-9958

Zadeh, L.A. (1968). Fuzzy algorithm, Information Control, Vol.8, Issue 3, pp.338-353, ISSN
0019-9958

Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and
decision process, IEEE Transactions on Systems, Man, and Cybernetics, Vol.SMC-3,
pp.28-44, ISSN 0018-9472

2

Supervised Learning with Hybrid Global
Optimisation Methods. Case Study: Automated
Recognition and Classification of Cork Tiles

Antoniya Georgieva! and Ivan Jordanov?
University of Oxford

University of Portsmouth

United Kingdom

1. Introduction

Supervised Neural Network (NN) learning is a process in which input patterns and known
targets are presented to a NN while it learns to recognize (classify, map, fit, etc.) them as
desired. The learning is mathematically defined as an optimisation problem, i.e., an error
function representing the differences between the desired and actual output, is being
minimized (Bishop, 1995; Haykin, 1999). Because the most popular supervised learning
techniques are gradient based (Backpropagation - BP), they suffer from the so-called Local
Minima Problem (Bishop, 1995). This has motivated the employment of Global Optimisation
(GO) methods for the supervised NN learning. Stochastic and heuristic GO approaches
including Evolutionary Algorithms (EA) demonstrated promising performance over the last
decades (Smagt, 1994; Sexton et al., 1998; Jordanov & Georgieva, 2007; etc.). EA appeared
more powerful than BP and its modifications (Sexton et al., 1998; Alba & Chicone 2004), but
hybrid methods that combine the advantages of one or more GO techniques and local
searches were proven to be even better (Yao, 1999; Rocha et al., 2003; Alba & Chicano, 2004;
Ludemir et al., 2006).

Hybrid methods were promoted over local searches and simple population based
techniques in Alba & Chicone (2004). The authors compared five methods: two BP
implementations (gradient descent and Levenberg-Marquardt), Genetic Algorithms (GA),
and two hybrid methods, combining GA with different local methods. The methods were
used for NN learning applied to problems arising in medicine. Ludemir et al. (2006)
optimized simultaneously NN weights and topology with a hybrid method combining
Simulated Annealing (SA), Tabu Search (TS) and BP. A set of new solutions was generated
on each iteration by TS rules, but the best solution was only accepted according to the
probability distribution as in conventional SA. Meanwhile, the topology of the NN was also
optimized and the best solution was kept. Finally, BP was used to train the best NN
topology found in the previous stages. The new methodology compared favorably with SA
and TS on four classification and one prediction problems.

Plaginakos et al. (2001) performed several experiments to evaluate various training methods
- six Differential Evolution (DE) implementations (with different mutation operators), BP,
BPD (BP with deflection), SA, hybridization of BP and SA (BPSA), and GA. They reported

12 Theory and Novel Applications of Machine Learning

poor performance for the SA method, but still promoted the use of GO methods instead of
standard BP. The reported results indicated that the population based methods (GA and
DE) were promising and effective, although the winner in their study was their BPD method.
Several methods were critically compared by Rocha et al. (2003) as employed for the NN
training of ten classification and regression examples. One of the methods was a simple EA,
two others were combinations of EA with local searches in Lamarckian approach (differing in
the adopted mutation operator), and their performance was compared with BP and
modified BP. A hybridization of local search and EA with random mutation (macro-
mutation) was found to be the most successful technique in this study.

Lee et al. (2004) used a deterministic hybrid technique that combines a local search method

with a mechanism for escaping local minima. The authors compared its performance with

five other methods, including GA and SA, when solving four classification problems. The
authors reported worst training and testing results for GA and SA, and concluded that their
method proposed in the paper was substantially faster than the other methods.

Yao (1999) discussed hybrid methods combining EA with BP (or other local search),

suggested references to a number of papers that reported encouraging results, and pointed

out some controversial results. The author stated that the best optimizer is generally
problem dependant and there was no overall winner.

In our recent research (Jordanov & Georgieva, 2007; Georgieva & Jordanov, 2008a;

Georgieva & Jordanov, 2008c) we investigated, developed and proposed a hybrid GO

technique called Genetic LPt Search (GLPzS), able to solve high dimensional multimodal

optimization problems, which can be used for local minima free NN learning. GLP1S
benefits from the hybridization of three different approaches that have their own specific
advantages:

e LPr Optimization (LPrO): a GO approach proposed in our earlier work (Georgieva &
Jordanov, 2008c¢) that is based on meta-heuristic rules and was successfully applied for
the optimization of low dimensional mathematical functions and several benchmark
NN learning tasks of moderate size (Jordanov & Georgieva, 2007);

e Genetic Algorithms: well known stochastic approaches that solve successfully high
dimensional problems (De Jong, 2006);

¢ Nelder-Mead Simplex Search: a derivative-free local search capable of finding quickly a
solution with high accuracy, once a region of attraction has been identified by a GO
method (Nelder & Mead, 1965).

In this chapter, we investigate the basic properties of GLP1S and compare its performance
with several other algorithms. In Georgieva & Jordanov (2008a) the method was tested on
multimodal mathematical functions of high dimensionality (up to 150), and results were
compared with findings of other authors. Here, a summary of these results is presented and
subsequently, the method is be employed for NN training of benchmark pattern recognition
problems. In addition, few of the more interesting benchmark problems are discussed here.

Finally, a case study of machine learning in practice is presented: the NNs trained with

GLP1S are employed to recognize and classify seven different types of cork tiles. This is a

challenging real-world problem, incorporating computer vision for the automation of

production assembly lines (Georgieva & Jordanov, 2008b). Reported results are discussed
and compared with similar approaches, demonstrating the advantages of the investigated
method.

Supervised Learning with Hybrid Global Optimisation Methods. Case Study:
Automated Recognition and Classification of Cork Tiles 13

2. A novel global optimisation approach for training neural networks

2.1 Introduction and motivation

In Georgieva & Jordanov (2007) we proposed a novel heuristic, population-based GO
technique, called LPt Optimization (LPtO). It utilizes LPt low-discrepancy sequences of
points (Sobol', 1979), in order to uniformly explore the search space. It has been proven
numerically that the use of low-discrepancy point sequences results in a reduction of
computational time for small and moderate dimensionality problems (Kucherenko &
Sytsko, 2005). In addition, Sobol's LPt points have very useful properties for higher
dimensionality problems, especially when the objective function depends strongly on a
subset of variables (Kucherenko & Sytsko, 2005; Liberti & Kutcherenko, 2005). In LP1O are
incorporated novel, complete set of logic-based, self-adapting heuristic rules (meta-
heuristics) that guide the search through the iterations. The LPtO method was further
investigated in Georgieva & Jordanov (2008c) while combined with the Nelder-Mead
Simplex search to form a hybrid LPTNM technique. It was compared with other methods,
demonstrating promising results and strongly competitive nature when tested on a number
of multimodal mathematical functions (2 to 20 variables). It was successfully applied and
used for training of neural networks with moderate dimensionalities (Jordanov &
Georgieva, 2007). However, with the increase of the dimensionality, the method experienced
greater computational load and its performance worsened. This led to the development of a
new hybrid technique - GLP7S that combines LPTNM with evolutionary algorithms and
aims to solve efficiently problems of higher dimensionalities (up to a 150).

GAs are known for their very good exploration abilities and when optimal balance with
their exploitation ones is found, they can be powerful and efficient global optimizers (Leung
and Wang, 2001; Mitchell, 2001; Sarker et al., 2002). Exploration dominated search could
lead to excessive computational expense. On the other hand, if the exploitation is
favourable, the search is in danger of premature convergence, or simply of turning into a
local optimizer. Keeping the balance between the two and preserving the selection pressure
relatively constant throughout the whole run is important characteristic of any GA
technique (Mitchell, 2001; Ali et al., 2005). Other problems associated with GA are their
relatively slow convergence and low accuracy of the found solutions (Yao et al., 1999; Ali et
al., 2005). This is the reason why GA are often combined with other search techniques
(Sarker et al., 2002), and the same approach is adopted in our hybrid method, aiming to
tackle these problems effectively by complementing GA and LPrO search.

The LPTO technique can be summarized as follows: we seed the whole search region with
LPrt points, from which we select several promising ones to be centres of regions in which we
seed new LP; points. Then we choose few promising points from the new ones and again seed
in the neighbourhood of each one and so on, until a halting condition is satisfied. By
combining LPTO with GA of moderate population size, the aim is to explore the search space
and improve the initial seeding with LPr points by applying genetic operators in a few
generations. Subsequently, a heuristic-stochastic rule is applied in order to select some of the
individuals and to start LPrO search in the neighbourhood of each of the chosen ones.
Finally, we use a local Simplex Search to refine the solution and achieve better accuracy.

2.2 L Pt low-discrepancy points
Low-discrepancy sequences (LDS) of points are deterministically generated uniformly
distributed points (Niederreiter, 1992). Uniformity is an important property of a sequence

14 Theory and Novel Applications of Machine Learning

which guarantees that the points are evenly distributed in the whole domain. When
comparing two uniformly distributed sequences, features as discrepancy and dispersion are
used in order to quantify their uniformity. Two different uniform sequences in three
dimensions are shown in Fig. 1. The advantage of the low-discrepancy sequences is that
they avoid the so called shadow effect, i.e,, when projections of several points on the
projective planes are coincident.

z

Ko}

(a) Cubic sequence (b) LPt low-discrepancy sequence.

Fig. 1. Two different uniform sequences.

As it can be seen from Fig.1, the projections of the cubic sequence give four different points
on the projective plane, each of them repeated twice, while the LPt sequence gives eight
different projection points. Therefore, the low-discrepancy sequence would describe the
function behaviour in this plane much better than the cubic one; this advantage is enhanced
with the increase of the dimensionality and the number of points. This feature is especially
important when the function at hand is weakly dependent on some of the variables and

strongly dependent on the rest of them (Kucherenko & Sytsko, 2005).

The application of LDS in GO methods was investigated in Kucherenko & Sytsko (2005),

where the authors concluded that the Sobol’s LPT sequences are superior to the other LDS.

Many useful properties of LPT points have been shown in Sobol’, (1979) and tested in Bratley

& Fox (1988), Niederreiter (1992), and Kucherenko & Sytsko (2005). The properties of LDS

could be summarized as follows:

e retain their properties when transferred from a unit hyper-cube to a hyper-
parallelepiped, or when projected on any of the sides of the hyper-cube;

e explore the space better avoiding the shadowing effect discussed earlier. This property is
very useful when optimising functions that depend weakly on some of the variables,
and strongly on the others;

¢ unlike the conventional random points, successive LDS have memory and know about
the positions of the previous points and try to fill the gaps in between (this property is
true for all LDS and is demonstrated in Fig. 2);

e it is widely accepted (Sobol’, 1979; Niederreiter, 1992) that no infinite sequence of N
points can have discrepancy p that converges to zero with smaller order of magnitude
than O(N-log"(N)), where n is the dimensionality. The LPt sequence satisfies this
estimate. Moreover, due to the way LPt are defined, for values of N=2k k=1, 2, ..., 31,
the discrepancy converges with rate O(N -llog 1(N)) as the number of points increases
(Sobol’, 1979).

Supervised Learning with Hybrid Global Optimisation Methods. Case Study:

Automated Recognition and Classification of Cork Tiles 15

2.3 The LPtO meta-heuristic approach

Stochastic techniques depend on a number of parameters that play decisive role for the
algorithm performance assessed by speed of convergence, computational load, and quality
of the solution. Some of these parameters include the number of initial and subsequent trial
points, and a parameter (or more than one) that defines the speed of convergence (cooling
temperature in SA, probability of mutation in GA, etc.). Assigning values to these
parameters (funing) is one of the most important and difficult parts from the development of
a GO technique. The larger the number of such decisive parameters, the more difficult (or
sometimes even impossible) is to find a set of parameter values that will ensure an
algorithm’s good performance for as many as possible functions. Normally, authors try to
reduce the number of such user defined parameters, but one might argue that in this way, the
technique becomes less flexible and the search depends more on random variables.

The advantage of the LPTO technique is that the values of these parameters are selected in a
meta-heuristic manner - depending on the function at hand, while guided by the user. For
example, instead of choosing a specific number of initial points N, in LP1O, a range of
allowed values (Nmin and Nmax) is defined by the user and the technique adaptively selects
(using the filling-in the gaps property of LPt sequences) the smallest allowed value that gives
enough information about the landscape of the objective function, so that the algorithm can
continue the search effectively. Therefore, the parameter N is exchanged with two other
user-defined parameters (Nmin and Nmax), which allows flexibility when N is selected
automatically, depending on the function at hand. Since the method does not assume a
priori knowledge of the global minimum (GM), all parts of the parameter space must be
equally treated, and the points should be uniformly distributed in the whole region of initial
searched. The LPr low-discrepancy sequences and their properties fulfill this issue
satisfactorily. We also use the property of LPt sequences that additional points fill the gaps
between the other LP7 points. For example, if we have an LPt sequence with four points and
we would like to double their number, the resulting sequence will include the initial four
points plus the new four ones positioned in-between them. This property of the LPr
sequences is demonstrated in Fig. 2.

1 T T T

0.75

0s

ALPr points

B LPr points
16 LPr points
32 LPr points

B0+ o

Fig. 2. Fill in the gaps property of the LPt sequences.

As discussed above, when choosing the initial points of LPTO, a range of allowed values
(Nmin and Nmax) is defined and the technique adaptively selects the smallest possible value

16 Theory and Novel Applications of Machine Learning

that gives enough information about the landscape of the objective function, so that the
algorithm can continue the search effectively. Simply said, after the minimal possible
number of points is selected, the function at hand is investigated with those points, and if
there are not enough promising points, additional ones are generated and the process is
repeated until an appropriate number of points is selected, or the maximal of the allowed
values is reached.

Another example of the meta-heuristic properties of LP1O is the parameter that allows
switching between exploration and exploitation and, thus, controls the convergence of the
algorithm. In simulating annealing (SA), this is done by the cooling temperature (decreased by
annealing shedule); in GA - by the probability of mutation, etc. These parameters are user-
defined at the beginning of the search. In the LPTO method, the convergence speed is
controlled by the size of future regions of interest, given by a radius R, and, in particular, the
speed with which R decreases (Georgieva & Jordanov, 2008c). If R decreases slowly, then the
whole search converges slowly, allowing more time for exploration. If R decreases quickly,
the convergence is faster, but the risk of omitting a GM is higher. In the LP7O, the
decrease/increase step of R is not a simple user-defined value. It is determined adaptively
on each iteration and depends on the current state of the search, the importance of the region
of interest, as well as the complexity of the problem (dimensionality and size of the searched
domain). The convergence speed depends also on a parameter M, which is the maximum
allowed number of future regions of interest. M is a user defined upper bound of the
number of future regions of interest M., while the actual number is adaptively selected at
each iteration within the interval [1, M]. The GO property of LPTO to escape local minima is
demonstrated in Fig. 3, where the method locates four regions of interest and after a few
iterations detects the GM.

e o= contour
T initial points|
1st pass
2nd pass
3rd pass
Ath pass
minimum

SeE N BRI

Fig. 3. Two-dimensional Rastrigin function with three local and one global minima,
optimized with LPtO.

The convergence stability of LPtO with respect to these parameters (in particular M and
Nmax), the stability of the method with respect to the initial points and the searched domain,
the analytical properties of the technique and the results from testing on a number of
benchmark functions are further analysed and discussed in Georgieva & Jordanov (2008c).

Supervised Learning with Hybrid Global Optimisation Methods. Case Study:
Automated Recognition and Classification of Cork Tiles 17

2.4 GA and Nelder-Mead simplex search

General information for GA and their properties can be found in Mitchell (2001). We use

conventional one-point recombination and our mutation operator is the same as in (Leung &

Wang, 2001). We keep constant population size, starting with G individuals. The general

form of the performed GA is:

Step 1. From the current population p(G), each individual is selected to undergo
recombination with probability P,. If the number of selected individuals is odd, we
dispose of the last one selected. All selected individuals are randomly paired for
mating. Each pair produces two new individuals by recombination;

Step 2. Each individual from the current population p(G) is also selected to undergo
mutation with probability P,;

Step 3. From the parent population and the offspring generated by recombination and
mutation, the best G individuals are selected to form the new generation p(G).

Step 4. If the halting condition is not satisfied, the algorithm is repeated from step 1.

Further details of the adopted GA can be found in Georgieva & Jordanov (2008a). The
Nelder-Mead (NM) simplex method for function optimization is a fast local search
technique (Nelder & Mead, 1965), that needs only function values and requires continuity of
the function. It has been used in numerous hybrid methods to refine the obtained solutions
(Chelouah & Siarry, 2003; 2005), and for coding of GA individuals (Hedar & Fukushima,
2003). The speed of convergence (measured by the number of function evaluations) depends
on the function values and the continuity, but mostly, it depends on the choice of the initial
simplex - its coordinates, form and size. We select the initial simplex to have one vertex in
the best point found by the LPrO searches and another n vertices distanced from it in a
positive direction along each of its nn coordinates, with a coefficient A. As for the choice of the
parameter A, we connect it with the value of Ry, which is the average distance between the
testing points in the region of attraction, where the best solution is found by LPzO.

2.5 The GLPS technique: hybridization of GA, LP7O and Nelder-Mead search

Here, we introduce in more detail the hybrid method called Genetic LPt and Simplex Search

(GLP1S), which combines the effectiveness of GA during the early stages of the search with

the advantages of LPTO, and the local improvement abilities of NM search (further

discussion of the method can be found in Georgieva & Jordanov (2008a).

Based on the complexity of the searched landscapes, most authors intuitively choose

population size for their GA that could vary from 100s to 1000s (De Jong, 2006). We employ

smaller number of points that leads to a final population with promising candidates from

regions of interest, but not necessarily to a GM. Also, our initial population points are not

random (as in a conventional GA), but uniformly distributed LPt points.

Generally, the technique could be described as follows:

Step 1. Generate a number I of initial LPt points;

Step 2. Select G points, (G <I), that correspond to the best function values. Let this be the
initial population p(G) of the GA;

Step 3. Perform GA until a halting condition is satisfied;

Step 4. From the population p(G) of the last GA generation, select g points of future interest
(1<g<G/2);

Step 5. Initialize the LP7O search in the neighbourhood of each selected point;

18 Theory and Novel Applications of Machine Learning

Step 6. After the stopping conditions of the LP7O searches are satisfied, initialize a local NM
search in the best point found by all LPtO searches.

To determine the number g of subsequent LPtO searches (Step 4), the following rule is used

(illustrated in Fig. 4):

Let p(G) be the population of the last generation found by the GA run. Firstly, all G

individuals are sorted in non-descending order using their fitness values and then rank r; is

associated to the first half of them by using formula (1):

p=dm=Ji oo cp. @
f max f min
In (1), fmax and fmin are the maximal and minimal fitness values of the population and the
rank r; is given with a linear function which decreases with the growth of f;, and takes values
within the range [0, 1].

Sort the G individuals from the last GA population — p(G), in non-descending
order of their fitness values f;, k=1, ... G. Assign rank 7y to the first G/2

individuals from this list: 1 =1, r,= #; = M

-)
fmax _fmin

v

Generate LPtO search in a hyper-cube
with side 2R and centre at P;.

k=15 5 G12:

|P;— P} >2R,
v j=1,..i-1

Draw a random
number ¢ in [0, 1].

yes

no

Generate LPzO search in a hyper-cube
with side 2R and centre in the point P;.

Fig. 4. Algorithm for adaptive selection of points of future interest from the last population
of the GA run.

The best individual of the last population p(G) has rank r; = 1 and always competes. It is
used as a centre for a hyper-cube (with side 2R), in which the LPTO search will start. The
parameter R is heuristically chosen with formula (2)

R =50/G + intma*0.001,)

Supervised Learning with Hybrid Global Optimisation Methods. Case Study:
Automated Recognition and Classification of Cork Tiles 19

where intnax is the largest of all initial search intervals. This parameter estimates the trade-
off between the computational expense and the probability of finding a GM. The greater the
population size G, the smaller the intervals of interest that are going to be explored by the
LP1O search. The next individual P; i = 2, ..., G/2 is then considered, and if all of the
Euclidean distances between this individual and previously selected ones are greater than
2R (so that there is no overlapping in the LP7O search regions), another LP7O search will be
initiated with a probability riPrp. Here Prp is a user-defined probability constant in the
interval [0, 1]. In other words, individuals with higher rank (that corresponds to lower
fitness) will have greater chance to initiate LP7O searches. After the execution of the LP7O
searches is completed, Nelder-Mead Local Simplex Search is applied to the best function
value found in all previous stages of GLP7S.

3. Testing GLPtS on mathematical optimisation problems and benchmark NN
learning tasks

3.1 Mathematical testing functions

Detailed testing results of GLPtS on multi-dimensional optimization functions are reported
in Georgieva & Jordanov (2008a). Here, we only demonstrate the results of testing GLPTS on
30 and 100 dimensional problems for which a comparison with several other GO approaches
was possible. The results, in terms of average (over 100 runs) number of function
evaluations, are scaled logarithmically for better visualization and are shown in Fig. 5.

5

ﬁ9x1D . ! o
= ;
= O GLPS : : ; : ; :
1 OGAG : : : : : : 7
E L0 FER : : : : : :
57t : : : : |
= . M
= : :
2 gl : : g
=2 : B
E: : :
= 5 & : 7
& : :
= : -
2 at : _
[M
= -
= :
s 3r ! 7
- . : : : : : . -
Ex . oA L * 9 0
= VN A : : & b : :
@ * : o
e ® & o o © 9 5 .
a N
{D ; I 1 i L i I N

1 2 3 4 5 6 7 8 9 10

Testing function nurmber

Fig. 5. Average number of function evaluations for ten test functions: comparison of GLPtS
with needed Orthogonal Genetic Algorithm with Quanitsation (OGA/Q, Leung & Wang,
2001) and FEP (Yao et al., 1999).

When compared to the other evolutionary approaches, it can be seen from Fig. 5 that GLP1S
performed very efficiently. In addition, the comparison with Differential Evolution in
Georgieva & Jordanov (2008a) for lower dimensional problems helped us conclude that
GLP1S is a promising state-of-the-art GO approach solving equally well both low and high-
dimensional problems.

20 Theory and Novel Applications of Machine Learning

3.2 NN learning benchmark problems

Subsequently, we employed the GLP1S for minimizing the error function in NN learning
problems and the results were reported in Georgieva & Jordanov, (2006). Here, we present
only few interesting examples of using GLP1S for NN training.

The architectures of the investigated NNs comprise static, fully connected between the
adjacent layers topologies with a standard sigmoidal transfer functions. The training is
performed in a batch-mode, i.e., all of the training samples are presented to the NN at one
go. The NN weight vector is considered an n-dimensional real Euclidean vector W,
obtained by concatenating the weight vectors for each layer of the network. The GLP1S
global optimisation algorithm is then employed to minimize the objective function (the NN
error function) and to perform optimal training. The proposed algorithm is tested on well-
known benchmark problems with different dimensionalities. For comparison, a BP
(Levenberg-Marquardt) is also employed and performed using Matlab NN Toolbox. Both
methods are ran 50 times and their average values are reported.

Classification of XOR Problem

For the classification of the XOR, which is a classical toy problem (Bishop, 1995), the
minimal configuration of a NN with two inputs, two units in the hidden layer, and one
output is employed. The network also has a bias, containes 9 connection weights, and
therefore, defines n = 9 dimensional optimization problem. There are P = 4 input-target
patterns for the training set. It can be seen from the Fig. 6 that after the 20th epoch, BP did
not improve the error function, while our method continued minimizing it. To assess the
ability of the trained NN to generalize, tests with 100 random samples of noisy data are
performed, where the noise is up to 15%. Obtained optimal results from the training and
testing are given in Table 1 (Georgieva & Jordanov, 2006).

0.4

0ar —+—BF 4
—— GLPtS

Least-square Ermaor Function
=
-

D 1 1 1
0 5 10 15 a0 24 ll 345

Epochs (lterations)

Fig. 6. Error function for the XOR problem when BP and GLP1S are used.

Predicting the rise time of a servo mechanism

The Servo data collection represents an extremely non-linear phenomenon (Quinlan, 1993;
Rocha et al., 2003) - predicting the rise time of a servomechanism, depending on four
attributes: two gain settings and two mechanical linkages. The database consists of 167
different samples with continuous output (the time in seconds). In order to avoid

Supervised Learning with Hybrid Global Optimisation Methods. Case Study:

Automated Recognition and Classification of Cork Tiles 21
Criterion Error Function Mean Test Error
Method (Std. Dev.) (Std. Dev.)
BP 0.08 (0.09) 0.1987 (0.0290)
GLP1S 7.6e-08 (7e-08) 8.3e-07 (3.3e-7)

Method: BP - Backpropagation with Levenberg-Marquardt optimisation (the source of
Matlab NN Toolbox is used).

Table 1. Optimal errors for the GLP1S and BP (XOR problem).

computational inaccuracies, we normalized the set of outputs to have a zero mean and unit
standard deviation. A network with a 4-4-1 architecture (25-dimensional problem) is
employed to produce a continuous output. The dataset is divided into two parts - one batch
of 84 training samples and second batch of 83 testing ones. In this case, the transfer function
in the output layer is changed to a linear function (instead of a sigmoidal one) in order to be
able to produce output outside the [0, 1] interval. Obtained optimal solutions for the train
and test errors are given in Table 2 and Fig. 7 illustrates the average values of the errors for
each testing sample for both BP and GLP1S. One can see from the figure that there are more
outliers in the case of BP and that overall, a smaller mean test value is achieved by the
GLP1S method.

Criterion Error Function =~ Mean Test Error (Std.
Method (Std. Dev.) Dev.)
BP 0.0474 (0.06) 0.4171 (0.5515)
GLP1S 0.0245 (0.005) 0.2841 (0.4448)

Table 2. Optimal errors for the GLP1S and BP (Servo problem).

25 : .]
e < GLP:S
i +* BP
5L * *) — — mean GFLPLS
e < mean BP
(o]
_ 1510 {2 1
2
= *
]
g (o]
1L e
* + .
O # et
o +*
05 | " x k 2
e) -
L €2 _ ek S oK . X o5 o
[® L e =
ke DT
e oo B Mm{# %,ﬁfé@ ﬂ;&*‘
a 10 20 30 40 50

Testing Sample
Fig. 7. Test errors and mean test errors for BP and GLP1S.

Classification of Pima Indians Diabetes Database

In the Diabetes data collection, the investigated, binary-valued variable is used to diagnose
whether a patient shows signs of diabetes or not (Rocha et al., 2003). All patients are females
of at least 21 years old and of Pima Indian heritage. The data set comprises 500 instances

22 Theory and Novel Applications of Machine Learning

that produce an output 0 (non-positive for diabetes), and 268 with output 1 (positive for
diabetes). Each sample has 8 attributes: number of times pregnant, age, blood test results,
etc. In order to avoid computational inaccuracies, in our experiment all attributes are
normalized to have a zero mean and a unit standard deviation. A network with 8-8-1
architecture (81-dimensional problem) is adopted to produce continuous output in the range
[0, 1]. The dataset is divided into two parts - training subset of 384 samples (145 of which
correspond to output 1), and testing subset of the same number of patterns. Table 3 shows
the obtained optimal solutions for the training and testing errors.

Criterion Error Function =~ Mean Test Error (Std.
Method (Std. Dev.) Dev.)
BP 0.0764 (0.07) 0.2831 (0.2541)
GLP1S 0.001 (0.005) 0.2619 (0.3861)

Table 3. Optimal errors for the GLPtS and BP (Diabetes problem)

Function Fitting Regression Example
We also performed a function fitting example, for which the network is trained with noisy
data. The function to be approximated is the Hermit polynomial:

G(x) = 1.1(1-x+2x2)exp(-x2/2).
The set up of the experiment is the same as reported in Leung et al. (2001), with the only
difference that we use batch-mode instead of on-line training. The test results from 2000
testing samples and 20 independent runs of the experiment are shown in Table 4. It can be
seen from the table that our results improve slightly the best ones reported in Leung et al.
(2001). Fig. 8 graphically illustrates the results and shows the Gaussian noise that we used
for training, the function to be approximated, and the NN output.

?\f[ch;i)oél Average Max Min Std. Dev.
RLS 0.1901 0.2567 0.1553 0.0259
IPRLS 0.1453 0.1674 0.1207 0.0076
TWDRLS 0.1472 0.1711 0.1288 0.0108
GLP1S 0.1349 0.1602 0.1184 0.01

Method: By Leung et al. (2001): RLS - Recursive Least Squares; IPRLS - Input Perturbation
RLS; TWDRLS - True Weight Desay RLS.

Table 4. Test results for the GLP7S and the methods in Leung et al. (2001).

The results from the classification experiments (Table 1, Table 2, and Table 3) show that the
achieved by GLP1S least-square errors are at least twice better than the BP ones. The
multiple independent runs of our method also show that the obtained solutions are stable
with small deviations. As it can be seen from Table 1, in the case of XOR, the GLP7S method
outperforms BP considerably (BP with mean error of 0.08, in comparison with 7.6e-8 for the
proposed here method). For this task Wang et al. (2004), also reported low success rate for
BP with frequent entrapment in local minima. In the case of Servo problem, the superiority
of our method is not so dominant (as in the case of XOR), but still the results in Table 2 show

Supervised Learning with Hybrid Global Optimisation Methods. Case Study:
Automated Recognition and Classification of Cork Tiles 23

better standard deviation of both measures - 0.005 against 0.06 for the error function, and
0.44 against 0.55 for the test error. This indicates a better and more stable solution for our
method. The reported in Rocha et al. (2003) results from five different methods for the same
task and architecture are also with worse error function values compared to ours. Those
observations indicate that further improvement of the solution could not be found for the
investigated 4-4-1 NN architecture, nevertheless, experiments with different architectures
could lead to better results. The comparison of the training results for Diabetes given in
Rocha et al. (2003), also confirms the advantages of the GLPtS method.

34 T T T T T T T
sl = - # train samples
true function
55 e test output

Fig. 8. Output of the network trained with GLPzS for the function fitting example.

4. Machine learning in practise: an intelligent machine vision system

4.1. Introduction and motivation

In (Georgieva & Jordanov, 2008b) we investigate an intelligent machine vision system that
uses NNs trained with GLP1S for pattern recognition and classification of seven types of
cork tiles with different texture. Automated visual inspection of products and automation of
product assembly lines are typical examples of application of machine vision systems in
manufacturing industry (Theodoridis & Koutroumbas, 2006). At the assembly line, the
objects of interest must be classified in a priori known classes, before a robot arm places them
in the right position or box. In the area of automated visual inspection, where decisions
about the adequacy of the products have to be made constantly, the use of pattern
recognition provides an important background (Davies, 2005).

Cork is a fully renewable and biodegradable sustainable product obtained from the bark of
the cork oak tree. Although the primary use of cork is in the wine stoppers production (70%
of the total cork market), cork floor and wall covering give about 20% of the total cork
business (WWF, 2006). Cork oak plantations have proven biodiversity, environmental and
economical values. Recent increase of alternative wine stoppers arises serious attention and
concerns, since this is reducing the economical value of cork lands and might lead to
abandonment, degradation and loss of irreplaceable biodiversity (WWF, 2006). On the other
hand, in the past several years of technological advancement, cork has become one of the

24 Theory and Novel Applications of Machine Learning

most effective and reliable natural materials for floor and wall covering. Some of the
advantages of the cork tiles are their durability, ability to reduce noise, thermal insulation,
and reduction of allergens. Many of the cork floors installed during the “golden age” of cork
flooring (Frank Lloyd Wright's Fallingwater; St. Mary of the Lake Chapel in Mundelein (USA);
US Department of Commerce Building, etc.) are actually still in use, which is the best proof
of their durability and ever-young appearance.

Image analysis techniques have been applied for automated visual inspection of cork
stoppers in (Chang et al., 1997; Radeva et al., 2002; Costa & Pereira, 2006), and according to
the authors, the image-based inspection systems have high production rates. Such systems
are based on a line-scan camera and a computer, embedded in an industrial sorting machine
which is capable of acquiring and real-time processing of the product surface image.

4.2 Database and features extraction

The aim of this case study was to design, develop and investigate an intelligent system for
visual inspection that is able to automatically classify different types of cork tiles. Currently,
the cork tiles are sorted “by hand” (e.g., see www.expanko.com), and the use of such a
computerized system could automate this process and increase its efficiency. We
experimented with seven types of cork wall tiles with different texture. The tiles used in this
investigation are available on the market by www.CorkStore.com and samples of each type
are shown in Fig. 9.

(a) Baach) Corkstone (2] Desart (d) Lishon

(&) Febble (6) Precision (2 Seckled
Fig. 9. Images taken with our system: samples from the seven different types of wall cork tiles.

The functionality of our visual system is based on four major processing stages: image
acquisition, features extraction (generation and processing), NN training, and finally NN
testing. For the image acquisition stage, we used a Charge-Coupled Device (CCD) camera
with a focal length 5-50 mm that is capable of capturing fine details of the cork texture. For
all cork types we used grayscale images of size 230x340 pixels and, in total, we collected 770
different images for all classes. Fig. 10 shows the percentage distribution of each type of cork
tiles. We used 25% of all images for testing (not shown to the NN during training) and
assessing the generalization abilities of the networks.

The first step of the features generation stage was to reduce the effects of illumination.
Subsequently, we used two classical approaches to generate image texture characteristics:
the Haralick ‘sco-occurrence method (Haralick et al., 1973) and the Laws’ filter masks (Laws,
1980). Both methods were employed and the obtained features were used to generate one

Supervised Learning with Hybrid Global Optimisation Methods. Case Study:
Automated Recognition and Classification of Cork Tiles 25

dataset, without taking into account the feature generation technique. This approach
resulted in obtaining 33 features for each image (8 co-occurrence characteristics and 25
Laws’ masks). These features were further processed statistically with Principal Component
Analysis (PCA) and Linear Discriminent Analysis (LDA) in order to extract the most
valuable information and to present it in a compact form, suitable for NN training (Bishop,
1995). Before processing the data, we took out 120 samples to be used later as a testing
subset, therefore, this data was not involved in the feature analysis stage. All additional
details of this case study, can be found in Georgieva & Jordanov (2008b).

B Total
Speckiad _ Speckied Beach
Fracision B Traning isi 1% -
Tesing Frecision
Pebble idation| 17
O Validation
Lishon
Cecer Corkstone
@,
Corkstona B TM
Bosch Dasert
| ‘ 11% 19
0 a0 100 150
@) (b)

Fig. 10. Dataset sample distribution (50% training, 25% testing, 25% validation): (a) Number
of samples from each cork type; (b) The percentage distribution of each cork type.

4.3 Neural network training and testing

NNs with three different topologies (with biases) were employed and different coding of the
seven classes of interest was used. In the first case, a NN with three neurons in the output
layer (with Heaviside transfer function) was employed. The seven classes were coded as
binary combinations of the three neurons (‘I-of-c’ coding, as proposed in Bishop, 1995), e.g.,
Beach was coded as (0, 0, 0), Corkstone as (1, 0, 0), etc. The last, (8th) combination (1, 1, 1) was
simply not used. In the second designed topology, the output layer contained only one
neuron (with Tanh transfer function and continuous output). Since the Tanh function has
values in [-1, 1], the seven classes were coded as (-0.8571, -0.5714, -0.2857, 0, 0.2857, 0.5741,
0.8571) respectively. When assessing the system generalization abilities, we considered each
testing sample as correctly classified if |output - target| < 0.14. For the last topology was
used an output layer with seven neurons and a Heaviside transfer function. Each class was
coded as a vector of binary values where only one output is 1, and all others are 0. For
example, Beach was coded as (1, 0, 0, 0, 0, 0, 0), Corkstone as (0,1, 0, 0, 0, 0, 0), etc.

The number of neurons in the input layer depends on the number of features (K) that
characterize the problem samples. Utilizing the rules of thumb given by Heaton (2005) and
after experimenting, the number of neurons in the hidden layer was chosen to be N = 7. The
three different architectures were employed for both datasets, obtained by the PCA and
LDA respectively, processing: K-7-3 (3-binary coding of the targets), K-7-1 (continuous
coding of the targets), and K-7-7 (7-binary coding), where K is the number of features. At the
system evaluation stage, 25% of the total data were used as a testing set, only 1/3 of which
was present at the feature analysis phase (used in the preprocessing with PCA and LDA)

26 Theory and Novel Applications of Machine Learning

and the remaining 2/3 of the test set were kept untouched. Further on, we considered the
testing results as average test errors for both testing subsets. Rigorous tests when a
validation set is used were performed and the results can be found in Georgieva & Jordanov
(2008Db).

Feature M ; Three outputs One output
Set casure (binary coding) (continuous coding)
MSE (std), 0.052 (0.0094) 0.014 (0.0044)
[min, max] [0.03, 0.074] [0.011, 0.036]
PCA
Test rate,
. 86% [79%, 94%)] 66% [41%, 77 %]
[min, max]
MSE (std), 0.0038 (0.0029) 0.0037 (0.0022)
[min, max] [0, 0.014] [0.0005, 0.0113]
LDA
Test rate,
. 95% [88%, 99%] 88% [74%, 98%]
[min, max]

Feature set: Principal Component Analysis (PCA) and Linear Discriminant Analysis -
discussed in Georgieva & Jordanov, 2008b.

Table 5. Neural Network Training with GLP1S and Performance Evaluation: two different
datasets with binary and continuous output.

Table 5 shows training and testing results for both topologies with K = 7 for the PCA dataset

and K = 6 for the LDA dataset. In Table 5 the MSE (mean squared error) and standard

deviation (given in parentheses) for 50 runs are independently reported for each dataset.

The minimal and maximal values obtained for the different runs are also shown in this table.

The system was evaluated with the testing rate, given by the percentage of correctly

classified samples from the test set. Similarly, Table 6 shows results for the same topologies

and datasets, with the only difference being the NN training technique. For the training of
the NNs in Table 5, GLP1S was used, and for Table 6 - the Matlab implementation of
gradient-based Levenberg-Marquardt minimisation, denoted here as Backpropagation (BP). All
test results are jointly illustrated in Fig. 11. The analysis of the results given in Table 5, Table

6, and Fig. 11, led to the following conclusions:

o The generalisation abilities of the NNs trained with GLPtS were strongly competitive
when compared to those trained with BP. The best testing results of 95% were obtained
for NN trained with GLP1S, LDA dataset, and three binary outputs;

e In general, the BP results were not as stable as the GLP1S ones, having significantly
larger differences between the attained minimal and maximal testing rate values. This is
due to entrapment of BP in local minima that resulted in occasional very poor solutions;

e The LDA dataset results had better testing rate and smaller MSE than those
corresponding to the PCA dataset. In our view this advantage is due to the LDA
property to look for optimal class separability;

e The three-output binary coding of the targets led to a NN architecture with higher
dimensionality, but gave better results than the continuous one. This is not surprising,
since the binary coding of the targets provided linearly independent outputs for the
different classes, which is more suitable for classification tasks compared to continuous

Supervised Learning with Hybrid Global Optimisation Methods. Case Study:
Automated Recognition and Classification of Cork Tiles 27

coding (Bishop, 1995). However, in the case of seven binary outputs, the NN
performance deteriorated, since the dimensionality was increased unnecessarily.

Feature Measure Three outputs One output
Set (binary coding) (continuous coding)
MSE (std), 0.025 (0.053) 0.0489 (0.1473)
[min, max] [0.001, 0.245] [0.0113, 0.9116]
PCA
Test rate, 85% 71%
[min, max] [39%, 94%] [0%, 85%]
MSE (std), 0.022 (0.06) 0.0049 (0.027)
[min, max] [0, 0.244] [0, 0.1939]
LDA
Test rate, 89% 90%
[min, max] [40%, 98%] [45%, 98 %]

Table 6. Neural Network Training with BP and Performance Evaluation: two different
datasets with binary and continuous output.

R . . .]
- E T I T T
te -0 4¥,
ant--L-- r | 1 | Fol * .
VN ¥ | !
BOF------ | [| | J_ | A
ol |
! _ 1 !
ko I S [B Ao
!
b |
!
1] i L]
& PCA (3 outputs) W LDA (3 outputs)
A PCa 1 output) 4+ LD (1 output)
W PCA (Y outputs) GLPS
DA (Foutputs) — — -BP

Fig. 11. Mean, min, and max test success rate (Table 5 and Table 6) for the experiments with
different datasets, NN topologies, and learning approaches.

Further on, we considered only the two cases with 3-binary and 1-continuous coding (as
well as NN trained with GLPzS), as the most interesting and successful ones. Fig. 12
illustrates the testing success rate for the two NN topologies for both datasets (PCA and
LDA) with respect to the increasing number of training samples. The idea was to assess
whether the number of used samples and features gave comprehensive and reliable
information for the different cork classes. We used 25% of the whole data as an unseen

28 Theory and Novel Applications of Machine Learning

testing subset and started increasing the percentage of used samples when training, keeping
the NN topology unchanged. If the success rate increases proportionally to the increase of
the training set size, then the features can be considered to be reliable (Umbaugh, 2005). The
results illustrated in Fig. 12 were averaged over 20 runs. One can see from Fig. 12 that for
both NN architectures, LDA gives better generalisation results than PCA. It can also be seen
that for all combinations (datasets and coding), the test rate graphs are ascendant, but the
increased of number of training samples above 60% hardly brings any improvement of the
test error success rate (with the exception of the LDA - binary architecture).

T 100

Z ot 1

I

= anp .

(=]

£ B5)]

@

= a0r 4

5

m o i

=

5 F0r i

Z eaf P A

(]

& BOF a | LDA (binary coding)

= e —e— PCA, [binary coding)

= 551 = o ---®-- | OA (continuous coding)
S gl & . . . — & - PCA (continuous coding)
= 10 20 30 40 50 B0 70 B0

Training data (% frorm the whaole dataset)

Fig. 12. Test success rate for increasing number of samples in the training set. PCA and LDA
feature sets are considered with binary and continuous coding of the classes.

4.4 Comparison with results of other authors

Straightforward comparison of our results with findings for similar cork classification

systems (Chang et al.,, 1997; Radeva et al., 2002; Costa & Pereira, 2006) is a difficult task,

because of the many differences in the parameters and techniques. Some of the main
differences can be listed as follows:

e Automated systems for cork products inspection have been developed only for cork
stoppers and planks, but not for cork tiles;

e While natural cork stoppers are manufactured by punching a one-piece cork strip
(which may have cracks and insect tunnels), cork tiles consist of various sizes of
granules compressed together under high temperature, and cracks are not likely to be
expected to appear. In (Chang et al., 1997; Radeva et al., 2002; Costa & Pereira, 2006),
the authors are looking mostly for pores, cracks and holes (and their sizes) in cork
stoppers, whereas in our case, gray density (texture) changes and overall appearance is
of interest. We use feature generation techniques that capture the images texture
information, while in (Chang et al., 1997; Radeva et al., 2002; Costa & Pereira, 2006) the
authors use features that aim to identify cracks and holes;

e In Costa & Pereira (2006) the authors employ only LDA as a classifier and in (Chang et
al., 1997) the investigation does not include any feature analysis techniques at all. In our

Supervised Learning with Hybrid Global Optimisation Methods. Case Study:
Automated Recognition and Classification of Cork Tiles 29

experiment, after using LDA and PCA to reduce the dimensionality of the problem
space, we used GLPTS method for optimal NN learning. Other authors relay on
different classifiers (Nearest Neighbor, Maximal likelihood, Bayesian classifier (Radeva
et al., 2002), Fuzzy-neural networks (Chang et al., 1997), LDA (Costa & Pereira, 2006);
o The size of training and testing datasets and the size of the investigated images vary
significantly.
In our study, we showed that LDA could reach up to 95% success rate for a task with seven
classes, providing that the classifier is well designed and combined with NN (trained with
GLP1S method). We claim that LDA is computationally efficient and very useful technique
when the other stages of the system process - feature generation and appropriate classifier
design are thoroughly thought and investigated. On the other hand, ICA is not suitable for
all types of data, because it imposes independence conditions on the features and also
involves additional computational cost (Theodoridis & Koutroumbas, 2006; Radeva et al.,
2002). Considering the above-mentioned results, we can conclude that the intelligent
classification system investigated has very good and strongly competitive generalization
abilities (Table 7).

Costa& Radevaet Changet IhisExperiment This Experiment

System Pareira al. al. BP training GLP:S training

Test

46% -58% 46% -98% 93.3% 71% -90% 66% -95%
Rate

Table 7. Neural Network testing: comparison of our system with other intelligent visual
systems employed for cork stoppers classification.

6. Conclusions

Here has been presented an overview of our recent research findings. Initially, a novel
Global Optimisation technique, called LPrO, has been investigated and proposed. The
method is based on LPt Low-discrepancy Sequences and novel heuristic rules for guiding
the search. Subsequently, LPtO has been hybridized with Nelder-Mead local search,
showing very good results for low-dimensional problems. Nevertheless, with the increase of
problems dimensionality, method’s computational load increases considerably. To tackle
this problem, a hybrid Global Optimisation method, called GLPtS, that combines Genetic
Algorithms, LPTO method and Nelder-Mead simplex search, has been studied, discussed
and proposed. When compared with Genetic Algorithms, Evolutionary Programming, and
Differential Evolution, GLPTS has demonstrated strongly competitive results in terms of
both number of function evaluations and success rate. Subsequently, GLP1S has been
applied for supervised NN training and tested on a number of benchmark problems. Based
on the reported and discussed findings, it can be concluded that the investigated and
proposed GLP7S technique is very competitive and demonstrates reliable performance when
compared with similar approaches from other authors.

Finally, an Intelligent Computer Vision System has been designed and investigated. It has
been applied for a real-world problem of automated recognition and classification of
industrial products (in our case study - cork tiles). The classifier, employing supervised

30 Theory and Novel Applications of Machine Learning

Neural Networks trained with GLPzS, has demonstrated reliable generalization abilities. The
obtained and reported results have shown strongly competitive nature when compared
with results from BP and other authors investigating similar systems.

7. References

Alba, E. & Chicano, J.F. (2004). Training neural networks with GA hybrid algorithms. Lecture
Notes in Computer Science, Vol. 3102, pp. 852-863.

Ali, M.; Khompatraporn, Ch. & Zabinsky, Z. (2005). A numerical evaluation of several
stochastic algorithms on selected continuous global optimisation test problems.
Journal of Global Optimisation, Vol. 31, pp. 635-672.

Bishop C. (1995). Neural networks for pattern recognition, Clarendon Press, Oxford.

Bratley P. & Fox B., (1988). ALGORITHM 659 Implementing Sobol’s quasirandom sequence
generator, ACM Transactions on Mathematical Software, Vol. 14, pp. 88-100.

Chelouah, R. & Siarry, P. (2003). Genetic and Nelder-Mead algorithms hybridised for a more
accurate global optimisation of continuous multidimensional functions. European
Journal of Operational Research, Vol. 148, pp. 335-348.

Chelouah, R. & Siarry, P. (2005). A hybrid method combining continuous tabu search and
Nelder-Mead simplex algorithms for the global optimisation of multiminima
functions. European Journal of Operational Research, Vol. 161, pp. 636-654.

Costa, A. & Pereira, H. (2006). Decision rules for computer-vision quality classification of
wine natural cork stoppers. American Journal of Enology and Viticulture, Vol. 57, pp.
210-219.

Chang, J.; Han, G.; Valverde,].M.; Grisworld, N.C. et al. (1997). Cork quality classification
system using a unified image processing and fuzzy-neural network methodology.
IEEE Trans. Neural Networks, Vol. 8, pp. 964-974.

Davies, E.R. (2005). Machine Vision: theory, algorithms, practicalities. Morgan Kaufmann.

De Jong (2006). Evolutionary computation, MIT Press, Cambridge.

Georgieva, A. & Jordanov, 1. (2006). Supervised neural network training with hybrid global
optimisation technique. Proc. IEEE World Congress on Computational Intelligence,
Canada, pp. 6433-6440.

Georgieva, A. & Jordanov, I. (2008a). Global optimisation based on novel heuristics, low-
discrepancy sequences and genetic algorithms. European Journal of Operational
Research (to appear).

Georgieva, A. & Jordanov, I. (2008b). Intelligent visual recognition and classification of cork
tiles with neural networks. IEEE Transactions on Neural Networks (to appear).

Georgieva, A. & Jordanov, I. (2008c). A hybrid meta-heuristic for global optimisation using
low-discrepancy sequences of points. Computers and Operations Research - special
issue on hybrid metaheuristics (to appear).

Georgieva, A.; Jordanov, I. & Rafik, T. (2007). Neural networks applied for cork tiles image
classification. Proceedings of IEEE Symposium on Computational Intelligence in Image
and Signal Processing, pp. 232-239, USA.

Haralick, R.M.; Shanmugam, K. & Dinstein, I. (1973) Textural features for image
classification”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 3, pp. 610-21.

Haykin, S. (1999). Neural networks - a comprehensive foundation. Prentice-Hall, Inc.

Heaton, J. (2005). Introduction to neural networks, Heaton Research Inc.

Supervised Learning with Hybrid Global Optimisation Methods. Case Study:
Automated Recognition and Classification of Cork Tiles 31

Hedar, A.R. & Fukushima, M. (2003). Minimizing multimodal functions by simplex coding
genetic algorithm. Optimisation Methods and Software, Vol. 18, pp. 265-282.

Jordanov, 1. & Georgieva, A. (2007). Neural network learning with global heuristic search.
IEEE Transactions on Neural Networks, Vol. 18, No. 3, pp. 937-942.

Kucherenko, S. & Sytsko, Y. (2005). Application of deterministic low-discrepancy sequences
in global optimisation. Computational Optimisation and Applications, Vol. 30, pp. 297-
318.

Laws, K.I. (1980). Rapid texture identification. SPIE - Image Proc. for Missile Guidance, Vol.
238, pp. 376-380.

Lee, D.W.; Choi, H.]J. & Lee, J. (2004). A regularized line search tunnelling for efficient neural
network learning. Lecture Notes in Computer Science, Vol. 3173, pp. 239-243.

Leung, Y.W. & Wang, Y. (2001). An orthogonal genetic algorithm with quantization for
global numerical optimisation. IEEE Transactions on Evolutionary Computation, Vol.
5, pp. 41-53.

Leung, CS; Tsoi, A., & Chan, L.W. (2001). Two regularizers for recursive least squared
algorithms in feedforward multilayered neural networks. IEEE Transactions Neural
Networks, Vol. 12, pp. 1314-1332.

Liberti, L. & Kucherenko, S. (2005). Comparison of deterministic and stochastic approaches
to global optimisation. International Trans. in Operational Research, Vol. 12, pp. 263-
285.

Ludemir, T.B.; Yamazaki, A. & Zanchettin, C. (2006). An optimisation methodology for
neural network weights and architectures. IEEE Transactions on Neural Networks,
Vol. 17, No. 6, pp. 1452-1459.

Mitchell, M. (2001). An introduction to genetic algorithms, MIT Press: Massachusetts.

Nelder, J. & Mead, R. (1965). A simplex method for function minimization. The Computer
Journal, Vol. 7, pp. 308-313.

Niederreiter, H. (1992) Random number generation and Quasi-Mounte Carlo methods, Society for
Industrial and Applied Mathematics, Philadelphia, Pennsylvania.

Plaginakos, V.P.; Magoulas, G.D. & Vrahatis, M.N. (2001). Supervised training using global
search methods. Advances in Convex Analysis and Global Optimisation, Kluwer Acad.
Publishers, Dordrecht, pp. 421-432.

Quinlan, J.R. (1993). Combining instance-based and model-based learning, Proc. ML'93 (ed.
P.E. Utgoff), San Mateo: Morgan Kaufmann, pp. 236-243.

Radeva, P.; Bressan, M.; Tovar, A. & Vitria, J. (2002). Bayesian classification for inspection of
industrial products. Proc. of the 5t Catalonian conference on artificial intelligence - M.T.
Escrig et al. (Eds.), pp. 399-407.

Rocha, M.; Cortez, P. & Neves J. (2003). Evolutionary neural networks learning. Lecture Notes
in Computer Science, Vol. 2902, pp. 24-28.

Sarker, R; Mohammadian, M. & Yao, X. (2002). Evolutionary Optimization, Kluwer
Academic Publishers: Boston.

Sexton, R.S; Alidaee, B.; Dorsey, R.E. & Johnson,].D. (1998). Global optimisation for
artificial neural networks: a tabu search application. European Journal of Operational
Research, Vol. 106, pp. 570-584.

Smagt, P. (1994). Minimization methods for training feed-forward neural networks. Neural
Networks, Vol. 7, pp. 1-11.

32 Theory and Novel Applications of Machine Learning

Sobol’, LM. (1979). On the systematic search in a hypercube. SIAM Journal of Numerical
Analysis, Vol. 16, No. 5, pp. 790-792.

Theodoridis, S. & Koutroumbas, K. (2006). Pattern Recognition, Academic Press, 3td edition.

Umbaugh, S. (2005). Computer imaging: digital image analysis and processing, The CRC Press.

Wang, X.; Tang, Z.; Tamura, H.; Ishii, M.; & Sun, W. (2004). An improved backpropagation
algorithm to avoid the local minima problem”, Neurocomputing, vol. 56, pp. 455-460.

WWE/MEDPO, (2006). A WWEF Report, Cork Screwed? Environmental and economic
impacts of the cork stoppers market. .

Yao, X. (1999). Evolving artificial neural networks. Proceedings of IEEE, Vol. 87, No. 9, pp.
1423-1447.

Yao, X; Liu, Y. & Lin, G. (1999). Evolutionary programming made faster. IEEE Transactions
on Evolutionary Computation, Vol. 3, No. 2, pp. 82-102.

3

Supervised Rule Learning and Reinforcement
Learning in A Multi-Agent System
for the Fish Banks Game

Bartlomiej Sniezyniski
AGH University of Science and Technology
Poland

1. Introduction

Environment of multi-agent systems is often very complex. Therefore it is sometimes
difficult, or even impossible, to specify and implement all system details a priori.
Application of machine learning algorithms allows to overcome this problem. One can
implement an agent that is not perfect, but improves its performance.

There are many learning methods that can be used to generate knowledge or strategy in a
multi-agent system. Choosing an appropriate one, which fits a given problem, can be a
difficult task. The aim of the research presented here was to test applicability of reinforcement
learning and supervised rule learning strategies in the same problem.

Reinforcement learning is the most common technique in multi-agent systems. It allows to
generate a strategy for an agent in a situation, when the environment provides some
feedback after the agent has acted.

Symbolic, supervised learning is not so widely used in multi-agent systems. There are many
methods belonging to this class that generate knowledge from data. Here a rule induction
algorithm is used. It generates a rule-based classifier, which assigns a class to a given
example. As an input it needs examples, where the class is assigned by some teacher. We
show how observation of other agents” actions can be used instead of the teacher.

As an environment the Fish Banks game is used. It is a simulation, in which agents run
fishing companies and its main task is to decide how many ships send for fishing, and
where to send them. Four types of agents are created. Reinforcement learning agent and
supervised learning agent improve their allocation performance using appropriate learning
strategy. As a reference two additional types of agents are introduced: random agent, which
chooses allocation action randomly, and predicting agent, which assumes that fishing
results will be the same as in previous round, and allocates ships using this simple
prediction.

In the next section related research on learning in multi-agent systems is briefly presented.
The third section explains details of the environment, architecture and behaviours of the
agents. Next, results of several experiments, which were performed to compare mentioned
learning methods, are presented and discussed. Results show that both of them give good
results. However; both of them have some advantages and disadvantages. In the last two
sections conclusions and further research are presented.

34 Theory and Novel Applications of Machine Learning

This work is an extended version of the paper (Sniezyniski, 2007), in which initial results are
published.

2. Learning in multi-agent systems

The problem of learning in multi-agent systems may be considered as a union of research on
multi-agent systems and on machine learning. Machine learning focuses mostly on research
on isolated process performed by one intelligent module. The multi-agent approach
concerns the systems composed of autonomous elements, called agents, whose actions lead
to the realization of given goals. In this context, learning is based on the observation of the
influences of activities, performed to achieve the goal by an agent itself or by other agents.
Learning may proceed in a traditional - centralized (one learning agent) or decentralized
manner. In the second case more than one agent is engaged in the learning process (Sen &
Weiss, 1999). A good survey on machine learning in the context of multi-agent systems can
be found in (Stone & Veloso, 2000).

So far agent-based systems with learning capabilities were applied in many domains: to
train agents playing in RoboCup Challenge (Kitano et.al, 1997), adapt user interfaces
(Lashkari et.al, 1994), take part in agent-based computational economics simulations
(Tesfatsion, 2001), analyze distributed data (Stolfo et.al, 1997), and to discover intrusions
(Servin & Kudenko, 2008).

The learning process is strictly associated with reasoning and decision making aspects of
agents. The most popular learning technique in multi-agent systems is reinforcement
learning. Other techniques can be also applied. Learning process can be based on the
symbolic knowledge representation (e.g. rules, decision trees), neural networks, models
coming from game theory as well as optimization techniques (like the evolutionary
approach, tabu search, etc.).

Reinforcement learning allows to generate a strategy for an agent in a situation, when the
environment provides some feedback after the agent has acted. Feedback takes the form of a
real number representing reward, which depends on the quality of the action executed by
the agent in a given situation. The goal of the learning is to maximize estimated reward.
Supervised learning is not so popular in multi-agent systems. However; there are some
works with use of this strategy. Sugawara is using this technique for improving plan
coordination. Gehrke is using rule induction for route planning (Gehrke & Wojtusiak, 2008).
However; rule induction is done offline. Szita and Lorincz apply global optimization
algorithm to select set of rules used by the agent playing Pac-Man game (Szita & Lorincz
2007). Airiau adds learning capabilities into BDI model. Decision tree learning is used to
support plan applicability testing (Airiau et. al 2008).

Universal architecture for learning agent can be found in (Russell & Norvig, 1995). It fits
mainly reinforcement learning. Sardinha et. al, propose a learning agent design pattern,
which can be used during system implementation (Sardinha et. al, 2004). More abstract
architecture is presented in (Sniezyrniski, 2008).

3. Multi-agent system for fish banks game

3.1 Environment
Fish Banks game is designed for teaching people effective cooperation in using natural
resources (Meadows et.al, 1993). It may be also used in multi-agent systems. In this research

Supervised Rule Learning and Reinforcement Learning in A Multi-Agent System
for the Fish Banks Game 35

the game is a dynamic environment providing all necessary resources, action execution
procedures, and time flow, which is represented by game rounds. Each round consists of the
following steps:

- ships and money update,

- ship auctions,

- trading session,

- ship orders,

- ship allocation,

- fishing,

- fish number update.

Agents represent players that manage fishing companies. Each company aims at collecting
maximum assets expressed by the amount of money deposited at a bank account and the
number of ships. The company earns money by fishing at fish banks.

Environment provides two fishing areas: coastal and a deep-sea. Agents can also keep their
ships at the port. Cost of fishing at the deep-sea is the highest. Cost of staying at port is the
lowest but such ship does not catch fish.

Initially, it is assumed that the number of fish in both banks is close to the bank's maximal
capacity (equal to 4000 for a deep sea, and 2000 for a coastal area). During the game the
number of fish in every bank changes according to the following equation:

max

fz+1=ft+bf,[l—fft J—c, M

where f; is a fish number at a time £, b is a birth rate (value 0.05 was used in experiments),
fmax is @ maximum number of fish in the bank, Ci=n ¢; is a total fish catch: n is a number of
ships of all players sent to the bank, and c; is a fish catch for one ship at the time ¢

i
fmax

where cmax is @ maximal catch (equal to 25 for a deep sea, and 15 for a coastal area), and wy is
a weather factor at a time t. Weather factor is a random number between 0.8 and 1.0.

As we can see, at the beginning of game, when f; is close to fmax, fishing at the deep sea is
more profitable. Parameters are set in such a way that exploration overcomes birth, and
after several rounds the number of fish can decrease to zero. It is a standard case of "the
tragedy of commons" (Hardin, 1968). It is more reasonable to keep ships at the harbor then,
therefore companies should change their strategies.

In the original game, fishing companies may order new ships to be built as well as they may
cross-sell their ships. The ships may be also sold at the auction organized by the game
manager. In the current version of the system ship auctions and trading sessions are not
supported.

The costs of building a ship, costs of its maintenance and use and the price of sold fish are
fixed for the whole game. At the end of the game the value of the ships owned by the
companies is estimated (number of ships is multiplied by a constant) and added tho the
money balance.

@)

€t = CmaxWs

36 Theory and Novel Applications of Machine Learning

3.2 Architecture of the agents

Four types of agents are implemented: reinforcement learning agent, rule learning agent,

predicting agent, and random agent. The first one uses learned strategy to allocate ships, the

second one uses rules induced from the experience to classify actions and chose the best one,

agent of the third type uses previous fishing results to estimate values of different allocation

actions, the last one allocates ships randomly.

All types of agents may observe the following aspects of the environment:

- arriving of new ships bought from a shipyard,

- money earned in the last round,

- ship allocations of all agents,

- fishing results (c;) for deep sea and inshore area.

All types of agents can execute the following two types of actions: order ships, allocate

ships.

Order ships action is currently very simple. It is implemented in all types of agents in the

same way. At the beginning of the game every agent has 10 ships. Every round, if it has less

then 15 ships, there is 50% chance that it orders two new ships.

Ships allocation is based on the method used in (Kozlak et.al, 1999). The allocation action is

represented by a triple (i, d, c), where § is the number of ships left in a harbour, d and c are

numbers of ships sent to a deep sea, and a coastal area, respectively. Agents generate a list

of allocations for h=0%, 25%, 50%, 75%, and 100% of ships that belong to the agent. The rest

of ships (s) is partitioned; for every h the following candidates are generated:

1. All: (h 0,5s), (h s, 0) - send all remaining ships to a deep sea or coastal area,

2. Check: (h, 1, s-1), (h, s-1, 1) - send one ship to a deep sea or coastal area and the rest to
the other,

3. Three random actions: (%1, x, s-x), where 1 < x < s is a random number - allocate
remaining ships in a random way,

4. Equal: (h, s/2, s/2) - send equal number of ships to both areas (one more ship is sent to
a deep sea if s is odd.)

The random agent allocates ships using one of the action candidates chosen by random.

Predicting agent uses the following formula to estimate the value of each action candidate a:

v(a)=income(a)+¢ ecology(a), 3)

where income(a) represents the prediction of the income under the assumption that in the
current round fishing results will be the same as in the previous round, ecology(a)
represents ecological effects of the action a (the value is low if fishing is performed in the
area with low fish population), and & represents importance of the ecology factor.

3.3 Learning agents details

Both learning agents have the same general architecture, which is based on one proposed in
(Sniezynski, 2008). It is presented in Fig. 1. Processing module is responsible for analyzing
percepts, buying ships, preparing training data, executing learning, and calling a learning
module to chose appropriate action in the current situation. To specify details of the
learning process and using the learned knowledge, we need the following four-tuple:
(Learning algorithm, Training data, Problem, Answer). Learning algorithm represents a way, in
which Training data is transformed into the internal knowledge representation. This
knowledge is used to give an Answer to a given Problem. Below specifications for both
learning agents are presented.

Supervised Rule Learning and Reinforcement Learning in A Multi-Agent System

for the Fish Banks Game 37
Learning Agent Environment
Training Fish-Banks
4 Data Percepts Game
Learning Processing
Module | Problem Module
Actions
Answer "
———

Fig. 1. Architecture of learning agents used in the system implemented for Fish-Banks Game

Agent using reinforcement learning strategy gets description of the current state and using
its current strategy chooses an appropriate action from a defined set. Next, using reward
from the environment and next state description it updates its strategy. Several methods of
choosing the action and updating the strategy have been developed so far. In Q-learning
developed by Chris Watkins (Watkins, 1989) Q is a function that estimates value of the
action in a given state:

Q: AxX—R, 4)

where A is a set of actions, and X is a set of possible states. Q function is updated after action
execution:

Q(a, x):=Q(a, x)*+p A.)

A represents change of the Q function value that should be applied according to the last
reward. It is defined in the following way:

A=y Qmax + - Q(a, x), (6)

Omax = maxQ(a,x"), (7)

where x, x'eX are subsequent states, a€A is an action chosen, r is a reward obtained from
the environment, y € [0,1] is a discount rate (importance of the future rewards), and g € (0,1)
is a learning rate.

Reinforcement learning agent chooses action by random in the first round. In the following
rounds, reinforcement learning module is used, and an action with the highest predicted
value (Q) is chosen. Set of possible actions contains ship allocation triples: A = {(h, d, c)} such
thath, d, c € {0%, 25%, 50%, 75% 100%}, d+c=1. Set of possible states X = {(dc, cc)}, where dc
{1, 2, ... 25} represent catch in a deep-sea area, and cc € {1, 2, ..., 15} represents catch in a
coastal area in the previous round. Therefore Problem is a pair (dc, cc) and Answer is a triple
(h, d,). The Training data consists of a pair (dc', cc'), which is a catch in the current round,
and a reward that is equal to the income (money earned by fishing decreased by ship
maintenance costs). Learning algorithm applied is the Q-Learning algorithm. In the current
implementation, Q function has tabular representation.

38 Theory and Novel Applications of Machine Learning

At the beginning Q is initialized as a constant function 0. To provide sufficient exploration,
in a game number ¢ a random action is chosen with probability 1/g instead of using Q
function (all actions have the same probability then).

Generally, supervised learning allows to generate an approximation of a function f D—C
from labelled examples, which consist of pairs of arguments and function values. This
approximation is called a hypothesis h. If the size of the set C is small (like in this
application), we call C a set of classes, and hypothesis is called a classifier.

Elements of D (called examples) are described by set of attributes Attr=(ai, ay, ..., a,), where
a;:D—V;. Therefore xAtr=(a1(x), ax(x),..., a,(x)) is used instead of x.

In a general case, supervised learning module have Training data in a form of a set
{(xAt, f(x))}, and generates hypothesis h. Problem is a xAttr, and the Answer is h(xAtr).

The simplest solution in our system would be to learn a classifier, in which classes represent
allocation actions, and attributes describe a current situation. Unfortunately, there is no a
direct way, in which agent could prepare a training data for such a classifier. Another
problem is a big size of C in such a solution. To overcome this problem the following work-
around is used. Thank to comparison of income of all agents after action execution, the
learning agent has information about quality of actions executed in the current situation and
can use it for training. Learning module is used to classify action in the given situation as
good or bad. Such classifier may be used to give ranks to action candidates.

More precisely, the Problem is defined as a five-tuple: (dc, cc, h, d, c), it consists of catch in the
both areas during the previous round and a ship allocation action parameters. The Answer is
an integer, which represents the given allocation action rating. The agent collects ratings for
all generated allocation action candidates and for execution chooses the action with the
highest rating.

Training examples are generated from agent observations. Every round the learning agent
stores ship allocations of all agents, and the fish catch in the previous round. The action of
an agent with the highest income is labelled as good, and the action of an agent with the
lowest income is labelled as bad. If in some round all agents get the same income, none
action is classified, and as a consequence, none of them is used in learning. Training data
consists of the following pairs: ((dc, cc, h, d, c), q), where q is equal to good or bad. At the end
of each game the agent uses training examples, which were generated during all games
played so far, to learn a new classifier, which is used in the next game.

Rating v of the action a is calculated according to the formula:

v(2)= agood(a) - bad(a), 4)

where good(s) and bad(s) are numbers of rules, which match the action and current
environment parameters, with consequence good and bad, respectively, and « is a weight
representing a relative importance of rules with consequence good.

Learning algorithm used for supervised learning is AQ algorithm. More specifically, AQ21
program is executed. It is the last implementation of the AQ algorithm (Wojtusiak, 2004).
This algorithm was developed by Ryszard Michalski (Michalski & Larson, 1975). Hypothesis
is represented by a set of attributional rules, which have tests on attribute values in the
premise part, and a class in the conclusion. Rules are generated using sequential covering;:
the best rule (e.g. giving an appropriate answer for the most examples) is constructed by a
beam search, examples covered by this rule are eliminated from a training set, and the
procedure repeats. What is important for this system, the rule set produced is not ordered

Supervised Rule Learning and Reinforcement Learning in A Multi-Agent System

for the Fish Banks Game 39

(rules can be applied in any order). Therefore we can simply count the number of matching
rules during action rating calculation.

3.4 Implementation

The software used in experiments is written in Prolog, using Prologix compiler (Majumdar &
Tarau, 2004). Every agent is a separate process. It can be executed on a separate machine.
Agents communicate with the environment using Linda blackboard.

Prologix is an extension of BinProlog that has many powerful knowledge-based extensions
(e.g. agent language LOT, Conceptual Graphs and KIF support).

Table 1 contains predicates, its argument domains, and predicate descriptions, which are
used in supervised learning module knowledge base. They appear in the training data and
rules induced by the AQ algorithm.

50%-50%, 25%-75%,

Predicate Argument domains Description

rate (R) good, bad Rating of the allocation strategy
harbor (N) 100%, 75%, 50%, 25%, 0 | Fraction of ships left in a harbour
alloc(A) 100%-0%, 75%-25%, | Allocation: ship fraction sent to

a deep sea, and ship fraction sent to

0%-100%
integer numbers

a coastal area

Number of fish caught by every ship
on a deep sea

Number of fish caught by every ship
on a coastal area

prevCatchDeep (D)

prevCatchCoastal (C) |integer numbers

Table 1. Predicates and its arguments used in the rules build in the supervised learning
module

4. Experimental results

To compare reinforcement and supervised learning strategies during controlling ship
allocation action of agents, four experiments were performed. Four agents took part in every
experiment. Each experiment consisted of 20 repetitions of the sequences of ten games.
Knowledge of learning agents was passing along consecutive games in one sequence, but
was cleared between sequences. The performance of agents was measured as a balance at
the end of every game. In the figures we see average values of balances from repetitions.

In the first experiment there were three random agents and one reinforcement learning
agent (with =1 and £=0.1). Results are presented in Fig.2-(a).

In the second series there were three random agents and one supervised rule learning agent
(with weight a=1). The performance of these agents is presented in Fig.2-(b).

In the third experiment both types of learning agents (with parameters as above) and two
random agents were examined. Results are presented in Fig. 3-(a). Stability of performance
(measured by the standard deviation of the balance at the end of games) is presented in
Fig. 4.

In the fourth series one supervised learning (a=1), one predicting and two random agents
were used. The performance of agents is presented in Fig.3-(b).

In all experiments average balance of both types of learning agents increases with the
agent's experience, while the performance of the predicting and random agents decreases

40 Theory and Novel Applications of Machine Learning

22000

20000

18000

16000

14000

12000

10000

8000

30000

25000

20000

15000

10000

5000

1 2 3 4 5 6 7 8 9 10

Fig. 2. Comparison of performance of reinforcement learning agent (RLA), supervised rule
learning agent (SLA) and agents using random strategy of ship allocation (RA1, RA2, RA3).
Horizontal axis represents number of a game in the sequence. Vertical axis represents an
average balance of an agent at the end of the game

slightly (because of the learning agents competition). Reinforcement learning agent was
worse then a rule learning agent, but tuning of its parameters and taking into account
actions of other agents during learning should increase its performance. Also change of the

Supervised Rule Learning and Reinforcement Learning in A Multi-Agent System
for the Fish Banks Game 4

Q function representation (e.g. into neural-network based approximator) should improve
the performance.
Results of reinforcement learning agent were also less stable (had higher standard deviation).

@)

—+— SLA

30000 [

25000

20000

15000

n
10000

5000 |
0 . .
1 2 3 4 5 6 7 8 9 10
(b)
35000 : ‘ : :
——SLA
- PA
v RAT .
0000 | TFTRAZ P T
e . - N
25000 |

20000

15000

10000

5000 |

Fig. 3. Comparison of performance of reinforcement learning agent (RLA), supervised rule
learning agent (SLA), agents using random strategy of ship allocation (RA1, RA2), and
predicting agent (PA). Horizontal axis represents number of a game in the sequence.
Vertical axis represents an average balance of an agent at the end of the game

42 Theory and Novel Applications of Machine Learning

Experimental results show that the supervised rule learning agent performance increases
rapidly at the beginning of the learning process, when generated rules are used instead of a
random choice. Next it increases slowly, because new examples do not contain any
significant new knowledge. The performance stabilizes at the end of the process.

As we can see in Fig.3-(b), the predicting agent performs better then the supervised learning
agent. It suggests, that there is a space for improvement of the learning method. Further
research is necessary to check if it is possible to learn such a good strategy.

10000

—+— SLA
- - RLA

8000

E.
6000

4000 F .-

2000

0 L . . . L L
1 2 3 4 5 6 7 8 9 10

Fig. 4. Stability of performance of agents taking part in the third experiment: reinforcement
learning agent (RLA), supervised rule learning agent (SLA) and agents using random strategy
of ship allocation (RA1, RA2). Horizontal axis represents number of a game in the sequence.
Vertical axis represents standard deviation of an agent performance at the end of the game

Examples of rules learned are presented in Fig. 5. They are in the form of Prolog clauses.
Capital letters represent variables that can be unified with any value. Predicate member
checks if its first argument belongs to the list that is a second argument. It is used to
represent an internal disjunction (expression of the form x = v or v or ... or v,). Remaining
predicates are presented in Table 1. These rules can be interpreted in the following way:
Clause (a): it is a bad decision to keep at a harbour 25, 50, or 75 percent of ships if the previous
catch at a deep-sea is greater or equal to 16, and the previous catch at a coastal area is 10.

Clause (b): it is a good decision to send 100% ships to a deep sea or 75% to a deep sea and
25% to a coastal area if previous catch at a deep-sea is greater or equal to 18, and smaller or
equal to 21, and previous catch at a coastal area is smaller or equal to 10.

5. Conclusion

As we can see, both learning algorithms can be applied for learning resource allocation in a
multi-agent system. Their performance is much better then a random strategy, but there is
still a space for improvement.

Supervised Rule Learning and Reinforcement Learning in A Multi-Agent System

for the Fish Banks Game 43
(@) (b)
rate (bad) :- rate (good) :-
harbor (B) , deep coastal ratio(B),
member (B, [25,50, 75]), member (B, [100%-0%, 75%-25%]) ,
prevCatchDeep (C) , prevCatchDeep (C) ,
C >= 16, C >= 18,
prevCatchCoastal (10) . C =< 21,
prevCatchCoastal (D),
D =< 10.

Fig. 5. Examples of rules in the form of Prolog clauses learned by the supervised learning
agent

This work shows also that it is possible to use supervised learning method in a case, in
which there is no direct training data. It is enough that agent has some qualitative
information about action that was executed in a given state.

Both of the considered learning strategies have some advantages and disadvantages. These
two methods use different knowledge representation. Reinforcement learning uses the
action value function, which is difficult to analyze especially in a case of a large domain.
Rules are usually much easier to interpret (unless there are too many of them). Therefore, if
learned knowledge is analyzed by a human, rule induction seems to be a better choice.

A disadvantage of reinforcement learning is necessity of tuning its parameters (y £, and
exploration method). The choice has a high impact on the results. What is more, due to
necessary exploration, the algorithm's performance is less stable.

On the other hand, reinforcement learning works well even if the reward is delayed.
Additionally, it does not need information about other agents' actions. Hence it is more
universal.

6. Further research

Currently the architecture of agents supports centralized learning only. In the future it should
be extended to cover distributed learning (communication and cooperation during learning).
Future works will concern applying other learning algorithms and also other strategies (e.g.
unsupervised learning).

Additionally, agents with more then one learning module for different aspects of their
activity should be studied and the possibility of interaction between learning modules in the
same agent should be examined.

7. Acknowledgements

The author is grateful to Arun Majumdar, Vivomind Intelligence Inc. for providing Prologix
system (used for implementation), and for help with using it, Janusz Wojtusiak, MLI
Laboratory for AQ21 software and assistance, and last but not least Jaroslaw Kozlak, AGH
University of Science and Technology for help with the Fish Bank Game.

8. References

Airiau, S., Padham, L., Sardina, S. and Sen, S. (2008). Incorporating Learning in BDI Agents,
In: Proceedings of the ALAMAS+ALAg Workshop, Estoril, Portugal

44 Theory and Novel Applications of Machine Learning

Gehrke,].D., Wojtusiak J. (2008). Traffic Prediction for Agent Route Planning, In: Computational
Science - ICCS 2008, part III, Bubak, M., van Albada, G.D., Dongarra, J., Sloot P.M.A.
(Eds.), Lecture Notes in Computer Science 5103, pp. 692-701, Springer

H.Kitano, M.Tambe, P.Stone, M.Veloso, S.Coradeschi, Osawa, E., Matsubara, H., Noda, 1.,
Asada, M. (1997). The RoboCup synthetic agent challenge 97, In: International Joint
Conference on Artificial Intelligence (IJCAI97), pp. 24-29, Nagoya, Japan

Hardin, G. (1968). The tragedy of commons, Science, Vol.162, 1243-1248

Kozlak, J., Demazeau, Y., Bousquet, F. (1999). Multi-agent system to model the Fishbanks
game process. In: The First International Workshop of Central and Eastern Europe on
Multi-agent Systems (CEEMAS'99), St. Petersburg

Lashkari, Y., Metral, M., Maes, P. (1994). Collaborative interface agents. Proceedings of AAAI
1994, pp. 444-449

Majumdar, A., Tarau, P. (2004). Prologix: Users guide, Technical Report, VivoMind LLC

Meadows, D., Iddman, T., Shannon, D. (1993). Fish Banks, LTD: Game Administrator's Manual.
Laboratory of Interactive Learning, University of New Hampshire, Durham, USA

Michalski, R.S., Larson, J. (1975). Aqval/1 (aq7) user's guide and program description. Technical
Report 731, Department of Computer Science, University of Illinois, Urbana, USA

Russell, S., Norvig, P. (1995). Artificial Intelligence - A Modern Approach. Prentice-Hall,
Englewood Cliffs

Sardinha, J.A.R.P., Garcia, A.F., Milidit, R.L., Lucena, C.J.P. (2004). The Agent Learning
Pattern, Fourth Latin American Conference on Pattern Languages of Programming,
SugarLoafPLoP'04, Fortaleza, Brazil

Sen, S., Weiss, G. (1999). Learning in multiagent systems, In: A Modern Approach to Distributed
Artificial Intelligence, Weiss, G., (Ed.), The MIT Press, Cambridge, Massachusetts

Servin, A., Kudenko, D. (2008). Multi-Agent Reinforcement Learning for Intrusion
Detection: A case study and evaluation, Eighth Workshop on Adaptive Agents and
Multi-Agent Systems (ALAMAS-ALAG)

Sniezynski, B. (2007). Resource Management in a Multi-agent System by Means of
Reinforcement Learning and Supervised Rule Learning, In: Computational Science -
ICCS 2007, Part II, Shi, Y., van Albada, G.D., Dongarra, J., Sloot P.M.A. (Eds.),
Lecture Notes in Computer Science 4488, pp. 864-871, Springer

Sniezynski, B. (2008). An Architecture for Learning Agents, In: Computational Science - ICCS
2008, part III, Bubak, M., van Albada, G.D., Dongarra, J., Sloot P.M.A. (Eds.),
Lecture Notes in Computer Science 5103, pp. 722-730 , Springer

Stolfo, S.J., Prodromidis, A.L., Tselepis, S., Lee, W., Fan, D.W., Chan, P.K. (1997). Jam: Java agents
for meta-learning over distributed databases, Proceedings of KDD 1977, pp. 74-81

Stone, P., Veloso, M. (2000). Multiagent systems: A survey from a machine learning
perspective, Autonomous Robots, Vol. 8, No. 3, July

Sugawara, T., Lesser, V. (1993). On-line learning of coordination plans, Proceedings of the 12th
International Workshop on Distributed Artificial Intelligence, 335-345, 371-377

Szita, I., Lorincz, A. (2007) Learning to Play Using Low-Complexity Rule-Based Policies:
lustrations through Ms. Pac-Man, |. Artif. Intell. Res. (JAIR), Vol. 30, 659-684

Tesfatsion, L. (2001). Agent-based computational economics: Growing economies from the
bottom up. Artificial Life, Vol. 8, No. 1, 55-82

Watkins, C.J.C.H. (1989). Learning from Delayed Rewards, PhD thesis, King’s College, Cambridge

Wojtusiak, J. (2004). AQ21 User’s Guide. Reports of the Machine Learning and Inference
Laboratory, MLI 04-3. George Mason University, Fairfax, VA, USA

4

Clustering, Classification and Explanatory
Rules from Harmonic Monitoring Data

Ali Asheibi, David Stirling, Danny Sutanto and Duane Robinson
The University of Wollongong
Australia

1. Introduction

With the increased use of power electronics in residential, commercial and industrial
distribution systems, combined with the proliferation of highly sensitive micro-processor
controlled equipment, a greater number of distribution customers are becoming sensitive to
excessive harmonics in the supply system. In industrial systems for example, harmonic
losses can increase the operational cost and decrease the useful life of the system equipment
(Lamedica, et al., 2001). For these reasons, large industrial and commercial customers are
becoming proactive with regards to harmonic monitoring. The deregulation in the utility
industry makes it necessary for some utilities to carry out extensive harmonic monitoring
programs to retain current customers and targeted new customers by ensuring disturbance
levels remain within predetermined limits (Dugan, et al. 2002). This will lead to a rapid
escalation of harmonic data that needs to be stored and analysed.

Utility engineers are now seeking new tools in order to extract information that may
otherwise remain hidden within this large volume of data. Data mining tools are an obvious
candidate for assisting in such analysis of large scale data. Data mining can be understood
as a process that uses a variety of analysis tools to identify hidden patterns and relationships
within data. Classification based on clustering is an important unsupervised learning
technique within data mining, in particular for finding a variety of patterns and anomalies
in multivariate data through machine learning techniques and statistical methods.
Clustering is often used to gain an initial insight into complex data and particularly in this
case, to identify underlying classes within harmonic data. Many different types of clustering
have been reported in the literature, such as: hierarchical (nested), partitioned (un-nested),
exclusive (each object assigned to a cluster), non-exclusive (an object can be assigned to
more than one cluster), complete (every object should belong to a cluster), partial (one or
more objects belong to none), and fuzzy (an object has a membership weight for all clusters)
(Pang, et al., 2006).

A method based on the successful AutoClass (Cheeseman & Stutz, 1996) and the Snob
research programs (Wallace & Dowe, 1994); (Baxter & Wallace, 1996) has been chosen for
our research work on harmonic classification. The method utilizes mixture models
(McLachlan, 1992) as a representation of the formulated clusters. This research is principally
based on the formation of such mixture models (typically based on Gaussian distributions)
through a Minimum Message Length (MML) encoding scheme (Wallace & Boulton, 1968).
During the formation of such mixture models the various derivative tools (algorithms) allow

46 Theory and Novel Applications of Machine Learning

for the automated selection of the number of clusters and for the calculation of means,
variances and relative abundance of the member clusters. In this work a novel technique has
been developed using the MML method to determine the optimum number of clusters (or
mixture model size) during the clustering process. Once the optimum model size is
determined, a supervised learning algorithm is employed to identify the essential features of
each member cluster, and to further utilize these in predicting which ideal clusters any new
observed data may best described by.

This chapter first describes the design and implementation of the harmonic monitoring
program and the data obtained. Results from the harmonic monitoring program using both
unsupervised and supervised learning techniques are then analyzed and discussed.

2. Harmonic monitoring program

A harmonic monitoring program (Gosbell et al., 2001); (Robinson, 2003) was installed in a
typical 33/11kV MV zone substation in Australia that supplies ten 11kV radial feeders. The
zone substation is supplied at 33kV from the bulk supply point of a transmission network.
Fig. 1 illustrates the layout of the zone substation and feeder system addressed with this
harmonic monitoring program.

Seven monitors were installed; a monitor at each of the residential, commercial and
industrial sites (sites 5-7), a monitor at the sending end of the three individual feeders (sites
2-4) and a monitor at the zone substation incoming supply (Site ID 1). Sites 1-4 in Fig. 1 are
all within the substation at the sending end of the feeders identified as being of a
predominant load type. Site 5 was along the feeder route approximately 2km from the zone
substation, feeds residential area. Site 6 supplies a shopping centre with a number of large
supermarkets and many small shops. Site 7 supplies factory manufacturing paper products
such as paper towels, toilet paper and tissues.

Based on the distribution customer details, it was found that Site 2 comprises 85%
residential and 15% commercial, Site 3 comprises 90% commercial and 10% residential and
Site 4 comprises 75% industrial, 20% commercial and 5% residential.

The monitoring equipment used is the EDMI Mk3 Energy Meter from Electronic Design and
Manufacturing Pty. Ltd. (EDMI, 2000). Three phase voltages and currents at sites 1-4 were
recorded at the 11kV zone substation and at the 430V sides of the 11kV/430V distribution
transformers at sites 5-7, as shown in Fig. 1. The memory capabilities of the above meters, at
the time of purchase limited recordings to the fundamental current and voltage in each
phase, the current and voltage Total Harmonic Distortion (THD) in each phase, and three
other individual harmonics in each phase.

For the harmonic monitoring program, the harmonics selected for recording were the 3rd, 5th
and 7th harmonic currents and voltages at each monitoring site, since these are typically the
most significant harmonics. The memory restrictions of the monitoring equipment dictated
that the sampling interval would be constrained to 10 minutes. This follows the suggested
measurement time interval by the International Electrotechnical Commission (IEC) standard
as given in IEC61000-4-30 for harmonic measurements, inter-harmonic and unbalances
waveforms. The standard is regarded as best practice for harmonic measurement and it
recommends 10 minute aggregation intervals for routine harmonic survey. Each 10 minute
data sample represents the aggregate of the 10-cycle rms (root mean squared) magnitudes
over the 10 minutes period. A recent study (Elphick, et al., 2007) suggested that statistically,
sampling at faster rate will not provide additional significant extra insight.

Clustering, Classification and Explanatory Rules from Harmonic Monitoring Data 47

33kV Transmission System

11kV Zone Substation

3

@) é Other Feeders

| - Harmomc monitor
D pole top transformer
'@ B substation transformer

g

o
29| 6.8 8
&

&

®

Predominantly Predominantly Predominantly
Residential ~ Commercial Industrial
Feeder Feeder Feeder

Fig. 1. Single line diagram illustrating the zone distribution system.

The data retrieved from the harmonic monitoring program spans a period from August 1999
to December 2002. Figs. 2 and 3, show a typical output data from the monitoring equipment
of the fundamental, 3rd, 5th and 7th harmonic currents in Phase ‘a’ at sites 1 and 2, taken on
12 - 19 January 2002 showing a 10-min maximum fundamental current of 1293 Amps and
minimum fundamental current of 435 Amps. It is obvious that for the engineers to
realistically interpret such large amounts of data, it will be necessary to cluster the data into
meaningful segments.

CT1 Harm 3

1400

+ 1200

+ 1000

3rd,5th and 7th Currents (Ampere)
Fundamental (Ampere)

22:00:00
14:30:00
20:00:00
1:30:00
12:30:00
18:00:00
23:30:00
16:00:00
21:30:00
3:00:00
8:30:00
14:00:00
19:30:00
1:00:00
6:30:00
12:00:00
17:30:00
23:00:00
4:30:00
15:30:00
21:00:00

Days (one week)

Fig. 2. Zone substation (Site 1) weekly harmonic current data from the monitoring
equipment.

48 Theory and Novel Applications of Machine Learning

3. Minimum Message Length (MML) technique in mixture modelling method

The MML technique and mixture modelling was initially developed by Wallace and Boulton
in 1968 through their classification program called Snob (Wallace & Boulton, 1968). The
program was successfully used to classify groups of six species of fur seals. Since then, the
program has been extended and utilised in different areas, such as psychological science,
health science, bioinformatics, protein and image classification (Agusta, 2004). Mixture
Modelling Methods using MML technique have also been applied to other real world
problems such as human behaviour recognition and the diagnosis of complex issues in
industrial furnace control (Zulli & Stirling, 2005).

| —cTirams - CT1 Harm5 CT1Harm7 -—=-CT1 Fund.]

120

Fa " £
o fw 5 o, M
L] R Sl w gl
L i s o
] [i | [
h ‘

|
it o
B, n,}.:l i) i

! r.é?;‘ﬁ}" bk ;‘-‘,g}l)f‘ﬁ".,l\l: :*’f»" 50 ;"Im R

) : L [;o : BT T

" d I'- W ER 1 2 A , 0 1
\add Ny it A a A : R A
| w"'h .k;lﬁ“:(F-‘,ppp #I '&;ﬁ ‘ﬁ“ﬁ- ¥ \?gl L 40

¢

Fundamental (Ampere)

T 20

it = I « b
o= N W ;A O
. . |

?

3rd,5th and 7th currents (ampere)

0O 00 00 000000000 Q000000000000 09 Q0
eoggeegcaegeeaooeaoeeocegeaeeaaeaeaaeeee
O 8600880488 oo d o8 &0 oo oo o dadaod o
QU ¥ O - QQW0uNONT" QoW Y0NS Qn N 0NT QWS ON
O~ N~ OO0~ 0N O OANM®WLW—OMmaFONOFO ~ ~O6

- - - = N - - N - o - - N - -

Days (one week)

Fig. 3. Residential feeder (Site 2) weekly harmonic Current data from the monitoring
equipment.

The Minimum Message Length inductive inference methodology seeks to identify efficient
models by evaluating the size of a hypothetical message that describes each model together
with any data which does not fit to the supposed model (exceptions). By evaluating this
message length, the algorithm is able to identify, from a sequence of plausible models, those
that yield an incrementally improving efficiency, or reducing size. The general concept here
is that the most efficient model, describing the data will also be the most compact.
Compression methods generally attain high densities by formulating efficient models of the
data to be encoded.

The encoded message here consists of two parts. The first of these describes the model and
the second describes the observed data given that model. The model parameters and the
data values are first encoded using a probability density function (pdf) over the data range
and assume a constant accuracy of measurements (Aom) within this range. The total
encoded message length for each different model is then calculated and the best model
(shortest total message length) is selected. The MML expression is given as:

L(D,K) = L(K)+L (D/K) 1)

where:

Clustering, Classification and Explanatory Rules from Harmonic Monitoring Data 49

K : mixture of clusters in model

L (K) : the message length of model K

L(D/K) : the message length of the data given the model K
L (D,K) : the total message length

Initially given a data set D, the range of measurement and the accuracy of measurement for
the data set are assumed to be available. The message length of a mixture of clusters each
assuming to have Gaussian distributions with their own mean (p) and variance (o) can be
calculated as follows: (Oliver & Hand, 1994).

LK . r angeu | range
=lo + 1o 2
) =loea opy %2 S0py @
p c
where:
range, :range of possible p values
range; :range of possible o values
AOP Vp. s accuracy of the parameter value of p
_ 12
AOPV“ =3 WL (D,K) = L(K)+L (D/K) (3)

s :unbiased sample standard deviation

- 1 n IR
s—\/(N_l);(x,» %) @

N :number of data samples

X :the sample mean

x; :data points

AOPVo: accuracy of the parameter value of o

6

AOPV _ =5
© N-1

©)

The message length of the data using Gaussian distribution model can be calculated from
the following equation (Oliver & Hand, 1994):

) 50
svan Sty
L(D/K) =Nlog, +N 5 log,(e) (6)
Aom 25

where:
Aom: accuracy of measurement
s :sample standard deviation

50 Theory and Novel Applications of Machine Learning

_ /L” =2
s = NEI(X, x) 7)

An example of how the Mixture Modelling Method using MML technique works, can be
illustrated by applying the method to a small data set that contained five distinct
distributions of data points (D’s) each of which were randomly generated (D1, D2, ..., D5),
with its own mean and standard deviation. The generated clusters that were subsequently
correctly identified through the MML algorithm are shown in Table 1 and the normal
distributions of these clusters are superimposed on the data as shown in Fig. 4.

Cluster Mean (1) SD (o)

s0 1.021899 0.278162
sl 4.00873 0.616833
82 7.910658 0.980416
83 11.86431 1.146317
54 16.05827 1.446599

Table 1. The parameters (p and o) of the five generated clusters.

40

Probability

0 2 4 6 8 10 12 1" 1B 18
Data range

Fig. 4. Five randomly generated clusters each with its own mean and standard deviation.

This mixture modelling approach using the MML technique was used for harmonics
classification to discover similar groups of records in the harmonic database; this included
clustering the harmonic data from the test system described in section 2. ACPro, a
specialised data mining software tool for the automatic segmentation of databases, was
primarily used in this work. The preparation of the harmonic data and clustering process
are explained in the next section.

3.1 Data preparation and clustering

The dominant harmonic currents and voltages attributes identified in Section 2 (34, 5th, 7th
and THD) were selected from the four different sites; Substation (Site 1), residential (Site 5),
commercial (Site 6) and industrial (Site 7) — as per Fig. 1. The resulting data set used in this

Clustering, Classification and Explanatory Rules from Harmonic Monitoring Data 51

application is one file of 8064 instances which consists of four combined files (4x2016) from
the selected sites taken from 12-25 January 2002 inclusive. This data was normalised by
dividing each data point by the typical values of each corresponding attribute. The
suggested typical value for the harmonic currents is the maximum value whereas for the
harmonic voltage is the average value. The maximum value of the harmonic current
attributes and the average value of harmonic voltage after normalisation is one. The
normalised attributes were selected as input features to the MML algorithm with a given
accuracy of measurement (Aom) for each attribute. The number of clusters obtained was
automatically determined based on the significance and confidence placed in the
measurements, which can be estimated using the entire set of measured data. Each cluster
contains a collection of data instances that have been so assembled according to an inferred
(learnt) pattern, and the abundance of each group is calculated over the full data range. The
abundance value for each cluster represents the proportion of data that is contained in the
cluster in relation to the total data set. If for example, only one cluster was formed then the
single cluster abundance value will be 100%. Each generated cluster can therefore be
considered as a profile of the twelve variables (being the 3rd, 5th, 7th and THD for each of 3
phases) within an acceptable variance. If new data lies beyond the clusters associated
variance, another cluster is created. Using a basic spreadsheet tool the clusters are
subsequently ordered inversely proportional to the actual abundance, i.e. the most abundant
cluster is seen as, s0, and those that are progressively rarer have a high value type numbers.

4. Results and outcomes

The following section provides an array of results and outcomes relating to the mixture
modelling afforded by the MML clustering algorithm, as well as other associated
techniques. These include the detection of anomalous patterns within the harmonic data
and, the simplification or transforming of the mixture model through an abstraction process.
Without knowing in advance the appropriate size for a mixture model, i.e. its ideal number
of clusters, abstraction to a fewer number of super groups, often assists in perceiving the
associated contexts each super group. A range of detail applications illustrates this
approach. Subsequent insights arising from these operations have lead to a novel outcome
allowing for the prior identification of the correct model size for the harmonic data. Further
inspection of interesting clusters or super groups is also facilitated through the use of
supervised learning, wherein an essential (or minimal) set of influencing factors behind each
is derived in a symbolic form.

4.1 Anomaly detection and pattern recognition

Initially six clusters were specified as input parameters to the MML data mining program,
with cluster s5 having the least abundance at 6%. However, the value (mean) of the fifth
harmonic in this cluster is at its maximum for all of the data. This cluster (s5) acquires its
importance from both the high value of the fifth harmonic current (CT1_Harm_5) and its
least number of occurrences. The second highest value of the fifth harmonic current is
associated with cluster s1 at 0.78 of the maximum value an abundance of 22%. This cluster
might be as important as s5 because it has high fifth harmonic current with a high frequent
rate nevertheless the fundamental current (CT1_Fund) is very low.

The concept of rare clusters may also be used to identify the most significant distorting
loads at different customer sites. Fig. 6 illustrates a mosaic of patterns of the six clusters (see

52 Theory and Novel Applications of Machine Learning

Fig. 5) over the period of one week at sites 1, 5, 6 and 7 that are represented in Fig. 1. Here,
all clusters are represented as a certain shades of grey in proportion to the abundance of
each cluster, i.e. the least abundant cluster (s5) will appear as black and the most abundant
cluster (s0) will be the lightest shade of grey. Noticeable characteristics from Fig. 6 include
the two distinctive darker patterns towards the left hand side of the Medium Voltage

‘— CT1_Fund mmmm CT1_Harm 5 —Abundance‘

1.2 24%

+ 20%

o
©

+ 16%

+12%

Mean (pu)
o
o

o
~

+ 8%

Abunadnce(%)

o
IN)

1 4%

+ 0%
s0 s1 s2 s3 s4 s5
Sorted clusters

Fig. 5. Fundamentals and 5t harmonic current clusters in a single phase.

B

Most Abundant (s0) @D @D Least Abundant (s5)

Residential %%g%gagx

Commercial

Industrial

12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00
AM AM AM AM AM AM AM AM

Sat Sun Mon Tue Wed Thr Fri

Fig. 6. Clusters of harmonic emissions from the different customer loads and system overall
for a one week period.

Clustering, Classification and Explanatory Rules from Harmonic Monitoring Data 53

(MV) 33/11 kV substation data (Site 1). This indicates that the least abundant occurrences
appear during the mornings of the weekend days. Also the commercial site, Site 6, exhibits a
recurring pattern of harmonics over each day, noting that the shopping centre is in
operation seven days a week. The industrial site (site 7) shows that there is a distinctly
different pattern on weekend than during weekdays. The residential customer clusters (site
5) are somewhat more random than the other sites, suggesting that harmonic emission
levels in this site follow no well defined characteristics.

4.2 Abstraction of super groups

From the results from the previous section it can be observed that data mining can become a
useful tool for identifying additional information from the harmonic monitoring data,
beyond that which is obtained from standard reporting techniques.

Further additional information can be retrieved by using the Kullback-Lieber (KL) distance
(Duda et al., 2001)which is a measure of similarities and dissimilarities between any two
distributions (clusters). A multidimensional scaling algorithm (MDS) is utilised to process
the resultant KL distances. This enables the generation a 2D geometric visualization
(interpretation) in conjunction with an interactive link analysis, which can ultimately
suggest what combinations of clusters, and neighbourhoods of clusters, could be merged to
form various (fewer) super-groups.

To explain the concept of super—groups, a subset of the harmonic data described in Section 2
being (3rd, 5th, and 7t) from different sites (1, 5, 6, 7) was used as selected attributes for the
MML segmentation. This time ACPro was allowed to determine the number of clusters itself
resulting in eleven clusters (s0, s1, s2... s10). A detail of the abundances, means and standard
deviations of the 5th harmonic current across these 11 clusters is illustrated in Fig. 7. The
Kullback-Lieber tool in ACPro is applied on the model to generate the lower triangular
11x11 matrix of KL-distances shown in Table 2.

mm CT1Ham5 (mean) —— CT1Ham5(SD) —e— Abundance

0.16

- 0.14
o012
- 0.1
- 0.08 §
- 0.06

- 0.04

Mean and standard deviation

- 0.02

S7 SO S5 S3 S8 S6 S10 S9 S1 4 S2
Fifth hamnonic curent Clusters

Fig. 7. Abundance, mean and standard deviation for each cluster of 5t harmonic current in
phase ‘a’.

54 Theory and Novel Applications of Machine Learning

s

s1 2674

s2 832 232

s3 62 3186 1157

s4 181 2486 941 178

s5 59 1077 358 185 127

s6 51 1277 361 173 169 37

s7 51 2518 871 107 155 58 142

s8 102 2773 1003 113 169 145 201 39

s9 450 1486 612 519 649 194 234 471 365

s10 115 867 332 233 153 34 107 36 70 116
s0 sl 52 s3 s4 s5 s6 87 s8 s9 s10

Table 2. Kullback-Lieber distances between components of the 11 cluster mixture model.

The highlighted distance values represent the three largest and the three smallest distance
values. For example, the distance between s3 and s1 is given as 3186, which is the largest
distance, which suggests that there is a considerable difference between these two clusters,
while on the other hand the distance between s10 and s5 is only 34, which suggests that
there is a lot of similarity between these two clusters.

The links between all clusters, based on the KL-distances, were visualized using a multi
dimensional scaling (MDS) program (Interlink, 2007), which effectively reduces an
11-dimensional model into a two dimensional representational graph. The resulting super-
groups were subsequently formed by removing any link whose distance exceeds a certain
threshold. The obtained super-groups (A, B, C, D and E) are shown in Fig. 8.

Commercial

@

Substation

Fig. 8. Super-group abstraction by MDS.

Most of the super—group abstractions are formed based on the site type, for example
supergroup A covers the industrial site, supergroup D covers the substation site,
supergroup C and E covers the commercial sites, with supergroup C being separated

Clustering, Classification and Explanatory Rules from Harmonic Monitoring Data 55

because the distances between s9 with s2 and s9 with s1 are larger than the distance
between s1 with s2. Super-group B is formed from clusters containing data from all sites.
The residential site does not seem to have a particular supergroup which means that the
influence of harmonic emission (or participation) from this site is very low. The
concurrences of two or more of these super-groups at different sites indicate that there is a
mutual harmonic effect between those sites at that particular time. For example, a temporal
correspondence of super-group A at the industrial site can be observed with both
super—group D at the substation site and super—group E at the commercial site early in the
morning of each day as shown in Fig. 9. The associated pattern of harmonic factors that
might exist in the formation of these super—groups can, in future, be extracted using the
classification techniques of supervised learning.

4.3 Detection of harmonic events

The number of the clusters in the previous sections was either specified as input parameters
to the MML data mining program or automatically generated by the program itself given a
data set D and its accuracy of measurement, Aom. In this section, however, the message
length criterion of the MML is utilized to choose the model (number of clusters) that best
represent the data. The smaller the encoded message length the better the model fits the
data. Therefore the program was controlled to produce a series of models each with an
increasing number of clusters for the same fixed values of Aom, and the message lengths of
these models have been plotted against the number of clusters as shown in Fig. 10.

— Commercial — Substation

—Industrial — Residential
T
l
|
E ' A | R
D e
C 7]l:LlI[7
B]-l-'—l- T
|
|
A —
|
l
~ ~ ~ ~ ~ ~ ~
> > > > > > >
<Zsat “Zun “HMon =Z2Tee ZSWed =T =2 Fi
o o o o o o
Time (days)

Fig. 9. Super-groups in all sites over one week.

In this case, the best model to represent the data was identified as that with six clusters. The
reasoning behind selecting this number of clusters is that the decline in the message length

56 Theory and Novel Applications of Machine Learning

significantly decreases when the model size reaches 6 clusters, and the message length is
comparatively constant afterward as shown in Fig. 10. In other words, this can be
considered to represent the first point of minimum sufficiency for the model.

82000

81000 -

80000 -

79000 -

78000 -

6 Cluster

77000 A

76000 -

Message length (Bit)

75000 -

74000 -

73000 A

72000 -

71000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of clusters

Fig. 10. Message length vs. number of generated clusters.

Using a basic spreadsheet tool the clusters are subsequently sorted in ascending order (s0,
s1, s2, s3, s4 and s5) based on the mean value of the fundamental current, such that cluster
s0 is associated with the lighter off peak loads period whilst cluster s5 related to the heavier
on-peak load periods as shown in Fig. 11. The mean value () of the fundamental, 5t and 7th
currents along with the standard deviation (o) and the abundance () of each model cluster
are detailed in Table 3.

‘ Cluster Fundamental current ‘
6 1400

1200

1000

800 §
600

1 400

QAusters (s1,s2, ..., sB)

st - 1 200

88838388
88§88 §
b5 8 &g g

5

0:00:00 |
3:40:00
7:20:00
11:00:00
14:40:00
18:20:00
22:00:00
1:40:00
3:20:00
7:00:00
10:40:00
14:20:00
18:00:00
21:40:00

Time (Hours)

Fig. 11. Clusters obtained superimposed on the phase ‘a’ fundamental waveform at
substation site.

Clustering, Classification and Explanatory Rules from Harmonic Monitoring Data 57

Fundamental 5th Harmonic 7th Harmonic
Cluster Abundance current current current
g Mean (u) | SD (o) | Mean (1) | SD (o) Mean (1) | SD (o)
sO 0.068386 | 0.096571 | 0.041943 | 0.165865 | 0.130987 | 0.062933 | 0.022882
sl 0.155613 | 0.106102 | 0.061533 | 0.445056 | 0.123352 | 0.250804 | 0.127779
s2 0.056779 0.1694 |0.093434 | 0.300385 | 0.14996 0.115216 | 0.028599
s3 0.090994 0.35053 | 0.132805 | 0.308374 | 0.120799 | 0.330834 | 0.142327
s4 0.342654 0.38735 | 0.123757 | 0.524376 | 0.193181 | 0.604311 | 0.18195
sb 0.285559 | 0.728608 | 0.095226 | 0.5218 0.191722 | 0.516901 | 0.149544

Table 3. Generated model detailing the abundance value (r) of the six cluster a long with
the mean (i) and standard deviation (o).

Each generated cluster can therefore be considered as a profile of the three variables
(fundamental, 5th and 7th harmonic currents) within an acceptable variance. If new data lies
beyond this variance, additional clusters are created until all of the data is enclosed within
the generated model as shown in Fig. 12.

‘l:l Fundamental current mmmm 5th Harmonic current C—3 7th Harmonic current —x— Abundance ‘

clusters mean, SD and abundance

sO s1 s2 s3 s4 s5
Sorted clusters

Fig. 12. Graphical profile view of model clusters indicating the statistical parameters mean
(n), standard deviation (o) and abundance ().

Despite the cluster labels having no specific meaning when initially generated, one can
appreciate the benefit of their visual profiles in conjunction with previous sorting process, in
particular one can see that cluster s5 not only has the highest fundamental current, but also
the highest 5th harmonic current. This infers that the high 5th harmonic currents are due to
an overloading condition. Fig. 12 also highlights that cluster s2 (and to a lesser extent s0)
have a very low abundance. These may be viewed as anomalous, and potentially

58 Theory and Novel Applications of Machine Learning

problematic clusters as described later. Two of these clusters (s5, s2) are further examined to
identify different operating conditions based on the various attributes used in the data
(fundamental, 5th and 7th harmonic currents) as follows:

4.3.1 Cluster s5 at residential site

Fig. 13 illustrates the difference in harmonic clusters at residential site between the normal
weather days and the hot days. In this polar coordinate plot the variable magnitude
represented by the length of the radius vector of the circle whereas the angle from the x-axis
to the radius vector represents the time of the day. It is evident that the MML has identified
s5 cluster occurring more often at daytime during the hot period compared to the days
when the temperature is relatively mild. It can also be observed from Fig. 13, that there is a
period of peak load (cluster s5) around midnight, and following discussion with the utility
engineer, we were informed that this is related to turning-on of the off-peak water heaters.

th -
5 Harmonégu;/oltage V) Fundamental Current (A)

0:00

s0
s1
s2
s3

(a) Normal temperature days

0:00

18:00 sS 18:00
5 Larmonic Voltage (V) Fundamental Current (A)
(b) Hot temperature days

Fig. 13. Normal and hot days at residential site (Site 2).

4.3.2 Cluster s5 at industrial site

The 5th harmonic current at industrial site (Site 4) in different days of the week is shown in
Fig. 14. On Saturday, for example, cluster s5 is only present from early morning to early in
the afternoon which may indicate that an industrial process that could produce the levels of
5th harmonic current, that characterize this cluster, has been terminated at around 2 pm.

Clustering, Classification and Explanatory Rules from Harmonic Monitoring Data 59

Saturday Sunday Monday & Tuesday
10 Amp

e s0 s1 ®s2 e s3 e s4 s s5 ‘

Fig. 14. 5th harmonic current clusters at industrial site for different week days.

On Sunday however, the cluster s5 has disappeared inferring that these loads were off.
These loads were on again during the weekday at day and night time showing the long
working hours in this small factory at the weekdays. Similar results of the 5th harmonic
current can be seen at the commercial site, see Fig. 15.

Week End Week Day

6:00 6:00

5 Amp 5 Amp

12:0p-------o-) ---------- 0:00

Fig. 15. 5th harmonic current clusters at commercial site for two different week days.

4.3.3 Cluster s2 at substation site.

Generally by examining the behaviour of MML model classifications (based on the recorded
data) one is able to attribute further meaning to each of its cluster components(Asheibi, 2006).
For example, it is noted that there are several sudden changes to cluster s2 at particular time
instances during the day. It appears from Fig. 16(b) that this is due to sudden changes in the 7th
harmonic current. After further investigation of the reactive power (MVAr) measurement at
the 33kV side of the power system shown in Fig. 16(c), it can be deduced that the second
cluster (s2) is related to a capacitor switching event. Early in the morning, when the system
MVAr demand is high as shown in Fig. 16(c), the capacitor is switched on in the 33kV side to
reduce bus voltage and late at night when the system MVAr demand is low, the capacitor is
switched off to avoid excessive voltage rise. By just observing the fundamental current, it is

60 Theory and Novel Applications of Machine Learning

difficult to understand why the second cluster has been generated. The 7th harmonic current
and voltage plots as shown in Fig. 16(b) provides a clue that something is happening during
cluster s2, in that the 7th harmonic current increases rapidly and 7t harmonic voltage
decreases, although the reason is still unknown. In this case, the clustering process correctly
identified this period as a separate cluster compared to other events, and this can be used to
alert the power system operator of the need to understand the reasoning for the generation
of such a cluster, particularly when considering the fact that the abundance value for s2 is
quite low (5%). When contacted, the operator identified this period as a capacitor switching
event which can be verified from the MVAr plot of the system (which was not used in the
clustering algorithm). The capacitor switching operation in the 33kV side can also be
detected at the other sites (sites 2, 3 and 4) at the 11kV side.

1500 T T T T T T 6
- | I I I I | |
< r | = il ~ | [e N 15
k= [y | N | | (e | |
giooor Lﬁﬁ?/ A LT s
3)/ I &« f I \ 3
3 r /"\/ | | M ‘J(| w3 8
S 500 oy | | I \”M”/H | | | er o
£ r\ | | 7‘\ [1 I I [
g L I I I | I I I
g “ | | | | “ | | | J‘r1
w 0 ‘\ 1 1 L1 | L1 1 L io

(a)

20 \ \ \ \ \ \ \ 80 o
< I [P I I I I <
2 45l I R I | |)
o E M g AU Wy £
3 e VYA | Lt et A g
o 1ol o N | | A\ K‘”w | | W 40 ©
o / \ / 140 2
5 iy | v ’\(‘\ I I | | €
£ | | / 7 ! ‘l | | ‘ £
[i | |) | | | 4 <}
= ° “H PG i J‘n I | (1% £
= Lot Jlg I ATy SRVl T P! <
~ s |) o N | L g ™~
=~ 2 T T Cap On T T T T
< R Bl B e | |

[| | | ~ | |
= | | |
< 1ol | I I I | I I
g 10 ‘\‘ i TN u‘ | | | \f

| | | i [e e S| J
8 | | / | \\ \“ " | ~N ‘/
2 Oy W\ | N i/ | . 1
B i | | | =il 7 | |
(]
El L ewor—™
0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00
Time (Hours)

(c)

Fig. 16. Clusters at substation site in two working days (a) Clusters superimposed on the
fundamental current waveform, (b) 7th harmonic current and voltage data. (c) MVAr load at
the 33kV.

4.4 Determination of the optimum number of clusters in harmonic data

Determining the optimum number of clusters becomes important since overestimating the
number of clusters will produce a large number of clusters each of which may not
necessarily represent truly unique operating conditions, whereas underestimation leads to
only small number of clusters each of which may represent a combination of specific events.
A method is developed to determine the optimum number of clusters, each of which
represents a unique operating condition. The method is based on the trend of the
exponential difference in message length when using the MML algorithm. The MML states

Clustering, Classification and Explanatory Rules from Harmonic Monitoring Data 61

that the best theory or model K is the one that produces the shortest message length of that
model and data D given that model. From information theory, minimizing the message
length in an MML technique is equivalent to maximizing the posterior probability in
Bayesian theory (Oliver, et al. , 1996). This posterior probability of Bayes’ theorem is given

by:

Prob(D|K) = LTOMKI'LIOK) ®)
Prob(D)

Since the minimum message length in (1), is equivalent to the maximum posterior

probability in (8), this yields:

L(D| K)=Prob(D|K) ©)

This suggests that the message length declines as more clusters are generated and hence the
difference between the message lengths of two consecutive mixture models is close to zero
as it approaches its optimum value and stays close to zero. A series of very small values of
the difference of the message length of two consecutive mixture models can then be used as
an indicator that an optimum number of clusters has been found. Further, this difference
can be emphasised by calculating the exponential of the change in message length for
consecutive mixture models, which in essence represents the probability of the model
correctness prob(D | K). If this value remains constant at around 1 for a series of consecutive
mixture models then the first time it reaches this value can be considered to be the optimum
number of clusters.

To illustrate the use of the exponential message length difference curve on determining the
optimal number of clusters for the harmonic monitoring system described in Section 2, the
measured fundamental, 5th and 7th harmonic currents from sites 1, 2, 3 and 4 in Fig.1 (taken
on 12 -19 January 2002) were used as the input attributes to the MML algorithm (here
ACPro). The trend in the exponential message length difference for consecutive pairs of
mixture models is shown in Fig. 17.

Here, the exponential of the message length difference does not remain at 1 after it initially
approaches it, but rather oscillates close to 1. This is because the algorithm applies various
heuristics in order to avoid any local minima that may prevent it from further improving the
message length. Once the algorithm appears to be trapped at the local minima, ACPro tries
to split, merge, reclassify and swap the data in the clusters found so far to determine if by
doing so it may result in a better (lower) message length. This leads to sudden changes to
the message length and more often than not, the software can generate large number of
clusters which are generally not optimum.

This results in the exponential, message length difference deviating away from 1 to a lower
value, after which it gradually returns back to 1. To cater for this, the optimum number of
clusters is chosen when the exponential difference in message length first reaches its highest
value. Using this method, it can be concluded that the optimum number of cluster is 16,
because this is the first time it reaches its highest value close to 1 at 0.9779. With the help of
the operation engineers, the sixteen clusters detected by this exponential method were
interpreted as given in Table 4. It is virtually impossible to obtain these 16 unique events by
visual observation of the waveforms shown in Fig. 18.

62 Theory and Novel Applications of Machine Learning

Exponential of message difference

10°°

Fig. 17. Exponential curve detect sixteen clusters of harmonic data.

Cluster Event

s0 5th harmonic loads at Substation due to Industrial site
sl Off peak load at Substation site
s2 Off peak load at Commercial site
s3 Off peak at load Commercial due to Industrial
s4 Off peak at Industrial site
s5 Off peak at Substation site

s6 and s7 | Switching on and off of capacitor at Substation site
s8 Ramping load at industrial site
s9 Switch on harmonic load at Industrial
s10 Ramping load at Residential site
s11 Ramping load at Commerecial site
s12 Switching on TV’s at Residential site
s13 Switching on harmonic loads at Industrial and Residential
s14 Ramping load at Substation due to Commercial
s15 On peak load at Substation due to Commercial

Table 4. The 16 clusters by the method of exponential difference in message length.

Clustering, Classification and Explanatory Rules from Harmonic Monitoring Data 63

4.5 Classification of the optimal number of clusters in harmonic data

The C5.0 algorithm classification tool was applied to the measured data set and the sixteen
generated clusters, obtained from the previous section, as class labels to this data. The C5.0
algorithm is an advanced supervised learning tool with many features that can efficiently
induce plausible decision trees and also facilitate the pruning process. The resulting models
can either be represented as tree-like structures, or as rule sets, both of which are symbolic
and can be easily interpreted. The usefulness of decision trees, unlike neural networks, is
that it performs classification without requiring significant training, and its ability to
generate a visualized tree, or subsequently expressible and understandable rules.

Substation
Clusters

Clusters

Residential

Commercial
Clusters

Industrial
Clusters

, | ! | 0
0 AM 12:00 PM 12:DE:1AM 12:00 PM 12:00 AM

Time (2 days)

Fig. 18. Sixteen clusters superimposed on four sites (a) Substation, (b) Residential,
(c) Commercial and (d) Industrial.

Two main problems may arise when applying the C5.0 algorithm on continuous attributes
with discrete symbolic output classes. Firstly, the resulting decision tree may often be very
large for humans to easily comprehend as a whole. The solution to this problem is to
transform the class attribute, of several possible alternative values, into a binary set
including the class to be characterised as first class and all other classes combined as the
second class. Secondly, too many rules might be generated as a result of classifying each
data point in the training data set to belong to which recognized cluster. To overcome this
problem, the data is split into ranges instead of continuous data. These ranges can be built
from the average parameters (mean (u), standard deviation (o)) of data distributions as
listed in Table 5 and visualised in Fig. 19.

64

Theory and Novel Applications of Machine Learning

Range Range Name
[0 ,p-2%0] Very Low (VL)
[p-2*0, p-o] Low (L)
[p-o , pto] Medium (M)
[pto ,pt+2%0] High (H)
[p+2%0, 1] Very High (VH)

Table 5. The continuous data is grouped into five ranges.

Very Low

Very High

Normal (0.56951, 0.12993)

Fig. 19. The five regions of Gaussian distribution used to convert the numeric values.

4.6 Rules discovered from the optimum clusters using decision tree

Using the symbolic values (VL, L, M, H and VH) of input attributes (fundamental, 5t and
7th harmonic current) and the binary sets of classes {(s0, other), (s1, other).... (s15, other)}
the C5.0 algorithm has been applied to as much times as the number of clusters (16 times)
to uncover and define the minimal expressible and understandable rules behind each of
the harmonic-level contexts associated with each of the sixteen cluster described in
Section 4.4. Samples of these rules is shown in Table 6 for both s12 which has been
identified as the cluster associated with switching on TV’s at the residential site and s13
which is a cluster encompassing the engagement of other harmonic loads at both
industrial and residential sites. The quality measure of each rule is described by two
numbers (m, n) shown in Table 6, in brackets, preceding the description of each rules,

where:

m: the number of instances assigned to the rule and
n: the proportion of correctly classified instances.

Clustering, Classification and Explanatory Rules from Harmonic Monitoring Data 65

For this process some 66% of the data has been used as the training set and the rest (33%)
was used as test set, as generally the larger proportion of data used in training the better the
result will be, however care needs to be exercised to avoid overtraining. The accuracy of the
test data was reasonably close to that of the training data for most of the clusters. The full
data set was also tested and resulted in the same accuracy level as sample data. Table 7
shows the accuracy levels for cluster s7, s8, s9 and s10. The utilization of these rules on new
data sets is explained in the next section.

Rules for s12 - contains 3 rule(s)

Rule 1 for 512 (513, 0.891) | Rule 2 for 512 (523, 0.874) | Rule 3 for 512 (10, 0.583)

if Fund_I=M if 5th I =VH if5th_ I=H
and 5th [= VH then s12 and 7th I=VH
then sl12 then s12

Rules for s13 - contains 1 rule(s)

Rule 1 for s13 (1,572, 0.622)

if Fund I=M
and bth [=H
then s13

Table 6. The generated Rules by C 5.0 for clusters 12 and 13.

Data sets (January-April)
Cluster ID Training (66%) Testing (33%) Full data
s7 92.52 91.67 90.91
s8 92.11 91.67 91.46
s9 79.04 80.22 79.50
s10 94.55 95.36 94.04

Table 7. Model accuracy levels of training, test data and data sets for the cluster s7-s10.

4.7 The C5.0 rules for prediction of harmonic future data

The generated rules of the C5.0 algorithm used for classifying the optimum clusters have
also been used for prediction. Several available harmonic data from different dates were
used for this purpose. Data of the same period from another year (Jan-Apr 2001) and data
from different time of the year (May-Aug 2002) were used to test the applicability of the
generated rules. The model accuracy (see Fig. 20) for the similar data was considerably high
whereas in different period data it was not always the case. This is due to fact that the
algorithm performs well when the range of training data and test data are the same, but
when these ranges are mismatched then the model will perform poorly and hence the
accuracy of the future data (unseen data during training) will be low.

66 Theory and Novel Applications of Machine Learning

@ Jan-Apr 2002 m Jan-Apr 2001 0 May-Aug 2002

100.00

75.00 -

50.00 -

Model Accuracy

25.00

s9 s10

Cluster

Fig. 20. Prediction Model accuracy levels for the clusters s7-s10 on training and future data.

5. Conclusion

Harmonic data from a harmonic monitoring program in an Australian medium voltage
(MV) distribution system containing residential, commercial and industrial customers has
been analyzed wusing data mining techniques. Unsupervised learning, and in
particular,cluster analysis using MML, which searches for the best model describing the
data using a metric of an encoded message, has been shown to be able to detect anomalies
and identify useful patterns within the monitored harmonic data set. The output of the
clustering process has to be appropriately displayed and interpreted in relation to the
problem domain so that utility engineers can provide the relevant information. The
technique presented in this work allows utility engineers to detect unusual harmonic events
from monitored sites, using clustering, and then to subsequently characterize the obtained
clusters using the classification techniques to infer information about future harmonic
performance at the monitored sites.

The C5.0 algorithm has been used to generate expressible and understandable rules
characterising each cluster without requiring significant data training. The optimal number
of clusters in different types of data sets was investigated using a proposed method based
on the trend of the exponential difference in message length between two consecutive
mixture models. Testing this method using various two-weekly data sets from the harmonic
monitoring data over three year period show that the suggested method is effective in

Clustering, Classification and Explanatory Rules from Harmonic Monitoring Data 67

determining the optimum number of clusters in harmonic monitoring data. The continuous
data has been split into ranges to avoid too many rules that might be generated. The C5.0
algorithms were then used to generate considerable number of rules for classification and
prediction of the optimum clusters.

6. References

Agusta, Y. (2004). Minimum Message Length Mixture Modelling for Uncorrelated and
Correlated Continuous Data Applied to Mutual Funds Classification, PhD Thesis,
Monash University, Clayton, Victoria, Australia.

Asheibi, A., Stirling, D. and Soetanto, D. (2006). Analyzing Harmonic Monitoring Data Using
Data Mining. In Proc. Fifth Australasian Data Mining Conference (AusDM2006),
Sydney, Australia. CRPIT, 61. Peter, C., Kennedy, P.J., Li, J., Simoff, S.J. and
Williams, G.J., Eds., ACS. 63-68.

Cheeseman, P.; Stutz, J. (1996). Bayesian Classification (AUTOCLASS): Theory and Results,
In Advances in Knowledge Discovery and Data Mining, Fayyad, U.; Piatetsky-Shapiro,
G.; Smyth, P.; Uthurusanny, R., eds, pp. 153-180, AAAI press, Menlo Park,
California.

Elphick, S.; Gosbell, V. & Perera, S. (2007). The Effect of Data Aggregation Interval on
Voltage Results, Proceedings of Australasian Universities Power Engineering Conference
AUPECO07, Dec. 2007, Perth, Australia, Paper 15-02

Gosbell, V.; Mannix, D.; Robinson, D. ; Perera, S. (2001) Harmonic Survey of an MV
distribution system, Proceedings of Australasian Universities Power Engineering
Conference, pp. 338-342, 23-26 September 2001, Perth, Australia.

Interlink, Knowledge Network Organising Tool (2007), KNOT, 24 August, 2007.
http/fwww.interlinkinc.net/KNOT.html,

Lamedica, R.; Esposito, G.; Tironi, E.; Zaninelli, D. & Prudenzi, A. (2001) A survey on power
quality cost in industrial customers. Proceedings of IEEE PES Winter Meeting, Vol 2,

pp. 938 - 943.
McLachlan, G. (1992). Discriminant Analysis and Statistical Pattern Recognition, Wiley, New
York.

Oliver, J.; Baxter, R. & Wallace, C. (1996). Unsupervised Learning using MML, Proceedings of
the 13t Int. Confin Machine Learning:(ICML-96), pp. 364-372.

Oliver, J. J. & Hand, D. J. (1994) Introduction to Minimum Encoding Inference, [TR 4-94]
Dept. Statistics. Open University. Walton Hall, Milton Keynes, UK.

Pang, T.; Steinbach, M. & Kumar V. (2006). Introduction to Data Mining, Pearson Education,
Boston.

Robinson, D., “Harmonic Management in MV Distribution System” PhD Thesis, University
of Wollongong, 2003.

Wallace, C.; Boulton D.M. (1968). An information measure for classification The Computer
Journal, Vol 11, No 2, August 1968, pp185-194.

Wallace, C.; Dowe D. (1994). Intrinsic classification by MML - the Snob program, proceeding
of 7th Australian Joint Conf. on Artificial Intelligence, World Scientific Publishing Co.,
Armidale, Australia,1994.

Wallace, C. (1998). Intrinsic Classification of Spatially Correlated Data, The Computer Journal,
Vol. 41, No. 8.

68 Theory and Novel Applications of Machine Learning

Zulli, P.; Stirling, D. (2005) "Data Mining Applied to Identifying Factors Affecting Blast
Furnace Stave Heat Loads," Proceedings of the 5th European Coke and Ironmaking
Congress.

5

Discriminative Cluster Analysis

Fernando De la Torre and Takeo Kanade
Robotics Institute, Carnegie Mellon University
5000 Forbes Avenue Pittsburgh

USA

1. Introduction

Clustering is one of the most widely used statistical methods in data analysis (e.g.
multimedia content-based retrieval, molecular biology, text mining, bioinformatics).
Recently, with an increasing number of database applications that deal with very large high
dimensional datasets, clustering has emerged as a very important research area in many
disciplines. Unfortunately, many known algorithms tend to break down in high
dimensional spaces because of the sparsity of the points. In such high dimensional spaces
not all the dimensions might be relevant for clustering, outliers are difficult to detect, and
the curse of dimensionality makes clustering a challenging problem. Also, when handling
large amounts of data, time complexity becomes a limiting factor.

There are two types of clustering algorithms: partitional and hierarchical (Jain et al., 1999).
Partitional methods (e.g. k-means, mixture of Gaussians, graph theoretic, mode seeking)
only produce one partition of the data; whereas hierarchical ones (e.g single link, complete
link) produce several of them. In particular, k-means (MacQueen, 1967) is one of the
simplest unsupervised learning algorithms that has been extensively studied and extended
(Jain, 1988). Although k-means is a widely used technique due to its ease of programming
and good performance, it suffers from several drawbacks. It is sensitive to initial conditions,
it does not remove undesirable features for clustering, and it is optimal only for hyper-
spherical clusters. Furthermore, its complexity in time is O(nkl) and in space is O(k), where n
is the number of samples, k is the number of clusters, and I the number of iterations. This
degree of complexity can be impractical for large datasets.

To partially address some of these challenges, this papers proposes Discriminative Cluster
Analysis (DCA). DCA jointly performs clustering and dimensionality reduction. In the first
step, DCA finds a low dimensional projection of the data well suited for clustering by
encouraging preservation of distances between neighboring data points belonging to the
same class. Once the data is projected into a low dimensional space, DCA performs a ”soft”
clustering of the data. Later, this information is feedback into the dimensionality reduction
step until convergence. Clustering in the DCA subspace is less prone to local minima, noisy
dimensions that are irrelevant for clustering are removed, and clustering is faster to
compute (especially for high dimensional data). Recently, other researchers (Ding & Li.,
2007), (Ye et al., 2007) have further explored advantages of discriminative clustering
methods versus generative approaches.

70 Theory and Novel Applications of Machine Learning

2. Previous work

This section reviews previous work on k-means, spectral methods for clustering, and linear
discriminant analysis in a unified framework.

2.1 k-means and spectral graph methods: a unified framework

k-means (MacQueen, 1967; Jain, 1988) is one of the simplest and most popular unsupervised
learning algorithms used to solve the clustering problem. Clustering refers to the partition of
n data points into c disjoint clusters. k-means clustering splits a set of 1 objects into ¢ groups
by maximizing the between-cluster variation relative to within-cluster variation. In other
words, k-means clustering finds the partition of the data that is a local optimum of the
following energy function:

J(ml""amc)zz Z ||dj_ml||% (1.1)

i=1 jeC;

where d; (see notation?) is a vector representing the j data point and m; is the geometric
centroid of the data points for class i. The optimization criterion in eq. (1.1) can be rewritten
in matrix form as:

Ei(M,G) = |[D-MG/||r subject toGl. =1, and g; € {0,1} (1.2)

where G is an indicator matrix, such that Z; g;;=1, gij € {0,1} and g;;is 1 if d; belongs to class
j, ¢ denotes the number of classes and 7 is the number of samples. M € R*“ is the matrix
containing all the means for each cluster. The columns of D € R**" contain the original data
points, and refers to the number of features. The equivalence between the k-means error
function of eq. (1.1) and eq. (1.2) is only valid if G strictly satisfies the constraints.

The k-means algorithm performs coordinate descent in E{(M,G). Given the actual value of
the means M, the first step finds, for each data point d;, the value of g/ minimizing eq. (1.2)

subject to the constraints. The second step optimizes M= DG(G'G)™, which effectively
computes the mean of each cluster. Although it can be proven that alternating these two
steps will always converge, the k-means algorithm does not necessarily find the optimal
configuration of all possible assignments. The algorithm is significantly sensitive to the

1 Bold capital letters denote matrices D, and bold lower-case letters signify a column vector
d. d; represents the j column of the matrix D. d is a column vector that designates the j-th
row of the matrix D. All non-bold letters refer to scalar variables. d; ; corresponds to the
scalar in the row i and column j of the matrix D, as well as the i-th element of a column
vector d; . diag is an operator that transforms a vector into a diagonal matrix or transforms
the diagonal of a matrix into a vector. vec vectorizes a matrix into a vector. 1y € R is a
vector of ones. Iy e R denotes the identity matrix. || d || 2 denotes the norm of the vector d.
tr(A) = X;a;is the trace of the matrix A, and | A | denotes the determinant. || A | r= tr(A’A) =
tr(AA") designates the Frobenious norm of matrix A. Ni(x;y,Z) indicates a d-dimensional
Gaussian on the variable x with mean y and covariance Z. o denotes the Hadamard or point-
wise product.

Discriminative Cluster Analysis 71

initial randomly selected cluster centers. It is typically run multiple times, and the solution
with less error is chosen. Despite these limitations, the algorithm is used frequently as a
result of its easiness of implementation and effectiveness.

After optimizing over M, eq. (1.2), can be rewritten as:

E»(G) = |ID-DG(G'G)~'G"||p =tr(D"D)

_r((GTG)~'GTDTDG) > £ ,

(1.3)

where); are the eigenvalues of D'D. Minimizing E»(G), eq. (1.3), is equivalent to
maximizing t((G'G) 'G'D'DG). Ignoring the special structure of G and considering g; in
the continuous domain, the optimum G value is given by the eigenvectors of the Gram
i
reasoning has been reported by (Ding & He, 2004; Zha et al., 2001), demonstrating that a
lower bound of Ex(G), eq. (1.3), is given by the sum of residual eigenvalues. The continuous
solution of G lies in the c—1 subspace, spanned by the first c-1 eigenvectors with highest
eigenvalues (Ding & He, 2004) of D'D.

Finally, it is worthwhile to point out the connections between k-means and standard spectral
graph algorithms (Dhillon et al., 2004), such as Normalized Cuts (Shi & Malik, 2000), by
means of kernel methods. The kernel trick is a standard method for lifting the points of a
dataset to a higher dimensional space, where points are more likely to be linearly separable
(assuming that the correct mapping is found). Consider a lifting of the original points to a
higher dimensional space, I' = [¢(d1) @(dy) ...#(d,)] where ¢ represents a high dimensional
mapping. The kernelized version of eq. (1.2) is:

matrix D'D. The error of E; with the optimal continuous G is E; =Y Ai. A similar

E3(M,G) = ||(I' —MG")W||£ (1.4)

in which we introduce a weighting matrix W for normalization purposes. Eliminating M=
TWW'G(G"™WW'G)™, it can be shown that:

E; o< tr((GTWWTG) 'GTWWI T TTWWT G) (1.5)

where T''Tis the standard affinity matrix in Normalized Cuts (Shi & Malik, 2000).
After a change of variable Z = G'W, the previous equation can be expressed as
Es(Z) o tr((ZZ")'ZW'T "TWZ"). Choosing W = diag(I' 'T 1,1)7% the problem is equivalent to
solving the Normalized Cuts problem. This formulation is more general since it allows for
arbitrary kernels and weights. In addition, the weight matrix can be used to reject the
influence of pairs of data points with unknown similarity (i.e. missing data).

2.2 Linear discriminant analysis

The aim of LDA is to find a low dimensional projection, where the means of the classes are
as far as possible from each other, and the intra-class variation is small. LDA can be
computed in closed form using the following covariance matrices, conveniently expressed in
matrix form (de la Torre & Kanade, 2005):

72 Theory and Novel Applications of Machine Learning

/S =Y (d;—m)(d;—m)" =DP,D”
j=1

fSw=Y Y (dj—m)(d;—m,)" =DP,D"
[:ldjECi

5
Sy = Zni(mi—m)(m,-—m)r =DP;D’
i=1

where f = n—1, and P/s are projection matrices (i.e. P/ = P; and P? = P;) with the following
expressions:

P :1—11,11,{ P, =1-G(G'G)"'G’ P3=G(GTG)—1GT—11,,1,{ (1.6)
n n

Sy is the between-class covariance matrix and represents the average distance between the
mean of the classes. S, is the within-class covariance matrix and it is a measure of the
average compactness of each class. Finally, S;is the total covariance matrix. Through these
matrix expressions, it can be easily verified that S; = S,, +S;. The upper bounds on the ranks
of the matrices are min(c—1,d), min(n- c,d), min(n-1,d) for Sy, S, and S;respectively.

LDA computes a linear transformation of the data B € ®R** that maximizes the distance
between class means and minimizes the variance within clusters. Rayleigh like quotients are
among the most popular LDA optimization criterion (Fukunaga, 1990). For instance, LDA
can be obtained by minimizing;:

E>(B) = tr((B"S;B) 'B”S;B) (1.7)

where several combinations of S; and S; matrices lead to the same LDA solution (e.g. S1 =
{S1,S1,S¢} and Sz = {Sw,S:,Sx}). The Rayleigh quotient of eq.(1.7) has a closed-form solution in
terms of a Generalized Eigenvalue Problem (GEP), S;B = S;BA (Fukunaga, 1990). In the case
of high-dimensional data (e.g. images) the covariance matrices are not likely to be full rank
due to the lack of training samples and alternative approaches to compute LDA are needed.
This is the well-known small sample size (SSS) problem. There are many techniques to solve
the GEP when S; and S; are rank deficient, see (Zhang & Sim, 2007; Ye, 2005) for a recent
review. However, solving LDA with standard eigensolvers is not efficient (neither space or
nor time) for large amounts of high dimensional data. Formulating LDA as a leastsquares
problem suggests efficient methods to solve LDA techniques. Moreover, a least-squares
formulation of LDA facilitates its analysis and generalization.

Consider the following weighted between-class covariance matrix S, = DGGTDT =

1 (%)zmim?, that favors classes with more samples. m;is the mean vector for class i, and

we assume zero mean data (i.e. m = % D1,). Previous work on neural networks (Gallinari et
al., 1991; Lowe & Webb, 1991) have shown that maximizing J4(B) = t((BTS,B)(BT SB)™") is
equivalent to minimizing;:

E4(B,V) =||G" — VB'D||r > —tr((B"DD"B)"'B"DGG’ D' B) (1.8)

This approach is attractive because (Baldi & Hornik, 1989) have shown that the surface of eq.
(1.8) has a unique local minima, and several saddle points.

Discriminative Cluster Analysis 73

3. Discriminative cluster analysis

In the previous section, we have provided a least-squares framework for LDA (supervised
dimensionality reduction) and k-means (unsupervised clustering). The aim of DCA is to
combine clustering and dimensionality reduction in an unsupervised manner. In this
section, we propose a least-squares formulation for DCA.

3.1 Error function for LDA and DCA

The key aspect to simultaneously performing dimensionality reduction and clustering is the
analysis of eq. (1.8). Ideally we would like to optimize eq. (1.8) w.r.t. B and G. However,
directly optimizing eq. (1.8) has several drawbacks. First, eq. (1.8) biases the solution
towards classes that have more samples because it maximizes Sb = DGG'D’ = le (%)2
(m;)(m;)". Secondly, eq. (1.8) does not encourage sparseness in G if g; > 0. That is, assuming
that C = B'D € R, then eq. (1.8) is equivalent to Es = t(G'G)-t7(G'C" (CC")'CG). If g;; ¥
i, j is positive, minimizing the first term, t7(G'G), does not encourage sparseness in g’ Vi (g’
represents the i" row of G, see notation).

In this section, we correct eq. (1.8) to obtain the unbiased LDA criterion by normalizing E, as
follows:

Es(B,V,G) = ||(G’G) *(G” — VB'D)|| (19)

1
where (G'G)™ 2 is the normalization factor. After eliminating V, eq. (1.9) can be written as:

Es(B,G) = ||(G"G):G" (I, - €T (cC")~'C)||F

< 1r((BT DD’ B)"'BT DG(G'G)"'G' D’ B) (1.10)
18]:Srh

If G is known, eq. (1.10) is the exact expression for LDA.

Eq. (1.10) is also the basis for DCA. unlike LDA, DCA is an unsupervised technique and G
will be a variable to optimize, subject to the constraints that g;; € {0,1}, and G1.=1,. DCA
jointly optimizes the data projection matrix B and the indicator matrix G.

3.2 Updating B
The optimal B given G can be computed in closed form by solving the following GEP:

DRD’B =DD'BA; where R=G(G'G)™'G” (1.11)

There are many methods for efficiently solving the GEP in the case of highdimensional data
when (d >> n) (de la Torre et al., 2005; Zhang & Sim, 2007; Ye, 2005). In this section, we

propose a regularized stable closed form solution. Assuming D'D is full rank, computing

(D'D)™" can be a numerically unstable process, especially if D'D has eigenvalues close to
zero. A common method to solve ill-conditioning is to regularize the solution by factorizing

¥ = D'D as the sum of the outer products plus a scaled identity matrix, i.e. £~ VAV +c°Id.

V e 7% A e R is a diagonal matrix. The parameters o>, V and A are estimated by
minimizing:

74 Theory and Novel Applications of Machine Learning

E.(V,A,0%) =||Z-VAVT —6%1L,||F (1.12)

After optimizing over V,A,6% it can be shown (de la Torre & Kanade, 2005) that: o =
tr(z -VA VT)/d -k, A= A -6°1,;, where A is a matrix containing the eigenvalues of the
covariance matrix X and V the eigenvectors. This expression is equivalent to probabilistic
PCA (Moghaddam & Pentland, 1997; Roweis & Ghahramani, 1999; Tipping & Bishop, 1999).
After the factorization, the matrix inversion lemma (Golub & Loan, 1989) (A +VC'Vv') ™" =
A-AV(C+VTAV)'V'A is applied to invert (VAV” +6°L,) ", which results in:

1 1

I
T, 21 y-1_ _ n
(VAV' +0°L) ™" = — (-

-1 -1
5 VAT +)7V
Now, solving (I, — glz'V(A71 + %)_IVT)RDTDOC = A becomes a better conditioned
problem.
The number of bases (k) are bounded by the number of classes (c), because the rank(DRD")
= ¢. We typically choose c—1 to be consistent with LDA. Moreover, the best clustering results

are achieved by projecting the data into a space of c—1 dimensions. Also, observe that there
is an ambiguity in the result, because for any invertible matrix Ty € R, E5(B) = E5(BT}).

3.3 Optimizing G
Let A=C'(CC")™'C € ®"", where C = B'D, then eq. (1.10) can be rewritten as:

Es5(G) < tr((GTG)'GTAG) (1.13)

Optimizing eq. (1.13) subject to g;; € {0,1} and G1. =1, is an NP complete problem. To make
it tractable, we relax the discrete constraint on g; j allowing to take values in the range (0,1).
To use a gradient descent search mechanism, we parameterize G as the Hadamard
(pointwise) product of two matrices G = VoV (Liu & Yi, 2003), and use the following
updating scheme:

vl =yn_q 9Es(G)

av

9E(G) — (I, — G(G"G)"'GT)AG(GTG) 1oV

(1.14)

The increment of the gradient, n, in eq. (1.14) is determined with a line search strategy
(Fletcher, 1987). To impose G1. = 1, in each iteration, V is normalized to satisfy the
constraint. Because eq. (1.14) is prone to local minima, this method starts from several
random initial points and selects the solution with smallest error.

This optimization problem is similar in spirit to recent work on clustering with non-negative
matrix factorization (Zass & Shashua, 2005; Ding et al., 2005; Lee & Seung, 2000). However,
we optimize a discriminative criterion rather than a generative one. Moreover, we
simultaneously compute dimensionality reduction and clustering, using a different
optimization technique.

3.4 Initialization

At the beginning, neither G nor B are known, but the matrix G(GTG)_lGT can be estimated
from the available data. Similar to previous work (He & Niyogi, 2003), we compute an

Discriminative Cluster Analysis 75

estimate of a local similarity matrix, G(G'G)"'G" e®R"", from data.We assume that (G'G)

sI,, so that all classes are equally distributed and s is the number of samples per class. R = %
GG/ is a hard-affinity matrix, where r; ; will be 1 if d; and d, are considered neighbors (i.e.
belong to the same class). R can be estimated by simply computing the k nearest neighbors
for each data point using the Euclidian distance. To make R symmetric, if d;is within the k-
neighborhood of d;, but not the contrary, then its similarity is set to zero. Figure 1.5.b shows
an estimate of R for 15 subjects in the ORL database. Each subject (class) has ten samples

and for each sample the nearest nine neighbors are selected. The samples are ordered by
class. After factorizing R = USU”, we normalize R as R~ U.U |, where U* € R"* are the first

c eigenvectors of R. R is the initial neighbor matrix.

3.5 Interpreting the weighted covariance matrix

A key aspect to understand DCA is the interpretation of the weighted covariance matrix
DRD” =y7 | Yi-ih jdidJT-. Principal Component Analysis (PCA) (Jolliffe, 1986) computes
a basis B that maximizes the variance of the projected samples, i.e. PCA finds an
orthonormal basis that maximizes ¢+(BTDD’B)=Y"_, ||B”d;||3. The PCA solution B is

given by the eigenvectors of DD" . Finding the leading eigenvectors of DRD' is equivalent to
maximizing tr(B'DRD’B)=Y" Y7 r;;d’BB’d;. If R = I, it is equivalent to standard
PCA. However, if R is G(G'G)'G”, where G is the indicator matrix (or an approximation),
the weighted covariance only maximizes the covariance within each cluster. This effectively
maximizes the correlation between each pair of points in the same class. Figure 1.1 shows a
toy problem with two oriented Gaussian classes. The first eigenvector in PCA finds a
direction of maximum variance that does not necessarily correspond to maximum
discrimination. In fact, by projecting the data into the first principal component, the clusters
overlap. If R is the initial matrix of neighbors, the first step of DCA finds a more suitable
projection that maximizes class separability (see fig. 1.1).

Fig. 1.1 Two class toy problem. PCA, WPCA, and DCA projections in one dimensional space.

76 Theory and Novel Applications of Machine Learning

4. Experiments

This section describes three experiments using synthetic and real data that demonstrate the
effectiveness of DCA for clustering.

4.1 Clustering with DCA

In the first experiment, we show how the DCA error function is able to correctly cluster
oriented clusters.

Consider the DCA optimization expression, eq. (1.10), when B = I, (i.e. no projection); in this
case, eq. (1.10) becomes tr((G'G)'G'D" (DD’)'DG). This error function, due to the term

(DD")™, provides affine invariance to clustering. To illustrate this property, we have
generated three examples of three two-dimensional random Gaussian clusters. Figure 1.2.a
shows three clusters of 300 samples each, generated from three two-dimensional Gaussians:
Na(x; [-4;3],0.2515), Na(x;-[4;2],0.251) and Na(x; [7,;3],0.2512). Similarly, fig. 1.2.b illustrates 300
samples generated from three two-dimensional Gaussians Na(x; [-10;-10],0.25I2) , Na(x;
[10;-5],0.25I,) and Na(x; [30;15],0.25I,). Analogously, fig. 1.2.c shows Na(x;-[4;3],2[1 0.8;0.1
1]), Na(x;-[4;2],0.25[1 0.8;0.1 1]) and Na(x; [3;3],0.25[1 0.8;0.1 1]).

5 0 10

I . T ¥
! g s ol { o e

Ah‘.:' . 1 | _ .

:‘T'".

L X 4

Fig. 1.2 Three examples of three two-dimensional Gaussian clusters.

We run DCA and k-means with the same random initialization and let both algorithms
converge. To compute the accuracy of the results for a c cluster case, we compute a c-by-c
confusion matrix C, where each entry c;;is the number of data points in cluster i that belong
to class j. It is difficult to compute the accuracy by strictly using the confusion matrix C,
because it is unknown which cluster matches with which class. An optimal way to solve this
problem is to compute the following maximization problem (Zha et al., 2001; Knuth, 1993):

max tr(CP) | P is a permutation matrix (1.15)

To solve eq. (1.15), we use the classical Hungarian algorithm (Knuth, 1993). Table (1.2)
shows the clustering accuracy for the three examples described above. We run the
algorithms 1000 times from different random initializations (same for k-means and DCA).

k-means DCA

Fig. 1.2.a{0.713£0.23%)0.990+0.05%
Fig. 1.2.b|0.5264+0.07%|0.959+0.09%
Fig. 1.2.¢{0.594+0.13%)0.9741-0.06%

Table 1.1 Comparison of clustering accuracy for DCA and k-means.

As we can see from the results in table 1.1, DCA is able to achieve better clustering results
starting from the same initial condition as k-means. Moreover, DCA results in a more stable

Discriminative Cluster Analysis 77

(less variance) clustering. k-means clustering accuracy largely degrades when two clusters
are closer together or the clusters are not spherical. DCA is able to keep the accuracy even
with oriented clusters (fig. 1.2.c).

4.2 Removing undesirable dimensions
The second experiment demonstrates the ability of DCA to deal with undesired dimensions

not relevant for clustering. A synthetic problem is created as follows: 200 samples from a
two-dimensional Gaussian distribution with mean [-5,-5] and another 200 samples from
another Gaussian distribution with mean [5,5] are generated (x and y dimensions). We add a
third dimension generated with uniform noise between [0,35] (z dimension). Figure 1.3
shows 200 samples of each class in the original space (fig. 1.3.a), as well as the projection
(fig. 1.3.b) onto x and y. The k-means algorithm is biased by the noise (fig. 1.4.a). Similarly,
projecting the data into the first two principal components also produces the wrong
clustering because PCA preserves the energy of the uniform noise, which is not relevant for
clustering. However, DCA is able to remove the noise and achieve the correct clustering as
evidenced in fig. 1.4.b. In this particular example 15 neighbors were initially selected and

B c R**2

. -\"'7-7‘ L 1 1 1
10 a0 -8 6 4 2 0 2 4 6 8
X

Fig. 1.4 a) k-means clustering. b) DCA clustering,.

78 Theory and Novel Applications of Machine Learning

4.3 Clustering faces
The final experiment shows results on clustering faces from the ORL face database

(Samaria & Harter, 1994). The ORL face database is composed of 40 subjects and 10
images per subject. We randomly selected c subjects from the database and add the 10

images for each subject to D e R*'" (e.g. fig. 1.5.a). Afterwards, we compute PCA,
weighted PCA (WPCA), PCA+LDA (preserving 95% of the energy in PCA), and DCA.
After computing PCA, WPCA (with the initial matrix R), and PCA+LDA, we run the k-
means algorithm 10 times and the solution with smallest error is chosen. This procedure is
repeated 40 times for different number of classes (between 4 and 40 subjects). To perform
a fair comparison, we project the data into the number of classes minus ones (c-1)
dimensions for all methods.

Fig. 1.5 a) Some faces of the ORL data base. b) Estimate of R for 15 clusters (people), each
cluster has 10 samples. The samples are ordered by clusters.

c| PCA |WPCA| DCA |PCA+LDA
4 |73+0%| 1+£0% [87+2%| 1+0%
10|88+6%|95+6%|97+4% | 88+8%
15|86+£5%|88+4%|96+1% | 82+6%
20|80+£4%|84+4%|87+2% | 83+4%
25|77£3%|80+4%|87+2% | 80+4%
30(75+3%|794+3%(81+3%| 81+4%
35\73+4%|77+3%|78+4%| 81+3%
40|714+2%|74+3%|73+3%| 80+4%

Table 1.2 Comparison of the clustering accuracy for several projection methods (same
number of bases).

Fig. 1.6 shows the accuracy in clustering for PCA+k-means versus DCA. For a given number
of clusters, we show the mean and variance over 40 realizations. DCA always outperforms
PCA+k-means. Table 1.2 shows some numerical values for the clustering accuracy. DCA
outperforms most of the methods when there are between 5 and 30 classes. For more classes,
PCA+LDA performs marginally better. In addition, the accuracy of the PCA+k-means
method drops as the number of classes increases (as expected).

Discriminative Cluster Analysis 79

1.05 T T T T T T T

TH] 4TI T s '

i

09 - : _IIIII_III . |
i e

0.65 L ' L 1 L L '
5 10 15 20 25 30 35 40

Number of clusters (classes)
Fig. 1.6 Accuracy of clustering versus the number of classes. Blue PCA and red DCA (dotted
line).

5. Discussion and future work

In this paper, we have proposed DCA, a technique that jointly performs dimensionality
reduction and clustering. In synthetic and real examples, DCA outperforms standard k-
means and PCA+k-means, for clustering high dimensional data. DCA provides a
discriminative embedding that minimizes cluster separation and is less prone to local
minima. Additionally, we have proposed an unbiased least-squares formulation for LDA.
Although DCA has shown promising preliminary results, several issues still need to be
addressed. It remains unclear how to select the optimal number of clusters. Several model
order selection (e.g. Minimum Description Length or Akaike information criterion) could be
applied towards this end. On the other hand, DCA assumes that all the clusters have the
same orientation (not necessarily spherical). This limitation could be easily address by using
kernel extensions of eq. (1.10) to deal with non-Gaussian clusters.

6. Acknowledgements

This work has been partially supported by NIH R01 51435 from the National Institute of
Mental Health, N000140010915 from the Naval Research Laboratory, the Department of the
Interior National Business Center contract no. NBCHDO030010, and SRI International
subcontract no. 03-000211.

7. References

Baldi, P., & Hornik, K. (1989). Neural networks and principal component analysis: Learning
from examples without local minima. Neural Networks, 2, 53-58.

de la Torre, F., Gross, R, Baker, S., & Kumar, V. (2005). Representational oriented
component analysis for face recognition with one sample image per training class.
Computer Vision and Pattern Recognition.

de la Torre, F., & Kanade, T. (2005). Multimodal oriented discriminant analysis. International
Conference on Machine Learning (pp. 177-184).

80 Theory and Novel Applications of Machine Learning

Dhillon, I. S., Guan, Y., & Kulis, B. (2004). A unified view of kernel k-means, spectral
clustering and graph partitioning. UTCS Tech. Report TR-04-25.

Ding, C., & He, X. (2004). K-means clustering via principal component analysis. International
Conference on Machine Learning (pp. 225-232).

Ding, C., He, X., & Simon, H. (2005). On the equivalence of nonnegative matrix factorization
and spectral clustering. Siam International Conference on Data Mining (SDM).

Ding, C., & Li., T. (2007). Adaptive dimension reduction using discriminant analysis and k-
means clustering. International Conference on Machine Learning.

Fletcher, R. (1987). Practical methods of optimization. John Wiley and Sons.

Fukunaga, K. (1990). Introduction to statistical pattern recognition, second edition. Academic
Press.Boston, MA.

Gallinari, P., Thiria, S., Badran, F., & Fogelman-Soulie, F. (1991). On the relations between
discriminant analysis and multilayer perceptrons. Neural Networks, 4, 349-360.

Golub, G., & Loan, C. F. V. (1989). Matrix computations. 2nd ed. The Johns Hopkins
University Press.

He, X.,, & Niyogi, P. (2003). Locality preserving projections. Neural Information Processing Systems.

Jain, A., Murty, M., & Flynn, P. (1999). Data clustering: A review. ACM Computing Surveys.

Jain, A. K. (1988). Algorithms for clustering data. Prentice Hall.

Jolliffe, I. T. (1986). Principal component analysis. New York: Springer-Verlag.

Knuth, D. E. (1993). The standford graphbase. Addison-Wesley Publishing Company.

Lee, D., & Seung, H. (2000). Algorithms for non-negative matrix factorization. Neural
Information Processing Systems (pp. 556-562).

Liu, W., & Yi,]J. (2003). Existing and new algorithms for nonnegative matrix factorization.
University of Texas at Austin.

Lowe, D. G., & Webb, A. (1991). Optimized feature extraction and the bayes decision in
feed-forward classifier networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 355-364.

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate
observations. 5-th Berkeley Symposium on Mathematical Statistics and Probability.
Berkeley, University of California Press. (pp. 1:281-297).

Moghaddam, B., & Pentland, A. (1997). Probabilistic visual learning for object
representation. Pattern Analysis and Machine Intelligence, 19, 137-143.

Roweis, S., & Ghahramani, Z. (1999). A unifying review of linear gaussian models. Neural
Computation, 11, 305-345.

Samaria, F., & Harter, A. (1994). Parameterization of a stochastic model for human face
identification. Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision.

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22, 888-905.

Tipping, M., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the
Royal Statistical Society B, 61, 611-622.

Ye, J. (2005). Generalized low rank approximation of matrices. Machine Learning.

Ye, J., Zhao, Z., &Wu., M. (2007). Discriminative k-means for clustering. Advances in Neural
Information Processing Systems.

Zass, R., & Shashua, A. (2005). A unifying approach to hard and probabilistic clustering.
International Conference on Computer Vision. Beijing.

Zha, H., Ding, C., Gu, M., He, X., & Simon., H. (2001). Spectral relaxation for k-means
clustering. Neural Information Processing Systems (pp. 1057-1064).

Zhang, S., & Sim, T. (2007). Discriminant subspace analysis: A fukunaga-koontz approach.
PAMI, 29, 1732-1745.

6

Influence Value Q-Learning: A Reinforcement
Learning Algorithm for Multi Agent Systems'

Dennis Barrios-Aranibar and Luiz M. G. Gongalves
Universidade Federal do Rio Grande do Norte
Brazil

1. Introduction

The idea of using agents that can learn to solve problems became popular in the artificial
intelligence field, specifically, in machine learning technics. Reinforcement learning (RL) is
part of a kind of algorithms called Reward based learning. The idea of these algorithms is not
to say to the agent what the best response or strategy, but, indicate what the expected result
is, thus, the agent must discover what is the best strategy for obtaining the desired result.
Reinforcement learning algorithms calculate a value function for state predicates or for
state-action pairs, having as goal the definition of a policy that best take advantage of these
values.

Q-learning (Watkins, 1989) is one of the most used reinforcement learning algorithms. It was
widely applied in several problems like learning in robotics (Suh et al., 1997, Gu & Hu,
2005), channel assignment in mobile communication systems (Junhong & Haykin, 1999), in
the block-pushing problem (Laurent & Piat, 2001), creation of electricity supplier bidding
strategies (Xiong et al. 2002), design of intelligent stock trading agents (Lee et al., 2004),
design of a dynamic path guidance system based on electronic maps (Zou et al., 2005),
mobile robots navigation (Barrios-Aranibar & Alsina, 2004; Tanaka et al., 2007), energy
conservation and comfort in buildings (Dalamagkidis et al., 2007), resource allocation
(Usaha & Barria, 2007; Vengerov, 2007), and others.

In the other hand, the use of multi-agent systems became popular in the solution of
computacional problems like e-commerce (Chen et al., 2008), scheduling in transportation
problems (Mes et al., 2007), estimation of energy demand (Toksari, 2007), content based
image retrieval (Dimitriadis et al., 2007), between others; and in the solution of problems
involving robots like mail sending using robots (Carrascosa et al., 2008), rescue missions
(Rooker & Birk, 2005), mapping of structured environments (Rocha et al., 2005), and others.
Also, Q-learning and derived algorithms were applied in multi-agent problems too. For
example a fuzzy Q-learning was applied to a multi-player non-cooperative repeated game
(Ishibuchi et al., 1997), a hierarchical version of Q-learning (HQL) was applied to learn both
the elementary swing and stance movements of individual legs as well as the overall
coordination scheme to perform forward movements on a six legged walking machine

1 This work is supported by Conselho Nacional de Desenvolvimento Cientifico e
Tecnolégico CNPq/ Brasil

82 Theory and Novel Applications of Machine Learning

(Kirchner, 1997), a modular Q-learning was applied to multi-agent cooperation in robot
soccer (Park et al., 2001), Q-learning was independently applied in a group of agents making
economic decisions (Tesauro & Kephart, 2002), and others.

However, when applying Q-Learning to a multi-agent system (MAS), it is important to note
that this algorithm was developed for single agent problems. Thus, application of it in MAS
problems can be made in several forms. They can be grouped in four paradigms: Team
learning, independent learning, joint action learning and influence value learning. The last
proposed by authors in previous works (Barrios-Aranibar & Gongalves, 2007a; Barrios-
Aranibar & Gongalves, 2007b; Barrios-Aranibar & Gongalves, 2007c).

In this work authors explain the so called IVQ-learning algorithm, which is an extension of
the Q-learning algorithm using the concepts of the influence value learning paradigm. In
this sense, this chapter is organized as follows: In section 2 we explain the Q-learning
algorithm and analyse some extension to it, in section 3 we discuss the four paradigms of
application of reinforcement learning in MAS, specially focused in the extensions to Q-
learning algorithm, in section 4 we present our algorithm called IVQ-learning and, in
section 5 all results of using this algorithm obtained until now are resumed. Finally,
conclusions and trends for future works are discussed in section 6.

2. Q-learning

Q-learning is a temporal difference algorithm, where the agent learn independently the
action selection policy it is executing. It is important to note that the policy still has an effect
in that it determines which state-action pairs are visited and updated. However, all that is
required for correct convergence is that all pairs continue to be updated. (Sutton and Barto,
1998). The basic form of the equation for modifying state-action pair value is given by
equation 1.

O(s(1),a(®)) <= O(s(),a() +a(r(t+1)+

ymax[Q(s(t +1),a)] - O(s(), a(?))) 2

where Q(s(t),a(t)) is the value of action a(t) executed by the agent, « is the learning rate
(0<a<1), yis the discount rate (0<y<1), r(t+1) is the instantaneous reward obtained by the
agent and A is the set of actions agent can execute.

In equation 1 can be observed that algorithm updates states action pairs using the maximum
of the values of actions of possible next state. The last can be verified in the backup diagram
showed in figure 1. Q-learning algorithm is showed in algorithm 1.

Fig. 1. Backup Diagram of the Q-Learning Algorithm (Source: Sutton & Barto, 1998)

Influence Value Q-Learning: A Reinforcement Learning Algorithm for Multi Agent Systems 83

Algorithm 1. Q-learning algorithm

Require: Initialize Q(s,a) with arbitrary values
for all episodes do
Initialize s(0)
t <0
repeat
Choose action a(t) in state s(t), using a policy derived from Q
Execute action a(t), observe r(t +1) and s(t +1)

O(s(2),a(1)) « O(s(1),a@®)) + a(r(t+ 1)+
y max[O(s(z +1),a)] = O(s(2),a(?)))
te—t+1

until 5(t) being a terminal state
end for

Watkins and Dayan proved the convergence of this algorithm when the sequence of
episodes that forms the basis of learning include an infinite number of episodes for each
starting state and action (Watkins & Dayan, 1992). Also, Tsitsiklis proved its convergence
over more general conditions (Tsitsiklis, 1994).

Several extensions of this algorithm were proposed. Extensions generally aim to overpass
some drawbacks that appear when Q-learning algorithms are applied to specific fields or
kind of problems. Some of this extensions include, but are not limited to:

1.

The FQ-Learning (Berenji, 1994), which is a Fuzzy Q-Learning algorithm for decision
processes in which the goals and/or the constraints, but not necessarily the system
under control, are fuzzy in nature.

The QLASS algorithm (Murao & Kitamura, 1997), which is a Q-learning algorithm with
adaptive state segmentation specially created for learning robots that need to construct
a suitable state space without knowledge of the sensor space.

The Region-based Q-learning (Suh et al., 1997), which was developed for using in
continuous state space applications. the method incorporates a region-based reward
assignment being used to solve a structural credit assignment problem and a convex
clustering approach to find a region with the same reward attribution property.

The Bayesian Q-learning (Dearden et al., 1998), which is a learning algorithm for
complex environments that aims to balance exploration of untested actions against
exploitation of actions that are known to be good.

The kd-Q-learning (Vollbrecht, 2000), which is an algorithm for problems with
continuous state space. It approximates the quality function with a hierarchic
discretization structure called kd-tree.

The SQ-learning (Kamaya et al., 2000), which is memoryless approach for reinforcement
learning in partially observable environments.

The Continuous-Action Q-Learning (Millan et al., 2002), a Q-learning method that
works in continuous domains. It uses an incremental topology preserving map (ITPM)
to partition the input space, and incorporates a bias to initialize the learning process.
The SA-Q-learning (Maozu et al. 2004), where the Metropolis criterion of simulated
annealing algorithm is introduced in order to balance exploration and exploitation of Q-
learning.

84 Theory and Novel Applications of Machine Learning

3. Q-learning in multi agent systems

As explained in section 2, sometimes it is necessary to extend the Q-learning algorithm in
order to overpass some problemas that appear when developers try to apply it in some
fields. When applying it in multi-agent systems the same occurs.

Specifically, two problems appear, the size of the state space and the convergence capacity
of the algorithm. The first problem is related to the fact that agents position in the
environment must be part of the state in the system. Thus, when the number of agents
increase, the size of the state space increase too and the problem can became
computationally intractable. The second problem is related to the fact that Q-learning
algorithm and almost all traditional reinforcement learning algorithms were created for
problems with one agent, thus, convergence is not assured when these algorithms are
applied to MAS problems.

For solving the first problem, three general approaches could be identified: State abstraction,
function approximation and hierarchic decomposition (Morales & Sammut, 2004). One
example of these efforts for solving this problem is the work of Ono et al., which developed
an architecture for modular Q-learning agents, which was designed for reducing each
agent’s intractably enormous state space caused by the existence of its partners jointly
working in the same environment (Ono et al., 1996).

However, the second problem can be considered a critical one. For this reason, this chapter
is devoted to it. Two trends can be distinguished: The first one relies in the construction of
hybrid algorithms by combining Q-learning or other RL algorithms with other technics like
k-neighbours algorithm (Ribeiro et al., 2006) or by combining it with concepts or other fields
like pheromone concept from swarm intelligence (Monekosso & Remagnino, 2004).

The pheromone-Q-learning algorithm (phe-Q) deserves especial attention because in this
algorithm agents “influence”, in certain way, behaviour of other agents. This algorithm was
developed to allow agents to communicate and jointly learn to solve a problem (Monekosso
and Remagnino, 2004). Equation for modifying state-action pair value for an i agent using
this algorithm is given by equation 2.

O(s(0),4,(1)) € (1), 4, (1) +a(r(t+ 1)+)
7 max[O(s(r+ 1))+ EB(5(t +1),0,)]- O(s(0),,(1)) @

where Q(s(t),ai(t)) is the value of action a;(f) executed by agent i, & is the learning rate
(0=a<1), yis the discount rate (0<y<1), r(t+1) is the instantaneous reward obtained by agent i,
& is a sigmoid function of time epochs, and B(s(t),a;(t)) is defined by equation 3

2 O(s)
B(s(t),a,(1)) =<2)

Z ®lTI€IX (0)

oeNa
where @(s) is the pheromone concentration at a point, s in the environment and Na is the set
of neighbouring states for a chosen action a. The belief factor is a function of the synthetic
pheromone @(s), a scalar value that integrates the basic dynamic nature of the pheromone,
namely aggregation, evaporation and diffusion.
The second trend of application of RL algorithms relies in the application of algorithms
without combining it with any other technic or concept. Thus, agents will use only the

Influence Value Q-Learning: A Reinforcement Learning Algorithm for Multi Agent Systems 85

information existing in the traditional algorithms. As an example, if developers use Q-
learning, agents will trust only in Q values and immediate rewards.

In this sense, there exist four paradigms for applying algorithms like Q-learning in multi-
agent systems: Team learning, independent learning, joint action learning and influence
value reinforcement learning.

The paradigm where agents learn as a team is based in the idea of modelling the team as a
single agent. The great advantage of this paradigm is that the algorithms do not need to be
modified (For Q-learning implementations, the algorithm 1 is used). But, in robotics and
distributed applications, it can be difficult to implement because we need to have a
centralized learning process and sensor information processing.

An example of this paradigm using reinforcement learning is the work of Kok and Vlasis
(2004) that model the problem of collaboration in multi-agent systems as a Markov Decision
Process. The main problem in their work and other similar works is that the applicability
becomes impossible when the number of players increases because the number of states and
actions increases exponentially.

The problems reported in learning as a team can be solved by implementing the learning
algorithms independently in each agent. Thus, in the case of Q-learning, each agent will
implement the algorithm 1 without modifications. Several papers show promising results
when applying this paradigm (Sen et al., 1994; Kapetanakis & Kudenko, 2002; Tumer et al.,
2002). However, Claus and Boutilier (1998) explored the use of independent learners in
repetitive games, empirically showing that the proposal is able to achieve only sub-optimal
results. The above results are important when analyzed regarding the nature of the used
algorithms. It may be noted that the reinforcement learning algorithms aim to take the agent
to perform a set of actions that will provide the greatest utility (greater rewards). Below that,
in problems involving several agents, it is possible that the combination of optimal
individual strategies not necessarily represents an optimal team strategy. In an attempt to
solve this problem, many studies have been developed. An example is the one of
Kapetanakis & Kudenko (2002) which proposes a new heuristic for computing the reward
values for actions based on the frequency that each action has maximum reward. They have
shown empirically that their approach converges to an optimal strategy in repetitive games
of two agents. Also, they test it in repetitive games with four agents, where, only one agent
uses the proposed heuristic, showing that the probability of convergence to optimal
strategies increases but is not guaranteed (2004). Another study (Tumer et al., 2002) explores
modifications for choosing rewards. The problem of giving correct rewards in independent
learning is studied. The proposed algorithm uses collective intelligence concepts for
obtaining better results than by applying algorithms without any modification and learning
as a team. Even achieving good results in simple problems such as repetitive games or
stochastic games with few agents, another problem in this paradigm, which occurs as the
number of agents increase, is that traditional algorithms are designed for problems where the
environment does not change, that is, the reward is static. However, in multi-agents systems,
the rewards may change over time, as the actions of other agents will influence them.

In the current work, although independent learning uses the algorithm 1 without
modifications, we will call this algorithm as IQ-Learning.

One way for solving the problem of the independent learning model is learn the best
response to the actions of other agents. In this context, the joint action learning paradigm

86 Theory and Novel Applications of Machine Learning

appears. Each agent should learn what the value of executing their actions in combination
with the actions of others (joint action) is. By intuits a model for other agents, it must
calculate the best action for actions supposed to be executed by colleagues and/or
adversaries (Kapetanakis et al., 2003; Guo et al., 2007). Claus & Bouitilier (1998) explored the
use of this paradigm in repetitive games showing that the basic form of this paradigm does
not guarantee convergence to optimal solutions. However, the authors indicate that, unlike
the independent learning algorithms, this paradigm can be improved if models of other
agents are improved.

Other examples include the work of Suematsu and Hayashi that guarantee convergence to
optimal solutions (Suematsu & Hayashi, 2002). The work of Banerjee and Sen (Banerjee &
Sen, 2007) that proposes a conditional algorithm for learning joint actions, where agents
learn the conditional probability of an action be executed by an opponent be optimal. Then,
agents use these probabilities for choosing their future actions. The main problem with this
paradigm is the number of combinations of states and actions that grows exponentially as
the number of states, actions and/or agents grows.

A modified version of the traditional Q-Learning, for joint action learning, the so called
JAQ-Learning algorithm (algorithm 2), is defined by the equation 4.

Q.(s(@),al(?),...,aN(@)) < Q.(s(t),al(?),...,aN(t)) +

(r(1+ 1)+ 7 max O, (5(t + 1),L ey aN) — 0, (5(0) al(0), s aN (1)))
where ai; is the action performed by the agent i at time £ N is number of agents,
Qi(s(t),al(t),...,aN(t)) is the value of the joint action (aI(f),...,aN(t)) for agent i in the state s(t).
r(t+1) is the reward obtained by agent i as it executes action ai(t) and as other agents execute
actions al(t),...ai-1(t),ai+1(t),..,aN(t) respectively, « is the learning rate (0<axl), y is the
discount rate (0<y<1).
An agent has to decide between its actions and not between joint actions. For this decision, it
uses the expected value of its actions. The expected value includes information about the
joint actions and the current beliefs about other agent that is given by (Equation 5):

EV(s(t),ai) < Y. O(s(t),a, wai)*[[Pr(a_)) (5)

a_jed_; J#E

where ai is an action of agent i, EV/(s(t),ai) is the expected value of action ai in state s(t), a.; is a
joint action formed only by actions of other agents, A.; is the set of joint actions of other
agents excluding agent i, Q(s(t),a.;ui) is the value of a joint action formed by the union of
the joint action a.; of all agents excluding i with action ai of agent i in state s(t) and Pr(a.ij) is
the probability of agent j performs action 4j that is part of joint action a; in state s;.

Finally, the learning by influence value paradigm proposed by authors in previous work
(Barrios-Aranibar & Gongalves, 2007a; Barrios-Aranibar & Gongalves, 2007b) is based on the
idea of influencing the behaviour of each agent according to the opinion of others. The value
of state-action pairs will be a function of the reward of each agent and the opinion that the
other players have on the action that the agent execute individually. This opinion should be
a function of reward obtained by the agents. That is, if an agent affects the other players
pushing their reward below than the previously received, they have a negative opinion for
the actions done by the first agent.

Influence Value Q-Learning: A Reinforcement Learning Algorithm for Multi Agent Systems 87

Algorithm 2. JAQ-learning algorithm for an agent i
Require: Initialize Qi(s,al,...,aN) with arbitrary values
for all episodes do

Initialize s(0) (the same initial state for all agents)

t <0

repeat

EV (s(t),ai) « Y. O.(s(t),a,vai)*[]Pr(a,))

a_;ed_; J#

Choose action ai(t) in state s(t), using a policy derived from EV;
Execute action ai(t), observe r(t +1) and s(t +1)
Observe actions of all agents in the system (a1(t),...,ai-1(t),ai+1(t),...,aN(t))

Q.(s(@),al(?),...,aN(@)) < Q.(s(t),al(?),...,aN(t)) +

t—t+1
until s(t) being a terminal state
end for

From the theoretical point of view, the model proposed does not have the problems related
to the paradigms of team learning and joint action learning about the number of actors,
actions and states. Finally, when talking about possible changes of rewards during the
learning process and that the agent must be aware that the rewards may change because of
the existence of other agents, authors conjecture that this does not represent a problem for
this paradigm, based on experiments conducted until now.

This paradigm is based on social interactions of people. Some theories about the social
interaction can be seen in theoretical work in the area of education and psychology, such as
the work of Levi Vygotsky (Oliveira & Bazzan, 2006; Jars et al., 2004).

Based on these preliminary studies on the influence of social interactions in learning, we
conjecture that when people interact, they communicate each other what they think about
the actions of the other, either through direct criticism or praise. This means that if person A
does not like the action executed by the person B, then A will protest against B. If the person
B continue to perform the same action, then A can become angry and protest angrily. We
abstract this phenomenon and determined that the strength of protests may be proportional
to the number of times the bad action is repeated.

Moreover, if person A likes the action executed by the person B, then A must praise B. Even
if the action performed is considered as very good, then A must praise B vehemently. But if
B continues to perform the same action, then A will get accustomed, and over time it will
cease to praise B. The former can be abstracted by making the power of praise to be
inversely proportional to the number of times the good action is repeated.

More importantly, we observe that protests and praises of others can influence the behaviour
of a person. Therefore, when other people protest, a person tries to avoid actions that caused
these protests and when other people praise, a person tries to repeat actions more times.

4. IVQ-learning

Inspired in the facts explained before, in influence value paradigm, agents estimate the
values of their actions based on the reward obtained and a numerical value called influence
value. The influence value for an agent i in a group of N agents is defined by equation 6.

88 Theory and Novel Applications of Machine Learning

W« Y B()*OP) ©)
JE(LN), j#i

Where f(j) is the influence rate of agent j over agent i, OP;(i) is the opinion of agent j about
the action executed by agent i.
The influence rate § determine whether or not an agent will be influenced by opinions of
other agents. OP is a numerical value which is calculated on the basis of the rewards that an
agent has been received. Because in reinforcement learning the value of states or state-action
pairs is directly related to rewards obtained in the past, then the opinion of an agent will be
calculated according to this value and reward obtained at the time of evaluation (Equation 7).

) RV * Pe(s(1),a,(1)) If RV <0
OB () < {R V. *(1-Pe(s(t),a,(2))) In other case @)
Where
RV, «<r + max O(s(t+1),a,)—0(s(1),a,(1)) 8)

For the case to be learning the values of state-action pairs. Pe(s(t),a;(t)) is the occurrence
index (times action a; is executed by agent i in state s(f) over times agent i have been in state
s(t)). Q(s(t),aj(t)) is the value of the state-action pair of the agent j at time t. And, A; is the set
of all actions agent j can execute. Thus, in the IVQ-learning algorithm based on Q-Learning,
the state-action pair value for an agent i is modified using the equation 9.

O(s(0),a,(1)) < O(s(D).a, (D) + (e +1) +
y max O(s(t +1),a) - O(s(0).a, (1) + IV)) ®

where Q(s(t),ai(t)) is the value of action a;(f) executed by agent i, & is the learning rate
(0<a<1), yis the discount rate (0<y<1).And, r(t+1) is the instantaneous reward obtained by
agent i.

In this sense, the IVQ-Learning algorithm that extends the Q-learning algorithm by using
equations 6 to 9 is presented in algorithm 3.

Algorithm 3. IVQ-learning algorithm for an agent i
Require: Initialize Q(s,ai) with arbitrary values
for all episodes do
Initialize s(0) (the same initial state for all agents)
t<—0
repeat
Choose action ai(t) in state s(t), using a policy derived from Q
Execute action ai(t), observe r(t +1) and s(t +1)
RV, <1, +max O(s(t +1),a,) - O(s(1), a,(1))

Observe actions of all agents in the system (a1(t),...,ai-1(t),ai+1(t),...,aN(t))
forj = all agents except i do

OP(RV, * Pe(s(1),a,(t)) If RV <0
)< RV, *(1- Pe(s(t),a,(t))) In other case

Influence Value Q-Learning: A Reinforcement Learning Algorithm for Multi Agent Systems 89

end for
Observe opinions of all agents in the system (OP;(i),..., OPi1(i), OPps1(i),..., OPn(i))

IV« > B()H*OP()

Je(LN), j#i

O(s(1),a,(1)) < O(s(1),a,(1)) + a(r(t+1) +
ymax Q(s(z+1),a,) = O(s(t),a,()) + IV,)
te—t+1

until s(t) being a terminal state
End for

5. Experimental results

This section summarizes results obtained by using IVQ-learning algorithm in comparison
with the IQ-learning ang JAQ-Learning algorithms (Barrios-Aranibar & Gongalves, 2007a;
Barrios-Aranibar & Gongalves, 2007b; Barrios-Aranibar & Gongalves, 2007c).

Before talking about our results, it is important to know that when talking about cooperative
agents or robots, it is necessary that agents cooperate on equality and that all agents receive
equitable rewards for solving the task. Is in this context that a different concept from the
games theory appears in multi-agent systems. This is the concept of the Nash equilibrium.
Let be a multi-agent system formed by N agents. ¢’ is defined as the strategy chosen by the
agent i, 6; as any strategy of the agent i, and 2 as the set of all possible strategies of i. It is
said that the strategies o%,..., o'n constitute a Nash equilibrium, if inequality 10 is true for all
c; €2 and for all agents i.

*

7(0+::36.,:0,,0,,5.::0,) £1,(01..20,,,0,,0,,,...,0,,) (10)

Where r; is the reward obtained by agent i.

The idea of Nash equilibrium, is that the strategy of each agent is the best response to the
strategies of their colleagues and/or opponents (Kononen, 2004). Then, it is expected that
learning algorithms can converge to a Nash equilibrium, and it is desired that can converge
to the optimal Nash equilibrium, that is the one where the reward for all agents is the best.
We test and compare all paradigms using two repetitive games (The penalty problem and
the climbing problem) (Barrios-Aranibar & Gongalves, 2007a) and one stochastic game for
two agents (Barrios-Aranibar & Gongalves, 2007b). The penalty problem, in which IQ-
Learning, JAQ-Learning and IVQ-Learning can converge to the optimal equilibrium over
certain conditions, is used for testing capability of those algorithms to converge to optimal
equilibrium. And, the climbing problem, in which IQ-Learning, JAQ-Learning can not
converge to optimal equilibrium was used to test if IVQ-Learning can do it. Also, a game
called the grid world game was created for testing coordination between two agents. Here,
both agents have to coordinate their actions in order to obtain positive rewards. Lack of
coordination causes penalties. Figure 2 shows the three games used until now.

In penalty game, k < 0 is a penalty. In this game, there exist three Nash equilibriums
((a0,b0), (al,bl) and (a2,b2)), but only two of them are optimal Nash equilibrums ((a0, b0)
and (a3, b3)). When k = 0 (no penalty for any action in the game), the three algorithms (IQ-
Learning, JAQ-Learning and IVQ-Learning) converge to the optimal equilibrium with
probability one. However, as k decrease, this probability also decrease.

90 Theory and Novel Applications of Machine Learning

5/0
a0 al a2 a0 al a2
b0 10 0 k b0 11 -30 0 : om’
bl 0 2 0 bl -30 7 6
b2 k 0 10 b2 0 0 5

@) (b) ©

Fig. 2. Games used for testing performance of paradigms for applying reinforcement
learning in multi-agent systems: (a) Penalty game, (b) Climbing game, (c) Grid world game.

Figure 3 compiles results obtained by these three algorithms in the penalty game, all of them
was executed with the same conditions: A Boltzman action selection strategy with initial
temperature T = 16, A = 0.1 and in the case of IVQ-Learning p = 0.05. Also, a varying
decaying rate for T was defined and each algorithm was executed 100 times for each
decaying rate.

—&— Independent Learners
x - Joint Action Learners % 4
— + — Influence Value Learners 7 [x

o

©
o
©

o
©
[
©
X
%
%

s =2 9
o o N
s =2 9
o o N

o

IS
o
IS

03

o
©

(4
o

—&— Independent Leamers
-+ Joint Action Learners
— + — Influence Value Learners

Probability of Convergence to Optimal Equilibrium
Probability of Convergence to Optimal Equilibrium

o

- o -1000 -800 -600 -400 -200 o
Penalty k Penalty k

(@) (b)

2
©

O
)

bl
b

=
o

O,
o

o
>

=
©

°
[}

—©6— Independent Learners
L% %+ Joint Action Learners
— + — Influence Value Learners| *

Probability of Convergence to Optimal Equilibrium
o

o

-1000 -800 -600 -400 -200]
Penalty k

()
Fig. 3. Probability of convergence to optimal equilibrium in the penalty game for A =0.1, § =
0.05 and (a) T = 0.998t * 16, (b) T = 0.999 * 16, and (c) T = 0.9999: * 16.

In this problem JAQ-Learning has the best perform. But, it is important to note also that for
values of k near to zero, IVQ-Learning and IQ-Learning performs better than the JAQ-

Influence Value Q-Learning: A Reinforcement Learning Algorithm for Multi Agent Systems 91

Learning, and for those values the IVQ-Learning algorithm has the best probability to
converge to the optimal equilibrium.

The climbing game problem is specially difficult for reinforcement learning algorithms
because action a2 has the maximum total reward for agent A and action bl has the
maximum total reward for agent B. Independent learning approaches and joint action
learning was showed to converge in the best case only to the (al, bl) action pair (Claus and
Boutilier, 1998). Again, each algorithm was executed 100 times in the same conditions: A
Boltzman action selection strategy with initial temperature T = 16, A = 0.1 and in the case of
IVQ-Learning = 0.1 and a varying temperature decaying rate.

In relation to the IQ-Learning and the JAQ-Learning, obtained results confirm that these
two algorithms can not converge to optimal equilibrium. IVQ-Learning is the unique
algorithm that has a probability different to zero for converging to the optimal Nash
equilibrium, but this probability depends on the temperature decaying rate of the
Boltzman action selection strategy (figure 4). In experiments, the best temperature
decaying rate founded was 0.9997 on which probability to convergence to optimal
equilibrium (a0, b0) is near to 0.7.

The grid world game starts with the agent one (A1) in position (5; 1) and agent two (A2) in
position (5; 5). The idea is to reach positions (1; 3) and (3; 3) at the same time in order to
finish the game. If they reach these final positions at the same time, they obtain a positive
reward (5 and 10 points respectively). However, if only one of them reaches the position (3;
3) they are punished with a penalty value k. In the other hand, if only one of them reaches
position (1; 3) they are not punished.

This game has several Nash equilibrium solutions, the policies that lead agents to obtain 5
points and 10 points, however, optimal Nash equilibrium solutions are those that lead
agents to obtain 10 points in four steps.

14
—6— |L-Action a0,b0
09 —%— IL-Action a1,b1
08k ——&— |L-Action a2,b2
' —<&— IL-Action a2,b1
8 o7tk % - JAL-Action a0,b0
2 o.
2 + V- JAL-Action a1,b1
2 -
o 06} PR A JAL-Action a2,b2
z hal \
8 s \ --<t - JAL-Action a2,b1
5 0.5 _ _* — + — IVL-Action a0,b0
> L Ty 4 — B — IVL-Action a1,b1
5 045 e AN /] N # — * — Wl-Action a2,b2
kS Ao~y 5 — % — IVL-Action a2,b1
2 03f 7/
o
7
02}’
.
b ‘* =5

" 09094 ~ 09996 = 09998
Temperature Decaying Rate

O B
0.999 0.9992 1 1.0002

Fig. 4. Probability of Convergence in Climbing Game with A = 0.1, f = 0.1 and Variable
Temperature Decaying Rate

92 Theory and Novel Applications of Machine Learning

The first tested algorithm (Independent Learning A) considers that the state for each agent is
the position of the agent, thus, the state space does not consider the position of the other
agent. The second version of this algorithm (Independent Learning B) considers that the
state space is the position of both agents. The third one is the JAQ-Learning algorithm and
the last one is the IVQ-Learning,.

In the tests, each learning algorithm was executed three times for each value of penalty k
(0=k<15) and using five different decreasing rates of temperature T for the softmax policy
(0:99t; 0:995t; 0:999t; 0:9995t; 0:9999t). Each resulting policy (960 policies, 3 for each
algorithm with penalty k and a certain decreasing rate of T) was tested 1000 of times.

Figure 5 shows the probability of reaching the position (3; 3) with a=1, 2=0.1, p=0:1 and T =
0:99t. In this figure, was observed that in this problem the joint action learning algorithm has
the smaller probability of convergence to the (3; 3) position. This behavior is repeated for the
other temperature decreasing rates. From the experiments, we note that the Independent
Learning B and our approach have had almost the same behavior. But, when the exploration
rate increases, the probability of convergence to the optimal equilibrium decreases for the
Independent Learners and increase for our paradigm.

@)

(b)

T =099t T = 0.9999t
IS Sl TR SE i S e e = s A 1r = v Ve V=
Y Py W an’ Py T /
o9l / \ ! p / y vy oot / A PN ! /
i \ / \ / A i v / \ I \ ;
\
5 08, N ol Ao 1 ! n < 08}/ \ j X \ ;
2 i \; [\ L ¢ Iy 2 i A v \
807 \ ¥ v % 3 3 07V v Yo B ot 4
Ty x v ¢ * ?\ +.v o \ iy ! o ¥
!
@ 06 I3 I’y , 306 Lo gl - ok
5 Y I oy / 5 N {; ¥ ARSI LY A
g 05 oy J g 05 v A& cooN x Ty
5 ; \\ // } i 5 ¥ f
S / \ 5 \ 4
204] \ - L - ' *
5 h= At + - % 3 # l N W
g 03 \ / g 03 S % g
K / \ / K N
@ i —=o&— Independent Learners A @ 7 Xy —©— Independent Learners A
0.2 0.2 *
1 * - Independent Learners B N , * - Independent Learners B
G / — + — Joint Actions Learners 04 ey — + — Joint Actions Leamers
; ! —V— Influence Value Learners e —V— " Influence Value Learners |,
& & > ® o > =
=] 10 -5 0 =] -10 -5 o
Penalty k Penalty k
@) (b)
Fig. 5. Probability of reaching (3,3) position for (a) T = 0.99t and (b) T = 0.9999t
T = 0.9999t T =099t
16 14 1\»
7\' —=o6— Independent Learners A |
\
14 I % - Independent Learners B 1y
I ; ~ + — Joint Actions Learners 12 I *
H \ Ty —v— Influence Value Learners 5 R 1oy ® l/\
212 \ T 2 \ h
2 \ i ' 3 10 Ik ¥ oWy b %
b 1y \ & LN R \ /
@ ! [- @ s g™ N LN L W20
10 \ . iy a % il B i "X \(\
- IR i ST AR A VAR
& ! \ & / i "

8 \ ! \7] '
[\ \\ I \ & TRy [W il Yow oy
- N e W AN \ 2 6 + Y-V ! + i LN

\ J
g 6% /v =X Seaiy Ay LR K\ £ I/ \ " S X i Y
/ P Iy \ & .
- < NIV AT Y \ ~ - i i
e 4 yox L2 T T R o e * ' 3
& & ! \ ! —&— Independent Learners A
// \ l’ % - Independent Learners B
2 I s = + — Joint Actions Learers
i \\ 1 —v— Influence Value Leamers
o o & —d o o
=] -10 -5 o =] -10 -5 0
Penalty k Penalty k

Fig. 6. Size of path for reaching (3,3) position for (a) T = 0.99t and (b) T = 0.9999t

Influence Value Q-Learning: A Reinforcement Learning Algorithm for Multi Agent Systems 93

As shown in figure 6, as more exploratory the action selection policy is, smaller is the size of
the path for reaching (3; 3) position. Then, it can concluded that when exploration increases,
the probability of the algorithms to reach the optimal equilibrium increases too. It is
important to note that our paradigm has the best probability of convergence to the optimal
equilibrium. It can be concluded by joining the probability of convergence to the position (3;
3) and the mean size of the path for reaching this position.

In order to test collaboration and self organization (automatic task assignment) in a group of
reinforcement learning agents, authors created the foraging game showed in figure 7
(Barrios-Aranibar and Gongalves, 2007c). In this game, a team of agents have to find food in
the environment and eat it. When food in the environment no more exists, then, the game
finishes. Initially, agents do not know that by reaching food they are going to win the game,
then, they have to learn that eat food is good for them and also they have to learn to find it
in the environment in order to win the game.

IQ-Learning, JAQ-Learning and IVQ-Learning were implemented in this problem with
20000 learning epochs. Also each algorithm was trained 10 times, and 3 different values of
parameter a (0.05, 0.1, 0.15) were used. Because our approach (IVQ-Learning) has an extra
parameter (), it was trained with six different values: f={0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Thus,
we constructed 8 algorithms and trained it 10 times each one. For all algorithms, the
parameter ywas chosen to be 0.05.

: L - |
@{% 7 / - Qj

/§7

/ / §|7

Fig. 7. Foraging game for testing collaboration between agents.

In figure 8.a, a comparison of these eight algorithms is showed. This comparison is based
on the number of steps needed by the two agents to solve the problem. This value is
calculated considering the mean of 100 tests for each algorithm and parameter a. In the
optimal strategy the number of steps must be four. In this context, it was observed that our
approach with parameters f=0.15 and a=0.15 had the best performance.

Figure 8.a shows the mean of number of steps need for each algorithm to solve the problem.
But, in certain tests, the algorithms could converge to the optimal strategy (four steps). Then
it is important to analyze the number of times each algorithm converge to this strategy. This
analysis is showed in figure 8.b. In this figure, the percentage of times each algorithm
converge to the optimal solution is showed. Again, it could be observed that our approach
performs better. Also, the best IVQ-Learning was the one with parameters f=0.15 and
a=0.15.

94 Theory and Novel Applications of Machine Learning

€

. =y § Nl o
- m-a.ls/ i ,’ll \\ e =045
1 | 0T \ f"\
g 10 / S 081 A ’I \;{ >(\/ \\
g . - / : AN A)’»
s B g o8 A~ N [/ \\
£ / Y A / \ N/
¢ / \ odr 7 I\ / A
§ 7 / ! go.s- \ /f/ \ flll v /N
H A ' I\ Ny / \ \ /
é e . ", / (Y = 0.2 Tl
'“)4—-#—4— - /\/ \ \ f/ \\ |'I
154 e 7&—\{?\\% Em- \!ef Y .f
h \
4 L JAL VLO.OS MLOA MLOJAS IMLO2 IVLO25 IVLOS L JAL IVLO.O5 M:!OJ IVLOE IVLO2 WLO26 IVLO3
‘Algortthms Aigortths
(a) (b)

Fig. 8. Comparison between three paradigms when applyied to the foraging game.

6. Conclusion and future works

In this work, we explain the extension made to the Q-learning algorithm by using the
influence value reinforcement learning paradigm. Also, we present a summary of all results
obtained by comparing our approach with the IQ-learning and JAQ-learning algorithms.
After analyse these results it is possible to note that our approach had advantages over the
traditional paradigms and encourage authors to continue researching in this paradigm.
Also, our paradigm is an intend to solve the problem of convergence generated when
applying Q-learning in multi-agent systems but in future works it is necessary to explore
solutions for the problem related to the size of the state space.

7. References

Banerjee, D. and Sen, S. (2007). Reaching pareto-optimality in prisoner’s dilemma using
conditional joint action learning. Autonomous Agents and Multi-Agent Systems 15(1),
91-108.

Barrios-Aranibar, D. and Alsina, P. J. (2004), Reinforcement Learning-Based Path Planning
for Autonomous Robots. In I ENRI - Encontro Nacional de Robética Inteligente no
XXIV Congresso da Sociedade Brasileira de Computacio, Salvador, BA, Brazil, 08/2004.

Barrios-Aranibar, D. and Gongalves, L. M. G. (2007a). Learning Coordination in Multi-Agent
Systems using Influence Value Reinforcement Learning. In: 7th International
Conference on Intelligent Systems Design and Applications (ISDA 07), 2007, Rio de
Janeiro. Pages: 471-478.

Barrios-Aranibar, D. and Gongalves, L. M. G. (2007b). Learning to Reach Optimal
Equilibrium by Influence of Other Agents Opinion. In: Hybrid Intelligent Systems,
2007. HIS 2007. 7th International Conference on, 2007, Kaiserslautern. pp. 198-203.

Barrios-Aranibar, D. and Gongalves, L. M. G. (2007c). Learning to Collaborate from Delayed
Rewards in Foraging Like Environments. In: VI Jornadas Peruanas De Computacion -
JPC 2007.

Influence Value Q-Learning: A Reinforcement Learning Algorithm for Multi Agent Systems 95

Berenji, H. R. (1994), Fuzzy Q-learning: a new approach for fuzzy dynamic programming. In
Fuzzy Systems, 1994. IEEE World Congress on Computational Intelligence., Proceedings
of the Third IEEE Conference on. 26-29 June 1994. 1:486-491.

Carrascosa, C.; Bajo, J.; Julian, V.; Corchado,]J. M. and Botti, V. (2008). Hybrid multi-agent
architecture as a real-time problem-solving model. Expert Systems with Applications.
34(1):2-17.

Chen, D,; Jeng, B.; Lee, W. and Chuang, C. (2008). An agent-based model for consumer-to-
business electronic commerce. Expert Systems with Applications. 34(1): 469-481.

Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in cooperative
multiagent systems. In Proceedings of the 15th National Conference on Artificial
Intelligence -AAAI-98. AAAI Press., Menlo Park, CA, pp. 746-752.

Dalamagkidis, K.; Kolokotsa, D.; Kalaitzakis, K. and Stavrakakis, G. S. (2007), Reinforcement
learning for energy conservation and comfort in buildings. Building and
Environment. 42(7):2686-2698.

Dearden, R.; Friedman, N. and Russell, S. (1998). Bayesian Q-learning. In (1998) Proceedings
of the National Conference on Artificial Intelligence. 761-768.

Dimitriadis, S.; Marias, K. and Orphanoudakis, S. C. (2007). A multi-agent platform for
content-based image retrieval. Multimedia Tools and Applications. 33(1):57-72.

Gu D. and Hu H. (2005). Teaching robots to plan through Q-learning. Robotica. 23: 139-147
Cambridge University Press.

Guo, R, Wu, M,, Peng,], Peng,]J. and Cao, W. (2007). New q learning algorithm for multi-
agent systems, Zidonghua Xuebao/Acta Automatica Sinica, 33(4), 367-372.

Ishibuchi, H.; Nakashima, T.; Miyamoto, H. and Chi-Hyon Oh (1997), Fuzzy Q-learning for
a multi-player non-cooperative repeated game. In Fuzzy Systems, 1997., Proceedings
of the Sixth IEEE International Conference on. 1-5 July 1997. 3:1573-1579.

Jars, I, Kabachi, N. and Lamure, M. (2004). Proposal for a vygotsky’s theory based approach
for learning in MAS. In AOTP: The AAAI-04 Workshop on Agent Organizations: Theory
and Practice. San Jose, California. http://www.cs.uu.nl/virginia/aotp/papers/
AOTPO41Jars.Pdf.

Junhong N. and Haykin, S. (1999), A Q-learning-based dynamic channel assignment
technique for mobile communication systems. Vehicular Technology, IEEE
Transactions on. 48(5):1676-1687. Sept. 1999.

Kamaya, H.; Lee, H. and Abe, K. (2000), Switching Q-learning in partially observable
Markovian environments. In Intelligent Robots and Systems, 2000. (IROS 2000).
Proceedings. 2000 IEEE/RS] International Conference on. 31 Oct.-5 Nov. 2000, 2:1062-
1067.

Kapetanakis, S. and Kudenko, D. (2002). Reinforcement learning of coordination in
cooperative multi-agent systems. In Proceedings of the National Conference on Artificial
Intelligence. pp. 326-331.

Kapetanakis, S. and Kudenko, D. (2004). Reinforcement learning of coordination in
heterogeneous cooperative multi-agent systems. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
2004. Vol. 3, pp. 1258-1259.

96 Theory and Novel Applications of Machine Learning

Kapetanakis, S., Kudenko, D. and Strens, M. J. A. (2003). Reinforcement learning approaches
to coordination in cooperative multi-agent systems. Lecture Notes in Artificial
Intelligence (Subseries of Lecture Notes in Computer Science) 2636, 18-32.

Kirchner, F. (1997), Q-learning of complex behaviours on a six-legged walking machine. In
Advanced Mobile Robots, 1997. Proceedings., Second EUROMICRO workshop on. 22-24
Oct. 1997. 51 - 58.

Kononen, V. (2004). Asymmetric multiagent reinforcement learning. Web Intelligence and
Agent System 2(2), 105 - 121.

Kok, J. R. and Vlassis, N. (2004). Sparse cooperative g-learning. In Proceedings of the twenty-
first international conference on Machine Learning. Banff, Alberta, Canada, p. 61.

Laurent, G. and Piat, E. (2001), Parallel Q-learning for a block-pushing problem. In Intelligent
Robots and Systems, 2001. Proceedings. 2001 IEEE/RS] International Conference on. 29
Oct.-3 Nov. 2001. 1:286-291.

Lee,] W.; Hong, E. and Park, J.(2004), A Q-learning based approach to design of intelligent
stock trading agents. In Engineering Management Conference, 2004. Proceedings. 2004
IEEE International. 18-21 Oct. 2004. 3:1289-1292.

Mes, M.; van der Heijden, M. and van Harten, A. (2007). Comparison of agent-based
scheduling to look-ahead heuristics for real-time transportation problems. European
Journal of Operational Research. 181(1):59-75.

Maozu G.; Yang L. and Malec, J. (2004), A new Q-learning algorithm based on the
metropolis criterion. Systems, Man, and Cybernetics, Part B, IEEE Transactions on. Oct.
2004. 34(5):2140-2143.

Millan, J. R, Posenato, D. and Dedieu, E. (2002), Continuous-Action Q-Learning.
Machine Learning. November, 2002. 49(2-3): 247-265.

Monekosso, N. and Remagnino, P. (2004), The analysis and performance evaluation of the
pheromone-Q-learning algorithm. Expert Systems 21(2):80-91.

Morales , E. F. and Sammut, C. (2004), Learning to fly by combining reinforcement learning
with behavioural clonning. In Twenty-first international conference on Machine
Learning, ACM International Conference Proceeding Series. ACM Pres New York,
NY, USA.

Murao, H.; Kitamura, S. (1997), Q-Learning with adaptive state segmentation (QLASS). In
Computational Intelligence in Robotics and Automation, 1997. CIRA'97., Proceedings.,
1997 IEEE International Symposium on. 10-11 July 1997. 179 - 184.

Oliveira, D. De and Bazzan, A. L. C. (2006). Traffic lights control with adaptive group
formation based on swarm intelligence. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4150
LNCS, 520-521.

Ono, N.; Ikeda, O. and Fukumoto, K. (1996), Acquisition of coordinated behavior by
modular Q-learning agents. In Infelligent Robots and Systems '96, IROS 96,
Proceedings of the 1996 IEEE/RS] International Conference on. 4-8 Nov. 1996. 3:1525-
1529.

Park, K. H; Kim, Y. J. and Kim, J. H. (2001), Modular Q-learning based multi-agent
cooperation for robot soccer, Robotics and Autonomous Systems. 31 May 2001, 5(2):
109-122.

Influence Value Q-Learning: A Reinforcement Learning Algorithm for Multi Agent Systems 97

Ribeiro, R.; Enembreck, F. and Koerich, A. L. (2006). A hybrid learning strategy for
discovery of policies of action. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 4140 LNAI:
268-277.

Rocha, R;; Dias,]. and Carvalho, A. (2005). Cooperative multi-robot systems: A study of
vision-based 3-d mapping using information theory. Robotics and Autonomous
Systems. 53(3-4):282-311.

Rooker, M. N. and Birk, A. (2005). Combining exploration and ad-hoc networking in
robocup rescue. Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in
Computer Science). 3276:236-246.

Sen, S., Sekaran, M. and Hale, J. (1994). Learning to coordinate without sharing information.
In Proceedings of the National Conference on Artificial Intelligence. Vol. 1, pp. 426-431.

Suematsu, N. and Hayashi, A. (2002), A multiagent reinforcement learning algorithm using
extended optimal response. In Proceedings of the International Conference on
Autonomous Agents. number 2, pp. 370-377.

Suh, I. H,; Kim, J. H. and Oh, S. R. (1997), Region-based Q-learning for intelligent robot
systems. In Computational Intelligence in Robotics and Automation, 1997. CIRA'97.,
Proceedings., 1997 IEEE International Symposium on. 10-11 July 1997. 172-178.

Sutton, R. and Barto, A. (1998), Reinforcement learning: an introduction. MIT Press, Cambridge,
MA, 1998.

Tanaka, T.; Nishida, K. and Kurita, T. (2007). Navigation of mobile robot using location map
of place cells and reinforcement learning. Systems and Computers in Japan. 38(7), 65-
75.

Tesauro, G. and Kephart, J. O. (2002), Pricing in Agent Economies Using Multi-Agent Q-
Learning. Autonomous Agents and Multi-Agent Systems. September, 2002. 5(3): 289-
304.

Toksari, M. D. (2007). Ant colony optimization approach to estimate energy demand of
turkey. Energy Policy. 35(8):3984-3990.

Tsitsiklis, J. N. (1994), Asynchronous Stochastic Approximation and Q-Learning. Machine
Learning. Kluwer Academic Publishers, Boston. 16(3): 185-202.

Tumer, K., Agogino, A. K. and Wolpert, D. H. (2002). Learning sequences of actions in
collectives of autonomous agents. In Proceedings of the International Conference on
Autonomous Agents. nimero 2, pp. 378-385.

Usaha, W. and Barria, J. A. (2007), Reinforcement learning for resource allocation in leo
satellite networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics. 37(3): 515-527.

Vengerov, D. (2007), A reinforcement learning approach to dynamic resource allocation.
Engineering Applications of Artificial Intelligence. 20(3): 383-390.

Vollbrecht, H. (2000), Hierarchic function approximation in kd-Q-learning. In Knowledge-
Based Intelligent Engineering Systems and Allied Technologies, 2000. Proceedings. Fourth
International Conference on. 30 Aug.-1 Sept. 2000, 2:466-469.

Watkins, C. J. C. H. (1989), Learning from Delayed Rewards. PhD thesis, Cambridge University,
Cambridge, England.

98 Theory and Novel Applications of Machine Learning

Watkins, C. J. C. H. and Dayan, P. (1992), Q-Learning. Machine Learning. Kluwer Academic
Publishers, Boston. 8(3-4): 279-292.

Xiong, G.; Hashiyama, T. and Okuma, S. (2002), An electricity supplier bidding strategy
through Q-learning. In (2002) Proceedings of the IEEE Power Engineering Society
Transmission and Distribution Conference. 3 (SUMMER): 1516-1521.

Zou L, Xu, J. and Zhu, L. (2005). Designing a dynamic path guidance system based on
electronic maps by using Q-learning. In Proc. SPIE. 5985, 59855A. International
Conference on Space Information Technology. DOI:10.1117/12.658569,.

7

Reinforcement Learning in
Generating Fuzzy Systems

Yi Zhou'! and Meng Joo Er2

1School of Electrical and Electronic Engineering, Singapore Polytechnic

2School of Electrical and Electronic Engineering, Nanyang Technological University
Singapore

1. Introduction

Fuzzy-logic-based modelling and control is very efficient in dealing with imprecision and
nonlinearity [1]. However, the conventional approaches for designing Fuzzy Inference
Systems (FISs) are subjective, which require significant human’s efforts. Other than time
consuming, the subjective approaches may not be successful if the system is too complex or
uncertain. Therefore, many researchers have been seeking automatic methods for generating
the FIS [2].

The main issues for designing an FIS are structure identification and parameter estimation.
Structure identification is concerned with how to partition the input space and determine
the number of fuzzy rules according to the task requirements while parameter estimation
involves the determination of parameters for both premises and consequents of fuzzy rules
[3]. Structure identification and input classification can be accomplished by Supervised
Learning (SL), Unsupervised Learning (UL) and Reinforcement Learning (RL). SL is a
learning approach that adopts a supervisor, through which, the training system can adjust
the structure and parameters according to a given training data set. In [4], the author
provided a paradigm of acquiring the parameters of fuzzy rules. Besides adjusting
parameters, self-identified structures have been achieved by SL approaches termed
Dynamic Fuzzy Neural Networks in [3] and Generalized Dynamic Fuzzy Neural Networks
in [5]. However, the training data are not always available especially when a human being
has little knowledge about the system or the system is uncertain. In those situations, UL and
RL are preferred over SL as UL and RL are learning processes that do not need any
supervisor to tell the learner what action to take. Through RL, those state-action pairs which
achieve positive reward will be encouraged in future selections while those which produce
negative reward will be discouraged. A number of researchers have applied RL to train the
consequent parts of an FIS [6.8]. The preconditioning parts of the FIS are either predefined
as in [6] or through the e-completeness and the squared TD error criteria in [7] or through
the “aligned clustering” in [8]. Both DFQL and CQGAF methods achieve online structure
identification by creating fuzzy rules when the input space is not well partitioned. However,
both methods cannot adjust the premise parameters except when creating new rules. The
center position and width of fuzzy neurons are allocated by only considering the input
clustering. Moreover, both methods cannot delete fuzzy rules once they are generated even
when the rules become redundant.

100 Theory and Novel Applications of Machine Learning

Since RL has been utilized as a good approach to generate well-matched state-action pairs
for the consequent parts of an FIS, it is possible to train the premises and generate the
structure of an FIS by RL as well. Thus, a novel algorithm termed Dynamic Self-Generated
Fuzzy Q-learning (DSGFQL) which is capable of automatically generating and pruning
fuzzy rules as well as tuning the premise parameters of an FIS by RL is presented.

2. Architecture of the fuzzy controlling system

The architecture of the fuzzy controlling system is based on extended Ellipsoidal Basis
Function (EBF) neural networks, which are functionally equivalent to a simple Takagi-
Sugeno-Kan (TSK) fuzzy systems [4]. The neural networks structure of the DSGFQL system
is depicted in Figure 1.

Layer one is an input layer and layer two is a fuzzification layer which evaluates the
Membership Functions (MFs) of the input variables. Layer one takes in the senor
information and normalizes the value to be in range [0,1]. The MF is chosen as a Gaussian
function and each input variable x; (i =1, 2, ...,N) has L MFs given by

(zi —ci5)?, | .
pij(x;) = exp[———=—] i=1,2..N,j=1,2...,L 1)
ij
where y;;is the jth MF of x;, while c; and o are the center and width of the jth Gaussian MF

of x; respectively. Layer three is a rule layer which decides controlling rules. The output of
the jthrule R;(j =1, 2, ...L) in layer 3 is given by

N

(i —cy)®, .
fi(@1, 32, ..., TN) = exp[—) T] f=1,2, ..., L @
i=1 j

if multiplication is adopted for the T-norm operator.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
input fuzzification application of T-norm normalization defuzzification
Hip

i

‘unl
Fig. 1. Structure of the Fuzzy Controlling System

Reinforcement Learning in Generating Fuzzy Systems 101

Normalization takes place in layer 4 and we have
3= 1,205k 3)

Lastly, nodes of layer five define output variables. If the Center-Of-Gravity (COG) method is
performed for defuzzification, the output variable, as a weighted summation of the
incoming signals, is given by

L
Y= ¢jwj 4
j=1

where ®; = g; for the Q-learning-based FIS and 4;is the action selected through Q-learning in
rule R;.

Here, the antecedent parts of the fuzzy inference systems are regarded as states and the
consequent parts are local actions of each controlling rules. Gaussian MFs are utilized to
convert discrete states and actions to continuous ones.

Remark: It should be highlighted that the number of rules does not increase exponentially
with the number of inputs as the EBF structure is adopted.

3. Fixed fuzzy Q-learning

We first consider the Fuzzy Q-Learning (FQL) approach of [6] that has a fixed number of
fuzzy rule sets and the consequents of the rules can be adjusted based on the FQL. The local
actions are selected through competitions based on local g-values which indicate the quality
of actions at different states (in different fuzzy rule).

3.1 Local action exploration and selection
Here, we simply use the undirected exploration method employed in [6] to select a local
action a from possible discrete action vector A, as follows:

Qnr = HaGA(Q(S7 a)) = argmaazaeA(q(S, Cl) + 77(‘97 CL)) ©)

The term of exploration # stems from a vector of random value v (exponential distribution)

scaled up or down to take into account the range of g values as follows:

1 if max(q) = min(q)
SF= semaz(@)—min(a)) 4t orvise ©
maz ()
0= s @)

where s, is the noise size and syis the corresponding scaling factor. Decreasing the s, factor
implies reducing the undirected exploration. Details of the exploration-exploitation strategy
can be found in [6].

102 Theory and Novel Applications of Machine Learning

3.2 Generation of global actions

As a learner may visit more than one fuzzy states, the system output/global action is
determined by weighting all the local actions. Assume that L fuzzy rules have been
generated. At time step ¢, the input state is X; and the normalized firing strength vector of
each rule is ¢. Each rule R;has M possible discrete actions and the local action of each rule is
selected from the action set A by competing with each other based on their g-values. The
winning local action g; of every rule cooperates to produce the global action based on the
rule's normalized firing strength ¢. Therefore, the global action is given by

L L
Un(Xy) =) malar)d =) diai (8)
i=1

i=1

where a is the selected action of rule R;at time step t and Uy is the global action which is the
same as y in Eq (2).

3.3 Update of Q-value

As defined before, local g-value presents the action quality with respect to the state. In the
FQL, global Q-values are also obtained similarly as the global actions and they are weighted
value of the local g-values of those local winning actions. The global Q function is given by

Xt,Ut th S¢ (9)

where U, is the global action, a’ is the selected action of rule R; and g; is the g-value
associated with the fuzzy state S;and action a’ at time step ¢.

Q-learning is a type of Temporal Difference (TD) learning [9]. Based on the TD learning, the
value function corresponding to the rule optimal actions is defined as follows:

L
Vi(Xy) =D _(mazaecaqi(Si, a)) ¢} (10)
i=1

and the global TD error is given by

TDiy1 = re41 + YVe(Xir1) — Qe(Xy, Uy) (11)

where 7141 is the reinforcement signal received at time f + 1 and vy is the discounted factor
utilized to determine the present value of future TD errors. Note that this TD error term
only needs to be estimated with quantities available at time step ¢ + 1.

This TD error can be used to evaluate the action just selected. If the TD error is positive, it
suggests that the quality of this action should be strengthened for future use; whereas if the
TD error is negative, it suggests that the quality should be weakened. The learning rule is
given by

qt+1(S’i7 a’ﬁ) - Qt(Sw a;) + aTDt+1¢z7 1= 1 2 L (12)

where « is the learning rate.

Reinforcement Learning in Generating Fuzzy Systems 103

3.4 Eligibility traces

In order to speed up learning, eligibility traces are used to memorize previously visited
stateaction pairs, weighted by their proximity at time step ¢ [6, 7]. The trace value indicates
how state-action pairs are eligible for learning. Thus, it permits not only tuning of
parameters used at time step ¢, but also those involved in past steps.

Let Tr(S;, a;) be the trace associated with the discrete action g; of rule R; at time step ¢

ATri—1(S;,a;) + ¢t ifaj =al
Tri(S;,a;) = i L ==

¢(5i, a5) { ATr—1(S;, aj) otherwise (13)
where the eligibility rate A is used to weight time steps. For all rules and actions, the
parameter updating law given by Eq (12) becomes

qt_|_1(Si,aj) = qt(Si,aj) + aTDtHTrt(Si,aj), 1=1,2,..,L, j=1,2,..,.M (14

and the traces are updated between action computation and its applications.

4. Dynamic self-generated fuzzy Q-learning

In this chapter, a Dynamic Self-Generated Fuzzy Q-Learning (DSGFQL) is presented to
automatically determine fuzzy controllers based on reinforcement learning. In the DSGFQL
method, fuzzy rules are to be created, adjusted and deleted automatically and dynamically
according to the system performance and the contributions of each fuzzy rules.

4.1 e-Completeness criterion for input space partitioning

In the DSGFQL approach, the input variable fuzzy sets are used to represent appropriate
high-dimensional continuous sensory spaces.

First of all, the e&-completeness criterion for judging clustering of the input space is adopted
as in [3, 7, 8, 10]. As pointed out by the author of [8], a rule in a fuzzy controlling system
corresponds to a cluster in the input space geometrically. An input data with higher firing
strength of a fuzzy rule means that its spatial location is closer to the cluster center
compared to those with smaller strengths. The definition of the scompleteness of fuzzy
rules is given in [10] as:

For any input in the operating range, there exists at least one fuzzy rule so that the match degree (or
firing strength) is no less than .

The scompleteness criterion is to check whether the whole input space has been completely
covered with a certain degree (¢). If the criterion is not satisfied, it means more fuzzy rules
should be created to accomplish the input space.

4.2 Allocation of newly generated rules

4.2.1 Assignment of membership functions

If the existing system does not satisfy the s-completeness criterion, a new rule should be
considered. If the existing fuzzy system passes a similarity test [5, 7], a new Gaussian MF is
allocated whose center is with

Ci(L+1) = T4 (15)

and the widths of MFs in the ith input variable are adjusted as follows:

104 Theory and Novel Applications of Machine Learning

maz(|cik — Cik—1)|, ¢ (k+1) — Cikl)
Tn(1/e) !

where cj.1y and cig+1) are the two centers of adjacent MFs of the middle MF whose center is
cik. Note that only the new MF and its neighboring MFs need to be adjusted. The main result
concerning adjusting MFs to satisfy the s&-completeness of fuzzy rules has been proved in [2, 5]

—_ k=1,..,L+1 (16)

4.2.2 Novel sharing mechanism for initialization of new g-values

Instead of randomly assigning g-values for the newly created rules, a novel initialization
approach is presented here. In order to reduce the training time, the initial g-values for the
newly generated fuzzy rule are set by the nearest neighbors. By this means, the newly
generated rules learn/share the training experience from the neighboring rules. For
instance, if rules R,, and R, are the two nearest neighbors to the newly generated rule R;,
then

Sm, aj)fm(ci) + q(Sn, aj)fn(ci)
fm(Ci) + fu(Ci) ’

where f,,(C;) and f,(C;) stand for the firing strengths of the newly generated center C; to rules
Ry and R, which can be obtained from Eq (2).

q(Si, aj) = . i=12,---M. 17)

4.3 Global TD error evaluation

The objective of RL is to maximize the expected value function. Q-learning is a TD-based
approach which utilizes the TD error for updating the estimated reward value function. In
TD-based methods, the estimated value function is updated, as in [9], as follows:

V(s) «— V(s) +afr +7V(s') = V(s)] (18)

where TD =r + yV (s) - V (s) and V (s) is the value function of state s.
Thus, we have

V(s) «— V(s)+aTD (19)

If the initial value of V (s, 0) is 0, the value function can be regarded as

Vis,k) =aSiolr(®) + V(s t+1) = V(s,))
= Zf:o B (t)

It can be seen that the TD error estimates the value function and it becomes a criterion for
measuring the learning system as well the performance of fuzzy controller. The bigger the
TD error is, the greater the value function will be. Therefore, TD error can be considered as a
criterion for measuring the system performance in RL.

As a criterion of system performance, the TD error is to be checked periodically, e.g. a
number of training steps or an episode. At the end of each training episode or after several
steps, the performance of the fuzzy system is examined by the TD error obtained during that
period. Average TD error is adopted if the training environment is static. However,
discounted TD error is to be considered for dynamic environment, i.e.

Reinforcement Learning in Generating Fuzzy Systems 105

t=T mp) .
;EOT—@) Static environment

TDavg = | s=1irpy (21)
% Dynamic enviroment

where T is the training time of each episode, TD(f) is the TD error at time ¢ and is the
discounted factor which is less than 1.

By this means, the averaged system TD error is adopted as an index of the system
performance.

4.4 Local TD error evaluation

Besides evaluation of system performance via reinforcement signals, contributions of each
fuzzy rules are also measured through reinforcement signals in the DSGFQL system. In
order to evaluate the individual contributions of each fuzzy rules, a local TD error criterion
is adopted. By this means, contributions or significance of each fuzzy rules are evaluated
through the local TD errors. Inspired from the TD error sharing mechanism in [11], a local
TD error scheme is adopted here to share the reinforcement with each local rule according to
its contributions. The local TD error for each fuzzy rule is given, similarly as in [11], as
follows:

TDéocal(t) — gb;-’l“(t—l- 1) +’)’¢§-+1 mea,j(q§~(st,a]‘) (ﬁtqj (S a;) (22)
aj&Ay

wherej=1,2,..,L, and az- is the action selected at time ¢.

Remarks: The local TD error adopted here is different from that in [11] in that the original
form is multiplied by the firing strength of the corresponding fuzzy rule. In [11], the local
TD error is used for selecting local actions while the local TD error is adopted as an
evaluation criterion of individual rules in this thesis.

4.5 Reinforcement learning on input space partitioning

In the DSGFQL approach, the system/global TD error is selected as a measurement of
system performance, the local TD error is adopted as an evaluation for individual
contributions, while an averaged firing strength is adopted as a measurement for
participation. If the averaged firing strength is lower than a threshold value, it means the
significance of that rule is too low. Therefore, the rule can be eliminated to reduce the
computational cost.

If the global TD error is less than a threshold value, it means that the overall performance of
the entire system is unsatisfactory. Therefore, the FNNs need to be adjusted.

4.6 Restructure of FNNs via reinforcement learning

In the DSGFQL system, if the global average TD error is too negative e.g. it is less than a
threshold value kg, the overall performance is considered unsatisfactory. If the FNN passes
the scompleteness criterion but fails the average TD error test, it means that the input space
is well partitioned but the overall performance needs to be improved.

To resolve this problem, the weights of some good rules should be increased which means
that the system will be modified by promoting the rule with the best performance, e.g. the
best local TD error, to a more important position. As a result, the overall performance is

106 Theory and Novel Applications of Machine Learning

improved as the rules with good contributions participate more in the system while those
rules with poor contributions participate less, correspondingly. In this case, the width of the
jth fuzzy rule’s MF (the one with the best local TD error) will be increased as follows

Oy +—— KOyj, 1=1,2.N if KO < Omaz (23)
— Omaz) if KOij > Tmaz

where « is slightly larger than 1 and 6,4 is the maximum width allowed for Gaussian MFs,
1

which can be set to 1.2 if ¢is chosen as 0.5 ———).
in(1/e)

Remarks: The restructuring is only adopted when the system under-performs. Enlarging the
MF of the rule will increase the firing strength of the rule. As a result, the global action is
improved by becoming closer to the best local action.

On the other hand, if the local TD error is larger than a heavy threshold value ki, but smaller
than a light threshold value kj, a punishment will be given to the rule by decreasing its
width of the MF as follows:

Oik < TOik, 1=1,2.N (24)

where 7is a positive value less than 1.

Remarks: This is a performance-oriented approach, in which fuzzy rules with the best local
TD error values are to be promoted and those with unsatisfactory local TD error are to be
demoted or even removed from the system.

4.7 Pruning of redundant fuzzy rules

The local TD error criterion offers a direct evaluation of contributions of fuzzy rules. The
more negative the local TD error is, the worse result is offered by the fuzzy rule and vice
versa. Therefore, a fuzzy rule should be punished if the local TD error is extremely poor. If
the local TD error of a fuzzy rule is less than a heavy threshold value ky (ki < ki), the
individual contributions are unsatisfactory and the fuzzy rule will be deleted as a serious
punishment.

Removing problematic fuzzy rules can help to improve the overall performance of the FNN
and new rules may be generated if the scompleteness criterion fails due to the elimination of
rules at the next step. By this means, performance can be improved as “black sheep” has been
eliminated and it is better to restart the learning rather than staying in the problematic region.
Besides the TD error, firing strength should also be considered for system evaluation as it is
a measurement for participation. If a fuzzy rule has very low firing strength during the
entire episode or a long period of time recently, it means that this rule is unnecessary for the
system. As more fuzzy rules mean more computation and longer training time, the rule
whose mean firing strength over a long period of time is less than a threshold value, kf,
should be deleted.

Remarks: If a fuzzy rule keeps failing the light local TD error check, its firing strength will
be reduced by decreasing width of its MF. When the width is reduced to a certain level, it
will fail the firing strength criterion and will be deleted. The light local test gives a certain
tolerance, which means the fuzzy rule is not deleted due to one slight fault. However, the
fuzzy rule which does not provide satisfactory result is still punished by being demoted and
it will be deleted if it keeps failing the light local test.

Reinforcement Learning in Generating Fuzzy Systems 107

4.8 Gradualism of learning

The values of the thresholds for the TD error criteria are set according to the expection of the
task. At the early stage of training, each fuzzy rule needs time to adjust its own
performance. For a training system, it is natural to set the demanding requirement small at
the beginning and increase it later when the training becomes stable. Thus, the idea of
gradualism learning in [12], which uses coarse learning in the early training stage and fine
learning in the later stage, is adopted here. Moreover, the elimination process is frozen in
the early stage and rules are only pruned after a certain period of time.

In this chapter, a linear gradualism learning is introduced and the values of the thresholds
for global and local TD error are set as follows:

, , episodes
k — kmzn + kmax _ kmzn - 2
9" (kg ar)epzsodes + K, 25)
: ; episodes
k — k:mi’ll _I_ kmam _ kmzn 26
Ih = Rip (kin lh)—episodes—l-Kr (26)
; : episodes
A— X Emaz _ pmin 57
u= k" + (ky 1l)episodes—l—KT 27)
where k;nm and k;na:r are the minimal and maximal values for the global TD error threshold

values respectively, sz and k4% are the minimal and maximal values for the heavy local

kﬁ”" are the minimal and maximal

TD error threshold values respectively, and and

kﬁ’law
values for the light TD error threshold values respectively. The term episodes is the number
of training episodes or periods and Kr is a controlling constant which can be set according to
the number of training episodes. Those threshold values are set according to the target of
the training system. If the total TD error (value function) is expected to be V in T training
steps, the values of thresholds of the TD error criterion should be set around the value V/T .
The maximal threshold values should be slightly bigger than the minimal ones as the system
trained by the DSGFQL is supposed to obtain better results via the training. Another
suggested guidance is to check the performances of some classical controllers (such as basic
fuzzy Controller and FQL controller) and set the results as the minimal threshold values.
Remarks: The gradualism learning is optional for applying the DSGFQL method. The
DSGFQL can also be applied with unique threshold values throughout the training, if users
do not like to adjust the thresholds. Gradualism learning offers a framework or guideline in
case that users are keen on adjusting the thresholds during the learning process.

5. The Khepera robot

The robot employed in this chapter is a miniature mobile robot called Khepera [13] shown in
Figure 2. The Khepera mobile robot is cylindrical in shape, with 55 mm in diameter and 30
mm in height weighting only 70g. Its small size allows experiments to be performed in a
small work area. The robot is supported by two lateral wheels that can rotate in both
directions and two rigid pivots in the front and back.

108 Theory and Novel Applications of Machine Learning

Fig. 2. The miniature mobile robot: Khepera

The basic configuration of Khepera is composed of the CPU and the sensory/motor boards.
The micro-controller includes all the features needed for easy interfacing with memories,
with I/O ports and with external interrupts.

The sensory/motor board includes two DC motors coupled with incremental sensors, eight
analogue infra-red (IR) proximity sensors denoted by (S, ..., Sy) in Figure 3, and an on-board
power supply. Each IR sensor is composed of an emitter and an independent receiver. The
dedicated electronic interface uses multipliers, sample/holds and operational amplifiers.
This allows absolute ambient light and estimation, by reflection, of the relative position of
an object to the robot to be measured. By this estimation, the distance between the robot and
the obstacle can be derived. This estimation gives, in fact, information about the distance
between the robot and the obstacle. The sensor readings are integer values in the range of [0,
1023]. A sensor value of 1023 indicates that the robot is very close to the object, and a sensor
value of 0 indicates that the robot does not receive any reflection of the IR signal.

Distance in front
S2 S3

Distance sS4 Distance
to the lef
S0

controller

2l

Distance on the back

Fig. 3. Position and orientation of sensors on the Khepera

Simulation version of the Khepera [14] is used for carrying out a comprehensive numerical
comparison of different approaches. The program simulates Kheperas in the MATLAB

Reinforcement Learning in Generating Fuzzy Systems 109

environment. Simulated Kheperas are controlled in the same way as real physical Kheperas.
Simulation studies on a wall following task are presented in the following sections.

6. Wall following task for Khepera robot

In this chapter, the Khepera robot is to be applied for a wall-following task. The aim of the
experiment is to design a controller for wall following. In order to simplify the problem, we
only consider robots moving in clockwise direction at a constant speed as that in [7]. Thus,
we only need to deal with four input variables, which are the values of sensor S;(i =0, 1, 2, 3).
All these sensor values can be normalized within the interval [0, 1]. The output of the
controller is the steering angle of the robot. In order for the robot to follow a wall, it must
keep the distance from the wall while staying between a maximum distance, d+, and a
minimum distance, d_. The distance to the wall being followed, d, can be calculated via the
sensor values. The robot receives a reward evaluation after performing every action U. The
reward function depends on this action and the next situation as given in [7]:

0.1, if(d_<d<dy)and (U € [-8°,+8°])
r=4 —3.0, if(d<d)or(dy <d) (28)
0.0, otherwise.

Here, d_ = 0.15 and d+ = 0.85, which are normalized values, and U is the steering angle of the
robot. These values are the same as the settings used in [7].

The training environment with lighted shaped walls used for simulation studies is shown in
Figure 4.

) [fns) AER

checkpoint

KikSnet
radio turret id ‘nfa

server:127.0.01

simulation

48:05%

monitor simulation details

time mode.
High precision (realistic) ;J
time acceleration method
emulate CPU speed _]
This CPU (emution off) - |
moverment fimit

25 updatesisec _]
interpolation fimit

10 mm

tfast proximity sensors

disable visualization

Fig. 4. MATLab simulation environment for wall-following experiments

110 Theory and Novel Applications of Machine Learning

The performances of different approaches are evaluated at every episode of 1000 control
steps according to two criteria, namely the number of failures which correspond to the total
number of steps the robot has left the “lane” and rewards which are accumulated. In order
to compare the different approaches systematically and find appropriate parameters, we
have done a number of comparison studies of these methods on simulations.

7. Simulation results and comparison studies

7.1 Basic fuzzy controller

First, a fuzzy controller based on intuitive experiences is designed. For each input linguistic
variable, we define two linguistic values: Small and Big, whose MFs cover the region of the
input space evenly with the match degree set to 0.5. This means that there are 16 (2¢) fuzzy
rules. Through trial and error, 16 fuzzy rules are obtained as a special case of the TSK fuzzy
controller, whose consequents are constant, as in [7]. The 16 fuzzy rules are listed in Table 1.

Rule | Sp S1 So Ss | Steering angle
1 Small | Small | Small | Small 30
2 Small | Small | Small | Big 30
3 Small | Small | Big | Small 30
4 Small | Small | Big Big 15
5 Small | Big | Small | Small 30
6 Small | Big | Small | Big 15
7 Small | Big Big | Small 15
8 Small | Big Big Big 15
9 Big | Small | Small | Small 30
10 Big | Small | Small | Big 15
11 Big | Small | Big | Small 0
12 Big | Small | Big Big 0
13 Big Big | Small | Small 30
14 Big Big | Small | Big -15
15 Big Big Big | Small -15
16 Big Big Big Big -15

Table 1. Basic fuzzy control rules for wall following

If the robot only uses the basic fuzzy controller, it can actually follow the wall, but along
inefficient trajectories. When only the basic fuzzy controller is used, the robot encounters 79
failures and -164.0 of reward value per episode on average. Certainly, we can provide finer
partitioning of the input space or tune the parameters of the MFs and consequents so as to
obtain better performances. However, the number of rules will increase exponentially with
increase in the number of input variables. Furthermore, tuning consequents of rules is time
consuming because of the risk of creating conflicts among the rules. It is almost impossible
or impractical to design an optimal fuzzy controller by hand due to a great number of
variables involved. Therefore, automatic tuning and determination of fuzzy controlling
rules are desired.

Reinforcement Learning in Generating Fuzzy Systems

111

7.2 Simulation results for the FQL controller
The set of discrete actions is given by A = [-30, -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30]. The
initial g-values for incorporated fuzzy rules are set as, k; = 3.0. Other parameters in the
learning algorithm are: Discounted factor, y = 0.95; Trace-decay factor, A = 0.7; TD learning
rate, & = 0.05. The controller with 81 (34) fuzzy rules whose MFs is with 0.5 match degree of
the input space is also considered. Average performances of the two controllers during 40
episodes over 30 runs are shown in Figures 5 and 6.

Number of failures

250

200

150

100

Number of failures vs Episodes

T T T T T

16 Rules Basic Fuzzy Controller
— - — 16 Rules Fuzzy Q-Learning
— — — 81 Rules Fuzzy Q-Learning

50
0

15 20 25 30 35
Episodes

Fig. 5. Number of failures for comparison of performances of fuzzy controllers for (a)Basic fuzzy
controller with 16 fuzzy rules, (b)16 fuzzy rules based on FQL, (c)81 fuzzy rules based on FQL

Rewards

-100

-200

-300

-400

-500

-600

-700

Rewards vs Episodes

— - — 16 Rules Fuzzy Q-Learning

— 16 Rules Basic Fuzzy Controller| |

81 Rules Fuzzy Q-Learning

15 20 25 30 35
Episodes

40

Fig. 6. Reward values for comparison of performances of fuzzy controllers for (a)Basic fuzzy
controller with 16 fuzzy rules, (b)16 fuzzy rules based on FQL, (c)81 fuzzy rules based on FQL

112 Theory and Novel Applications of Machine Learning

At the very beginning, performances of the two controllers based on the FQL are worse than
that of the basic fuzzy controller due to the exploration feature of RL. The robot has to
explore different actions in order to ensure that better actions are selected in the future.
However, the performance of the robot is improved gradually and is better than that of the
basic fuzzy controller. Therefore, it can be concluded that performance can be improved by
explorations in the action set and tuning consequent parameters.

To assess the effectiveness of finer partitioning of the input space, we compare the
performances of the FQL using 16 rules and 81 rules. The speed of learning 81 rules is
slower than that of 16 rules because a lot more parameters need to be explored. However,
asymptotic performances of these two methods are almost the same. It is impractical to
partition the input space further due to the curse of dimensionality. Therefore, automatic
generation of premises of fuzzy controllers and automatic partitioning of input space are
desired.

7.3 Simulation results of the DSGFQL controller

The DSGFQL is presented as a novel approach of determining premise parts of fuzzy
controllers. In this section, the performance of the DSGFQL approach is to be assessed. The
parameter values for consequents training are the same as those used in the FQL approach.
Other learning parameters for rule generation are scompleteness, ¢ = 0.5 and similarity of
MF, kus = 0.3. The training aim is to limit the number of failures to 60; therefore, the
threshold values of the TD error criterion should be set around (-3 x 60/1000) = -0.18. If it
requires each rule to be active at least with an average firing strength for 10 times in the 1000
training steps among about 50 rules, the firing strength threshold value is set as 10.(1000 x
50) = 0.0002. Therefore, the global TD error threshold values are kgnam = -0.05 and k;nm =-

0.45; heavy local threshold values are k4% = -0.10 and sz = -0.30; light local TD error
threshold values are k7;*** = 0 and kﬁ”" = -0.20; the firing strength threshold values are k=

0.0002 and K; = 20, ¥ = 1.05 and 7 = 0.95. These values give good performances of the
algorithms in an initial phase. However, it should be pointed out that we have not searched
the parameter space exhaustively.

The performances of the DSGFQL approach shown in Figures 7 and 8 which are also the
mean values during 40 episodes over 30 runs.

As expected, the DSGFQL performs better than the FQL with respect to both number of
failures and reward values. The number of fuzzy rules generated at every episode is shown
in Figure 9. The MFs produced by the DSGFQL after learning input variables at one run are
shown in Figure 10. The number of rules can be generated automatically online and does
not increase exponentially with the increase in the number of input variables. At the same
time, MFs can be adjusted dynamically according to the performance of controlling rules.
Thus, a compact and excellent fuzzy controller can be obtained online.

The reason why the DSGFQL method outperforms the FQL method is that the DSGFQL
approach is capable of online self-organizing learning. Besides the input space partitioning,
both overall and local performances have been evaluated to determine the structure of a
fuzzy system. The common approach of conventional input-space partitioning is the
socalled grid-type partitioning. The FQL with 16 rules partitions the state space coarsely, on

Reinforcement Learning in Generating Fuzzy Systems 113

the other hand, the speed of learning 81 rules is slow because a lot more parameters need to
be explored. The DSGFQL does not need to partition the input space a priori and is suitable
for RL. It partitions the input space online dynamically according to both the
accommodation boundary and the reinforcement criteria. The compact fuzzy system
considers sufficient rules in the critical state space which requires high resolution and does
not include redundant rules in unimportant or unvisited state space so that learning is rapid
and efficient.

Number of failures vs Episodes

I I L == 16 Rtjles Fuzzy C;—Learing

— — — 81 Rules Fuzzy Q-Learing
—&— DSGFQL(TD error) al

@ |
[
E
3
s |
I}
o
5
3 \
z TN 1
Q \
\ - N
80t &o = - 1
\ ~ i
T \/ e - /
60(- 9\7%% /o el ({\ P
A J éaix
;@}9\@@4 >
/Q}“@\(
40 L
0 5 25 30 35 40

Eplsodes

Fig. 7. Number of failures for comparison of performances of fuzzy controllers for (a) 16
fuzzy rules based on FQL, (b) 81 fuzzy rules based on FQL, (c) DSGFQL

Rewards vs Episodes

-100

-150

-200

-250

Rewards

-300

-350 -

-400

Il —— 16 Rules Fuzzy Q-Learing
-450F |/ — — — 81 Rules Fuzzy Q-Learing{
! —o&— DSGFQL(TD error)

_500 L L .
0 5 10 15 20 25 30 35 40

Episodes

Fig. 8. Reward values for comparison of performances of fuzzy controllers for (a) 16 fuzzy
rules based on FQL, (b) 81 fuzzy rules based on FQL, (c) DSGFQL

114 Theory and Novel Applications of Machine Learning

Number of rules vs Episodes

32 T T T T T T T
—o— DSGFQL(TD error)

31t 1

301

291

281

261

Number of rules

24

231

20 . L . L L . L
0 5 10 15 20 25 30 35 40

Episodes

Fig. 9. Number of rules generated by the DSGFQL approach

Membership function of input variable SO Membership function of input variable S1
1 1 —
/
0.8F 0.8F
0.6 0.6
041 0.4t
0.2 0.2r
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Membership function of input variable S2 Membership function of input variable S3

08 08
0.6 0.6
0.4f 0.4
0.2f 0.2
% 02 0.4 06 08 1 % 02 7 0.4 0.6 os] 1

Fig. 10. Membership functions after learning at one run

8. Conclusions

In this chapter, a novel reinforcement learning method termed (DSGFQL) is introduced for
navigation tasks of mobile robots. In the DSGFQL approach, continuous sensory states and

Reinforcement Learning in Generating Fuzzy Systems 115

action space for mobile robots can be self-generated. Controlling rules are expressed in
fuzzy logic and the rules can be generated, adjusted and pruned automatically and
dynamically without a priori knowledge or supervised learning. Online clustering method
is adopted for partitioning the input space (sensory space of robots) and fuzzy rules are
generated automatically by reinforcement learning. In the DSGFQL, new rules are created if
system fails the e-completeness criterion. At the same time, contributions of existing rules
are to be determined through a reinforcement sharing mechanism. When the performance of
the control system is poor, controlling rules are adjusted according to reinforcement signals.
Q-learning is adopted in selecting optimal local actions in each fuzzy rule and the system
action is a weighted continuous action via fuzzy reasoning. Comparative studies with other
fuzzy controllers on mobile robot navigation demonstrate that the DSGFQL method is
superior.

9. References

[1] L. X. Wang, Universal approximation by hierarchical fuzzy systems, Fuzzy sets and
systems, vol. 93, no. 22, pp. 223-230, 1998.

[2] M.]. Er, S. Wu, and Y. Gao, Dynamic fuzzy neural networks: architectures, algorithms and
applications, McGraw-Hill, New York, 2003.

[3] S. Wu and M.J. Er, Dynamic fuzzy neural networks: A novel approach to function
approximation, IEEE Trans. on Systems, Man and Cybernetics, Part B, vol. 30, no. 2,
pp. 358-364, 2000.

[4] J. S. R. Jang, Anfis: Adaptive-network-based fuzzy inference system, IEEE Trans. System,
Man and Cybernetics, vol. 23, no. 3, pp. 665-684, 1993.

[5] S. Wu, M.J. Er, and Y. Gao, A fast approach for automatic generation of fuzzy rules by
generalized dynamic fuzzy neural networks, IEEE Trans. on Fuzzy Systems, vol. 5,
no. 4, pp. 578-594, 2001.

[6] L. Jouffe, Fuzzy inference system learning by reinforcement methods, IEEE Trans.
Systems, Man, and Cybernetics, Part C, vol. 28, no. 3, pp. 338-335, 1998.

[7] M. J. Er and C. Deng, Online tuning of fuzzy inference systems using dynamic fuzzy g-
learning, IEEE Trans on Systems, Man and Cybernetics, Part B, vol. 34, no. 3, pp. 1478-
1489, 2004.

[8] C. E. Juang, Combination of online clustering and g-value based ga for reinforcement
fuzzy systems, IEEE Trans on Fuzzy Systems, vol. 13, no. 3, pp. 289-302, 2005.

[9] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction, The MIT Press,
Cambridge, Massachusetts., 1998.

[10] C. C. Lee, Fuzzy logic in control systems: fuzzy logic controller, IEEE Trans. System, Man
and Cybernetics, vol. 20, no. 2, pp. 404-435, Mar 1990.

[11] P. Ritthiprava, T. Maneewarn, D. Laowattana, and J. Wyatt, A modi_ed approach to
fuzzy-q learning for mobile robots, in Proc. IEEE International Conference on Systems,
Man and Cybernetics, 2004, vol. 3, pp. 2350 - 2356.

[12] K. B. Cho and B. H. Wang, Radial basis function based adaptive fuzzy systems and their
applications to system identification and prediction, Fuzzy Sets Syst., vol. 83, no. 3,
pp- 325-339, 1996.

116 Theory and Novel Applications of Machine Learning

[13] S. A. K-Team, Switzerland, Khepera 2 user manual, 2002.
[14] T. Nilsson, [online]. avaiable: http:/ /www kiks.f2s.com.

8

Incremental-Topological-Preserving-Map-Based
Fuzzy Q-Learning (ITPM-FQL)

Meng Joo Er?, Linn San! and Yi Zhou?

ISchool of Electrical and Electronic Engineering, Nanyang Technological University
2School of Electrical and Electronic Engineering, Singapore Polytechnic

Singapore

1. Introduction

Reinforcement Learning (RL) is thought to be an appropriate paradigm to acquire policies
for autonomous learning agents that work without initial knowledge because RL evaluates
learning from simple “evaluative” or “critic” information instead of “instructive”
information used in Supervised Learning. There are two well-known types of RL, namely
Actor-Critic Learning and Q-Leaning. Among them, Q-Learning (Watkins & Dayan, 1992) is
the most widely used learning paradigm because of its simplicity and solid theoretical
background. In Q-Learning, Q-vectors are used to evaluate the performance of appropriate
actions which are selected by choosing the highest Q-value in the Q-vectors. Unfortunately,
the conventional Q-Learning approach can only handle discrete states and actions. In the
real-world, the learning agent needs to deal with continuous states and actions. For instance,
in robotic applications, the robot needs to respond to dynamically changing environmental
states with the smoothest action possible. Furthermore, the robot’s hardware can be
damaged as a result of inappropriate discrete actions.

In order to handle continuous states and actions, many researchers have enhanced the Q-
learning methodology over the years. Continuous Action Q-Learning (Millan et al., 2002) is
one of the Q-Learning methodologies which can handle continuous states and actions.
Although this approach is better than the conventional Q-Learning technique, it is not as
popular as the Fuzzy Q-Learning (FQL) (Jouffe, 1998) because the former is not based on
solid theoretical background. Whereas CAQL considers neighboring actions of the highest
Q-valued action in generating continuous actions, the FQL uses theoretically sound Fuzzy
Inference System (FIS). On the contrary, the FQL approach is more favorable than the
CAQL. Thus, our proposed approach is based on the FQL technique.

The FIS identification can be carried out in two phases, namely structure identification
phase and parameter identification phase. The structure identification phase defines how to
generate fuzzy rules while the parameter identification phase determines premise
parameters and consequent parts of the fuzzy rules. The FQL approach mainly focuses to
handle parameter identification automatically while structure identification still remains an
open issue in FQL. To circumvent the issue of structure identification, the Dynamic Fuzzy
Q-Learning (DFQL) (Er & Deng, 2004) is proposed. The salient feature of the DFQL is that it
can generate fuzzy rules according to the e-completeness and Temporal Difference criteria

118 Theory and Novel Applications of Machine Learning

so that a FIS can be tuned automatically. From the point of view of structure identification
and parameter identification, the DFQL is one of the promising approaches for online
learning. The drawback of the DFQL is that the fuzzy rules cannot be adjusted according to
the input distribution changes. Once a fuzzy rule has been generated, the rule will remain at
its initial position and the position of the rule is no longer adjusted. As a consequence, the
DFQL can generate inappropriate and redundant rules. To circumvent this problem, the
authors of Dynamic Self-Generated Fuzzy Q-Learning (DSGFQL) (Er & Zhou, 2008)
proposed to modify membership functions of each rule and delete redundant rules after a
certain amount of training process. However, the adjustment of fuzzy rules positions is not
discussed in (Er & Zhou, 2008). In fuzzy clustering, the position of a fuzzy rule is also
regarded as an important factor that governs the performance of a fuzzy rule. A further
development of the DSGFQL termed Enhanced Dynamic Self-Generated Fuzzy Q-Learning
(EDSGFQL) (Er & Zhou) uses the Extended SOM algorithm to overcome the deficiency of
(Er & Zhou, 2008).

In this chapter, the Incremental-Topological-Preserving-Map-Based Fuzzy Q-Learning
(ITPM-FQL) approach is presented. Structure identification is based on the ITPM approach
so that fuzzy rules will relocate to their appropriate positions after rule generation. The
ITPM approach is originally inspired by limitations of the SOM algorithm (Kohonen, 1982).
The early development of online SOM algorithm is the Growing Neural Gas (GNG) (Fritzke,
1995). But, GNG inserts a neuron only after some fixed training steps. Thus, it is not suitable
for online learning. In vain of this, the ITPM is developed for online learning and is used in
CAQL of (Millan et al.,, 2002). Using the convergence property of SOM, the ITPM can
automatically generalize the fuzzy rules. In addition, an adaptive learning rate is used to
adjust the convergence rate of each rule. In the original GNG (Fritzke, 1995), the author used
a constant learning rate. But constant learning rate for all neurons is found to be not suitable
in many cases. In our context, some rules might be placed initially far from their appropriate
locations and some are placed very near to their suitable positions. The rules which are far
from their right positions should converge with a large learning rate while the rules which
are near to their appropriate positions should be tuned with a smaller learning rate. Thus,
we further employ the adaptive learning rate for each rule so that all the positions of fuzzy
rules can be adjusted adaptively. Similar to (Er & Deng, 2004), (Er & Zhou, 2008) and (Er &
Zhou), the e-completeness criterion is adopted in order to generate the fuzzy rules when the
input space is not well clustered.

2. Structure of ITPM-FQL

Similar to the DFQL (Er & Deng, 2004) , the architecture of ITPM-FQL system is also based
on extended EBF neural networks which are functionally equivalent to Takagi-Sugeno FIS
system which is shown in Figure 1.

Layer one is the input layer and it transmits the input variable x; (i=1,2,...,n) to the next layer
and Layer two carries out fuzzification of each input variable. The membership functions
are chosen as a Gaussian function of the following form:

() Gimey)

(x.)=exp —-—

Hy (X, P O_;)
i=12,m, j=12,.1

Incremental-Topological-Preserving-Map-Based Fuzzy Q-Learning (ITPM-FQL) 119

where x;is the input state at ith time, y;; is the jth membership function of x;, ¢; is the centers
and o is the width of the jth Gaussian membership function of x;. Layer three is the rule
layer. The number of nodes in this layer represents the number of fuzzy rules. The output of
the jthrule R; (j=1,2,... I') in Layer three is given by

S (XX ,) = exp|:_i(xi_—:ij:|

oy @
i=12,..,n, j=12,..,1
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
input fuzzification application of T-norm normalization defuzzification
Fig. 1.1. Structure of fuzzy rule sets of ITPM-FQL.
Normalization takes place in Layer four and can be expressed as follows:
f;
¢ = ! Fi=120d

Layer five defines output variables by using the center-of-gravity method for defuzzificaiton.

y= ;@Wj 4

where y denotes the value of an output variable and wjis the consequent parameter of the jth
rule. For the Q-learning based FIS, w; = a jis the action selected through Q-learning in R;.

3. Complete algorithm of ITPM-FQL

In order to understand the proposed ITPM-FQL algorithm, the readers should refer to the
CAQL (Millan et al., 2002) and the GNG (Fritzke, 1995) and (Holmstrom) because the ITPM-
FQL is an extension of the CAQL technique. Based on CAQL, we make some modifications

120 Theory and Novel Applications of Machine Learning

to the ITPM so that it can be combined with the FQL approach. The complete algorithm of
the ITPM-FQL is as follows:
1. Perceive the initial situation Xy, adopt the first fuzzy rule from the immediate input
sensory data and initialize the width and Q-values according to initial built-in
knowledge. Compute the action Up(Xy) based on its current knowledge.
Loop: Take computed action U:.1(Xs.1).
Receive reward z:.; and observe the next situation X.
Find the nearest M-distance unit (best matching fuzzy rule) b’ for any X;.
Compute the firing strength fi(X) for each rule.
Compute the TD error, update V«Xy) and update Q-values of the previous action
Ut.1(X¢1) reward z1.q.
7. If the e-completeness is not satisfied (X; is outside the Membership Function (MF) of
unit b’), then
a. If the MF similarity is not satisfied, the new unit # to the ITPM center on X; and
initialize the Q-values according to the built-in knowledge.
b. Adjust the MF functions.
c. Find the second nearest unit b” to X; and create the edge from newly added unit u
to b’ and b”. Remove the edge between b’ and b” if it exists.
d. Find the best matching rule b’ (i.e. b’ € u) and compute the firing strength f;(X}) for
each rule based on the new FIS structure.
e. Reduce the local error Kj; of each rule with a very small factor (i.e. Kj= Kj: X ey).
8. Use the Q-values and firing strength fi(X:) of each rule, compute the global action
Ux(Xe).
9. Update the local error Ky and number of winning time wt 4 of the nearest unit b” as
follows:
a. Kp+=Kp1+E-distance(b’, X;)
b. wtyr=wt yent+l
10. Reinforcement Learning: Estimate the Q-value Q(U;X:) for global action Ux(X;) based
on the firing strength f;(X3).
11. Self Organization: Update the connectivity of the nearest unit b’".
a. Find the second nearest unit b” of X.
b. Connect the edge between b’ and b”. If it exists, set the age of this edge to zero.
c. Increase the age of the rest of the edges to b’ by one.
12. Move the sensory components of b’ and its topological neighbors h to X;'.
a. Compute the learning rate 7y of unit b’.
b. Move the sensory components of b’.

SANNLEE RN

Cor (t +1) = G (t) +11 v ()pr (Xe=Co (1))
c. Compute the learning rate of the neighbour #,.
d. Move the sensory components of h.

G (t+1) = G (£) 1 0 (B 0 (Xe =Cin (£))

13. Update the eligibility trace.
14. Remove the edges which are greater than the maximum age (@max).
15. Xp1 € Xg Ur1(Xe1) € UdXy); Go to step 2 if the training process is not finished.

Incremental-Topological-Preserving-Map-Based Fuzzy Q-Learning (ITPM-FQL) 121

I Generate the first rule or start from initialized FIS I
le
r
I Receive the reward and observe the states I

.

I Compute TD error, update V(X) and tune Q-values I

y

e-completeness
Satisfied?

Generate a new rule

-

MFs similarity
Satisfied?

Adjust MFs, Update edges

>l
L]
Take action and Estimate Q-values

.

Update edges, Use ITPM to update center clustering

b

Update Eligibility Traces

Fig. 2. Flowchart of ITPM-FQL algorithm.

3.1 & Completeness Criterion for Rules Generation

Generation of fuzzy rules in ITPM is only based on the e-completeness and does not
consider the performance index, which makes it difficult to obtain suitable values and is not
applicable for non-TD-based RL methods. The generated fuzzy rules are later adjusted by
means of the ITPM to their appropriate positions.

According to the e-completeness, when an input vector X RN enters the system, the firing
strength and M-distance between the current observation state X and centers C;(j =1, 2, 3,...,
I) of the existing fuzzy rules can be calculated as follows:

f())=¢; = exp(-md*(})) ®)

122 Theory and Novel Applications of Machine Learning

Where

\/(X—C,)Ti (xX-C)) ©

is the M-distance, X = [x1 ---xn]T eR”, Cj = [clj,czju-cnj]T eR” and Z;l is defined as
follows:

Lz 0 0
oy,
2/ - 0-21 J 172’ 5l (7)
0 0 0
0o o L
L O |
Next, find
J = arglrg}gl(md(ﬂ) ®)
If
mdmin = md(]) > kd (9)

where k;is the predefined threshold of e-completeness and is given by:

k; =4/In(l/ &) (10)
and
f(J) <exp(—k]) = exp(—(y/In(1/ £))*) = £ (11)

This implies that the existing system does satisfy the e- completeness criterion and a new
rule should be considered. If the Euclidean distance does not pass the similarity test as
mentioned in (Jouffe, 1998), no new rules will be created. Otherwise, a new fuzzy rule with
Gaussian MFs is allocated with

Ciany @) =x;
_ max(| C; (1) = C;; .y (D .| Ci(;1n @) = C; @))

O m (12)

j=123,..,1+1

The basic idea of similarity process used in (Er & Deng, 2004) is to generate only one rule for
a predefined topological area. This assumption is only suitable for low density data areas
and not suitable for those areas which have high density data. High density data areas

Incremental-Topological-Preserving-Map-Based Fuzzy Q-Learning (ITPM-FQL) 123

should be covered with more than one rule to get better performance. So, similarity
restrictions should be relaxed on these areas. By applying the ITPM structure in FQL, the
ITPM can adjust centre locations of the rules to their appropriate locations and also solve the
similarity restriction problems.

3.2 Adaptive learning rate

The original ITPM algorithm (Millan et al., 2002) uses the constant learning rate which is not
suitable in many real-world situations. The fuzzy rules will be generated according to the
incoming sensory data when the e-completeness and similar matching criteria failed. So,
some of the fuzzy rules are initially located near to their appropriate locations while some
are located far from their designated positions as mentioned in Section 1.1. Each rule should
have an appropriate learning rate according to their initial positions.

A rule which is initially in a wrong location starts to be adjusted with a larger learning rate
first and follows by a small learning rate when it is located in the neighborhood of its
appropriate location. Similarly, a rule which is initially located in the neighborhood area of
its appropriate position starts with a small learning rate to ensure that the rule can be finely
tuned to its desired place. To circumvent the learning problem of the fuzzy rules, an
adaptive learning scheme is proposed as follows:

1, (1) = exp(_kl (1 _[X;(t)]sz (13)

max

m(r)=exp(—k{l—%j]ks (14)

max

where b' is the best matching fuzzy rule, 1 denotes the neighboring fuzzy rules of b' and
ny (t) and 7y, () are the individual learning rates of the best matching fuzzy rule and its
neighboring rules at a particular time instance t. The terms k; and k3 are the maximum
adaptive learning rate and k; denotes the rate of change of the learning rate. The term A max
is the maximum error radius of a rule, the term Ay () and Ay (#) is the error radius of b' and h
fuzzy rules respectively and the error radius of each rule, as in (15), can be formulated as
follows:

K (0) .
A=Lts 18IS (15)

where «; (t) is the accumulated local error and wt ; (f) is the number of times won by the
fuzzy rule at the time instant ¢ . The terms «; () and wt (t) are computed as follows:

K =ed(b") (16)
K,@+)=x,)+K (17)
wt, (t+1)=wt, (1) +1 (18)

where b'is the best matching fuzzy rule.

124 Theory and Novel Applications of Machine Learning

The neighboring learning rate ks is usually used 100 times less than k» in order to favor the
best matching rule. Similar to the Self Organizing Map, the adaptation process can be
divided into self-organizing (rough-tuning) phase and convergence (fine-tuning) phase. At
the convergence phase, the learning rate should be 20 times less than the maximum learning
rate. Whether the fuzzy rules are in the convergence phase are decided by an error radius
threshold Ay, as shown in Figure 3. The term k; is computed according to (13) using A 4.

max. adaptive

Adaptive learning rate s Error Radius learning rate

@ T T T T T T T T T k2 or k3
E /
= Convergence
‘£ rifine tuning) phase E
L
o
@ Error Radius Threshold Ay |
‘% " selforganizing (rough tuning)
2 | \ . phase |

0 02 04 06 08 1 1.2 14 16 18 2

Error Radius
Fig. 3. Error-radius-based adaptive learning rate.

The proposed learning rate of the rule is based on the error radius of each rule because the
error radius indicates the clustering ability of the rules.

3.3 Generation of global continuous action

In order to explore the set of possible actions and acquire experiences through reinforcement
signals, the local action a; for each rule R;is selected using exploration-exploitation strategy
as in (Jouffe, 1998), (Er & Deng, 2004), (Er & Zhou, 2008) and (Zhou & Er, 2008) from
possible discrete actions set A as follows:

7 4(q) = argmax ,_ ,(q(S,a)+ n(S,a)) (19)

where 1 denotes exploration, S is the state situation and a is the action in the action set A,
and g(S,a) is the g-value of action a at state S . Readers can refer to (Jouffe, 1998) and (Sutton,
1988) for details of the exploration-exploitation strategy. At time step f, the input state is X;.
Assume that [fuzzy rules have been generated and the normalized firing strength vector of
rules is #/. Each rule R; has m possible discrete actions A. Local actions selected from A
compete with each other based on their g-values while the winning local action U/ =a; of
every fuzzy rule cooperates to produce the global action (U; (X;) = a;) based on the rule’s
normalized firing strength, ¢;. The global action is given by

U, (X ') = zlj:l 74 (qt)¢tj :ZIFI atj ¢tj (20)

where a,j is the selected action of rule R;at time step .

3.4 Update of Q-values

Q-values are also obtained by the FIS outputs, which are inferred from the quality of local
discrete actions that constitute the global continuous action. The Q function for global action
Q: (X, Uy) is computed with the same assumption as that for generation of global continuous
action, i.e.

Incremental-Topological-Preserving-Map-Based Fuzzy Q-Learning (ITPM-FQL) 125

0,.x,.U)=Y"_a/s.alp/ @

where Uy is the global action, a,j is the selected action of rule R; at time step ¢ and g;is the g-
value associated with the fuzzy state, state situation, S;and action, a; .

Based on TD learning, the Q-values corresponding to the rule optimal actions which defined
as follows:

acAd

V(x,)= 3, (max g, (5,) 7 @)

The Q-values are used to estimate the following TD error:

il =rt+1+7/Vt(Xt+l)_Qt(Xt’Ut) (23)

where 7141 is the reinforcement signal received at time #+1 and y is the discount factor used to
determine the present value of future rewards. Note that we have to estimate this error only
with quantities available at time step t+1.

The learning rule based on the TD error is, as in (Jouffe, 1998) and (Er & Deng, 2004) , given
by

din(sial)=q,(5.a/)+ aZd/ =121 (24)

where o is the learning rate.

3.5 Eligibility traces

In order to speed up learning, eligibility traces are used to memorize previously visited rule-
action pairs weighted by their proximity to time step t. Let Tr; (S;, a;) be the trace associated
with discrete action g; of rule R;at time step . We have

ATr, \S.,a;)+d¢ if a.=al
77(5.0,)=1" lSoardl 7 4= (25)
yATr,_, (S 154) otherwise
where the eligibility rate 1 is used to weight time steps.
The parameter updating law given by Eq. (24) becomes, for all rules and actions,
qt+1(Si’aj)=qt (Siaaj)"'ang’"t(Si’aj) (26)

i=12,...n, j=12,..,1

and the traces are updated between action computation and its application.

4. Simulation studies and results

In order to compare the ITPM-FQL with other methodologies, an experimental study has
been carried out on a Khepera II mobile robot (Nilsson, Online). The aim of the experiment

126 Theory and Novel Applications of Machine Learning

is to design a controller for the mobile robot in order to follow the wall within the range of
[d., d+]. The environment which is exactly the same as in (Zhou & Er, 2008) is adopted and
depicted in Figure 4. The same reward system, as in (Er & Deng, 2004), (Er & Zhou, 2008),
(Er & Zhou) and (Zhou & Er, 2008) , has been adopted here and the reinforcement signal, r is
given by

0., if(d <d<d,)and (Ue[-8°,+8°]
r=1-30 if(d<d.)or(d, <d) 7)

0.0, otherwise.

where d=0.15 and d+=0.85 which are the same as in (Er & Deng, 2004) , (Er & Zhou, 2008)
and (Zhou & Er, 2008).

Fig. 4. The testing environment.

The performances of all methodologies are evaluated based on the number of failures and
reward values at every episode of 1000 control steps as in (Er & Deng, 2004),), (Er &
Zhou, 2008), (Er & Zhou) and (Zhou & Er, 2008) . In order to compare the performances,
we use the mean values during 40 runs over 10 episodes. The same parameter settings, as
in (Er & Deng, 2004) and (Zhou & Er, 2008) , are adopted, i.e. the FQL controller with 81
rules, whose MFs satisfy the 0.5 e-completeness; initial Q value, k; = 3.0; exploration rate,
Sy = 0.001; discount factor, y = 0.95; learning rate a= 0.05 ; the specific distance range [d.
,d+] =[0.15,0.85] and set of discrete actions A = [-30,-25,-20,-15,-10,-5,0,5,10,15,20,25,30].
For CAQL, the width of the receptive field, k, is set to 0.35, learning rate (winning unit) &=
0.01 , learning rate (neighboring units) ¢, = 0.0001 and the rest are the same as that of
FQL-81 rules. For DFQL, the parameters are set as follows: &= 0.5; similarity of
membership, k,,s= 0.3 and the rest of the parameter settings are similar to FQL-81 rules. In
the DSGFQL and EDSGFQL approaches, the global reward thresholds are set as kg =

-0.05 and k;i“ = -0.45; heavy local thresholds set as kj;**= -0.10 and k"= -0.30; light

h
local reward thresholds values set as k" = 0 and k;l“in= —0.20; firing threshold value is k f

= 0.0002; K, =20, x=1.05 and 7= 0.95 . Readers can refer to (Er & Deng, 2004), (Zhou &
Er, 2008) and (Millan et al., 2002) for parameter settings in details. For the ITPM-FQL
approach, the following parameters are set: the maximum age amax =100; similarity of

Incremental-Topological-Preserving-Map-Based Fuzzy Q-Learning (ITPM-FQL) 127

membership, k= 0.32 because it needs a larger value than the DFQL algorithm so that
the fuzzy rules can be adjusted without causing many similarity matching rules; the
maximum error radius Amax= 2; the error radius threshold Ay = 0.3 (Ay < kys) so that the
fuzzy rule, which has the error radius less than k;,;, undergoes convergence phase; the rate
of change of learning rate, k; = 3.5; the maximum adaptive learning rates are k» = 0.03 and
ks = 0.0001; the error reducing factor ¢/=0.995 and the rest of the parameters are the same
as in (Er & Deng, 2004).

Figures 5 and 6 compare the performances of the robot during direct training by ITPM-FQL,
DFQL, DSGFQL, EDSGFQL, CAQL and FQL-81 rules. Judging from the simulation results,
we can conclude that the proposed approach of ITPM-FQL can produce better performance
than the FQL-81 rules, CAQL and similar performances to the DFQL in terms of failures and

o

Reward comparison for FQL-81 rules, CAGL, DFQL, ITPM-FQL

180 Number of failure comparison for FQL-81 rules, CAQL, DFQL, ITPM-FQL % ’
o o g
H — == FQL81 =50 & & /
e AR Y A
160 [— % — cAQL] *} a.:t 5 ?i‘w%ﬁx ﬁ*
% ——+—- DFQL ’ Y ’f’*“‘ ‘6\3}! %% * ‘s
o PRy TPM-FOL a0} P “w\ AT Y
35 Vel N W vy
& ¢ S*YTE
1200 Wy 200 1T de?
FL A .M
) ALY 250 iy
Py Ko
TN 300+ 4
80)
b%g} i..‘ .\igm A \'/ A 3s0t
0 ’;(\ {}ﬁ —:—+:— FQL-B1rules
3‘3?) ﬁ}ﬁg %ﬁ?‘% \&%&‘9 -400 f'#é —%.— cAQL
ol sl @ —-—- DFQL
4 ———— ITPM-FQL
20 . \ \ 500 1 L L L T T n)
0 5 10 15 20 25 30 N 5 10 15 20 25 30 Fepisanesi0
(@) (b)
9B0 - Number of fuzzy rules for CAQL, DFQL, ITPM-FQL
é ¥
Ss51 A
Eso P et
2
,H(*’* *M
oA 4060
(8000000809
40 5660600609
P atal
s /7! P
P
w0} ;r,;,?\ JRUEIRES e
2 -4’?” T
é P
20F el —-&— CAQL
e g ——+——DFQL
/ ITPM-FQL
10 L L L L T W
5 10 15 20 2%) 3 roestl)
©

Fig. 5. Performance comparisons of ITPM-FQL, DFQL, CAQL and FQL-81 rules (a) Number
of failures versus episodes (b) Reward values versus episodes (c) Number of generated

fuzzy rules versus episodes.

128 Theory and Novel Applications of Machine Learning

reward criteria. From the point of number of generated fuzzy rules, the ITPM-FQL approach
is better than other methodologies which do not have pruning capability because it uses not
only the e-completeness to generate the rules but also the convergence property for
generalization of the rules. Comparing with the approaches which adopt pruning
mechanism, especially EDSGFQL, the performance of ITPM-FQL is not desirable because it
does not have the ability to fine tune fuzzy membership functions of the fuzzy rules and
pruning mechanism. The main advantage of EDSGFQL is that it can delete unnecessary
rules and maintain the requirement of rules within a certain region. But, the ITPM-FQL
method achieves the same performance with significantly fewer numbers of rules than the
DFQL.

- i Reward comparison for ITPM-FQL, DSGFQL, EDSGFGQL
Number of Failures comparison for I[TPM-FQL, DSGFQL, EDSGFQL g
180r &
£ |, ITPM-FQL 50 - *\H* % **k{m
b o & DSGFQL a;b 5_ 4/ N *(6%" ‘A
1ot 8 — ——— EDSGFQL o0} ’WG o W/«% 506
?50 ! 5% S
LN 150} m{&,‘ *
120+ K P
o 200 7.7
A ook f
¥3‘i\ 4 / 21
100 - i *
B 20} & i
Lo Y
&il: L Aot EA
vz% S ot
AN
Y *‘ . o o° 350} b&\ ——— ITPM-FQL
60 1 P4 }\fv WD a0 pa® 060 &Y % DSGFAL
‘¥¥ ¥ @M’ 25€ \ A WA a0 "% —-+—- EDSGFQL
* ¥ w* *
0 . . . | . . . 450 . \ . \ . !) '
0 5 10 15 20 25 30 E: 0 5 10 15 20 25 30 3

5 40
Episode Episodes

B Number of fuzzy rules comparison for ITPM-FQL, DSGFQL, EDSGFQL
o
g
z -
“a0} o
YT
L < 5
28 50 5 "4 4\000 &0, 00000{/
S 8404,0% Cgpn
%6t o ©%0q o
P abs o/‘c»
& e
B * - A
ul ¢ AR 2% Ao
** f}lﬁ,@k -F”M—*ALH_* *—H*W
2| %+ -
7 ,,
f #
7y
o
18r; /
4
/
1 ITPM-FQL
il P‘l & DSGFQL
/ —+—- EDSGFQL
12 < 1 1 1 1 1 1
0 5 0 15 20 25 a0 5 10

Episodes

Fig. 6. Performance comparisons of ITPM-FQL, DSGFQL and EDSGFQL (a) Number of
failures versus episodes (b) Reward values versus episodes (c) Number of generated fuzzy
rules versus episodes.

Incremental-Topological-Preserving-Map-Based Fuzzy Q-Learning (ITPM-FQL) 129

5. Conclusions

In this study, a new Q-learning-based approach termed ITPM-FQL which can automatically
generate and tune fuzzy rules based on the online SOM algorithm (ITPM) with e-
completeness criterion is proposed. Compared with the original CAQL approach, the ITPM-
FQL uses the e-completeness criterion instead of predefined Euclidean distance and fuzzy
reasoning to generate continuous actions. To improve the generalizing ability, adaptive
learning rate has also been adopted in the ITPM-FQL. Therefore, the ITPM-FQL is
theoretically superior to the CAQL. Compared to the DFQL, the ITPM-FQL has convergence
ability in generalizing fuzzy rules, which is lacking in the former approach. Comparative
studies in the wall-following task show that the proposed method produces more desirable
overall performance than the DFQL, CAQL and FQL approaches.

6. References

Chapter 15 Kohonen Network, Available: http:/ / page.mi.fu-berlin.de/rojas/neural/.

Er M. J. & Deng C. (2004). Online Tuning of Fuzzy Inference Systems Using Dynamic
Fuzzy Q-Learning, IEEE Trans. on Systems, Man and Cybernetics, vol. 34, no. 3, part
B.

Er M. & Zhou Y. (2008). A Novel Framework for Automatic Generation of Fuzzy Neural
Networks, Neurocomputing, Vol. 71, pp. 584-591.

Er M.J. & Zhou Y. Automatic Generation of Fuzzy Inference Systems via Unsupervised
Learning Neural Networks, accepted for publication in Neural Networks.

Fritzke B. (1995). A Growing Neural Gas Network Learns Topologies, Advances in
Neural Information Processing Systems 7(NIPS), MIT Press, Cambridge MA, pp.
625-632.

Furao S. & Hasegawa O. (2006). An Incremental network for on-line unsupervised
classification and topology learning, Neural Networks, vol.19, pp. 90-106.

Holmstrom J. Growing Neural Gas Experiments with GNG, GNG with Utility and
Supervised GNG, Uppsala Univ., Master’s thesis, Uppsala, Sweden.

Jouffe L.(1998) Fuzzy Inference System Learning by Reinforcement Methods, IEEE Trans. on
System, Man and Cybernetics, vol. 28, no. 3, pp 338-355.

Kohonen T. (1982). Self-organized formation of topologically correct feature maps, Biological
Cybernetics, vol 43, pp. 59 - 69.

K-Team S. A. (2002). Khepera II user manual, Switzerland.

Millan J. D. R;; Posenato D. & Dedieu E. (2002). Continuous-action learning, Machine
Learning, vol. 49, no. 2-3, pp.247-265.

Nilsson T. (Online). Available: http:/ / www kiks.f2s.com.

Sutton R. S. (1988). Learning to predict by the methods of temporal differences, Machine
Learning, vol. 3, pp 9-44.

Sutton, R. S. & Barto A. G .(1998). Reinforcement learning: An Introduction. The MIT
Press,Cambridge, Massachusetts.

Watkins, C. J. C. H. & Dayan, P. (1992). Q-learning, Machine Learning, vol. 8, pp. 279-
292.

130 Theory and Novel Applications of Machine Learning

Zhou Y. & Er M.]J. (2008). A Reinforcement Learning Approach Towards Automatic
Generation of Fuzzy Inference Systems, accepted for publication in IEEE Trans on
Systems, Man and Cybernetics, Part B, Special Issue on Adaptive Dynamic
Programming/Reinforcement Learning.

9

A Q-learning with Selective Generalization
Capability and its Application to Layout
Planning of Chemical Plants

Yoichi Hirashima
Osaka Institute of Technology

Japan

1. Introduction

Under environments that the criteria to achieve a certain objective is unknown, the
reinforcement learning is known to be effective to collect, store and utilize information
returned from the environments. Without a supervisor, the method can construct criteria for
evaluation of actions to achieve the objective. However, since the information received by a
learning agent is obtained through an interaction between the agent and the environment,
the agent must move widely around the environment and keep vast data for constructing
criteria when complex actions are required to achieve the objective. To conqure these
drawbacks, function approximation methods that have generalization capability have had
the attention as one of effective methods. The challenge of this chapter is focused on
improving learning performances of the rainforcement learning by using a function
approximation method, a modefied version of Cerebellar Model Articulation Controller
(CMAC) (Albus, 1975a; Albus, 1975b), used in the reinforcement learning,.

CMAC is a table look-up method that has generalization capabilities and is known as a
function learning method without using precise mathematical models for nonlinear
functions. Thus, CMAC is used to approximate evaluation functions in reinforcement
learning in order to improve learning performance (Sutton & Barto, 1999; Watkins, 1989). In
the CMAC, the numerical information is distributively stored at memory locations as
weights. Each weight is associated with a basis function which outputs a non-zero value in a
specified region of the input. The CMAC input is quantized by a lattice constructed by basis
functions. In order to speed up learning and increase the information spread to adjacent
basis functions, the CMAC updates a group of weights associated with basis functions that
are close to a given point, and thus yields generalization capability. The concept of closeness
stems from the assumption that similar inputs will require similar outputs for well-behaved
systems. The structure of lattice determines how the CMAC input space is quantized and
how the generalization works. However, the conventional CMAC has a fixed lattice and a
fixed shape of region covered by the effects of generalization. Although the size of the
region can be changed by adjusting the quantization intervals for lattice, the shape of the
region is not adjustable. The required size and shape of the regions are not same for
different cases, and thus, the CMAC has difficulties to obtain appropriate generalization for
each case.

132 Theory and Novel Applications of Machine Learning

To conquer the drawback, a design method of CMAC that has a selective generalization
capability is introduced. In this method, several CMACs are selected by extended input that
can adjust the shape and size of region covered by the effects of CMAC generalization. The
extended input is generated by a function obtained by using a priori knowledge of the
addressed problem. By the proposed method, appropriate generalization can be obtained for
cases that the conventional CMAC is not efficacious. The proposed method is applied to a
allocation problem of a plant based on the fictitious chemical production plant as a case study.

In chemical plants, layout of plant-elements should be determined considering at least the
accessibility for maintenance and fire fighting, operability, and construction cost. From a
pure safety perspective, tanks and reactors should be placed as far as possible from each
other, in order to minimize the effect of a fire or explosion which a tank or reactor have on
adjuscent equipment. But a larger distance between these elements of chemical plant, such
as tanks and reactors, requires a larger pipe-length for connecting these elements and the
efficiency of production and operation get worse. Hence in the layout of the chemical plant,
there is a problem to minimize risk due to fires and explosions and maximize efficiency of
production and operation simultaneously. Thus, the element allocation in a chemical plant is
a multi-objective optimization problem. This problem was approached by using
mathematical programming (Ceorgiadis et al, 1999; Vecchietti & Montagna, 1998). Or it may
be considered to use Neural Network or Genetic Algorithm. But the problem has so many
variables and freedoms to be chosen and also so many constraints among variables. Hence
solving the problem by using those methods may take too much time and is not adequately
efficient. Recently, a new reinforcement learning method has been proposed in order to
solve allocation problem (Hirashima et al, 2002). The method is derived based on Q-
learning (Watkins, 1989; Watkins, 1992) and hybrid-cordination that only a certain part of
the plant-layout is recognized by the distance and rotational angle of each element
measured from a “basis element' . In this method, rotated and/ or shifted plants that have the
same layout are identically recognized (Hirashima et al, 2005). The CMAC with selective
generalization capability is integrated to this method, and effectiveness of the new CMAC is
shown by computer simulations.

The remainder of this chapter is organized as follows: section 2 gives a detailed explanation
of the CMAC that has selective generalization capabilities. Section 3 explains allocation
problem of chemical plants. Section 4 presents a Q-learning method for plant allocation
problem. Section 5 depicts and compares several results of computer simulations for a plant
allocation problem. Finally, section 6 concludes the chapter.

2.CMAC

In this section, CMAC that has Selective Generalization capability (SG-CMAC) is explained.
Assume the SG-CMAC has n inputs and 1 output. Define the input of SG-CMAC as

s=(s;,5.),8, =1{5,} (0<s,<A,,i=1--,n-1;0<s, <A), where s=f) =5 Iis
quantized with m areas and a corresponding CMAC module is assigned to each quantized
area. CMAC modules used by the proposed method are same as the conventional CMAC. In

the next subsection, the structure of CMAC modules is explained.

2.1 CMAC modules
Consider a basis function whose output is 1 when the input lies in its support and 0
otherwise. We define the size of the support as p for each axis. A set of k overlays is formed

A Q-learning with Selective Generalization Capability and its Application

to Layout Planning of Chemical Plants

133

so that each of the module inputs is covered by k supports. The overlays are displaced by p
relative to each other. Each overlay consists of the union of adjacent non-overlapping
supports. Edges of supports generate knots, and the subset of knots constructs a square
lattice of size p which quantizes the whole input space. The quantization interval p is
determined by the size of the interval of neighboring knots, and it controls the degree of

generalization.
5;2/, 81 .
N _ J_llp.l).lt space ’.
13— 15— 16 _—
9 10 _—apll _—12
0 JAN] 51
~ a (]2(1}3) ,,r-""ffg ba (Eb‘;,}"'/
- - ..’/-,’,.-' ‘.”,/,,_,
_ a1by (w) - (Lgf)l(ifz)-//
weight table 1 / . —
" azbs(wr) 1T aghg(wg)
,"', .—"// - T
- -~ (13!)3(21:5)/_,.,/’/! asbs(wg) _—~ g
’v'veight table 2 - : —
//.»"ﬂ;f’,lﬁ (f{'}}} — &s bg [11}12) —
’_,/"'(lgbs ('1,‘9)/"/ } aghs ('wm)))_',/"
weight table 3 ’

Fig. 1. Structure of a CMAC module

Fig.1 shows a CMAC module for the 2-dimensional input and 1-dimensional output
consisting of 3 overlays and 12 basis functions. The lattice cells are numbered from 1 to 16.
Assume the input to the CMAC module as s, ={s,,s,} and the input space as

S ={(5,,5,)]0<s, <A, 0<s, <A,}- Then s and s,are quantized quantization interval p in

the lattice. In the first overlay, s, is quantized into 4 or 4,, and s,is quantized into b, or

bz, respectively. The pairs of a,b,, a,b,, a,b,, a,b, express basis functions, and a,b,(w,)

implies that the basis function 4,5, has the weight w, .

o

k)

o - L4
-
y 4
CMAC CMAC CMAC CMAC
module 1 module 2 module 7 module m

O

Fig. 2. Output of a SG-CMAC

134 Theory and Novel Applications of Machine Learning

2.2 Output of a SG-CMAC

The output of a module u is formed from a linear combination of basis functions. Given an
input s=(s,,s,) to the SG-CMAC, the input is quantized, the corresponding CMAC
module is selected, a basis function is specified for each overlay in the selected module, and
the weight value associated with the specified basis function is output from the overlay.
The outputs of all the overlays are then summed up to yield the SG-CMAC output y, that is,

y=3w,. o

where w,is the weight value associated with the basis function specified in the jth overlay.

In Fig.2, the input (s,,s.) is given to the SG-CMAC. Quantized value of s, corresponds to
the ith CMAC module. Then, s,specifies a certain lattice cell in the CMAC module, for
example the 11th cell as shown in Fig.1. In the figure, s, specifies q,b,, a,b, and agh,- Then,
the module outputs w, + w, +w,, as the output of SG-CMAC.

Suppose that the desired signal for the input s, is d and the learning rate is g. The SG-CMAC
is then learned by adding the following correction factor & to all weights corresponding
tos, in the CMAC module specified by s_:

e=d-y. o)
5:g£. ®)

When giving two similar inputs to the CMAC module, several basis functions are
commonly specified. The existence of such common basis functions yields generalization
capability. Since the weights corresponding to the input s, are only in the CMAC module
specified by s_, the degree of generalization is adjustable by the quantization intervals for
s.. In addition, the shape of the region covered by the effects of generalization can be
determined by the shape of function s, = f(s,).

2.3 Numerical examples

Effects of CMAC generalization are explained by numerical examples. An input (s,,s,)is
given to CMACs that each module has the 2-dimensional input and 1-dimensional output
consisting of 3 overlays and 27 basis functions. Here, A=4=7, p=1, g=01,s,=(3.53.5),
d=10, and m=20. After giving sonce, generalizations of following 3 CMACs are
compared:

(A) Conventional CMAC.

(B) Proposed SG-CMAC, s_=s, —s, | 5,20

(C) Proposed SG-CMAC, s_=s, —1—(s, -2)’] S0

After k and p are determined, the shape of the region covered by the effects of
generalization for an input is fixed in the CMAC (A) as shown in Fig.3. In this case, 3

weights specified by s, are updated, so that the effect spreads over colored area in the right
figure of Fig. 3. While, in CMACs (B) (C), the region that the effects of generalization spread

A Q-learning with Selective Generalization Capability and its Application

to Layout Planning of Chemical Plants 135

is restricted in the CMAC module specified according to the value of s_, as illustrated in
Figs.4, 5. Thus, the shape and the quantization interval of s determins the degree of
generalization in the SG-CMAC.

S
S
Fig. 3. Output of a CMAC (A)
0l
0.08 |-
0.06 |-
y 004 =
0.02 |-
0 70
2
f 3
7 6 3 3 S9
; R 6
2
S1 1 0

Fig. 4. Output of a SG-CMAC (B)

0.08

Fig. 5. Output of a SG-CMAC (C)

136 Theory and Novel Applications of Machine Learning

3. Allocation problem of chemical plant

As an application example, SG-CMAC explained above is used to solve an allocation
problem of chemical plant. The objective of the problem is to minimize the total distance of
the links under the constraint that the distance of two elements cannot be set smaller than a
certain value in order to avoid influence of explosions. Precise roles of the elements included
in the original plant are omitted in the simplified problem and every element is called
“unit”. Now, the allocation space is assumed to be normalized into square field, and
quantized by square cells that have the same quantization interval. Also, assuming that the
number of units is k_, the number of lattice cells is _, each unit is recognized by an unique

name c, (j=1,-+-k,) and the position where a unit is placed is discriminated by discrete
position number 1, cemg, then, the position of the unit ¢, is described by dj ,
(j=1-k, 1< d,<m,). The state of the allocation space is determined by
x= ld s d i J Here, if c, is not allocated, dj = (). Since units are allocated into a lattice
cell, the maximum number of candidate positions where a units can be allocated is m,- The
unit to be allocated is defined as ¢, (T =1,---k_) and a position u that ¢ is to be allocated
is selected from candidate positions (1,---m_).c, must be allocated into a position where the
distance Ly, (1<j<k,T=#j) between c,and every other unit is larger than certain
distances LTj(l <j<k,T # j). Then, the plant is described as x’'= f(x,u), where f(-)

denotes that allocation of ¢ is processed.

Pl Pr1

O—0O

43 |44 |45 |46 |47 |48 |49
36 |37 |38 |39 |40 41 |42
29|30 (31 |32(33 |34 |35
22|23 |24 25|26 |27 |28

15(16 |17 |18 | 19|20 |21

§ (9 |10)11 12|13 |14

(23|45]|6|7

Unit allocation space

Fig. 6. Plant for allocation problem

A Q-learning with Selective Generalization Capability and its Application
to Layout Planning of Chemical Plants 137

Fig.6 shows an example of a plant, where m_=49,k_=7. In the figure, positions of units are
discriminated by integer 1, ... 49. Py (i=1,---,7; j=1,---,n,) denotes a length of jth intake pipe
of ith unit, where 5, is the number of intake pipe to the ith unit. 5, is determined according

to product process. In this example, the first unit is a mixer in which some raw materials are
mixed before reaction in either of the two reactors (unit 2 or 3). These two reactors produce
to intermediate products, which then react to produce the desired product in the next
reactor (unit 4). After this reactor follows some purification steps. The first is a simple
settler, which separates solids and liquids (unit 5). The desired product is assumed to be in
the liquid phase, and is isolated in the crystallizers (unit 6 and 7). Two crystallization steps
are needed to get the desired purity of the final product.

The objective of the proposed method is to find the plant layout that can reduce the total
length of pipe with minimized risk.

4. A Q-Learning for plant allocation problem

In the conventional Q-learning algorithm, Q-table has to store evaluation-values for all the
plant state. In unit allocation problems, the state of the allocation space is described by the
positions of all the units x and ¢, . Since units are allocated by predetermined order, ¢, can

be determined by units that have already allocated. A Q-value is thus stored for each pair
x= [d],...’dk Jand u, (i=L---m_). In this case, the number of states and Q-value is

ch (m, —i) that increases by the exponential rate with increase of k_ . Moreover, in
i=0

realistic situations, the number of lattice cells is often large, then required memory size to
store information for all the state of the allocation space also becomes large (Baum, 1999).

4.1 Update rules
The proposed learning procedure consists of 3 update rules: (1) to update Q, for evaluation

of the position of unit 1, (2) to update Q, for evaluation of the position of units 1 and 2, (3) to
update Q, for evaluation of the positions of unit T (7' =3,---k_). In the update rule (1), the
input is the position of each unit u, (i =1,---,m,). O, (u,,x)is updated by eq. (4).

Ql, (ui’ X) = (1 - a)Q],,1 (ui’x) +ay H}EHL.?(Qz,,] (u,x) . (4)

In the update rule (2), Q, (u,,x)is updated when all the units are successfully allocated to

the space by using the following rule:

Qz, (u;,x)= (1_(1)Q2H (u;,x)+ayR - ©)
In the update rule (3), the state is redefined by using the relative position of the rth unit
pos, (r=2,---k_) measured from the position of unit 1 and the angle §, between the line
that links units 1,2 and the line that link unit 1 and rth unit (» =2,---k_,, 3, =0). That is,
xp ={x,} (r=3,---k_) is the state of the allocation space for the update rule (3),

138 Theory and Novel Applications of Machine Learning

wherex, =[pos,, 9,]. Also, u, is redefined as the relative position on the basis of x, . Then

0O, (u;, x,) is updated by eq. (6).

0, (u;,x;)= (l—a)QT’(u,.,xR)+a[R+7mz§]XQTI(u,x,'{),(T =3, ,k-1). (6)

In plant allocation problems, the objective is to reduce the total pipe length in the allocation
space. Thus, in the proposed system, Q-values reflect the pipe length by adjusting the
discount factor y according to the pipe length. In the following,

L, (i=1--,k.;j=1,---,n,) is defined as the minimum length of the jth intake pipe of ith
unit, and U is defined as a set of positions that satisfy constraints/ N> LT]. in the allocation

space. Then, y is calculated by using the following equations :

1 (for update rule (1))
k., np
224
i1 o1 (for update rule (2)).
k., np
“)
22.h
V= i=l j=1
ZT: L; (for update rule (3))
2 (1<i<k,i#2)

nr

where 7, is the number of pipes that link ¢, and allocated units, and L (j=L,---,n,)is the

length of the pipe that links cr and the allocated unit. Here, R is given only when all the
units has been allocated. Propagating Q-values by eqs.(4)-(6) as update rules, Q-values are
discounted according to the pipe length. In other words, by selecting a position that has the
larger Q-value, the length of pipe can be reduced. Each u; is selected by the following
probability (Sutton & Barto, 1999; Watkins, 1989) :

_ eXp(Qt—l(ui’xj)/C . ®)
P X)) = S ap(, (o, C

where C is a thermo constant. The learning algorithm is depicted in Fig.7.

4.2 Q-tables

In realistic problems the number of lattice cells is large, so that huge memory size is
required in order to store Q-values for all the states. Therefore, in the proposed method,
only Q-values corresponding states that have been searched are stored for unit i
(i=3,---k,). Binary tree is constructed dynamically (Hirashima et al., 2005) during the

course of the learning for storing Q-values.

A Q-learning with Selective Generalization Capability and its Application
to Layout Planning of Chemical Plants 139

(START)
!

collect (w;.x;)
Calculate) (ir. @) for u = {/
Select ¢
Settle ¢y
Save (ui.u;)

T

I -

collect (w;. xj)
Calculate ()(u.x) for uw e UV Update () (w;. 1)
Select ¢y Save (u.x0) Save (u;, ;)
Settle c; 1
Calculate ~ yes

Receive reward
Update)(u;.x;)
Update €) (w0, @ 0)

l
C END)

Fig. 7. Flowchart of the learning algorithm

Since similar layouts of the plant have similar evaluations, that is, difference of pipe lengths
between such layouts is small, the learning performance can be improved by using
appropriate generalization for evaluation of pipe length. By using CMAC as Q-tables for
units 1,2, an evaluation for one input (for example, a position of unit 1) can be spread over
adjacent inputs. However, the conventional CMAC has fixed shape of region covered by the
generalization effects. Then, in Q-table for unit 2, the same evaluation is given to the layout
that has longer pipe length and the one that has shorter pipe length when a similar layout is
updated in the course of learning. Giving comparable evaluation to longer pipe length as
compared to shorter pipe length is not appropriate, and thus, conventional CMAC can spoil
the learning performance of the system.

In the proposed method, the CMAC that has selective generalization (SG-CMAC) is used as
the Q-table for wunit 2. Now, define positions of wunits 12, d,,d,as

d =, ,d),d,=(d, ,d,) by the x-y coordinate. The input of the SG-CMAC is

s=(s;,s.), wheres, =x, s :\/(d] -d,) +(d, -d,)> . s,describes the distance between

140 Theory and Novel Applications of Machine Learning

unit 1 and unit 2. Values of s are calculated based on quantized values of s,,s,.
Corresponding CMAC module is assigned to each value of s_, so that only the positions that

have the same pipe length as the position specified by an input are affected by the
generalization.

An example of generalization of SG-CMAC is illustrated in Fig.8. In the figure,
A=A=7p=1g=0.l, d=1.0. The position of unit 1 is (allr , dlv) =(2,3) that is blue colored

position in the right figure of Fig. 8. The result is obtained after s;=(4.0,4.0) is given once.
Only positions that the distance from unit 1 is same as the input are updated by the
generalization of SG-CMAC. These positions are colored by yellow in the right figure of
Fig. 8.

1.0

0.8

Fig. 8. Generalization of SG-CMAC

The outputs of all the weight tables are summed up to yield the output of the CMAC. For
example, the output of the CMAC according toy, and x is

k
qt(u,.,xj)=2w;f; . ©)
p=1

where Wt (p=1,--k) are weights specified by the input y, for the Q-table at time t.
q,(u,,x,) is updated by the update law of the CMAC. In other words, defining the output
error at time t as e;, the desired signal at time t as Qsand learning rate as g, weights are

updated as follows:

et(uiﬂx):Qt(”iﬂx)_qt(uiﬂx)' (10)

we =w§,‘;+g7"'(’;€f’x) (p=1,k) 11)

Then the desired signal Q (u,, x,)is calculated by the Q-learning algorithm eqs.(4)-(6).

A Q-learning with Selective Generalization Capability and its Application
to Layout Planning of Chemical Plants 141

5. Computer simulations

Computer simulations are conducted for the same plant described in Fig.6. That is, k. = 7,
m.=49. Minimum pipe lengths between two units are set as

20(T=235j=1)
L, =< 15(T=67,j=1)
S(T=4j=12)

Then, learning performance of the following 3 methods are compared:

(A) proposed method that Q-tables for g are SG-CMAC,

(B) amethod that conventional CMACs are used for Q-tables to store Q,,0,,

(C) a method that conventional table look-up method without generalization is used to
construct Q-tables for Q,.

In CMAC modules in method (A) and CMACs in method (B) for storing 0,y p=3k=3.1In

CMAGCs in methods (A), (B) and (C) forQq, p=8,k=6. Parameters used in the proposed

method are set as ¢=0.8,g=0.6,C=0.1. Reward R=1.0 is given only when all the units has
been allocated. A trial starts from a initial state and ends when all the units are allocated.
Fig.8 shows examples of plant-layout obtained by method (A). For each unit c,

(T =1,---k_), lengths of intake pipes L, are

VS(T=235)=1)
l; =42.0(T=6,7;j=1)
N2(T=4j=12)
They are best values that satisfy constrains L, <l,: O that the total pipe length of the

optimal layout is 345 + 442 +4~16.37 .

Fig. 8 shows simulation results. The proposed method could find several optimal solutions,
and 4 results that have shortest pipe length are shown in the figure. In the figure, results
(I),(11),(IT) and (IV) have different layouts, and thus the state x for each solution is different
to each other. While, the solution in result (I) is identical to solution (II) with horizontal shift.
Also, the solution in result (II) is identical to solution (IV) with rotation, horizontal shift and
vertical shift. Therefore, results (I) has the same x, as result (II) after unit 2 is allocated, and

thus, the same Q-value is referred for the layout in the course of learning and input-selecting
phase. In the same way, results (III) and (IV) are obtained by using the same Q-values. Once,
a good layout is obtained, then, the corresponding Q-value is used for several layouts that
are rotated/shifted from the original layout. Moreover, the information of a good layout is
spread over adjacent positions of second unit by the generalization capabilities of SG-
CMAC. Therefore, the learning performance of the proposed method can be improved as
compared to conventional methods that have fixed generalization capabilities. A simulation
requires about 5 minutes as runtime and 500KBytes memory on a personal computer that
has Pentium4 3GHz CPU.

142 Theory and Novel Applications of Machine Learning

Fig.9 depicts simulation results where the vertical axis shows the shortest pipe length that is
found in the past trials and horizontal axis shows the number of trials. Each result is
averaged over 10 independent simulations. In the figure, the proposed method (A) finds
optimal solutions that have 16.37 as total pipe length in all simulations, whereas methods
(B),(C) cannot. The learning performance of the conventional method (C) is better as
compared to method (B) especially in early stages of learning. In method (B), by
generalization of the conventional CMAC, inappropriate evaluations are spread over the
region adjacent to inputs, so that the learning performance has been spoiled.

6. Conclusions

A design method for CMAC that has selective generalization (SG-CMAC) has been
proposed. Also, a Q-learning system using SG-CMAC is proposed, and the proposed system
is applied to allocation problem of chemical plant. In the computer simulations, the
proposed method could obtain optimal solutions with feasible computational cost, and the
learning performance was improved as compared to conventional methods.

(0 (a

Mot s

(I)

Fig. 8. Optimal lyaouts obtained by method (A)

A Q-learning with Selective Generalization Capability and its Application

to Layout Planning of Chemical Plants 143

19

-

o, 18k

=

k)

)]

(=3

B

7]

2

=

@ /(A)
16

0 50000 100000 150000 200000 250000 300000 350000 400000
Trials

Fig. 9. Performance comparison

6. References

Albus, J. S. (1975a). A New Approach to Manipulator Control : The Cerebellar Model
Articulation Controller (CMAC), Trans. ASME]. Dynam. Syst., Meas., Contr., Vol.
97, 220-227

Albus, J. S. (1975b). Data Storage in the Cerebellar Model Articulation Controller (CMAC),
Trans. ASME]. Dynam. Syst., Meas., Contr., Vol. 97, 228-233

Baum, E. B. (1999). Toward a model of intelligence as an economy of agents, Machine
Learning, Vol. 35, 155-185.

Ceorgiadis, M. C., Schilling, G., Rotstein, G. E. and Macchietto (1999). S. A General
Mathematical Programming Approach for Process Plant Layout, Comput. Chem.
Eng., Vol. 23, No. 7, pp.823-840.

Hirashima, Y., Deng, M., Inoue, A. (2005). An Intelligent Layout Planning Method for
Chemical Plants Considering I/O Connections, Proceedings of SICE Annual
Conference, pp.2021--2024.

Hirashima, Y., Inoue, A. and N. Jensen, A Method Placing Tanks and Reactors in a Chemical
Plant to Minimize Risk Due to Fires and Explosions Using Reinforcement learning,
Proc. International Symposium on Advanced Control of Industrial Processes,
pp-381-386, 2002.

Sutton, R.S. and Barto (1999). A.G. Reinforcement Learning, MIT Press

Vecchietti, A. R. and Montagna,]J. (1998). Alternatives in the Optimal Allocation of
Intermediate Storage Tank in Multiproduct Batch Plants, Comput. Chem. Eng., Vol.
22,No. suppl.issue, pp.S801-4.

144 Theory and Novel Applications of Machine Learning

Watkins, C. J. C. (1989). Learning from Delayed Rewards, Ph.D. Thesis, Cambridge
University, Cambridge, England.
Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning, Machine Learning, 8:279-292.

10

A FAST-Based Q-Learning Algorithm

Kao-Shing Hwang?, Yuan-Pao Hsu! and Hsin-Yi Lin2

Department of Computer Science and Information Engineering National Formosa
University Yunlin,

2Department of Electrical Engineering National Chung-Cheng University Chiayi,
Taiwan

1. Introduction

Q-learning is a stochastic dynamic programming algorithm that doesn’t need to have the
interactive model of machine-environment [1] [2]. Taking action ‘a’ according to state ‘s’, the
algorithm measures the feedback rewards and updates its Q values from rewards step by
step. In a reasonable period of learning process, the Q-learning obtains outstanding
performance and has been successfully applied on collision-avoidance, homing, and robots
cooperation [3] [4].

Traditionally, in Q-learning algorithm, a decoder pre-partitions the input space into grid
called boxes that map input vectors into activated boxes. However, the way of pre-
partitioning the input space might not be suitable for all systems, especially for unknown
systems. Therefore, theorems such as CMAC, ART, FAST, etc. have been suggested to
replace the box decoder for clustering input vectors [5]-[7]. Input vectors then can be
mapped into more suitable clusters for the purpose of getting better state-action values to
meet the desirable control effect.

The ART [6] is one kind of unsupervised learning artificial neural networks possessing the
advantage of solving the stability-plasticity dilemma. The FAST [7] [8] algorithm merges the
advantage of variable vigilance value of the ART and the pruning mechanism of the GAR
(Grow and Represent Model) [9] theorem, amending the disadvantage of the boxes method
which maps only one activated box for each input vector. It dynamically adjusts the size and
location of the sensitivity region for activated neurons, and makes boundaries between
categories to be changeable, resulting in producing more suitable input for increasing the
system learning speed. Furthermore, when an input pattern activates more than one neuron,
the pruning mechanism of the FAST appropriately prunes one of the neurons with
overlapped sensitivity region for preserving neurons to accommodate more categories in the
cause of resource reservation.

The article aims at combining a FAST-based algorithm and Q-learning algorithm into a
reinforcement learning algorithm called ARM Q-learning algorithm that improves Q-
learning algorithm on learning speed and learning stability. The article is organized in four
sections; the first Section being this introduction. In Section 2 we discuss the theories of
clustering and reinforcement learning. Section 3 presents the simulation results and results
analysis. Finally, a discussion is drawn in Section 4.

146 Theory and Novel Applications of Machine Learning

2. Theory

2.1 Adaptive resonance theory

ART is a dynamic neural network structure. With a feedback mechanism the ART produces
a top-down expectation. Not only must a neuron win the competition but also should it
match this expectation before it is qualified to learn. As the interaction between the feed-
forward path and the feedback path is established, the winning neuron will output the same
pattern iteratively. This state is so called the resonant state and that is why the theorem is
named to be Adaptive Resonance Theory.

2.2 Flexible adaptable-size topology

FAST is developed from the concept of ART algorithm with the dynamic categorization

function. Merging with the dynamic vigilance parameter and online pruning mechanism,

the FAST is able to realize the clustering efficiently.

Each FAST neuron j maintains an n-dimensional reference vector C;, and a threshold, T,

determining its sensitivity region. At the beginning, input patterns are presented and the

network adapts through application of the FAST algorithm (Figure 1). If a new input vector

P; doesn’t lie within any sensitivity region of any neuron, a new neuron is generated by

setting its reference vector C;j centered on the input vector pattern P;. On the other hand, the

Cjand T; of a neuron are dynamically updated if P; lies within its sensitivity region. There is

another scenario that P; may activate more than one neuron. This implies the FAST network

has redundant neurons with overlapped sensitivity regions. The pruning function is then
executed to delete one of these neurons to decrease the network size. The operations can be
described as the following steps:

1. Initialize the system.

2. Present an input pattern P and compute D(P, C;) for every operational neuron j. Where
D(P, Cj is the Manhattan distance, a distance between two points measured along axes
at right angles, e.g., on a plane with two points, p; at (x;, y1) and p; at (x2, 1), their
Manhattan distance is |x;-x2| + |y1-y2].

3. If D(P, C) > T; for all j, activate a new neuron j* by initializing its reference vector to C;*
= P, its threshold to T;* = Tj,;, and its deactivation parameter to Pr;* = 1.

4. If D(P, C) <T;, where jis an active neuron, and T is its threshold, update C; and T; as follows:

C,(t+1)=C,(t)+aT (P-C,0) 1)

T (e+1) =T, (1) -7 (T, (1)-T,,) @
where ¢, y, and T, are learning constants. Update the global T;,; parameter to Tj, =
Tini(t+1) - V(Tmt(t) - Tmin)~

5. If several neurons are activated in step 3, deactivate one of the neurons if rnd() > Pr;,
where Pr; is the deactivation parameter, and rnd() is a uniformly distributed random
number in the range (0, 1). Increase the activated neurons’ probability of deactivation as
follows:

Pri(t+1) = Pri() =n(Pri(t) = Pmin), ®)
Where) and Pr, are pruning constants.
6. Goto step 2.

A FAST-Based Q-Learning Algorithm 147

Random
Number
Generator

Pruning '—> <

omparator
Comparator }
Input Distance Cluster
i < On/off
calculation
Weight Vector Threshold

Learning '

Fig. 1. Block diagram of an FAST neuron.

2.3 Q-learning algorithm
Q-learning is one of reinforcement learning algorithms (figure 2). The algorithm selects an
action with max Q value (or by e-greedy) from the Q table basing on the clustered result of
current state. A feedback reinforcement signal (reward) is then read for the system to update
its Q value and the system enters the next state at the same time. At the next state, the
system goes again the selection of the action, and receives the reward, and enters the
following state. The operations are periodically performed for reaching the ultimate purpose
that the best action of each state can be trained to get the optimal Q value (Q¥).
The procedure of the algorithm is list as follows.
¢ [Initialize the system. All Q(s, a) are set to be zero.
e Repeat (for each episode):
e Repeat (for each step of episode):
e Observe current state s.
e Select an action a with max Q value from Q table (or select an action by e-
greedy policy).
e Take action g, read reward r caused by action 4, and observe next state s”.
e Update Q value corresponding to state s and action a as equation (4).

Q(s,a) = Q(s,a) + B(r + Max(Q(s',a)) - Q(s,a)))

Where r is reinforcement signal (reward), s” is all possible states t hat state s
can visit, and and y are coefficients lie between 0 and 1.

148 Theory and Novel Applications of Machine Learning

e Replace s withs’.
e Until s is terminal or stop condition has been met.

Reward p———

Q learning
Q table
X0—
— v
» Cluster : : —»{ Evaluation |__ Y Plant
: : &update
X.n-1—>
X -]
Update Q value

State s

Fig. 2. Q-learning block diagram.

2.4 Adaptive resonance method
The ARM architecture modified from FAST is developed to provide more suitable clustered
results to the Q-learning architecture for achieving the purpose of improving the learning
speed and learning stability. The modification involves three parts: normalization, weight
update, and pruning mechanism.

2.4.1 Normalization

The FAST compares an input vector with each neuron’s center point to calculate the
Manhattan distances D. However, the variation of the input vector in its distinct dimension
may not have the same scale. Consequently, in the system input space, a slightly changing
of a parameter in some dimension of an input vector might make the calculated D larger
than T value causing a new neuron being generated. For another parameter, on the other
hand, even having a great deal of change, the D is still unable to exceed the T value to
generate a new neuron. Therefore, a normalization mechanism should be added in front of
the FAST to normalize each dimension’s value of the input vector into the same scale, so as
to appropriately categorize the input vectors and to generate new neurons.

2.4.2 Weight update

When a neuron has been activated repeatedly, its center point moves following the
successive new input vectors. The more number of times of a neuron has been activated, the
larger moving distance of the neuron will have. This causes the FAST encoding the same
input vector into different cluster and the Q-learning will receive erroneous clusters.

As shown in figure 3, (a) represents that the system generates a neuron centered by Co for
the input vector Py; (b) shows that the center point Cp has been moved to Cy" for the input

A FAST-Based Q-Learning Algorithm 149

A A

Fig. 3. Center adjustment of a FAST neuron.

vector P, which lies within the sensitive region of Co, but P; is different from Pi; (c)
represents that the center point Cy has been moved farther away from its original center in
(a) because of the input Ps; (d) points out that the input vector P4 lies outside of the sensitive
region of Cyp and will be categorized as another cluster which is different from the cluster of
the Py, even P4 is the same as P;. The system would not be able to refer to the learned
experiences for this reason and jeopardize its performance significantly. To resolve this
difficulty, the learning rate « should be limited under some small value in order that the
FAST can cluster input vectors stably.

2.4.3 Pruning mechanism

The original concept of pruning mechanism of the FAST is depended upon the pruning
probability, whereas the pruning probability is determined by the number of times of a
neuron being activated. From this concept, a neuron is prone to be pruned when its times of
being activated is relatively larger than other neurons. However, it is also possible that
similar input vectors are easily to repeatedly present on the input making the FAST
regenerates new neurons for the input vectors that they might have just caused some
neurons to be pruned. The system will be stuck on the unstable situation of switching
between pruning and generating. Moreover, neurons that were generated by input vectors

150 Theory and Novel Applications of Machine Learning

appeared only once will stay in the system and unreasonably never have the chance of being
pruned. This leads us to modify the pruning mechanism that keeps neurons that are having
high probability of being activated, deletes neurons which have low probability of being re-
activated.

The pruning mechanism is modified to be: when a neuron is activated, its Pr value is set to
be 1, while the Pr values of other un-activated neurons are updated basing on (3). The
neuron number is limited to be K. When the number of generated neurons of the system
reaches K, the pruning mechanism is triggered to check the Pr values of each neuron. Those
neurons with Pr values smaller than a random number rnd() will be pruned.

The algorithm of the modified FAST is listed as the following steps.

1. Normalize input vector P.

2. Calculate Manhattan distance D(P, C /.) between input vector P and neurons j.

3. If dPC)>T , input vector P doesn’t belong to any existing clusters, generate the

(j + 1)th new neuron and initialize its weight value being Cj:1 = P, and Tj+1 = Ty, and
P1"j+1 =1.

4. If D(P, C])<T] , categorize input vector P being the cluster of the jth neuron, set Pr; =1,
update Cj and T according to (1) and (2). Update Pr value of each un-activated along

©)
5. If generated neurons reaching K, compare each neuron’s Pr; with a random number
rnd() (between 0 and 1), delete one of the neurons when their Pr are larger than rnd().

6. Get next input vector P, go to step 1,

These modifications of the FAST give birth to the ARM. The ARM replaces the cluster
module in figure 2 to encode input vectors for the Q-learning. Section 3 will demonstrate its
performance.

2.4.4 Modified Q-learning

The original Box Q-learning selects the action with the biggest Q value from the Q table
referred to by the box that triggered by input state. But, in our architecture, we calculate the
Manhattan distances between the center point of current state and triggered neurons. These
distances determine the percentage of each activated neurons that contribute to the
calculation of Q value. If a triggered neuron is near the current state, then their Manhattan
distance would be small, so that neuron provides a large share of the Q value. The
proportion scale that each activated neuron contributes to the Q value is shown in equation (5).

> distance — distance,
- when n#1 ;
w; =< (n—1)x X distance . ®)
1.0 ,whenn =1.
Where w, represents the proportion that activated neuron j contributes; n denotes the
number of activated neurons;Zdistance stands to be the summation distance of all

activated neurons; distancej denotes the total distance of neuron ;.
Expected value V is calculated as follows:

= m?.XZWJQj (s,a), (6)

A FAST-Based Q-Learning Algorithm 151

where V, is expected value at time ¢.

Q is updated according to equation (7).

Qj(sr’a):Qj(St’a)+ﬂ(rt+7Vtij_Qj(Sr7a)) @)

3. Simulation

3.1 Cart-Pole simulation

The well-known cart-pole simulation having been used in verification of the performance of
reinforcement learning algorithms is simulated here to check if the proposed architecture
works. A typical mathematical model of a cart-pole system can be represented by forms as
(8) and (9). We use fourth order Runge-Kutta to simulate the cart-pole model by a personal
computer [10].

gsiné, +cosd,[— F, = mi6}sinf + sgn(fc)] il
d, = e T m m_ ®)
l[ﬂ _mcos” g,

3 m,+m

. _ E4+mi[6 sin6 —6 cos§]- p, sgn(x,)
X, = < .)

m,_+m

Where g is the gravity constant, 9.8 m/s2; m.is the mass of cart, 1 kg; m, is the mass of pole,
0.1kg; 1 is the half length of pole, 0.5 m; y,, is the friction coefficient of the pole on the cart; .
is the friction coefficient of the cart on the track; F; is the applied force generated by the
controller. The dynamics of the systems are assumed to be unknown but the states are
measurable. In the simulation, frictions are eliminated. Hence y, and ji. are set to be zero.

The cart travels left or right along a one dimensional track. The pole is hinged to the top of
the cart and is free to move in the vertical plane along with the track. The objective is to
learn to drive the cart left or right so as to keep the pole balanced vertically above the cart,
and to keep the cart from colliding with the ends of track. The learner accesses the state

vector (x,x,0, 0) at each time step and selects one of two actions, a rightward or leftward

force on the cart. The cart-pole system begins with x=0, x=0, =0, and 0 =0.If the
pole falls over more than 12 degrees from vertical, or if the cart hits the track boundary
(track length 2.4m), a failure occurs. All immediate rewards are zero except that when a
failure is occurred a reward of negative one is received. When a failure occurs, the cart-pole
system is reset to the initial state, and begins a new attempt to balance the pole.

3.2 Simulation results

The simulation includes 10 experiments. There are 500 trials in one experiment. One trail is
said to be ended if an attempt of balancing the pole is failed. When an attempt is lasting over
100,000 sampling steps, a successful trial occurs, and a new attempt is restarted by
initializing the cart and pole. Sampling interval is set as 0.02 second.

152 Theory and Novel Applications of Machine Learning

Parameters of the ARM are: learning constant a=0. 000001, y=0.007, =0.045, 7;,, =2.0,
]?]lill = 1 .ég , I)].

i =1.0, and Pr; =0.09; whereas parameters of the Q-learning are set to

be: learning rate o = 0.2, discount rate y = 0.999.

Best Worse
BOX Q 351 >500
ARM Q 7 82

Table 1. Summary of simulation results

ARM Q-learning and Box Q-learning are simulated for manifesting the improvement of the
proposed method. Average results of 10 experiments of the both algorithms are depicted in
figure 4. The ARM Q-learning method balances the pole within about 100 trials, while the
Box Q-learning method needs more than 500 trials to learn to balance the pole. The stability
of the ARM Q-learning also shows in the figure. The pole can be balance again quickly even
if it should fall after a long time of balancing. The ARM Q-learning keeps its learned
experiences well to equip it with superior stability.

100000

ARM O
80000 -

60000+

Total Steps

40000+

20000

50 100 180 200 250 300 350 400 450 500
Trial Number

Fig. 4. Performance of ARM Q-learning and Box Q-learning system.

Table 1 demonstrates that the modified ARM Q took only 7 trails for the first time that it can
successfully balance the pole for the best case. To accomplish the same job, the Box Q took
351 trials. Furthermore, the ARM generated 7 to 10 neurons to categorize the states. The Box
instead pre-partitioned the input state space into 162 boxes.

A FAST-Based Q-Learning Algorithm 153

In accordance with the above observation, for a plant like the cart-pole system, the ARM Q-
learning method needed only a small amount of neurons to learn to balance the pole within
much shorter time than the Box Q-learning method did.

4. Discussion

This article proposed a reinforcement learning architecture that combines ARM, a FAST-
based algorithm, and Q-learning algorithm. The ARM, at the front end, is featured with
multi-neuron triggering and dynamically adjusting its sensitive region as well, providing
the Q-learning, at the back end, with more suitable clustered input states. In such a way, the
Q-learning learns quick and stable.

There are future work can be tried to enhance the Q-learning for constructing more efficient
reinforcement learning architecture, such as replaces the Q-learning in our architecture with
the Q(M\)-learning [11] or SARSA [12].

5. Acknowledgment

The authors are grateful for financial support from the National Science Council of Taiwan,
the Republic of China, under Grant NSC94-2213-E-150-025-.

6. Reference

[1] Watkins, C. J. C. H,, and Dayan, P., Technical note: Q-Learning, Machine Learning, 8(3-4):
pp- 279-292, 1992.

[2] Claude F. Touzet, “Q-Learning for Robot,” in M. A. Arbib, editor, Handbook of Brain
Theory and Neural Networks, pp. 934-937, 2003.

[3] L. E. Parker, C. Touzet and F. Fernandez, “Techniques for learning in multi-robot teams,”
in Robot Teams: From Diversity to polymorphism (T Balch and L. E. Parker, Eds.),
Natick, MA: A. K. Peters, 2001.

[4] K.-S. Hwang, S.-W. Tan; C.-C. Chen, “Cooperative strategy based on adaptive Q-learning
for robot soccer systems,” IEEE Transactions on Fuzzy Systems, Vol. 12, Issue: 4, pp.
569-576 Aug. 2004.

[5] G. A. CARPENTER and S. GROSSBERG, “The ART of adaptive pattern recognition by a
self-organizing neural network,” IEEE Computer, 21(3), pp77-88, March 1988.

[6] J. S. Albus, “A New Approach to Manipulator Control: The Cerebellar Model
Articulation Controller (CMAC),” Trans. ASME,]J. Dynamic Syst. Meas., Contr.,
Vol. 97, pp. 220-227, Sept. 1975.

[7] A. Pérez-Uribe, Structure-adaptable digital neural networks, PhD Thesis 2052, Swiss Federal
Institute of Technology-Lausanne, Lausanne, 1999.

[8] A. Perez and E. Sanchez, “The FAST architecture: a neural network with flexible
adaptable-size topology,” Proceedings of Fifth International Conference on
Microelectronics for Neural Networks, pp. 337-340, 12-14 Feb. 1996

[9] A. E. Alpaydin, Neural models of incremental supervised and unsupervised learning. PhD
thesis, Swiss Federal Institute of Technology-Lausanne, Lausanne, DPFL, 1990.
Thesis 863.

154 Theory and Novel Applications of Machine Learning

[10] Barto, Andrew G., Sutton, Richard S. and Anderson, Charles W., “Neuronlike adaptive
elements that can solve difficult learning control problems.” IEEE Transactions on
System, Man, and Cybernetics SMC-13: 834-846. 1983.

[11] Peng, J. and Wiliams, R.J., “Incremental Multi-Step Q Learning,” Machine Learning, 22,
pp- 283-290, 1996.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning An Introduction, Cambridge, Mass.,
MIT Press, 1998.

11

Constrained Reinforcement Learning from
Intrinsic and Extrinsic Rewards

Eiji Uchibe and Kenji Doya
Okinawa Institute of Science and Technology
Japan

1. Introduction

The main objective of the learning agent is usually determined by experimenters. In the case
of reinforcement learning (Sutton & Barto, 1998), it is defined as maximization of a scalar
reward function which should be designed for each task through a trial-and-error process. It
is still important to implement learning algorithms that can efficiently improve the learning
capabilities, but the principles for designing the appropriate reward functions become
important more and more in the future. Reward functions are categorized into two types:
extrinsic and intrinsic rewards. In many cases, extrinsic rewards are zero everywhere except
for a few important points that correspond to the important events. Although designing
such a sparse reward function is easier than designing a dense one, the sparse rewards
prevent the learning agent to learn efficiently. On the contrary, the intrinsic reward is
regarded as dense reward functions which give non-zero rewards most of the time because
it is usually computed from the agent’s internal information such as sensory inputs.
Although the intrinsic reward is generally task-independent, it plays an important role for
designing an open-ended system.

Recently, learning algorithms with intrinsic rewards have been studied by several
researchers. Barto and his colleagues (Barto et al., 2004; Singh et al., 2005; Stout et al., 2005)
proposed an algorithm for intrinsically motivated reinforcement learning based on the
theory of options (Sutton, et al., 1999). Meeden et al. realized that a simulated robot tracked a
moving decoy robot with the rewards based on the error of its own prediction (Meeden et
al., 2004). Oudeyer and his collegues adopted progress of prediction learning as intrinsic
rewards and showed that behavior evolution of the Sony’s four-legged robot, AIBO, were
realized by step-by-step learning (Oudeyer & Kaplan, 2004; Oudeyer et al., 2007). However,
most previous studies did not discuss the negative effects of extrinsic rewards on
intrinsically motivated learning suggested by (Deci and Flaste, 1996). It is still unclear how
extrinsic rewards can help or hinder the learning process.

As the first step towards this problem, this chapter deals with the interaction between
intrinsic and extrinsic rewards from a viewpoint of constrained optimization problems. The
learning agent tries to maximize the long-term average intrinsic reward under the inequality
constraints given by extrinsic rewards. We propose a new framework termed the
Constrained Policy Gradient Reinforcement Learning (CPGRL) consisting of a Policy Gradient
Reinforcement Learning (PGRL) algorithm (Baxter & Bartlett, 2001; Konda & Tsitsiklis, 2003;

156 Theory and Novel Applications of Machine Learning

Morimura et al., 2005) and a gradient projection method (Rosen, 1960). Since The PGRL
algorithms can estimate the gradients of the expected average rewards with respect to the
policy parameters, they are nicely integrated with the gradient projection method. Although
constrained Markov Decision Process (MDP) problems are previously studied based on
linear programming techniques (Feinberg & Shwartz,1999; Dolgov & Durfee, 2005), their
methods do not suit our case because the state transition probabilities are known, and
because it cannot be easily extended to continuous state and action spaces. In order to
evaluate the CPGRL we conduct two simulations: a simple MDP problem with three states
and a control task of a robotic arm.

2. Constrained policy gradient reinforcement learning

2.1 Formulation

At each time step, an agent observes a state x € X and executes an action u# € U with
probability pg(x,u): X x U — [0, 1] that represents a stochastic policy parameterized by an n-
dimensional vector ® € R*. The agent calculates an intrinsic reward 7} and extrinsic
rewards 12 (=2, 3,..., m) at time t, which depend on the state and the action. Let rti =
ri(xs,uy) and 1, = [rd ? ... r{*]T denote respectively the immediate reward at time t and the
vectorized representation. The operation 4T means the transpose of vector/matrix a.

The objective for the agent is to find the policy parameter 8 that maximizes an average reward

Zrt} (1)

t—=1

g'(0) = 11111 Eo

under the constraints determined by the extrinsic rewards given by

Zn

ifl

g'(0) = 11111 Eg >GH i=2,...,m, 2

where G! is a threshold for controlling a level of the constraint. It is noted that the inequality
constraints on extrinsic rewards are also the functions of the average rewards.
Fig.1 illustrates the CPGRL system based on the actor-critic architecture (Sutton & Barto,
1998). It consists of one actor, multiple critics, and a gradient projection module that
computes a projection onto a feasible region, which is the set of points satisfying all the
inequality constraints. Based on the immediate reward r/, each critic produces an estimate of
the long-term average reward p’ and its gradient A! with respect to the policy parameters.
Actor selects the action u according to the stochastic policy pg(x,u). The procedure of the
CPGRL is listed below:
while k < Nk

1. Setzo=0and Al =0 forall i.

2. while t<Nr

i. Observe x;and execute u;.
ii. Receive the rewards r;.
iii. Estimate the average rewards and their gradients.

3. Store the estimated average rewards.
4. Update the policy parameter,

Constrained Reinforcement Learning from Intrinsic and Extrinsic Rewards 157

where Nk and Nt denote the number of episode and the maximum time step, respectively.

gradient
projection

P A, d

x » actor “9 u

Fig. 1. Block diagram of the actor-critic architecture for learning behaviours from intrinsic
and extrinsic rewards.

2.2 Gradient estimates by policy gradient reinforcement learning

The PGRL algorithms have recently been re-evaluated since they are well-behaved with
function approximation. As opposed to the action value function based reinforcement
learning such as Q-learning, the PGRL algorithms are naturally integrated with function
approximators, and therefore they can deal with continuous actions. There exist several
methods to compute the gradient of the average reward Al. In the current implementation,
we choose the GPOMDP algorithm (Baxter and Bartlett, 2001) and the actor-critic method
(Konda and Tsitsiklis, 2003). At first, we briefly introduce the GPOMDP algorithm when the
reward depends on the action as well as the state. According to the current state and action,
the function s, is defined by

1 Opig (x4, ut)

Yel@e, ue) = fig (s, wy) 90

The learning agent interacts with the environment, producing a state, action, reward
sequence. After receiving experiences (x; uy, Xp1, #p1, ti1), the GPOMDP updates an
eligibility traces z; € R"

Zyp1 = Oz + ¢ﬁ(w£: uL)

where f3 € [0, 1) is a discount rate that controls the variance of the gradient estimate. Since z;
is independent of the reward functions, z; can be used for estimating gradients of different
average rewards. Then, all the gradients are updated in the same manner. That is, the
gradient of the long-term average reward is approximated by
) : 1) ,
A=A+ P [Pt 1 (Zep1 4+ epa (e, weg1)) — A 3)
foralli=1, .., m. The estimate of the average reward r is updated by

Pyt = pi+an(ripy = pi), (4)

158 Theory and Novel Applications of Machine Learning

where a, is a positive step-size meta-parameter. It is noted that p; ., gives an estimate of
gi(0) and plays an important role for finding active constraints. Although the GPOMDP can
estimate the gradient with less number of parameters, it has a large variance as f§ —»1.

We also use a simplified method based on the actor critic method (Konda & Tsitsiklis,
2003) that exploits a value function. The gradient of the long-term average reward is
calculated by

Al =A]+ Tl Q' (e, wi) (e, wg) — A (5a)

Qi(ﬂj,u) - (wi)Tw(m,u). (Sb)
where Qi(x, u) and wi denote an approximated state-action value function and a parameter
vector, respectively. In order to train w/, the standard temporal difference method is carried out

wf{ 1= 'wi —0—(}:rrﬁzf| 1,

where the temporal difference 8¢ is defined by

8§t =7 — piyr + (W))W (e, we1) — Pra, wg)]

Although Konda's actor-critic requires an additional learning mechanism to approximate
the state-action value function, it can utilize the Markov property.

2.3 Gradient projection

As described in section 2.2, the average rewards and their gradients are obtained at the end
of each episode. Next, we apply a gradient projection method to solve the maximization
problem with inequality constraints. In order to derive a modified learning rule, a set of
indices of the active inequality constraints is defined by

A={i|p -G <0,i=2,...,m}

and let a =| A| denote the number of active constraints in which A is called an active set. If
no constraints are active (the case a = 0), the solution lies at the interior of the feasible region.
A standard learning rule can be applied in the case of a = 0, the case a # 0 is considered
hereafter. With the outputs from the multiple critics, we define

gu L [ph — G pe Gl
N [Ail Aiu}:

I

Il

where i, is an index to count the element in A. Fig.2 illustrates the basic idea of gradient
projection based on the nonlinear programming. The gray are represents the feasible region
and therefore the policy parameter vector at the k-th episode must approach the feasible
region while move into the direction A;. Suppose that the policy parameter is modified
without considering a restoration move d. When the k-th episode ends, the update rule is
given by

e = 0+ a8,

where s is the steepest ascent direction.

Constrained Reinforcement Learning from Intrinsic and Extrinsic Rewards 159

By using the estimated gradients, the set of active constraints can be approximated by the
following linear equation:

N, 0+b=0,

where b is an appropriate vector. Since the gradient projection method (Rosen, 1960)
assumes that 0 lies in the subspace tangent to the active constraints, both 8; and 6, should
satisfy the above equations. Then, we obtain an equality constraints NTs = 0. Since the
steepest ascent direction s satisfying the above constraints is required, we can pose this
problem as

max s' Al s.t. NIB =0 and s's=1.

The second constraint is required to normalize s. In order to solve this problem with
equality constraints, the Lagrange multiplier method is applied. Now, the Lagrangian
function is defined as

L(s,\g) =8 Al —sTNsA—k(s"5—1),
where A and « are Lagrange multipliers. The condition for L to be stationary is given by:
ac

%:AL—NAA_QF\?S:O.

By pre-multiplying N} into the above equaiton, we obtain
NIA"' —NINiX=0. (6)

It should be noted that Nis = 0. If NiN, is invertible, the Lagrange multipliers A can be
represented by

A= (NIN4) NAL)

From Equations (6) and (7), s is derived as
s = ! {lfN (NiN4) "N A
by AN A4 A)

where the scalar Lagrange multiplier k remains unknown. However, this parameter is not
important because we are interested in the modified direction of the gradient Al. As a result,
when k-th episode ends, the policy parameters are update as follows:

Opi1 =0+ PA' — o.d ®)

where oy, a. € [0, 1) are learning rates, P is a matrix that projects A’ into the subspace
tangent to the active constraints, and is a restoration move for the violating constraints. The
projection matrix P and restoration move d are given by

P=T-N4(NiN4) ' 'NJ, 9
d:NA (N:A_I—NA)ilgA. (10)

160 Theory and Novel Applications of Machine Learning

It should be noted that Pd = 0. If the active set A is empty, P and d are set to the identity
matrix and zero vector, respectively.

N tangent plane

Fig. 2. Graphical interpretation of gradient projection. The gray area represents the feasible
region in the policy parameter space. 8, A, and d are the current policy parameter, the
policy gradient of the average reward r1, and the restoration vector, respectively. P is a
projection matrix which maps the vector into the subspace tangent to the feasible region.

Here, we should note two points when P and d are computed in the program. At first, it
must be noted that the matrix NN, in (9) and (10) is not invertible if the set of active
constraint gradients {A% |j = 1, .., a} is linearly dependent. In practice, rank deficiency of
NIN, is sometimes observed due to the accuracy of numerical computation and/or biased
samples. The pseudo-inverse of NiN, should be used if it is not full-rank. In addition we
must consider the situation where PA'=0 because it may be possible to modify the
parameters. This situation can be detected by using Lagrange multipliers (7). If A has no
negative components, we have a solution and terminate. Otherwise, the constraint with
maximum Lagrange multiplier is calculated by

T = arg max A;,
T iEA

and then it is removed from the active set as A<A\ {r}. After deleting one constraint from the
active set, P and d are evaluated again by using (9) and (10).

2.4 Backups of the Iongfterm average rewards
Since the CPGRL uses p* (i = 2,..., m) to determine the set of active constraints A, these
estimates directly specify the feasible region in the policy parameter space.

3. Computer simulation in a simple MDP task

3.1 MDP setting

In order to evaluate the performance of the CPGRL from a viewpoint of constrained
optimization problems, we apply the CPGRL to a simple three-state Markov Decision
Problem shown in Fig.3. The sets of states and actions are {si, s», s3} and {a1, a2, a3},
respectively. Let s and a denote the original state and action in this MDP problem while the
variables x and u represent the state and action at each time step. Therefore, x; € {s1, s2, s3}

Constrained Reinforcement Learning from Intrinsic and Extrinsic Rewards 161

and u; € {a1, a2, a3}. Each action achieves the intended effect with probability 0.8, but it makes
a random transition otherwise. For example, from the state s; the action a1 moves the agent
to sy, s3, 51 with probabilities 0.8, 0.1, 0.1, respectively.

One intrinsic reward ! and three extrinsic rewards 12, 13, 14 are prepared in this problem;

1o -1 0 -1 0 00 0 01 0
rt=1f1 0 2|,72=10 0o 1|, =0 0 —1|.s*'=1]0 0 0],
1 0 -1 0 0 0 00 1 0 0 —1

where 1 = (ry) is a reward value of # when the action a is selected at the state s;. For
instance, the reward vector is ¥ = [2 1 -1 0]T when the agent selects the action a3 at the state
s2. Under these settings, the optimal policy is to select 4; in each state, and the corresponding
long-term average reward vector is [1 0 0 0]T. It should be noted that the extrinsic rewards
are competitive with each other. As the stochastic policy, we use a lookup table with
softmax distribution

exp (B u,)
pe(we, u) = =— >,
Zu’ exp(g"‘t:“’)
yielding a total of nine policy parameters. That is, the policyparameters are assigned such
that 8; = 0, 4,, 08, = 05, 4,, and so on.

o N

—>a3

Gt

Fig. 3. Simple MDP with three states, three actions, and four reward functions.

The GPOMDP algorithm is adopted for estimating the policy gradient. Each policy
parameter is randomly initialized with a uniform distribution over the interval [0, 1].
Thresholds used in inequality constraints are set as G2 = G3> = G* = 0. Other meta-parameters
are set as follows: a, = 0.02, B = 0.99, a; = a = 0.02. These values are determined by trial and
error. In order to compare the performance, we consider two different approaches named
the CONstraints-Based (CONB) and the SUM method. The CONB switches the policy
gradient of each reward according to the following condition:

A Al fg -Gi>0fori=2,....,m
" | A7 otherwise, j = argmin;c4(p" — G).

to maximize the average reward of r! and to satisfy the constraints. The SUM learns to
maximize the average reward of the summation of all rewards

162 Theory and Novel Applications of Machine Learning

pSUm 'I"J' L 7"2 + r& 4 T,»’l

based on the standard policy gradient method. However, it is expected that the learned
parameters does not satisfy the constraints since the SUM does not consider the constraints
at all. The agent starts at the state xo = s;. The number of episodes and steps are Nt = 100
and Nx = 10000, respectively. We perform 20 simulation runs.

3.2 Experimental results

Fig.4 shows the means and the standard deviations of 20 simulation runs obtained by the
CPGRL, CONB, and SUM, respectively. The CPGRL found the parameters that satisfy the
inequality constraints at the very early stage of learning, and the standard deviations of the
average rewards of constraints were very small after 1x103-th episode. The CONB also
obtained the policy parameters satisfying constraints, but it took a longer time than the
CPGRL. The long-term average reward of r! was gradually increased by the CPGRL.
Interestingly, the CONB failed to maximize the average reward of r1. In addition, we found
that the standard deviation estimated by the CONB was larger than that of the CPGRL. The
performance of the SUM was different from those of the CPGRL and the CONB because the
constraint on 13 was violated at all. Although the SUM obtained the best average reward on
r1, it failed to find the policy parameters satisfying the constraint on r3.

A ~2
p
(@ 2 ‘ ‘ ‘ ‘ (b) 1 ; ; ‘ ‘
I"‘]I"'":-I-‘I"f-l-"':‘-l-‘l]'-il-"l"il"'l"l"'l'l"+
o WO g : ‘ ‘
2 ' g i :
s 1 o ;
o 3 Or -----------------
g os/1- L g |
2 g
I & -05 o ‘
-05 : : : : -1 : ; : :
0 2 4 6 8 10 0 2 4 6 8 10
episode (x 103) episade (x 103)
Pa P4
(c) 1 (dy 1 : .
~—— CPGRL
CONB
2 05 £ 05 vmm 1w SUM
s = : .
o ‘ ‘ ‘ ‘ [: : 3 3
% Ok_.‘_‘.__‘__.‘_ ———— 8; 0'_—.-. : —.:-- : —.—.
® Y o :
0] - [:
% -05F % [L % 05k R SRR
-k gep d=pg-1-1
-1 i i i i -1 H H i i
0 2 4 8 8 10 0 2 4] 8 10
episode (x 10%) episode (x 10°%)

Fig. 4. Transition of the estimated average rewards. (a) p*, (b) p?, (c) p3, and (d) p*,
respectively. These figures show the means and standard deviations of 20 independent
runs.

Constrained Reinforcement Learning from Intrinsic and Extrinsic Rewards 163

Then, we checked the stochastic policy during the learning process. Fig.5 shows the
evolution of the policy parameters of the CPGRL, CONB, and SUM, respectively. In this
figure, all policies lie in the lower-left triangle, and gray-colour represents the average
reward of r1. Although all methods could obtain appropriate action at the state s; (Pr(a1 | s1)
=1 is optimal), the CONB and SUM obtained inappropriate actions at the states s and ss.
For example, the SUM leaned to select a3 at s» because the large positive reward 2 +1-1+0
= 2) was received in this case. Obviously, this violated the constraints on 3. The CONB
failed to obtain the appropriate action at s3. It should be noted that both of 4; and a, did not
generate negative rewards in this state. However, the CONB failed to improve the average
reward of r! because the gradient of 1 was rarely selected. Since the estimated average
reward by (4) is not deterministic, some constraints were violated suddenly. On the
contrary, the CPGRL successfully obtained the optimal policy that satisfied all constraints in
this simulation.

S S, S

Pria,|s,)
Pria, | s,)

0 0.5 1 0 05 1 0 05 1
Pr(a, |'s,) Pr(a, |'s,) Pra, | s3)

Fig. 5. Evolution of probabilities for action selection calculated from the policy parameters.
Each lower triangle shows a feasible region of the values of the probabilities.

4. Control task of a robotic arm

4.1 Simulation setting

Then we conduct a control task of a robotic arm to investigate how the thresholds G used in
the inequality constraints affect the learning processes in the CPGRL framework. Fig.6 (a)
shows a simulated environment. There exists a typical two-link arm that can interact with
four objects (circle, star, square, and triangle). These four objects are fixed in the
environment. The intrinsic reward r! is computed from the distance between the position of
the end-effector of the arm and the nearest objects. Fig.6 (b) shows a distribution of r1. This
dense reward function enables the robotic arm to learn touching behaviours actively. Then,
two extrinsic rewards 12 and 3 are introduced in this task. The first extrinsic reward gives
upper and lower bounds on the joint angles ¢;and ¢, while the second extrinsic reward
depends on whether the touched object is appetitive or aversive:

i 1 W ! 37
2 0 F<n<g, 150,
—1 otherwise,

1 if the object is appetitive,
r* =< —1 if the object is aversive,
0 otherwise.

164 Theory and Novel Applications of Machine Learning

It should be noted that zero reward is given when the robotic arm touches the circular and
triangular objects.

The continuous state is x = [y, $,]T while the continuous action consists of desired joint
velocities, # = [Ad,, Ad,]T. To represent the stochastic policy, we use a normalized Gaussian
network,

pe(xe, wy) = 1 exp [77)2 Hut — BTn(wt)lﬂ ,

where 14, 1, and n(x) denote the constant values and the vector of the basis function. The
number of basis functions is 40, determined by trial and error. In this experiment, Konda’s
actor-critic method is used to compute the policy gradient.

This simulation does not consider dynamics of the arm. The initial joint angles are
initialized randomly. The same meta-parameters such as learning rates are used in section 3.
When the arm touches one of the objects or Nt = 1000 time steps are expired, the episode
terminates. One episode lasts for Nx = 10000 episodes and we perform 20 simulation runs.

appetitive object

o (b) 8 1
(a) aversive object *
B> L .
0.8
0.6
4 _"snormal object 4 rt
: 04
0.2
0
-6 6 96 0 6 0

Fig. 6. Control task of a robotic arm. (a) Simulated environment where a mesh represents a
reachable region of the end-effector of the arm. (b) Distribution of the intrinsic reward r1.

4.2 Experimental results

Fig.7 (a) shows the number of touches on the objects in each 100 episodes and a typical
learned behaviour at the end of episodes when the robotic arm is motivated only by the
intrinsic reward. Since r! was a dense reward function, it was not hard to obtain touching
behaviours. Then we introduce two constraints by extrinsic rewards with thresholds G2 =
G? =0. Fig.7 (b) shows the experimental results. At the early stage of learning, the robotic
arm touched the aversive star object. Then, it learned to avoid the aversive star object after
about 1x103 episodes. The bottom of Fig.7 (b) shows a typical learned behaviour. The end-
effector of the robot arm was initially located in the neighbourhood of the aversive star
object, but the arm touched the triangular object.

Finally, we strengthen the constraint by setting G*> = 0.5 and observe the behaviours shown in
Fig.7 (c). Since the robotic arm has to touch the square object in order to obtain a positive 72, the
number of touches on the square objects increases while those on other objects are gradually
reduced to zero. It is revealed that G2 is a sensitive threshold that affects the resultant
behaviours. The obtained behaviour at the end of episode is shown in the bottom of Fig.7 (c).

Constrained Reinforcement Learning from Intrinsic and Extrinsic Rewards 165

s
B
=1
CA
Y
=]
o)

—sguare |

——circle i
gl fo gl

—siar

@
(=]

w
a
w
a

@
=1

[*]
=1

=}
=

the number of touches
N B
o o

the number of touches
L)
S

the number of touches

0 2 4 6 8 10

0
episode (x 103) episode (x 10%
8 8 8
r 7 7
1] s | .
6 L 8 8
5 * 5 * 5
4 4 4
3 v 3 3
2 2 2
1 1 1
0 0 0
5 4 -2 0 2 4 6 6 4 2 0 2 4 6 6 -4 8

Fig. 7. Number of touches on the objects and learned behaviours. (a) No constraints. (b)
Normal constraints: G2 = G?> = 0. (c) Tight constraints: G2 =0 and G? = 0.5.

5. Conclusion

In this chapter we have proposed the CPGRL that maximizes the long-term average reward
under the inequality constraints that define the feasible policy space. Experimental results
encourage us to conduct the robotic experiments because one of our interests is to design the
developmental learning methods for real hardware systems. Although we could not discuss
the design principles of intrinsic and extrinsic rewards to establish a sustainable and scalable
learning progress, this is very important. We think that the CPGRL gives the first step
towards developmental learning. We develop the experimental setup that integrates the
CPGRL and the technique of the embodied evolution in our multi-robot platform named
“Cyber Rodents” (Doya & Uchibe, 2005). In this case, the intrinsic reward is computed from
sensor outputs while the extrinsic rewards are given according the external events such as
collisions with obstacles, capturing a battery pack, and so on. We have reported that good
exploratory reward is acquired as the intrinsic reward through the interaction among three
mobile robots (Uchibe and Doya, to appear). We also plan to test other types of intrinsic
rewards used in previous studies (Singh et al., 2005; Oudeyer & Kaplan, 2004).

Finally, we describe three foreseeable extensions of this study. At first, we improve the
efficiency of numerical computation. It is known that the learning speed of standard PGRL
can be slow due to high variance in the estimate. Then, the Natural Policy Gradient (NPG)
method (Morimura et al., 2005) supported by the theory of information geometry is
implemented to accelerate the speed of learning. Secondly, we develop a method to tune
the thresholds used in the inequality constraints during learning processes. As shown in
section 4, the learned behaviours were strongly affected by the setting of the thresholds.
From a viewpoint of constrained optimization problems, Gi is just a meta-parameter given
by the experimenters. However, the learning agent will show a variety of behaviours by
changing these thresholds. We think that CPGRL has a potential to create new behaviours
through the interaction between intrinsic and extrinsic rewards.

166 Theory and Novel Applications of Machine Learning

6. References

Barto, A.G; Singh, S. & Chentanez, N. (2004). Intrinsically Motivated Learning of
Hierarchical Collections of Skills, Proceedings of International Conference on
Developmental Learning

Baxter, J. & Bartlett, P.L. (2001). Infinite-horizon gradient-based policy search. Journal of
Artificial Intelligence Research, Vol. 15, pages 319-350

Deci, E.L. & Flaste, R. (1996). Why we do what we do: understanding self-motivation, Penguin
books

Dolgov, D. & Durfee, E. (2005). Stationary deterministic policies for constrained MDPs with
multiple rewards, costs, and discount factors, Proceedings of the 19th International
Joint Conference on Artificial Intelligence, pp. 1326-1331

Doya, K. & Uchibe, E. (2005). The Cyber Rodent Project: Exploration of adaptive
mechanisms for self-preservation and self-reproduction. Adaptive Behavior, Vol. 13,
pages 149-160

Feinberg, E. & Shwartz, A. (1999). Constrained dynamic programming with two discount
factors: Applications and an algorithm. IEEE Transactions on Automatic Control, Vol.
44, pages 628-630

Konda, V.R. & Tsitsiklis, J.N. (2003). Actor-critic algorithms. SIAM Journal on Control and
Optimization, Vol. 42, No. 4, pages 1143-1166

Meeden, L.A.; Marshall,].B. & Blank, D. (2004). Self-Motivated, Task-Independent
Reinforcement Learning for Robots, Proceedings of 2004 AAAI Fall Symposium on
Real-World Reinforcement Learning

Morimura, T.; Uchibe, E. & Doya, K. (2005). Utilizing the natural gradient in temporal
difference reinforcement learning with eligibility traces, Proceedings of the 2nd
International Symposium on Information Geometry and its Application, pp. 256-263

Oudeyer, P.-Y. & Kaplan, F. (2004). Intelligent adaptive curiosity: A source of self-
development, Proceedings of the 4th International Workshop on Epigenetic Robotics, pp.
127-130

Oudeyer, P.-Y., Kaplan, F. & Hafner, V. (2007). Intrinsic motivation systems for
autonomous mental development. IEEE Transactions on Evolutionary Computation,
Vol. 11, No. 2, pages 265-286

Rosen, S.A. (1960). The gradient projection method for nonlinear programming --- part I:
linear constraints. Journal of the Society for Industrial and Applied Mathematics, Vol. 8,
No. 1, pages 181-217

Singh, S.; Barto, A.G. & Chentanez, N. (2005). Intrinsically motivated reinforcement
learning, Advances in Neural Information Processing Systems 17, pp. 1281-1288, MIT
Press

Stout, A.; Konidaris, G.D. & Barto, A.G. (2005). Intrinsically motivated reinforcement
learning: A promising framework for developmental robot learning, Proceedings of
the AAAI Spring Symposium Workshop on Developmental Robotics

Sutton, R.S. & Barto, A.G. (1998). Reinforcement Learning: An Introduction, MIT Press

Sutton, R.S.; Precup, D. & Singh, S. (1999). Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, Vol. 112, pages
181-211

Uchibe, E. & Doya, K. (to appear). Finding Intrinsic Rewards by Embodied Evolution and
Constrained Reinforcement Learning. Neural Networks

12

TempUnit: A Bio-Inspired
Spiking Neural Network

Olivier F. L. Manette
Unité de Neurosciences Intégrative et Computationnelle (UNIC), CNRS
France

1. Introduction

Formal neural networks have many applications. Applications of control of tasks (motor
control) as well as speech generation have a certain number of common constraints. We are
going to see seven main constraints that a system based on a neural network should follow
in order to be able to produce that kind of control. Afterwards we will present the TempUnit
model which is able to give some answers for all these seven criteria.

1.1 Learning

Neural networks show usually a certain level of learning abilities, (Hornik, 1991). In the case
of systems of motor control or of speech generation those learning skills are particularly
important. Indeed they enable the system to establish the link between the motor command
and the act as it has been achieved. In real systems (not simulated), biological or machines,
the effector could evolve for all sort of reasons such as limb growth or injury for biological
systems; For artificial systems, the reason could be some breakage or a subsystem
malfunction. It has also been demonstrated that the motor command is directly related to
the characteristics of the effector (Bernstein, 1967; Hogan & Flash, 1987; Gribble & Ostry,
1996). Thus learning capabilities should be permanently maintained: it is necessary that the
neural network is able to evolve its transfer function. In this case, because the aim is to learn
the link between a desired output (the effector activity) and a given input (the motor
command), it is called supervised learning.

1.2 Inverse model

Several models of motor control exist but we can globally group them into two categories:
reactive (Sherrington, 1906/1947) and predictive (Beevor, 1904). Reactive models usually
work as a closed loop, in which a very imprecise motor command is sent and is then
updated using sensory feedbacks. For most movements, for instance, the basket ball throw
(Seashore, 1938; Keele, 1968; Bossom, 1974; Taub, 1976), sensory feedback is simply too slow
to enable efficient motor control. In this chapter, we will focus particularly on predictive
models. Predictive models imply the calculation of a forward function which gives, from a
given motor command, a prediction of the effector activity (Desmurget & Grafton, 2000).
This type of function can be very useful because it enables the result of a given command to
be simulated without the need to effectively carry it out. However, the inverse function is

168 Theory and Novel Applications of Machine Learning

much more useful because it enables determination of the motor command from a desired
motor output. Theory of motor control predicted the need for an inverse model (Berthoz,
1996) in the brain to enable calculation of the motor command (Shadmehr & Mussa-ivaldi,
1994; Wolpert et al., 1995; Kawato, 1999). The use of an inverse function enables the system
to calculate by itself the motor command that leads to a specific desired result, which is a
great advantage.

1.3 Syntax

In linguistics, syntax is the group of rules that defines the chain of words to form sentences.
In control of speech production, it is easy to understand why the system needs to be able to
respect those syntax rules. But it should also be the case in control of movements and it is
even more important than in speech generation. Indeed, while a limb is in a particular
position, it is simply impossible to immediately reach any other arbitrary position. From a
given position of a limb, only a few other positions are accessible, otherwise some bad
command could possibly damage the system if those rules are not respected. The neural
network in charge of the overall control of the system should therefore necessarily respect
scrupulously those chaining rules from one state to another state of the system.

1.4 Decision node

The lack of flexibility is generally the main problem in a feed-forward system: a system
should be able to interrupt the execution of a motor program to change direction in order to,
for example, ward off an unexpected disruption. Hence, a process able to manage decision
nodes at every single time step, with the aim of enabling the system to evolve in different
directions, should be integrated.

1.5 Respect of the range limits

Keeping the system in the range of possible values is another important constraint for a task
control system. Also, some mechanism able to handle aberrant values has to be integrated in
order to avoid damage to the system.

1.6 Complexity

The choice of the neural network architecture is also an important issue since it is absolutely
necessary to use an architecture adapted to the problem to be solved. An under-sized
network will not be able to obtain the expected results with the desired level of
performance. Conversely, an over-sized network can show problems such as over-learning,
i.e. an inability to correctly generalize the data, possibly even to the point of learning the
noise. It is therefore important to obtain a system adapted to the desired task and a clear
way to find the best fit architecture.

1.7 Parsimony

In a predictive model, the system includes a feed-forward module that gives the predicted
motor activity from a motor command. It is then equivalent to encoding the motor activity
in the command domain. A well designed system should limit the command size at its
maximum. It does mean maximize the information compression rate.

TempUnit: A Bio-Inspired Spiking Neural Network 169

1.8 Suggested solution

The choice of a transfer function is generally a problem for formal neural networks, because
they should be determined “by hand” after several trials. After having been chosen, the
transfer function does not evolve anymore and limits the future neural network abilities in a
decisive behavior. Furthermore, there exist only empirical solutions to determination of the
number of neurons or the size of the hidden layer (Wierenga & Kluytmans, 1994; Venugopal
& Baets, 1994; Shepard, 1990).

The behavior of the TempUnit model presented below enables us to give some solutions to
these problems found in common formal neural network models. TempUnit does not have a
fixed transfer function but is able to learn the best adapted one to fit the desired signal. The
basic principle is quite simple because it is only based on the principle of temporal
summation such as has been observed in biological neurons. In order to keep thinking at a
biologically inspired level, the input of each TempUnit neuron is a spikes train: only binary
values. We will now develop in the following the reasons why TempUnit is a particularly
well-adapted model for satisfying all the constraints previously discussed.

2. The tempUnit model

2.1 Temporal summation and straight forward function

The TempUnit model is based on the mechanism of the temporal summation of post-
synaptic potentials as observed in biological neurons (e.g. Rieke et al, 1996). TempUnit
means simply ‘Temporal summation unit’. When a spike arrives at a synaptic bouton it
triggers a local potential in the soma of the post-synaptic neuron. If many spikes arrive at a
fast enough rate, the triggered potentials are summed in the post-synaptic neuron to shape a
global membrane activity. This new global temporal activity of the post-synaptic neuron
depends only on the structure of the input spikes train from the pre-synaptic neurons. In
fact, this principle, as noticed in biological neurons, can be generalized to any serial system
where the output is only correlated to the input. A TempUnit network can be considered in
this form as a binary-analog converter whose output is totally deterministic, as we shall see
later. Furthermore, biological neurons have, in common with TempUnit, a deterministic
behavior, as shown by empirical (Mainen & Sejnowski, 1995).

In the simplest case, a TempUnit network is composed of only a single pre-synaptic neuron
which is the input and a post-synaptic neuron which is the location of the temporal
summation. r is the result of the temporal summation, the membrane activity, x is the
spiking activity of the pre-synaptic neuron and v is the post-synaptic potential or basis
function. To simplify we will work on a discrete time level. The potential v lasts p time
steps. p will define for the rest of this article the size of the vector v. It is then possible from
those parameters to write the membrane potential r of the post-synaptic neuron as a
function of time t:

14

T‘(t) = Z Xt—p+iVi (1)

i=1

The u® vector can define the sequence of values from x,_,, to x,, which means the sequence
of the input activity x from time step t — p to time step t. It implies that the u vector is also
of size p like the v vector. We can hence simplify equation 1 in this manner:

170 Theory and Novel Applications of Machine Learning

p

r(t) = Z ufv; = utv 2

i=1

2.2 Supervised learning

The learning skills of the TempUnit neurons have been already demonstrated in Manette
and Maier, 2006 but the learning equations have not been explicitly published. Let f(t) be a
temporal function that we wish to learn with TempUnit. The learning algorithm should
make r(t) reach f(t) by modifying the weights v; of the basis function vector. For every i
from 1 to p, it is possible to follow this rule:

Videlap: d';ift) = () = 7(6))Xe_pss ®)

This equation gives very good results and a very good convergence; see Manette & Maier,
2006, for more details.

2.3 Evolution of r analysis
Let us see how the output signal evolves as a function of the time and as a function of the
basis function v:

p
dr(t)
“dr = Xe4qVp + Z uit(vi—l —-v)|— uivl 4)

i=2

We observe in equation 4 that dr(t)/dt shows an evolution depending only on the new
input value: x,,1, which indicates that this is a decision node depending on the new binary
value x;4;. Thus the next spike is able to define if the following time activity of the
TempUnit will follow one direction or another.

2.4 The graph of the neural activity

Equation 4 shows that the output of the TempUnit neuron can at every time step takes two
different directions depending on the new binary input, i.e. whether a new spike arrives at
instant t+1 or not. According to this principle, it is thus possible to build a graph that
represents the entire neuron activity. We can define, F as a vector space and (cy,--,¢,) a
basis of F. In the current case with only one input (pre-synaptic neuron) and only one
TempUnit (post-synaptic neuron), n = 2. We can, using this vector space, project the entire
set of input vector u® by calculating the coordinates c; and c, as follows:

TempUnit: A Bio-Inspired Spiking Neural Network 171

Given that every u vector is of size p, as defined earlier, and contains only binary data, there
exist exactly 27 different input vectors. Our vector space contains thus this exact amount of
nodes. Every vector u! is thus represented in the vector space by a point with coordinates
(cf, cf). According to equation (4), every single point in this vector space is a decision node
from where it is possible to follow two different paths on the graph through two different
nodes. We can calculate the coordinates of the vertices that connect the nodes to each other:

at =

(14
-1 § i-1,,t t
2Py —) 27U~y
i=2
P

Lxm + Z 2Pyt — 2p1yt

i=2

The coordinates of vertices a‘ depend only on uf, i.e. directly from the previous node in the
vector space, and on the presence or absence of a spike at the next time step t+1. As a
consequence, at every node in the space F as defined by the basis (¢, c;), there exist only
two vertices reaching two other nodes of this space. Thus there exist 2P*? vertices in the
space F.
(¢4, c2) makes a basis because every vector u® can be associated with only a unique pair of
coordinates in space F. It is therefore easy to move from a vector u® to the coordinates of a
particular node of the graph and vice versa. In reality, c; and c, are both a basis and it is
unnecessary to know both coordinates of a specific node to be able to identify the related
vector u'. Let us take the case of the calculation of vector u* using only c,:

fori=1: {uft= Lsics 22070

u; = O else

i-1
¢ ot - E —jot
u; =1sic; = |2P7 4+ 2Py
Vifrom2top: : 2 < j=1 ’)

uf = 0else

Example:

To illustrate this, we will calculate the coordinates of the node in F of the vector ut = [0010].
In this case, u = 1 while uf = u} = u} = 0, so that, taking into account equation (5), we can
calculate the coordinates ¢; and c, which are: ut = (2371,2478) = (4,2). From equation (6),
we can calculate also the two vertices af and a} from this node: af = [-2,2] and a} = [6,3].
We know then that from the original node u’ it is possible to reach the next node of
coordinates uf*! = (2,4) or the other node uf*! = (10,5). Using equation (7) we can
determine the corresponding input vectors ut*! = [0100] and u**! = [0101] respectively.
Graphical representation:

In the case of only one TempUnit with only one binary input, it is still possible to make a
graphical representation of the graph of the neural activity. It is then easier to understand
how information is organized on the graph. Figure 1 presents in a schematic fashion a very
small graph of neuronal activity containing only 16 nodes.

Figure 2, by contrast, is drawn using the exact coordinates c¢; and ¢, as calculated from
equation (5), with vertices as calculated from equation (6).

172

Theory and Novel Applications of Machine Learning

Fig. 1. This diagram illustrates the organization of a graph of neural activity for a TempUnit
which has a basis function of four time steps in length. This makes, therefore sixteen
different combinations of the inputs which are represented by a colored circle, red or blue as
a function of the presence or absence of a spike in the bin at the extreme left respectively.
Absence of a spike in a bin is represented with a ‘0" in the 4-element code in every circle.
Presence of a spike is symbolized with one of the letters w, x, y or z depending on the
position of this specific spike within the train of four time steps. Vertices are drawn with a
colored arrow. Red arrows indicate an increase in the global number of spikes in the input
train u® ; blue arrows indicate the decrease of one spike in the input vector; black color
typify that there is no global modification in the amount of spike but there are no spikes in
the next time step t+1. Pink arrows indicate that there is no modification of the global
number of spikes but a spike will arrive at the next time step.

250

200

180

C2
100

50

€1
Fig. 2. Graph of the neural activity calculated with Matlab® for 256 nodes. Each node is
represented by an ‘x” and the beginning of each vertex by an arrow. We clearly observe
trends in orientation related to the localization of the vertices.

TempUnit: A Bio-Inspired Spiking Neural Network 173

2.5 Inverse function

It is possible to draw on the same graph of neural activity both the input and the output of
the TempUnit neuron with a particular color code. As well as in figure 2 where we can see
trends in the vertex directions and positions, in figure 3 & 4 we can observe that outputs
values are not organized on a randomly but on contrary as a function of their intensity. Of
course, the organization of the outputs on the graph is directly based on the basis function v.
Nevertheless, in spite of great difference that can be observed from one basis function v (e.g.
fig. 3) to another (e.g. fig. 4), it is still possible to establish some similarities which enable us
to calculate an inverse function.

An inverse function enables calcultation of the input corresponding to a desired output. The
inverse of the function in equation (2) is a surjective function for the most of the sets of
weights in the basis function v and this is the main problem. Because a surjective function
means that for a specified value there can exists more than one possible answer and it is
difficult to determine which of all those possible answers is the one that is needed. Indeed in
figure 3 there are areas of the same color including many input nodes, which means of the
same output values. The graph of neural activity gives a way to determine which of those
possible values is the good one.

200 400 600 800 1000 1200 1400 1600 1800 2000
1

Fig. 3. Graph of neural activity showing all the possible outputs of a TempUnit neuron using
the same system of coordinates of the input from equation (5). The input u and the basis
function v are in this case of size p = 11 time steps, thus there are 2048 nodes in the graph.

i—(P/Z)Z/Z(P/S)Z/
pV2n/5

The basis function v is an inverted Gaussian function: v; = 0.2 — ¢

The color code represents the intensity of the output value. Red indicates higher values
while blue indicates lower values.

174

Theory and Novel Applications of Machine Learning

2000

1800

1600

1400

1200

1000

800

600

400

200

200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 4. Graph of neural activity showing the output using a color code. The basis function v

is a Gaussian function: v; = 0.2 —

i 2 2
el= /25 20/9) /p VIR which is compatible with the

“value” type of neural coding (Salinas & Abbott, 1995, Baraduc & Guigon, 2002).

In brief, the inverse function algorithm which from a sequence of temporal desired output
values gives back the path on the graph of the neural activity and then the temporal
sequence of the related input, is composed of five steps:

1.

2.
3.

4.

5.

Determine the set of coordinates on the graph associated with a given output at
time t.

From the set of the selected nodes in 1), calculate the set of nodes for time step t+1.

In the set of nodes for time step t+1 delete all the nodes which do not correspond to the
desired output value at time t+1 and delete as well all the nodes in the subset
corresponding to time step t which are not reaching any of the remaining nodes of the
subset t+1.

Start again from step 1 while in the subset t there is more than one possible solution.
Instant t+1 becomes instant t and instant t+2 becomes instant t+1.

From the sequence of coordinates on the graph, calculate the corresponding binary
input using equation (7).

Why to try to determine on the graph the set of nodes leading to a particular output value?
Simply because on the graph the output values are organized as a function of their intensity,
we will see in the following that only a simple calculation is necessary to find out all the
researched nodes. Another important point is that it is also possible to use the links between
the nodes in order to reduce the indeterminacy of the multiple possible results.

TempUnit: A Bio-Inspired Spiking Neural Network 175

How are the output values organized on the graph?

Studying the relationship between the coordinates of the nodes on the graph r = g(c;), one
observes that it is a periodic function containing multiple imbricated periods and generally
growing especially if v is growing. Periods of g are always the same and are completely
independent of the function v but only depend on p: T; = 2P™1, T, = 2P72, etc. ... It is hence
easy from a small amount of data to deduce the complete set of possible output values
because of this known property of periodic functions:

Vil<i<p-—1: gy +T) = g(cy) +my (8)

For instance, if p=5, the graph contain 25=32 nodes. The function r = g(c;) has hence 5-1=4
imbricated periods: T; = 2571 = 16,T, = 8,T; = 4,T, = 2. To infer all the 32 possible output
values on the graph, one should first calculate r = g(1), r = g(2) then r = g(3) which
following equation (8), allow one to calculate my = g(3) — g(1). mz = g(5) — g(1), m, =
g(9) —g(1) and my = g(17) — g(1). Thus, from only these six values we can deduce the
complete set of the 32 values of the graph. The search algorithm in the output values could
be similar to already known algorithm of search in an ordered list.

Figure 5 shows an example of the function r = g(c,) for a basis function v; = i3. Of course,
the function r = g(c;) varies as a function of v. But, as in figure 4, it is always a periodic
function. Drawing a horizontal line at the level of the desired output value on the y-axis
gives a graphical solution of the point 1) in the inverse function algorithm. The set of
searched-for nodes corresponds to all the coordinates on the x-axis every time the horizontal
line crosses the function r = g(c;). In the case of the example shown in figure 4, one can see
that a specified output value (r) is observed only a few times (maybe 3 or 4 times at
maximum), but depending on the shape of the function v it could be much more.

4500

4000 W .

3000

2500

2000

1500

1000

500

1 L
1000 1500 2000 2500

G

L
0 500

Fig. 5. Example of function r = g(c;) with p=11 giving 2048 nodes in the graph of neural
activity. The basis function is v; = i3. The red vector indicates the vector m, while the black
one indicates the vector ms.

176 Theory and Novel Applications of Machine Learning

Once all the nodes have been selected according to a desired output value, one can search
the connected nodes at the next time step. Equation 6 enables us to calculate these connected
nodes at the next time step. All the nodes of the subset selected for time t+1 which are not
associated with the next desired output value at time t+1 are deleted. In addition, all the
nodes from the subset for time t which are after this no longer linked with any other node of
the subset t+1 are also deleted. It is possible to continue with the same principle of deleting
independent nodes which are not linked with any other node of a following subset. The
algorithm finishes when it obtains only one possible pathway on the graph, which should
represent the searched-for input command. Obviously this algorithm gives the exact inverse
function. If there could be some imprecision on the desired output value, this method
should not change except that nodes associated with close values should also be selected
and not only nodes with the exact desired value.

Partial inverse function

In some cases of motor control, it may be better to only ask for the final desired position and
let the system determine by itself all the intermediate steps. On the graph it is easy to
determine all the intermediate values. It is particularly simple to determine all the
intermediate values with the help of the graph. Indeed, the initial state as well as the final
state should be defined by nodes on the graph and the path between those nodes is an
already well known problem because it is equivalent to an algorithm for finding the shortest
path on a graph, about which it is unnecessary to give more details.

2.6 Complexity

Since so far we have only investigated the capacity of a single TempUnit with a single input,
we will next investigate the capacities of other TempUnit network architectures. We will see
in the following that the signal generator abilities of a specified TempUnit network depends
directly on its architecture. Each type of TempUnit network architecture corresponds to a
particular kind of graph with very precise characteristics. The complexity of the neural
network can be calculated based on the complexity of the emergent graph because the graph
represents exactly the way the TempUnit network behaves. This gives a means of
determining in a very precise fashion the kind of neural network architecture needed for a
given type of generated temporal function characteristics.

One TempUnit with many inputs

Taking account all the Sk binary inputs of the TempUnit, equations 1 and 2 become:

P Sk Sk
T(t) = Z Z Xst—p+iVi = Z Ut sV (9)
i=1s=1 s=1

Figure 6 gives in a schematic fashion the architecture of equation 9.

u, L........ P

u, L....... P

Fig. 6. Schema of one TempUnit with several binary inputs.

TempUnit: A Bio-Inspired Spiking Neural Network 177

All the inputs can be summed equally to create a new global u vector and a new global x
vector that contain all the summed input. This architecture is still biologically compatible; in
particular, the resulting potential is much larger for near coincident arrival of spikes
(Abeles, 1991; Abeles et al 1995). The evolution of the output r is then equivalent as what has
been written in equation 4 but encoded with more than 1 bit of information. In this case
every decision node can be connected with more than two other nodes. The global number
of nodes in the graph is: (Sk + 1)

Fig. 7. Because all the inputs are equivalent, the degree of the graph is equal at Sk + 1. In this
example is represented a node at time t with its previous and following connected nodes at
times ¢t - 1 and ¢ + 1 respectively. In the case of one TempUnit with two different binary
inputs, the graph becomes of vertex degree 3.

Many TempUnits with one input
In this case inputs are not equivalent because every input connects to different TempUnit. In
a network of N TempUnits, there are 2V vertices going from and to every node and the

graph contains 2"” nodes. Equation 10 shows the calculation of the output in this TempUnit
architecture.

Fig. 8. Example of a node with its connected nodes at time t - 1 and at time t + 1 for a
network of N =2 TempUnits. In this case the graph of the global neural activity is of vertex
degree 2° = 4.

r(t) = Z X jt-p+iVij = z Uz, jVij (10)

4

14 N

=1 j=1 j=1

We have seen in this section that the evolution of the graph of neural activity depends
directly on the TempUnit network architecture. The complexity of the graph could be
defined by the number of elementary vertices that it contains, in other word, the number of
nodes that multiply the vertex degree of the graph.

178 Theory and Novel Applications of Machine Learning

3. Conclusion

We have seen in this chapter the central role played by the graph of neural activity helping
to understand the behavior of the TempUnit model. The graph gives the possibility of
calculating the inverse function as well; it is also because of the graph that we can better
understand the relationship between the TempUnit network architecture and its signal
generator abilities. The graph of neural activity represents very clearly the behavior of the
entire TempUnit network. The graph is not really implemented, only the TempUnit model is
as defined on equation 1 or 9. Additionally, the graph of neural activity can be seen as the
“software” while the TempUnit network would be the “hardware”. In any case, a great
advantage of the graph is that all the already-known algorithms in graph theory can then be
applied to TempUnits.

A first use of the graph has been to solve the inverse function problem. Relationship
between the nodes give us a mean to avoid any ambiguity produced by this surjective
function.

In the control of task context, the existence of Central Pattern Generators (CPG) in the brain
has been suggested based on work showing complex movements in deafferented animals
(Brown, 1911; Taub, 1976; Bossom, 1974, Bizzi et al, 1992). Even if couples of “motor
command” /“specific movement” are hardly credible, suggestions of motor schemes
(Turvey, 1977) able to generate sets of specific kinds of movements (Pailhous & Bonnard,
1989) are more appealing. At the same time other data show that the motor activity depends
also on sensory feedback (Adamovich et al, 1997). It would seem that instead of having two
opposite theories, one more predictive using only CPGs and another completely reactive
using mainly reflexes triggered by sensory feedback, a compromise could be found. Indeed,
in considering the neural activity graphs of TempUnit networks one can see that TempUnit
can work as a feedforward function generator. The entire graph could represent a complete
set of a kind of movement while a path in the graph could constitute a particular execution
of this movement. Furthermore, at every time step TempUnit is at a decision corner and the
new direction depends on the inputs. We can imagine a sensory input that can then
influence the TempUnit behavior to be able to adapt the movement command as a function
of the sensory parameters. The TempUnit activity cannot escape from the path defined on
the graph; hence these kinds of networks are naturally shaped to follow constrained rules
like syntax. As well, since it is impossible to reach any arbitrary node from a given specific
node, these kinds of networks are well suited for speech generation or motor control where
it should not be possible to ask the system to reach any arbitrary position of the limb from
another defined position.

4. Acknowledgements

This work was supported by research grant EC-FET-Bio-I3 (Facets FP6-2004-IST-FETPI
15879).

5. References

Abeles M., Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge: Cambridge
University Press., 1991.

TempUnit: A Bio-Inspired Spiking Neural Network 179

Abeles M., H. Bergman, 1. Gat, I. Meilijson, E. Seidenmann, N. Tishby, and E. Vaadia,
"Cortical Activity Flips among quasi-Stationary States.," Proc. Natl. Acad. Sci., vol.
92, pp. 8616-8620, 1995.

Adamovich S.V., Levin M.F, Feldman, A.G. (1997) Central modification of reflex parameters
may underlie the fastest arm movement. Journal of Neurophysiology 77: 1460-1469.

Baraduc P. and E. Guigon, "Population computation of vectorial transformations.," Neural
Computation, vol. 14, pp. 845-871, 2002.

Bernstein N.A. (1967) The Coordination and Regulation of Movements. London, Pergamon
Press.

Berthoz A. (1996) Le sens du mouvement. Paris : Odile Jacob

Beevor C.E. (1904). The croonian lectures on muscular movements and their representation in the
central nervous system. London: Adlar

Bizzi E., Hogan N., Mussa-Ivaldi F. A., Giszter S. (1992) Does the nervous system use
equilibrium-point control to guide sigle and multiple joint movements? Behavioral
and Brain Sciences 15: 603-613

Bossom J. (1974). Movement without proprioception. Brain Research 71: 285-296.

Brown T.G. (1911) The intrinsic factors in the act of progression in the mammal. Proceeding
Royal Society, London, Series B, 84: 308-319.

Desmurget M, Grafton S. Forward modeling allows feedback control for fast reaching
movements. Trends Cogn Sci. 4: 423-431, 2000.

Gribble P.L., Ostry, D. J. (1996) Origins of the power law relation between movement
velocity and curvature: modeling the effects of muscle mechanics and limb
dynamics. Journal of Neurophysiology 6: 2853-2860.

Hogan N., Flash T. (1987). Moving gracefully: quantitative theories of motor coordination.
Trends in Neuroscience 10: 170-174.

Hornik K. (1991). Approximation capabilities of multilayer feedforward networks. Neural
Networks 4(2): 251-257

Kawato, M. (1999). Internal models for motor control and trajectory planning. Current
Opinion in Neurobiology, 9, 718-727.

Keele S.W. (1968). Movement control in skilled motor performance. Psychology Bulletin 70:
387-403.

Manette, O.F.; Maier, M.A. (2006). TempUnit: A bio-inspired neural network model for
signal processing. Neural Networks, 2006. I]CNN 06. International Joint Conference on.
Page(s):3144 - 3151

Mainen Z. F. and T. J. Sejnowski, "Reliability of spike timing in neocortical neurons," Science,
vol. 268, pp. 1503-1506, 1995.

Pailhous], Bonnard M (1989) Programmation et contrdle du mouvement. In : Traité de
psychologie cognitive, C. Bonnet, R. Ghiglione, J-F Richard. (Eds) . Paris : Dunod, 129-
197

Rieke F, Warland D, De Ruyter Van SteveninkR, Bialek W,Characterizing the neural
response in: Spikes: Exploring the Neural Code . Cambridge, MA: MIT Press, 1996.

Salinas E. and L. Abbott, "Transfer of coded information from sensory to motor networks,"
Journal of Neuroscience, vol. 15, pp. 6461-6474, 1995.

Seashore C.E. (1938) Psychology of music. New York: Academic Press.

Shadmehr R, Mussa-Ivaldi F. (1994) Adaptive representation of dynamics during learning of
a motor task. Journal of Neurosciences 14: 3208-3224.

180 Theory and Novel Applications of Machine Learning

Shepherd, G. M. (1990). The Significance of Real Neuron Architectures for Neural Network
Simulations. In: Computational Neuroscience, E. L. Schwartz, ed., chapter 8, pages 82-
-96. A Bradford book, MIT Press.

Sherrington C.S. (1906/1947) The integrative action of the nervous system. Yale University
Press.

Taub E. (1976) Movement in nonhuman primates deprived of somatosensory feedback.
Exercise and sports Science Review 4: 335-374

Turvey M.T. (1977) Preliminaries to a theory of action with reference to vision. In: Perceiving,
acting and knowing: toward an ecological psychology, R. Shaw,]J. Bransford (Eds.),.
Hillsdale, (N.J.) Lawrence Erlbaum Ass.

Venugopal, Venu, Walter R.J. Baets, (1994). "Neural networks and statistical techniques in
marketing research : a conceptual comparison." Marketing Intelligence & Planning
12.7: 30-38.

Wierenga, B. & J. Kluytmans (1994). Neural nets versus marketing models in time series
analysis: A simulation study in: Bloemer, J. e.a., Marketing: its Dynamics and
Challenges, Proceedings 23 rd. EMAC Conference, Maastricht 17-20 May, pp. 1139-
1153.

Wolpert D.M., Gharamani Z, Ardan, M.J. (1995). An internal model for sensorimotor
integration. Science 269: 1179-1182

13

Proposal and Evaluation
of the Improved Penalty Avoiding
Rational Policy Making Algorithm

Kazuteru Miyazaki!, Takuji Namatame? and Hiroaki Kobayashi?
INational Institution for Academic Degrees and University Evaluation
MAZDA

3Meiji University

Japan

1. Introduction

Reinforcement learning (RL) is a kind of machine learning. It aims to adapt an agent to a
given environment with a reward and a penalty. Traditional RL systems are mainly based
on the Dynamic Programming (DP). They can get an optimum policy that maximizes an
expected discounted reward in Markov Decision Processes (MDPs). We know Temporal
Difference learning (Sutton, 1988) and Q-learning (Watkins, 1992) as a kind of the DP-based RL
systems. They are very attractive since they are able to guarantee the optimality in MDPs. We
know that Partially Observable Markov Decision Processes (POMDPs) classes are wider than
MDPs. If we apply the DP-based RL systems to POMDPs, we will face some limitation.
Hence, a heuristic eligibility trace is often used to treat a POMDP. We know TD()) (Sutton,
1988), Sarsa(A) (Singh & Sutton, 1996), (Sutton & Barto, 1998) and Actor-Critic (Kimura &
Kobayashi, 1998) as such kinds of RL systems.

The DP-based RL system aims to optimize its behavior under given reward and penalty
values. However, it is difficult to design these values appropriately for the purpose of us. If
we set inappropiate values, the agent may learn unexpected behavior (Miyazaki &
Kobayashi, 2000). We know the Inverse Reinforcement Learning (IRL) (Ng & Russell, 2000) as a
method related to the design problem of reward and penalty values. If we input an expected
policy to the IRL systems, it can output a reward function that can realize just the same policy.
IRL has several theoretical results, i.e. apprenticeship learning (Abbeel & Ng, 2005) and policy
invariance (Ng et.al., 1999).

On the other hand, we are interested in the approach where a reward and a penalty are
treated independently. As examples of RL systems that we are proposed on the basis of the
viewpoint, we know the rationality theorem of Profit Sharing (PS) (Miyazaki et.al., 1994), the
Rational Policy Making algorithm (RPM) (Miyazaki & Kobayashi, 1998) and PS-r* (Miyazaki &
Kobayashi, 2003). They are restricted to the environment where the number of types of a
reward is one. Furthermore, we know the Penalty Avoiding Rational Policy Making algorithm
(PARP) (Miyazaki & Kobayashi, 2000) and the Penalty Avoiding Profit Sharing (PAPS)
(Miyazaki et.al., 2002) as examples of RL systems that are able to treat a penalty, too. We call
these systems Exploitaion-oriented Learning (XoL).

182 Theory and Novel Applications of Machine Learning

XoL have several features: (1) Though traditional RL systems require appropriate reward
and penalty values, XoL only requires an order of importance among them. In general, it is
easier than designing their values. (2) They can learn more quickly since they trace
successful experiences very strongly. (3) They are not suitable for pursuing an optimum
policy. The optimum policy can be acquired with multi-start method (Miyazaki & Kobayashi,
1998) but it needs to reset all memories to get a better policy. (4) They are effective on the
classes beyond MDPs since they are a Bellman-free method (Sutton & Barto, 1998) that do not
depend on DP.

We are interested in XoL since we require quick learning and/or learning in the class wider
than MDPs. We focus on PARP and PAPS especially because they can treat a reward and a
penalty at the same time. The application of PARP to a real world is difficult since it requires
O(MN?2) memories where N and M are the number of types of a sensory input and an action.
Though PAPS only require O(MN) memories, it may learn an irrational policy. In this paper,
we aim to reduce the memories of PARP to O(MN) by updating a reward and a penalty in
each episode and also selecting an action depending on the degree of a penalty. We show
the effectiveness of this approach through a soccer game simulation and its real world
experimentation.

2. The domain

2.1 Notations

Consider an agent in some unknown environment. For each discrete time step, after the
agent senses the environment as a pair of a discrete attribute and its value, it selects an
action from some discrete actions and executes it. In usual DP-based RL systems and PS, a
scalar weight, that indicates the importance of a rule, is assigned to each rule. The
environment provides a reward or a penalty to the agent as a result of some sequence of
actions. In this paper, we foucus on the class where the numbers of types of a reward and a
penalty are at most ones, respectively, as same as PARP and PAPS. We give the agent a
reward for achievement of our purpose and a penalty for violation of our restriction.

We term the sequence of rules selected between the rewards as an episode. For example,
when the agent selects xb, xa, ya, za, yb, xa, za, and yb in Fig. 1 a), there are two episodes
(xb- xaya-zayb) and (xa-zayb), as shown in Fig. 1 b). Consider a part of an episode where the
sensory input of the first selection rule and the sensory output of the last selection rule are
the same although both rules are different. We term it as a detour. For example, an episode
(xb-xaya-zayb) has two detours (xb) and (ya-za), as shown in Fig. 1 b).

The rules on a detour may not contribute to obtain a reward. We term a rule as irrational if
and only if it always exist on detours in any episodes. Otherwise, a rule is termed as rational.
After obtaining the episode 1 of Fig. 1 b), rule xb,ya and za are irrational rules and rule xa
and yb are rational rules. When the episode 2 is experienced furthermore, rule za changes to
a rational rule. We term a rule penalty if and only if it has a penalty or it can transit to a
penalty state in which there are penalty or irrational rules only.

The function that maps sensory inputs to actions is termed a policy. The policy that
maximizes an expected reward per an action is termed as an optimum policy. We term a
policy rational if and only if the expected reward per an action is larger than zero. We term a
rational policy a penalty avoiding rational policy if and only if it has no penalty rule.
Furthermore, the policy that outputs just one action for each sensory input is termed a
deterministic policy.

Proposal and Evaluation of the Improved Penalty Avoiding Rational Policy Making Algorithm 183

X, ¥, Z ; sensory inpul
a, b ; action
&/ : reward

xa ; rule " if x thena "

,a detour , . a detour

b : a a a b v a a b V
(> >)= > >

xh xa va za yb xa za ybood

fe——————— cpisode 1 episode 2 ——

Fig. 1. a) An environment of 3 sensory inputs and 2 actions. b) An example of an episode
and a detour

2.2 Previous works
The Penalty Avoiding Rational Policy Making algorithm
We know the Penalty Avoiding Rational Policy Making algorithm (PARP) as XoL that can make
a penalty avoiding rational policy. To avoid all penalties, PARP suppresses all penalty rules
in the current rule sets with the Penalty Rule Judgment algorithm (PR]) in Fig. 2. After
suppressing all penalty rules, it aims to make a deterministic rational policy by PS, RPM and
SO On.
procedure The penalty Rule Judgement (PR])
begin
Put the mark in the rule that has been got a penalty directly
do
Put the mark in the following state;
there is no rational rule or
there is no rule that can transit to non-marked state
Put the mark in the following rule;
there are marks in the states that can be transited by it
while (there is a new mark on some state)
end

Fig. 2. The Penalty Rule Judgment algorithm (PR]); We can regard the marked rule as a
penalty rule. We can find all penalty rules in the current rule set through continuing PR]

Furthermore, PARP avoids a penalty stochastically if there is no deterministic rational
policy. It is realized by selecting the rule whose penalty level is the least in all penalty levels
at the same sensory input. The penalty level is estimated by interval estimation of transition
probability to a penalty state of each rule. If we can continue to select only rational rule, we
can get a penalty avoiding rational policy. On the other hand, if we have to refer to the
penalty level, we get a policy that has a possibility to get a penalty.

PARP uses PR]J. PR] has to memorize all rules that have been experienced and descendant
states that have been transited by their rules to find a penalty rule. It requires O(MN?2)
memories where N and M are the number of types of a sensory input and an action.
Furthermore, PARP requires the same memory to suppress all penalties stochastically. In
applying PRJ to large-scale problems, we are confronted with the curse of dimensionality.

184 Theory and Novel Applications of Machine Learning

The Penalty Avoiding Profit Sharing

We know PAPS as XoL to make a penalty avoiding rational policy with O(MN) memories
that is the same memory to storage all rules. The original PR] requires O(MN2) memories
since it scans all of the known rules. On the other hand, PAPS uses PR] on episode
(PR][episode]) where the scanning is restricted within each episode. Therefore it can find a
penalty rule with O(MN) memories.

Furthermore, PAPS uses PS[+] and PS[-] to avoid a penalty stochastically with O(MN)
memories. PS[+] is the same as PS whose weights are reinforced only by a reward. It is used
in the case where there is a non-penalty rule in a current state. If there is no non-penalty rule
in a current state, PAPS selects an action that is the least reinforced by PS[-] whose weights
are reinforced by a penalty only.

PAPS aims to make a penalty avoiding rational policy with O(MN) memories. However
there is a serious problem in the action selection based on PS[-]. Originally, PS aims to learn
a rational policy that reaches to a reward. In the same way, we can get a policy that reaches
to a penalty, if we select an action that is the most reinforced by PS[-] in each state.
However, we cannot know how rules except for the most reinforced rule are reinforced.
Therefore we may select an action that will get a penalty with rather high possiblity, even if
we select the least inforced rule in the current state.

3. Improvement of the penalty avoiding rational policy making algorithm

3.1 Basic ideas

We aim to make a penalty avoiding rational policy with O(MN) memories. A penalty rule is
found by PR][episode] as well as PAPS. Therefore, we can find a penalty rule with O(MN)
memories.

If we cannot select any non-penalty rules in a current state, we should avoid a penalty
stochastically. It is realize with penalty level of each rule as PARP. PARP has to memorize
all state transitions in order to calculate the penalty level. It means that it requires O(MN?)
memories. In order to reduce the memory to O(MN), we aim to calculate the penalty level by
each episode.

3.2 Approximation of the penalty level

We do not memorize all state transitions but memorize only state transitions of each episode
to estimate the penalty level of each rule. It only requires O(MN) memories. The penalty
level of rule Sya, PL(S1a), is calculated by the following equation:

N, (S@)

PL(S,a) = NS0

1)

where N,(51a) is the number of times that rule S;a has judged as a penalty rule, and N(S1a) is
the number of times that the rule has been selected so far. We show examples of N,(5:2) and
N(S1a) at a rectangle of Fig. 3 (b) and ellipses of Fig. 3 (a)(b), respectively.

The range of PL(Sia) is 1.0 2PL(S1a) 2 0.0. If PL(Sa) is close to 1.0, we can regard that the
possibility of getting a penalty by the action a in the state S; is high. On the other hand, if
PL(S1a) is close to 0.0, we can regard that the possibility is low. We can calculate PL(S;a)
every episodes. It requires the following two types memories only. One is the number of

Proposal and Evaluation of the Improved Penalty Avoiding Rational Policy Making Algorithm 185

times where each rule has been selected until now. The other is that where each rule has
been judged to a penalty rule. They only require O(MN) memories.

Jp—

episode

(a) ex,Reward

v reward
v penlty

O penlty rule
| @ penlty state

episode

(b) ex,Penalty
Fig. 3. Approximation of the penalty level

3.3 The action selection based on the penalty level

If there is a rational rule in the current rule set after excluding all penalty rules, we should
select the rule to make a penalty avoiding rational policy. It is realized by PS(PS[+]) or RPM.
On the other hand, if we cannot select such rule, we select an action in the rule whose
penalty level calculated by equation (1) is the least in order to reduce the probability of
getting a penalty.

From section 2.1, the rule that has a possibility to get a penalty is defined as a penalty rule.
This definition has a possibility of regarding all rules as penalty rules. We introduce the
cutting parameter y (1.0 2y = 0.0) to reduce the number of penalty rules. If PL(Sa) is larger
than vy, the rule S;a is a penalty rule. Otherwise, it is not a penalty rule.

It means that the rule is not regarded as a penalty rule if the possibility of getting a penalty
is low. If we set y=0.0, the rule that has been given a penalty even once is regarded a penalty
rule. It is coincident to the case where we do not introduce the parameter y to PARP. On the
other hand, if y is closed to 1.0, the number of penalty rules will decrease, and in turn, the
number of rules that can be selected by PS(PS[+]) or RPM will increase significantly. If we
set y=1.0, it is coincident to PS(PS[+]) or RPM that do not avoid any penalty. We can control
the number of rules that can be selected with y.

3.4 Features
We call the proposal method Improved PARP. Improved PARP has the following features.

186 Theory and Novel Applications of Machine Learning

- We can avoid a penalty stochastically with O(MN) memories through combining of
both PR][episode] and the approximation of a penalty level.
- We can cotrol the number of penalty rules with the cutting parameter y.

4. Numerical experimentation

We use the simulator shown in Fig. 4 that is based on the Small Size Robot League on
RoboCup. There are two learning agents for one side. One agent puts a pass out for the
other agent. The other agent aims to receive it. There is an opponent agent for the other side.
The agent aims to cut off the pass. We show the initial positions of these agents in Fig. 4. We
know the keepaway task (Stone et.al. 2005) as another soccer game. The performance of the
keepaway task strongly depneds on the designing of a reward and a penalty (Tanaka &
Arai, 2006). In the future, we will challenge to the keepaway task, too.

=10Ix

Agent(-100,100)

144cm

e N core [e e R
Zine on I s l= = sl

174cm g

Fig. 4. Soccer game simulator

4.1 Detail design of the task

The learning agents

The state spaces of a learning agent is classified to the following five cases; 9 states of a ball
from the learning agent (Fig. 5 a)), 10 states of an opponent agent from the learning agent
(Fig. 5 b)), 5 states of the other learning agent from the learning agent (Fig. 5 c)), 4 states of
destination between two learning agents (Fig. 5 d)) and 5 states of the learning agent from
the other learning agent (Fig. 5 c)).

There are the following seven actions; stop, go forward, turn by five degrees to direction of a
ball, turn right by five degrees, turn left by five degrees, kick for dribble and kick for pass.

Proposal and Evaluation of the Improved Penalty Avoiding Rational Policy Making Algorithm 187

a) b) 1

10

50[cm]

2

Fig. 5. a) 9 states of a ball from the learning agent. b) 10 states of an opponent agent from the
learning agent. c) 5 States between two learning agents. d) 4 states of destination between
two learning agents

A reward and a penalty

The learning is judged to success when a ball in a learning agent had reached to the other
learning agent and the distance between two learning agents is larger than 40cm. A reward
is given to two learning agents when the condition for success is achieved. A penalty is
given to two learning agents when a ball had reached to an opponent agent, the learning
time had exceeded 12000 msec that is called TimeOut, or a ball in a learning agent had
reached to the other learning agent but the distance between two learning agents is not
larger than 40cm. Though there are three types of penalties, learning agents do not
distinguish them, that is, they are treated as the same penalty. In the future, we will try to
the case where these penalties are treated independently.

The opponent agent

There are two policies in the opponent agent. One policy aims to reach to a ball. The other
policy aims to reach to the middle position of two learning agents to block the pass. The
former is selected when the distance from the agent to a ball is closer than the distance from
the agent to the middle position of two learning agents. Otherwise, the latter policy is
selected.

188 Theory and Novel Applications of Machine Learning

Setting of the experiment

The learning agents sense the environment each 3 msec. When they had received a reward
or a penalty, the trial has been ended and new trial begins with the initial position. We take
100 experiments with different random seeds.

We introduce two noises to simulate a stochastic state transition. One is added to the
movements of all agents and a ball. The maximum value is +1/10 [mm/s]. The other is added
to the angles of the turn actions of learning agents and the direction of a ball when agents
kicked it. The maximum value is +1/100 [deg].

4.2 Results and discussion

About the setting of y

We have compared our proposed method called Improved PARP with PAPS. On the other
hand, PARP cannot apply to this task since it requires many memories. We have changed y
every 0.1 from 0.5 up to 1.0. Fig. 6 and Fig. 7 are the results of success rates of pass behaviors
of PAPS and Improved PARP, respectively. The horizontal axis is the number of trials and
the vertical axis is the percentage of the success rate. One trial includes a pair of sensing the
environment and selecting an action. The plots are shown every 100 trials. The initial point
of these plots are the results of random walk.

Fig. 6 shows that PAPS cannot learn. It comes from the fact that the penalty avoiding by
PS[-] does not function properly. On the other hand, we can conclude that Improved PARP
gets high performance than PAPS from these figures.

40%

5% &

/ WM*’\,JW’\&?*

25% |

20% |

Success rate

g5 | —o— PAPS

0 500 1000 1500 2000 2500 3000 3500 4000
number of trial
Fig. 6. Success rate (%) of pass behavior by PAPS

If we decrease y, the number of penalty rules of Improved PARP increases. It means that the
penalty avoiding is more important than the reward getting. Therefore, if we decrease y, the

Proposal and Evaluation of the Improved Penalty Avoiding Rational Policy Making Algorithm 189

action selection based on PS(PS[+]) decreases, and the success rates become bad as shown in
Fig. 7. On the other hand, if we increase y until 0.8, the success rates become good. It comes
from the fact that the action selection based on PS(PS[+]) increases because of decreasing the
number of penalty rules. However, the results of y=0.9 and 1.0 show bad. It means that if we
set y excessively largely, the learning agents regard an important penalty rule as a non-
penalty rule.

100%
90% |
80% |
: 1
70% | 2 Mx
— :‘_@ S
(=1
T (‘\GW
2 50% [/ % m%
2 40% T
7.2}
300 |
200 | ¥ =1.0—gg—v =0.
—g— =0.8—p— =0.6
0% |
¢ —o =0.8 v =0.5
0% I I I
0 500 1000 1500 2000 2500 3000 3500 4000

number of trial
Fig. 7. Success rate (%) of pass behavior by Improved PARP

The result of Improved PARP depends on y. If we set y small, we can get a policy that is
focused on a penalty avoiding. If we set y large, we can get a policy that is focused on a
reward getting. Therefore, we should change y dynamically. For example, we should set y
large to get a goal in the initial phase of a game or in the situation where the game may lose.
On the other hand, we should set y small to protect our goal when our score being more
than the other.

About the setting of penalties

We give a learning agent the same penalty when the learning reaches TimeOut, a ball had
reached to an opponent agent, or a ball in a learning agent had reached to the other
learning agent but the distance between two learning agents is not larger than 40cm. We
confirm the effects of first two penalties. Fig. 8 shows the TimeOut rate plotted against the
number of trials. Fig. 9 shows miss rate of pass behavior plotted against the number of
trials.

Though we can confirm the effect of learning in Fig. 8, we cannot do it in Fig. 9. It comes
from the fact that the policy that is specialized in TimeOut has been learned than the other
policies, since TimeOut occurs frequently than the others. Therefore, we should not give the
same penalty to the different types of behaviors. In the future, we aim to combine Improved

190 Theory and Novel Applications of Machine Learning

PARP with the method in the paper (Miyazaki & Kobayashi, 2004) that can treat several
types of rewards and penalties at the same time.

60% -
| | |

—e— =1 0 =0.7
S0% - —@— =08t =0.86
- » =0.8 2 =05

40% L

3

3

20% -

10% |

Timeout rate
2

0%
0 s00 1000 1500 2000 2500 3000 3500 4000
number of trial

Fig. 8. Timeout rate (%) by Improved PARP

0.35 -
0.3 -

0.25 :
0.2 - .

Miss rate
=]
=
wn
T

0.1 -
—o— =l.0—m—, =0.7
0.05 —— =0.3—a—¢ =0.8
s =0.8 v =0.5
0 |
(1] S00 1000 1500 2000 2500 3000 3500 4000

number of trial

Fig. 9. Miss rate of pass behavior by Improved PARP

Proposal and Evaluation of the Improved Penalty Avoiding Rational Policy Making Algorithm 191

5. Real world experimentation

5.1 The soccer robot system

Image Processing
Decision Making

Subsysytem
Subsysytem |
Host PC | :
Q camera

W

Fig. 10. The soccer robot system

We have developed a soccer robot system (Fig.10) to evaluate impoved PARP. It has the
decision making subsystem and the image processing subsystem. The former is to decide an
action and the latter is to process images from camera. It can adapt on the reguration of
Robo Cup Small Size Robot League excet for the field size.

5.2 Soccer robot

We use three robots called Robo-E (Fig. 11). It has 12 light sensors. They are used to escape
from clashing with a wall or another robots. Each robot has different markers each other to
distinguish each robot. We show the combinations of colors for robots in table.1.

o Antena

. .q? Marker

LED
sensors

Fig. 11. Soccer Robot Robo-E

192 Theory and Novel Applications of Machine Learning

Robot 1 Yellow and light green
Robot 2 Yellow and Cyan
Robot 3 Blue and light green

Table 1. Combinations of colors for robots

5.3 Host system

The host system is consturcted by two computers, that is, Host and Image Processing (IP)
PCs. IP and Host PCs are connected by TCP/IP. We use UDP (User Datagram Protocol) as
the protocol on IP.

Host PC is to decide an action. We have impremented Improved PARP on Host PC. The
decision of Host PC is transmitted by willess modem.

Fig. 12. 3CCD Camera

On the other hand, IP PC is to process images from camera. It calculates positions of robots
and a ball. Their images are given by the camera (SONY XC-003; Fig. 12). We had the
camera mounted at the top of the field to get global vision. We use machine vision tool
HALCON with its Hdevelop programming environment to get robots and a ball positions.
The positions of each robots are calculated with markers on Table. 1 and their body color
(black). We use RGB parameter to distinguish each color. Table 2 shows these threshholds.

Color R G B

Field (green) 10-40 75-100 40-65
Robot (black) 0-20 0-55 0-220
Wall (white) 255 255 255
Ball (orange) 125-200 95-125 45-85
Yellow 170-255 180-255 110-190
Blue 30-110 40-30 80-200
Light green 40-130 130-230 60-180
Cyan 100-170 140-240 140-240

Table 2. RGB parameter of each color

Proposal and Evaluation of the Improved Penalty Avoiding Rational Policy Making Algorithm 193

The position of the robot is the center of gravity of two markers. It is (Xropot, Yroror) On Fig. 13
(a). The position of a ball is the center of ball marker (orange). It is (Xpar, Year) on Fig. 13 (b).

Z 0 Xyellow Xgreen X 2 0 Kball X

green

Yian | cweown mn me

rellow

(Xrobot, ymbot) (Xball y Ybau)

(a) (b)

Fig. 13. Positions of robots and a ball

The orientation of the robot is calculated by the center of gravity of two markers (Fig. 14). If
we set the center of gravity of center marker (Xcenter, Yeenter) and it of another marker (Xousside,
Youtsde), We can get the angrle 0 is as the following,

0=atan2(d, d.), (180°<6<180°))
Where dX, dy is dx = x(mtside - xL'enter s dy: outside Y center *
- dx

\ &

o

atan2(dy , dx)
1y ¢ e -

Y v
Fig. 14. Orientation of a robot

5.4 Experimental results
We use three Robo-E type robots in our real world experimentation. One is an opponent
agent and the others are learning agets. Three robots and a ball are set on the field in Fig.15.

194

Theory and Novel Applications of Machine Learning

270 [cm]

240 [cm]

._.Lb__ =

Fig. 15. Real world field

Fig. 16 shows the results of success rates of pass behavior of Improved PARP, the Q-learning
and random agets. Improved PARP has 4 experiments with different random seeds from
SEED_1 to SEED_4. We set y=0.8. We can confirm the effectiveness of Improved PARP as
same as numerical experimentation. Especially, it can learn very quickly than Q-learning
agent that is the most famous DP-based RL system.

70%

80%

50%

=~
=
=

(o8]
L)
=

Success rate

20%

10%

0%

| |-0—SEED_2

——SEED_1

——SEED_3
—o—SEED_4 ~

[| Q-learning
— = RANDOM
e Wi,
M

100 200 300 400 500 600 700 800 900 1000
number of trial

Fig. 16. Success rate (%) of pass behavior in real world experimentation

Proposal and Evaluation of the Improved Penalty Avoiding Rational Policy Making Algorithm 195

6. Conclusion

As examples of XoL that use both a reward and a penalty simultaneously, we know PARP
and PAPS. The application of PARP to real worlds is difficult since it requires O(MN?2)
memories where N and M are the number of types of a sensory input and an action. Though
PAPS only requires O(MN) memories, it may learn unexpected behavior.

In this paper, we have proposed Improved PARP in order to overcome the difficulty by
updating a reward and a penalty in each episode and selecting actions depending on the
degree of a penalty. We have shown the effectiveness of this approach through a soccer
game simulation and its real world experimentation.

Improved PARP cannot treat multiple rewards and penalties. In the future, we try to
combine Improved PARP with the method in the paper (Miyazaki & Kobayashi, 2004) to
treat several types of rewards and penalties at the same time. Furthermore, we will apply
Improved PARP to the keepaway task (Stone et.al. 2005) and the other real world applications.

7. References

Abbeel, P. & Ng., A. Y. (2005). Exploration and apprenticeship learning in reinforcement
learning. Proceedings of the 21th International Conference on Machine Learning,
pp-1-8

Kimura, H. & Kobayashi, S. (1998). An analysis of actor/critic algorithms using eligibility
traces: reinforcement learning with imperfect value function. Proceedings of the
15th International Conference on Machine Learning, pp. 278-286.

Miyazaki, K. & Kobayashi, S. (1998). Learning Deterministic Policies in Partially Observable
Markov Decision Processes. Proceedings of the International Conference on
Intelligent Autonomous System 5, pp. 250-257.

Miyazaki, K. & Kobayashi, S. (2000). Reinforcement Learning for Penalty Avoiding Policy
Making. In Proceeding of the 2000 IEEE International Conference on Systems, Man
and Cybernetics, pp. 206-211.

Miyazaki, K. & Kobayashi, S. (2003). An Extension of Profit Sharing to Partially Observable
Markov Decision Processes: Proposition of PS-r* and its Evaluation. Journal of the
Japanese Society for Artificial Intelligence, Vol.18, No.5, pp. 166-169. (in Japanese).

Miyazaki, K. & Kobayashi, S. (2004). Reinforcement Learning in Multiple Rewards and
Penalties Environments. Proceedings of Joint 2nd International Conference on Soft
Computing and Intelligent Systems and 5th International Symposium on Advanced
Intelligent Systems.

Miyazaki, K., Yamamura, M. & Kobayashi, S. (1994). On the Rationality of Profit Sharing in
Reinforcement Learning. Proceedings of the Third International Conference on
Fuzzy Logic, Neural Nets and Soft Computing, pp. 285-288.

Miyazaki, K, Saitou, J. & Kobayashi, H. (2002). Reinforcement Learning for Penalty
Avoiding Profit Sharing and its Application to the Soccer Game. Proceedings of the
4th Asia-Pacific Conference on Simulated Evolution and Learning, pp. 335-339.

Ng, A. Y. & Russell, S. J. (2000). Algorithms for Inverse Reinforcement Learning.
Proceedings of the 17th International Conference on Machine Learning, pp. 663-
670.

196 Theory and Novel Applications of Machine Learning

Ng, A. Y, Harada, D. & Russell, S. J. (1999). Policy Invariance Under Reward
Transformations: Theory and Application to Reward Shaping Proceedings of the
17th International Conference on Machine Learning, pp. 278-287.

Singh, S. P. & Sutton, R. S. (1996). Reinforcement Learning with Replacing Eligibility Traces.
Machine Learning, Vol.22, pp. 123-158.

Stone. P., Sutton, R. S. & Kuhlmann, G. (2005). Reinforcement Learning for RoboCup Soccer
Keepaway. Adaptive Behavior, Vol.13, No.3, pp. 165-188.

Sutton, R. S. & Barto, A. (1998). Reinforcement Learning: An Introduction. A Bradford Book,
The MIT Press.

Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differences. Machine
Learning, Vol.3, pp. 9-44.

Tanaka, N. & Arai, S. (2006). Teamwork Formation for Keepaway in Robotics Soccer
(Reinforcement Learning Approach), Pacific Rim International Workshop on Multi-
Agents, Lecture Notes in Computer Science, Vol.4088, pp. 279-292.

Watkins, C. J. H. & Dayan, P. (1992). Technical note: Q-learning.Machine Learning, Vol.8,
pp. 55-68.

14

A Generic Framework for
Soft Subspace Pattern Recognition

Dat Tran, Wanli Ma, Dharmendra Sharma, Len Bui and Trung Le
University of Canberra, Faculty of Information Sciences and Engineering
Australia

1. Introduction

In statistical pattern recognition, hidden Markov model (HMM) is the most important
technique for modelling patterns that include temporal information such as speech and
handwriting. If the temporal information is not taken into account, Gaussian mixture model
(GMM) is used. This GMM technique uses a mixture of Gaussian densities to model the
distribution of feature vectors extracted from training data. When little training data are
available, vector quantisation (VQ) technique is also effective (Tran & Wagner 2002). In
fuzzy set theory-based pattern recognition, fuzzy clustering techniques such as fuzzy c-
means and fuzzy entropy are used to design re-estimation techniques for fuzzy HMM,
fuzzy GMM, and fuzzy VQ (Tran & Wagner 2000).

The first stage in pattern recognition is data feature selection. A number of features that best
characterises the considering pattern is extracted and the selection of features is dependent
on the pattern to be recognised and has direct impact on the recognition results. The above-
mentioned pattern recognition methods cannot select features automatically because they
treat all features equally. We propose that the contribution of a feature to pattern
recognition should be measured by a weight that is assigned to the feature in the modelling
process. This method is called soft subspace pattern recognition. There have been some
algorithms proposed to calculate weights for soft subspace clustering (Huang et al. 2005,
Jing et al. 2007). However a generic framework for the above-mentioned modelling methods
has not been built.

A generic framework for soft subspace pattern recognition will be proposed in this chapter.
A generic objective function will be designed for HMM and maximizing this function will
provide an algorithm for calculating weights. Other weight calculation algorithms for GMM
and VQ will also be determined from the algorithm for HMM.

The proposed soft subspace pattern recognition methods will be evaluated in network
intrusion detection. Some preliminary experiments have been done and experimental results
showed that the proposed algorithms could improve the recognition rates.

2. Continuous hidden Markov model

The underlying assumption of the HMM is that the speech signal can be well characterised
as a parametric random process, and that the parameters of the stochastic process can be

198 Theory and Novel Applications of Machine Learning

estimated in a precise, well-defined manner. The HMM method provides a reliable way of
recognizing speech for a wide range of applications (Juang 1998, Furui 1997, Rabiner et al.
1996).
There are two assumptions in the first-order HMM. The first is the Markov assumption, i.e.
a new state is entered at each time t based on the transition probability, which only depends
on the previous state. It is used to characterise the sequence of the time frames of a speech
pattern. The second is the output-independence assumption, i.e. the output probability
depends only on the state at that time regardless of when and how the state is entered
(Huang et al. 1990). A process satisfying the Markov assumption is called a Markov model
(Kulkarni 1995). An observable Markov model is a process where the output is a set of states
at each instant of time and each state corresponds to an observable event. The hidden
Markov model is a doubly stochastic process with an underlying Markov process which is
not directly observable (hidden) but which can be observed through another set of stochastic
processes that produce observable events in each of the states (Rabiner & Juang 1993).
Let S={s1,52,....,s7} and X ={X,X,,...,X7} be a sequence of states and a sequence of
continuous feature vectors, respectively. The compact notation A = {7, 4,B} indicates the
complete parameter set of the HMM where
o 7w={n;}, m; = P(s; =i| A): the initial state distribution
o A=A{ay}, aj = P(s; = j|s,_1 =1,A): the state transition probability distribution, and
o B={bi(x)}, bj(x;)=P(x, |'s, = j,A): the output probability distribution of feature
vector X, in statej.

The following constraints are applied:

N N
Zle, Zaijzl, and Ib(xt)dxtzl 1)

The HMM parameters are estimated such that in some sense, they best match the
distribution of the feature vectors in X . The most widely used training method is the
maximum likelihood (ML) estimation. For a sequence of feature vectors X, the likelihood
of the HMM is

r
PX|A)=[]Pkx;|A) @)
t=1

The aim of ML estimation is to find a new parameter model A such that
P(X|A)=P(X|A).Since the expression in (2) is a nonlinear function of parameters in A,
its direct maximisation is not possible. However, parameters can be obtained iteratively
using the expectation-maximisation (EM) algorithm (Dempster 1977). An auxiliary function
Qis used

T-1N N

Q(A,X) = ZZ ZP(Sz =10,841 = j|XaA)IOg[‘7zjl;zj(Xz+l)] 3)

t=li=1 j=1

A Generic Framework for Soft Subspace Pattern Recognition 199

where 7751: j is denoted by ag,_; =; for simplicity. Setting derivatives of the Q function

with respect to A to zero, the following reestimation formulas are found

7-1
Y&))
T=nl) a5 =—)
> 7,)
t=1
where
N
=263), &) =P(s, =i,51=J|X,A) ®)

J=1

The most general representation of the output probability distribution is a mixture of
Gaussians

K
bj(x;)=P(x; |5, = j,A) = 2 P(k|s; = ,MP(x; [k,s; = j,A)
k=1

K
bi(x))= D ¢ N(Xm i, E i) (6)
k=1

where Cik = Pk|s,=j,A), j=1,.. N k =1,., K are mixture coefficients, and
N(x;,p > jk) is a Gaussian with mean vector p ;; and covariance matrix X for the kth

mixture component in state j. The following constraints are satisfied

K
cjx >0 and chk =1 (7)
k=1
The mixture coefficients, mean vectors and covariance matrices are calculated as follows

T
| T ZP(k |Xs580 = J,A)X;
Ciie = P IXpss = JoN) W =15

=1 D P(k X8, = J,A)
t=1

T

Pk | Xpos = A X, =)X — 1)
5, - _ ®
2P [Xo5, = o)
t=1

200 Theory and Novel Applications of Machine Learning

where the prime denotes vector transposition, and
caNEX,mip, X
Pk 5,05, = jo) = 2 ok E))
chnN(xt’ lljn > Ejn)

n=1

In the M-dimensional feature space, the Guassian function can be written as follows

M
Nl Ej) = PO ks = o, A) = [T Py [ks, = o) (10)

m=1

where

_ (xtm ~Hjkm)2
2
1 2O_jkm

¢
[, 2
276 i

2. Fuzzy subspace continuous hidden Markov model

P(x,, |k,s; = j,A) = (11)

It can be observed in (10) that features are treated equally in the HMM. In order to
differentiate the contribution of features, we propose to assign a weight to each feature as
follows

M a
N Z) = [TIPGom Vs, =)] ko (12)

m=1

where W?km ,m=1,2, ..., M are components of an M-dimensional weight vector w 7m , and

ais a parameter weight for W?km . Weight values satisfy the following conditions:

M
0<wj, <l Vm, ijkm=1 (13)

m=1

The weight values can be determined by considering the following function which is part of
the Q function in (3):

0,(AR) = X Y Pk X058, = /M) ogle s N (X g)] (14)
k=1t=1
where

—_— M —_—
logN(Xtaﬁjk’Ejk) = ij!'km logP(xtm | k,St =j,A) (15)
m=1

A Generic Framework for Soft Subspace Pattern Recognition 201

The basic idea of this approach is to maximize the function Q j(A,K) over the variable

a

W?km on the assumption that the weight vector w7, identifies a good contribution of the

features. Maximizing the function O]-(A,K) in (14) using (13) and (15) gives
1
W om =37 (16)
(D 1D)

n=1

T
where @ #land Dy, == P(k|X..5; = j,A)log P(x;, | k.5, = j,A)

t=1
The advantage of this approach is that it does not change the structure of the HMM listed in
(4) through (11). This means that these equations are still applied in fuzzy subspace HMM.
Therefore, this approach can be considered as a generic framework and can extend to other
models that relate to the HMM such as Gaussian mixture model (GMM) and Vector
Quantization (VQ). Fuzzy subspace GMM can be obtained by setting the number of states in
fuzzy subspace continuous HMM to one. The VQ will be considered in the next section.

3. Fuzzy subspace vector quantization

3.1 Vector quantization

The VQ modelling is an efficient data reduction method, which is used to convert a feature
vector set into a small set of distinct vectors using a clustering technique. Advantages of this
reduction are reduced storage and computation. The distinct vectors are called code vectors
and the set of code vectors that best represents the training set is called the codebook. Since
there is only a finite number of code vectors, the process of choosing the best representation
of a given feature vector is equivalent to quantizing the vector and leads to a certain level of
quantization error. This error decreases as the size of the codebook increases, however the
storage required for a large codebook is non-trivial. The VQ codebook can be used as a
model in pattern recognition. The key point of VQ modelling is to derive an optimal
codebook which is commonly achieved by using a clustering technique.

In VQ modeling, the model A is a set of cluster centers A ={c¢;,¢p,....,cx} where
¢ =(Ccr15ChassCipr) k=1,2, ..., Kare code vectors. Each code vector ¢, is assigned to an
encoding region R in the partition Q = {R},R;,...,Rg}. Then the source vector X; can be
represented by the encoding region R; and expressed by

V(X[)ch if XtERk (17)

Let U =[uy,] be a matrix whose elements are memberships of X, in the nth cluster, k=1, 2,

LK t=1,2, ..., T. A K-partition space for X is the set of matrices U such that

K T
uy €01} Vh,t, D =1Vt, 0< D u, <T Vk (18)
k=1 t=1

202 Theory and Novel Applications of Machine Learning

where wuy; =u;(x;)is 1 or 0, according to whether X; is or is not in the kth cluster,

K T

Z”kt =1Vt means each X, is in exactly one of the K clusters, and 0< Z”kt <TVk
k=1 t=1
means that no cluster is empty and no cluster is all of X because of 1 <K < T.

3.2 Fuzzy subspace VQ _
The fuzzy subspace VQ method is based on minimization of the O j(A,A) function in (14)
considered as the following sum-of-squared-errors function (the index j for state is omitted)

K T M
JUW AN = DD uy Y windy,, (19)
k=1t=1 m=1

where A is included in d tm+ Which is the Euclidean norm of (x;—¢;). Applying the
equations (8) through (16), we obtain the following equations for fuzzy subspace VQ

T

T
C= DX, | Dwy, 1<k<K (20)
t=1 t=1

1t dy<dy, j=l..K,j=k

ukt = (21)
0: otherwise

1 T
Wim = M 1 . ’ ka = zuktdktm (22)

Z(ka /Dkn) (@) =1

n=1
where
2 M 2

o

D = Chom =)™ A= 2 Winm (23)

m=1

The fuzzy subspace VQ modeling algorithm is summarized as follows:
1. Given a training data set X = {X{,Xy,...,X7}, where X, = (X;1,X,2,.., Xys) , £=1,2,..., T.
2. Initialize memberships u;,,1<t<T,1<k <K, at random satisfying (18)
3. Initialize weight values wy,,, 1<k <K,1<m <M at random satisfying (13)
4. Given a#1 and &> 0 (small real number)
5. Seti=0and J(i)(U,W,A) = 0. Iteration:

a. Compute cluster centers using (20)

b. Compute distance components d;, and distances d;, using (23)

c. Update weight values using (22)

A Generic Framework for Soft Subspace Pattern Recognition 203

d. Update membership values using (21)
e. Compute J(Hl)(U, W,A) using (19)
f. If

JH U w, A -T DU, W, A)

- >¢ (24)
JHD @ w,A)

set J(i)(U,W,A) = J(Hl)(U,W,A) , i=i+1and go to step (a).

4. Network anomaly detection

Assuming A is the normal model. Given an unknown network feature vector x, the task is to
determine x is normal or intrusive. The following algorithm is proposed

1. Given an unknown network feature vector x and the normal model A

2. Set a threshold value 6

3. Calculate the minimum distance between x and A

dipin = mind (X, ¢y) (25)
k

where d(.) is defined in (23) and ¢}, is the kth code vector in A.

4. If dpp <0 then x is normal else x is intrusive

It can be seen that when the threshold value increases, the anomaly detection rate and the
false alarm rate also increase. If the false alarm rate is fixed, we can determine the
corresponding values for the threshold value and the anomaly detection rate.

5. Experimental results

5.1 Network data and attack types

We consider a sample dataset which is the KDD CUP 1999 dataset. This dataset was based
on MIT Lincoln Lab intrusion detection dataset, also known as DARPA dataset (DARPA,
KDD CUP 1999). The data was produced for “The Third International Knowledge Discovery
and Data Mining Tools Competition”, which was held in conjunction with the Fifth
International Conference on Knowledge Discovery and Data Mining. The raw network
traffic records have already been converted into vector format. Each feature vector consists
of 41 features. The meanings of these features can be found in (Tran et al. 2007). In this
paper, we ignore features with symbolic values.

The attacks listed in feature vectors of KDD CUP 1999 dataset come from MIT Lincoln
intrusion detection dataset web site (KDD CUP 1999). The labels are mostly the same except
a few discrepancies. The MIT Lincoln lab web site lists 2 types of buffer overflow attack: eject
and ffb. The former explores the buffer overflow problem of eject program of Solaris, and the
later explores the buffer overflow problem of ffb config program. Guessing user logon
names and passwords through remote logon via telnet session is labeled as guess_passwd in

204 Theory and Novel Applications of Machine Learning

the KDD CUP 1999 dataset, but listed as dict on the MIT Lincoln lab web site. Finally, we
cannot find the counterparts of syslog and warez in the KDD CUP 1999 dataset. In addition to
the attack labels, the KDD CUP 1999 dataset has also the label normal, which means that the
traffic is normal and free from any attack.

5.2 Anomaly detection and false alarm results

The proposed method for network intrusion detection was evaluated using the KDD CUP
1999 data set for training and the Corrected data set for testing. For training, the number of
feature vectors for training the normal model was set to 5000. For testing, there were not
sufficient data for all attack types, so we selected the normal network pattern and the 5
attacks which were ipsweep, neptune, portsweep, satan, and smurf. The testing data set contains
60593 feature vectors for the normal network pattern, and 306, 58001, 354, 1633 and 164091
feature vectors for the five attacks, respectively.

We also conducted a set of experiments for the network data using the normalization
technique as follows

T

, Xpy — M 1

Xtm = tmo- =, O-m:?2|xtm_,um| (26)
m =1

where x;,, is the mth feature of the tth feature vector, 4, the mean value of all T feature

vectors for feature m, and &, the mean absolute deviation.

Anomaly detection rates versus false alarm rates are presented in Tables 1, 2, 3, and 4,
where the codebook size is set to 4, 8, 16, and 32, respectively. The value of a was set to 4.
All network data were normalised. We chose 5 false alarm rates (in %) which were 0.0, 0.1,
1.0, 10.0, and 100.0 to compare the corresponding anomaly detection rates for the standard
VQ modelling and the proposed fuzzy subspace VQ modeling method. The ideal value
for false alarm rate is 0.0, and from the 4 tables, we can see that the fuzzy subspace VQ
performed outperformed the standard VQ modeling even with the smallest codebook
size.

All the considered methods could not achieved the highest anomaly detection rate of 100%
even though we changed the threshold value to accept all attack patterns (i.e., the false
alarm rate is 100%). With codebook size of 32, the fuzzy subspace VQ modeling achieved
very good results even with the lowest false alarm rate. The training data set contained 5000
feature vectors. If all training data for the normal pattern were used to train the model, the
result would be better.

) False Alarm Rate (in %)
Modelling

0.0 0.1 1.0 10.0 | 100.0
vQ 456 | 46.1 46.7 | 484 | 774
Fuzzy Subspace VQ 98.1 98.1 98.3 98.4 98.8

Table 1. Anomaly detection results (in %). Codebook size = 4

A Generic Framework for Soft Subspace Pattern Recognition 205

False Alarm Rate (in %)
0.0 0.1 1.0 10.0 | 100.0
vQ 459 | 50.8 | 542 | 603 79.6
Fuzzy Subspace VQ 98.2 98.3 98.3 98.5 98.9

Modelling

Table 2. Anomaly detection results (in %). Codebook size = 8

False Alarm Rate (in %)
0.0 0.1 1.0 10.0 | 100.0
VQ 649 | 812 [821 83.3 94.8
Fuzzy Subspace VQ 98.8 98.9 98.9 98.9 99.2

Modelling

Table 3. Anomaly detection results (in %). Codebook size =16

False Alarm Rate (in %)
0.0 0.1 1.0 10.0 | 100.0
vQ 835 | 847 | 865 87.0 95.0
Fuzzy Subspace VQ 98.9 99.0 99.0 99.0 99.3

Modelling

Table 4. Anomaly detection results (in %). Codebook size = 32

5. Conclusion

We have proposed a generic framework for soft subspace pattern recognition. The
framework has been designed for continuous hidden Markov model. The framework for
fuzzy subspace Gaussian mixture model has been extracted by setting the number of
states in continuous hidden Markov model to one. With an assumption on covariance
matrix and density, a fuzzy subspace model for vector quantization has been determined.
The proposed methods are based on fuzzy c-means modeling to assign fuzzy weight
values to features depending on which subspace they belong to. We have also applied the
vector quantization model to anomaly network detection problem. We have used the
KDD CUP 1999 dataset as the sample data to evaluate the proposed methods. The fuzzy
subspace vector quantization method outperformed the standard vector quantization
model.

6. References

Anderson R. and Khattak A. (1998). The use of Information Retrieval Techniques for
Intrusion Detection, in First International Workshop on Recent Advances in
Intrusion Detection (RAID'98), Louvain-la-Neuve, Belgium

206 Theory and Novel Applications of Machine Learning

Balasubramaniyan, J. S., Garcia-Fernandez,]. O. et al. (1998). An Architecture for Intrusion
Detection using Autonomous Agents, in Proceedings of the 14th IEEE ACSAC,
Scottsdale, AZ, USA, pp. 13-24

Caruso C. and Malerba D. (2004). Clustering as an add-on for firewalls, Data Mining, WIT
Press

Chan, P. K., Mahoney, M. V., and Arshad, M. H. (2003). A Machine Learning Approach to
Anomaly Detection, Technical Report CS-2003-06

DARPA Intrusion Detection Evaluation Data Sets 1999, available at
http:/ /www.IL.mit.edu/IST/ideval/data/data_ index.html

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1997). Maximum Likelihood from
Incomplete Data via the EM algorithm, Journal of the Royal Statistical Society, Ser. B,
39: pp. 1-38

Eskin, E. (2000). Anomaly Detection over Noisy Data Using Learned Probability
Distributions, in the 17th International Conference on Machine Learning, Morgan
Kaufmann, San Francisco, USA, pp. 255-262

Furui, S. (1997). Recent advances in speaker recognition, Patter Recognition Lett., vol. 18, pp.
859-872

Huang, J].Z.,, Ng, MK, Rong, H., and Li, Z. (2005). Automated Variable Weighting in k-
means Type Clustering, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.
27,no. 5, pp. 657-668

Huang, X., Acero, A., Alleva, F., Huang, M., Jiang, L., and Mahajan, M. (1996). From
SPHINX-II to WHISPER: Making speech recognition usable, chapter 20 in
Automatic Speech and Speaker Recognition, Advanced Topics, edited by Chin-Hui Lee,
Frank K. Soong, and Kuldip K. Paliwal, Kluwer Academic Publishers, USA, pp.
481-508

Jing, L., Ng.,, M. K,, Huang, J. Z,, (2007). An entropy weighting k-means algorithm for
subspace clustering of high-dimensional sparse data, IEEE Transactions on
Knowledge and Data Engineering, vol. 19, no. 6, pp. 1026-1041

Juang, B.-H. (1998). The Past, Present, and Future of Speech Processing, IEEE Signal
Processing Magazine, vol. 15, no. 3, pp. 24-48

KDD CUP 1999 Data Set, http:/ /kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Stanifor, Hoagland and McAlerney (2002). Practical Automated Detection of Stealthy
PortScans, Journal of Computer Security, vol. 10, no. 1, pp. 105-136

Kulkarni. V. G. (1995). Modeling and analysis of stochastic systems, Chapman & Hall, UK

Li X. and Ye N. (2004). Mining Normal and Intrusive Activity Patterns for Computer
Intrusion Detection, in Intelligence and Security Informatics: Second Symposium
on Intelligence and Security Informatics, Tucson, USA, Springer-Verlag, vol. 3073,
pp. 1611-3349

Lee W. and Xiang D. (2001). Information theoretic measures for anomaly detection, in IEEE
Synposium on Security and Privacy, pp. 130-143

Mahoney, M. V. and Chan, P.K. (2001). PHAD: Packet Header Anomaly Detection for
Identifying Hostile Network Traffic, Technical report, Florida Tech., C5-2001-4

Mahoney, M. (2003). Network Traffic Anomaly Detection Based on Packet Bytes, Proc.
ACM. Symposium on Applied Computing, pp. 346-350

A Generic Framework for Soft Subspace Pattern Recognition 207

Ourston, D., Matzner, S., et al. (2004). Coordinated Internet attacks: responding to attack
complexity, Journal of Computer Security, vol. 12, pp. 165-190

Paxson, V. (1998). Bro: A system for detecting network intruders in real-time, in Proceedings
of the 7th USENIX Security Symposium, Texas, USA, pp. 3-7

Portnoy, L., Eskin, E., and Stolfo, S. (2001). Intrusion detection with unlabeled data using
clustering, in Proceedings of ACM CSS Workshop on Data Mining Applied to
Security (DMSA-2001), Philadelphia, USA, pp. 333-342

Rabiner, L. R,, Juang B. H., and Lee, C. H., (1996). An Overview of Automatic Speech
Recognition, chapter 1 in Automatic Speech and Speaker Recognition, Advanced Topics,
edited by Chin-Hui Lee, Frank K. Soong, and Kuldip K. Paliwal, Kluwer Academic
Publishers, USA, pp. 1-30

Rabiner, L. R. and Juang, B. H. (1993). Fundamentals of speech recognition, Prentice Hall PTR,
USA

Sherif, J.S., Ayers, R. and Dearmond, T. G. (2003). Intrusion Detection: the art and the
practice, Part 1. Information Management and Computer Security, vol. 11, no. 4, pp.
175-186

Sherif].S. and Ayers R. (2003). Intrusion detection: methods and systems, Part II. Information
Management and Computer Security, vol. 11, no. 5, pp. 222-229

Stolfo, S.J. , Fan, W., Lee, W., Prodromidis, A. and Chan, P.K. (2000). Cost-based Modeling
and Evaluation for Data Mining With Application to Fraud and Intrusion
Detection: Results from the JAM Project, in Proceedings of DARPA Information
Survivability Conference and Exposition, 2000, pp. 1130-1144

Taylor C. and Alves-Foss, J. (2002). An Empirical Analysis of NATE: Network Analysis of
Anomalous Traffic Events, in 10th New Security Paradigms Workshop, Virginia
Beach, Virginia, USA, pp. 18-26

Taylor C. and Alves-Foss J. (2001). NATE: Network Analysis of Anomalous Traffic Events, a
low-cost approach, in Proceedings of New Security Paradigms Workshop,
Cloudcroft, New Mexico, USA, pp. 89-96

Tran D., Ma W., Sharma D. and Nguyen T. (2007). Fuzzy Vector Quantization for Network
Intrusion Detection, IEEE International Conference on Granular Computing, Silicon
Valley, USA

Tran D, Ma W., and Sharma D. (2008). Automated Feature Weighting for Network
Anomaly Detection, IJCSNS International Journal of Computer Science and Network
Security, Vol. 8 No. 2 pp.173-178

Tran D. and Wagner M. (2002). Generalised Fuzzy Hidden Markov Models for Speech
Recognition, Lecture Notes in Computer Science: Advances in Soft Computing - AFSS
2002, N.R. Pal, M. Sugeno (Eds.), pp. 345-351, Springer-Verlag.

Tran D. and Wagner M. (2000). A General Approach to Hard, Fuzzy, and
Probabilistic Models for Pattern Recognition, Advances in Intelligent Systems: Theory
and Applications, M. Mohammadian (ed.), pp. 244-251, IOS Press, Netherlands

Yasami, Y., Farahmand, M., Zargari, V. (2007). An ARP-based Anomaly Detection
Algorithm Using Hidden Markov Model in Enterprise Networks, Second
International Conference on Systems and Networks Communications, pp. 69 -
75

208 Theory and Novel Applications of Machine Learning

Yang, H., Xie, F. and Lu, Y. (2006). Clustering and Classification Based Anomaly Detection,
Lecture Notes in Computer Science, vol. 4223, pp. 1611-3349

15

Data Mining Applications in Higher Education
and Academic Intelligence Management

Vasile Paul Bresfelean
Babes-Bolyai University of Cluj-Napoca, Faculty of Economics,
Romania

1. Introduction

Higher education institutions are nucleus of research and future development acting in a
competitive environment, with the prerequisite mission to generate, accumulate and share
knowledge. The chain of generating knowledge inside and among external organizations
(such as companies, other universities, partners, community) is considered essential to
reduce the limitations of internal resources and could be plainly improved with the use of
data mining technologies.

Data mining has proven to be in the recent years a pioneering field of research and
investigation that faces a large variety of techniques applied in a multitude of areas, both in
business and higher education, relating interdisciplinary studies and development and
covering a large variety of practice. Universities require an important amount of significant
knowledge mined from its past and current data sets using special methods and processes.
The ways in which information and knowledge are represented and delivered to the
university managers are in a continuous transformation due to the involvement of the
information and communication technologies in all the academic processes.

Higher education institutions have long been interested in predicting the paths of students
and alumni (Luan, 2004), thus identifying which students will join particular course
programs (Kalathur, 2006), and which students will require assistance in order to graduate.
Another important preoccupation is the academic failure among students which has long
fuelled a large number of debates. Researchers (Vandamme et al., 2007) attempted to classify
students into different clusters with dissimilar risks in exam failure, but also to detect with
realistic accuracy what and how much the students know, in order to deduce specific
learning gaps (Piementel & Omar, 2005).

The distance and on-line education, together with the intelligent tutoring systems and their
capability to register its exchanges with students (Mostow et al., 2005) present various
feasible information sources for the data mining processes. Studies based on collecting and
interpreting the information from several courses could possibly assist teachers and
students in the web-based learning setting (Myller et al., 2002). Scientists (Anjewierden et
al., 2007) derived models for classifying chat messages using data mining techniques, in
order to offer learners real-time adaptive feedback which could result in the improvement of
learning environments. In scientific literature there are some studies which seek to classify
students in order to predict their final grade based on features extracted from logged data in

210 Theory and Novel Applications of Machine Learning

educational web-based systems (Minaei-Bidgoli & Punch, 2003). A combination of multiple
classifiers led to a significant improvement in classification performance through weighting
the feature vectors.

The author’s research directions through the data mining practices consist in finding feasible
ways to offer the higher education institutions” managers ample knowledge to prepare new
hypothesis, in a short period of time, which was formerly rigid or unachievable, in view of
large datasets and earlier methods. Therefore, the aim is to put forward a way to understand
the students’ opinions, satisfactions and discontentment in the each element of the
educational process, and to predict their preference in certain fields of study, the choice in
continuing education, academic failure, and to offer accurate correlations between their
knowledge and the requirements in the labor market. Some of the most interesting data
mining processes in the educational field are illustrated in the present chapter, in which the
author adds own ideas and applications in educational issues using specific data mining
techniques.

The organization of this chapter is as follows. Section 2 offers an insight of how data mining
processes are being applied in the large spectrum of education, presenting recent
applications and studies published in the scientific literature, significant to the development
of this emerging science. In Section 3 the author introduces his work through a number of
new proposed directions and applications conducted over data collected from the students
of the Babes-Bolyai University, using specific data mining classification learning and
clustering methods. Section 4 presents the integration of data mining processes and their
particular role in higher education issues and management, for the conception of an
Academic Intelligence Management. Interrelated future research and plans are discussed as
a conclusion in Section 5.

2. Data mining applications in the large spectrum of education

Data mining is an important data analysis methodology that has been successfully
employed in many domains, with numerous applications in educational issues and was
identified as one of the ten emergent technologies of the 21st century by the MIT Technology
Review. It is an innovative field of research and study which is being implemented in
education with several promising areas for data mining suggested and partially put into
practice in the academic world. The educational data mining was defined as “the process of
converting raw data from educational systems to useful information that can be used to
inform design decisions and answer research questions” (Heiner et al., 2006)

A main concern of each institution of higher education is to predict the paths of students
and alumni (Luan, 2004). They would like to identify which students will join particular
course programs, and which students will require assistance in order to graduate. At the
same time institutions want to learn whether some students more likely to transfer than
others, and what groups of alumni are most likely to offer pledges. In addition to this
challenge, traditional issues such as enrolment management and time-to-degree continue to
motivate higher education institutions to search for better solutions.

The prediction of class configuration based on the course prerequisites and the prior courses
taken by the students is another research illustration of educational data mining. Equipped
with this information (Kalathur, 2006), the instructor can undertake remedial measures by
supplementing the lecture material with the required topics which the students were lacking
from their previous courses. After acquiring real data and building the database about the

Data Mining Applications in Higher Education and Academic Intelligence Management 211

students and their course history, the model is trained with students” data and the system
could provide immediate feedback to the student upon enrolling in a course how their
profile fits with the course requirements.

Various studies are based on students’ present “knowledge luggage”, detecting with
realistic accuracy what and how much the students know, in order to deduce specific
learning gaps. This set of information could be obtained during an ongoing learning
assessment process that makes possible to specify, with reasonable precision, which subject
the student is better suited to learn at that moment, and requires automatic or semi-
automatic procedures for treatment and analysis for acquisition of new knowledge.
Pimentel and Omar (2005) presented a model for organizing and measuring knowledge
upgrade in systems of education and learning with the support of data mining tools.
Academic failure among freshmen has long inspired a large number of questions , many
psychologists seeking to comprehend and explicate it, and many statisticians have tried to
predict it. Vandamme and collaborators (2007) attempted to classify, as early in the
academic year as possible, students into three groups: the 'low-risk' students, with a high
probability of succeeding; the 'medium-risk' students, who may succeed thanks to the
measures taken by the university; and the 'high-risk' students, with a high probability of
failing (or dropping out). They present the results of their application of discriminant
analysis, neural networks, random forests and decision trees aiming to predict those
students' academic success.

Another motivating issue in educational data mining is finding the reasons why students
abandon school or certain courses before concluding the subjects required. One
methodology (Antunes, 2008) consisted of discovering the frequent sequential patterns
among the recorded behaviors, keeping the discovery limited to the sequences that are
approximately in accordance to the existing background knowledge. The methodology
assumes that the existing background knowledge can be represented by a context-free
language, which plays the role of a constraint in the sequential pattern mining process. The
curriculum knowledge was represented as a finite automaton, which established the order
of subjects that a student should attend to finish his graduation.

Since universities courses progressively oblige students to use online tools in their studies,
there are numerous prospects to mine the resultant large quantity of student learning data
for hidden valuable information. Several approaches in scientific literature try to classify
students in order to predict their final grade based on features extracted from logged data in
educational web-based systems (Minaei-Bidgoli & Punch, 2003). A combination of multiple
classifiers led to a significant improvement in classification performance through weighting
the feature vectors; by using a Genetic Algorithm researchers could optimize the prediction
accuracy and got a marked improvement over raw classification.

Intelligent tutoring systems’ capability to register its exchanges with students is an
important challenge and an opportunity (Mostow et al., 2005). A central matter in mining
data from an intelligent tutoring system is “What happened when...?”. In comparison to
individual observation of live or videotaped tutoring, logs can be more far-reaching in the
number of students, more comprehensive in the number of sessions, and exquisite in details,
avoiding thus observer effects, costing less to obtain, and easier to analyze. Mostow and
collaborators describe (2005) an educational data mining tool to support such case analysis
by exploiting three simple but powerful ideas: first, a student, computer, and time interval
suffice to specify an event; second, a containment relation between time intervals defines a

212 Theory and Novel Applications of Machine Learning

hierarchical structure of tutorial interactions; third, the first two ideas make it possible to
implement a generic but flexible tool for mining tutor data with minimal dependency on
tutor-specific details.

A number of data mining studies were founded on distance and on-line education, which
presents some probable information sources for data mining processes. These studies based
on collecting and interpreting the information from several courses may assist teachers and
students in the web-based learning setting. This information could be applied for assigning
varied groups in programming courses or projects and to evaluate the actual learning
(Myller et al., 2002).

On-line collaborative discussions have significant role in distance education and web-
enhanced courses. Automatic tools for assessing student activities and promoting
collaborative problem solving can offer an improved learning practice for students and also
offer useful assistance to teachers. Researchers developed a specific mining tool for making
the configuration and execution of data mining techniques easier for instructors and in
order to be of use for decision making, using real data from on-line courses (Romero et al.,
2008). Others (Anjewierden et al., 2007) derived models for classifying chat messages using
data mining techniques, tested them and established the reliability of the classification of
chat messages comparing the models performance to that of humans. (Ravi et al., 2007)
presented an approach that could be used to scaffold undergraduate student discussions by
retrieving useful information from past student discussions and an instructional tool that
profiled student contributions with respect to student genders and the roles that students
play in discussion.

3. Experiments in education based data mining at Babes-Bolyai University

The quality of an institution of higher education is specified among other concerns by its
adapting know-how to the continuous varying requirements of the socio-economic
background, the quality of the managerial system based on a high level of professionalism
and on applying the latest technologies (Bresfelean, 2007).

The author’s recent experiments at the Babes-Bolyai University of Cluj-Napoca were focused
mostly on two of the main learning methods in data mining: classification learning and data
clustering. The main objectives for the data mining practices were to offer the higher
education institutions” managers ample knowledge to prepare new hypothesis, in a short
period of time, which was precedently rigid or unachievable, in view of large datasets and
earlier methods. It was aimed to put forward a way to understand the students’ opinions,
satisfactions and discontentment in every element of the educational process, and to predict
their preference in certain fields of study, the choice in continuing their education and also
the understanding, prediction and prevention of the academic failure. Building a profile for
the students, and their grouping based on exam failure risk is a very motivating approach
which could help both institution and students. Universities could learn students
content/discontent regarding its education processes, curricula, courses, endowment, and
figure out specific learning gaps and which students might require assistance in order to
graduate. The student, which is the main focus of a student-based education, could benefit
from the institution’s know-how and support.

There are two keys to success in data mining (Edelstein, 1999). First is coming up with an
exact formulation of the problem to solve. A focused report usually results in the best
payoff. The second key is using the right data. After choosing from the data available, or

Data Mining Applications in Higher Education and Academic Intelligence Management 213

perhaps buying external data, one may need to transform and combine it in significant
ways.

As presented in the next table (Table 1.), the research was based on questionnaires” collected
data from Romanian senior undergraduate students and master degree students from The
Faculty of Economics and Business Administration, Babes-Bolyai University of Cluj-Napoca,
using on-line and written surveys in order to evaluate their motivation in continuing
education and the accomplishment regarding the educational process (Bresfelean et al.,
2006), and included multiple choice questions and a few questions requiring written
answers. There were also important data collected from faculty’s databases, such as: tuition
database, students’ scholastic situation database, etc. The information collected consists of:
general data on the subject (gender etc.), scholastic situation (grades, failed exams), several
types of gained scholarships, interruption of study, exams absence, tuition, and also
students’ opinion (on courses, materials, curricula, research, teachers, laboratories technical
novelty, knowledge gained, continuing education) etc.

Weka and RapidMiner workbenches, which are collections of machine learning algorithms
and data preprocessing tools, were used to analyze the data, and proved to be valuable tools
in order to gain insight into how certain processes are handled within higher education
institutions. Weka workbench is an open source software issued under the GNU General
Public License, a collection of machine learning algorithms for data mining tasks. It is
currently developed at the University of Waikato in New Zealand, and the name stands for
Waikato Environment for Knowledge Analysis. Weka contains tools for data pre-
processing, classification, regression, clustering, association rules, and visualization.
RapidMiner is another important open-source system for knowledge discovery and data
mining, providing more than 400 operators for all main machine learning procedures,
including input and output, and data preprocessing and visualization. It is written in the
Java programming language and therefore can work on all popular operating systems.

3.1 Classification learning experiments

In classification learning, the learning design is offered with a set of classified examples
from which it is estimated to learn a way of classifying unseen examples (Witten & Frank,
2005). Decision trees represent a supervised approach to classification and the models are
commonly used in data mining to examine the data and induce the tree and its rules that
will be used to make predictions (Edelstein, 1999). A “divide-and-conquer” approach
(Witten & Frank, 2005) to the problem of learning from a set of independent instances leads
naturally to a style of representation called decision tree.

There is a significant number of different algorithms that can be used for building decision
trees including CHAID (Chi-squared Automatic Interaction Detection), CART
(Classification And Regression Trees), Quest, C4.5 and C5.0 etc. Decision trees are grown
through an iterative splitting of data into discrete groups, where the goal is to maximize the
“distance” between groups at each split. Leaf nodes give a classification that applies to all
instances that reach the leaf or a set of classifications, or a probability distribution over all
possible classifications (Witten & Frank, 2005).

For the classification learning experiments the J48 method was chosen (based on the C4.5
algorithm from the machine learning), for being one of the most used Weka classification
algorithms that offers a superior stability between precision, speed and interpretability of
results. The basic algorithm for decision tree induction is a greedy algorithm that generates
decision trees in a top-down recursive divide-and-conquer manner.

214

Theory and Novel Applications of Machine Learning

Instruments of

Data subjects collecting data

Questionnaires,
Faculty’s
databases:
-tuition
database,
-students
scholastic
situation
database, etc.

Undergraduate
senior
students

Alumni -
presently
master degree
students

Questionnaires

Information collected

*General information (gender | Classification

etc.);

*Opinions on: -fundamental
knowledge gained,
-books, course materials, case
studies,

-curricula, practical activities,
-participation to research,
grants,
-recommending the
specialization to future
students,

-courses teaching methods in
each of the years of study;
-continuing education;
*Gained scholarships;
*Parents’ material support;
*Scholastic situations and
degrees. etc.

*General information (gender

etc.);

*Opinions on: -contentment in
the graduated and in chosen
master degree specialization,

-fundamental knowledge
gained,

-books, course materials, case

studies,

-curricula, practical activities,
-participation to research,
grants,
-recommending specialization,
-courses teaching methods in
each of the years of study;
-continuing education;

-undergraduate/master degree
courses considered important or

outdated;
*Details on present job;
*Gained scholarships;

* Competences obtained;
*Parents’ material support;
*Scholastic situations, degrees
etc.

m]ijliit:l Results of data mining/
& Knowledge obtained
method

© Prediction of the students’
choice in continuing their
education with post
university studies (master

Learning degree, Ph.D. studies etc.);
(based on . .
C4s and thelr. preference in
algorithim) certain f1.e1ds of study.
© Prediction of students
failing to pass their exams
© Grouping students in
clusters with dissimilar
behavior, the students from
the same cluster embrace the
closest behavior, and the ones
Data from different clusters have
Clustering the most different one.
(based on © Drawing up the students
K-means profile based on their choice
algorithm) | to continue their education.
© Grouping students in
clusters based on the
probability of:
-passing their exams,
-obtaining a scholarship
. . © Prediction of the students’
Classification hoice i inuing thei
Learning [« 01c.e in contmumg their
education (Ph.D. studies etc.);
(based on X .
C4s and thelr. preference in
algorithm) certain fields of study.
© Grouping students in
clusters with dissimilar
behavior, the students from
the same cluster embrace the
closest behavior, and the ones
Data from different clusters have
Clustering the most different one.
(based on © Drawing up the students
K-means profile based on: - their
algorithm) = present choice to continue

their education.
-present job field (Does it
correspond to the graduated
or the master degree
specialization?)

Table 1. Author’s experiments in education based data mining at Babes-Bolyai University,
after (Bresfelean et al., 2008b)

Data Mining Applications in Higher Education and Academic Intelligence Management 215

A general approach! to the decision tree algorithm can be summarized as following;:

1. Choose an attribute that best differentiates the output attribute values.

2. Create a separate tree branch for each value of the chosen attribute.

3. Divide the instances into subgroups so as to reflect the attribute values of the chosen node.
4. For each subgroup, terminate the attribute selection process if:

a. All members of a subgroup have the same value for the output attribute, terminate
the attribute selection process for the current path and label the branch on the
current path with the specified value.

b. The subgroup contains a single node or no further distinguishing attributes can be
determined. As in (a), label the branch with the output value seen by the majority
of remaining instances.

5. For each subgroup created in (3) that has not been labeled as terminal, repeat the above

process.

The purpose of the first classification learning experiments (Bresfelean, 2007) was to predict
of the students” choice in continuing their education with post university studies (master
degree, Ph.D. studies etc.) and their preference in certain fields of study. The results consist
in several decision trees generated upon the initial data set, then on a number of filtered
instances, corresponding to the students belonging to certain specializations. There were
generated values of several performance measures for the classification problems described
in the previous table: Kappa statistic,c MAE (mean absolute error), RMSE (root mean square
error), RAE(relative absolute error, %), RRSE (root relative squared error, %).

An illustration of a decision tree resulted from 409 instances (2007-2008 senior students from
all specializations of the Faculty of Economics and Business Administration), has as a central
root joint the Curricula attribute (opinions about whether the curriculum was relaxed and
gave time to individual studying). The next levels of ramification are based on the futureJob
attribute (the confidence in finding a job appropriate to their specialization after graduating)
and 1st_year attribute (students’ evaluation of courses teaching methods of the 1st year of
study, this year being a test for the freshmen).

=disagree =neufral =agree
o
=Romania =abroad =mibd =no

< L A\ ~ =bad =medium =good
|agree(2?.ma 0] Idisagree(4.0.f1 .0)| | agree(18.014.0) | | agree(6.0) |

| ~N
m | agree{B8.0115.0) | |agree(135.m13.o)|

=Romania =gbroad =mid =no

= / \
| agree20.08.0) | | disagree(0.0) | | agree(d.01.0) | | neutral(t.0) |

Fig. 1. Decision tree for predicting the students’ choice in continuing their education

! Minnesota State University, http://grb.mnsu.edu/grbts/doc/manual/J48 Decision_Trees.html

216 Theory and Novel Applications of Machine Learning

Examples of interpretation of the decision tree’s branches:

“If the students agreed they had relaxed curricula which allowed time for individual
studying, and had a good opinion about the quality of courses teaching methods in the 1st
year of study, then they would agree to continue their education with post university
studies”.

“If the students disagreed they had relaxed curricula which didn’t allow time for individual
studying, and were confident to find a job abroad appropriate to their specialization after
graduation, then they would not agree to continue their education with post university
studies”.

The classification learning was also used to predict the students’ failure/success to pass the
academic exams based on their present behavioral profile. For the J48 classification learning
based on the training set, there was a 75,79% success rate (the correctly classified instances),
and for the cross-validation experiment we acquired a 72,86% success rate. The Laplace
estimator was used with J48, which initiated all numbering starting with 1 as a substitute of
0, a standard technique named after the great mathematician of the 18th century Pierre
Laplace. In the next figure (Fig.2) the first ramifications appear at entering_degree numerical
attribute (students admittance grade in the Romanian 1-10 numerical grading systems,
based on baccalaureate, high school final degree, etc.), and for next levels the ramification is
based on expectations attribute (the fulfillment of their prior expectations regarding their
present specialization) and the parents_sup attribute (the financial support received from

their parents).

<=8 >8
passed(253.0053.0)
<=7 >7
Failed(20.0/5.0)
—
=disagree =neutral =agree
Tailed(17.0/4.0) passed(91.0131.0)
=much =normal =little =none
Z N
| passedi13.065.0)| [failed(7.011.0) | passed(1.0)| | passed(1.0) |

Fig. 2. Decision tree for predicting academic failure/success

Here are examples of interpretation of the decision tree’s branches:

“If students” admittance grade was above 8, then they would pass all their exams”

“If students” admittance grade was in the (7,8] interval, were neutral that their expectations
regarding the present specialization were fulfilled, believed the financial support from their
parents was normal, then they would fail one or more exams”.

“If students” admittance grade was in the (7,8] interval, did not agree that their expectations
regarding the present specialization were fulfilled, then they would fail one or more exams”.

Data Mining Applications in Higher Education and Academic Intelligence Management 217

The previous experiments were conducted over significant data collected from senior
undergraduate students from all specializations of the Faculty of Economics and Business
Administration. Several analogous experiments utilized data also from previous years
senior students (currently master degree students or alumni), and were concentrated on
certain specializations such as Business Information Systems (IE - Informatica economica),
Marketing, Management, or Accounting (CIG - Contabilitate si informatica de gestiune)
with different results to some extent from one specialization to another (Bresfelean et al.,
2008a), (Bresfelean, 2007).

3.2 Data clustering experiments

The clustering process is a practice in which a set of data is replaced with clusters, which
symbolize collections of data points belonging together, its success often being measured
subjectively in terms of how useful the result appears to be to a human user (Witten &
Frank, 2005). Clustering has been extensively used to partition data into groups so that the
level of association is high between members of the same group and low between members
of dissimilar groups (Jung et al., 2004).

The clustering algorithms generally follow hierarchical or partitional approaches. Several
algorithms have been proposed in the literature for clustering, among which K-means
clustering algorithm is the most commonly used because it can be easily implemented
(Hung et al., 2005). For the partitional approach, the K-means and its variants, such as the
fuzzy c-means algorithm, are the most popular algorithms.

In the recent data mining research (Bresfelean et al., 2006), (Bresfelean et al.,, 2007), we
applied the clustering method called FarthestFirst which implements the transversal
algorithm of Hochbaum and Shmoys, a simple, fast, approximation method based on the K-
means algorithm. The idea (Dasgupta & Long, 2005) is to pick any data point to start with,
then choose the point furthest from it, then the point furthest from the first two (the distance
of a point x from a set S is the usual min {d(x, y) : y € S}), and soon until k points are
obtained. These points are taken as cluster centers and each remaining point is assigned to
the closest center. If the distance function is a metric, the resulting clustering is within a
factor two of optimal.

One of the main goals in applying the data clustering methods was to group students in
clusters with dissimilar behavior; the students from the same cluster embrace the closest
behavior, and the ones from different clusters have the most different one (Bresfelean et al.,
2006), (Bresfelean et al., 2007). At the same time this process facilitates the drawing up the
students profile based on their choice to continue their education, but also on the academic
failure risk. We used the analysis based on data clustering with the purpose to classify
students founded on their present job field, made a number of correlations, and tried to
answer an important question: “Does it correspond to the graduated or to the master degree
specialization?”. In this way, we tried to get a feed-back from our alumni and/or master
degree students, resulting in some important information for the higher education
managers, a part of a superior sequence: “Are the current specializations competitive on the
labor market?”

The next study was conducted over senior undergraduates and master degree students from
one of the last generations of the four-years undergraduate first cycle (one-year Master, 4-
years doctorate) during 2006-2008, before the full implementation of Bologna declaration
(first degree of three years, two-years Master, 3-years doctorate). Using the FarthestFirst

218 Theory and Novel Applications of Machine Learning

clustering method based on K-means algorithm (Bresfelean et al., 2006), (Bresfelean et al.,
2007), we initialized the k cluster centers to k randomly chosen points from the data, which
was partitioned based on the minimum squared distance criterion (Maulik &
Bandyopadhyay, 2002). In our experiment, the k parameter is 3, corresponding to students’
3 choices in continuing their post university studies: disagree, neutral, agree. The cluster
centers were then updated to the mean or the centroid of the points belonging to them. This
entire process was repeated until either the cluster centers did not alter or there was no
major change in the J values of two successive iterations. At this point, the clusters were
stable and the clustering process ended. The clustering process proved to be particularly
useful in dividing the students in segments with different behavioral models, the students
from the same segment have the closest behavior, and the ones from different segments
have the most different one.

Based on the students’ choice to continue their education we divided them into 3 groups
(Bresfelean et al., 2006), each presenting specific centroids, with an optimistic result after

Weka validation (27.4151 % of the instances were incorrectly clustered):
Group 0: Students agree to continue their post university studies;
Group 1: Students do not agree to continue their post university studies;
Group 2: Students are neutral to continue their post university studies.
As a result of applying the FarthestFirst algorithm, we obtained 3 clusters with the following

centroids:
Attributes Cluster 0 Cluster 1 Cluster 2
(Information/Opinion): Agree Disagree Neutral
Gender Male Female F
IE-Business
Specialization Information Marketing Management
systems
Graduated High school ottﬁfcr)r(erﬁiiarll)l ¥ Ag;i:;litl':ral Ec;l;ggii:al

Their expectations reg?iiiiﬁg Oil:he specialization were Agree Disagree Neutral

Gained important knowledge Neutral Disagree Agree

Were offered high quality courses, materials Agree Disagree Agree
The curriculum was relaxed Agree Disagree Neutral

The faculty had a good technical endowment Agree Neutral Agree
Participated in practical activities Agree Disagree Disagree
Participated in research/ grants Neutral Disagree Neutral

Would recommend the specialization Agree Disagree Neutral
Teaching quality in the 1’st year Good Very bad Medium
Teaching quality in the 2nd year Good Very bad Medium

Data Mining Applications in Higher Education and Academic Intelligence Management 219

Teaching quality in the 3rd year Good Very bad Excellent
Teaching quality in the 4th year Good Very bad Excellent
Present job none Part time Part time
Benefited from parents’ financial support Very much No Much
Expect to find a future job In Romania In Romania No
Failed exams none 3 or 4 failed 1 or 2 failed

Table 2. FarthestFirst clusters based on students’ choice to continue their education, adapted
from (Bresfelean et al., 2006)

The needed information is extracted from the clusters’ centroids. Following this, it was
determined that there were no common values fields for the three clusters, and as a result all
the fields contain relevant information for the segmentation process.

The opinion on relaxed curriculum plays a substantial part in differentiating the clusters
population:

cluster 0 - Agree
cluster 1 - Disagree
cluster 2 - Neutral

The same situation is observed in the case of the following: opinion on expectations’
fulfillment regarding the specialization, and the opinion on recommending the
specialization to future students.

The failed exams attribute (scholastic situation at the end of last academic year) also contains
significant information in differentiating the cluster population:

cluster 0 - none (passed all exams at the end of last academic year)
cluster 1 - 3 or 4 failed exams
cluster 2 - 1 or 2 failed exams

Moreover, the opinion on the quality of courses teaching methods in the 1st and the last

years of study (4th year) plays an important role in defining the clusters as seen in Table 2.

To fundament the decisions regarding the managerial strategies the faculty leaders can

approach in order to fulfill all students’” expectations, and enhance their competiveness on

the labor market, it is compulsory to correlate the information extracted from terminal year

students’ questionnaires with graduate students’ data, currently master degree students.

Starting from the information mined in the undergraduate and master degree

questionnaires, the following correlations and analysis were concluded:

- correlation and percentage relation between the graduated specialization and the
master degree specialization;

- correlation and percentage relation between the current job and the graduated
specialization;

- correlation and percentage relation between the current job and the master degree
specialization.

The following table (Table 3) presents the data extracted from the questionnaires filled up by

master degree students from the Faculty of Economics and Business Administration, Cluj-

220 Theory and Novel Applications of Machine Learning

Napoca, filtered to include only the students from Business Information Systems -IE,
Marketing -Mk and Management -Mng master specializations.

Master degree students
Cathegories IE | Mk | Mng
Total master degree students in the above specialization | 11 | 40 15
First degree specialization similar to master 10| 16 6
specialization
First degree specialization different from master 1| o4 9
specialization
Job in other areas than the graduated specialization 4 | 11 5
Similar job to the graduated specialization 5 9 2
Job in other areas than the master degree specialization | 5 | 13 6
Similar job to the master degree specialization 4 7 1
Unemployed IE master degree students 2 | 20 8

Table 3. Master degree students - Jobs and specializations, from (Bresfelean et al., 2006)

In the next tables and diagrams I present the correlations and percentage relations between
different attributes suggestive to this study.

Master First degree specialization | First degree specialization
degree similar to master different from master
specialization specialization (%) specialization (%)
IE 90,9% 9,09%
Mk 40% 60%
Mng 40% 60%
Table 4. Percentage relation between graduated specialization and the master degree
specialization
45
40
Toial master
55 degree students
30
25 S First degree
specialization
a0 similar to
15 master
10 4 First degree
specialization
5 different from
0 mmmnn B . master

Fig. 3. Correlation between the graduated specialization and master degree specialization

Mo, of tnaster degree Mo, of master degree Mo, of master dagree

stiudents (IE)

stidents (Mk)

stiudents (Mng)

Data Mining Applications in Higher Education and Academic Intelligence Management

221

Job in other area than | Similar job to the Unemployed master
Graduated degree students of the
R the graduated graduated e
specialization A . qe e present specialization
specialization (%) specialization (%) %)
IE 36,36% 45,45% 18,18%
Mk 27,5% 22,5% 50%
Mng 33,33% 13,33% 53,33%
Table 5. Percentage relation between the current job and the graduated specialization
100%,
S5
B0%%
TO%
E0% IE
S0%% Ml
0% 7/Mng
0% /
20% %
10% % 7/

Jeh in other area
than the graduated

specialization

Similar job to the
sraduated

specializaton

Unemployed master
degres students of

the prezent

specialization

Fig. 4. Graphical representation of the percentage relation between the current job and the
graduated specialization

Job in other areas s e
Master degree than the master Similar job to the Unemployed IE
s 1 o master degree master degree
specialization degree specialization (%) students (%)
specialization (%) P
IE 45,45% 36,36% 18,18%
Mk 32,5% 17,5% 50%
Mng 40% 6,66% 53,33%

Table 6. Percentage relation between the current job and the master degree specialization

From the data analysis, correlation and percentage relations presented in this study, and
based on other detailed research included in (Bresfelean et al., 2006) and (Bresfelean et al.,
2007), we can conclude that:
- The majority of the undergraduate IE students were keen on continuing their education
with master degree studies, while the undergraduate Mng students formed an important
segment with neutral opinions on continuing education, and the undergraduate Mk
students formed another segment with negative opinions on continuing education.

222

Theory and Novel Applications of Machine Learning

Fig.

The great majority of IE master degree students (approximate 90,9%) were formed by
former IE graduate students, and only a small percent of other than IE graduates
(approx. 9,09%);

The majority of Mk and Mng master degree students (approx. 60%) were formed by
students that didn’t previously graduate the same specialization;

An important percent (45,45%) of the IE master degree students found a similar job to
the graduated specialization, and 36,36% of IE master degree students had an
occupation similar to the master specialization;

A small percent (22,5%) of the Mk master degree students found a similar job to the
graduated specialization, and 17,5% of Mk master degree students had an occupation
similar to the master specialization;

A very small percent (13,33%) of the Mng master degree students found a similar job to
their graduated specialization, and 6,66% of Mng master degree students had an
occupation similar to the master specialization;

Only a small percent (18,18%) of the IE master degree students were unemployed, but
half of Mk (50%) and the majority of Mng (53,33%) master degree students were
unemployed for different reasons, not mentioned in the questionnaires.

Due to the financial support obtained from different companies, banks etc. we observed
an increased number of students to other than IE master degree specializations; Mk and
Mng master degree specializations attracted a large number of graduate students from
other areas.

100%%

0%

20%

TO%

a0%%
1E

S0% —
Ml
40%% —
o] Mng
30%% —

20%% o —

10%6 —

%% T T
Job in other areas Sinilar job to the Unemployed IE

than the master magter degree magter degree
degres specialization ztudents
specialization

5. Graphical representation of the percentage relation between the current job and the

master degree specialization

4. The integration of data mining processes in higher education topics

The higher education institutions represent dissimilar and complex environments which
involve links to communication and collaboration among its various departments and the

Data Mining Applications in Higher Education and Academic Intelligence Management 223

society. In the situation of a state-financed higher education, the society manifests as the
main partner of a university, and is represented at the purveyor-client interface by central or
local governmental institutions, companies and organizations, labor management
institutions etc. (Rusu & Bresfelean, 2006).
The European Council stated in Lisbon 2000 that the Europe should became by 2010, ”the
most competitive and dynamic knowledge-based economy in the world, capable of
sustainable economic growth with more and better jobs and great social cohesion”. The
continuous change in European educational expectations due to Bologna Process and the
demands for an EU area of educational collaboration have been gradually replacing the old-
fashioned routine management with ICT-based knowledge management, leading to the
emergence of an Academic Intelligence Management.
The Academic Intelligence Management includes all higher education institution’s processes
utilized to acquire, generate and spread knowledge in order to accomplish its objectives and
strategies, based on the latest ICT (Information and Communication Technologies) and
collaborative practices. It is tied to organizational goals such as improved performance,
competitive advantage, innovation, research and development, which derive from
technologies and applications providing historical, present, and predictive analysis of all
academic activities. The ways in which information and knowledge are represented and
delivered to the university managers are in a continuous transformation due to the
involvement of the information and communication technologies in all the higher education
processes.

The Bologna Declaration imposed a motivating process of change for a large and diversified

number of countries to work together in order facilitate the quality assurance in the creation

of a European Higher Education Area. Consequently, an integration of the latest research
results involving these technologies, in terms of their contents and impact, is an issue that

should be vital, while taking into account the fundamental role of a university as a

knowledge creator and facilitator of teaching and research. Such is the case of all Romanian

higher education institutions involved in complex processes of evaluation and accreditation:
the traditional universities, which aim to develop their activities to include new areas, or the
recently established private institutions aspirant to achieve university status.

The university is progressively regarded as a collaborative organization whose mission is to

foster knowledge creation and knowledge diffusion among communities of students,

scholars and researchers (Rodrigues & Barrulas, 2003). In the case of higher education
institutions, the designing circuits of a managerial system (Rusu & Bresfelean, 2006) aiming
an academic intelligent/intelligence management (Fig. 6) must be closely tied to:

e educational process activities: structure design and curricula content must be token of
labor market requests and institution’s capability; quality and freshness of courses
information; adequate teaching/learning and evaluation methods; appropriate
performance of educational processes etc.

e scientific research activities: thematic originality and opportunity; consistency of
results; scientific probity; ethic experimenting; ways of utilizing the results etc.

e internal organization: authority and responsibility delegation; transparency and
efficiency in the utilization of human and material resources; equity and performance
encouragement in personnel promotion; continuous personnel training etc.

e external relations with local, national and international community; relations with other
educational institutions and companies from different activity sectors; alumni etc.

224 Theory and Novel Applications of Machine Learning

External
relations

Informiation | | Knowledge

hfunmllun
SEdutai una&“‘—"

\HTDCE-QSE S\

\\‘Q*\

Scientific
research

Jrganization

Fig. 6. Academic Intelligence Management, the hub of higher education activities

The higher education institutions” objectives answer the needs of the society and of the labor
market and can surpass them, playing an important part in demand’s generation (Rusu &
Bresfelean, 2006). They serve as reference values for the adjusting circuits between the
university-external partners’ levels. Starting from this point, university managers set the
strategic objectives, which would supply reference values for the lower levels, playing a
parameter part in levels’ correction. Based on it, in a designing stage, the strategies for
developing a coherent academic offer would be implemented for quality management,
strategic management, scientific research management and the “must” values for the lower
levels: elaboration of education curricula and analytic programmes; scholastic management;
school taxes management; accounting; human resource administration etc. The results,
amount features of lower levels, are transmitted to the superior ones in a continuous
communication within a managerial collaborative system (Fig.7), based on the latest ICT
and knowledge management.

The data mining process integrated in the managerial system has two objectives: knowledge
discovery, for offering explicit information, and a prediction objective for the forecast of
future evolutions and events. By contrast with the normal interrogations addressed to
current databases, using an interrogation language, the data mining process classifies and
groups different systems data, eventually incompatible, searching for new associations. The
decision support (DS) provides a variety of data analysis, simulation, visualization and data
modeling techniques, and software such as decision support systems, executive support
systems, databases and data warehouses.

Data mining and decision support are two disciplines aimed at solving difficult practical
problems, and in many ways they are complementary (Bohanec & Zupan, 2001). To solve a
particular problem, DS tends to rely on knowledge acquired from experts, while data
mining attempts to extract it from data. Their combination would result in important
benefits in solving real-life decision and data-analysis problems:

Data Mining Applications in Higher Education and Academic Intelligence Management 225

- Data mining has the prospective of solving decision support problems, when earlier
decision support answers was recorded as analysis data to be used with mining tools.

- DS methods typically products a decision model, proving the expert knowledge of
decision makers.

Legacy sof Middleware
-scholastic management
- scholar trajectory -
- school taxes managerment Security management
- finanrial-acoounting software ™
- hnuglanfresoumes adrindstration Resomce management
-8 DT
- Worary onvline catalog -] Datahase management
I Diata managernent sysEm
ERP/EAL '—" IyTail managetnent
Logistics-spphring
Finaneial-Aceounting, Gravts’ — Mail server
Ivlanagement ™ MNotification managerment
Hurnan Resources, Wages
Social servi ._.‘
oo e I Knowledge Portal Weh hrowser
Decision l—a] Connection sexvices
sup port Executive [+
| systems _ | Supp ort
Data Systems
miining dul i i
Liata Administration
warehouse Clent services services

Fig. 7. Conceptual scheme of a collaborative managerial information system, from (Rusu &
Bresfelean, 2006), (Dustdar, 2004)

An important step for successful combination will be the switch from the current data
mining software tools to a data mining application systems approach (Rupnik et al, 2006)
which introduces the possibility to develop decision support systems which use data mining
methods and do not demand expertise in data mining for business users. It is an approach
which focuses on users and decision makers, enabling them to view data mining models
which are presented in a user-understandable manner through a user friendly and intuitive
GUI using standard and graphical presentation techniques. Through the use of data mining
application systems approach, data mining can become better integrated in business
environments and their decision processes.
The exploitation of data mining processes for decision support is based on the CRISP
European standard? (CRoss Industry Standard Process for Data Mining) proposed in mid
90’s by a European consortium of companies as an industry- and tool-neutral data mining
process model. The CRISP methodology provides guidelines and a sequence of steps to be
followed in the applied knowledge discovery process. The life cycle of a data mining project
consists of six phases:
1. Business Understanding (in our case - academic understanding) phase focuses on
understanding the project objectives and requirements from a business perspective, and
then converting this knowledge into a data mining problem definition.

2 CRISP, http:/ /www.crisp-dm.org/Process/index.htm

226 Theory and Novel Applications of Machine Learning

2. Data Understanding phase starts with an initial data collection and proceeds with
activities in order to get familiar with the data, to identify data quality problems, to
discover first insights into the data, or to detect interesting subsets.

3. Data Preparation phase covers all activities to construct the final dataset from the initial
raw data. Tasks include table, record, and attribute selection as well as transformation
and cleaning of data for modeling tools.

4. In the Modeling phase, various modeling techniques are selected and applied, and their
parameters are calibrated to optimal values.

5. At the Evaluation stage in the project the user has built a model that appears to have
high quality, from a data analysis perspective. At the end of this phase, a decision on
the use of the data mining results should be reached.

6. Deployment phase. Creation of the model is generally not the end of the project.
Depending on the requirements, the deployment phase can be as simple as generating a
report or as complex as implementing a repeatable data mining process, expanding the
obtained model and its results at the level of managerial information system of the
higher education institution.

5. Conclusions

The data mining experiments from this chapter are a component of a larger research which
is to be used to make several correlations, analysis in order to integrate data mining process
in the managerial system for optimal decision support. I offered an insight of how data
mining processes are being applied in the large spectrum of education by presenting recent
applications and studies published in the scientific literature, considered to be relevant to
the development of this emerging science. I presented my work through a number of
experiments conducted over questionnaires data and scholastic databases at Faculty of
Economics and Business Administration Cluj-Napoca, using classification learning and data
clustering methods. In the last part of the chapter I introduced the concept of Academic
Intelligence Management, and illustrated the integration of data mining processes and their
particular role in higher education management and decision support.

The studies will continue with deeper mining of educational topics, such as performance in
scientific research, correlations between the students’ knowledge and the competences
demanded on the labor market, academic failure, to perceive what and how much the
students know, to realize learning gaps, and also improve teaching methods and
educational management processes.

6. Acknowledgements

The research included in the present article is a part of Romanian CNCSIS TD-329 Grant
“Contributii la perfectionarea managementului institutiilor universitare prin aplicarea de
tehnologii informatice moderne” (Contribution to improving universities' management
using modern IT technologies).

7. References

Antunes C., Acquiring Background Knowledge for Intelligent Tutoring Systems,
Proceedings of Educational Data Mining 2008, The 1st International Conference on
Educational Data Mining Montreal, Quebec, Canada, June 20-21, 2008 pp.18-27

Data Mining Applications in Higher Education and Academic Intelligence Management 227

Anjewierden A., Kolloffel B., Hulshof C., Towards educational data mining: Using data
mining methods for automated chat analysis to understand and support inquiry
learning processes. ADML 2007, Crete, September 2007. pp. 27-36.

Bohanec, M., Zupan, B., Integrating decision support and data mining by hierarchical multi-
attribute decision models, IDDM-2001: ECML/PKDD-2001 Workshop Integrating
Aspects of Data Mining, Decision Support and Meta-Learning, Freiburg, 2001, pp.
25-36.

Bresfelean, V.P., Bresfelean, M., Ghisoiu, N., Comes, C.-A., Determining Students” Academic
Failure Profile Founded on Data Mining Methods, 30th International Conference
Information Technology Interfaces, ITI 2008, 23-26 June 2008 Cavtat, Croatia (a)

Bresfelean, V.P., Bresfelean, M., Ghisoiu, N., Comes, C.-A., Development of universities’
management based on data mining researches, INTED 2008, International
Technology, Education and Development Conference, March 3-5 2008 Valencia,
Spain (b)

Bresfelean V.P., Analysis and predictions on students” behavior using decision trees in Weka
environment, 29th International Conference Information Technology Interfaces, ITI
2007, Cavtat, Croatia, June 2007, pp. 51-56

Bresfelean V.P, Bresfelean M, Ghisoiu N, Comes C-A., Data mining clustering techniques in
academia, 9th International Conference on Enterprise Information Systems, 12-16,
June 2007, Funchal, Portugal, pp. 407-410

Bresfelean V.P, Bresfelean M, Ghisoiu N, Comes C-A., Continuing education in a future EU
member, analysis and correlations using clustering techniques, Proceedings of
EDU'06 International Conference, Tenerife, Spain, December 2006, pp. 195-200

Dasgupta S., Long P.M., Performance Guarantees for Hierarchical Clustering, Journal of
Computer and System Sciences, Volume 70 , Issue 4, June 2005, Special issue on
COLT 2002, pp. 555 - 569

Dustdar, S., Caramba— A Process-Aware Collaboration System Supporting Ad hoc and
Collaborative Processes in Virtual Teams, Distributed and Parallel Databases, 15,
Kluwer Academic Publishers, 2004

Edelstein H., Introduction to Data Mining and Knowledge Discovery. Third Edition. Two
Crows Corporation, Potomac, MD, USA, 1999

Heiner, C., Baker, R., Yacef, K.: Preface. In: Workshop on Educational Data Mining at the 8th
International Conference on Intelligent Tutoring Systems (ITS 2006), Jhongli,
Taiwan. 2006

Hung, M. C.,, Wu,], Chang, J.H.,, Yang, D. L., 2005. An Efficient K-Means Clustering
Algorithm Using Simple Partitioning. Journal of Information Science and
Engineering 21, 1157-1177, 2005

Jung, Y.; Park, H.; Du, D.Z; Drake, B. (2003) A Decision Criterion for the Optimal Number
of Clusters in Hierarchical Clustering, Journal of Global Optimization 25: 91-111,
Kluwer Academic Publishers 2003

Kalathur S. An Object-Oriented Framework for Predicting Student Competency Level in an
Incoming Class, Proceedings of SERP'06 Las Vegas , 2006, pp. 179-183

Luan Jing, Data Mining Applications in Higher Education, SPSS Exec. Report, 2004.
http:/ /www.spss.com/home_page/wp2.htm

228 Theory and Novel Applications of Machine Learning

Maulik, U., Bandyopadhyay, S. 2002. Performance Evaluation of Some Clustering
Algorithms and Validity Indices, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 24, No. 12, December 2002

Minaei-Bidgoli B., Punch W.F., Using Genetic Algorithms for Data Mining Optimization in
an Educational Web-based System, GECCO 2003 Conference, Springer-Verlag, Vol
2, Chicago, USA; July 2003. pp. 2252-2263.

Mostow J., Beck J., Cen H., Cuneo A., Gouvea E., Heiner C. ,An educational data mining tool
to browse tutor-student interactions: Time will tell! Proceedings of the Workshop
on Educational Data Mining, Pittsburgh, USA; 2005. pp.15-22.

Myller N., Suhonen J, Sutinen E. Using data mining for improving web-based course design,
Proceedings ICCE’02 of the International Conference on Computers in Education,
Auckland, New Zealand vol.2; December, 2002. pp.959 - 963.

Pimentel EP., Omar N., Towards a model for organizing and measuring knowledge
upgrade in education with data mining, The 2005 IEEE International Conference
on Information Reuse and Integration, Las Vegas, USA; August 15-17, 2005. pp. 56-
60

Ravi S, Kim J., Shaw E., Mining On-line Discussions: Assessing Technical Quality for
Student Scaffolding and Classifying Messages for Participation Profiling,
Workshop of Educational Data Mining, Supplementary Proceedings of the 13th
International Conference of Artificial Intelligence in Education. Marina del Rey,
CA. USA. July 2007, pp. 70-79

Rodrigues, J.P.C., Barrulas, M. J. (2003), Towards Web-Based Information and Knowledge
Management in Higher Education Institutions, Lecture Notes in Computer Science,
Volume 2720, Sep 2003, pp. 188-197

Romero C., Ventura S., Espejo P. and Hervas C., Data Mining Algorithms to Classify
Students, Proceedings of Educational Data Mining 2008, The 1st International
Conference on Educational Data Mining Montreal, Quebec, Canada, June 20-21,
2008 pp. 8-17

Rupnik R., Kukar, M., Bajec M., Krisper, M., DMDSS: Data mining based decision support
system to integrate data mining and decision support, 28th International
Conference Information Technology Interfaces, ITI 2006, Cavtat, Croatia, June 2006,
pp-225-230

Rusu, L., Bresfelean, V.P., Management prototype for universities. Annals of the Tiberiu
Popoviciu Seminar, Supplement: International Workshop in Collaborative Systems,
Volume 4, 2006, Mediamira Science Publisher, Cluj-Napoca, Romania, pp. 287-295

Universitatea Babes-Bolyai Cluj-Napoca, Romania. Programul Strategic al Universitatii
Babes-Bolyai (2007-2011), Nr.11.366; 1 august 2006.

Vandamme J.P., Meskens N., Superby]J.F., Predicting Academic Performance by Data
Mining Methods, Education Economics, Volume 15, Issue 4 December 2007 , pp.
405 - 419

Witten L.H., Frank E., Data Mining: Practical Machine Learning Tools and Techniques, 2nd
ed., Morgan Kaufmann series in data management systems, Elsevier Inc., 2005.

16

Solving POMDPs with
Automatic Discovery of Subgoals

Le Tien Dung, Takashi Komeda and Motoki Takagi
Shibaura Institute of Technology

Japan

1. Introduction

Reinforcement Learning (RL) is the problem faced by an agent that must learn behavior
through trial-and-error interactions with a dynamic environment (Kaelbling et al., 1996). At
any time step, the environment is assumed to be at one state. In Markov Decision Processes
(MPDs), all states are fully observable in which the agent can choose a good action based
only on the current sensory observation. In Partially Observable Markov Decision Processes
(POMDPs), any state can be a hidden state in which the agent doesn’t have sufficient
sensory observation and the agent must remember the past sensations to select a good
action. Q-learning is the most popular algorithm for learning from delayed reinforcement in
MDPs, and RL with Recurrent Neural Network (RNN) can solve deep POMDPs.

Several methods have been proposed to speed up learning performance in MDPs by
creating useful subgoals (Girgin et al., 2006), (McGovern & Barto, 2001), (Menache et al.,
2002), (Simsek & Barto, 2005). Subgoals are actually states that have a high reward gradient
or that are visited frequently on successful trajectories but not on unsuccessful ones, or that
lie between densely-connected regions of the state space. In MDPs, to attaint a subgoal, we
can use a plain table based policy, named a skill. Then these useful skills are treated as
options or macro actions in RL (Barto & Mahadevan, 2003), (McGovern & Barto, 2001),
(Menache et al., 2002), (Girgin et al., 2006), (Simsek & Barto, 2005), (Sutton et al., 1999). For
example, an option named “going to the door” helps a robot to move from any random
position in the hall to one of two doors. However, it is difficult to apply directly this
approach to RL when a RNN is used to predict Q values. Simply adding one more unit into
output layer to predict Q values for an option doesn’t work because updating any
connection’s weight will affect all previous Q values and because it is easy to lose the Q
values when the option can’t be executed for a long time.

In this chapter, a method named Reinforcement Learning using Automatic Discovery of
Subgoals is presented towards this approach but in POMDPs. We can reuse existing
algorithms to discover subgoals. To obtain a skill, a new policy using a RNN is trained by
experience replay. Once useful skills are obtained by RNNSs, these learned RNNs are
integrated into the main RNN as experts in RL. Results of experiment in two problems, the E
maze problem and the virtual office problem, show that the proposed method enables an
agent to acquire a policy, as good as the policy acquired by RL with RNN, with better
learning performance.

230 Theory and Novel Applications of Machine Learning

2. Reinforcement learning and recurrent neural network

RL is learning what to do to maximize a numerical reward signal. The learner is not told
which actions to take, as in supervised learning, but instead must discover which actions
yield the most reward by trying them (Sutton & Barto, 1998). RL allows a software agent to
automatically determine its behavior within a specific context, in order to maximize its
performance. Simple reward feedback is required for the agent to learn its behavior; this is
known as the reinforcement signal. This automated learning scheme implies that there is
little need for a human expert who knows about the domain of application. Much less time
will be spent designing a solution, since there is no need for hand-crafting complex sets of
rules as with expert systems (Champandard, 2007). Beyond the agent and the environment,
four main sub-elements of a reinforcement learning system are a policy, a reward function, a
value function, and, optionally, a model of the environment.

In the general case of a reinforcement learning problem, the agent's actions determine not
only its immediate reward, but also the next state of the environment. The agent has to be
able to learn from delayed reinforcement: it may take a long sequence of actions, receiving
insignificant reinforcement, and then finally arrive at a state with high reinforcement. ILe.,
the agent must be able to learn which of its actions are desirable based on reward that can
take place arbitrarily far in the future.

2.1 Q learning

When a model of fully observable environment is not available, the most widely used RL is
Q-learning (Sutton & Barto, 1998), (Watkins, 1989). Q-learning iteratively approximates the
state-action value function by updating its plain table based Q values as

Qs a) = O(s,a) +alr+ymax X(s'.a) - (s, a)] @

where Q(s,a) is the state-action value for action a in state 5, & is learning rate, and y is
the factor of discount.

Based on Q values, the agent selects an action to execute using a standard exploration
method. A simple selection rule, e-greedy method, is to behave greedily most of the time.
The agent selects the action with highest estimated action value with a big probability. But
sometimes, the agent selects an action at random with small probability. An alternative
solution, softmax selection rule, is to vary the action probabilities as a graded function of
estimated value (Sutton & Barto, 1998).

2.2 Perceptual aliasing

In a real world environment, not all states are fully observable, named hidden states. Le., in
some world states, the observation is same, but the optimal actions are different. These
problems are called POMDPs. Fig. 1 shows an example of POMDPs (Ohta et al., 2003). If the
agent selects the same action at a hidden state, it may not reach the goal. To solve this kind
of problems, some researchers propose memory-less approach. This method is simply to
avoid passing through hidden states or uses stochastic action selection rule at hidden states
(Littman, 1994), (Ohta et al., 2003). However, this approach doesn’t fit well when there are
many perceptual aliasing states in the optimal policy. Memory based approach uses past
sensations to predict optimal actions (McCallum, 1995), (Whitehead, 1995).

Solving POMDPs with Automatic Discovery of Subgoals 231

8122]3]

Fig. 1. A maze including perceptual aliasing.

2.3 RL with RNN

A number of researchers use a RNN to predict Q values to solve POMDPs (Bakker, 2002),
(Ballini, 2001), (Gomez et al., 2005), (Gomez & Schmidhuber, 2006), (Le et al., 2007), (Le et al.,
2008), (Lin & Mitchell, 1993), (Lin, 1993), (Ho & Kamel, 1994), (Onat et al., 1998), (Schafer &
Udluft, 2005). The number of input unit is equal to the dimension of the sensory inputs from
the environment. The number of output units is equal to the number of possible actions.
Each output represents the Q-value of the associated action. For the output units, a linear
activation function is used to cope with the required range of Q values. At a time step, RNN
inputs are the sensations of the current state and RNN outputs are approximated Q values
for that state. Similar as plain table based Q learning, the agent selects an action based on Q
values and observes new Q values. However, the agent doesn’t update the Q values as in
(1). It updates the RNN connections’ weights to predict the Q values.

RNN architecture can be Time-Delayed Neural Network, Elman Network, Recurrent
Neurofuzzy Network, or Long Short Term Memory Network (LSTM). The RNN used in this
chapter is LSTM which has been proved to have a strong ability to solve many difficult tasks
(Gers et al., 2000), (Gers et al., 2002), (Hochreiter & Schmidhuber, 1997), (Schmidhuber et al.,
2007). The basic element in LSTM is memory cell (Fig. 2), which contains a recurrently self-
connected liner unit called the “Constant Error Carousel” or CEC (Hochreiter &
Schmidhuber, 1997). A multiplicative input gate unit is employed to protect the memory
contents from perturbation by irrelevant inputs. Likewise, a multiplicative output gate unit
is used to protect other units from perturbation by currently irrelevant memory contents. F.
A. Gers improves the limitation of traditional LSTM by adding a forget gate to memory cell
(Gers et al., 2000). Standard LSTM (or LSTM for short) with forget gates can learn to reset
the memory contents that are out of date.

The activations are computed as follows:

For each unit i in hidden layer at time ¢, the net input is

net,(t) = z w,, v, (t—=1))

where w,, is the weights of the connection from unit m to unit 7 .
The hidden unit activation y, , input gate activation y,, , output gate activation y,,, and the
forget gate activation y, is calculated by

Yi= f(”eti) ®)

232 Theory and Novel Applications of Machine Learning

L
Output gating @::
Outputgate |~
Qutput
squashing

\

cec () p—F

Forgetgate [~
Input (13}
gating Input gate [~
Input
squashing ﬂ
I Ty
Fig. 2. A memory cell with its gates
where fis the standard logistic sigmoid function
1
S “)
I+e
The CEC activation s, is calculated by
5. ()= 2,05, (t=D)+y, ()g(net, (1)) ®)
where g is the logistic sigmoid function scaled to [-2, 2]
4
g=—"--2 ©)
I+e
The memory cell output activation y, is calculated by
Yo (0)= 3, (DR(s,, (1))
where £ is the logistic sigmoid function scaled to [-1, 1]
2
h= ——1 8)
l+e™
Finally, the output unit activation y, is calculated by
Vi = fi(net, (1)) ©)

where f, is the standard logistic sigmoid function or the identity function.

Solving POMDPs with Automatic Discovery of Subgoals 233

Cutput
units

Memory
cells

Input
units

Fig. 3. A typical LSTM network with 4 input units, 2 memory cells, and 3 output units.

Several LSTM network topologies are proposed to solve some particular problems (Gers et
al.,, 2000), (Gers et al., 2002), (Hochreiter & Schmidhuber, 1997), (Schmidhuber et al., 2007).
Fig. 3 shows a typical LSTM network architecture with 4 input units, 2 memory cells, and 3
output units.

3. Solving POMDPs with automatic discovery of subgoals

Reinforcement Learning using Automatic Discovery of Subgoal (RLSG) is a framework to
accelerated learning ability in non-Markovian problems. There are two phases in RLSG. The
first phase is to obtain online generated sub-policies. One sub-policy is a useful skill to attain
subgoals. Each sub-policy has its own RNN which plays a role of Recurrent Neural
SubNetwork (RSN) in RLSG. The second phase in RLSG is to integrate online generated
RSNs into the main RNN. The new RNN will be trained to predict the Q values for the
original problem.

3.1 Automatic discovery of subgoal

Several methods have been proposed to discover subgoals (Girgin et al., 2006), (McGovern
& Barto, 2001), (Menache et al., 2002), (Simsek & Barto, 2005). Subgoals are actually states
that have a high reward gradient or that lie between densely-connected regions of the state
space. In our system, a state will be considered as a subgoal if it is visited frequently on
successful trajectories but not on unsuccessful trajectories. A simple method to find a
subgoal is to calculate the probability of being a subgoal for all states by:

P(s) = P(s € BY) *[1 “P(se B’)} (10)

where B and B~ are successful bag and unsuccessful bag. The states with high
probability and not surrounding the starting and ending states are considered as subgoals.

234 Theory and Novel Applications of Machine Learning

3.2 Learning a skill

After finding a subgoal, a new policy should be trained to attain it. Most of previous
researchers assume that the environment is observable therefore they can use a plain table to
store Q values for the new policy (Girgin et al., 2006), (McGovern & Barto, 2001), (Menache
et al., 2002), (Simsek & Barto, 2005). However, it can’t be done in POMDPs. In our system, a
policy using a RNN is trained to attain this subgoal by experience replay as described in
(Lin, 1992) with a pseudo reward function once we can find a subgoal.

3.3 Integration

In full observable environments, we can use skills as options in RL by adding these options
to the action set of the agent. These options are considered as macro actions. New elements
are inserted into the table to predict Q values of these macro actions. Update one value in a
table doesn’t affect the others. However, it is hard to apply directly these methods in RL
with RNN because update a neural network connection’s weight will affect all other
previous Q values. Furthermore, only in some parts of the whole state space, we can execute
an option. That means if we add one more output unit for an option, it is very easy to lose
the previous learned Q values for that option.

In this chapter, our proposed method Reinforcement Learning using automatic discovery of
SubGoals (RLSG) doesn’t use generated skills as options but as components of the RNN to
predict Q value for the main policy. All elements of previous learned neural networks
except input and output units are integrated into the main RNN. Our previous works show
that it is possible to speed up learning performance by reuse previous policies in similar
tasks (Le et al., 2007). Similar as in supervised learning, the new RNN is composed from all
learned RNNs with or without new hidden units (Carroll & Peterson, 2002), (Carroll et al.,
2001), (Kirschning et al., 1995), (Jordan et al., 1994). The previous connections can be frozen
or trainable. Our previous work (Le et al., 2007) also shows that Mixture of Experts System
(MES) is the best among several integration methods. After integration, the agent continues
to learn to accomplish its task using the new policy.

3.5 Mixture of Experts System (MES)

In MES, we merge the original network and all learned sub-networks in order to make a
new network as shown in Fig. 4. Learned connections are considered as experts in the new
network to speed up learning performance (Jordan et al., 1994). All connections are
trainable. I.e., we can change the weight of any connection.

4. Experiment

In order to examine the learning ability of RLSG, we performed two experiments in the E
maze problem and in the Virtual Office problem. In the first and the second experiments,
RLSG uses online generated RSNs with one and two useful skills respectively.

4.1 E maze problem

An agent must learn to move from a starting position S to a goal position G. Observation at
each position is shown in Fig. 5. The agent can choose one of four actions: North, East,
South, and West. Executing any action, the agent receives a reward -1. If the agent can reach
the goal it receives a reward 10. An episode is terminated when the agent reaches the goal or
the agent has executed 100 actions.

Solving POMDPs with Automatic Discovery of Subgoals 235

_—

Every source unit
connects to

all destination units

Skill n

Original
module

Fig. 4. Mixture of Expert System.

Fig. 5. E Maze Problem: The agent must learn to move from S to G.

We executed RLSG and RL with RNN using softmax exploration method to compare the
learning performance. The following parameters were used: discount factor y = 0.98,
exploration temperature 7 =1, RNN learning rate & = 0.1, 4 input units, 6 memory cells, 4
output units. After every 10 episodes, the system evaluates the current RNN. Learning
process is terminated when the agent can reach the goal in 10 moves using greedy method.
In this experiment, only one subgoal was allowed to create after 100 first learning episodes.
For each method, 5 runs were performed.

Results

In some runs, state 8 is detected as a subgoal. In the others, state 2 is considered as a
subgoal. We found that even if the subgoal discovery process wasn’t very perfect, it didn’t
affect the learning ability. All runs were convergent giving a good policy. Learning
performance of two methods is shown in Fig. 6. The figure shows RLSG outperforms RL
with RNN.

RL with RN P——————F———%—A

] 2000 4000 GO00 2000
Number of learning episodes

Fig. 6. Learning Performance in the E Maze Problem.

236 Theory and Novel Applications of Machine Learning

4.2 The virtual office problem

An agent must learn to move from the any random starting position in the hall H (the left
room) to one of the goals in the right rooms (Fig. 7). Observations in the upper right room
are same as observations in the lower right room except the goal positions. Four actions are
available: North, East, South, and West. If the agent reaches the goal, it receives a reward 10.
An episode is terminated when the agent reaches the goal or it has executed 100 actions.
Again, we executed RLSG and RL with RNN using softmax exploration method to compare
the learning performance. The following parameters were used: discount factor y = 0.98,
exploration temperature t = 1, RNN learning rate o = 0.1, 6 input units, 6 memory cells, 4
output units. After every 10 episodes, the system evaluates the current RNN. Learning
process is terminated when the agent can reach one goal from any starting position in 10
moves using greedy method. Two subgoals were allowed to create after 30 first learning
episodes. For each method, 10 runs were performed.

7777777777777777777777 D1

——

02

Fig. 7. Virtual Office Problem: D1, D2 are doors between hall and rooms.

RLEG —

RL with RNN : ; i

ul 2m 400 500 =) 1000 1200

Fig. 8. Learning Performance in the Virtual Office Problem.

Results

In this experiment, all the states in the rights rooms, located near the goals, weren't
considered as subgoals. Two doors were detected as subgoals. Again, all runs were
convergent giving a good policy. Learning performance of two methods is shown in Fig. 8.
The figure also shows RLSG outperforms RL with RNN.

Solving POMDPs with Automatic Discovery of Subgoals 237

5. Conclusion

In this chapter, we have proposed Reinforcement Learning using Automatic Discovery of
Subgoals to accelerate learning of RL with RNN by profiting useful skills. Hidden units and
their connections of RNNSs, which are used by generated skills, are integrated into the RNN
of the main policy. Experiment results of the E maze problem and the virtual office problem
show the potential of this method.

6. References

Bakker, B. Reinforcement Learning with Long Short Term Memory, Advances in Neural
Information Processing Systems, Vol. 14, pp. 1475-1482, 2002.

Barto, A. G. & S. Mahadevan. Recent Advances in Hierarchical Reinforcement Learning,
Discrete Event Systems, Special Issue on Reinforcement Learning, Vol. 13, pp. 41-77,
2003.

Ballini, R., S. Soares & F. Gomide. A Recurrent Neurofuzzy Network Structure and Learning
Procedure, Proceedings of the IEEE International Conf. on Fuzzy Systems, pp. 1408-
1411, 2001.

Carroll, J. L. & T. S. Peterson. Fixed vs. Dynamic Sub-transfer in Reinforcement Learning,
Proceedings of the 2003 International Conference on Machine Learning and Applications,
2002.

Carroll, J. L, T. S. Peterson & Nancy E. Owens. Memory-guided Exploration in
Reinforcement Learning, Proceedings of the International Joint Conference on Neural
Networks, 2001.

Champandard, A. J. Reinforcement Learning. Available at http://reinforcementlearning.ai-
depot.com/Intro.html. Last access 9/25/2007.

Gers, F. A, J. Schmidhuber & F. Cummins. Learning to Forget: Continual Prediction with
LSTM, Neural Computation, Vol. 12, pp. 2451-2471, 2000.

Gers, F., N. Schraudolph, J. Schmidhuber. Learning Precise Timing with LSTM Recurrent
Networks, Journal of Machine Learning Research, Vol. 3, pp. 115-143, 2002.

Girgin S., F. Polat & R. Alhajj Learning by Automatic Option Discovery from Conditionally
Terminating Sequences, Proceedings of the 17th European Conference on Artificial
Intelligence, 2006

Gomez, F.,]. Schmidhuber & R. Miikkulainen. Efficient Non-Linear Control through
Neuroevolution, Proceedings of the European Conference on Machine Learning, Berlin, 2006.

Gomez, F. &]. Schmidhuber, Co-evolving Recurrent Neurons Learn Deep Memory
POMDPs, Proceedings of the Conference on Genetic and Evolutionary Computation,
Washington, D. C., pp. 1795-1802, 2005.

Hochreiter, S. and J. Schmidhuber. Long Short-Term Memory, Neural Computation, Vol. 9,
pp. 1735-1780, 1997.

Ho, F. & Kamel, M. Reinforcement Learning using a Recurrent Neural Network, Proceedings
of the ICNN, pp. 437-440, 1994.

Jordan, M. I. & Jacobs R. A. Hierarchical mixtures of experts and the EM algorithm, Neural
Computation, Vol. 6, pp.181-214, 1994.

Kaelbling, L. P., M. L. Littman & A. W. Moore. Reinforcement learning: A survey, Journal of
Artificial Intelligence Research, Vol. 4, pp. 237-285, 1996.

Kirschning, 1., H. Tomabechi &]J.I. Aoe. A Parallel Recurrent Cascade-Correlation Neural
Network with Natural Connectionist Glue, Proceedings of the IEEE ICNN, pp. 953-
956, Australia, 1995.

238 Theory and Novel Applications of Machine Learning

Le, T. D.,, T. Komeda & M. Takagi. Knowledge-Based Recurrent Neural Networks In
Reinforcement Learning, Proceedings of the 11th IASTED International Conference on
Artificial Intelligence and Soft Computing, pp. 179-184, Spain, 2007.

Le, T. D.,, T. Komeda & M. Takagi. Reinforcement Learning for POMDP Using State
Classification, Journal of Applied Artificial Intelligence, 2008, in press.

Lin, L. J. Self-improving Reactive Agents based on Reinforcement Learning, Planning and
Teaching, Machine Learning, Vol. 8, pp. 293-321, 1992.

Lin, L. J. and T. Mitchell. Reinforcement Learning with Hidden States, Proceedings of the 2nd
International Conference on Simulation of Adaptive Behavior, 1993.

Lin, L. J. Reinforcement Learning for Robots Using Neural Networks, PhD. thesis, Carnegie
Mellon, School of Computer Science, 1993.

Littman, M. Memoryless Policies: Theoretical Limitations and Practical Results, From Animal
to Animats 3: Proceedings of the 3rd International Conference on Simulation and Adaptive
Behavior, 1994.

McCallum, R. A. Instance-based State Identification for Reinforcement Learning, Advances in
Neural Information Processing Systems, pp. 377-384, 1995.

McGovern, A. & A. G. Barto. Automatic Discovery of Subgoals in Reinforcement Learning
using Diverse Density, Proceedings of the 18th International Conference on Machine
Learning, pp. 361- 368, San Francisco, CA, USA, 2001.

Menache, I, Mannor, S. & Shimkin, N. Q-Cut Dynamic discovery of sub-goals in
reinforcement learning, Proceedings of the European Conference on Machine Learning,
pp. 295-306, 2002.

Ohta, M., Y. Kumada, I. Noda. Using Suitable Action Selection Rule in Reinforcement
Learning, Proceedings of the IEEE International Conference on Systems, Man &
Cybernetics, pp. 4358-4363, 2003.

Onat, A., H. Kita & Y. Nishikawa. Recurrent Neural Networks for Reinforcement Learning;:
Architecture, Learning Algorithms and Internal Representation, Proceedings of the
International Joint Conference on Neural Networks, pp. 2010-2015, Anchorage, AK,
USA, 1998.

Schafer, A. M. & S. Udluft. Solving Partially Observable Reinforcement Learning Problems
with Recurrent Neural Networks, Proceedings of the 16th European Conference on
Machine Learning, Portugal, 2005.

Schmidhuber, J., D. Wierstra, M. Gagliolo, F. Gomez. Training Recurrent Networks by
Evolino, Neural Computation, Vol. 19, No. 3, pp. 757-779, 2007.

Simsek, O., A. & A. G. Barto. Identifying Useful Sub Goals in Reinforcement Learning by
Local Graph Partitioning, Proceedings of the 22nd International Conference on Machine
Learning, 2005.

Sutton, R. S., Precup, D. & Singh, S. P. Between MDPs and Semi-MDPs: A Framework For
Temporal Abstraction in Reinforcement Learning, Artificial Intelligence, Vol. 112, pp.
181-211, 1999.

Sutton, R. & Andrew Barto. Reinforcement Learning: An Introduction, MIT Press, Cambridge,
MA, 1998.

Taylor, M. E., P. Stone & Y. Liu. Value Functions for RL-based Behavior Transfer: A
Comparative Study, Proceedings of the 12th National Conference on Artificial
Intelligence, 2005.

Watkins, C. J. Learning from Delayed Rewards, PhD thesis, King's College, Cambridge, 1989.

Whitehead S. D., Lin L. J. Reinforcement Learning of Non-Markov Decision Processes,
Artificial Intelligence, Vol. 73, pp. 271-306, 1995.

17

Anomaly-based Fault Detection with Interaction
Analysis Using State Interface

Byoung Uk Kim
The University of Arizona
USA

1. Introduction

Fault detection, analysis, and recovery with effective monitoring in distributed systems is a
challenging research problem due to the exponential growth in scale and complexity of
system resources and applications, the continuous changes in software and hardware
configurations, and the heterogeneous services being offered and deployed. In spite of
enormous advances in hardware and software technology, there are many uncertainties and
unpredictable operations in distributed systems that could be triggered by one or a
combination of several events such as network failures, intermittent software failures, bugs
in software and services, etc. Various distributed systems especially employed in safety-
critical environments must work correctly in spite of the occurrence of faults.

The fault detection and analysis approach presented in this chapter is based on
hardware/software fault tolerance techniques and data mining techniques including
regression trees, neural networks, multivariate linear regression, fuzzy classification, logistic
regression, classification tree, naive bayes , and sequential minimal optimization.

In this chapter, we present an innovative approach to detect faults (hardware or software)
and also identify the source of the faults. Our online monitoring mechanism collects
significant interactions among system state components such as CPU, memory, I/O, and
network interface in real-time between all the components of a distributed system. We
record and trace these runtime properties and analyze all the interactions using data mining
and supervised learning techniques to acquire the rules that can accurately model the
normal interactions among these components. We have implemented an anomaly-based
fault detection engine and used it to detect faults in a typical multi-tier web based
ecommerce environment that implements ecommerce transactions based on the TPC-W web
ecommerce benchmark (TPC-W, 2005).

The organization of the remaining sections of the chapter is as follows. In section 2, we
review related work. In section 3, we explain theoretical framework including system
presentation, normal and abnormal definition with system interfaces and attribute
definitions. In section 4, we present anomaly analysis methodology to implement efficient
fault detection and analysis. We discuss data sources, training and testing data and fault
types used in our experiments and then present our experimental results and evaluation of
our approach in section 5 and 6. In section 7, we summarize the chapter and discuss future
research activities.

240 Theory and Novel Applications of Machine Learning

2. Related work

Fault detection and analysis has always been an active research area due to its importance to
distributed systems and their applications. It is necessary for the system to be able to detect
the faults and take the appropriate actions to avoid further degradations of the service. In
this section, we classify fault detection techniques based on different categories such as
hardware and software techniques and based on the detection schemes such as statistical
methods, distance and model based methods and profiling methods.

2.1 Hardware based

(Reinhardt & Mukherjee, 2000) proposed Simultaneous and Redundant Threading (SRT) to
provide transient fault coverage with high performance by taking advantage of the multiple
hardware contexts of Simultaneous Multithreading (SMT). It provides high performance by
using active scheduling of its hardware components among the redundant replicas and
reduces the overhead of validation by eliminating cache misses. (Ray et al., 2001) proposed
modern superscalar out-of-order datapath by modifying a superscalar processor’s micro-
architectural components and validating the redundant outcomes of actively duplicated
threads of execution, while the fault recovery plan uses the branch-rewind mechanism to
restart at a place which error happened. Commercial fault-tolerant systems combine several
techniques such as error correcting codes, parity bits and replicated hardware. For example,
Compaq Non-Stop Himalaya (Wood, 2004) employs ‘lockstepping’ which runs the same
program on two processors and compares the results by a checker circuit.

2.2 Software based

(Reis et al., Dec. 2005) introduced PROFiT technique regulating the stage of reliability at fine
granularities by using software control. This profile-guided fault tolerance determines the
weakness and performance trade-offs for each program region and decide where to turn on
and off redundant by using a program profile. (Oh et al., 2002) proposed Error Detection by
Duplicated Instructions (EDDI) which copies all instructions and inserts check instructions
for validation. Software based mechanisms present high reliability gain at low hardware
cost and high fault coverage. However the performance degradation and failure to directly
check micro-architectural components result in another trend of fault detection, hybrid
redundancy techniques (Reis et al., June. 2005) such as CompileR-Assisted Fault Tolerance
(CRAFT).

We classify detection and analysis strategy based on the following approaches such as
statistical, profiling, model-based, and distance-based methods.

2.3 Statistical methods

This method traces the system behavior or user activity by gauging variables over time such
as event message between components, system resource consumption, login/ out time of
each session. It maintains averages of these variables and detects the anomaly behavior by
making a decision whether thresholds are exceeded based on the standard deviation of the
variables monitored. It also compares profiles of short/long term user activities using
complex statistical models. (Ye & Chen, 2001) employs chi-square statistics to detect
anomalies. In this approach, the activities on a system are monitored through a stream of
events and they are distinguished by event type. For each event type, the normal data from

Anomaly-based Fault Detection with Interaction Analysis Using State Interface 241

audit events are categorized and then used to get chi-square for difference between the
normal data and testing data. It considers large deviations as abnormal data.

2.4 Distance based methods

One of the limitations of statistical approaches is that it becomes inaccurate and hard to
calculate approximately the multidimensional distributions of the data points when outlier
detection exists in higher dimensional spaces (Lazarevic et al., 2006). Distance based
methods try to overcome this limitation and identify outliers by computing distances among
points. For example, (Cohen et al, 2005) presents an approach using usual clustering
algorithms such as k-mean and k-median to get the system status. The difference with
others focusing on clustering algorithm is that they use a signature and show the efficacy for
clustering and connection based recovery by means of distinguished techniques such as
pattern recognition and information retrieval.

2.5 Model based methods

This method describes the normal activity of the monitored system by using different types
of models and identifies anomalies as divergence for the model that characterizes the
normal activity. For example, (Maxion & Tan, 2002) obtains a sequential data streams from a
monitored procedure and employs a Markov models to decide whether the states are
normal or abnormal. It calculates the probabilities of transitions between the states using the
training data set, and utilizes these probabilities to evaluate the transitions between states in
test data set.

2.6 Profiling methods

It builds profiles of normal behavior for diverse types of systems, users, applications etc.,
and variations from them are regarded as anomalous behaviors. These profiling methods
vary significantly different data mining techniques while others use various heuristic based
approaches. In data mining methods, each case in training data set is configured as normal
or abnormal and a data mining learning algorithm is trained over the configured data set.
By using these methods, new kinds of anomalities can be detected in fault detection models
with retraining (Lazarevic et al., 2006). (Lane & Brodley, 1999) uses a temporal sequence
learning technique in profiling Unix user commands for normal and abnormal scenarios. It
then uses these profiles to detect any anomalous user activity. Other algorithms for fault
detection include regression trees, multivariate linear regression, logistic regression, fuzzy
classification, neural networks and decision trees.

3. Theoretical framework

3.1 System presentation

Consider a general n input m output nonlinear dynamic system which can be expressed by
the Nonlinear Auto Regressive Moving Average (NARMA) model (Chenand & Billings,
1994) as

(k) = f (. u,0)
y={yk=1),y(k=2),....,y(k—n)} @
u={utk—y-Dultk—y-2),...;u(k—y—-m)}

242 Theory and Novel Applications of Machine Learning

where f: RE«xm9 R, with p= Zml pis O= Z" q; is the mathematical realization of
i= =l

the system dynamics for the %,, output. y(k)e®R is the output of the system at sample
instant k, u(k)eR is the input to the system. p and g are the lengths of the regression
vectors of y and u, respectively. f is a recognized nonlinear function describing the
dynamic characteristics of the system. 7 is the relative degree of the system. n and m are
known system structure orders. 0 is the system parameter vector whose unanticipated
changes are regarded as faults in the system. It represents all the potential faults in the
nonlinear system such as sensors and processes.

In our research, we use available system input and output, respectively # and y to detect
and predict any undesirable changes in 6. To simplify the presentation, we assume that
during the initial stage k& €[0,7], the normal and healthy values of these values are
available and can be obtained from the system under consideration. There is a certain
normal trajectory related with system interfaces. So, we can say the system parameter vector
in normal activities is Oy. It means that there is a known Oy such that

& = 0Oy)

To define the system abnormality, we may construct a redundant relation such that

moa (k) =y (k) - fr(y, u,0y)]| 3)

If m(k) is large enough by checking the values against a pre-specified threshold, we say there
is abnormality in the system. Contrarily, if m(k) is very small, the system is normal.

3.2 Normal and abnormal definition with system interfaces
We develop a systematic framework for identifying potential system abnormality. ¥

denote the system attributes, and ¥ is the set of sequences over the alphabet ¥ . We say
that system attributes S e w0 is accepted by the detection system if executing the sequence

S =1{S, Sy S3 ... } does not trigger any alarm. Let N < ¥° denote the set of system
attributes allowed by the detection system, i.e.,

N ‘lif {Se‘{’o: S is accepted by the detection system } (4)
Also, let Ac ¥ denote the set of system attributes that are not allowed by the detection

system, i.e,,

4 def Se¥®: Sisan equivalent variant G)
= on the given suspicious sequence

Now we can state the conditions for the existence of abnormality in distributed systems. The
set N 1 A isexactly the set of system attributes that give the suspicious or abnormal status
to host without detection, and thus the abnormalities are possibleif N 1 A # .

Anomaly-based Fault Detection with Interaction Analysis Using State Interface 243

3.3 Attribute definitions

We use the following attributes for the abnormality analysis: Attribute rate (AR) per target
attribute, Component rate (CR) per target component, Aggregate System rate (ASR) per
target system and Number of abnormal session (NAS)

Definition 1

AR per target address is used to find out the current flow rate for a given target IP address
P; as observed by a interface monitor and can be computed as in (1)

2T
AR (4, P, 1) = {ZDT(t)}/T (6)

t=T

where DT denotes the number of data belonging to attribute A; and to a target P; within a
given time T.

Definition 2

CR per target address is used to determine the current flow rate as observed by a Interface
monitor for all the attributes A; that go through the same interface (Ix) and have the same
target IP address (P;). This metric can be computed as in (2)

CR (I, Py 1) =) AR (4, Py, 1))

Definition 3
ASR per target address denotes the current flow rate for a given target IP address P; as
observed by Interface monitor

ASR (P;, 1) = ZVkCR (I, Py 1) ®)

Definition 4
NAS the number of abnormal sessions for a target P; as observed by Interface monitor

NAS (P;, t) = Zw(l—si))

where S; is a binary variable that is equal to 1 when the session is successful and 0 and when
it is not.

4. Abnormality analysis methodology

Our approach is based on autonomic computing paradigm that requires continuous
monitoring and analysis of the system state, and then plan and execute the appropriate
actions if it is determined that the system is deviating significantly from its expected normal
behaviors as shown in Figure 1.

By monitoring the system state, we collect measurement attributes about the CPU, 10,
memory, operating system, and network operations. The analysis of this data can reveal any
anomalous behavior that might be triggered by failures.

Once a fault is detected, the next step is to identify the appropriate fault recovery strategy to
bring the system back into a fault-free state. In this paper, we focus on monitoring and
analyzing the interactions among these components to detect any hardware or software
failures.

244 Theory and Novel Applications of Machine Learning

el

i i)
. =

4.1 Monitoring and analysis of system component operations

The first step is to identify a set of measurement attributes that can be used to define the
normal behaviors of these components as well as their interactions with other components
within the distributed system. For example, when a user runs a QuickTime application, one
can observe certain well defined CPU, Memory and I/O behaviors. These operations will be
significantly different when the application experience un-expected failure that leads to
application termination; one can observe that the application, although consuming CPU and
memory resources, does not interact normally with its I/O components.

These monitored data are analyzed using two types of vector-based (VR) metrics (Wood,
2004): Local-VR (LVR) and Global-VR (GVR). The LVR is used to evaluate the interface
interaction, detection, analysis and recovery measurements associated with a specific fault, f,
in the set of faults in the fault hypothesis, F as shown in Equations 10-13:

Fig. 1. Self-healing Engine

LVR interfaces teF = (CPU,MEM,I/O,NET,0S) (10)

LVR detection fieF = (AR, CR, ASR, NAS, Precision,

Recall, F-measure, False negative rate, (11)
Fals positive rate, Time to detect, ...)
LVR analysis f,eF = (Accuracy, Time to analyze, (12)

Analyzed or not?)

LVR recovery f,eF = (Accuracy, Time to recover, (13)

Recovered or not?)

‘CL’ refers to metrics measured on the client, and ‘DB’ refers to metrics measured on the
database server. Equation (10) is used to identify the measurement attributes associated
with the interactions among system components. When a specific fault, e.g. application

abnormal termination is generated in the system, L VR interfaces f,eF is composed with the

Anomaly-based Fault Detection with Interaction Analysis Using State Interface 245

related measurement attributes. For example, L VR interfaces f,cF in abnormal termination of

QuickTime application will consist of measurements of user CPU, active memory in
directory and I/O read activities as shown in Equation 10. Equation 11 describes several
metrics used to find out the characteristic of interfaces explained in section 3.3 and evaluate
the performance of the fault detection strategy using several metrics: 1) False negative rate is
the percentage of abnormal flows incorrectly classified as normal 2) Precision is the
proportion of correctly detected abnormal flows in the set of all normal flows returned by
detection. 3) Recall is the number of correctly detected abnormal flows in retrieved as
fraction of all abnormal flows. And 4) F-measure is used to quantify the trade-off between
recall and precision. All these performance metrics were explained in (Kim & Hariri, 2007).
Equation 12 and 13 evaluate the accuracy of our approach using several metrics such as: 1)
Accuracy is used to estimate whether all actual faults are correctly identified. 2) Time to
analyze/recovery is used for measuring the time taken the system to analyze/recovery from
faults.

The global vector based metric GVR quantifies in a similar way to LVR the quality of the
analysis, detection and recovery as shown in Equations 14-16.

GVR detection = (Throughput, Response time, Availability, (14)
Cost, Time)

GVR analysis = (Throughput, Response time, Availability, (15)
Cost, Time)

GVR recovery = (Throughput, Response time, Availability, (16)
Cost, Time)

The main difference between LVR and GVR is in defining the target. That means LVR is
used to evaluate the measurements associated with a specific fault in the set of faults but
GVR is used to evaluate the role of the target system in a given environment. LVRs in each
fault have an effect on the GVR. For example, if there is a memory related fault, we may see

interface interactions in L VR interfaces resulting in value changes in LVR detection . These

changes also affect GVR detection allowing us to evaluate the healthiness of the target
system. This operation flow is depicted in Figure 2. We need this classification because our
target system to detect the faults is in the domain of distributed system. Equations (14), (15),
and (16) describe the metrics to measure the performance of the target system in detection,
analysis, and recovery: 1) Throughput is the summation of data rates sent to all system
nodes. 2) Response time means the time taken to react to a given goal such as ‘detect’ and
‘recover’ in the system. 3) Availability is the ratio of the total time through which the system
is available to the overall total time.

Normal execution will have a certain trajectory with respect to system interfaces as shown in
Figure 2. For example, if the disk is behaving normal without any fault, this can be
recognized by obvious disk trajectory over time. In case of abnormal state, all information
monitored in the normal state will have different trajectories. We capture and monitor this

trajectory features, train this interface trajectory with LVR and GVR by using rules
generated from the training data set and apply them at runtime. It shows normal trajectory

drifting to suspicious trajectory by exemplifying one of LVR interfaces f,eF and one of

246 Theory and Novel Applications of Machine Learning

Metric Description

var_CL_CPUIF variance of the number of kernel time spent on client received

_KERNAL through cpu interface

var_CL_CPUIF variance of the number of user time spent on client received

_USER through cpu interface

val_CL_MEMIF_ACT | value of number of memory hat has been used more recently

IVE and usually not reclaimed unless absolutely necessary received
through memory interface on client

val_ CL_MEMIF_IN_ | value of number of memory that takes more work to free on

DIR client

val_ CL_MEMIF_IN_ | value of number of memory that kernel uses for making sure

TARGET there are enough inactive pages around on client

val_CL_IOIF value of IO load read received through IO interface on client

_READ

val_CL_IOIF value of IO load read received through IO interface on client

_WRITE

var_DB_IOIF value of 10 load read received through IO interface on database

_READ server

val_CL_CON value of the number of context switches that counts the number

_SWITCHES of times one process was “put to sleep" and another was
“awakened" on client

Table 1. A sample of metrics used to characterize the interaction among components

GVR detection Mmetrics over time. Rules can be formed of the interface metrics including
states, events, state variables and time of transitions. These rules are generated to evaluate
system healthiness as following:

Rulel: M;<I, <M, Te (t,t;+k)

Interface /, in some time k starting at time ¢; is delimited by high value M, and low

value M; when defined normal flow occurs.

CPU
Utilizati

LVR interfaces ={ ../. }

GVR detection ={ ..__ }
i

Throughpait
Fig. 2. Abnormality identification: LVR and GVR drift

Anomaly-based Fault Detection with Interaction Analysis Using State Interface 247

Rule 2: M <1 <M, VTe(t,1;+k) =>M <I, <M, VTe(i,t,+r)

Interface /, delimited by high value M, and low value M; in time k will affect another
interface /, delimited by high value M and low value M| and it will last some period r.
This rule is about interaction among interfaces and it needs higher latency than the previous
rule because of matching more interfaces

We build a fault detection prototype to demonstrate the utility of VR metrics to detect faults.
Figure 3 shows a sampling of metrics among more than 40 interfaces and real data
monitored at the client side. For clarity, we pick a sample of metrics as shown in Table 1. All
data monitored in the experiment with fault injections are stored in a database and the rules
are generated during the training stage. In Figure 3, the set of data from time ty to the time
before t; is normal with respect to a given workload. The first injected fault at t; shows the
interaction with 5 interfaces such as var_CL_CPUIF_KERNAL, val_CL_MEMIF_ACTIVE,
val_CL_MEMIF_IN_DIR, var_CL_CPUIF_USER, and val_CL_MEMIF_IN_TARGET.

val_CL_ME val_CL_ME

var_CL_CPUIF. var_CL_CPUI val_CL_MEMI val_CL_IOIF. val_CL_IOIF
KERNAL F_USER F_ACTIVE MIF_IN_DI MIF_IN_TA gEaD WRITE
- = R RGET -
Time t, 5.47264 16.418 135600 23 30612 398 654
9_)M . 4.47761 35.323 135908 135 30608 423 234
ajor Interfaces

53 > Minor Interfaces 6.49751 10.995 134316 123 30612 478 432
(Conditional) 7.49254 20.995 134316 98 30612 222 311
(@ False Alarm Interfacd4 99503 25.995 134312 209 30612 209 309
3.49751 18.995 134312 245 30612 390 512
11.99503 31.493 134316 154 30612 312 265

) k3 [y t t 3 k3
Fault—— ¢, 16444 79 x@; 12444 IQ; @4 243 398
1520 814 1 52 1 8 354 387

P B 4 B B e k
t 995025 5.4726 134796 58 30608 335 254
4.47761 5.4726 134556 o 30612 512 401

s 1 ' + LS 4 ke
Fault—— ¢, 14‘9454 ELCA 1 8 1@ 4 345 299
177at04 0o 1 9 1 o 478 289

4 + S t + ' H
t, 22, 07 15, 6 133628 579 30612 391 312
21 56 14 6 134248 1098 30608 326 308

L3 * 4 : t e +
Fault—— ¢, 14y NG o)) o e P
16.4179 83 2 12956 1 4 3 6 1 396

+ * k3 * * * *
t, 3.9801 6.4677 132956 2378 30624 349 299
0.99503 1.9901 133044 1876 30612 431 364

* £ % k3 k3 £3 *
R - ¥ (@ X e o o]

1hesds 8 126434 13 3yad6 477 S
[+ k3 B B S E

Fig. 3. A sampling of metrics and data monitored at a client side

We use these interfaces to catch the abnormality caused by the fault. All these 5 interfaces
show significant difference when compared to normal value. The second injected fault is at
te. In this case, there are three major interfaces and two minor interfaces. Major interfaces
include val_CL_MEMIF_ACTIVE, val_CL_MEMIF_IN_DIR, and
val_CL_MEMIF_IN_TARGET while minor interfaces include var_ CL_CPUIF_KERNAL and
var_CL_CPUIF_USER. At time t,, if we consider only minor interfaces, it will cause false
alarm because of the similarity of these states to normal states. The interfaces are used to
form two types of significant rules that depend on injected faults. For example, the fault
injected at tm, results in increase in read load that is related to IO but the fault at t; results in
the increase of write load. From the above, several types of rules can be generated as
following:

o 20<var_CL_CPUIF_KERNAL <40 Te (1,t;+k)

. S5<ResponseTime<40 Te (tj,tj+k)

248 Theory and Novel Applications of Machine Learning

127845<val _CL _MEMIF ACTIVE <139821,
e 5134<val CL _MEMIF IN DIR<19321
and 1395<var_CL_[OIF READ VT e (t;t;+k)

0132<val CL MEMIF IN _ DIR <9846 and
20<var_CL_CPUIF_KERNAL, <40 VTe(tj,t/. + k)
=> Ml' SThroughputSM; VTe(tg,tg +7)

The first rule explains that when the number of kernel time spent on client received through
cpu interface is larger than and equal to 20 and less than and equal to 40 in time interval k, it
is abnormal. The second and third rules are about response time, number of active memory
and dirty memory and value of I/O load read. In Fourth rule, we didn’t include it in our
experiments but may classify the interactions more. It means that we can achieve high
detection rate by revealing their behaviors and states by virtue of their interactions among
interfaces. These kinds of rules are applied in the experiments to detect abnormal flows and
increase the performance.

4.2 Abnormality analysis algorithm

Our approach for abnormality analysis to achieve self-healing system is anchored in
behavior modeling and analysis of system component impact with rule based. Suppose we
have A system attributes (SA). Then, the flow behavior of SA can be represented as

Sy (t, R)= { Sy (£), SAz (t+1), ..., SAz (t+R)} 17)

where R is preliminary block to acquire in-control data to determine the mean § 4 and
covariance matrix S. These values are used to verify normal interactions with respect to the

A system attributes. The mean § A4 determines the normal region center and the
sample covariance matrix S determines the shape of the normal region. We apply this idea
to attribute definition such as AR, CR, and ASR explained in section 3.3 to quantify how
close/far the current flow state of a component from the normal state for a given fault
scenario which quantifies the current flow state of the system component based on the
current values of one or more monitored attributes. The normalized abnormality extent
degree (AED) with respect to each attribute is defined as

2
SA4y (t,P))~ AR, (P))

o054, (P})

AED; (t, P)) = (18)

where AR denotes attribute rates to find out the current flow rate for a given target IP
address P;j as observed by a interface monitor and o g 4, is the variance under the

normal operation condition corresponding to flow. S A3 (¢) is the current value of

system attribute A.

Figure 4 shows the rule-based analysis for abnormality detection algorithm used by our
monitoring and analysis agents that compute and evaluate the attributed definition. During
the training stage (line 2), we monitor and collect system attributes where R is the
preliminary block to obtain in-control data (line 3). To acquire rule set (line 4), we input the

Anomaly-based Fault Detection with Interaction Analysis Using State Interface 249

data set into a rule engine (Cohen, 1995) that produce a rule set. After we get the rule set, we
configure the key attributes to gauge attribute definition (line 5 and 6). Once the training
stage is completed, process q is applied to real data (line 7). In this algorithm, K (line 9)
denotes the number of observations and 15 is used for the number of observations. Attribute
definition including abnormality extent degree will be computed for any new observation
(line 11). If abnormality extent degree is beyond the normal thresholds and SA(¢) violates
the rule set, then the system is assumed to be operating in an abnormal state, and then the
recovery algorithm is activated to carry out the appropriate control actions such as
restarting from the initial point and notifying the information to agents (line 12 and 13).
Once accumulating K observations, the thresholds will be revised (line 14 and 15).

Process p:

1. Ruleset := 0

2. While (Training) do

3. Monitor&Collect (SA4,(£),S4,(t),S4;),...,SA, ());

4. RuleSet = Acquire_RuleSet (S Ay);

5. Configure_Important_Attributes (RuleSet);

6. AED/AR/CR/ASR € Gauge_Attribute_Definition;

7. EndWhile

Process q:

8. Repeat Forever

9. For (t=1;t<K)do

10. Monitor&Collect (S4,(t),S4,(t),SA(2),...,SA(1));

11. D = Evaluate_Attribute_Definition(SA(?));

12. If (D > Threshold)&é&(SA(¢) € RuleSet))

13. Anomaly_Analysis & Detection (SA(¢));
apply rule and attribute definition both

14. If (t = K)

15. Revise_Threshold_Weights()

16. End For

17. End Repeat

Fig. 4. Rule-based analysis for abnormality detection algorithm

5. Problem definition

This section illustrates the fault detection problem, including the data source, abnormal
loads, training data and testing data.

5.1 Data source

In our evaluation, we use TPC-W, an industry standard e-commerce application to emulate
the complex environment of e-commerce application.

As shown in Figure 5, the system is used to run a typical end user e-commerce activity
initiated through a web browser and consisting of several TPC-W transactions. It defines 3
types of traffic mixes such as browsing mix, shopping mix and ordering mix and specifies 14
unique web transactions. In our environments, the database is configured for 288,000

250 Theory and Novel Applications of Machine Learning

customers and 10,000 items. According to the TPC-W specification, the number of
concurrent sessions is executed throughout the experiment to emulate concurrent users. The
maximum number of Apache clients and maximum Tomcat threads are set to 90. The
workloads are generated by the workload generator that varies the number of concurrent
sessions and running time from 90 to 300 seconds. Also, we developed abnormal workload
generator which will be defined later. It allows us to make and track the system abnormally
behavior.

Web Client
(Action Set: Browsing
Ordering
Shopping)

| |

Web Server
(TransactionSet: T1, T2, T3...)

|]

DB Service |

DB Request

Fig. 5. TPC-W Benchmark E-commerce Application

While every components and workloads are given to the system, we monitor all system
interactions and measure different lots of feature including the CPU, IO, memory, operating
system, and network devices. The analysis of these features reveals any anomalous behavior
that might be triggered by failures in any hardware or software component of the three-tier
web based distributed system.

5.2 Abnormal loads

The abnormal loads used in this paper include generally accepted definition (Avizienis et
al., 2000), fault and error. If we borrow the concepts, a fault is the cause generating the
system corruption and an error that results in the failure is the system state corrupted. We
both inject faults such as system corruption and errors such as directly throwing an
exception. In our chapter, we usually call fault and error as fault or abnormal loads.

To enlighten our variety in abnormal loads, several papers (Oppenheimer et al., 2003)
(Nagaraja et al., 2003) (Chen et al., 2002) are considered as a previous study in faults injected
in their experiments. Some of them focus on triggering only application level failures; others
inject the faults concentrated on problems that cause program crashes or byzantine faults.
We believe that there are system interaction symptoms that characterize how system will
respond to a fault injected. Thus, we have confidently decided to include software failures
as well as hardware failures in complex distributed systems. Table 2 shows the types of fault
classes to be used by our rule based fault detection scenarios. The fault classes can be
broadly classified into two groups such as hardware and software. Each group is also
divided into three types such as severe, intermittent and lenient.

Anomaly-based Fault Detection with Interaction Analysis Using State Interface 251

In these experiments, we inject seven different types of faults explained in Table 2. We
categorize and inject these faults by building three different categories. First category is
application corruption regarding 3 different types of TPC-W traffic such as browsing,
ordering, and shopping. We model faults that are triggered by the interfaces including
interactions between an application and the operating system or between an application and
other function libraries. These faults injected are from shared libraries into applications to

Fault class Faults
Software, severe, e TPC-W browsing - corruption (Segmentation Fault)
intermittent e TPC-W ordering - corruption (Segmentation Fault)

e TPC-W shopping - corruption (Segmentation Fault)

Hardware, lenient e Network disconnection

intermittent,

Software, severe or e Declared exceptions and undeclared exceptions such as
lenient, intermittent Unknown host Exception

e Infinite loops interfering and stopping the application
request from completing
e DB failure - Access denied

Table 2. Fault cases injected

test the capability of applications to handle faults from library routines referring the fault
injection technique [10]. We inject the faults using 3 different system calls such as read (),
write (), and close () and observe the effect of injected faults related with interfaces.
Hardware faults such as network failure are considered next. It allows us to isolate the node
by removing the connection from the network interfaces. Third one is about database related
failure such as access denial and application exceptions such as declared exceptions.
Because java based e-commerce application engenders various different kinds of failures
from programmer faults to IO faults, injection of exception faults are apposite to reveal the
abnormal behavior of e-commerce application by tracking system interactions. Here, we
injected declared exceptions which are often handled and masked by application itself such
as unknown host exception and also infinite loops interfering and stopping the application
request from completing. All these faults happen in the process of TPC-W transaction. We
believe that the selected faults span the axes from expected to unexpected/undesirable
behaviors and divulge the relationship of system interaction for the problems that can occur
in a real life.

5.3 Training and testing data

In this study, we have several kinds of data set composed of different number of normal
flows and abnormal flows. Our experiments are composed of four kinds of classes such as
trustworthiness for fault, noise and data types and performance validation for testing data
sets. These training data sets and testing data sets are gathered by tracing normal and
abnormal activities. Normal activities and abnormal activities are emulated to produce these
data sets by injecting our faults.

First experiment mentioned in section 6.1 is about trustworthiness and validation of our
approach for each fault types. We implement and evaluate four scenarios. Fault scenario 1

252 Theory and Novel Applications of Machine Learning

(FS1) focuses on faults triggered by application corruption using three different types of
TPC-W traffic such as browsing, ordering , and shopping. The data set used in scenario 1
consist of 23355 normal flows and 347 abnormal flows. Fault scenario 2 (FS2) considers
hardware faults such as network disconnection. The data set consisting of 23355 normal
flows and 70 abnormal flows. Fault scenario 3 (FS3) considers application and database
faults such as declared exceptions, infinite loops, and database access denial. The data set of
FS3 contains 23355 normal flows and 230 abnormal flows. Fault scenario all (FSA) includes
all faults explained in section 5.2 and the data set consisting of same number of normal
flows previously mentioned and 647 abnormal flows.

The data utilized in section 6.2 employs noise curves such as negative noise (NN) by varying
the ratio of abnormal flows in the normal set from 10% to 90% incrementing by 10% each
and positive noise (PN) by varying the ratio of nomral flows in the abnormal set from 10%
to 90% incrementing by 10% each to evaluate the resilience of detecion algorithm and traced
the error rate at each noise ratio points. Each NN and PN data set is consists of 650 abnormal
flows and 23354 normal flows, respectively.

The experiment explained in section 6.3 reveals the impact of bulk training data set by
composing data based on the specification supplied with the industry standard e-commere
environments and includes the four scenarios. Data scenario 1 (DS1) consists of the
abnormal set containing normal set containing 23354 flows and 650 flows that are using
negative noise curves by varying the ratio of abnormal flows in the normal set from 10% to
90% with 10% increment. Data scenario 2 (DS2) also applies the negative noise curves to
explore the correlation in trustworthiness with abnormal flows by building more abnormal
flows. The data set is composed of the normal set containing 23354 flows and abnormal set
containing 650 flows for data scenario 3 (DS3) and the normal set containing 46000 flows
and abnormal set containing 650 flows for data scenario 4 (DS4). Both scenarios employ
positive noise curves by varying the ratio of normal flows in the abnormal set to explore the
correlation in trustworthiness. We use the testing data set consisting of 20144 flows for
normal activities and 420 flows for abnormal activities in the validation of classifiers.

6. Experimental results and evaluation

In this section, we evaluated the detection capabilities of our approach using abnormality
extent degree and rule-based fault detection algorithm. The failure data was collected
through our distributed test environments shown in Figure 6. We can inject several faults
that emulate failures in CPU modules, memory, the disk subsystem, and network modules.
To make the system behaviors as real as possible, we use the following six pairs of
workload: TPC-W browsing, ordering, shopping, HTTP gif transfer, MPEG video stream,
and HTTPS secure transactions. To generate the fault detection rules, we use a popular data
mining tool, Repeated Incremental Pruning to Produce Error Reduction (RIPPER) rule
learning technique (Cohen, 1995). The generated rules are based on the insight that
abnormality can be captured from system interface flows. The comparisons between our
detection approach and the other techniques such as SMO and Naive Bayes were showed
and explained in our paper (Kim, 2007). In this approach, we train RIPPER to classify the
normal and abnormal flows that occurred during the training period and then apply the
generated rules to detect the faults that are injected during each experiment scenario.

Anomaly-based Fault Detection with Interaction Analysis Using State Interface 253

CPU Fault

Injection
Strategy
: Random
Based

Memory
Fault

Fault
Injector

1/O Fault

<o §

Network
Fault

Memor- cru

System_|
/O [Networl /O |Networl
o oo
crPU (Read(ommunje-. Memor] (Readfommunfe-
Write)| ation Write)| ation

CPU Function

Memory
Function

Generation
Strategy
: Mix-Based

1/0 Function

Network
Function

Workload
Generator

Fig. 6. Testing environments with fault injector and workload generator

6.1 Trustworthiness and validation of rule-based classifiers for fault types

In this experiment, we have three different fault scenarios explained in table 2 and section
5.3. We categorize and inject faults by building three different scenarios. In scenario 1, the
faults injected are from shared libraries into applications to test the capability of applications
to handle faults from library routines referring the fault injection technique (Avizienis et al.,
2000). We injected the faults with three different system calls such as read (), write (), and
close () and utilized TPC-W application with three different