
GENETIC PROGRAMMING –
NEW APPROACHES AND

SUCCESSFUL APPLICATIONS

Edited by Sebastián Ventura

Genetic Programming – New Approaches and Successful Applications
http://dx.doi.org/10.5772/3102
Edited by Sebastián Ventura

Contributors
Uday Kamath, Jeffrey K. Bassett, Kenneth A. De Jong, Cyril Fonlupt, Denis Robilliard,
Virginie Marion-Poty, Yoshihiko Hasegawa, Guilherme Esmeraldo, Robson Feitosa,
Dilza Esmeraldo, Edna Barros, Douglas A. Augusto, Heder S. Bernardino, Helio J.C. Barbosa,
Giovanni Andrea Casula, Giuseppe Mazzarella, Fathi Abid, Wafa Abdelmalek, Sana Ben
Hamida, Polona Dobnik Dubrovski, Miran Brezočnik, Shreenivas N. Londhe, Pradnya R. Dixit,
J. Sreekanth, Bithin Datta, M.L. Arganis, R. Val, R. Domínguez, K. Rodríguez, J. Dolz,
J.M. Eaton, M. A. Ghorbani, R. Khatibi, H. Asadi and P. Yousefi

Published by InTech
Janeza Trdine 9, 51000 Rijeka, Croatia

Copyright © 2012 InTech
All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license,
which allows users to download, copy and build upon published articles even for commercial
purposes, as long as the author and publisher are properly credited, which ensures maximum
dissemination and a wider impact of our publications. After this work has been published by
InTech, authors have the right to republish it, in whole or part, in any publication of which they
are the author, and to make other personal use of the work. Any republication, referencing or
personal use of the work must explicitly identify the original source.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and
not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy
of information contained in the published chapters. The publisher assumes no responsibility for
any damage or injury to persons or property arising out of the use of any materials,
instructions, methods or ideas contained in the book.

Publishing Process Manager Marijan Polic
Typesetting InTech Prepress, Novi Sad
Cover InTech Design Team

First published October, 2012
Printed in Croatia

A free online edition of this book is available at www.intechopen.com
Additional hard copies can be obtained from orders@intechopen.com

Genetic Programming – New Approaches and Successful Applications, Edited by
Sebastián Ventura
 p. cm.
ISBN 978-953-51-0809-2

Contents

Preface IX

Section 1 New Approaches 1

Chapter 1 Using Quantitative Genetics and Phenotypic Traits
in Genetic Programming 3
Uday Kamath, Jeffrey K. Bassett and Kenneth A. De Jong

Chapter 2 Continuous Schemes for Program Evolution 27
Cyril Fonlupt, Denis Robilliard and Virginie Marion-Poty

Chapter 3 Programming with Annotated Grammar Estimation 49
Yoshihiko Hasegawa

Chapter 4 Genetically Programmed Regression Linear Models
for Non-Deterministic Estimates 75
Guilherme Esmeraldo, Robson Feitosa,
Dilza Esmeraldo and Edna Barros

Chapter 5 Parallel Genetic Programming
on Graphics Processing Units 95
Douglas A. Augusto, Heder S. Bernardino and Helio J.C. Barbosa

Section 2 Successful Applications 115

Chapter 6 Structure-Based Evolutionary Design Applied
to Wire Antennas 117
Giovanni Andrea Casula and Giuseppe Mazzarella

Chapter 7 Dynamic Hedging Using Generated
Genetic Programming Implied Volatility Models 141
Fathi Abid, Wafa Abdelmalek and Sana Ben Hamida

Chapter 8 The Usage of Genetic Methods
for Prediction of Fabric Porosity 171
Polona Dobnik Dubrovski and Miran Brezočnik

VI Contents

Chapter 9 Genetic Programming: A Novel Computing Approach
in Modeling Water Flows 199
Shreenivas N. Londhe and Pradnya R. Dixit

Chapter 10 Genetic Programming: Efficient Modeling Tool
in Hydrology and Groundwater Management 225
J. Sreekanth and Bithin Datta

Chapter 11 Comparison Between Equations Obtained by Means
of Multiple Linear Regression and Genetic Programming
to Approach Measured Climatic Data in a River 239
M.L. Arganis, R. Val, R. Domínguez,
K. Rodríguez, J. Dolz and J.M. Eaton

Chapter 12 Inter-Comparison of an Evolutionary
Programming Model of Suspended Sediment
Time-Series with Other Local Models 255
M. A. Ghorbani, R. Khatibi, H. Asadi and P. Yousefi

Preface

Genetic programming (GP) is a branch of Evolutionary Computing that aims the
automatic discovery of programs to solve a given problem. Since its appearance, in the
earliest nineties, GP has become one of the most promising paradigms for solving
problems in the artificial intelligence field, producing a number of human-competitive
results and even patentable new inventions. And, as other areas in Computer Science,
GP continues evolving quickly, with new ideas, techniques and applications being
constantly proposed.

The purpose of this book is to show recent advances in the field of GP, both the
development of new theoretical approaches and the emergence of applications that
have successfully solved different real world problems. It consists of twelve openly
solicited chapters, written by international researchers and leading experts in the field
of GP.

The book is organized in two sections. The first section (chapters 1 to 5) introduces a
new theoretical framework (the use of quantitative genetics and phenotypic traits –
chapter 1) to analyse the behaviour of GP algorithms. Furthermore, the section contains
three new GP proposals: the first one is based on the use of continuous values for the
representation of programs (chapter 2), the second is based on the use of estimation of
distribution algorithms (chapter 3), and the third hybridizes the use of GP with
statistical models in order to obtain and formally validate linear regression models
(chapter 4). The section ends with a nice introduction about the implementation of GP
algorithms on graphics processing units (chapter 5).

The second section of the book (chapters 6 to 12) shows several successful examples of
the application of GP to several complex real-world problems. First of these
applications is the use of GP in the automatic design of wireless antennas (chapter 6).
The two following chapters show two interesting examples of industrial applications:
the forecasting of the volatility of materials (chapter 7) and the prediction of fabric
porosity (chapter 8). In both chapters GP models outperformed the results yield by the
state-of-the art methods. The next three chapters are related to the application of GP to
modelling water flows, being the first of them a gentle introduction to the topic
(chapter 9) and the following two remarkable case studies (chapters 10 and 11). The last
chapter of the book (chapter 12) shows the application of GP to an interesting time

X Preface

series modelling problem: the estimation of suspended sediment loads in the Mississippi
river.

The volume is primarily aimed at postgraduates, researchers and academics.
Nevertheless, it is hoped that it may be useful to undergraduates who wish to learn
about the leading techniques in GP.

Sebastián Ventura

Department of Computers Science and Numerical Analysis,
University of Cordoba,

Spain

Section 1

New Approaches

Chapter 0

Using Quantitative Genetics and Phenotypic
Traits in Genetic Programming

Uday Kamath, Jeffrey K. Bassett and Kenneth A. De Jong

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50143

1. Introduction
When evolving executable objects, the primary focus is on the behavioral repertoire that
objects exhibit. For an evolutionary algorithm (EA) approach to be effective, a fitness function
must be devised that provides differential feedback across evolving objects and provides some
sort of fitness gradient to guide an EA in useful directions. It is fairly well understood that
needle-in-a-haystack fitness landscapes should be avoided (e.g., was the tasked accomplished
or not), but much less well understood as to the alternatives.

One approach takes its cue from animal trainers who achieve complex behaviors via some
sort of “shaping” methodology in which simpler behaviors are learned first, and then more
complex behaviors are built up from these behavior “building blocks”. Similar ideas and
approaches show up in the educational literature in the form of “scaffolding” techniques.
The main concern with such an approach in EC in general and GP in particular is the heavy
dependence on a trainer within the evolutionary loop.

As a consequence most EA/GP approaches attempt to capture this kind of information in
a single fitness function with the hope of providing the necessary bias to achieve the desired
behavior without any explicit intervention along the way. One attempt to achieve this involves
identifying important quantifiable behavior traits and including them in the EA/GP fitness
function. If one then proceeds with a standard “blackbox” optimization approach in which
behavioral fitness feedback is just a single scalar, there are in general a large number of
genotypes (executable objects) that can produce identical fitness values and small changes
in executable structures can lead to large changes in behavioral fitness. In general, what is
needed is a notion of behavioral inheritance.

We believe that there are existing tools and techniques that have been developed in the field
of quantitative genetics that can be used to get at this notion of behavioral inheritability. In
this chapter we first give a basic tutorial on the quantitative genetics approach and metrics
required to analyze evolutionary dynamics, as the first step in understanding how this can
be used for GP analysis. We then discuss some higher level issues for obtaining useful

©2012 Kamath et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Chapter 1

2 Will-be-set-by-IN-TECH

behavioral phenotypic traits to be used by the quantitative genetics tools. We give some
background of other tools used like the diversity measurements and bloat metrics to analyze
and correlate the behavior of a GP problem. Three GP benchmark problems are explained
in detail exemplifying how to design the phenotypic traits, the quantitative genetics analyses
when using these traits in various configurations and evolutionary behaviors deduced from
these analyses.

2. Related work

Prior to the introduction of quantitative genetics to the EC community, research along similar
lines was already being conducted. Most notable among these was the discovery that
parent-offspring fitness correlation is a good predictor of an algorithm’s ability to converge
on highly fit solutions [18].

Mühlenbein and Altenberg began to introduce elements of biology theory to EC at roughly the
same time. Mühlenbein’s work has focused mainly on adapting the equation for the response
to selection (also known as the breeder’s equation) for use with evolutionary algorithms [19]
Initial work involved the development several improved EAs and reproductive operators [21,
23, 24], and progressed to the development of Estimation of Distribution Algorithms (EDAs)
[20, 22].

Altenberg’s work used Price’s Theorem [27] as a foundation for his EC theory. One of his
goals was to measure the ability of certain EA reproductive operators to produce high quality
individuals, and identify what qualities were important in achieving this [1]. He referred to
this as evolvability, and the equations he developed looked similar in some regards to the
response to selection equation. In particular he provided a theoretics foundation for why the
relationship between parent and offspring fitness (i.e. heritability of fitness) was important.

Another aspect of Altenberg’s work involved going beyond a simple aggregation of the
relationships between parent and offspring fitness. He focused on the idea that the upper-tail
of the distribution was a key element. After all, creating a few offspring that are more fit than
their parents can be much more important than creating all offspring with the same fitness as
their parents. This is why his equation really became a measure of variance instead of mean,
which is what Price’s Theorem typically measures. As an indication that his theories were in
some sense fundamental to how EAs work, he was able to use them to re-derive the schema
theorem [2].

Langdon [14] developed tools based on quantitative genetics for analyzing EA performance.
He used both Price’s Theorem and Fisher’s Fundamental Theorem [26] to model GP gene
frequencies, and how they change in the population over time.

Work by Potter et al. [25] also used Price’s Theorem as a basis for EA analysis. They also
recognized the importance of variance, and developed some approaches to visualizing the
distributions during the evolutionary process [5, 6].

The work of Prügel-Bennett & Shapiro [29] [28] is based on statistical mechanics, but it has
some important similarities to the methods used in quantitative genetics. Here, populations
are also modeled as probability distributions, but the approach taken is more predictive
than diagnostic. This means that detailed information about the fitness landscape and
reproductive operators is needed in order to analyze an EA. Still, this approach has some

4 Genetic Programming – New Approaches and Successful Applications

Using Quantitative Genetics and Phenotypic Traits in Genetic Programming 3

interesting capabilities. For example, up to six higher-order cumulants are used to describe
the distributions, allowing it to move beyond assumptions of normality, and thus providing
much more accurate descriptions of the actual distributions.

Radcliffe [30] developed a theoretical framework that, while not directly related to
quantitative genetics, has certain similarities. His formae theory is a more general extension
of the schema theorem, and can be applicable at a phenotypic level.

3. Methodology

3.1. Quantitative genetics basics

Quantitative Genetics theory [9, 31]is concerned with tracking quantitative phenotypic traits
within an evolving population in order to analyze the evolutionary process. One group that
commonly uses the approach are animal breeders for the purpose of estimating what would
be involved in accentuating certain traits (such as size, milk production or pelt color) within
their populations.

A quantitative trait is essentially any aspect of an individual that can be measured. Since much
of the theory was developed before the structure of DNA was known, traits have tended to
measure phenotypic qualities like the ones listed in the paragraph above. Traits can measure
real values, integer or boolean (threshold) properties, although real valued properties are
generally preferred [9].

This approach offers a potential advantage to EC practitioners. Most EC theory is defined
in terms of the underlying representation. As a consequence, it becomes difficult to adapt
these theories to new types of problems and representations when they are developed. This
generally means that the practitioner must modify or re-derive the theoretical equations before
they can apply these theories to a new EA that has been customized for a new problem. For
the few theories where this is not the case, a detailed understanding of the problem landscape
is typically needed instead. Again this presents problems for the practitioner. After all, if they
knew this much about their problem, they would not need an EA to solve it in the first place.
Quantitative genetics is one of the few theories that does not suffer from these problems.

Populations are modeled as probability distributions of traits by using simple statistical
measures like mean, variance and covariance. A set of equations then describe how the
distributions change from one generation to the next as a result of certain evolutionary forces
like selection and heritability.

An extended version of the theory called multivariate quantitative genetics [13] aims to
model the behaviors and interactions of multiple traits within the population simultaneously.
This approach represents multiple traits as a vector. As a result, means are also represented
as a vector, and variance calculations produce covariance matrices, as do cross-covariance
calculations. In other words, a vector and a covariance matrix are needed to describe a joint
probability distribution. Other than this change, the equations remain largely the same.

It is difficult to do any long term prediction with this theory [11]. Instead, its value lies in its
ability to perform analysis after the fact [11]. In other words, for our purposes the theory is
most useful for understanding the forces at work inside an existing algorithm during or after
it has been run, rather than predicting how an proposed algorithm might work.

5Using Quantitative Genetics and Phenotypic Traits in Genetic Programming

4 Will-be-set-by-IN-TECH

Figure 1. A sample generation showing offspring and parents [3]

In previous work [3], we adapted multivariate quantitative genetics for use with evolutionary
algorithms. The goal of that work was to demonstrate how these theories can be used to
aid in customizing EA operators for new and unusual problems. Here we will review some
important aspects of that model.

To describe the equations, we will refer to Figure 1, which shows a directed graph illustrating
two successive generations during an EA run. A subset of parents (left) are selected and
produce offspring, either through crossover, mutation or cloning. Directed edges are draw
from each selected parent to all the offspring (right) that it produces. Because the quantitative
genetics models are built on the idea of a generational evolutionary process, they are most
easily applied to to generational EAs like GAs and GP.

It is important that each directed edge represent the same amount of “influence” that a parent
has on its offspring. In the figure, each edge represents an influence of 1/2. That is why two
edges are drawn between parent and offspring in instances where only cloning or mutation
are performed. A vector of quantitative traits φi is associated with each parent i and another
vector of traits φ′

j is associated with each offspring j. The two functions λ(k) and λ′(k) are
defined such that they return the index of corresponding parent and offspring, for a given
edge k.

We also use the abbreviations φ and φ′ to describe all the traits in the different populations.
The symbol φ describes all the parent traits, while φ′ describes all offspring traits. Similarly
φλ refers to all traits of the selected parents, and φ′

λ′ again refers to all the traits of the offspring,
although in the case of figure 1 there are two copies of each child.

Several covariance matrices are defined to describe the populations distributions and the
forces that cause them to change. P and O are covariance matrices that describe the
distributions of the selected parent and offspring populations respectively. D describes the
amount of trait variation that the operators are adding to the offspring, and G′ can be thought
of as quantifying the amount of variation from P that is retained in O.

6 Genetic Programming – New Approaches and Successful Applications

Using Quantitative Genetics and Phenotypic Traits in Genetic Programming 5

P, O, D are all covariance matrices of the traits defined as P = Var(φλ), O = Var(φ�), and
D = Var(φ�

λ� − φλ). G� is a cross-covariance matrix defined as G� = Cov(φ�
λ� , φλ).

Given these matrices, we can now describe how the population distributions change from one
generation to the next using the following equation:

O = 2G� + D − P, (1)

which can be rewritten as
O = P[2G�P−1 + DP−1 − I], (2)

where I is the identity matrix. In this case, we can view everything within the brackets
as defining a transformation matrix that describes how the trait distribution of the selected
parents (P) is transformed by the operators into the distribution of the offspring population
traits (O).

The factor G�P−1 is a regression coefficient matrix, and it is very similar to the quantitative
genetics notion of narrow-sense heritability (commonly just called heritability). It describes
the average similarity between an offspring and one of it’s parents. The term DP−1, which we
refer to as perturbation, describes the amount of new phenotypic variation that the operators
are introducing into the population relative to what already exists. Perturbation can be
thought of as measuring an operator’s capacity for exploration, while heritability provides
an indication of it’s ability to exploit existing information in the population. If heritability is
low, that indicates that there is an unexpected bias in the search.

Another relationship that can be drawn from equation 2 is OP−1. This does not have
a corresponding concept in biology, although it is similar in some ways to broad-sense
heritability and repeatability. This term describes the similarity of the parent and offspring
populations, and so we refer to it as population heritability. This is another measure of
exploitation, in addition to narrow-sense heritability. We think it is the better choice because
it is measuring the larger scale behavior of the EA.

3.1.1. Scalar metric for matrices and vector operations

Biologists consider the multivariate notion of heritability as the degree of similarity between
the two probability distributions that P and G describe. These comparisons are often
performed using statistical techniques like Common Principle Component Analysis [10, 12].

For simplicity and ease of understanding, it would be ideal to find a metric that expresses
terms like heritability and perturbation as a single scalar value. We have chosen to use the
following metric,

m(G�, P) = tr(G�)/tr(P) (3)

where m is the metric function, and G� and P are M by M covariance matrices as described in
the previous section.

The result of equation 3 is, of course, our scalar version of heritability from a single parent.
Similarly, tr(D)/tr(P) would measure perturbation, and tr(O)/tr(P) gives us a measure of
the overall similarity between the selected parent population and the resulting offspring
population.

We chose to use trace because they have an intuitive geometric interpretation. The trace
functions is equal to the sum of the diagonal elements in the matrix. It’s also equal to the

7Using Quantitative Genetics and Phenotypic Traits in Genetic Programming

6 Will-be-set-by-IN-TECH

sum of the eigenvalues of the matrix. In geometric representation it shows the sum total of
all the variation in the distribution. Determinants are normally used as single measure for
matrix operation. It was observed that determinants couldn’t be computed for representation
like GP, due to generation of individuals that can lead to non-positive semidefinite matrices.

3.2. Phenotypic trait design

Understanding the problem phenotypic landscape along with the search characteristics of the
individual (GP program) will be an important step in designing the quantitative phenotypic
traits. The key element is that the trait measure defines some search aspect of the individual
in the phenotypic landscape. The design of phenotypic trait measures is similar to designing
a fitness function for EA - they are problem-specific, and it is more an art and an iterative
process to come up with one or more functions that capture the behavior. We have given
some broad high level ideas below that can help the designer in more concrete way in coming
up with the phenotypic traits for a given problem. Broadly speaking, we can devise the traits
thus:

1. At the application domain specific level to see the search behavior measured as
quantitative traits.

2. By decomposing an already aggregated fitness function into individual quantitative traits.

1. Application domain specific traits:
Since most GP programs are used in agent based environments, we will generalize
application domain traits to be more for agent based individuals.
• Agent Based Individuals

Agent based individuals, can be considered to have some sensors and to execute series
of tasks in an environment. One may use several interesting properties as traits such as
recognizing the sensors available for the agents , constraints in motion, number of tasks
allowed, traps in the environment and way to avoid the traps etc can be interesting set
of properties that user might want to use as traits. These properties will vary amongst
the individuals and using them as phenotypic traits can give interesting multivariate
analyses like the correlation between properties, correlation of these properties with
fitness, etc. We can come up with more traits based on exact nature of the agents and
tasks they are performing. Some of these may be orthogonal while some may have an
overlap with each other. Having an overlap should be avoided as correlated traits can
lead to problems likenon-positive semi-definite matrices.
• Task Oriented Individuals

In many GP applications, the agent is meant to be working on various sub-tasks.
These tasks can be considered decomposable into smaller units. Normally the fitness
measures only the end goal or just the higher level tasks performed, sometimes
for example the amount of food eaten by the ant agent as the fitness in the ant
trail problem. Various behaviors that lead to (or do not lead to) the tasks when
quantified, might give good phenotypic behavior of the individuals. Some of the
tasks or units can be very important and can be weighted higher as compared to
others.

8 Genetic Programming – New Approaches and Successful Applications

Using Quantitative Genetics and Phenotypic Traits in Genetic Programming 7

• Competitive and Co-Competitive Individuals
Many agent-based systems are competitive in nature, like the predator and prey
class of the problems. Effective traits that determine metrics leading to success
and failure of competing individuals may be more useful than agent-based traits.
For instance, in a predator-prey based agents the fitness is basically how well you
are doing against the other. If lower level details like “closeness”ï£¡ to the others,
number of moves till attacked, number of changes in directions while moving, etc.
can provide interesting metrics that can be used as traits in these domains.

• Cooperative Individuals
Another subclass of the agent based problems is the cooperative based agents.
These individuals have to be in some kind of team to accomplish the goal. The
individual behaviors can be specific decomposable ones or can be evolved during
the execution. The performance evaluation of most fitness functions in these
domains is measured by weighting individual and team performances. Various
cooperative metrics can be measured again at different levels like attempts of
cooperative moves, success and failures in the moves, ratio of total attempts to the
success or failures, etc.

• Design based Individuals
Many GP applications are used mostly in design sub class of problems like circuit
design, layout and network design and plan generation problems. Each of these use
very high level measures combined in weights like the cost saved, components used,
power distribution, etc. Again, using individualized measures and adding as many
metrics that are circuit or layout specifics may give more clarity to the search behavior.

• Regression based Individuals
Many GP applications are used in curve fitting- finding equations hidden in the data as
a category of problems. Various mathematical values ranging from values at different
interesting points on the landscape, distances from each point projected to that on
the curve, relative errors, etc can form good traits for such individuals to show the
phenotypic search behaviors.

2. Aggregated Fitness Functions
In general there is a certain class of problems where you can use a general notion
of decomposing the aggregated fitness function to individualized metrics as traits. In
bioinformatics, GP is used in wide range of protein conformation, motif search, feature
generations, etc. Most fitness functions are complex aggregated values combining many
search metrics. For example, in sequence /structure classification programs many aspects
of classification into one value, like true positives, false positives, true negatives, weighted
distance and angles etc are combined to give a single score to the individuals. Instead of
having such a single aggregated function value, we can use each of them as phenotypic
traits.

3.2.1. Issues

After discussing some design principles and methodology, issues related to choice of the traits
are discussed in this section.

• Coverage/Completeness
Ideally we would like to develop as complete a set of traits as possible. By “complete”

9Using Quantitative Genetics and Phenotypic Traits in Genetic Programming

8 Will-be-set-by-IN-TECH

we mean that we would like to have a set of traits that describe the whole phenotypic
search space as well as possible. Another way of viewing this is to ask "Do the traits that
we have uniquely define an individual?" As we mentioned earlier, previous applications
of quantitative genetics to EA have used fitness alone, this provided a very limited and
incomplete view of the nature of the fitness landscape, especially individuals that are
very different can have the same fitness. Similarly an incomplete set of traits can fail to
illuminate certain important aspects of a problem.
Domains involving executable objects (like GP), and most machine learning in general, are
particularly susceptible to this problem. This is because generalization is a critical part of
the learning process. We expect our systems to be able to handle new situations that they
never faced during training. One way of addressing this issue is to create traits that are, in
a sense, general too. Traits that measure a set of behaviors that all fall into a broad category
will be able to achieve the best coverage of the search space.
It is difficult to offer advice as to how one can recognize when they face this situation.
Asking the question about uniqueness seems to offer the best general approach. It may
be wise to ask oneself this question throughout the design and implementation process.
One advantage that quantitative genetics offer though, is that it degrades gracefully in the
sense that all the equations are still completely accurate, even with an incomplete set of
traits. Ultimately one may only need a subset of traits in order to observe the important
behaviors their algorithms, just so long as they are the right subset.

• Unnecessary traits
Unnecessary traits are either those that are always constant, or those that are so closely
correlated with another trait that they essentially are measuring the same thing. These can
be more problematic because they can result in matrices that are non-positive definite. In
this particular case it would mean that the matrices have one or more eigenvalues that are
zero. While this is not actually wrong, with just a small amount of measurement error, or
round-off error, the matrices could have negative eigenvalues, which is more problematic.
We have devised the metric equation (equation 3) to minimize computational problems
related to this situation, but one should try to avoid it if possible.

• Phenotype to Genotype Linking
If one’s goal in using these tools is to identify and fix problem in an algorithm, then one
will need to make a connection between the traits, and any aspects of the representation or
reproductive operators that are affecting those traits. The more abstract the traits are, the
more difficult this becomes, and so very low-level descriptions of behaviors may be more
appropriate to achieve this.
Unfortunately, this can creates a conflict with the issue of trait completeness described
above. There we suggested that higher-level traits may be better for getting the best
landscape description possible. For example, consider a problem where we are trying
to teach an agent to track another agent without being detected. A high-level set of traits
might measure thing like: how much distance an agent keeps between itself and the target,
the length of time that it is able to maintain surveillance, and the number of times it is
detected. These traits may be ideal for covering all the skills that may be necessary for
describing the fitness landscape, but they may not be very helpful in identifying what
aspect of a representation or reproductive operators are problematic for learn well in this
domain. Such connections would be tenuous at best.

10 Genetic Programming – New Approaches and Successful Applications

Using Quantitative Genetics and Phenotypic Traits in Genetic Programming 9

At the other end of the scale, a low-level phenotype (conceptually, at least) might be
something as simple as the input-output map that exactly describes the actions the agent
would take for any given set of inputs. Here we have a much better chance of relating such
information to the representational structure, and the effects of the reproductive operators.
Unfortunately, it becomes much more difficult to define a complete set of traits. Such a
set would have to describe the entire map, and this might mean thousands of traits. The
only viable option is to create sample sets of inputs, where each sample would define
a single trait. If one can define enough traits to get a reasonable sampling of the input
space, or identify important samples that yield particularly valuable information, then this
approach could still be useful.
Exactly how to solve this trade-off remains an open issue. Some possible solutions include
combining low-level and high-level traits, using different kinds of traits depending on ones
goals, or trying to find traits that achieve a middle ground between these two extremes.

3.3. Genetic diversity using lineage

To correlate some important evolutionary behaviors we need to measure genotypic diversity
changes in the populations. There are many ways to measure genotypic diversity
measurements like tree-edit distances, genetic lineages, entropy etc for understanding the
genotypic behavior and correlating it with phenotypic behaviors [7]. Genetic Lineage is the
metric more commonly used as it shows significant correlation to fitness [8]. In context of GP,
with individuals as trees, when an operator like crossover breeds and produces an offspring,
the offspring that has the root node of parent has the lineage of that parent. This provides a
way to measure distribution of lineage over generations and also the count of unique lineages
in the population over generations.

3.4. Bloat measure

Another important factor that we use to correlate the evolutionary behavior changes is with
bloat. Bloat, has been described in various researches but very few of them have defined it
quantitatively. In our study since we have to measure bloat quantitatively we use the metrics
as defined in the recent research [32].

bloat(g) =
(δ(g)− δ(0))/δ(0)
f (0)− f (g))/ f (0)

(4)

where δ(g) is the average number of nodes per individual in the population at generation g,
and f (g) is the average fitness of individuals in the population at generation g.

4. GP benchmark problems and analyses
In next subsections we will walk through three different GP problems, to discuss the
methodology of defining traits, performing experiments with different evolutionary operators
and understanding the evolutionary behaviors in context of the given problem. We start with
the ant trail problem and perform various experiments by changing the operators, selection
mechanisms and pressure to investigate the evolutionary behavior with respect to quantitative
genetics metrics. We then move to another agent oriented problem, lawn mower problem
showing few experiments involving breeding operators and different selection mechanisms.

11Using Quantitative Genetics and Phenotypic Traits in Genetic Programming

10 Will-be-set-by-IN-TECH

Finally we use the symbolic regression problem to describe how traits can be defined and the
observations showing generality of our methodology.

All the experiments are performed using ECJ [17] with various standard default parameters
like population size of 1024, a crossover depth limit of 17,and the ramped half and half
method of generating tree (min/max of 2 and 6) for creating individuals. We will plot
average tr(D)/tr(P), tr(G)/tr(P) and tr(O)/tr(P) as quantitative genetics metrics for each
generations. We will also plot the average unique ancestors as our genetic lineage diversity
measure and bloat metrics from above for some correlations.

4.1. Experiment 1: Santa-Fe Ant trail

Artificial Ant is representative of an agent search problem and also it is considered to be highly
deceptive and difficult for genetic programming [16]. The Santa-fe ant problem has a difficult
trail and the objective is to devise a program which can successfully navigate an artificial ant
to find all pieces of food located on a grid. The total amount of food consumed is used as
single point measure of the fitness of the program. The program has three terminal operations
forward, left and right for navigation. It has three basic actions like IfFoodAhead, progn2
and progn3 for performing single action and parameter based execution in the sequence. It
has three basic actions like IfFoodAhead, progn2 and progn3 for performing single action and
parameter based execution in the sequence. IfFoodAhead is a non-terminal function that takes
two parameters and executes the first if there is food one step ahead and the second otherwise.
Progn2 takes 2 parameters while progn3 takes 3 parameters and executes them in a sequence.

1. Quantitative Traits for Santa-Fe Ant trail
As per our discussions in the phenotypic traits section, various search properties are
devised to measure quantitatively behavior of an agent like ant and used for phenotypic
traits in the calculations for equation above.

For all the formulas
m= moves, d= dimension, trail= point on trail,closest-trail= closest point on trail
δ = distance
• Sum of Distances from Last Trail: This is the manhattan distance computed for all the

moves from where it is to where it was last on the trail. This trait measures the "moving
away effect" of the agent to the trail.

m

∑
i=1

d

∑
j=1

�δi,d − δtrail,d� (5)

• Sum of Distances to Closest Point on Trail:This is the manhattan distance computed
for all the moves from where it is to point closest on the trail. This trait measures the
"closeness" of the agent to the trail.

m

∑
i=1

d

∑
j=1

�δi,d − δclosest−trail,d� (6)

12 Genetic Programming – New Approaches and Successful Applications

Using Quantitative Genetics and Phenotypic Traits in Genetic Programming 11

• Sum of Distances from Last Point:This is the manhattan distance computed for all
the moves from where it is to point last point. This trait measures the "geometric
displacement effect" irrespective of trail for the agent.

m

∑
i=1

d

∑
j=1

�δi,d − δi−1,d� (7)

• Count of Null Movements:This is the count of zero movements, i.e. no change in
displacement for the agent over all its moves. This trait measures the effect of changing
code not altering the behavior of the agent.

m

∑
i=1

∀d, {i f (δi,d − δi−1,d) = 0, count = count + 1} (8)

Most of these quantitative traits show exponential distribution and hence they are
transformed to the new set of derived traits by taking the log of the originals as insisted
by various biologist [9].

2. Santa-Fe Ant trail GP Experiments
To understand the effects of the operator and selection, we will be performing one operator
at a time with the selection mechanism mentioned to see the impact.
• Subtree Crossover and Tournament Selection size 7

Since most GP problems use subtree crossover as the main breeding operator and
normally higher selection pressure with tournament size 7 are employed, we use these
to plot different metrics explained in the quantitative genetics section as shown in
Figure 2.

• Subtree Crossover and tournament Selection size 2
We change the tournament selection to have lower pressure by changing the
tournament size to 2, and observing all the metrics are shown in Figure 3.

• Subtree Crossover and Fitness Proportionate Selection
Fitness Proportionate Selection generally has lower selection pressure as compared to
tournament selection, and by changing the selection mechanism the metrics are shown
in the Figure 4.

• Homologous Crossover and Tournament Selection size 7
Homologous Crossover was designed and successfully employed to control bloat and
improve fitness in many GP problems [15]. The impact of using homologous crossover
on tournament selection size 2 using the metrics is shown in Figure 5.

3. Santa-Fe Ant trail Observations
• Tournament size 2 gives a weaker selection pressure than tournament size 7. It can

be seen that with selection 7 as compared to selection 2, there is rapid convergence
in genotypic diversity. This correlates to rapid convergence in the phenotypic trait
measurements of O and P. It can be observed that when the genotypic diversity and
corresponding phenotypic traits converge, there is rise in the perturbation tr(D)/tr(P)
curve. The point at which this happens and magnitude of change shifts in generations
with selection pressure, i.e with tournament selection size 2 it happens later around
generation 50 as compared to around generation 20 with selection 7. Also the increase is

13Using Quantitative Genetics and Phenotypic Traits in Genetic Programming

12 Will-be-set-by-IN-TECH

0 20 40 60 80 100

0
2

4
6

8
10

Trace(O) and Trace(P)

Generations

Tr
ac

e

(tr(P))
(tr(O))

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trace(G)/Trace(P)

Generations

Tr
ac

e

Subtree Crossover and Tournament 7

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0

Trace(O)/Trace(P)

Generations

Tr
ac

e

Subtree Crossover and Tournament 7

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0
Trace(D)/Trace(P)

Generations

Tr
ac

e

Subtree Crossover and Tournament 7

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

30
0

Genetic Lineage Plot

Generations

Av
er

ag
e

A
nc

es
to

rs

Subtree Crossover with Tournament 7

0 20 40 60 80 100

0
5

10
15

20

Generations

Parent bloat metric
Offspring bloat metric

Figure 2. Ant, Subtree crossover, tournament size 7, depth limit 17

14 Genetic Programming – New Approaches and Successful Applications

Using Quantitative Genetics and Phenotypic Traits in Genetic Programming 13

0 20 40 60 80 100

0
2

4
6

8
10

Trace(O) and Trace(P)

Generations

Tr
ac

e

(tr(P))
(tr(O))

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trace(G)/Trace(P)

Generations

Tr
ac

e

Subtree Crossover and Tournament 2

0 20 40 60 80 100

0
2

4
6

8
10

Trace(O)/Trace(P)

Generations

Tr
ac

e

Subtree Crossover and Tournament 2

0 20 40 60 80 100

0
2

4
6

8
10

Trace(D)/Trace(P)

Generations

Tr
ac

e

Subtree Crossover and Tournament 2

0 20 40 60 80 100

0
20

40
60

80
10

0

Genetic Lineage Plot

Generations

Av
er

ag
e

A
nc

es
to

rs

Subtree Crossover wit

0 20 40 60 80 100

0
5

10
15

20

Generations

Parent bloat metric
Offspring bloat metric

Figure 3. Ant, Subtree crossover, tournament size 2, depth limit 17

15Using Quantitative Genetics and Phenotypic Traits in Genetic Programming

14 Will-be-set-by-IN-TECH

0 20 40 60 80 100

0
2

4
6

8
10

Trace(O) and Trace(P)

Generations

Tr
ac

e

(tr(P))
(tr(O))

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trace(G)/Trace(P)

Generations

Tr
ac

e

Subtree Crossover and FPS

0 20 40 60 80 100

0
1

2
3

4
5

Trace(O)/Trace(P)

Generations

Tr
ac

e

Subtree Crossover and FPS

0 20 40 60 80 100

0
1

2
3

4
5

Trace(D)/Trace(P)

Generations

Tr
ac

e

Subtree Crossover and FPS

0 20 40 60 80 100

0
20

40
60

80
10

0

Genetic Lineage Plot

Generations

Av
er

ag
e

A
nc

es
to

rs

Subtree Crossover wit

0 20 40 60 80 100

0
50

10
0

15
0

20
0

Generations

Parent bloat metric
Offspring bloat metric

Figure 4. Ant, Subtree Crossover, Fitness Proportionate Selection (FPS), depth limit 17

16 Genetic Programming – New Approaches and Successful Applications

Using Quantitative Genetics and Phenotypic Traits in Genetic Programming 15

0 20 40 60 80 100

0
2

4
6

8
10

Trace(O) and Trace(P)

Generations

Tr
ac

e

(tr(P))
(tr(O))

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trace(G)/Trace(P)

Generations

Tr
ac

e

Homologous and Tournament 7

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

30
0

Trace(O)/Trace(P)

Generations

Tr
ac

e

Homologous and Tournament 7

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

30
0

Trace(D)/Trace(P): TournamentSelection7

Generations

Tr
ac

e

Homologous and Tournament 7

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

30
0

Genetic Lineage Plot

Generations

Av
er

ag
e

A
nc

es
to

rs

Homologous with Tournament 7

0 20 40 60 80 100

0
5

10
15

20

Generations

Parent bloat metric
Offspring bloat metric

Figure 5. Ant, Homologous crossover, tournament size 7, depth limit 17

17Using Quantitative Genetics and Phenotypic Traits in Genetic Programming

16 Will-be-set-by-IN-TECH

0 20 40 60 80 100

0
20

40
60

80

Average Fitness

Generations

Fi
tn

es
s

Subtree w/ FPS
Subtree w/ Tourn 2
Homo Cross w/ Tourn 7
Subtree w/ Tourn 7

0 20 40 60 80 100

0
10

20
30

40
50

Average Best−so−far

Generations
Fi

tn
es

s

Homo Cross w/ Tourn 7
Subtree w/ Tourn 2
Subtree w/ FPS
Subtree w/ Tourn 7

Figure 6. Average and BSF fitness for ant experiments

magnitude lesser (scale of DP, OP with selection 2 as compared to selection 7). Increased
selection pressure which may result in lack of diversity may increase perturbation in
the system. This increase may be useful in some difficult problems for finding area
in the landscape that is not reachable otherwise and may not be effective when more
of greedy local search is necessary to reach optimum. In ant trail problem, being a
difficult landscape, increased perturbation is helpful to find solution faster as shown in
the fitness curves in the Figure 6.

• It can be observed that the increase in perturbation with selection size 7, eventually
tapers down and may be attributed to rise in the bloat. As bloat increases beyond a
threshold, the effect of changes is reduced and that brings the perturbation down.

• Another important thing to note is with higher selection pressure, when there is
premature convergence, it results in statistically significant (95% confidence) difference
between the phenotypic behavior of offsprings and parents, while lower selection
pressure reduces the difference.

• FPS results in higher genotypic diversity amongst the individuals as observed in the
Figure 4, and that results in lower convergence in the population phenotypically and
as a result the perturbation effect is constant across all the generations.

• Figure 5 shows that the perturbation increases with reduction in diversity exactly like
in subtree crossover, but the perturbation continues to stay higher because of bloat
control, however the max-value of perturbation is still lower than in normal crossover.
Thus bloat which helped subtree crossover to reduce the impact of perturbation, when
controlled by homologous crossover, showed constant value. This is consistent with
theory that the bloat is a defensive mechanism against crossover [1].

• Figure 6 show the comparative plots of average and best so far (bsf) with 95%
confidence intervals as whiskers. It can be seen that tournament selection with 7 with
subtree or homologous are similar. Homologous crossover with reduced perturbations
and bloat has real advantage over subtree crossover in this experiment.

18 Genetic Programming – New Approaches and Successful Applications

Using Quantitative Genetics and Phenotypic Traits in Genetic Programming 17

4.2. Experiment 2: Lawn mower

The essence of this problem is to find a solution for controlling the movement of a robotic lawn
mower so that the lawn mower visits each of the squares on two-dimensional n x m toroidal
grid. The toroidal nature of the grid allows the lawnmower to wrap around to the opposite
side of the grid when it moves off one of the edges. The lawnmower has state consisting of
the squares on which the lawnmower is currently residing and the direction (up,down,left
and right) which is facing. The lawnmower has 3 actions that change its state: turning left,
moving forward and jumping to specified squares.

1. Quantitative Traits for Lawn Mower
Similar to ant problem, we came up with some quantitative traits to measure the lawn
mower behavior in the phenotypic landscape using the design principles. We keep a
memory of visited location and have a function visited(d) for validating the revisit. We also
keep memory of last orientation using omega in for measuring change in orientations in
the movements.
For all the formulas below
m= moves, d= dimension, δ = distance and Ω = orientation

• Number of Moves:This measures total number of moves performed by the agent in the
execution, which we will refer as m.

• Count of Null Movements:This is the count of zero movements, i.e. no change in
displacement for the lawn mower over all its moves. This trait measures the effect of
changing code not altering the behavior of the agent.

m

∑
i=1

∀d, {i f (δi,d − δi−1,d) = 0, count = count + 1} (9)

• Sum of Distances:This is the manhattan distance computed for all the moves. This trait
measures the "geometric displacement effect" in the movement.

m

∑
i=1

d

∑
j=1

�δi,d − δi−1,d� (10)

• Number of Orientation changes:This measures number of times the orientation of the
lawn mower is changed.

m

∑
i=1

∀d, {i f (Ωi,d �= Ωi−1,d), count = count + 1} (11)

• Count of Revisits:This measures number of times the already visited spot is visited.

m

∑
i=1

∀d, {i f (visited(d)), count = count + 1} (12)

2. Lawn Mower GP Experiments
We performed subset of experiments from our ant problem on the lawn mower to see
differences and similarity in the evolutionary behaviors.

19Using Quantitative Genetics and Phenotypic Traits in Genetic Programming

18 Will-be-set-by-IN-TECH

0 20 40 60 80 100

0
50

0
10

00
15

00
20

00

Trace(O)/Trace(P)

Generations

Tr
ac

e
Subtree Crossover and Tournament 7

0 20 40 60 80 100

0
50

0
10

00
15

00
20

00

Trace(D)/Trace(P): TournamentSelection−2

Generations

Tr
ac

e

Subtree Crossover and Tournament 7

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trace(G)/Trace(P)

Generations

Tr
ac

e

Subtree Crossover and Tournament 7

0 20 40 60 80 100

0
20

40
60

80

Generations

Parent bloat metric
Offspring bloat metric

Figure 7. Lawn Mower Subtree crossover, tournament size 2, depth limit 17

• Subtree Crossover and Tournament Selection size 2
We perform comparative subtree crossover with lower selection pressure on our lawn
mower problem and show the quantitative genetics metrics plotted in the Figure 7.

• Subtree Crossover and Fitness Proportionate Selection
We change the selection pressure totally by going for FPS instead of tournament
selection and plot various metrics in the Figure 8.

• Homologous Crossover and Tournament Selection size 2
Impact of bloat control by using homologous crossover with tournament selection with
size 2 with various metrics are shown in the Figure 9.

3. Lawn Mower Observations
• An interesting observation about the perturbation tr(D)/tr(P) and tr(O)/tr(P) curves

can be made from Figures 8 and 9. Both curves tend to increase to a higher level with
binary tournament selection as compared to FPS. This is actually a result of the fact that
the GP crossover operators have a lower bound on the amount of variation they add to
the population [4]. Higher selection pressures will reduce the phenotypic variation in
the population more that lower selection pressures. Reproductive operators then return
the variation to the operators minimum levels. When selection pressures are higher,

20 Genetic Programming – New Approaches and Successful Applications

Using Quantitative Genetics and Phenotypic Traits in Genetic Programming 19

0 20 40 60 80 100

0
5

10
15

20
25

30

Trace(O)/Trace(P)

Generations

Tr
ac

e
Subtree Crossover and FPS

0 20 40 60 80 100

0
5

10
15

20
25

30

Trace(D)/Trace(P): FPS

Generations

Tr
ac

e

Subtree Crossover and FPS

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trace(G)/Trace(P)

Generations

Tr
ac

e

Subtree Crossover and FPS

0 20 40 60 80 100

0
10

20
30

40
50

60

Generations

Parent bloat metric
Offspring bloat metric

Figure 8. Lawn Mower Subtree crossover, Fitness Proportionate Selection, depth limit 17

the difference between these two amounts will be higher relative to the amount of
variation in the selection parent populations. As a result, perturbation and population
heritability will appear higher, but this is only because they had further to go to get
back to the same place (i.e. the lower bound defined by the operators).

• Homologous crossover shows fairly stable tr(D)/tr(P), tr(O)/tr(P) and tr(G)/tr(P)
curves as shown in Figure 9, where the operator on this problem acts similar to the
GA based crossover on a simple problem like sphere [3]. As the population converges
in phenotype space, crossover is able to adapt and create offspring populations with
similar distributions to those of the parent population (as can be seen by the fact that
tr(G)/tr(P) stays close to 0.5, and even more importantly that O/P stays relatively
close to 1). The fact that it is able to do this even at the end of the run is important. It
allows the population to truly converge on a very small part of the search space until
there is (almost) no variation left. This is often considered to be a weakness of crossover,
but in some ways it is really a strength. Without this ability, the algorithm cannot fully
exploit the information it gains.

• Figure 10 shows again at the end of the generations there is no significant difference
between subtree crossover and homologous crossover, while homologous crossover
with better perturbation and heritability may be at advantage.

21Using Quantitative Genetics and Phenotypic Traits in Genetic Programming

20 Will-be-set-by-IN-TECH

0 20 40 60 80 100

0
2

4
6

8
10

Trace(O)/Trace(P)

Generations

Tr
ac

e

Homologous and Tournament 2

0 20 40 60 80 100

0
2

4
6

8
10

Trace(D)/Trace(P): TournamentSelection−2

Generations

Tr
ac

e

Homologous and Tournament 2

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trace(G)/Trace(P)

Generations

Tr
ac

e

Homologous and Tournament 2

0 20 40 60 80 100

0
10

20
30

40
50

60

Generations

Parent bloat metric
Offspring bloat metric

Figure 9. Lawn Mower Homologous crossover, tournament size 2, depth limit 17

0 20 40 60 80 100

0
20

40
60

80

Average Fitness

Generations

Fi
tn

es
s

Subtree w/ FPS
Subtree w/ Tourn 2
Homo Cross w/ Tourn 7

0 20 40 60 80 100

0
10

20
30

40
50

Average Best−so−far

Generations

Fi
tn

es
s

Subtree w/ Tourn 2
Subtree w/ FPS
Homo Cross w/ Tourn 7

Figure 10. Average and BSF fitness for lawn mower experiments

22 Genetic Programming – New Approaches and Successful Applications

Using Quantitative Genetics and Phenotypic Traits in Genetic Programming 21

4.3. Experiment 3: Symbolic regression

Symbolic Regression problem is about finding the equation closest to the given problem, by
generating different curves and testing on the sample training points. The absolute error over
the training points is used as the fitness function. Terminal would be the variable X and the
non-terminals would be mathematical functions like log, sine, cosine, addition, multiplication
etc. We used the quintic function for our test. Quintic is given by equation

y = x5 − 2x3 + x, x =[-1,1] (13)

1. Quantitative Traits for Symbolic Regression Regression being a mathematical problem
in an euclidean space rather than a behavior based agent, we used the values of 10
random points equally distributed on the curve as the trait measurements like [-0.9,
-0.7,-0.5...0.5,0.7,0.9]. This is similar to fitness being evaluated over fixed training point,
but the difference being here we get individual values rather than aggregated measure.
These individual trait values can be important in identifying how the curve changes
between parent and offspring during the evolutionary process.

0 20 40 60 80 100

0
10

20
30

40
50

60

Trace(O)/Trace(P)

Generations

Tr
ac

e

Homologous and Tournament 2

0 20 40 60 80 100

0
10

20
30

40
50

60

Trace(D)/Trace(P): TournamentSelection−2

Generations

Tr
ac

e

Homologous and Tournament 2

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trace(G)/Trace(P)

Generations

Tr
ac

e

Homologous and Tournament 2

0 20 40 60 80 100

0
5

10
15

20

Generations

Parent bloat metric
Offspring bloat metric

Figure 11. Symbolic Regression, Homologous crossover, tournament size 2, depth limit 17

23Using Quantitative Genetics and Phenotypic Traits in Genetic Programming

22 Will-be-set-by-IN-TECH

2. Regression GP Experiment
We will analyze one experiment using Homologous crossover and tournament selection to
see generic behavior of GP problems given similar operators and selection pressure.
• Homologous Crossover with Tournament Selection size 2

Figure 11 shows various quantitative genetic metrics similar to previous experiments
for quintic regression problem.

3. Symbolic Regression Observations

• The results of the experiment as seen in Figure 11 is comparative to the results on the
ant problem in figure 5. We can see several trends that we saw before, for example, the
curve for D follows the same type of path, converging until a fixed level of variation is
reached, and then staying there.

• Also, the perturbation curve and the population heritability curve show the same trend
of continual increase over generations.

5. Conclusions and future work
In this chapter we have provided a detailed tutorial on quantitative genetics and some high
level design methods to define phenotypic traits needed by quantitative genetics. Using these
methods we performed various experiments changing the selection and breeding operator
in GP to analyze different evolutionary behaviors of the problem. Evolutionary forces
like exploration and exploitation were quantified using quantitative genetics tool set and
some interesting correlation with other forces like bloat, diversity, convergence and fitness
were made. Many observations and correlations made were generalized across different
benchmark GP problems.

In future we would like to perform more experiments to further understand the balance of
bloat, selection and breeding operators, as well as designing new operators for resolving
issues in a given problem domain.

Author details
Uday Kamath, Jeffrey K. Bassett and Kenneth A. De Jong
Computer Science Department, George Mason University, Fairfax, USA

6. References
[1] Altenberg, L. [1994]. The evolution of evolvability in genetic programming, in K. E.

Kinnear (ed.), Advances in Genetic Programming, MIT Press, Cambridge, MA, pp. 47–74.
[2] Altenberg, L. [1995]. The schema theorem and Price’s theorem, in L. D. Whitley & M. D.

Vose (eds), Foundations of Genetic Algorithms III, Morgan Kaufmann, San Francisco, CA,
pp. 23–49.

[3] Bassett, J. K. & De Jong, K. [2011]. Using multivariate quantitative genetics theory to
assist in ea customization, Foundations of Genetic Algorithms 7, Morgan Kaufmann, San
Francisco.

[4] Bassett, J. K., Kamath, U. & De Jong, K. A. [2012]. A new methodology for the GP theory
toolbox, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2012),
ACM.

24 Genetic Programming – New Approaches and Successful Applications

Using Quantitative Genetics and Phenotypic Traits in Genetic Programming 23

[5] Bassett, J. K., Potter, M. A. & De Jong, K. A. [2004]. Looking under the EA hood with
Price’s equation, in K. Deb, R. Poli, W. Banzhaf, H.-G. Beyer, E. Burke, P. Darwen,
D. Dasgupta, D. Floreano, J. Foster, M. Harman, O. Holland, P. L. Lanzi, L. Spector,
A. Tettamanzi, D. Thierens & A. Tyrrell (eds), Genetic and Evolutionary Computation –
GECCO-2004, Part I, Vol. 3102 of Lecture Notes in Computer Science, Springer-Verlag,
Seattle, WA, USA, pp. 914–922.

[6] Bassett, J. K., Potter, M. A. & De Jong, K. A. [2005]. Applying Price’s equation to survival
selection, in H.-G. Beyer, U.-M. O’Reilly, D. V. Arnold, W. Banzhaf, C. Blum, E. W.
Bonabeau, E. Cantu-Paz, D. Dasgupta, K. Deb, J. A. Foster, E. D. de Jong, H. Lipson,
X. Llora, S. Mancoridis, M. Pelikan, G. R. Raidl, T. Soule, A. M. Tyrrell, J.-P. Watson &
E. Zitzler (eds), GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation, Vol. 2, ACM Press, Washington DC, USA, pp. 1371–1378.
URL: http://www.cs.bham.ac.uk/ wbl/biblio/gecco2005/docs/p1371.pdf

[7] Burke, E., Gustafson, S. & Kendall, G. [2002]. A survey and analysis of diversity measures
in genetic programming, pp. 716–723.

[8] Burke, E. K., Gustafson, S., Kendall, G. & Krasnogor, N. [2003]. Is increased diversity
in genetic programming beneficial? an analysis of lineage selection, Congress on
Evolutionary Computation, IEEE Press, pp. 1398–1405.

[9] Falconer, D. S. & Mackay, T. F. C. [1981]. Introduction to quantitative genetics, Longman
New York.

[10] Flury, B. [1988]. Common Principal Components and Related Multivariate Models, Wiley
series in probability and mathematical statistics, Wiley, New York.

[11] Frank, S. A. [1995]. George price’s contributions to evolutionary genetics, Journal of
Theoretical Biology 175(3): 373–388.
URL: http://www.sciencedirect.com/science/article/B6WMD-45R8FXC-3N/2/01fea9e865de0a05
4158ee82d6237ef7

[12] Game, E. T. & Caley, M. J. [2006]. The stability of P in coral reef fishes, Evolution
60(4): 814–823.
URL: http://dx.doi.org/10.1111/j.0014-3820.2006.tb01159.x

[13] Lande, R. & Arnold, S. J. [1983]. The measurement of selection on correlated characters,
Evolution 37(6): 1210–1226.
URL: http://www.jstor.org/stable/2408842

[14] Langdon, W. B. [1998a]. Genetic Programming and Data Structures: Genetic Programming +
Data Structures = Automatic Programming!, The Kluwer international series in engineering
and computer science, Kluwer Academic Publishers, Boston.

[15] Langdon, W. B. [1998b]. Size fair and homologous tree genetic programming crossovers.
genetic programming and evolvable machines.

[16] Langdon, W. B. & Poli, R. [2002]. Foundations of Genetic Programming, Springer-Verlag.
[17] Luke, S., Panait, L., Balan, G., Paus, S., Skolicki, Z., Popovici, E., Sullivan, K., Harrison,

J., Bassett, J., Hubley, R., Chircop, A., Compton, J., Haddon, W., Donnelly, S., Jamil, B. &
O’Beirne, J. [2010]. ECJ: A java-based evolutionary computation research.
URL: http://cs.gmu.edu/ eclab/projects/ecj/

[18] Manderick, B., de Weger, M. & Spiessens, P. [1991]. The genetic algorithm and the
structure of the fitness landscape, in R. K. Belew & L. B. Booker (eds), Proc. of the Fourth
Int. Conf. on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 143–150.

[19] Mühlenbein, H. [1997]. The equation for response to selection and its use for prediction,
Evolutionary Computation 5(3): 303–346.

25Using Quantitative Genetics and Phenotypic Traits in Genetic Programming

24 Will-be-set-by-IN-TECH

[20] Mühlenbein, H., Bendisch, J. & Voigt, H.-M. [1996]. From recombination of genes to
the estimation of distributions: II. continuous parameters, in H.-M. Voigt, W. Ebeling,
I. Rechenberg & H.-P. Schwefel (eds), Parallel Problem Solving from Nature – PPSN IV,
Springer, Berlin, pp. 188–197.

[21] Mühlenbein, H. & michael Voigt, H. [1995]. Gene pool recombination in genetic
algorithms, Metaheuristics: Theory and Applications pp. 53—62.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.3488

[22] Mühlenbein, H. & Paaß, G. [1996]. From recombination of genes to the estimation
of distributions: I. Binary parameters, in H.-M. Voigt, W. Ebeling, I. Rechenberg &
H.-P. Schwefel (eds), Parallel Problem Solving from Nature – PPSN IV, Springer, Berlin,
pp. 178–187.

[23] Mühlenbein, H. & Schlierkamp-Voosen, D. [1993]. Predictive models for the breeder
genetic algorithm: I. continuous parameter optimization, Evolutionary Computation
1(1): 25–49.

[24] Mühlenbein, H. & Schlierkamp-Voosen, D. [1994]. The science of breeding and
its application to the breeder genetic algorithm (BGA), Evolutionary Computation
1(4): 335–360.

[25] Potter, M. A., Bassett, J. K. & De Jong, K. A. [2003]. Visualizing evolvability with
Price’s equation, in R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam
& T. Gedeon (eds), Proceedings of the 2003 Congress on Evolutionary Computation CEC2003,
IEEE Press, Canberra, pp. 2785–2790.

[26] Price, G. [1972]. Fisher’s ’fundamental theorem’ made clear, Annals of Human Genetics
36(2): 129–140.
URL: http://dx.doi.org/10.1111/j.1469-1809.1972.tb00764.x

[27] Price, G. R. [1970]. Selection and covariance, Nature 227: 520–521.
URL: http://adsabs.harvard.edu/abs/1970Natur.227..520P

[28] Prügel-Bennett, A. [1997]. Modelling evolving populations, Journal of Theoretical Biology
185(1): 81–95.
URL: http://www.sciencedirect.com/science/article/B6WMD-45KKVJV-7/2/3ac11d9873754b7db
89bc424fc4919ad

[29] Prügel-Bennett, A. & Shapiro, J. L. [1994]. Analysis of genetic algorithms using statistical
mechanics, Physical Review Letters 72(9): 1305–1309.
URL: http://link.aps.org/abstract/PRL/v72/p1305

[30] Radcliffe, N. J. [1991]. Forma analysis and random respectful recombination, in R. K.
Belew & L. B. Booker (eds), Proceedings of the Fourth International Conference on Genetic
Algorithms (ICGA’91), Morgan Kaufmann Publishers, San Mateo, California, pp. 222–229.

[31] Rice, S. H. [2004]. Evolutionary Theory: Mathematical and Conceptual Foundations, Sinauer
Associates, Inc.

[32] Vanneschi, L., Castelli, M. & Silva, S. [2010]. Measuring bloat, overfitting and functional
complexity in genetic programming, in B. et al.Editors (ed.), GECCO 10 Proceedings of the
10th annual conference on Genetic and evolutionary computation, ACM, pp. 877–884.

26 Genetic Programming – New Approaches and Successful Applications

Chapter 0

Continuous Schemes for Program Evolution

Cyril Fonlupt, Denis Robilliard and Virginie Marion-Poty

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50023

1. Introduction

Genetic Programming (GP) is a technique aiming at the automatic generation of programs.
It was successfully used to solve a wide variety of problems, and it can be now viewed as
a mature method as even patents for old and new discovery have been filled, see e.g. [1, 2].
GP is used in fields as different as bio-informatics [3], quantum computing [4] or robotics [5],
among others.

The most widely used scheme in GP was proposed by Koza, where programs are represented
as Lisp-like trees and evolved by a genetic algorithm. Many other paradigms were devised
these last years to automatically evolve programs. For instance, linear genetic programming
(LGP) [6] is based on an interesting feature: instead of creating program trees, LGP directly
evolves programs represented as linear sequences of imperative computer instructions. LGP
is successful enough to have given birth to a derived commercial product named discipulus.
The representation (or genotype) of programs in LGP is a bounded-length list of integers.
These integers are mapped into imperative instructions of a simple imperative language (a
subset of C for instance).

While the previous schemes are mainly based on discrete optimization, a few other
evolutionary schemes for automatic programming have been proposed that rely on some
sort of continuous representation. These include notably Ant Colony Optimization in
AntTAG [7, 8], or the use of probabilistic models like Probabilistic Incremental Program
Evolution [9] or Bayesian Automatic Programming [10].

In 1997, Storn and Price proposed a new evolutionary algorithm for continuous optimization,
called Differential Evolution (DE) [11]. Another popular continuous evolution scheme is the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) that was proposed by Hansen
and Ostermeier [12] in 1996. Differential Evolution differs from Evolution Strategies in the
way it uses information from the current population to determine the perturbation brought to
solutions (this can be seen as determining the direction of the search).

In this chapter, we propose to evolve programs with continuous representation, using these
two continuous evolution engines, Differential Evolution and CMA Evolution Strategy. A

©2012 Fonlupt et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Chapter 2

2 Will-be-set-by-IN-TECH

program is represented by a float vector that is translated to a linear sequence of imperative
instructions, a la LGP.

The chapter is organized in the following way. The first section introduces the Differential
Evolution and CMA Evolution Strategy schemes, focusing on the similarities and main
differences. We then present our continuous schemes, LDEP and CMA-LEP, respectively
based on DE and CMA-ES. We show that these schemes are easily implementable as plug-ins
for DE and CMA-ES. In Section 4, we compare the performance of these two schemes, and
also traditional GP, over a range of benchmarks.

2. Continuous evolutionary schemes

In this section we present DE and CMA-ES, that form the main components of the
evolutionary algorithms used in our experiments.

2.1. Previous works on evolving programs with DE

To our knowledge O’Neill and Brabazon were the firsts to use DE to evolve programs within
the well known framework of Grammatical Evolution (GE) [13]. In GE, a population of
variable length binary strings is decoded using a Backus Naur Form (BNF) formal grammar
definition into a syntactically correct program. The genotype-to-phenotype mapping process
allows to use almost any BNF grammars and so to evolve programs in many different
languages. GE has been applied to various problems ranging from symbolic regression
problems or robot control [14] to physical-based animal animations [15] including neural
network evolution, or financial applications [16]... In [13], Grammatical Differential Evolution
is defined by retaining the GE grammar decoding process for generating phenotypes, with
genotypes being evolved with DE. A diverse selection of benchmarks from the GP literature
were tackled with four different flavors of GE. Even if the experimental results indicated that
the grammatical differential evolution approach was outperformed by standard GP on three
of the four problems, the results were somewhat encouraging.

More recently, Veenhuis also introduced a successful application of DE for automatic
programming in [17], mapping a continuous genotype to trees, so called Tree based
Differential Evolution (TreeDE). TreeDE improved somewhat on the performance of
grammatical differential evolution, but it requires an additional low-level parameter, the tree
depth of solutions, that has to be set beforehand. Moreover evolved programs do not include
random constants.

Another recent proposal for program evolution based on DE is called Geometric Differential
Evolution, and was issued in [18]. These authors introduced a formal generalization of DE to
keep the same geometric interpretation of the search dynamic across diverse representations,
either for continuous or combinatorial spaces. This scheme is interesting, although it has some
limitations: it is not possible to model the search space of Koza style subtree crossover for
example. Anyway, experiments on four standard benchmarks against Langdon’s homologous
crossover GP were promising.

Our proposal differs from these previous works by being based on Banzhaf’s Linear GP
representation of solutions. This allows us to implement real-valued constant management

28 Genetic Programming – New Approaches and Successful Applications

Continuous Schemes for Program Evolution 3

inspired from the LGP literature, that are lacking in TreeDE. The tree-depth parameter from
TreeDE is also replaced by the maximum length of the programs to be evolved: this is a lesser
constraint on the architecture of solutions and it still has the benefit of limiting the well known
bloat problem (uncontrolled increase in solution size) that plagues standard GP.

2.2. Differential evolution

This section only introduces the main Differential Evolution (DE) concepts. The interested
reader might refer to [11] for a full presentation. DE is a population-based search algorithm
that draws inspiration from the field of evolutionary computation, even if it is not usually
viewed as a typical evolutionary algorithm.

DE is a real-valued, vector based, heuristic for minimizing possibly non-differentiable and
non linear continuous space functions. As most evolutionary schemes, DE can be viewed
as a stochastic directed search method. But instead of randomly mating two individuals
(like crossover in Genetic Algorithms), or generating random offspring from an evolved
probability distribution (like PBIL [19] or CMA-ES [20]), DE takes the difference vector of
two randomly chosen population vectors to perturb an existing vector. This perturbation is
made for every individual (vector) inside the population. A newly perturbated vector is kept
in the population only if it has a better fitness than its previous version.

2.2.1. Principles

DE is a search method working on a set or population X = (X1, X2, . . . , XN) of N solutions
that are d−dimensional float vectors, trying to optimize a fitness (or objective) function
f (Xi)i∈[1,N] : Rd → R.

DE can be roughly decomposed into an initialization phase and three very simple steps that
are iterated on:

1- initialization
2- mutation
3- crossover
4- selection
5- end if termination criterion is fulfilled else

go to step 2

At the beginning of the algorithm, the initial population is randomly initialized and evaluated
using the fitness function f . Then new potential individuals are created: a new trial solution
is created for every vector Xj, in two steps called mutation and crossover. A selection process
is triggered to determine whether or not the trial solution replaces the vector Xj in the
population.

2.2.2. Mutation

Let t indicate the number of the current iteration (or generation), for each vector Xj(t) of the
population, a variant vector Vj(t + 1) = (vj1, vj2, . . . , vjd) is generated according to Eq. 1:

29Continuous Schemes for Program Evolution

4 Will-be-set-by-IN-TECH

Vj(t + 1) = Xr1 (t) + F × (Xr2(t)− Xr3(t)) (1)

where:

• r1, r2 and r3 are three mutually different randomly selected indices in the population that
are also different from the current index j.

• the scaling factor F is a real constant which controls the amplification of differential
evolution and avoids the stagnation in the search process — typical values for F are in
the range [0, 2].

• The expression (Xr2 (t)− Xr3 (t)) is referred to as the difference vector.

Many variants were proposed for equation 1, including the use of more than 3 individuals.
According to [17, 21], the mutation method that is the more robust over a set of experiments
is the method DE/best/2/bin, defined by Eq. 2:

Vj(t + 1) = Xbest(t) + F × (Xr1 (t) + Xr2 (t)− Xr3 (t)− Xr4 (t)) (2)

where Xbest(t) is the best individual in the population at the current generation. This method
DE/best/2/bin is used throughout the chapter.

2.2.3. Crossover

As explained in [11], the crossover step ensures to increase or at least to maintain the diversity.
Each trial vector is partly crossed with the variant vector. The crossover scheme ensures that
at least one vector component will be crossovered.

The trial vector Uj(t + 1) = (uj1, uj2, . . . , ujd) is generated using Eq. 3:

uji(t + 1) =
{

vji(t + 1) if (rand ≤ CR) or j = rnbr(i)
xji(t) if (rand > CR) and j �= rnbr(i)

(3)

where:

• xji(t) is the jth component of vector Xi(t);

• vji(t+ 1) is the jth component of the current variant vector Vj(t+ 1) (see above Eq. 1 and 2);

• rand is a random float drawn uniformly in the range [0, 1[;

• CR is the crossover rate in the range [0, 1] which has to be determined by the user;

• rnbr(i) is a randomly chosen index drawn in the range [1, d] independently for each vector
Xi(t) which ensures that Uj(t + 1) gets at least one component from the variant vector
Vj(t + 1).

2.2.4. Selection

The selection step decides whether the trial solution Ui(t + 1) replaces the vector Xi(t) or not.
The trial solution is compared to the target vector Xi(t) using a greedy criterion. Here we
assume a minimization framework: if f (Ui(t + 1)) < f (Xi(t)), then Xi(t + 1) = Ui(t + 1)
otherwise the old value is kept: Xi(t + 1) = Xi(t) .

30 Genetic Programming – New Approaches and Successful Applications

Continuous Schemes for Program Evolution 5

2.2.5. Iteration and stop criterion

These three steps (mutation, crossover, selection) are looped over until a stop criterion is
triggered: typically a maximum number of evaluations/iterations is allowed, or a given
value of fitness is reached. Overall DE is quite simple, only needing three parameters: the
population size N, the crossover rate CR, and the scaling factor F.

2.3. Covariance matrix adaptation evolution strategy

Among continuous optimization methods, DE was often compared (in e.g. [22, 23]) to the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES), initially proposed in [12]. The
CMA Evolution Strategy is an evolutionary algorithm for difficult non-linear non-convex
optimization problems in continuous domains. It is typically applied to optimization
problems of search space dimensions between three and one hundred. CMA-ES was
designed to exhibit several invariances: (a) invariance against order preserving (i.e. strictly
monotonic) transformations of the objective function value; (b) invariance against angle
preserving transformations of the search space (e.g rotation, reflection); (c) scale invariance.
Invariances are highly desirable as they usually imply a good behavior of the search strategy
on ill-conditioned and on non-separable problems.

In this section we only introduce the main CMA-ES concepts, and refer the interested reader to
the original paper for a full presentation of this heuristic. An abundant literature has brought
several refinements to this algorithm (e.g. [24] and [25]), and has shown its strong interest as
a continuous optimization method.

2.3.1. Principles

The basic CMA-ES idea is sampling search points using a normal distribution that is centered
on an updated model of the ideal solution. This ideal solution can be seen as a weighted mean
of a best subset of current search points. The distribution is also shaped by the covariance
matrix of the best solutions sampled in the current iteration. This fundamental scheme was
refined mainly on two points:

• extracting more information from the history of the optimization run; this is done through
the so-called accumulation path whose idea is akin to the momentum of artificial neural
networks;

• allocating an increasing computational effort via an increasing population size in a classic
algorithm restart scheme.

The main steps can be summed-up as:

1. sample points are drawn according to the current distribution

2. the sample points are evaluated

3. the probability distribution is updated according to a best subset of the evaluated points

4. iterate to step 1, until the stop criterion is reached

31Continuous Schemes for Program Evolution

6 Will-be-set-by-IN-TECH

2.3.2. Sampling step

More formally, the basic equation for sampling the search points (step 1) is:

x(g+1)
k ← m(g) + σ(g)N(0, C(g)) (4)

where:

• g is the generation number

• k ∈ 1, ..., N is an index over the population size

• x(g+1)
k is the k-th offspring drawn at generation g + 1

• m(g) is the mean value of the search distribution at generation g

• σ(g) is the “overall” standard deviation (or step-size) at generation g

• N(0, C(g)) is a multivariate normal distribution with zero mean and covariance matrix C(g)

at generation g

2.3.3. Evaluation and selection step

Once the sample solutions are evaluated, we can select the current best μ solutions, where
μ is the traditional parameter of Evolution Strategies. Then the new mean m(g+1), the new
covariance matrix C(g+1) and the new step size control σ(g+1) can be computed in order to
prepare the next iteration, as explained in the following section.

2.3.4. Update step

The probability distribution for sampling the next generation follows a normal distribution.
The new mean m(g+1) of the search distribution is a weighted average of the μ selected best

points from the sample x(g+1)
1 , . . . , x(g+1)

N , as shown in Eq. 5:

m(g+1) =
μ

∑
i=1

wix
(g+1)
i:N (5)

where:

• μ ≤ N, μ best points are selected in the parent population of size N.

• x(g+1)
i:N , i-th best individual out of x(g+1)

1 , . . . , x(g+1)
N from Eq. 4.

• w1 ≥ . . . ≥ wμ are the weight coefficients with ∑
μ
i=1 wi = 1

Thus the calculation of the mean can also be interpreted as a recombination step (typically by
setting the weights wi = 1/μ). Notice that the best μ points are taken from the new current
generation, so there is no elitism.

Adapting the covariance matrix of the distribution is a complex step, that consists of three
sub-procedures: the rank-μ-update, the rank-one-update and accumulation. They are similar

32 Genetic Programming – New Approaches and Successful Applications

Continuous Schemes for Program Evolution 7

to a Principal Component Analysis of steps, sequentially in time and space. The goal of the
adaptation mechanism is to increase the probability of successful consecutive steps.

In addition to the covariance matrix adaptation rule, a step-size control is introduced, that
adapts the overall scale of the distribution based on information obtained by the evolution
path. If the evolution path is long and single steps are pointing more or less to the same
direction, the step-size should be increased. On the other hand, if the evolution path is short
and single steps cancel each other out, then we probably oscillate around an optimum, thus
the step-size should be decreased.

For the sake of simplicity, the details of the update of the covariance matrix C and step-size
control are beyond the scope of this chapter.

2.4. Main differences between DE and CMA-ES

The Differential Evolution method and the CMA Evolution Strategy are often compared, since
they are both population-based continuous optimization heuristics. Unlike DE, CMA-ES is
based on strong theoretical aspects that allow it to exhibit several invariances that make it a
robust local search strategy, see [12]. Indeed it was shown to achieve superior performance
versus state-of-the art global search strategies (e.g. see [26]). On the other hand and in
comparison with most search algorithms, DE is very simple and straightforward both to
implement and to understand. This simplicity is a key factor in its popularity especially for
practitioners from other fields.

Despite or maybe thanks to its simplicity, DE also exhibits very good performance when
compared to state-of-the art search methods. Furthermore the number of control parameters
in DE remains surprisingly small for an evolutionary scheme (Cr, F and N) and a large amount
of work has been proposed to select the best equation for the construction of the variant vector.

As explained in [27], the space complexity of DE is low when compared to the most
competitive optimizers like CMA-ES. Although CMA-ES remains very competitive over
problems up to 100 variables, it is difficult to extend it to higher dimensional problems due
mainly to the cost of computing and updating the covariance matrix.

Evolving programs which are typically a mix of discrete and continuous features (e.g.
regression problems) is an interesting challenge for these heuristics, since they were not
designed for this kind of task.

3. Linear programs with continuous representation

We propose to use Differential Evolution and CMA Evolution Strategy to evolve float vectors,
which will be mapped to sequences of imperative instructions in order to form linear
programs, similar to the LGP scheme from [6]. For the sake of simplicity, these schemes are
respectively denoted:

• LDEP, for Linear Differential Evolutionary Programming, when DE is used as the
evolutionary engine;

33Continuous Schemes for Program Evolution

8 Will-be-set-by-IN-TECH

• CMA-LEP, for Covariance Matrix Adaption Linear Evolutionary Programming, when the
evolutionary engine is CMA-ES.

First we recall the basis of linear programs encoding, and execution, and then we explain
the mapping process from continuous representation to imperative instructions. We conclude
with some remarks on the integration of this representation and mapping with the DE and
CMA-ES engines.

3.1. Linear sequence of instructions

In LGP a program is composed of a linear sequence of imperative instructions (see [6] for more
details). Each instruction is typically 3-register instruction. That means that every instruction
includes an operation on two operand registers, one of them could be holding a constant
value, and then assigns the result to a third register:

ri =

{
rj op (rk|ck)

(rj|cj) op rk

where op is the operation symbol, ri is the destination register, rj, rk are calculation registers
(or operands) and cj, ck are constant registers (only one constant register is allowed per
instruction).

On the implementation level of standard LGP, each imperative instruction is represented by
a list of four integer values where the first value gives the operator and the three next values
represent the three register indices. For instance, an instruction like ri = rj × rk is stored
as a quadruple < ×, i, j, k >, which in turn is coded as four indices indicating respectively
the operation number in the set of possible operations, and 3 indices in the set of possible
registers (and/or constant registers). Of course, even if the programming language is basically
a 3-register instruction language, it is possible to ignore the last index in order to include
2-register instructions like ri = sin(rk).

Instructions are executed by a virtual machine using floating-point value registers to perform
the computations required by the program. The problem inputs are stored in a set of registers.
Typically the program output is read in a dedicated register (usually named r0) at the end
of the program execution. These input and output registers are read-write and can serve for
intermediate calculations. Usually, additional read-only registers store user defined constants,
and extra read-write registers can be added to allow for complex calculations. The use of
several calculation registers makes possible a number of different program paths, as explained
in [6] and in [28].

3.2. Mapping a float vector to a linear program

Here we explain how a float vector (i.e. an individual of the population), evolved by either
DE or CMA-ES, is translated to a linear program in the LGP form.

As explained in the previous section, we need 4 indices to code for the operation number and
3 registers involved. Thus we split the float vector individual into consecutive sequences of
4 floats < v1, v2, v3, v4 >, where v1 encodes the operator number, and v2, v3, v4 encode the

34 Genetic Programming – New Approaches and Successful Applications

Continuous Schemes for Program Evolution 9

destination and operand registers. In order to convert a float vi into an integer index, we
apply one of the following computations:

• Conversion of the operator index:

#operator = �(vi − �vi�)× noperators� (6)

where noperators denotes the number of possible operators.

• Conversion of the destination register index:

#register = �(vi − �vi�)× nregisters� (7)

where nregisters denotes the number of possible read-write registers.

• The conversion of an operand register depends whether it is a constant or a read-write
register. This is controlled by a user defined probability of selecting constant registers,
denoted PC in the following equation:

{
read-write register = �(vi−�vi�−Pc

1−Pc
)× nregisters� if (vi − �vi�) > PC

constant register = �vi�mod nconstants otherwise
(8)

where nregisters denotes the number of possible read-write registers, and nconstants denotes
the number of possible constant registers.

Example of a mapping process

Let us suppose we work with 6 read-write registers (r0 to r5), 50 constant registers, and the 4
following operators:

0 : + 1 : − 2 : × 3 : ÷
We set up the constant register probability to PC = 0.1 and we consider the following vector
composed of 8 floats, to be translated into 2 imperative instructions (< v1, v2, v3, v4 > and
< v5, v6, v7, v8 >):

v1 v2 v3 v4 v5 v6 v7 v8
0.17 2.41 1.86 3.07 0.65 1.15 1.25 4.28

Value v1 denotes one operator among the four to choose from. Applying Eq. 6, we get
#operator = �(0.17 − �0.17�)× 4� = 0, meaning that the first operator is +.

The second value v2 = 2.41 is turned into a destination register. According to Eq. 7, we obtain
#register = �(2.41 − �2.41�)× 6� = �2.46� = 2, meaning that the destination register is r2.

The next value v3 = 1.86 gives an operand register. According to Eq. 8, it is a read-write
register since (1.86 − �1.86�) = 0.86 > PC. Thus the first operand register is: #register =
�((1.86 − �1.86� − 0.1)/0.9)× 6� = �5.07� = 5, meaning read-write register r5.

The last of the four first operands is decoded as a constant register since (3.07 − �3.07�) =
0.07 ≤ PC. The index is �3.07� mod 50 = 3, meaning constant register c3.

35Continuous Schemes for Program Evolution

10 Will-be-set-by-IN-TECH

So the 4 first values of the genotype are translated as:

r2 = r5 + c3

The mapping process continues with the four next values, until we are left with the following
program:

r2 = r5 + c3

r0 = r1 × r1

3.3. Algorithm

To finalize the LDEP and CMA-LEP algorithms, the basic idea is to simply plug the float
vector to program translation and the virtual machine program evaluation into the DE and
CMA-ES schemes. However some technical points need to be taken into account to allow this
integration and they are detailed below.

Initialization

We have to decide about the length of the individuals (float vectors) since we usually cannot
extract this feature from the problem. This length will determine the maximum number of
instructions allowed in the evolved programs.

Moreover we need to fix a range of possible initial values to randomly generate the
components of the initial population {Xi}1≤i≤N, as typical in DE.

Constant registers are initialized at the beginning of the run, and then are only accessed in
read-only mode. This means that our set of constants remains fixed and does not evolve
during the run. The number and value range of constant registers are user defined, and the
additional parameter PC must be set to determine the probability of using a constant register
in an expression, as explained above in Eq. 8.

Main algorithm iteration

For LDEP, we tried two variants of the iteration loop described in Section 2.2: either
generational replacement of individuals as in the original Storn and Price paper [11], or steady
state replacement, which seems to be used in [17]. In the generational case, newly created
individuals are stored in a temporary set, and once the generation is completed, they replace
their respective parent if their fitness is better. In the steady state scheme, each new individual
is immediately compared with its parent and replaces it if its fitness is better, and thus it can be
used in remaining crossovers for the current generation. Using the steady state variant seems
to accelerate convergence, see Section 4.

During the iteration loop of either LDEP or CMA-LEP, the vector solutions are decoded using
equations 6, 7 and 8. The resulting linear programs are then evaluated on a set of fitness cases
(training examples). The fitness value is then returned to the evolution engine that continues
the evolution process.

36 Genetic Programming – New Approaches and Successful Applications

Continuous Schemes for Program Evolution 11

Heuristic Problem Pop. Ind. size # eval. extra params
LDEP Regressions 20 128 5E4 F = 0.5, CR = 0.1

Ant 30 50 2E5 F = 0.5, CR = 0.1
CMA-LEP Regressions 20 128 5E4 σ ∈ {1, 10}, λ ∈ {10, 100},

Ant 30 50 2E5 σ ∈ {1, 10}, λ ∈ {10, 100}
GP Regressions 1000 N.A. 5E4 Elitism, max Depth=11,

80% Xover, 10% Mut, 10% Copy
Ant 4000 N.A. 2E5 Elitism, max Depth=11,

80% Xover, 10% Mut, 10% Copy

Table 1. Main experimental parameters

4. Experiments

We use the same benchmark problems as in [17] (4 symbolic regressions and the Santa Fe
artificial ant), and we also add two regression problems that include float constants.

Before listing our experimental parameters in Table 1, we explain some of our implementation
choices:

• We run all standard GP experiments using the well-known ECJ library1.

• For GP we use a maximum generation number of 50 and set the population size in
accordance with the maximum number of evaluations. We keep the best (elite) individual
from one generation to the next.

• We use the publicly available C language version of CMA-ES2, with overall default
parameters.

• For TreeDE we take the results as they are reported in [17]:
• For regression, 1500 iterations on a population of 20 vectors were allowed, and runs

were done for every tree depth in the range {1, . . . , 10}. It thus amounts to a total of
300, 000 evaluations. Among these runs, reference [17] reported only those associated
to the tree depth that obtained the best result (which may well imply a favorable bias,
in our opinion). As we could not apply this notion of best tree depth in our heuristic,
we decided as a trade-off to allow 50, 000 evaluations for regression with both LDEP,
CMA-LEP and GP.

• For the Santa Fe Trail artificial ant problem, the same calculation gives a total of 450, 000
evaluations for TreeDE. We decided for a trade-off of 200, 000 evaluations for LDEP,
CMA-LEP and GP.

4.1. Symbolic regression problems

The aim of these 1-dimensional symbolic regression problems is to find some symbolic
mathematical expression (or program) that best approximates a target function that is known
only by a set of examples, or fitness cases, (xk , f (xk)). In our case, 20 values xk are
chosen evenly distributed in the range [−1.0,+1.0]. The evaluation of programs (or fitness

1 http://cs.gmu.edu/~eclab/projects/ecj/
2 http://www.lri.fr/~hansen/cmaes_inmatlab.html

37Continuous Schemes for Program Evolution

12 Will-be-set-by-IN-TECH

computation) is done according to the classic Koza’s book [1], that is computing the sum of
deviations by looping over all fitness cases:

f itness = ∑
1≤k≤N

| f (xk)− P(xk)|

where P(xk) is the value computed by the evolved program P on input xk, f is the benchmark
function and N = 20 is the number of (input, output) fitness cases. A hit solution means that
the deviation is less than 10−4 on each fitness case.

The first 4 test functions are from [17]:

f1(x) = x3 + x2 + x

f2(x) = x4 + x3 + x2 + x

f3(x) = x5 + x4 + x3 + x2 + x

f4(x) = x5 − 2x3 + x

While TreeDE benchmarks were run without constants in [17], we strongly believe that it is
interesting to use benchmark problems that are expressed as functions both with and without
float constants, in order to assess the impact of constant management by the heuristics.
Moreover in the general case, especially on real world problems, one cannot know in advance
whether or not float constants may be useful. For this reason we add two benchmarks:

f5(x) = π (a constant function)
f6(x) = x

π + x2

π2 + 2xπ

The set of operators is {+,−,×,÷} with ÷ being the protected division (i.e. a ÷ b = a/b if
b �= 0 else a ÷ b = 0 if b = 0).

For LDEP and CMA-LEP, 6 read-write registers are used for calculation (from r0 to r5), with
r0 being the output register. For each fitness case (xk , f (xk)) that is submitted to the evolved
program inside the evaluation loop, all 6 calculation registers are initialized with the same
input value xk . This standard LGP practice provides redundancy of the input value and thus
more robustness to the run.

Runs without constants

In the first set of experiments, programs are evolved without constants. This unrealistic
setting is proposed here only to allow a comparison of DE-based scheme, confronting LDEP
versus Veenhuis’s TreeDE, and excluding CMA-LEP. Results are reported in table 2, all
three heuristics exhibit close results on the f1, f2, f3, f4 problems, with GP providing the
overall most precise approximation, and LDEP needing the largest number of evaluations
(notwithstanding the possible bias in the TreeDE figures, as mentioned at the beginning of
Section 4). Note that the steady state variant of LDEP converges faster than the generational,
as shown by the average number of evaluations for perfect solutions. It seems safe to conclude
that this increased speed of convergence is the explanation for the better result of the steady

38 Genetic Programming – New Approaches and Successful Applications

Continuous Schemes for Program Evolution 13

generational LDEP steady state LDEP TreeDE

Problem Fit. % hits Eval. Fit. % hits Eval. Fit. % hits Eval.
f1 0.0 100% 4297 0.0 100% 2632 0.0 100% 1040
f2 0.0 100% 12033 0.0 100% 7672 0.0 100% 3000
f3 0.28 72.5% 21268 0.08 85% 21826 0.027 98% 8440
f4 0.20 62.5% 33233 0.13 75% 26998 0.165 68% 14600

standard GP

Problem Fit. % hits Eval.
f1 0.0 100% 1815
f2 0.0 100% 2865
f3 0.03 97% 6390
f4 0.01 80% 10845

For each heuristic, over 40 independent runs, the column Fit. gives the average of the
best fitness (taken from [17] for TreeDE), then we have the percentage of run reaching a
hit solution, then the average number of evaluations to produce the first hit solution (if
ever produced).

Table 2. Results for symbolic regression problems without constants.

state variant versus generational, in a limited number of evaluations. This steady state faster
convergence may also benefit to TreeDE.

Runs with constants

In the second set of experiments, presented in Table 3, heuristics are allowed to evolve
programs with constants, thus ruling out TreeDE from the comparison. All problems from
f1 to f6 are tested, which means that heuristics manage float constants even on the first 4
problems when they are not needed. This simulates the frequent absence of background
knowledge on a new problem and this also tests the robustness of heuristics.

• For LDEP and CMA-LEP, we add 50 constant registers, with a probability of occurrence
PC = 0.05, and initial values in the range [−1.0,+1.0].

• For GP, we define 4 redundant input terminals reading the same input value xk for each
fitness case (xk, yk), against only one ephemeral random constant (ERC) terminal, that
draws new random value instances when needed, in the range [−1.0,+1.0]. Thus the
probability to generate a constant, e.g. during program initialization or in a subtree
mutation, is much lower than the usual 50% when having only one x terminal. This is
closer to the LDEP setting and it significantly improves the GP results.

In Table 3, we again observe that the steady state variant of LDEP is better than the
generational. For its best version LDEP is comparable to GP, with a slightly higher hit ratio
and better average fitness (except on f6), with more evaluations on average. For CMA-LEP,
two values for σ ∈ {1, 10} and two values for λ ∈ {10, 100} were tried with no significant

39Continuous Schemes for Program Evolution

14 Will-be-set-by-IN-TECH

differences. In contrast with the other methods, CMA-LEP results are an order of magnitude
worse. Tuning the CMA-ES engine to tackle the problem as separable did not improve the
results. We think this behavior may result from the high dimensionality of the problem
(N=128), that certainly disrupts the process of modeling an ideal mean solution from a
comparatively tiny set of search points. This is combined to the lack of elitism, inherent to
the CMA-ES method, thus when it comes to generate new test points, the heuristic is left
solely with a probably imperfect model.

generational LDEP steady state LDEP
Problem Fit. %hits Eval. Fit. %hits Eval.

f1 0.0 100% 7957 0.0 100% 7355
f2 0.02 95% 16282 0.0 100% 14815
f3 0.4 52.5% 24767 0.0 100% 10527
f4 0.36 42.5% 21941 0.278 45% 26501
f5 0.13 2.5% 34820 0.06 15% 29200
f6 0.59 0% NA 0.63 0% NA

standard GP CMA-LEP
Problem Fit. %hits Eval. Fit. %hits Eval.

f1 0.002 98% 3435 0.03 20% 6500
f2 0.0 100% 4005 2.76 0% NA
f3 0.02 93% 7695 5.33 0% NA
f4 0.33 23% 24465 2.06 6% 10900
f5 0.07 0% NA 13.35 0% NA
f6 0.21 0% NA 5.12 0% NA

For each heuristic, over 40 independent runs, the column Fit. gives the average of the
best fitness, then we have the percentage of run reaching a hit solution, then the average
number of evaluations to produce the first hit solution (if ever produced or else NA if
no run produced a hit solution).

Table 3. Results for symbolic regression problems with constants.

Overall, these results confirm that DE is an interesting heuristic, even when the continuous
representation hides a combinatorial type problem, and thus the heuristic is used outside
its original field. The LDEP mix of linear programs and constant management appears
competitive with the standard GP approach.

4.2. Santa Fe ant trail

The Santa Fe ant trail is a famous problem in the GP field. The objective is to find a computer
program that is able to control an artificial ant so that it can find all 89 pieces of food located on
a discontinuous trail within a specified number of time steps. The trail is drawn on a discrete
32 × 32 toroidal grid illustrated in Figure 1. The problem is known to be rather hard, at least
for standard GP (see [29]), with many local and global optima, which may explain why the
size of the TreeDE population was increased to N = 30 in [17].

Only a few actions are allowed to the ant. It can turn left, right, move one square forward
and it may also look into the next square in the direction it is facing, in order to determine if

40 Genetic Programming – New Approaches and Successful Applications

Continuous Schemes for Program Evolution 15

Figure 1. Illustration of the Santa Fe Trail (the ant starts in the upper left corner, heading to the east,
large dots are food pellets, and small dots are empty cells on the ideal path).

it contains a piece of food or not. Turns and moves cost one time step, and a maximum time
steps threshold is set at start (typical values are either 400 or 600 time steps). If the program
finishes before the exhaustion of the time steps, it is restarted (which amounts to iterating the
whole program).

We do not need mathematical operators nor registers, only the following instructions are
available:

• MOVE: moves the ant forward one step (grid cell) in the direction the ant is facing, retrieving
an eventual food pellet in the cell of arrival;

• LEFT: turns on place 45 degrees anti-clockwise;

• RIGHT: turns on place 45 degrees clockwise;

• IF-FOOD-AHEAD: conditional statement that executes the next instruction or group of
instructions if a food pellet is located on the neighboring cell in front of the ant, else the
next instruction or group is skipped;

• PROGN2: groups the two instructions that follow in the program vector, notably allowing
IF-FOOD-AHEAD to perform several instructions if the condition is true (the PROGN2
operator does not affect per se the ant position and direction);

• PROGN3: same as the previous operator, but groups the three following instructions.

• Each MOVE, RIGHT and LEFT instruction requires one time step.

41Continuous Schemes for Program Evolution

16 Will-be-set-by-IN-TECH

generational LDEP steady state LDEP standard GP
steps Fit. % hits Eval. Fit. % hits Eval. Fit. % hits Eval.
400 11.55 12.5% 101008 14.65 7.5% 46320 8.87 37% 126100
600 0.3 82.5% 88483 1.275 70% 44260 1.175 87% 63300

CMA-LEP TreeDE
steps Fit. % hits Eval. Fit. % hits Eval.
400 37.45 0% NA 17.3 3% 24450
600 27.05 0% NA 1.14 66% 22530

The 1st column is the number of allowed time steps, then for each heuristic, over 40
independent runs, we give the average of the best fitness (taken from [17] for TreeDE),
then the percentage of run reaching a hit solution (solution that found all 89 food
pellets), then the average number of evaluations to produce the first hit solution (if
ever produced or else NA if no run produced a hit solution).

Table 4. Santa Fe Trail artificial ant problem.

Programs are again vectors of floating point values. Each instruction is represented as a single
value which is decoded in the same way as operators are in the regression problems, that is
using Eq. 6. Instruction are decoded sequentially, and the virtual machine is refined to handle
jumps over an instruction or group of instructions, so that it can deal with IF-FOOD-AHEAD
instructions. Incomplete programs may be encountered, for example if a PROGN2 is decoded
for the last value of a program vector. In this case the incomplete instruction is simply
dropped and we consider that the program has reached normal termination (and the program
is iterated if there are remaining time steps).

The Santa Fe trail being composed of 89 pieces of food, the fitness function is the remaining
food (89 minus the number of food pellets taken by the ant before it runs out of time). So, the
lower the fitness, the better the program, a hit solution being a program with fitness 0, i.e. a
program able to pick up all the food on the grid.

Results are summed-up in Table 4. Contrary to the regression experiment, the generational
variant of LDEP is now better than the steady state. We think this behavior is explained by
the hardness of the problem: more exploration is needed, and it pays no more to accelerate
convergence.

GP gives the best results for 400 time steps, but it is LDEP that provides the best average
fitness for 600 steps, at the cost of a greater number of evaluations, meaning LDEP is better
at exploiting the available amount of computing time. LDEP is also better than TreeDE on
both steps limits. For CMA-LEP, two values for σ ∈ {1, 10} and two values for λ ∈ {10, 100}
were again tried, the best setting being σ = 10 and λ = 100 (whose results are reported here).
CMA-LEP performed really poorly, and its first results were so bad that it motivated us to
try this rather high initial variance level (σ = 10), which brought a sensible but insufficient
improvement. We think that the lack of elitism is, here again, a probable cause of CMA-ES
bad behavior, on a very chaotic fitness landscape with many neutral zones (many programs
exhibit the same fitness).

42 Genetic Programming – New Approaches and Successful Applications

Continuous Schemes for Program Evolution 17

If food{ Move } else {
Progn3{

Progn3{
Progn3{ Right ;

If food{ Right } else { Left } ;
Progn2{ Left ;

If food{ Progn2{ Move ; Move } }
else { Right } } } ; // end Progn3

Move ;
Right } ; // end Progn3

If food{ Move } else { Left } ; //end Progn3
Move } }

Table 5. Example of a perfect solution for the Ant Problem found by LDEP in 400 time steps

Here again LDEP appears as a possible competitor to GP. Table 5 shows an example of a
perfect solution found by LDEP for 400 time steps.

4.3. Evolving a stack

As the LDEP continuous approach for evolving programs achieved interesting results on the
previous GP benchmarks, we decided to move forward and to test whether or not we were
able to evolve a more complex data structure: a stack. Langdon successfully showed in [30]
that GP was able to evolve not only a stack with its minimal set of operations (push, pop,
makenull), but also two other optional operations (top, empty), which are considered to be
inessential. We followed this setting, and the five operations to evolve are described in Table 6.

Operation Comment
makenull initialize stack
empty is stack empty?
top return top of stack
pop return top of stack and remove it
push(x) store x on top of stack

Table 6. The five operations to evolve

This is in our opinion a more complex problem than the previous ones, since the correctness
of each trial solution is established using only the values returned by the stack operations and
only pop, top and empty return values.

Choice of primitives

As explained in [30], the set of primitives that was chosen to solve this problem is a set that a
human programmer might use. The set basically consists in functions that are able to read and
write in an indexed memory, functions that can modify the stack pointer and functions that
can perform simple arithmetic operations. The terminal set consists in zero-arity functions
(stack pointer increment and decrement) and some constants.

43Continuous Schemes for Program Evolution

18 Will-be-set-by-IN-TECH

The following set was available for LDEP:

• arg1, the value to be pushed on to the stack (read-only argument)

• aux, the current value of the stack pointer

• arithmetic operators + and −
• constants 0, 1 and MAX (maximum depth of the stack, set to 10)

• indexed memory functions read and write. The write function is a two argument function
arg1 and arg2. It evaluates the two arguments and sets the indexed memory pointed by
arg1 to arg2 (i.e. stack[arg1] = arg2). It returns the original value of aux.

• functions to modify the stack pointer: inc_aux to increment the stack pointer, dec_aux to
decrement it, write_aux to set the stack pointer to its argument and returns the original
value of aux.

Algorithm and fitness function

We used a slightly modified version of our continuous scheme as the stack problem requires
the simultaneous evolution of the five operations (push, pop, makenull, top, empty). An
individual is composed of 5 vectors, one for each operation. Mutation and crossover are
only performed with vectors of the same type (i.e. vectors evolving the push operation for
example).

Programs are coded in prefix notation, that means that an operation like (arg1 + MAX) was
coded as + arg1 MAX. We did not impose any restrictions on each program’s size except that
each vector has a maximum length of 100 (this is several times more than sufficient to code
any of the five operations needed to manipulate the stack).

In his original work, Langdon chose to use a population of size 1, 000 individuals with 101
generations. In the DE case, it is known from experience that using large populations is
usually inadequate. So, we fixed a population of 10 individuals with 10, 000 generations for
LDEP, amounting to about the same number of evaluations.

We used the same fitness function that was defined by Langdon. It consists in 4 test sequences,
each one being composed of 40 stack operations. As explained in the previous section, the
makenull and push operations do not return any value, they can only be tested indirectly
by seeing if the other operations perform correctly.

Results

In Langdon’s experiments, 4 runs out of 60 produced successful individuals (i.e. a fully
operational stack). We obtained the same success ratio with LDEP: 4 out of the first 60 runs
yielded perfect solutions. Extending the number of runs, LDEP evolved 6 perfect solutions
out of 100 runs, providing a convincing proof of feasibility. Regarding CMA-LEP, results are
less convincing, since only one run out of 100 was able to successfully evolve a stack.

An example of successful solution is given in table 7 with the raw evolved code and a
simplified version where redundant code is removed.

44 Genetic Programming – New Approaches and Successful Applications

Continuous Schemes for Program Evolution 19

Operation Evolved operation Simplified operation
push write(1 ,write(dec_aux ,arg1)) stack[aux] = arg1

aux = aux - 1
pop write(aux ,((aux + (dec_aux + inc_aux)) aux = aux + 1

+ read(inc_aux))) tmp = stack[aux];
stack[aux] = tmp + aux;
return tmp

top read(aux) return sp[aux]
empty aux if (aux > 0) return true

else return false
makenull write((MAX - (0 + write_aux(1))),MAX) aux = 1

Table 7. Example of an evolved push-down stack

5. Conclusions

This chapter explores evolutionary continuous optimization engines applied to automatic
programming. We work with Differential Evolution (LDEP) and CMA-Evolution Strategy
(CMA-LEP), and we translate the continuous representation of individuals into linear
imperative programs. Unlike the TreeDE heuristic, our schemes include the use of float
constants (e.g. in symbolic regression problems).

Comparisons with GP confirm that LDEP is a promising optimization engine for automatic
programming. In the most realistic case of regression problems, when using constants, steady
state LDEP slightly outperforms standard GP on 5 over 6 problems. On the artificial ant
problem, the leading heuristic depends on the number of steps: for the 400 steps version
GP is the clear winner, while for 600 steps generational LDEP yields the best average fitness.
LDEP improves on the TreeDE results for both versions of the ant problem, without needing
a fine-tuning of the solutions tree-depth.

For both regression and artificial ant, CMA-LEP performs poorly with the same representation
of solutions than LDEP. This can be deemed not really surprising since the problems we
tackle are clearly outside the domain targeted by the CMA-ES heuristic that drives evolution.
Nonetheless it is also the case for DE, which still produces interesting solutions, thus this
points to a fundamental difference in behavior between these two heuristics. We suspect
that CMA-ES lack of elitism may be an explanation. It also points to a possible inherent
robustness of the DE method, on fitness landscapes that are possibly more chaotic than the
usual continuous benchmarks.

The promising results of LDEP on the artificial ant and on the stack problems are a great
incentive to deepen the exploration of this heuristic. Many interesting questions remain open.
In the beginnings of GP, experiments showed that the probability of crossover had to be set
differently for internal and terminal nodes: is it possible to improve LDEP in similar ways?
It is to be noticed that in our experiments the individual vector components take their values
in the range (−∞,+∞), since it is required by the standard CMA-ES algorithm. It could be
interesting to experiment DE-based algorithms with a reduced range of vector component
values, for example [−1.0, 1.0], that would require to modify the mapping of constant indices.

45Continuous Schemes for Program Evolution

20 Will-be-set-by-IN-TECH

Author details

Cyril Fonlupt, Denis Robilliard, Virginie Marion-Poty
LISIC, ULCO, Univ Lille Nord de France, France

6. References

[1] John R. Koza, Martin A. Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu, and
Guido Lanza. Genetic Programming IV Routine Human-Competitive Machine Intelligence.
Kluwer Academic Publishers, 2003.

[2] Sameer H. Al-Sakram, John R. Koza, and Lee W. Jones. Automated re-invention of a
previously patented optical lens system using genetic programming. In [31], pages 25–37,
2005.

[3] Kun-Hong Liu and Chun-Gui Xu. A genetic programming-based approach to the
classification of multiclass microarray datasets. Bioinformatics, 25(3):331–337, 2009.

[4] Adrian Gepp and Phil Stocks. A review of procedures to evolve quantum algorithms.
Genetic Programming and Evolvable Machines, 10(2):181–228, 2009.

[5] M. Szymanski, H. Worn, and J. Fischer. Investigating the effect of pruning on the
diversity and fitness of robot controllers based on MDL2E during genetic programming.
In [33], pages 2780–2787, 2009.

[6] Markus Brameier and Wolfgang Banzhaf. Linear Genetic Programming. Genetic and
Evolutionary Computation. Springer, 2007.

[7] H.A. Abbass, NX Hoai, and R.I. Mckay. AntTAG: A new method to compose computer
programs using colonies of ants. In The IEEE Congress on Evolutionary Computation, pages
1654–1659, 2002.

[8] Y. Shan, H. Abbass, RI McKay, and D. Essam. AntTAG: a further study. In Proceedings of
the Sixth Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems, Australian
National University, Canberra, Australia, volume 30, 2002.

[9] R. P. Salustowicz and J. Schmidhuber. Probabilistic incremental program evolution.
Evolutionary Computation, 5(2):123–141, 1997.

[10] Evandro Nunes Regolin and Aurora Trindad Ramirez Pozo. Bayesian automatic
programming. In [31], pages 38–49, 2005.

[11] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces. Journal of Global Optimization,
11(4):341–359, 1997.

[12] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation
distributions in evolution strategies: The covariance matrix adaptation. In International
Conference on Evolutionary Computation, pages 312–317, 1996.

[13] Michael O’Neill and Anthony Brabazon. Grammatical differential evolution. In
International Conference on Artificial Intelligence (ICAI’06), pages 231–236, Las Vegas,
Nevada, USA, 2006.

[14] Michael O’Neill and Conor Ryan. Grammatical evolution. ieeetec, 5(4):349–357, aug 2001.
[15] James E. Murphy, Michael O’Neill, and Hamish Carr. Exploring grammatical evolution

for horse gait optimisation. In [32], pages 183–194, 2009.
[16] Michael O’Neill and Conor Ryan. Grammatical Evolution: Evolutionary Automatic

Programming in an Arbitrary Language. Kluwer Academic Press, 2003.

46 Genetic Programming – New Approaches and Successful Applications

Continuous Schemes for Program Evolution 21

[17] Christian B. Veenhuis. Tree based differential evolution. In [32], pages 208–219, 2009.
[18] Alberto Moraglio and Sara Silva. Geometric differential evolution on the space of

genetic programs. In Anna Isabel Esparcia-Alcázar, Aniko Ekart, Sara Silva, Stephen
Dignum, and A. Sima Uyar, editors, Proceedings of the 13th European Conference on Genetic
Programming, EuroGP 2010, volume 6021 of LNCS, pages 171–183, Istanbul, 7-9 April
2010. Springer. Best paper.

[19] Shumeet Baluja and Rich Caruana. Removing the genetics from the standard genetic
algorithm. In Proceedings of the 12th International Conference on Machine Learning, pages
38–46, Morgan Kaufmann Publishers, 1995.

[20] A. Auger and N. Hansen. A restart CMA evolution strategy with increasing population
size. In Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 2, pages 1769
– 1776 Vol. 2, September 2005.

[21] K. Price. Differential evolution: a fast and simple numerical optimizer. In Biennial
conference of the North American Fuzzy Information Processing Society, pages 524–527, 1996.

[22] S. Rahnamayan and P. Dieras. Efficiency competition on n-queen problem: DE vs.
CMA-ES. In Electrical and Computer Engineering, 2008. CCECE 2008. Canadian Conference
on, pages 000033 –000036, May 2008.

[23] Carmen G. Moles, Pedro Mendes, and Julio R. Banga. Parameter Estimation in
Biochemical Pathways: A Comparison of Global Optimization Methods. Genome
Research, 13(11):2467–2474, 2003.

[24] N. Hansen and S. Kern. Evaluating the CMA evolution strategy on multimodal test
functions. In X. Yao et al., editors, Parallel Problem Solving from Nature PPSN VIII, volume
3242 of LNCS, pages 282–291. Springer, 2004.

[25] A. Auger and N. Hansen. A restart CMA evolution strategy with increasing population
size. In Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 2, pages 1769
– 1776 Vol. 2, September 2005.

[26] Nikolaus Hansen and Stefan Kern. Evaluating the CMA evolution strategy on
multimodal functions. In Springer-Verlag, editor, Parallel Problem Solving from Nature,
PPSN VIII, volume 3242 of lncs, pages 282–291, 2004.

[27] Swagatam Das and Ponnuthurai Nagaratnam. Differential evolution: A survey of the
state-of-the-art. IEEE Transactions on Computers, pages 4–31, feb 2011.

[28] Garnett Wilson and Wolfgang Banzhaf. A comparison of cartesian genetic programming
and linear genetic programming. In Michael O’Neill, Leonardo Vanneschi, Steven
Gustafson, Anna Esparcia Alcázar, Ivanoe De Falco, Antonio Della Cioppa, and Ernesto
Tarantino, editors, Genetic Programming, volume 4971 of Lecture Notes in Computer Science,
pages 182–193. Springer Berlin / Heidelberg, 2008.

[29] W. B. Langdon and R. Poli. Why ants are hard. Technical Report CSRP-98-4, University
of Birmingham, School of Computer Science, January 1998. Presented at GP-98.

[30] William B. Langdon. Genetic Programming and Data Structures = Automatic Programming !
Kluwer Academic Publishers, 1998.

[31] Maarten Keijzer, Andrea Tettamanzi, Pierre Collet, Jano van Hemert, and Marco
Tomassini, editors. 8th European Conference, EuroGP 2005, volume 3447 of LNCS,
Lausanne, Switzerland, mar 2005.

47Continuous Schemes for Program Evolution

22 Will-be-set-by-IN-TECH

[32] Leonardo Vanneschi, Steven Gustafson, Alberto Moraglio, Ivanoe De Falco, and Marc
Ebner, editors. 12th European Conference, EuroGP 2009, volume 5481 of LNCS, Tubingen,
Germany, apr 2009.

[33] Congress on Evolutionary Computation, Trondheim, Norway, may 2009.

48 Genetic Programming – New Approaches and Successful Applications

Chapter 0

Programming with Annotated
Grammar Estimation

Yoshihiko Hasegawa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51662

1. Introduction

Evolutionary algorithms (EAs) mimic natural evolution to solve optimization problems.
Because EAs do not require detailed assumptions, they can be applied to many real-world
problems. In EAs, solution candidates are evolved using genetic operators such as crossover
and mutation which are analogs to natural evolution. In recent years, EAs have been
considered from the viewpoint of distribution estimation, with estimation of distribution
algorithms (EDAs) attracting much attention ([14]). Although genetic operators in EAs are
inspired by natural evolution, EAs can also be considered as algorithms that sample solution
candidates from distributions of promising solutions. Since these distributions are generally
unknown, approximation schemes are applied to perform the sampling. Genetic algorithms
(GAs) and genetic programmings (GPs) approximate the sampling by randomly changing the
promising solutions via genetic operators (mutation and crossover). In contrast, EDAs assume
that the distributions of promising solutions can be expressed by parametric models, and they
perform model learning and sampling from the learnt models repeatedly. Although GA-type
sampling (mutation or crossover) is easy to perform, it has the disadvantage that GA-type
sampling is valid only for the case where two structurally similar individuals have similar
fitness values (e.g. the one-max problem). GA and GP have shown poor search performance in
deceptive problems ([6]) where the condition above is not satisfied. However, EDAs have been
reported to show much better search performance for some problems that GA and GP do not
handle well. As in GAs, EDAs usually employ fixed length linear arrays to represent solution
candidates (these EDAs are referred to as GA-EDAs in the present chapter). This decade,
EDAs have been extended so as to handle programs and functions having tree structures (we
refer to these as GP-EDAs in the present chapter). Since tree structures have different node
number, the model learning is much more difficult than that of GA-EDAs. From the viewpoint
of modeling types, GP-EDAs can be broadly classified into two groups: probabilistic
proto-type tree (PPT) based methods and probabilistic context-free grammar (PCFG) based
methods. PPT-based methods employ techniques devised in GA-EDAs by transforming
variable length tree structures into fixed length linear arrays. PCFG-based methods employ

©2012 Hasegawa, licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Chapter 3

2 Will-be-set-by-IN-TECH

PCFG to model tree structures. PCFG-based methods are more advantageous than PPT-based
methods in the sense that PCFG-based methods can estimate position-independent building
blocks.

The conventional PCFG adopts the context freedom assumption that the probabilities of
production rules do not depend on their contexts, namely parent or sibling nodes. Although
the context freedom assumption makes parameter estimation easier, it cannot in principle
consider interaction among nodes. In general, programs and functions have dependencies
among nodes, and as a consequence, the conventional PCFG is not suitable as a baseline
model of GP-EDAs. In the field of natural language processing (NLP), many approaches have
been proposed in order to weaken the content freedom assumption of PCFG. For instance,
the vertical Markovization annotates symbols with their ancestor symbols and has been
adopted as a baseline grammar of vectorial stochastic grammar based GP (vectorial SG-GP)
or grammar transformation in an EDA (GT-EDA) ([4]) (see Section 2). Matsuzaki et al. ([17])
proposed the PCFG with latent annotations (PCFG-LA), which assumes that all annotations
are latent and the annotations are estimated from learning data. Because the latent annotation
models are much richer than fixed annotation models, it is expected that GP-EDAs using
PCFG-LA may more precisely grasp the interactions among nodes than other fixed annotation
based GP-EDAs. In GA-EDAs, EDAs with Bayesian networks or Markov networks exhibited
better search performance than simpler models such as a univariate model. In a similar way,
it is generally expected that GP-EDAs using PCFG-LA are more powerful than GP-EDAs
with PCFG with heuristics-based annotations because the model flexibility of PCFG-LA is
much richer. We have proposed a GP-EDA named programming with annotated grammar
estimation (PAGE) which adopts PCFG-LA as a baseline grammar ([9, 12]). In Section 4 of the
present chapter, we explain the details of PAGE, including the parameter update formula.

As explained above, EDAs model promising solutions with parametric distributions. For the
case in multimodal problems, it is not sufficient to express promising solutions with only
one model, because dependencies for each optimal solution are different in general. When
considering tree structures, this problem arises even in unimodal optimization problems due
to diversity of tree expression. These problems can be tackled by considering global contexts
in each individual, which represents which optima (e.g. multiple solutions in multimodal
problems) it derives from. Consequently, we have proposed the PCFG-LA mixture model
(PCFG-LAMM) which extends PCFG-LA into a mixture model, and have also proposed a new
GP-EDA named unsupervised PAGE (UPAGE) which employs PCFG-LAMM as a baseline
grammar ([11]). By using PCFG-LAMM, not only local dependencies but also global contexts
behind individuals can be taken into account.

The main objectives of proposed algorithms may be summarized as follows:

1. PAGE employs PCFG-LA to consider local dependencies among nodes.

2. UPAGE employs PCFG-LAMM to take into account global contexts behind individuals in
addition to the local dependencies.

This chapter is structured as follows: Following a section on related work, we briefly
introduce the basics of PCFG. We explain PAGE in Section. 4, where details of PCFG-LA,
forward–backward probabilities and a parameter update formula are provided. In Section 5,
we propose UPAGE, which is a mixture model extension of PAGE. We describe PCFG-LAMM
and also derive a parameter update formula for UPAGE. We compare the performance of

50 Genetic Programming – New Approaches and Successful Applications

Programming with Annotated Grammar Estimation 3

UPAGE and PAGE using three benchmark tests selected for experiments. We discuss the
results obtained in these experiments in Section 6. Finally, we conclude the present chapter in
Section 7.

2. Related work

Many GP-EDAs have been proposed, and these methods can be broadly classified into two
groups: (i) PPT based methods and (ii) grammar model based methods.

Methods of type (i) employ techniques developed in GA-EDAs. This type of algorithm
converts tree structures into the fixed-length chromosomes used in GA and applies
probabilistic models of GA-EDAs. Probabilistic incremental program evolution (PIPE) ([25])
is a univariate model, which can be considered to be a combination of population-based
incremental learning (PBIL) ([3]) and GP. Because tree structures have explicit edges between
parent and children nodes, estimation of distribution programming (EDP) ([37, 38]) considers
the parent–children relationships in the tree structures. Extended compact GP (ECGP) ([26])
is an extension of the extended compact GA (ECGA) ([7]) to GP and ECGP can take into
account the interactions among nodes. ECGP infers the group of marginal distribution
using the minimum description length (MDL) principle. BOA programming (BOAP) ([15])
uses Bayesian networks for grasping dependencies among nodes and is a GP extension
of the Bayesian optimization algorithm (BOA) ([20]). Program optimization with linkage
estimation (POLE) ([8, 10]) estimates the interactions among nodes by estimating the Bayesian
network. POLE uses a special chromosome called an expanded parse tree ([36]) to convert
GP programs into linear arrays, and several extended algorithms of POLE have been
proposed ([27, 39]). Meta-optimizing semantic evolutionary search (MOSES) ([16]) extends
the hierarchical Bayesian optimization algorithm (hBOA) ([19]) to program evolution.

Methods of type (ii) are based on Whigham’s grammar-guided genetic programming (GGGP)
([33]). GGGP expresses individuals using derivation trees (see Section 3), which is in contrast
with the conventional GP. Whigham indicated the connection between PCFG and GP ([35]),
and actually, the probability table learning in GGGP can be viewed as an EDA with local
search. Stochastic grammar based GP (SG-GP) ([23]) applied the concept of PBIL to GGGP.
The authors of SG-GP also proposed vectorial SG-GP, which considers depth in its grammar
(simple SG-GP is then called scalar SG-GP). Program evolution with explicit learning (PEEL)
([28]) takes into account the positions (arguments) and depths of symbols. Unlike SG-GP
and PEEL, which employ predefined grammars, grammar model based program evolution
(GMPE) ([29]) learns not only parameters but also the grammar itself from promising
solutions. GMPE starts from specialized production rules which exclusively generate learning
data and merges non-terminals to yield more general production rules using the MDL
principle. Grammar transformation in an EDA (GT-EDA) ([4]) extracts good subroutines
using the MDL principle. GT-EDA starts from general rules and expands non-terminals
to yield more specialized production rules. Although the concept of GT-EDA is similar to
that of GMPE, the learning procedure is opposite to GMPE [specialized to general (GMPE)
versus general to specialized (GT-EDA)]. Tanev proposed GP based on a probabilistic context
sensitive grammar ([31, 32]). He used sibling nodes and a parent node as context information,
and production rule probabilities are expressed by conditional probabilities of these context
information. Bayesian automatic programming (BAP) ([24]) uses a Bayesian network to
consider relations among production rules in PCFG.

51Programming with Annotated Grammar Estimation

4 Will-be-set-by-IN-TECH

There are other GP-EDAs not belonging to either of the groups presented above. N-gram GP
([21]) is based on the linear GP ([18]), which is the assembly language of a register-based
CPU, and learns the sub-sequences using an N-gram model. The N-gram model is very
popular in NLP which considers N consecutive sub-sequences for calculating the probabilities
of symbols. AntTAG ([1]) also shares similar concepts with GP-EDAs, although AntTAG does
not employ a statistical inference method for probability learning; instead, AntTAG employs
the ant colony optimization method (ACO), where the pheromone matrix in ACO can be
interpreted as a probability distribution.

3. Basics of PCFG

In this section, we explain basic concepts of PCFG.

The context-free grammar (CFG) G is defined by four variables G = {N , T ,R,B}, where the
meanings of these variables are listed below.

• N : Finite set of non-terminal symbols

• T : Finite set of terminal symbols

• R: Finite set of production rules

• B: Start symbol

It is important to note that the terms “non-terminal” and “terminal” in CFG are different
from those in GP (for example in symbolic regression problems, not only variables x, y but
also sin,+ are treated as terminals in CFG). In CFG, sentences are generated by applying
production rules to non-terminal symbols, which are generally given by

A → α (A ∈ N , α ∈ (N ∪ T)∗). (1)

In Equation 1, (N ∪ T)∗ represents a set of possible elements composed of (N ∪ T). By
applying production rules to the start symbol B, grammar G generates sentences. A language
generated by grammar G is represented by L(G). If W ∈ L(G), then W ∈ T ∗.

By applying production rules, non-terminal A is replaced by another symbol. For instance,
application of the production rule represented by Equation 1 to α1 Aα2(α1, α2 ∈ (N ∪T)∗, A ∈
N) yields α1αα2. In this case, it is said that “α1 Aα2 derived α1αα2”, and this process is
represented as follows:

α1 Aα2 ⇒
G

α1αα2.

Furthermore, if we have the following consecutive applications

α1 ⇒
G

α2 · · · ⇒
G

αn(αi ∈ (N ∪ T)∗),

αn is derived from α1 and is described by α1
∗⇒
G

αn . This derivation process can be represented

by a tree structure, which is known as a derivation tree. Derivation trees of grammar G are
defined as follows.

1. Node is an element of (N ∪ T)

2. Root is B

52 Genetic Programming – New Approaches and Successful Applications

Programming with Annotated Grammar Estimation 5

3. Branch node is an element of N
4. If children of A ∈ N are α1α2 · · · αk (αi ∈ (N ∪ T)) from left, production rule A →

α1α2 · · · αk is an element of R
We next explain CFG with an example. We now consider a univariate function f (x) composed
of sin, cos, exp, log and arithmetic operators (+, −, × and ÷). A grammar Greg can be

B = {�expr�},

N = {�expr� , �op2� , �op1� , �var� , �const�},

T = {+,−,×,÷, sin, cos, exp, log, x, C}.

We define the following production rules.

Production rule

0 �expr� → �op2� �expr� �expr�
1 �expr� → �op1� �expr�
2 �expr� → �var�
3 �expr� → �const�
4 �op2� → +
5 �op2� → −
6 �op2� → ×
7 �op2� → ÷
8 �op1� → sin
9 �op1� → cos

10 �op1� → exp
11 �op1� → log
12 �var� → x
13 �const� → C (constant)

Greg derives univariate functions by applying the production rules. Suppose we have the
following derivation:

�expr� → �op2� �expr� �expr�
→ + �expr� �expr�
→ + �op2� �expr� �expr� �expr�
→ ++ �expr� �expr� �expr�
→ ++ �op1� �expr� �expr� �expr�
→ ++ log �expr� �expr� �expr�
→ ++ log �var� �expr� �expr�
→ ++ log x �expr� �expr�
→ ++ log x �var� �expr�
→ ++ log x x �expr�
→ ++ log x x �const�
→ ++ log x x C.

53Programming with Annotated Grammar Estimation

6 Will-be-set-by-IN-TECH

Figure 1. (a) Derivation tree for log x + x + C and (b) its corresponding S-expression in GP.

In this case, the derived function is

f (x) = log x + x + C,

and its derivation process is represented by the derivation tree in Figure 1(a).

Although functions and programs are represented with standard tree representations
(S-expression) in the conventional GP (Figure 1(b)), derivation trees can express the same
functions and programs. Consequently, derivation trees can be used in program evolution,
and GGGP ([33, 34]) adopted derivation trees for its chromosome.

We next proceed to PCFG, which extends CFG by adding probabilities to each production
rule. For example, the likelihood (probability) of the derivation tree in Fig. 1(a) is

P(W, T) = π(�expr�)β(�expr� → �op2� �expr� �expr�)2β(�op2� → +)2

× β(�expr� → �op1� �expr�)β(�op1� → log)

× β(�expr� → �const�)β(�expr� → �var�)2β(�const� → C)β(�var� → x)2,

where W ∈ T ∗ is a sentence (i.e. W corresponds to log x + x + C in Greg), T is a derivation
tree, π(�expr�) is the probability of �expr� and β(A → α) is the probability of a production
rule A → α. Furthermore, the probability P(W) of sentence W is given by calculating the
marginal probability in terms of T ∈ Φ(W):

P(W) = ∑
T∈Φ(W)

P(W, T), (2)

where Φ(W) is the set of all possible derivation trees which derive W. In NLP, inference
of the production rule parameters β(A → α) is carried out with learning data W =
{W1, W2, · · · }, which is a set of sentences. The learning data does not have information
about derivation processes. Because there are many possible derivations Φ(W) for large
sentences, directly calculating P(W) with marginalization in terms of Φ(W) (Equation 2) is
computationally intractable. Consequently, a computationally efficient method called the
inside–outside algorithm is used to estimate the parameters. The inside–outside algorithm
takes advantage of dynamic programming to reduce the computational cost. However, in
contrast to the case of NLP, the derivation trees are observed in GP-EDAs, and the parameter
estimation of production rules in GP-EDAs with PCFG is very easy. However, when using

54 Genetic Programming – New Approaches and Successful Applications

Programming with Annotated Grammar Estimation 7

expexp

z z

Figure 2. (a) Complete tree with annotations and (b) its observed tree.

more complicated grammars such as PCFG-LA, more advanced estimation methods (i.e. the
expectation maximization (EM) algorithm ([5])) have to be used even when derivation trees
are given.

4. PAGE

Our proposed algorithm PAGE is based on PCFG-LA. In PCFG-LA, latent annotations are
estimated from promising solutions using the EM algorithm, and PCFG-LA takes advantage
of forward–backward probabilities for computationally efficient estimation. In this section,
we describe the details of PCFG-LA, forward-backward probabilities and a parameter update
formula derived from the EM algorithm.

4.1. PCFG-LA

Although the PCFG-LA used in PAGE has been developed specifically for the present
application, it is essentially identical to the conventional PCFG-LA. In this section, we describe
the specialized version of PCFG-LA. For further details on PCFG-LA, the reader may refer to
Ref. ([17]).

PCFG-LA assumes that every non-terminal is labeled with annotations. In the complete
form, non-terminals are represented by A[x], where A is the non-terminal symbol, x(∈ H)
is an annotation (which is latent), and H is a set of annotations (in this paper, we take
H = {0, 1, 2, 3, · · · , h − 1}, where h is the annotation size). Fig. 2 shows an example of a tree
with annotations (a), and the corresponding observed tree (b). The likelihood of an annotated
tree (complete data) is given by

P(Ti, Xi;β,π) = ∏
x∈H

π(S [x])δ(x;Ti,Xi) ∏
r∈R[H]

β(r)c(r;Ti,Xi), (3)

where Ti denotes the ith derivation tree; Xi is the set of latent annotations of Ti represented by
Xi = {x1

i , x2
i , · · · } (xj

i is the jth annotation of Ti); π(S [x]) is the probability of S [x] at the root
position; β(r) is the probability of the annotated production rule r ∈ R[H]; δ(x; Ti, Xi) is 1 if
the annotation at the root node is x in the complete tree Ti, Xi and is 0 otherwise; c(S [x] →
α; Ti, Xi) is the number of occurrences of rule S [x] → α in the complete tree Ti, Xi; h is the
annotation size that is specified in advance as a parameter; β = {β(S [x] → α)|S [x] → α ∈
R[H]}; and π = {π(S [x])|x ∈ H}. The set of annotated rules R[H] is given in Equation 8.
We summarized variables in Appendix B.

55Programming with Annotated Grammar Estimation

8 Will-be-set-by-IN-TECH

(a) Forward prob. (b) Backward prob.

Figure 3. (a) Forward and (b) backward probabilities. The superscripts denote the indices of
non-terminals (i in S i[y], for example).

The likelihood of an observed tree can be calculated by summing over annotations:

P(Ti;β,π) = ∑
Xi

P(Ti, Xi;β,π). (4)

PCFG-LA estimates β and π using the EM algorithm. Before explaining the estimation
procedure, we should note the form of production rules. In PAGE, production rules are
not Chomsky normal form (CNF), as is assumed in the original PCFG-LA, because of the
understandability of GP programs. Any function which can be handled with traditional GP
can be represented by

S → gS ...S , (5)

which is a subset of Greibach normal form (GNF). Here S ∈ N and g ∈ T (N and T are the
sets of non-terminal and terminal symbols in CFG; see Section 3). A terminal symbol g in CFG
is a function node (+,−, sin, cos ∈ F) or a terminal (v, w ∈ T) in GP (F and T denote set of GP
functions and terminals, respectively). Annotated production rules are

S [x] → gS [z1] ...S [zamax], (6)

where x, zm ∈ H and amax is the arity of g in GP. If g has amax arity, the number of parameters
for the production rule S → g S ...S with annotations is hamax+1, which increases exponentially
as the arity number increases. In order to reduce the number of parameters, we assume that
all the right-hand side non-terminal symbols have the same annotation, that is

S [x] → g S [y]S [y]...S [y]. (7)

With this assumption, the number of parameters can be reduced to h2, which is tractable. Let
R[H] be the set of annotated rules expressed by Equation 8. R[H] is defined by

R[H] = {S [x] → gS [y]S [y]...S [y]|x, y,∈ H, g ∈ T }. (8)

4.2. Forward–backward probability

We explain forward and backward probabilities for PCFG-LA in this section. PCFG-LA ([17])
adopted forward and backward probabilities to apply the EM algorithm ([5]). The backward
probability bi

T(x;β,π) represents the probability that the tree beneath the ith non-terminal
S [x] is generated (β and π are parameters, Fig. 3 (b)), and the forward probability f i

T(y;β,π)

56 Genetic Programming – New Approaches and Successful Applications

Programming with Annotated Grammar Estimation 9

Figure 4. Example of a derivation tree and values of the specific functions. The superscripts denote the
indices of non-terminals.

represents the probability that the tree above the ith non-terminal S [y] is generated (Fig. 3
(a)). Forward and backward probabilities can be recursively calculated as follows:

bi
T(x;β,π) = ∑

y∈H
β(S [x] → gi

T S [y]...S [y]) ∏
j∈ch(i,T)

bj
T(y;β,π), (9)

f i
T(y;β,π) = ∑

x∈H
f pa(i,T)
T (x;β,π)β(S [x] → gpa(i,T)

T S [y]...S [y])

× ∏
j∈ch(pa(i,T),T),j �=i

bj
T(y;β,π) (i �= 1), (10)

f i
T(y;β,π) = π(S [y]) (i = 1), (11)

where ch(i, T) is a function that returns the set of non-terminal children indices of the ith
non-terminal in T, pa(i, T) returns the parent index of the ith non-terminal in T, and gi

T is a
terminal symbol in CFG and is connected to the ith non-terminal symbol in T. For example,
for the tree shown in Fig. 4, ch(3, T) = {5, 6}, pa(5, T) = 3, and g2

T = sin.

Using the forward–backward probabilities, P(T;β,π) can be expressed by the following two
equations:

P(T;β,π) = ∑
x∈H

π(S [x])b1
T(x;β,π), (12)

P(T;β,π) = ∑
x,y∈H

{
β(S [x] → gS [y]...S [y]) f i

T(x;β,π)

× ∏
j∈ch(i,T)

bj
T(y;β,π)

}
. (i ∈ cover(g, T)) (13)

Here, cover(g, Ti) represents a function that returns a set of non-terminal indices at which the
production rule generating g without annotations is rooted in Ti. For example, if g = + and
T is the tree represented in Fig. 4, then cover(+, T) = {1, 3}.

4.3. Parameter update formula

We describe the parameter estimation in PCFG-LA. Because PCFG-LA contains latent
variables X, the parameter estimation is carried out with the EM algorithm. Let β and π

57Programming with Annotated Grammar Estimation

10 Will-be-set-by-IN-TECH

be current parameters β and π be nextstep parameters. The Q function to optimize in the EM
algorithm can be expressed as follows:

Q(β,π|β,π) =
N

∑
i=1

∑
Xi

P(Xi|Ti;β,π) log P(Ti, Xi;β,π), (14)

where N is the number of learning data (promising solutions in EDA). A set of learning
data is represented by D ≡ {T1, T2, · · · , TN}. Using the forward–backward probabilities and
maximizing Q(β,π|β,π) under constraints ∑

α
β(S [x] → α) = 1 and ∑

x
π(S [x]) = 1, we

obtain the following update formula:

π(S [x]) ∝ π(S [x])
N

∑
i=1

b1
Ti
(x;β,π)

P(Ti;β,π)
, (15)

β(S [x] → gS [y]...S [y]) ∝ β(S [x] → g S [y]...S [y])

×
N

∑
i=1

[
1

P(Ti;β,π) ∑
j∈cover(g,Ti)

{
f j
Ti
(x;β,π) ∏

k∈ch(j,Ti)

bk
Ti
(y;β,π)

}]
. (16)

The EM algorithm maximizes the log-likelihood given by

L(β,π;D) =
N

∑
i=1

log P(Ti;β,π). (17)

By iteratively performing Equations 15–16, the log-likelihood monotonically increases and we
obtain locally maximum likelihood estimation parameters. For the case of the EM algorithm,
the annotation size h has to be given in advance. Because the EM algorithm is a point
estimation method, this algorithm cannot estimate the optimum annotation size. For the
case of models that do not include latent variables, a model selection method such as Akaike
information criteria (AIC) or Bayesian information criteria (BIC) is often used. However, these
methods take advantage of the asymptotic normality of estimators, which is not satisfied in
models that include latent variables. In Ref. ([12]), we derived variational Bayesian (VB) ([2])
based inference for PCFG-LA, which can estimate the optimal annotation size. Because the
derivation of the VB-based algorithm is much more complicated than that of the EM algorithm
and because such explanation is outside the scope of this chapter, we do not explain the details
of the VB-based algorithm. For details of VB-based PAGE, please read Ref. ([12]).

The procedures of PAGE are listed below.

1. Generate initial population
Initial population P0 is generated by randomly creating M individuals.

2. Select promising solutions
N individuals Dg are selected from a population of gth generation Pg. In our
implementation, we use the truncation selection.

3. Parameter estimation
Using a parameter update formula (Equations 15–16), converged parameters (β∗,π∗) are
estimated with learning data Dg.

58 Genetic Programming – New Approaches and Successful Applications

Programming with Annotated Grammar Estimation 11

Figure 5. Illustrative description of PCFG-LAMM used in UPAGE.

4. Generation of new individuals
EDA generates new individuals by sampling from the predictive posterior distributions,
namely

P(T, X|Dg) = P(T, X;β∗,π∗).
Since the EM algorithm is a point estimation method, new individuals can be generated
with probabilistic logic sampling which is computationally efficient. The details of
the sampling procedures are summarized below (note, when at the maximum depth
limitation, select terminal nodes unconditionally).

(a) A root node is selected following probability distribution π∗ = {π∗(S [x])|x ∈ H}.
(b) If there are non-terminal symbols S [x] (x ∈ H) in a derivation tree, select a production

rule according to the probability distribution

β∗(S [x]) = {β∗(S [x] → α)|S [x] → α ∈ R[H]}.

Repeat (b) until there are no non-terminal symbols left in the derivation tree.

5. Unsupervised PAGE

In this section, we introduce UPAGE ([11]) which is a mixture model extension of PAGE.
UPAGE uses PCFG-LAMM as a baseline grammar, and we explain details of PCFG-LAMM
and a parameter update formula in this section.

5.1. PCFG-LAMM

Although PCFG-LA is suitable for estimating local dependencies among nodes, it cannot
consider global contexts behind individuals. Suppose there are two optimal solutions
represented by F1(x) and F2(x). In this case, a population includes solution candidates for
F1(x) and F2(x) at the same time. Since building blocks for two optimal solutions are different,
model and parameter learning with one model results in slow convergence due to the mixed
learning data. Furthermore in GP, there are multiple optimal structures even if the problems to
be solved are not multimodal. For instance, if an optimum includes a substructure represented
by sin(2x), sin(2x) as well as 2 sin(x) cos(x) which are mathematically equivalent can be
building blocks, where their tree representations are different. When modeling such a mixed
population, it is very difficult for PCFG-LA to estimate these multiple structures separately

59Programming with Annotated Grammar Estimation

12 Will-be-set-by-IN-TECH

as in the multimodal case. We have proposed a PCFG-LAMM which is a mixture model
extension of PCFG-LA and have also proposed UPAGE based on PCFG-LAMM.

PCFG-LAMM assumes that the probability distributions are a mixture of more than two
PCFG-LA models. In PCFG-LAMM, each solution is considered to be sampled from either
of the PCFG-LA models (Figure 5). We introduce a latent variable zk

i , where zk
i is 1 when the

ith derivation tree is generated from the kth model and 0 otherwise (Zi = {z1
i , z2

i , · · · , zμ
i }).

We summarized variables in Appendix B. As a consequence, PCFG-LAMM handles Xi and Zi
as latent variables. The likelihood of complete data is given by

P(Ti, Xi, Zi;β,π,ζ) =
μ

∏
k=1

{
ζkP(Ti, Xi;β

k,πk)
}zk

i

=
μ

∏
k=1

{
ζk ∏

x∈H
πk(S [x])δ(x;Ti,Xi) ∏

r∈R[H]

βk(r)c(r;Ti,Xi)
}zk

i

, (18)

where ζk is the mixture ratio of the kth model (ζ = {ζ1, ζ2, · · · , ζμ} where ∑k ζk = 1).
βk(r) and πk(S [x]) denote the probabilities of production rule r and root S [x] of the kth
model, respectively. By calculating the marginal of Equation 18 with respect to Xi and Zi,
the likelihood of observed tree Ti is calculated as

P(Ti;β,π,ζ) =
μ

∑
k=1

{
ζkP(Ti;β

k,πk)
}

=
μ

∑
k=1

{
ζk ∑

x∈H
πk(S [x])b1

Ti
(x;βk,πk)

}
. (19)

5.2. Parameter update formula

As in PCFG-LA, the parameter inference of PCFG-LAMM is carried out via the EM algorithm
because PCFG-LAMM contains latent variables Xi and Zi. Let β, π and ζ be current
parameters β, π and ζ be nextstep parameters. The Q function of the EM algorithm is given
by

Q(β,π, ζ|β,π, ζ) =
N

∑
i=1

∑
Xi

∑
Zi

P(Xi, Zi|Ti;β,π, ζ) log P(Ti, Xi, Zi;β,π, ζ). (20)

By maximizing Q(β,π, ζ|β,π,ζ) under constraints (∑
k

ζk = 1, ∑
α

βk(S [x] → α) = 1 and

∑
x

πk(S [x]) = 1), a parameter update formula can be obtained as follows (see Appendix B):

β
k
(S [x] → gS [y] · · · S [y]) ∝

N

∑
i=1

{
βk(S [x] → gS [y] · · · S [y])

P(Ti;β,π,ζ)
ζk

× ∑
�∈cover(g,Ti)

f �Ti
(x;βk,πk) ∏

j∈ch(�,Ti)

bj
Ti
(y;βk,πk)

}
, (21)

πk ∝
N

∑
i=1

{
πk(S [x])

P(Ti;β,π, ζ)
ζkb1

Ti
(x;βk,πk)

}
, (22)

60 Genetic Programming – New Approaches and Successful Applications

Programming with Annotated Grammar Estimation 13

ζ
k ∝

N

∑
i=1

{
ζkP(Ti;βk,πk)

P(Ti;β,π, ζ)

}
. (23)

The parameter inference starts from some initial values and converges to a local optimum
using Equations 21–23. A log-likelihood is given by

L(β,π, ζ;D) =
N

∑
i=1

log P(Ti;β,π, ζ). (24)

The procedures of UPAGE are listed below.

1. Generate initial population
Initial population P0 is generated by randomly creating M individuals. In our
implementation, the ratio between production rules of function nodes (e.g. S [x] →
+ S [y] S [y]) and those of terminal nodes (e.g. S [x] → + S [y]S [y]) are set to 4 : 1.

2. Select promising solutions
N individuals Dg are selected from a population of gth generation Pg. In our
implementation, we used the truncation selection.

3. Parameter estimation
Using a parameter update formula (Equations 21–23), converged parameters (β∗,π∗, ζ∗)
are estimated with learning data Dg.

4. Generation of new individuals
EDA generates new individuals by sampling from the predictive posterior distributions,
namely

P(T, X, Z|Dg) = P(T, X, Z;β∗,π∗, ζ∗).
Since the EM algorithm is a point estimation method, new individuals can be generated
with probabilistic logic sampling, which is computationally cheap. The details of
the sampling procedures are summarized below (note, when at the maximum depth
limitation, select a terminal node unconditionally).

(a) Select a model following probability distribution ζ∗ = {ζ1∗, ζ2∗, · · · , ζ
μ
∗ }.

(b) Let the selected model index be �. A root node is selected following probability
distribution π�∗ = {π�∗(S [x])|x ∈ H}.

(c) If there are non-terminal symbols S [x] (x ∈ H) in a derivation tree, select a production
rule following the probability distribution

β�∗(S [x]) = {β�∗(S [x] → α)|S [x] → α ∈ R[H]}.

Repeat (c) until there are no non-terminal symbols left in the derivation tree.

5.3. Computer experiments

In order to show the effectiveness of UPAGE, we analyze UPAGE from the viewpoint of
the number of fitness evaluations. We applied UPAGE to three benchmark problems: the
royal tree problem (Section 5.3.1), the bipolar royal tree problem (Section 5.3.2) and the
deceptive MAX (DMAX) problem (Section 5.3.3). Because we want to study the effectiveness
of the mixture model versus PCFG-LA, we specifically compared UPAGE with PAGE. In each
benchmark test, we employed the parameter settings shown in Table 1, where UPAGE and

61Programming with Annotated Grammar Estimation

14 Will-be-set-by-IN-TECH

PAGE and UPAGE
Meaning Royal Bipolar DMAX

Tree Royal Tree

M Population size 1000 3000 3000
Ps Selection rate 0.1 0.1 0.1
Pe Elite rate 0.01 0.01 0.01

UPAGE
Meaning Royal Bipolar DMAX

Tree Royal Tree

h Annotation size 11 22 22
μ The number of mixtures 2 2 2

PAGE
Meaning Royal Bipolar DMAX

Tree Royal Tree

h Annotation size 16 32 32

Table 1. Main parameter settings of UPAGE and PAGE.

PAGE used the same population size, elite rate and selection rate. For the method-specific
parameters of PAGE and UPAGE, we determined h and μ so that the number of parameters
to be estimated is almost the same in UPAGE and PAGE. In the three benchmark problems,
we carried out UPAGE and PAGE 30 times to compare the number of fitness evaluations and
also performed the Welch t-test (two-tailed) to determine the statistical significance.

5.3.1. Royal tree problem

We apply UPAGE to the royal tree problem ([22]), which has only one optimal solution. The
royal tree problem is a popular benchmark problem in GP. The royal tree problem is suitable
for analyzing GP because the optimal structure of the royal tree is composed of smaller
substructures (building blocks), and hence it well reflects the behavior of GP.

The royal tree problem defines the state perfect tree at each level. The perfect tree at a given
level is composed of the perfect tree that is one level smaller than the given level. Thus, the
perfect tree of level c is composed of the perfect tree of level b. In perfect trees, alphabets of
functions descend by one from a root to leaves in a tree. A function a has a terminal x. The
fitness function of the royal tree problem is given by

Score(Xi) = wbi ∑
j
(waij × Score(Xij)), (25)

where Xi is the ith node in tree structures, and Xij denotes the jth child of Xi. The fitness value
of the royal tree problem is calculated recursively from a root node. In Equation 25, wbi and
waij are weights which are defined as follows:

• waij

• Full Bonus = 2
If a subtree rooted at Xij has a correct root and is a perfect tree.

62 Genetic Programming – New Approaches and Successful Applications

Programming with Annotated Grammar Estimation 15

Average number of fitness evaluations Standard deviation

UPAGE 6171 28
PAGE 6237 18

P-value of t-test (Welch, two-tailed)

0.74

Table 2. The number of fitness evaluations, standard deviation and P-value of t-test in the royal tree
problem.

• Partial Bonus = 1
If a subtree rooted at Xij has a correct root but is not a perfect tree.

• Penalty = 1/3
If Xij is not a correct root.

• wbi

• Complete Bonus = 2
If a subtree rooted at Xi is a perfect tree.

• Otherwise = 1

In the present chapter, we employ the following GP functions and terminals:

F = {a, b, c, d},

T = {x}.

Here, F and T denote function and terminal sets, respectively, of GP. For details of the royal
tree problem, please see Ref. ([22]).

Table 2 shows the average number of fitness evaluations (along with their standard deviation)
and the P-value of a t-test (Welch, two-tailed). As can been seen with Table 2, there is no
noticeable difference between UPAGE and PAGE in the average number of fitness evaluations,
which is confirmed by the P-value of t-test. The royal tree problem is not multimodal, and
hence the optimal solution has only one tree expression. Consequently, we do not have to
consider global contexts behind optimal solutions, which is an advantage of UPAGE over
PAGE.

5.3.2. Bipolar royal tree problem

We next apply UPAGE to the bipolar royal tree problem. In the field of GA-EDAs, a mixture
model based method UEBNA was proposed, and it was reported that UEBNA is especially
effective in multimodal problems such as two-max problem. Consequently, we apply UPAGE
to a bipolar problem having two optimal solutions, which is a multimodal extension of the
royal tree problem. In order to make the royal tree problem multimodal, we set T = {x, y}
and Score(x) = Score(y) = 1. With this setting, the royal tree problem has two optimal
solutions of x (Fig. 7(a)) and y (Fig. 7(b)). PAGE and UPAGE stop when either of the two
optimal solutions is obtained.

Table 3 shows the average number of fitness evaluations along with their standard deviation.
We see that UPAGE can obtain an optimal solution with a smaller number of fitness

63Programming with Annotated Grammar Estimation

16 Will-be-set-by-IN-TECH

Figure 6. Example of fitness calculation in the bipolar royal tree problem. (a) Derivation tree and (b)
S-expression.

Figure 7. (a) Optimum structure of x and (b) that of y in the bipolar royal tree problem. These two
structures have the same fitness value.

evaluations than PAGE. Table 3 gives the P-value of a t-test (Welch, two-tailed), which allows
us to say that the difference between UPAGE and PAGE is statistically significant.

Because the bipolar royal tree problem has two optimal solutions (x and y), PAGE learns the
production rule probabilities with learning data containing solution candidates of both x and
y optima. Let us consider the annotation size required to express optimal solutions of the
bipolar royal tree problem of depth 5. For the case of PAGE, the minimum annotation size to
be able to learn the two optimal solutions separately is 10. In contrast, UPAGE can express
the two optimal solutions with mixture size 2 and annotation size 5, which results in a smaller
number of parameters. This consideration shows that a mixture model is more suitable for
this class of problems.

Figure 8 shows the increase in the log-likelihood for the bipolar royal tree problem, in
particular, the transitions at generation 0 and generation 5. As can been seen from the figure,
the log-likelihood converges after about 10 iterations. The log-likelihood improvement at
generation 5 is larger than that at generation 0 because the tree structures have converged
toward the end of the search.

5.3.3. DMAX Problem

We apply UPAGE to the DMAX problem ([8, 10]), which has deceptiveness when it is solved
with GP. The main objective of the DMAX problem is identical to that of the original MAX
problem: to find the functions that return the largest real value under the limitation of a

64 Genetic Programming – New Approaches and Successful Applications

Programming with Annotated Grammar Estimation 17

Average number of fitness evaluations Standard deviation

UPAGE 25839 4737
PAGE 31878 4333

P-value of t-test (Welch, two-tailed)

4.49 × 10−6

Table 3. The number of fitness evaluations, standard deviation and P-value of t-test in the bipolar royal
tree problem.

Figure 8. Transitions of loglikelihood of UPAGE in the bipolar royal tree problem.

maximum tree depth. However, the symbols used in the DMAX problem are different from
those used in the MAX problem. The DMAX problem has three parameters, and the difficulty
of the problem can be tuned using these three parameters. For the problem of interest in the
present chapter, we selected m = 3 and r = 2, whose deceptiveness is of medium degree. In
this setting, the GP terminals and functions are

F = {+3,×3},

T = {0.95,−1},

where +3 and ×3 are 3 arity addition and multiplication operators, respectively. The optimal
solution in the present setting is given by

(−1 × 3)26(0.95 × 3) � 7.24 × 1012. (26)

Table 4 shows the average number of fitness evaluations along with their standard deviation
for the DMAX problem. We can see that UPAGE obtained the optimal solution with a smaller
number of fitness evaluations compared to PAGE. Table 4 gives the P-value of a t-test (Welch
and two-tailed) and allows us to say that the difference in the averages of UPAGE and PAGE
is statistically significant.

In the bipolar royal tree problem, expressions of the two optimal solutions (x or y) are
different, and thus building blocks of the optima are also different. In contrast, the DMAX
problem has mathematically only one optimal solution, which are represented by Equation 26.
Although the DMAX problem is a unimodal problem, the DMAX problem has different
expressions for the optimal solution due to commutative operators such as +3 and ×3. From
this experiment, we see that UPAGE is superior to PAGE for this class of benchmark problems.

65Programming with Annotated Grammar Estimation

18 Will-be-set-by-IN-TECH

Average number of fitness evaluations Standard deviation

UPAGE 36729 3794
PAGE 38709 2233

P-value of t-test (Welch, two-tailed)

1.94 × 10−2

Table 4. The number of fitness evaluations, standard deviation and P-value of t-test in the DMAX
problem.

Figure 9. The average number of fitness evaluations (smaller is better) in royal tree problem, bipolar
royal tree problem and DMAX problem relative to those of PAGE (i.e. the PAGE results are normalized
to 1).

Common parameters in PAGE and UPAGE
Meaning Bipolar Royal Tree

M Population size 6000
Ps Selection rate 0.3
Pe Elite rate 0.1

UPAGE
Meaning Bipolar Royal Tree

h Annotation size 16
μ The number of mixtures 4

PAGE
Meaning Bipolar Royal Tree

h Annotation size 32

Table 5. Parameter settings for a multimodal problem.

5.4. Multimodal problem

In the preceding section, we evaluated the performance of UPAGE from the viewpoint of the
average number of fitness evaluations. In this section, we show the effectiveness of UPAGE
in terms of its capability for obtaining multiple solutions of a multimodal problem. Because
there are two optimal solutions in the bipolar royal tree problem (see Fig. 7(a) and (b)), we

66 Genetic Programming – New Approaches and Successful Applications

Programming with Annotated Grammar Estimation 19

Successful runs / Total runs

UPAGE 10/15
PAGE 0/15

Table 6. The number of runs which could obtain both optimal solutions. We carried out 15 runs in total.

show that UPAGE can obtain both optimal solutions in a single run. Parameter settings are
shown in Table 5.

Table 6 shows the number of successful runs in which both optimal solutions are obtained in a
single run. As can been seen in Table 6, UPAGE succeeded in obtaining both optimal solutions
in 10 out of 15 runs, whereas PAGE could not obtain them at all.

Table 7 shows production rule probabilities of UPAGE in a successful run. Although the
mixture size is μ = 4, we have only presented probabilities of Model = 0 and Model = 3, which
are related to optimal solutions of y (Fig. 7(b)) and x (Fig. 7(a)), respectively (i.e. Model = 1
and Model = 2 are not shown). Because we see in Model = 0 that the probabilities generating
y are very high, we consider that the optimal solution of y was generated by Model = 0. On
the other hand, it is estimated that the optimal solution of x was generated by Model = 3.
From this probability table, we can confirm that UPAGE successfully estimated the mixed
population separately, because Model = 3 and 0 can generate optimal solutions of x and y
with relatively high probability. It is very difficult for PAGE to estimate multiple solutions
because PCFG-LA is not a mixture model and it is almost impossible to learn the distributions
separately. As was shown in Section 5.3, UPAGE is superior to PAGE in terms of the number
of fitness evaluations. From Table 7, it is considered that this superiority is due to UPAGE’s
capability of learning distributions in a separate way.

6. Discussion

In the present chapter, we have introduced PAGE and UPAGE. PAGE is based on PCFG-LA,
which takes into account latent annotations to weaken the context freedom assumption. By
considering latent annotations, dependencies among nodes can be considered. We reported
in Ref. ([12]) that PAGE is more powerful for several benchmark tests than other GP-EDAs,
including GMPE and POLE.

Although PCFG-LA is suitable for estimating dependencies among local nodes, it cannot
consider global contexts (contexts of entire tree structures) behind individuals. In many
real-world problems, not only local dependencies but also global contexts have to be taken
into account. In order to consider the global contexts, we have proposed UPAGE by extending
PCFG-LA into a mixture model (PCFG-LAMM). In the bipolar royal tree problem, there are
two optimal structures of x and y and the global contexts represent which optima (x or y) each
tree structure comes from. From Table 7, the mixture model of UPAGE successfully worked
and UPAGE could estimate mixed population separately. We have also shown that a mixture
model is effective not only in multimodal problems but also in some unimodal problems,
namely in the DMAX problem. Although the optimal solution of the DMAX problem is
represented by mathematically one expression, the tree expressions are not unique, due to
commutative operators (×3 and +3). Consequently, the mixture model is also effective in
the DMAX problem (see Section 5.3.3), and this situation where there exists the expression
diversity often arises in real world problems. When obtaining multiple optimal solutions
in a single run, UPAGE succeeded in cases for which PAGE obtained only one of the

67Programming with Annotated Grammar Estimation

20 Will-be-set-by-IN-TECH

Model = 0 Pr

ζ0 0.11
S [1] 1.00
S [0] → aS [10] 0.20
S [0] → aS [2] 0.18
S [0] → aS [5] 0.28
S [1] → d S [4] S [4]S [4] S [4] 1.00
S [10] → x 0.14
S [10] → y 0.86
S [11] → x 0.14
S [11] → y 0.86
S [12] → a S [10] 0.17
S [12] → a S [2] 0.18
S [12] → a S [5] 0.32
S [13] → x 0.21
S [13] → y 0.79
S [14] → b S [7]S [7] 0.10
S [14] → c S [10] S [10] S [10] 0.15
S [15] → x 0.12
S [15] → y 0.88
S [2] → x 0.25
S [2] → y 0.75
S [3] → aS [10] 0.21
S [3] → aS [15] 0.18
S [3] → aS [2] 0.17
S [3] → aS [5] 0.22
S [4] → c S [8]S [8] S [8] 1.00
S [5] → y 0.97
S [6] → y 1.00
S [7] → x 0.52
S [7] → y 0.48
S [8] → b S [0]S [0] 0.50
S [8] → b S [12]S [12] 0.17
S [8] → b S [3]S [3] 0.31
S [9] → x 0.14
S [9] → y 0.86

Model = 3 Pr

ζ3 0.52
S [11] 1.00
S [0] → aS [13] 0.16
S [0] → aS [2] 0.29
S [0] → aS [5] 0.32
S [1] → b S [0]S [0] 0.13
S [1] → b S [14]S [14] 0.19
S [1] → b S [3]S [3] 0.15
S [1] → b S [7]S [7] 0.17
S [1] → b S [8]S [8] 0.32
S [10] → c S [1] S [1]S [1] 1.00
S [11] → d S [10] S [10] S [10] S [10] 1.00
S [12] → a S [4] 0.13
S [12] → c S [13] S [13] S [13] 0.34
S [12] → x 0.13
S [13] → x 0.72
S [13] → y 0.28
S [14] → a S [15] 0.16
S [14] → a S [4] 0.10
S [14] → a S [5] 0.45
S [14] → a S [6] 0.13
S [15] → x 0.89
S [15] → y 0.11
S [2] → x 0.99
S [3] → aS [13] 0.11
S [3] → aS [15] 0.14
S [3] → aS [2] 0.20
S [3] → aS [5] 0.44
S [4] → x 0.68
S [4] → y 0.32
S [5] → x 0.92
S [6] → x 0.93
S [7] → aS [13] 0.23
S [7] → aS [2] 0.31
S [7] → aS [4] 0.10
S [7] → aS [5] 0.29
S [8] → aS [2] 0.17
S [8] → aS [4] 0.18
S [8] → aS [5] 0.41
S [8] → aS [6] 0.16
S [9] → aS [13] 0.19
S [9] → aS [4] 0.19
S [9] → aS [5] 0.38

Table 7. Estimated parameters by UPAGE in a successful run. Although the number of mixtures is
μ = 4, we only show Model = 0 and Model = 3 related to optimal solutions of y and x, respectively. Due
to limited space, we do not show parameters of production rules which are smaller than 0.1.

68 Genetic Programming – New Approaches and Successful Applications

Programming with Annotated Grammar Estimation 21

Method Estimation of Position independent Consideration of
interaction among nodes model global contexts

Scalar SG-GP No Yes No
Vectorial SG-GP Partially No No

GT-EDA Yes No No
GMPE Yes Yes No
PAGE Yes Yes No

UPAGE Yes Yes Yes

Table 8. Classification of GP-EDAs and their capabilities.

optima. This result shows that UPAGE is more effective than PAGE not only quantitatively
but also qualitatively. We also note that UPAGE is more powerful than PAGE in terms of
computational time. In our computer experiments, we set the number of parameters in
UPAGE and PAGE to be approximately the same. Figure 10 shows the relative computational
time per generation of UPAGE and PAGE (the computational time of PAGE is normalized to 1)
and we see that UPAGE required only sixty percent of the time required by PAGE. Although
we have shown in Section 5.3.1 that UPAGE and PAGE required approximately the same
number of fitness evaluations to obtain the optimal solution in the royal tree problem, UPAGE
is more effective even for the royal tree problem if the actual computational time is considered.

Figure 10. The computational time per generation of UPAGE and PAGE (smaller is better). The time of
PAGE is normalized to 1.

Table 8 summarizes functionalities of several GP-EDAs. SG-GP employs the conventional
PCFG and hence it cannot estimate dependencies among nodes. Although GT-EDA, GMPE
and PAGE adopt different types of grammar models, they belong to the same class in the sense
that these three methods can take into account dependencies among nodes, which is enabled
by a use of specialized production rules depending on contexts. However, these methods
cannot consider global contexts, and consequently, they are not suitable for estimating
problems having complex distributions. In contrast, in addition to local dependencies among
nodes, UPAGE can consider global contexts of tree structures. The model of UPAGE is the
most flexible among these GP-EDAs, and this flexibility is reflected by the search performance.

In the present implementation of UPAGE, we had to set the mixture size μ and the annotation
size h in advance because UPAGE employed the EM algorithm. However, it is desirable to

69Programming with Annotated Grammar Estimation

22 Will-be-set-by-IN-TECH

estimate μ and h, as well as β, π and ζ during search. In the case of PAGE, we proposed
PAGE-VB in Ref. ([12]), which adopted VB to estimate the annotation size h. In a similar
fashion, it is possible to apply VB to UPAGE to enable the inference of μ and h.

We have shown the effectiveness of PAGE and UPAGE with benchmark problems not having
intron structures. However, in real-world applications, problems generally include intron
structures, which make the model and parameter inference much more difficult. For such
problems, we consider that intron removal algorithms ([13, 30]) are effective, and application
of such algorithms to GP-EDAs is left as a topic of future study.

7. Conclusion
We have introduced a probabilistic program evolution algorithm named PAGE and its
extension UPAGE. PAGE takes advantage of latent annotations that enables consideration of
dependencies among nodes, and UPAGE incorporates a mixture model for taking into account
global contexts. By applying UPAGE to computational experiments, we have confirmed that
a mixture model is highly effective for obtaining solutions in terms of the number of fitness
evaluations. At the same time, UPAGE is more advantageous than PAGE in the sense that
UPAGE can obtain multiple solutions for multimodal problems. We hope that it will be
possible to apply PAGE and UPAGE to a wide class of real-world problems, which is an
intended future area of study.

Author details
Yoshihiko Hasegawa
The University of Tokyo, Japan

Appendix A: Parameter list
We summarized parameters used in PAGE and UPAGE in the following table.

Target model Parameter Meaning

PAGE and UPAGE δ(x; T, X) Frequency of a root S [x] in a complete tree (0 or 1)
c(r; T, X) Frequency of a production rule r in a complete tree

h Annotation size
H Set of annotation H = {0, 1, · · · h − 1}
Ti Observed derivation tree
xj

i jth latent annotation in Ti
R[H] Set of production rules
N Set of non-terminals in CFG
T Set of terminals in CFG
F Set of function nodes in GP
T Set of terminal nodes in GP

PAGE π(S [x]) Probability of a root S [t]
β(r) Probability of a production rule r

UPAGE ζk Mixture ratio of kth model.
πk(S [x]) Probability of a root S [t] in kth model.

βk(r) Probability of a production rule r in kth model
zk

i zk
k = 1, if ith individual belongs to kth model

μ Mixture size

70 Genetic Programming – New Approaches and Successful Applications

Programming with Annotated Grammar Estimation 23

Appendix B: Derivation of a parameter update formula for UPAGE

We here explain details of the parameter update formula for UPAGE (see Section 4.1). By
separating Q(β,π, ζ|β,π,ζ) into terms containing β, π and ζ, a parameter update formula
for β, π and ζ can be calculated separately.

We here derive β. Maximization of Q(β,π, ζ|β,π, ζ) under a constraint ∑α β
k
(S [x] → α) = 1

can be performed by the method of Lagrange multipliers:

∂L

∂β
k
(S [x] → α)

= 0, (27)

with

L = Q(β,π, ζ|β,π, ζ) + ∑
k,x

ξk,x

(
1 − ∑

α
β

k
(S [x] → α)

)
, (28)

where ξk,x denote Lagrange multipliers. By calculating Equation 27, we obtain the following
update formula:

β
k
(S [x] → gS [y] · · · S [y]) ∝

N

∑
i=1

∑
Xi

∑
Zi

{
P(Xi, Zi|Ti;β,π,ζ)zk

i

×c(S [x] → gS [y] · · · S [y]; Ti, Xi)} . (29)

Because Equation 29 includes summation in terms of Xi, direct calculation is intractable
due to exponential increase of computational cost. Consequently, we use forward–backward
probabilities. Let ck(S [x] → gS [y] · · · S [y]; Ti) be

ck(S [x] → gS [y] · · · S [y]; Ti)

= ∑
Xi

∑
Zi

P(Xi, Zi|Ti;β,π,ζ)zk
i c(S [x] → g S [y] · · · S [y]; Ti, Xi).

By differentiating the likelihood of complete data (Equation 18) with respect to βk(S [x] →
g S [y] · · · S [y]), we have

ck(S [x] → gS [y] · · · S [y]; Ti)

=
βk(S [x] → gS [y] · · · S [y])

P(Ti;β,π,ζ) ∑
Xi

∑
Zi

∂P(Ti, Xi, Zi;β,π, ζ)
∂βk(S [x] → gS [y] · · · S [y]) .

The last term is calculated as

∑
Xi

∑
Zi

∂P(Ti, Xi, Zi;β,π,ζ)
∂βk(S [x] → gS [y] · · · S [y]) = ζk ∑

Xi

∂P(Ti, Xi;βk,πk)

∂βk(S [x] → g S [y] · · · S [y])
= ζk ∑

�∈cover(g,Ti)

f �Ti
(x;βk,πk) ∏

j∈ch(�,Ti)

bj
Ti
(y;βk,πk).

By this procedure, the update formula for β is expressed with Equation 21, and the update
formula for π is calculated in a similar way (and much easier). The update formula for ζ is

71Programming with Annotated Grammar Estimation

24 Will-be-set-by-IN-TECH

given by

ζ
k

∝
N

∑
i=1

∑
Xi

∑
Zi

P(Xi, Zi|Ti;β,π,ζ)zk
i

=
N

∑
i=1

1
P(Ti;β,π, ζ) ∑

Xi

∑
Zi

{
zk

i P(Ti, Xi, Zi;β,π, ζ)
}

=
N

∑
i=1

1
P(Ti;β,π, ζ) ∑

Xi

{
ζkP(Ti, Xi;β

k,πk)
}

=
N

∑
i=1

ζkP(Ti;βk,πk)

P(Ti;β,π,ζ)
.

8. References

[1] Abbass, H. A., Hoai, X. & Mckay, R. I. [2002]. AntTAG: A new method to
compose computer programs using colonies of ants, Proceedings of the IEEE Congress on
Evolutionary Computation, pp. 1654–1659.

[2] Attias, H. [1999]. Inferring parameters and structure of latent variable models by
variational Bayes, the 15th Conference of Uncertainty in Artificial Intelligence, Morgan
Kaufmann, Stockholm, Sweden, pp. 21–30.

[3] Baluja, S. [1994]. Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning, Technical Report
CMU-CS-94-163, Pittsburgh, PA.
URL: citeseer.ist.psu.edu/baluja94population.html

[4] Bosman, P. A. N. & de Jong, E. D. [2004]. Grammar transformations in an EDA for genetic
programming, Technical Report UU-CS-2004-047, Institute of Information and Computing
Sciences, Utrecht University.

[5] Dempster, A., Laird, N. & Rubin, D. [1977]. Maximum likelihood from incomplete data
via the EM algorithm, Journal of the Royal Statistical Society, Series B 39(1): 1–38.

[6] Goldberg, D. E., Deb, D. & Kargupta, H. [1993]. Rapid, accurate optimization of difficult
problems using fast messy genetic algorithms, in S. Forrest (ed.), Proc. of the Fifth Int. Conf.
on Genetic Algorithms, Morgan Kaufman, San Mateo, pp. 56–64.

[7] Harik, G. [1999]. Linkage learning via probabilistic modeling in the ECGA, IlliGAL Report
(99010).

[8] Hasegawa, Y. & Iba, H. [2006]. Estimation of Bayesian Network for Program Generation,
Proceedings of The Third Asian-Pacific Workshop on Genetic Programming, Hanoi, Vietnam,
pp. 35–46.

[9] Hasegawa, Y. & Iba, H. [2007]. Estimation of distribution algorithm based
on probabilistic grammar with latent annotations, Proceedings of IEEE Congress of
Evolutionary Computation, IEEE press, Singapore, pp. 1143–1150.

[10] Hasegawa, Y. & Iba, H. [2008]. A Bayesian network approach for program generation,
IEEE Transactions on Evoluationary Computation 12(6): 750–764.

[11] Hasegawa, Y. & Iba, H. [2009a]. Estimation of distribution algorithm based on PCFG-LA
mixture model, Transactions of the Japanese Society for Artificial Intelligence (in Japanese)
24(1): 80–91.

72 Genetic Programming – New Approaches and Successful Applications

Programming with Annotated Grammar Estimation 25

[12] Hasegawa, Y. & Iba, H. [2009b]. Latent variable model for estimation of distribution
algorithm based on a probabilistic context-free grammar, IEEE Transactions on
Evolutionary Computation 13(4): 858–878.

[13] Hooper, D. & Flann, N. S. [1996]. Improving the accuracy and robustness of
genetic programming through expression simplification, Proceedings of the First Annual
Conference, MIT Press, Stanford University, CA, USA.

[14] Larrañaga, P. & Lozano, J. A. [2002]. Estimation of Distribution Algorithms, Kluwer
Academic Publishers.

[15] Looks, M. [2005]. Learning computer programs with the Bayesian optimization
algorithm. Master thesis, Washington University Sever Institute of Technology.

[16] Looks, M. [2007]. Scalable estimation-of-distribution program evolution, GECCO ’07:
Proceedings of the 9th annual conference on Genetic and evolutionary computation, ACM, New
York, NY, USA, pp. 539–546.

[17] Matsuzaki, T., Miyao, Y. & Tsujii, J. [2005]. Probabilistic CFG with latent annotations,
In Proceedings of the 43rd Meeting of the Association for Computational Linguistics (ACL),
Morgan Kaufmann, Michigan, USA, pp. 75–82.

[18] Nordin, P. [1994]. A compiling genetic programming system that directly manipulates
the machine code, Advances in genetic programming, MIT Press, Cambridge, MA, USA,
chapter 14, pp. 311–331.

[19] Pelikan, M. & Goldberg, D. E. [2001]. Escaping hierarchical traps with competent genetic
algorithms, GECCO ’01: Proceedings of the 2001 conference on Genetic and evolutionary
computation, ACM Press, New York, NY, USA, pp. 511–518.

[20] Pelikan, M., Goldberg, D. E. & Cantú-Paz, E. [1999]. BOA: The Bayesian optimization
algorithm, Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99,
Vol. I, Morgan Kaufmann Publishers, San Fransisco, CA, Orlando, FL, pp. 525–532.

[21] Poli, R. & McPhee, N. F. [2008]. A linear estimation-of-distribution GP system, Proceedings
of Euro GP 2008, Springer-Verlag, pp. 206–217.

[22] Punch, W. F. [1998]. How effective are multiple populations in genetic programming,
Genetic Programming 1998: Proceedings of the Third Annual Conference, Morgan Kaufmann,
University of Wisconsin, Madison, Wisconsin, USA, pp. 308–313.

[23] Ratle, A. & Sebag, M. [2001]. Avoiding the bloat with probabilistic grammar-guided
genetic programming, Artificial Evolution 5th International Conference, Evolution Artificielle,
EA 2001, Vol. 2310 of LNCS, Springer Verlag, Creusot, France, pp. 255–266.

[24] Regolin, E. N. & Pozo, A. T. R. [2005]. Bayesian automatic programming, Proceedings of
the 8th European Conference on Genetic Programming, Vol. 3447 of Lecture Notes in Computer
Science, Springer, Lausanne, Switzerland, pp. 38–49.

[25] Sałustowicz, R. P. & Schmidhuber, J. [1997]. Probabilistic incremental program evolution,
Evolutionary Computation 5(2): 123–141.

[26] Sastry, K. & Goldberg, D. E. [2003]. Probabilistic model building and competent genetic
programming, Genetic Programming Theory and Practise, Kluwer, chapter 13, pp. 205–220.

[27] Sato, H., Hasegawa, Y., Bollegala, D. & Iba, H. [2012]. Probabilistic model building GP
with belief propagation, Proceedings of IEEE Congress on Evolutionary Computation (CEC
2012). accepted for publication.

[28] Shan, Y., McKay, R. I., Abbass, H. A. & Essam, D. [2003]. Program evolution with explicit
learning: a new framework for program automatic synthesis, Proceedings of the 2003
Congress on Evolutionary Computation CEC2003, IEEE Press, Canberra, pp. 1639–1646.

[29] Shan, Y., McKay, R. I., Baxter, R., Abbass, H., Essam, D. & Hoai, N. X. [2004]. Grammar
model-based program evolution, Proceedings of the 2004 IEEE Congress on Evolutionary
Computation, IEEE Press, Portland, Oregon, pp. 478–485.

73Programming with Annotated Grammar Estimation

26 Will-be-set-by-IN-TECH

[30] Shin, J., Kang, M., McKay, R. I., Nguyen, X., Hoang, T.-H., Mori, N. & Essam, D. [2007].
Analysing the regularity of genomes using compression and expression simplification,
Proceedings of Euro GP 2007, Springer-Verlag, pp. 251–260.

[31] Tanev, I. [2004]. Implications of incorporating learning probabilistic context-sensitive
grammar in genetic programming on evolvability of adaptive locomotion gaits of
snakebot, GECCO 2004 Workshop Proceedings, Seattle, Washington, USA.

[32] Tanev, I. [2005]. Incorporating learning probabilistic context-sensitive grammar in
genetic programming for efficient evolution and adaptation of Snakebot, Proceedings of
EuroGP 2005, Springer Verlag, Lausanne, Switzerland, pp. 155–166.

[33] Whigham, P. A. [1995]. Grammatically-based genetic programming, Proceedings of the
Workshop on Genetic Programming : From Theory to Real-World Applications, Tahoe City,
California USA, pp. 44–41.

[34] Whigham, P. A. [1996]. Search bias, language bias, and genetic programming, Genetic
Programming 1996: Proceedings of the First Annual Conference, MIT Press, Stanford
University, CA, USA, pp. 230–237.

[35] Whigham, P. A. & Science, D. O. C. [1995]. Inductive bias and genetic programming, In
Proceedings of First International Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications, pp. 461–466.

[36] Wineberg, M. & Oppacher, F. [1994]. A representation scheme to perform program
induction in a canonical genetic algorithm, Parallel Problem Solving from Nature III, Vol.
866 of LNCS, Springer-Verlag, Jerusalem, pp. 292–301.

[37] Yanai, K. & Iba, H. [2003]. Estimation of distribution programming based on Bayesian
network, Proceedings of the 2003 Congress on Evolutionary Computation CEC2003, IEEE
Press, Canberra, pp. 1618–1625.

[38] Yanai, K. & Iba, H. [2005]. Probabilistic distribution models for EDA-based GP, GECCO
2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, Vol. 2, ACM
Press, Washington DC, USA, pp. 1775–1776.

[39] Yanase, T., Hasegawa, Y. & Iba, H. [2009]. Binary encoding for prototype tree of
probabilistic model building gp, Proceedings of 2009 Genetic and Evolutionary Computation
Conference (GECCO 2009), pp. 1147–1154.

74 Genetic Programming – New Approaches and Successful Applications

Chapter 4

© 2012 Esmeraldo et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Genetically Programmed Regression Linear
Models for Non-Deterministic Estimates

Guilherme Esmeraldo, Robson Feitosa,
Dilza Esmeraldo and Edna Barros

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48156

1. Introduction

Symbolic regression is a technique which characterizes, through mathematical functions,
response variables with basis on input variables. Their main features include: need for no (or
just a few) assumptions about the mathematical model; the coverage of multidimensional
data, frequently unbalanced with big or small samples. In order to find the plausible
Symbolic Regression Models (SRM), we used the genetic programming (GP) technique [1].

Genetic programming (GP) is a specialization of genetic algorithms (GA), an evolutionary
algorithm-based methodology inspired by biological evolution, to find predictive functions.
Each GP individual is evaluated by performing its function in order to determine how its
output fits to the desired output [2,3].

However, depending on the problem, one may notice that the estimates of the SRM found
from the GP may present errors [4], affecting the precision of the predictive function. To
deal with this problem, some studies [5,6] substitute the predictive functions, which are
deterministic mathematical models, by linear regression statistical models (LRM) to
compose the genetic individual models.

LRM, as well as the traditional mathematical models, can be used to model a problem and
make estimates. Their great advantage is the possibility of controlling the estimate errors.
Nevertheless, the studies available in the literature [5,6] have considered only information
criteria, such as the sum of least squares [7] and AIC [8], as evaluation indexes with respect
to the dataset and comparison of the solution candidate models. Despite the models
obtained through this technique generate good indexes, sometimes the final models may not
be representative, since the model structure assumptions were not verified, bringing some
incorrect estimates [9].

Genetic Programming – New Approaches and Successful Applications 76

So, in this study we propose the use of statistical inference and residual analysis to evaluate
the final model, obtained through GP, where we check the assumptions about the structure
of the model. In order to evaluate the proposed approach, we carried out some experiments
with the prediction of performance of applications in embedded systems.

This chapter is organized as follows. In Section 2, we briefly introduce the theoretical basis
of the regression analysis. In Section 3, we detail the main points of the proposed approach.
In Section 4, we introduce the application of the proposed approach through a case study.
Section 5 shows the experimental results of the case study. Finally, in Section 6, we raise the
conclusions obtained with this work.

2. Linear regression background
Like most of the statistical analysis techniques, the objective of the linear regression analysis
is to summarize, through a mathematical model called Linear Regression Model (LRM), the
relations among variables in a simple and useful way [10]. In some problems, they can also
be used to specify how one of the variables, in this case called response variable or
dependent variable, varies as a function of the change in the values of the other variables of
the relation, called predictive variables, regressive variables or systematic variables.

The predictive variables can be quantitative or qualitative. The quantitative variables are
those which can be measured through a quantitative scale (i.e., they have a measurement
unit). On the other hand, the qualitative variables are divided in classes. The individual
classes of a classification are called levels or classes of a factor. In the classification of data in
terms of factors and levels, the important characteristic that is observed is the extent of the
variables of a factor which can influence the variable of interest [11]. These factors are often
represented by dummy variables [12].

Let D be a factor with five levels. The jth dummy variable Uj for the factor D, with j=1,...,5,
has the ith value uij, for i =1,...,n, given by

 1,
0, .

th
i

ij
if D j category of Du
otherwise

 == 


 (1)

For instance, let there be a variable, which supports a certain characteristic x, as a two-level
factor D. Taking a sample, shown in Table 1, with 5 different configurations, we can
represent the factor D with the dummy variables of Table 2.

Support to characteristic x
1 Yes
2 No
3 Yes
4 No
5 No

Table 1. Sample with size 5, with several pipeline support configurations.

Genetically Programmed Regression Linear Models for Non-Deterministic Estimates 77

u1 u2
1 1 0
2 0 1
3 1 0
4 0 1
5 0 1

Table 2. Representation of the sample of Table 1, through dummy variables.

We can see in Table 2 that the configurations with support to the characteristic x had values
u1=1 and u2=0, and that the configurations without support had values u1=0 and u2=1.

LRMs may also consider the combination of two or more factors. When the LRM has more
than one factor, the effect of the combination of two or more factors is called interaction effect.
Interactions occur when the effect of a factor varies according to the level of another factor
[10]. In contrast, the effect of a simple factor, that is, without interaction, is called main effect.
The interaction concept is given as follows: if the change in the mean of the response variable
between two levels of a factor A is the same for different levels of a factor B, then we can say
that there is no interaction; but if the change is different for different levels of B, then we say
that there is interaction. Interactions report the effect that factors have over the risk of the
model, and which are not reported in the analysis of correlation between the factors.

So, considering the relations between the dependent variables and the predictive variables,
the statistical linear regression model will be comprised of two functions, one for the mean
and another for the variance, defined by the following equations, respectively:

 0 1(|)E Y X x xβ β= = + (2)

2(|)Var Y X x σ= = (3)

where the parameters in the mean function are the intercept β0, which is the value of the
mean E(Y|X=x) when x is equal to zero, and the slope β1, which is the rate of change in
E(Y|X=x) for a change of values of X, as we can see in Figure 1. Varying these parameters, it
is possible to obtain all the line equations. In most applications, these parameters are
unknown and must be estimated with basis on the problem data. So, we assume that the
variance function is constant, with a positive value σ2 which is normally unknown.

Differently from the mathematical models, which are deterministic, linear regression models
consider the errors between the observed values and these estimated by the line equation.
So, due to the variance σ2>0, the values observed for the ith response yi are typically different
from the expected values E(Y|X=xi). In order to consider the error between the observed and
the expected data, we have the concept of statistical error, or ei, for the case i implicitly
defined by the equation:

 (|)i i iy E Y X x e= = + (4)

Genetic Programming – New Approaches and Successful Applications 78

Figure 1. Graphic of the line equation E(Y|X=x)=β0 + β1x.

or explicitly by:

 (|)i i ie y E Y X x= − = (5)

The ei errors depend on the unknown parameters of the mean function and are random
variables, corresponding to the vertical distance between the point yi and the function of the
mean E(Y|X=xi).

We make two important assumptions about the nature of the errors. First, we assume that
E(ei|xi)=0. The second assumption is that the errors must be independent, which means that
the value of the error for one case does not generate information about the value of the error
for another case. In general, we assume that the errors are normally distributed (statistical
Gaussian distribution), with mean zero and variance σ2, which is unknown.

Assuming n pairs of observations (x1, y1), (x2, y2), ..., (xn, yn), the estimates 0β̂ and 1β̂ of β0
and β1, respectively, must result in a line that best fits to the points. Many statistical methods
are suggested to obtain estimates of the parameters of a model. Among these models, we
can highlight the Least Squares and Maximum Likelihood methods. The first one stands out
for being the most used estimator [13]. So, the Least Squares methods is intended to
minimize the sum of the squares of the residuals ei, which will be defined next, where the
estimators are given by the equations:

1 1

1
1

2

2 1

1

()()

ˆ

()

n n

i in
i i

i i
i

n

in
i

i
i

y x
y x

n

x
x

n

β

= =

=

=

=

−
=

−

 





 (6)

 0 1
ˆ ˆy xβ β= − (7)

Genetically Programmed Regression Linear Models for Non-Deterministic Estimates 79

where x and y are given by:

 1

n

i
i

x
x

n
==


 (8)

 1

n

i
i

y
y

n
==


 (9)

With the estimators, the regression line (or model) is given by:

 0 1
ˆ ˆŷ xβ β= + (10)

where each pair of observations meets the relation:

 0 1
ˆ ˆ , 1,2,..,i i iy x e for i nβ β= + + = (11)

From the above equation, we can then define the residual as:

 ˆ ˆi i ir e y y= = − (12)

where êi is the error in the fitness of the model for the ith observation of yi.

The residuals êi are used to obtain an estimate of the variance σ2 through the sum of the
squares of êi:

2

2 1
ˆ

ˆ
2

n

i
i

e

n
σ ==

−


 (13)

According to [14], the traditional project flow for modeling through LRMs can be divided
into three stages: (i) formulation of models; (ii) fitness and (iii) inference.

LRMs are a very useful tool, since they are very flexible in stage (i), are simply computable
in (ii) and have reasonable criteria in (iii). These stages are performed in this sequence. In
the analysis of complex data, after the inference stage, we may go back to stage (i) and
choose other models with basis on more detailed information obtained from (iii).

The first stage, formulation of models, covers the choice of options for the distribution of
probabilities of the response variable (random component), predictive variables and the
function that links these two components. The response variable used in this work consists
in the estimate of the performance of the communication structure of the platform. The
predictive variables are the configuration parameters of the buses contained in the space of
the communication project. For this study, we analyzed several linking functions, and
empirically chose the identity function, because it represents the direct mapping between
bus configurations and their respective estimated performances.

Genetic Programming – New Approaches and Successful Applications 80

The fitness stage consists in the process of estimation of the linear parameters of the
generalized linear models. Several methods can be used to estimate the LRM parameters,
such as the Least Squares and Maximum Likelihood methods.

Finally, the inference stage has the main objective of checking the adequateness of the model
and performing a detailed study about the unconformities between the observations and the
estimates given by the model. These unconformities, when significant, may imply in the
choice of another linear model, or in the acceptance of aberrant data. Anyway, the whole
methodology will have to be repeated. The analyst, in this stage, must check the precision
and the interdependence of the performance estimates, build trust regions and tests about
the parameters of interest, statistically analyze the residuals and make predictions.

3. Description of the proposed approach

The GP algorithm herein used follows the same guidelines of the traditional GP approaches:
representation of solutions as genetic individuals; selection of the training set; generation of
the starting population of genetic individuals that are solution candidates; fitness of the
solution candidates to the training set; selection of parents; evolution, through selection,
crossover and mutation operators [2]. Besides these activities, this work includes two new
stages, which consist in the evaluation of the final model, as shown in the flow of Figure 1.

Figure 2. Flow of the proposed PG approach with LRM.

Genetically Programmed Regression Linear Models for Non-Deterministic Estimates 81

When the processing of the GP algorithms ends, due to some stop criterion, (e.g. the
maximum number of generations is reached), the fittest genetic individual to the data is
selected to be formally evaluated through statistical inference, with the application of the
test of assumptions. Depending on the result of the evaluation, the GP algorithm can either
start a new iteration, generating a new starting population, or present the LRM as a final
solution.

If no candidate is approved in the formal evaluation, at the end of the iterations (limited to a
maximum number as the second stop criterion), the best candidate among all the iterations
may be reevaluated through residual diagnosing. In this other evaluation method, the
assumptions about the model may be less formal, becoming, this way, a more subjective
kind of analysis.

Each one of the activities presented in the Flow of Figure 1 will be detailed in the next
subsections.

3.1. Representation of solutions as genetic individuals

GP normally uses trees as data structures [15] because the solutions are, commonly,
mathematical expressions, and then it is necessary to keep their syntactic structure (trees are
largely used to represent syntactic structures, defined according to some formal grammar
[16]).

As seen in the previous subsection, linear regression models are statistical models
comprised of two elements: a response variable and the independent variables. So, these
models are structured, in the proposed approach, also as trees, called expression trees, where
the internal nodes are either linking operators (represented by the arithmetic operator of
addition) or iteration operators (represented by the arithmetic operator of multiplication)
acting between the predictive variables, which are located in the leaves of the tree, as shown
in Figure 3.

Figure 3. Example of LRM modeled as a genetic individual.

It can be seen, in the top of Figure 3, an LRM, and right below, the respective model in the
form of a tree, which is the structure of a genetic individual. In this individual, we have, in

Genetic Programming – New Approaches and Successful Applications 82

the roots of the tree and of the sub-tree in the left, the linking operator, and in the leaves we
have the predictive variables X1, X2 and X3.

Formally, an LRM modeled as a genetic individual can be defined as a tree containing a
finite set of one or more nodes, where:

i. there is a special node called root.
ii. the rest of the nodes form:

1. two distinct sets where
2. each one of these sets is also a tree which, in this case, is also called sub-tree. The

sub-trees may be either left or right.
iii. the roots of the tree, and of the adjacent sub-trees, is either a linking or an iteration

operator.
iv. the leaves are independent variables.

Once we define the data structure that will be used to represent the LRMs as genetic
individuals, the next task, as defined in the flow of Figure 2, is the selection of the points of
the project space that will be used to form the training set for the GP algorithm. The
following subsection gives more details about the technique chosen to select points.

3.2. Selection of the training set

The selection of the elements that will compose the training set can be done in many ways,
but techniques like random sampling do not guarantee a distributed sample, and variance-
based sampling does not allow to collect the whole dataset of the sample, and then the
selected set may not be enough to obtain a linear regression model which enables accurate
estimates. So, in this work, we use the Design of Experiment technique [17] for the selection
of points that will compose the training space.

Design of experiments, also known in statistics as Controlled Experiment, refers to the
process of planning, designing and analyzing an experiment so that valid and objective
conclusions can be extracted effectively and efficiently. In general, these techniques are used
to collect the maximum of relevant information with the minimum consumption of time and
resources, and to obtain optimal solutions, even when it is impossible to have a functional
mathematical (deterministic) model [17-20]

The design of experiment technique adopted in this work is known as Audze-Eglais Uniform
Latin Hypercube [21,22]. The Audze-Eglais method is based on the following analogy to
Physics:

Assume a system composed of points of mass unit which exert repulsive forces among each other,
causing the system to have potential energy. When the points are freed, from a starting state,
they move. These points will achieve equilibrium when the potential energy of the repulsive
forces of the masses is minimal. If the magnitude of the repulsive forces is inversely proportional
to the square of the distance between the points, then the minimization of equation below will
produce a system of distributed points, as uniform as possible.

Genetically Programmed Regression Linear Models for Non-Deterministic Estimates 83

 2
1 1

1P P

p q p pq

U
L= = +

=   (14)

where U is the potential energy and is the distance between the points p and q, and p≠q.

The points of the project space are comprised of the parameters of the system to be modeled,
and each point is a combination of the values that these parameters can receive. The Audze-
Eglais method can be applied to these project spaces, provided that we consider the
intervals (the distances) between the values of each parameter of the system, and that these
values are taken together, in order to minimize the objective function.

The minimization of the above equation can be performed through some optimization
technique or by verification of every possible combination. The use of the second approach
may be unviable, since the search for each possible combination in project spaces with many
points has a high computational cost. So, in this study, we used the GPRSKit [23] tool, which
uses genetic programming techniques to minimize the equation, and outputs the points of
the project space identified in the optimization of the equation.

Once defined the training set, the next task is the generation of a starting population of
genetic individuals, which are LRMs candidate to solution, so the genetic algorithm can
evolve them.

3.3. Generation of the starting population of genetic individuals

There must be a starting population so that the evolution algorithm can act, through the
application of the selection, crossover and evolution operators. For this, aiming at the
variability of individuals and consequent improvement on the precision of results, we
adopted the Ramped Half-and-Half [24] technique.

This technique selects, initially, a random value to be the maximum depth of the tree to be
generated. Next, the method for generation of the new tree is selected. Ramped Half-and-Half
uses two generation methods, where each one generates half of the population. They are
described below:

• Growing: this method creates new trees of several sizes and shapes, regarding the
depth limit previously defined. Figure 4(a) shows an example of a tree created with the
application of this method. In it, we see that the leaves have different depths.

• Complete: a tree created with this method has its leaves with the same depth, which is
also selected at random, but respects the depth limit initially selected. Figure 4(b) shows
a tree created with this method. Notice that all leaves have the same depths.

3.4. Description of the utility function (Fitness)

The fitness of a candidate LRM is evaluated with basis on the quality of the estimates that it
generates compared to the data obtained from the problem data. The quality of an LRM can
be quantified through its fitness and its complexity, measured, in this study, by the Akaike
Information Criterion (AIC) [8], since it is one of the most used criteria [10].

Genetic Programming – New Approaches and Successful Applications 84

Figure 4. Examples of trees generated from (a) complete generation method and (b) generation by
growing.

The AIC can be given by the following equation:

 2. 2.ln()AIC tc L= − (15)

where tc is the number of terms of the model and L is the likeliness, which is the pooled
density of all the observations. Considering an independent variable with normal
distribution with mean 0 1 ixβ β+ and variance σ2, the likeliness can be given by:

2
0 1

1
2

()
1.

2 2
0 1 2

1(, ,)
(2)

n

i i
i

y x

n
L e

β β

σβ β σ
σ π

=
− −

−


= (16)

3.5. Evolution

In this stage we apply, to the solution candidate genetic individuals, the selection, mutation
and evolution operations. The first operation is responsible for the selection of individuals
that will compose the set of parents. In this set, the genetic crossover function will act, so that
the genetic content of each individual will be transferred to another one, generating new
solution candidates. The objective is to group the best characteristics in certain individuals,
forming better solutions. The mutation function will select some of the individuals to have
their genetic content randomly changed, to cause genetic variability in the populations,
avoiding the convergence of the algorithm to a local maximum.

The selection, crossover and mutation operations are described next.

3.5.1. Parents selection

The method for selection of parents must simulate the natural selection mechanism that acts
on the biological species: the most qualified parents, those which better fits to the problem
data, generate a large number of children, while the less qualified can also have descendents,

Genetically Programmed Regression Linear Models for Non-Deterministic Estimates 85

so avoiding premature genetic convergence. Consequently, we focus on individuals highly
fitted, without completely discarding those individuals with very low degree of fitness.

In order to build a set of parent LRMs, we use the tournament selection method [25]. In this
approach, a predetermined number of solution candidate LRMs are randomly chosen to
compete against each other. With this selection technique, the best LRMs of the population
will only have advantage over the worst, i.e., they will only win the tournament if they are
chosen. Tournament parameters, like tournament size and generations number, are
dependent on the problem domain. In this work, they are described in case study section.

The proposed approach for GP also uses the technique of selection by elitism [26]. In this
approach, only the individual having the best fitness function value is selected. With this,
we guarantee that the results of the GP approach will always have a progressive increase at
each generation.

3.5.2. Crossover and mutation

In order to find the LRM that best fits to the data obtained with communication graphs, the
crossover and mutation operators are applied to the genetic individuals, the LRM trees, as
shown in Figure 5. The crossover and mutation operators, in genetic programming, are
similar to those present in conventional genetic algorithms.

Figure 5. Expression trees representing LRMs under the operations of (a) crossover and (b) mutation.

Genetic Programming – New Approaches and Successful Applications 86

In the first operator, represented in Figure 5 (a), the candidates are selected for reproduction
according to their fitness (fittest candidates have higher probabilities of being selected) and,
next, exchange their genetic content (sub-trees), randomly chosen, between each other.
Figure 5(b) illustrates the crossover of the parents y=β0+ β1.X1 +β2.X2 + β3.X3 and y=β0+ β1.X1
+β2.X4 + β3.X5, generating the children y=β0+ β1.X1 +β2.X2 + β3.X4+ β4.X5 and y=β0+ β1.X1 +β2.X3.

With mutation, represented in Figure 5 (b), after a crossover operation, it is randomly
generated a mutation factor for each new genetic individual. If the mutation factor exceeds a
predetermined boundary, a sub-tree is selected at random in the LRM and mutated to a new
different sub-tree. Figure 5 illustrates the mutation of the model y=β0+ β1.X1 + β2.X3 to y=β0+
β1.X2 + β2.X3, where it can be noticed that there was a mutation in the genetic content X1 to
X2.

In the approach proposed in this work, we used the two-point crossover operator [27],
because this way it combines the largest number of chromosomal schemes and,
consequently, increases the performance of the technique. On the other hand, for mutation,
we used the simple operator [27], because the mutation prevents the stagnation of the search
with low mutation factor, but if this rate is too high, the search becomes excessively random,
because the highest its value is, larger is the substituted part of the population, which may
lead to the less of highly qualified structures.

3.6. Formal evaluation of a linear regression model

Once an iteration of the proposed GP algorithm is ended, the best solution found in the
iteration is formally evaluated. In linear regression, assumptions about the fitted model
must be considered so that the results can be reliable. So, the evaluation process consists in
verifying, by residual inference, the assumptions of normality, homoscedasticity and
independence about the distribution of errors of the fitted LRM. We used the following
adherence tests:

• Shapiro-Wilk [30] to check the assumption of normality;
• Breusch-Pagan [31] to check the assumption homoscedasticity;
• and Durbin-Watson [32] to check the independence (absence of autocorrelation) among

the errors.

If the result of any of these tests is not positive and the maximum number of iterations was
not reached, the GP algorithm will start a new evolution iteration through the generation of
a new starting population and will follow the flow presented in Figure 2. Otherwise, the
algorithm presents the LRM as final solution.

3.7. Residual Analyses for the genetic individual with the best AIC

At the end of all the iterations, if no genetic individual is approved in the formal
evaluations, the GP algorithm will select the solution with the best AIC for residual analysis.
The residual analysis allows the evaluation of the assumptions about a model [12].

Genetically Programmed Regression Linear Models for Non-Deterministic Estimates 87

So, in this work, the residual analysis is divided in two stages:

1. Residual diagnostic plots, where we build the following diagrams:
• Diagram of distribution of accumulated errors, to quantify the distance between

the estimates given by the LRM and the data of the training set;
• Q-Q Plots and Histograms, to check the assumptions about the error probability

distributions;
• Diagram of residuals dispersion against the fitted values, the check the assumption

of homoscedasticity;
• Diagram of dispersion of the residuals, to check the absence of autocorrelation

among the errors.
2. Application of the statistical test of Mann-Whitney-Wilcoxon [29] to the data of the

training set and the respective estimates given by the LRM found. The Mann-Whitney-
Wilcoxon test is a non-parametric [28] statistical hypothesis test used to check whether
the data of two independent sets tend to be equal (null hypothesis) or different
(alternative hypothesis). With these same sets, we still perform the computation of the
global mean errors, as a measurement for the central location of the set of residuals,
maximums and minimums. These measurements are used to check the precision of the
estimates and the possibility of presence of outliers.

4. Case study

In order to validate the proposed approach, we have used a case study where we predict the
performance of an embedded system. The case study includes an application of the SPLASH
benchmark1 [33] for a simulation model of an embedded hardware platform. This application,
which consists in the sorting a set of integers through radix [34], has two processes. The first
one allocates, in a shared memory, a data structure (list), comprised of a set of integers,
randomly chosen, some control flags and a mutex (to manage the mutually exclusive access).
Once the data structure is allocated, both processes will sort the integers list, concurrently.

For the execution of the application, we designed a simulation model of a hardware
platform, described in the language for modeling embedded systems, SystemC [35],
comprised of two models of MIPS processors, one for each process of the application of
sorting by radix, a shared memory, to stores program and application data, as well as
shared data, and a ARM Amba AHB [36] shared bus model.

This model allows us to explore the bus configurations to optimize the performance of the
application of radix sort.

The experiment methodology was based on the comparison between the execution times of
the application, obtained by the simulation model with the estimates acquired from an LRM
obtained by the proposed method. The objective is to show that the obtained models may
bring highly precise estimates.

1 Set of multiprocessed applications, used to study the following properties: computational load balance, computation
rates and traffic requirements in communications, besides issues related to spatial locations and how these properties
can be scalable with the size of the problems and the number of processors.

Genetic Programming – New Approaches and Successful Applications 88

We considered the following configuration parameters for the Amba AHB bus: data bus
width, fixed priority arbitrage mechanisms, operation frequency and transference types.
With the combination of the possible values for these parameters, we built a project space
with 72 distinct configurations.

In the representation of the LRMs, in the proposed GP algorithm, the configuration
parameters of the bus ware characterized as predictive variables and the execution time of
the embedded application, as the independent variable. The table below describes each one
of these variables.

Variable Representation
in the LRM Values

Data bus width bw 8, 16, 32 (bits)
Transference type ty With preemption, without preemption
Operation frequency fr 100, 166, 200 (MHz)
Priority of the first process p1 Higher, lower (priority)
Priority of the second process p2 Higher, lower (priority)
Execution time of the application te Time measured in ns

Table 3. Candidate variables to the linear regression model.

It can be seen in Table 3 that all the predictive variables have discrete values, and then they
are classified as factors. In the LRMs, the predictive variables are represented as dummy
variables.

With the increase in the training set, the probability of distortion on the estimates may
increase, because the possibility of existence of outliers in this set may also increase. On the
other hand, larger training sets may be more significant for the obtainment of a more precise
model. For this reason, we used three training sets, with distinct sizes, to check these
assumptions. So, we selected three sets, using the technique introduced in Subsection 3.2,
with 10% (7 samples), 20% (14 samples) and 50% (36 samples) of the project space. The rest
of the points were grouped in test sets, used to evaluate the precision of the estimates given
by the obtained models.

According to [2], on average, 50 generations are sufficient to find an acceptable solution, and
larger populations have higher probability of finding a valid solution. So, for the GP
algorithm, we considered the following parameters: 1000 candidates for each generation of
LRM trees; the maximum number of generations was limited in 50; and stop condition of the
algorithm consisting of an LRM which is the fittest candidate for 30 consecutive generations.

For each generation, 999 tournaments were carried out, where 50 LRMs were randomly chosen
to participate. During the tournament the AIC index is computed, in order to evaluate each one
of the participants. So, the winners, those with the best AIC indexes, are selected for crossover.
For mutation, a mutation factor is randomly computed in all the LRM trees generated by
crossover. If the computed value for each tree is below 5% - index demonstrated in [37] as
qualified to find good solutions in several problem types - then the three will mutate and, next,
selected to make part of the next generation. Finally, the fittest LRM trees of the present

Genetically Programmed Regression Linear Models for Non-Deterministic Estimates 89

generation are automatically selected, through elitism, to complete the number of individuals
of the next generation. Finally, the maximum number of iterations was limited to 50.

After the validation stages, the final models found, for the training set, had their estimates,
given by prediction, compared to those of the respective training sets, as described in the
next section.

5. Experimental results
As described in the previous section, we used three training sets for validation of the proposed
approach. However, the application of this approach brought different results for these sets.

For the first set, that with 10% if the project space, which we will call Set A, the final model
was approved in the formal evaluation, right in the first iteration. For Set B (the set with 20%
of the design space), the final model was also approved in the formal evaluation, but needed
five iterations. The results of the formal tests for the models selected for the Sets A and B can
be seen in Table 4.

Measurement P-Value
Set A B C
Shapiro-Wilk test(Normality) 14.44% 65.69% 3.2%
Breusch-Pagan test (Homoscedasticity) 53.66% 47.34% 1e-03%
Durbin-Watson test (Independence) 87.2% 56.80% 82.80%

Table 4. Formal test results for verification of assumptions about the LRMs selected for the Sets A, B and C.

The test results for Sets A and B, presented in Table 4, show indexes (p-values) above the
significance level, defined in this work as 5%. So, the structures of the errors of the selected
LRMs, for the sets A and B, tend to have normalized errors, with constant variances and
independent from each other.

Finally, for the Set C, the last training set, no model was approved in the formal evaluation.
Table 4 also shows the tests results for the final model found (best AIC) for the Set C. The p-
values for the Shapiro-Wilk and Breusch-Pagan tests are below the significance level, being
necessary to do residual analysis. The final results of the residual analysis are shown in the
graphics of Figure 6.

Figure 6 presents the graphics of (a) Q-Q Plot and (b) Residuals histograms, as well as (c) of
dispersion of the values observed in the Set C versus residuals and (d) of the order of
collection of residuals. Analyzing Figure 6 (b), we may notice that the errors presented by
the LRM selected for the Set C do not follow a normal distribution, violating the assumption
of normality of the model structure. However, it can be seen that the distribution of the
errors tends to be normal, since the points are distributed around the diagonal line of the Q-
Q Plot diagram shown in Figure 6 (a). In Figure 6 (c), in turn, the assumption of
homoscedasticity can be confirmed, since the maximum dispersion of the points is constant
around the line. Finally, the last assumption, independence among the errors, can be
verified in Figure 6 (d), since there is no apparent linear pattern in the distribution of points.

Genetic Programming – New Approaches and Successful Applications 90

So, in the diagrams of residual analysis, we could verify that all the assumptions –
normality, homoscedasticity and independence of the errors – about the structures of the
errors of the LRM selected for the Set C were met.

Figure 6. Graphics for analysis of assumptions about the distribution of errors for the training set with
50% of the project space.

Measurement Set A Set B Set C
Mann-Whitney-Wilcoxon test (P-Value) 100% 100% 79.12%
Global mean error 7.81e-08% 0% 7.15e-06%
Maximum error 1.43e-07% 0% 4.52e-05%
Minimum error 0% 0% 1.88e-08%

Table 5. Testing the fitness to the data from the training set and global mean, maximum and minimum
errors for the LRMs selected for the Sets A, B and C.

Genetically Programmed Regression Linear Models for Non-Deterministic Estimates 91

In order to check the adherence of the LRMs to the data of the respective training sets, we
performed the Mann-Whitney-Wilcoxon test, besides the computation of the global mean,
maximum and minimum errors. The results can be seen in Table 5.

According to the result of the Mann-Whitney-Wilcoxon test, presented in Table 5, we can see
that the estimates, given by the LRMs selected for the Sets A, B and C, tend to be equal to the
data in the respective training sets, since the p-values are above the significance level, defined
in the test as 5%. Analyzing Table 5, still, we notice that the selected LRMs presented accurate
estimates, since the mean global, maximum and minimum errors were almost zero.

Still analyzing the precision of the estimates, with respect to the Set C, the diagram of
accumulated errors is presented in Figure 7. It shows the cumulative error (x axis) for
percentages of the training set (y axis). The accumulated errors indicate the deviation
between the estimates given by the LRM and the data from the training set. In this case, the
estimates given by the selected LRM differed by a maximum of 5e-07.

Figure 7. Graphic of accumulated errors for the LRM selected for the Set C.

Finally, in order to evaluate the precision of the predictions, which are the estimates given
for the respective test sets of the Sets A, B and C, the selected LRMS were submitted to the
Mann-Whitney-Wilcoxon test. Besides this test, the global mean, maximum and minimum
errors were computed. The results can be seen in Table 6.

In Table 6, according to the results of the Mann-Whitney-Wilcoxon test, defined with a
significance index of 5%, for the three sets, the estimates given by the selected LRMs tend to be
equal to the data of the respective test sets. The three models had values for the global mean
and minimum errors very close. For the maximum errors, there was a little variation, with the
LRMs selected for the sets B and C, obtaining the highest and the lowest indexes, respectively.

Genetic Programming – New Approaches and Successful Applications 92

Measurement Results
Set A B C
Mann-Whitney-Wilcoxon test (P-Value) 53.05% 69.11% 59.25%
Mean global error 4.12% 4.15% 4.75%
Maximum error 11.11% 14.21% 9.23%
Minimum error 4.905e-05% 9.171e-02% 8.27e-06%

Table 6. Test of fitness to the data of the test set and the global mean, maximum and minimum errors.

Still analyzing the results of the measurements presented in Table 6, we notice that the
indexes obtained for the three sets, were comparatively very close. Such results may be
explained by the used of the technique of selection of the training sets, which returns
samples with high representative power.

In general, the use of the approach proposed in this work, which added methods for
evaluation of the LRMs selected by the GP algorithm and the technique of selection of the
elements of the training sets, allows the obtainment of solutions capable of providing precise
estimates, even with the use of small samples.

6. Conclusions
This work has described an approach for obtainment and formal validation of LRMs, by
means of the combination of genetic programming with statistical models. Our approach
used the Audze-Eglais Uniform Latin Hypercube technique for the selection of samples with
high representative power to form the training set. In order to evaluate the LRMs found
with the introduced technique, we used statistical tests of hypothesis and residual analysis,
aiming to verify the assumptions about the structures of the errors of these models.

In order to validate the proposed approach, we used a case study, with the prediction of
performance in embedded systems. The problem of the case study consisted in exploring the
configurations of a data bus in order to optimize the performance of the embedded
application of sorting a set of integers by radix. So, with the use of the proposed technique,
we generated LRMs capable of estimating the performance for all of the bus configurations.

The validation stages allowed us to realize that the LRMs found are adequate to the
prediction of performance of the application, since all the assumptions about the structures
of the errors were verified. So, the final LRMs were able to estimate the performances
accurately, presenting mean global errors below 5%.

Author details

Guilherme Esmeraldo1,3,*, Robson Feitosa1, Dilza Esmeraldo2, Edna Barros3
1Federal Institute of Ceará, Crato,
2Catholic College of Cariri, Crato,
3Federal University of Pernambuco, Recife, Brazil

* Corresponding Author

Genetically Programmed Regression Linear Models for Non-Deterministic Estimates 93

Acknowledgement

This paper has been supported by the Brazilian Research Council - CNPq under grant
number 309089/2007-7.

7. References

[1] Augusto D.A (2000) Symbolic Regression Via Genetic Programming. In Proceedings of
Sixth Brazilian Symposium on Neural Networks, Rio de Janeiro.

[2] Koza J.R (1992) Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MIT Press.

[3] Spector L, Goodman E, Wu A, Langdon W.B, Voigt H.M, Gen M, Sem S, Dorigo M,
Pezeshk S, Garzon M, Burke E (2001) Towards a New Evolutionary Computation:
Advances in the Estimation of Distribution Algorithms. In Proceedings of the Genetic
and Evolutionary Computation Conference, Morgan Kaufmann.

[4] Keijzer M (2003) Improving Symbolic Regression with Interval Arithmetic and Linear
Scaling.In Ryan C, Soule T, Keijzer M, Tsang E, Poli R., Costa E, editors. Heidelberg:
Springer. 70-78 pp.

[5] Esmeraldo G, Barros E (2010) A Genetic Programming Based Approach for Efficiently
Exploring Architectural Communication Design Space of MPSOCS. In Proceedings of
VI Southern Programmable Logic Conference.

[6] Paterlini S, Minerva T (2010) Regression Model Selection Using Genetic Algorithms,
Proceedings of the 11th WSEAS International Conference on RECENT Advances in
Neural Networks, Fuzzy Systems & Evolutionary Computing.

[7] Wolberg J (2005) Data Analysis Using the Method of Least Squares: Extracting the Most
Information from Experiments. Springer.

[8] Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike Information Criterion Statistics. D.
Reidel Publishing Company.

[9] Seber G. A. F, Lee A.J (2003) Linear Regression Analysis. Hoboken: Wiley.
[10] Weisberg S (2005) Applied Linear Regression, Third Edition. Hoboken: Wiley.
[11] McCulloch C.E, Searle S.R (2001) Generalized, Linear and Mixed Models. New York: Willey.
[12] Anderson D, Feldblum S, Modlin C, Schirmacher D, Schirmacher E, Thandi E (2004) A

Practitioner's Guide to Generalized Linear Models. Watson Wyatt Worldwide.
[13] Hausmana J, Kuersteinerb G (2008) Difference in Difference Meets Generalized Least

Squares: Higher Order Properties of Hypotheses Tests. In Journal of Econometrics, 144:
371-391.

[14] Nelder J.A, Wedderburn R.W (1972) Generalized linear models. Journal of the Royal
Statistical Society Series A, 135 (3): 370–384.

[15] Chellapilla K (1997) Evolving Computer Programs Without Subtree Crossover. In IEEE.
Transactions on Evolutionary Computation, 1(3):209–216.

[16] Aho A.V, Lam M.S, Sethi R, Ullman J.D (2006) Compilers: Principles, Techniques, and
Tools, Second Edition. Prentice Hall.

Genetic Programming – New Approaches and Successful Applications 94

[17] Antony J (2003) Design of Experiments for Engineers and Scientists. Butterworth-
Heinemann.

[18] Cox D.E (2000) The Theory of the Design of Experiments. Chapman and Hall/CRC.
[19] Mitchell M (1999) An Introduction to Genetic Algorithms. MIT Press.
[20] Dean A, Voss D (1999) Design and Analysis of Experiements. Springer.
[21] Audze P, Eglais V (1977) A new approach to the planning out of experiments. Problems

of dynamics and strength, volume 35, 1977.
[22] Bates J.S, Sienz J, Langley D.S (2003) Formulation of the Audze-Eglais Uniform Latin

Hypercube Design of Experiments. Adv. Eng. Software, 34(8): 493-506.
[23] GPRSKit. Genetically Programmed Respone Surfaces Kit. Available:
 http://www.cs.berkeley.edu/~hcook/gprs.html. Accessed 2012 April 13.
[24] Koza J.R (1998) Genetic Programming On the Programming of Computers by Means of

Natural Selection. MIT Press.
[25] Gen M, Cheng R (2000) Genetic algorithms and engineering optimization.Wiley.
[26] Ahn C.W, Ramakrishna R.S (2003) Elitism-Based Compact Genetic Algorithms. IEEE

Transactions On Evolutionary Computation, 7(4).
[27] Koza J.R, Poli R (2005) Genetic Programming, In Edmund Burke and Graham Kendal,

editors. Search Methodologies: Introductory Tutorials in Optimization and Decision
Support Techniques. Springer.

[28] Sprent N, Smeeton N.C (2007) Applied Nonparametric Statistical Methods, Fourth
Edition. Chapman and Hall/CRC.

[29] Fay M.P, Proschan M.A (2010) Wilcoxon-Mann-Whitney or t-test? On assumptions for
hypothesis tests and multiple interpretations of decision rules. Statistics Survey, 4: 1-39 pp.

[30] Shapiro S.S, Wilk M.B (1965) An analysis of variance test for normality (complete
samples). Biometrika 52 (3-4): 591–611 pp.

[31] Breusch T.S, Pagan A.R (1979) Simple test for heteroscedasticity and random coefficient
variation. Econometrica (The Econometric Society) 47 (5): 1287–1294 pp.

[32] Savin N.E, White K.J (1977) The Durbin-Watson Test for Serial Correlation with
Extreme Sample Sizes or Many Regressors. Econometrica 45(8): 1989-1996 pp.

[33] Woo S.C, Ohara M, Torrie E, Singh J.P, Gupta A (1995) The SPLASH-2 Programs:
Characterization and Methodological Considerations. In Proceedings of the 22nd
International Symposium on Computer Architecture Santa Margherita: 24-36 pp.

[34] Cormen T.H, Leiserson C.E, Rivest R.L, Stein C (2001) Introduction to Algorithms.
McGraw-Hill and The Mit Press.

[35] Black D.C, Donovan J (2004) SystemC: From the Groung Up. Kluwer Academic
Publishers.

[36] ARM AMBA (1999) AMBA Specification rev. 2.0, IHI-0011A, May 1999. Available:
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php.
Accessed 2012 April 13.

[37] Madar J, Abonyi J, Szeifert F (2005) Genetic Programming for the Identification of
Nonlinear Input–Output Models. In Industrial and Engineering Chemistry Research,
44: 3178 – 3186 pp.

Chapter 0

Parallel Genetic Programming on
Graphics Processing Units

Douglas A. Augusto, Heder S. Bernardino and Helio J.C. Barbosa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48364

1. Introduction

In program inference, the evaluation of how well a candidate solution solves a certain task
is usually a computationally intensive procedure. Most of the time, the evaluation involves
either submitting the program to a simulation process or testing its behavior on many input
arguments; both situations may turn out to be very time-consuming. Things get worse when
the optimization algorithm needs to evaluate a population of programs for several iterations,
which is the case of genetic programming.

Genetic programming (GP) is well-known for being a computationally demanding technique,
which is a consequence of its ambitious goal: to automatically generate computer
programs—in an arbitrary language—using virtually no domain knowledge. For instance,
evolving a classifier, a program that takes a set of attributes and predicts the class they belong
to, may be significantly costly depending on the size of the training dataset, that is, the amount
of data needed to estimate the prediction accuracy of a single candidate classifier.

Fortunately, GP is an inherently parallel paradigm, making it possible to easily exploit any
amount of available computational units, no matter whether they are just a few or many
thousands. Also, it usually does not matter whether the underlying hardware architecture
can process simultaneously instructions and data (“MIMD”) or only data (“SIMD”).1 Basically,
GP exhibits three levels of parallelism: (i) population-level parallelism, when many populations
evolve simultaneously; (ii) program-level parallelism, when programs are evaluated in parallel;
and finally (iii) data-level parallelism, in which individual training points for a single program
are evaluated simultaneously.

Until recently, the only way to leverage the parallelism of GP in order to tackle complex
problems was to run it on large high-performance computational installations, which are
normally a privilege of a select group of researchers. Although the multi-core era has emerged
and popularized the parallel machines, the architectural change that is probably going to

1 MIMD stands for Multiple Instructions Multiple Data whereas SIMD means Single Instruction Multiple Data.

©2012 Augusto et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Chapter 5

2 Will-be-set-by-IN-TECH

revolutionize the applicability of GP started about a decade ago when the GPUs began to
acquire general-purpose programmability. Modern GPUs have an astonishing theoretical
computational power, and are capable of behaving much like a conventional multi-core CPU
processor in terms of programmability. However, there are some intrinsic limitations and
patterns of workload that may cause huge negative impact on the resulting performance if
not properly addressed. Hence, this paper aims at presenting and discussing efficient ways
of implementing GP’s evaluation phase, at the program- and data-level, so as to achieve the
maximum throughput on a GPU.

The remaining of this chapter is organized as follows. The next Section, 2, will give an
overview of the GPU architecture followed by a brief description of the open computing
language, which is the open standard framework for heterogeneous programming, including
CPUs and GPUs. Section 3 presents the development history of GP in the pursuit of getting
the most out of the GPU architecture. Then, in Section 4, three fundamental parallelization
strategies at the program- and data-level will be detailed and their algorithms presented
in a pseudo-OpenCL form. Finally, Section 5 concludes the chapter and points out some
interesting directions of future work.

2. GPU programming

The origin of graphics processing units dates back to a long time ago, when they were
built exclusively to execute graphics operations, mainly to process images’ pixels, such
as calculating each individual pixel color, applying filters, and the like. In video or
gaming processing, for instance, the task is to process batches of pixels within a short
time-frame—such operation is also known as frame rendering—in order to display smooth and
fluid images to the spectator or player.

Pixel operations tend to be very independent among them, in other words, each individual
pixel can be processed at the same time as another one, leading to what is known as data
parallelism or SIMD. Although making the hardware less general, designing an architecture
targeted at some specific type of workload, like data parallelism, may result in a very efficient
processor. This is one main reason why GPUs have an excellent performance with respect to
power consumption, price, and density. Another major reason behind such a performance is
attributed to the remarkable growing of the game industry in the last years and the fact that
computer games have become more and more complex, pressing forward the development of
GPUs while making them ubiquitous.

It turned out that at some point the development of GPUs was advancing so well and the
architecture was progressively getting more ability to execute a wider range of sophisticated
instructions, that eventually it earned the status of a general-purpose processor—although
still an essentially data parallel architecture. That point was the beginning of the exploitation
of the graphics processing unit as a parallel accelerator for a much broader range of
applications besides video and gaming processing.

2.1. GPU architecture

The key design philosophy responsible for the great GPU’s efficiency is the maximization
of the number of transistors dedicated to actual computing—i.e., arithmetic and logic units
(ALU)—which are packed as many small and relatively simple processors [26]. This is

96 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 3

rather different from the modern multi-core CPU architecture, which has large and complex
cores, reserving a considerable area of the processor die for other functional units, such as
control units (out-of-order execution, branch prediction, speculative execution, etc.) and cache
memory [21].

This design difference reflects the different purpose of those architectures. While the GPU
is optimized to handle data-parallel workloads with regular memory accesses, the CPU is
designed to be more generic and thus must manage with reasonable performance a larger
variety of workloads, including MIMD parallelism, divergent branches and irregular memory
accesses. There is also another important conceptual difference between them. Much of
the extra CPU complexity is devoted to reduce the latency in executing a single task, which
classifies the architecture as latency-oriented [14]. Conversely, instead of executing single tasks
as fast as possible, GPUs are throughput-oriented architectures, which means that they are
designed to optimize the throughput, that is, the amount of completed tasks per unit of time.

2.2. Open Computing Language – OpenCL

The Open Computing Language, or simply OpenCL, is an open specification for
heterogeneous computing released by the Khronos Group2 in 2008 [25]. It resembles the
NVIDIA CUDA3 platform [31], but can be considered as a superset of the latter; they basically
differ in the following points. OpenCL (i) is an open specification that is managed by a set
of distinct representatives from industry, software development, academia and so forth; (ii)
is meant to be implemented by any compute device vendor, whether they produce CPUs,
GPUs, hybrid processors, or other accelerators such as digital signal processors (DSP) and
field-programmable gate arrays (FPGA); and (iii) is portable across architectures, meaning
that a parallel code written in OpenCL is guaranteed to correctly run on every other supported
device.4

2.2.1. Hardware model

In order to achieve code portability, OpenCL employs an abstracted device architecture that
standardizes a device’s processing units and memory scopes. All supported OpenCL devices
must expose this minimum set of capabilities, although they may have different capacities
and internal hardware implementation. Illustrated in Figure 1 is an OpenCL general device
abstraction. The terms SPMD, SIMD and PC are mostly GPU-specific, though; they could be
safely ignored on behalf of code portability, but understanding them is important to write
efficient code for this architecture, as will become clear later on.

An OpenCL device has one or more compute units (CU), and there is at least one processing
element (PE) per compute unit, which actually performs the computation. Such layers are
meant (i) to encourage better partitioning of the problem towards fine-grained granularity
and low communication, hence increasing the scalability to fully leverage a large number of
CUs when available; and (ii) to potentially support more restricted compute architectures, by

2 http://www.khronos.org/opencl
3 CUDA is an acronym for Compute Unified Device Architecture, the NVIDIA’s toolkit for GP-GPU programming.
4 It is worthy to note that OpenCL only guarantees functional portability, i.e., there is no guarantee that the same code

will perform equally well across different architectures (performance portability), since some low-level optimizations
might fit a particular architecture better than others.

97Parallel Genetic Programming on Graphics Processing Units

4 Will-be-set-by-IN-TECH

Figure 1. Abstraction of a modern GPU architecture

not strictly enforcing parallelism among CUs while still ensuring that the device is capable of
doing synchronism, which can occur among PEs within each CU [15].

Figure 1 shows four scopes of memory, namely, global, constant, local, and private memories.
The global memory is the device’s main memory, the biggest but also the slowest of the four
in terms of bandwidth and latency, specially for irregular accesses. The constant memory is
a small and slightly optimized memory for read-only accesses. OpenCL provides two really
fast memories: local and private. Both are very small; the main difference between them
is the fact that the former is shared among all the PEs within a CU—thus very useful for
communication—and the latter is even smaller and reserved for each PE.

Most of modern GPUs are capable of performing not only SIMD parallelism, but also what is
referred to as SPMD parallelism (literally Single Program Multiple Data), which is the ability to
simultaneously execute different instructions of the same program on many data. This feature is
closely related to the capability of the architecture in maintaining a record of multiple different
instructions within a program being executed which is done by program counter (PC) registers.
Nowadays GPUs can usually guarantee that at least among compute units there exists SPMD
parallelism, in other words, different CUs can execute different instructions in parallel. There
may exist SPMD parallelism within CUs also, but they occur among blocks of PEs.5 For the
sake of simplicity, the remaining of this chapter will ignore this possibility and assume that
all PEs within a CU can only execute one instruction at a time (SIMD parallelism), sharing
a single PC register. A strategy of parallelization described in Section 4.4 will show how
the SPMD parallelism can be exploited in order to produce one of the most efficient parallel
algorithms for genetic programming on GPUs.

2.2.2. Software model

OpenCL specifies two code spaces: the host and kernel code. The former holds any
user-defined code, and is also responsible for initializing the OpenCL platform, managing
the device’s memory (buffer allocation and data transfer), defining the problem’s parallel

5 Those blocks are known as warps [32] or wavefronts [1].

98 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 5

partitioning, submitting commands, and coordinating executions. The latter, the kernel code,
is the actual parallel code that is executed by a compute device.

An OpenCL kernel is similar to a C function6. Due to architectural differences across devices,
it has some restrictions, such as prohibiting recursion, but also adds some extensions, like
vector data types and operators, and is intended to be executed in parallel by each processing
element, usually with each instance working on a separate subset of the problem. A kernel
instance is known as work-item whereas a group of work-items is called a work-group.

Work-items within a work-group are executed on a unique compute unit, therefore, according
to the OpenCL specification, they can share information and synchronize. Determining how
work-items are divided into work-groups is a critical phase when decomposing a problem; a
bad division may lead to inefficient use of the compute device. Hence, an important part of
the parallel modeling concerns defining what is known as n-dimensional computation domain.
This turns out to be the definition of the global size, which is the total amount of work-items,
and the local size, the number of work-items within a work-group, or simply the work-groups’
size.

In summary, when parallelizing the GP’s evaluation phase, the two most important modeling
aspects are the kernel code and the n-dimensional computation domain. Section 4 will present
these definitions for each parallelization strategy.

3. Genetic programming on GPU: A bit of history

It is natural to begin the history of GP on GPUs referring to the first improvements obtained
by parallelization of a GA on programmable graphics hardware. The first work along this line
seems to be [41], which has proposed a genetic algorithm in which crossover, mutation, and
fitness evaluation were performed on graphic cards achieving speedups up to 17.1 for large
population sizes.

Other GA parallelization on GPUs was proposed in [39] which followed their own ideas
explored in [40] for an evolutionary programming technique (called FEP). The proposal, called
Hybrid GA, or shortly HGA, was evaluated using 5 test-functions, and CPU-GPU as well as
HGA-FEP comparisons were made. It was observed that their GA on GPU was more effective
and efficient than their previous parallel FEP.

Similarly to [41], [24] performed crossover, mutation, and fitness evaluation on GPU to solve
the problem of packing many granular textures into a large one, which helps modelers in
freely building virtual scenes without caring for efficient usage of texture memory. Although
the implementation on CPU performed faster in the cases where the number of textures was
very small (compact search space), the performance of the implementation on GPU is almost
two times faster when compared to execution on CPU.

The well-known satisfiability problem, or shortly SAT, is solved on graphic hardware in
[30], where a cellular genetic algorithm was adopted. The algorithm was developed using
NVIDIA’s C for Graphics (Cg) programming toolkit and achieved a speedup of approximately
5. However, the author reports some problems in the implementation process, like the
nonexistence of a pseudo-random number generator and limitations in the texture’s size.

6 The OpenCL kernel’s language is derived from the C language.

99Parallel Genetic Programming on Graphics Processing Units

6 Will-be-set-by-IN-TECH

Due the growing use of graphics cards in the scientific community, in general, and
particularly in the evolutionary computation field, as described earlier, the exploration of this
high-performing solution in genetic programming was inevitable. Ebner et al. published
the first work exploring the GPU capacity in GP [11]. Although a high level language was
used in that case (Cg), the GPU was only used to generate the images from the candidate
programs (vertex and pixel shaders). Then the created images are presented to the user for his
evaluation.

However, it was in 2007 that the extension of the technique of general purpose computing
using graphics cards in GP was more extensively explored [2, 9, 17, 18]. Two general purpose
computation toolkits for GPUs were preferred in these works: while [2, 9] implemented their
GP using Cg, Harding and Banzhaf [17, 18] chose Microsoft’s Accelerator, a .Net’s library
which provides access to the GPU via DirectX’s interface.

The automatic construction of tree-structural image transformation on GPU was proposed in
[2], where the speedup of GP was explored in different parallel architectures (master-slave and
island), as well as on single and multiple GPUs (up to 4). When compared with its sequential
version, the proposed approach obtained a speedup of 94.5 with one GPU and its performance
increased almost linearly by adding GPUs.

Symbolic regression, fisher iris dataset classification, and 11-way multiplexer problems
composed the computational experiments in [9]. The results demonstrated that although
there was little improvement for small numbers of fitness cases, considerable gains could be
obtained (up to around 10 times) when this number becomes much larger.

The classification between two spirals, the classification of proteins, and a symbolic regression
problem were used in [17, 18] to evaluate their Cartesian GP on GPU. In both works, each
GP individual is compiled, transferred to GPU, and executed. Some benchmarks were also
performed in [18] to evaluate floating point as well as binary operations. The rules of a
cellular automaton with the von Neumann neighborhood and used to simulate the diffusion
of chemicals were generated by means of Cartesian GP in [17]. The best obtained speedup in
these works was 34.63.

Following the same idea of compiling the candidate solutions, [16] uses a Cartesian GP on
GPU to remove noise in images. Different types of noise were artificially introduced into a
set of figures and performance analyses concluded that this sort of parallelism is indicated for
larger images.

A simple instruction multiple data interpreter was developed using RapidMind and
presented in [28], where a performance of one Giga GP operations per second was observed
in the computational experiments. In contrast to [16–18] where the candidate programs were
compiled to execute on GPUs, [28] showed a way of interpreting the trees. While the previous
presented approach requires that programs are large and run many times to compensate the
cost of compilation and transference to the GPU, the interpretable proposal of [28] seems to
be more consistent because it achieved speed ups of more than an order of magnitude in the
Mackey-Glass time series and protein prediction problems, even for small programs and few
test cases.

The same solution of interpreting the candidate programs was used in [27], but a predictor
was evolved in this case. Only the objective function evaluation was performed on GPU, but
this step represents, in that study, about 85% of the total run time.

100 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 7

Another study exploring the GPU capacity in GP is presented in [29]. RapidMind is used
to implement a GP solution to solve a cancer prediction problem from a dataset containing
a million inputs. A population of 5 million programs evolves executing about 500 million
GP operations per second. The author found a 7.6 speed up during the computational
experiments, but their discussion indicates that the increment in the performance was limited
by the access to the 768 Mb of the training data (the device used had 512Mb).

Since these first works were published, improving GP performance by using GP-GPU
becomes a new research field. Even the performance of GP on graphic devices of video game
consoles was analyzed [36–38], but PC implementations of GP have demonstrated to be faster
and more robust. However, it was with the current high level programming languages [4, 34],
namely NVIDIA’s CUDA and OpenCL, that GP implementations using GP becomes popular,
specially in much larger/real world applications. Also, TidePowerd’s GPU.NET was studied
for speed up Cartesian GP [19].

Genetic programming is used in [10] to search, guided by user interaction, in the space of
possible computer vision programs, where a real-time performance is obtained by using GPU
for image processing operations. The objective was evolving detectors capable of extracting
sub-images indicated by the user in multiple frames of a video sequence.

An implementation of GP to be executed in a cluster composed by PCs equipped with GPUs
was presented in [20]. In that work, program compilation, data, and fitness execution are
spread over the cluster, improving the efficiency of GP when the problem contains a very
large dataset. The strategy used is to compile (C code into NVIDIA CUDA programs) and
to execute the population of candidate individuals in parallel. The GP, developed in GASS’s
CUDA.NET, was executed in Microsoft Windows (during the tests) and Gentoo Linux (final
deployment), demonstrating the flexibility of that solution. That parallel GP was capable of
executing up to 3.44 (classification problem of network intrusion) and 12.74 (image processing
problem) Giga GP operations per second.

The computational time of the fitness calculation phase was reduced in [7, 8] by using CUDA.
The computational experiments included ten datasets, which were selected from well-known
repositories in the literature, and three GP variants for classification problems, in which
the main difference between them is the criterion of evaluation. Their proposed approach
demonstrated good performance, achieving a speedup of up to 820.18 when compared with
their own Java implementation, as well as a speedup of up to 34.02 when compared with
BioHEL [13].

Although with much less articles published in the GP field, OpenCL deserves to be
highlighted because, in addition of being non-proprietary, it allows for heterogeneous
computing. In fact, up to now only [4] presents the development of GP using OpenCL,
where the performance of both types of devices (CPU and GPU) was evaluated over the same
implementation. Moreover, [4] discusses different parallelism strategies and GPU was up to
126 times faster than CPU in the computational experiments.

The parallelism of GP techniques on GPU is not restricted only to linear, tree, and graph
(Cartesian) representations. The improvement in performance of other kinds of GP, such as
Grammatical Evolution [33], is just beginning to be explored. However, notice that no papers
were found concerning the application of Gene Expression Programming [12] on GPUs. Some
complementary information is available in [3, 6].

101Parallel Genetic Programming on Graphics Processing Units

8 Will-be-set-by-IN-TECH

4. Parallelization strategies

As mentioned in Section 2.2, there are two distinct code spaces in OpenCL, the host and kernel.
The steps of the host code necessary to create the environment for the parallel evaluation
phase are summarized as follows [4]:7

1. OpenCL initialization. This step concerns identifying which OpenCL implementation
(platform) and compute devices are available. There may exist multiple devices on the
system. In this case one may opt to use a single device or, alternatively, all of them, where
then a further partitioning of the problem will be required. Training data points, programs
or even whole populations could be distributed among the devices.

2. Calculating the n-dimensional computation domain. How the workload is decomposed
for parallel processing is of fundamental importance. Strictly speaking, this phase only
determines the global and local sizes in a one-dimensional space, which is enough to
represent the domain of training data points or programs. However, in conjunction with
a kernel, which implements a certain strategy of parallelization, the type of parallelism (at
data and/or program level) and workload distribution are precisely defined.

3. Memory allocation and transfer. In order to speedup data accesses, some content
are allocated/transferred directly to the compute device’s memory and kept there, thus
avoiding as much as possible the relatively narrow bandwidth between the GPU and
the computer’s main memory. Three memory buffers are required to be allocated on the
device’s global memory in order to hold the training data points, population of programs,
and error vector. Usually, the training data points are transferred only once, just before
the beginning of the execution, remaining then unchanged until the end. The population
of programs and error vector, however, are dynamic entities and so they need to be
transferred at each generation.

4. Kernel building. This phase selects the kernel with respect to a strategy of parallelization
and builds it. Since the exact specification of the target device is usually not known in
advance, the default OpenCL behavior is to compile the kernel just-in-time. Although
this procedure introduces some overhead, the benefit of having more information about
the device—and therefore being able to generate better optimized kernel object—usually
outweighs the compilation overhead.

5. GP’s evolutionary loop. Since this chapter focuses on accelerating the evaluation phase of
genetic programming by parallelizing it, the iterative evolutionary cycle itself is assumed
to be performed sequentially, being so defined in the host space instead of as an OpenCL
kernel. 8 The main iterative evolutionary steps are:

(a) Population transfer. Changes are introduced to programs by the evolutionary process
via genetic operators, e.g. crossover and mutation, creating a new set of derived
programs. As a result, a population transfer needs to be performed from host to device
at each generation.

7 This chapter will not detail the host code, since it is not relevant to the understanding of the parallel strategies. Given
that, and considering that the algorithms are presented in a pseudo-OpenCL form, the reader is advised to consult the
appropriate OpenCL literature in order to learn about its peculiarities and fill the implementation gaps.

8 However, bear in mind that a full parallelization, i.e. both evaluation and evolution, is feasible under OpenCL. That
could be implemented, for instance, in such a way that a multi-core CPU device would perform the evolution in
parallel while one or more GPUs would evaluate programs.

102 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 9

(b) Kernel execution. Whenever a new population arrives on the compute device, a kernel
is launched in order to evaluate (in parallel) the new programs with respect to the
training data points. For any non-trivial problem, this step is the most computationally
intensive one.

(c) Error retrieval. Finally, after all programs’ errors have been accumulated, this vector is
transferred back to the host in order to guide the evolutionary process in selecting the
set of parents that will breed the next generation.

Regarding the kernel code, it can be designed to evaluate programs in different parallel ways:
(i) training points are processed in parallel but programs sequentially; or (ii) the converse,
programs are executed in parallel but training points are processed sequentially; or finally (iii)
a mixture of these two, where both programs and training points are processed in parallel.

Which way is the best will depend essentially on a combination of the characteristics of
the problem and some parameters of the GP algorithm. These strategies are described and
discussed in Sections 4.2, 4.3 and 4.4.

4.1. Program interpreter

The standard manner to estimate the fitness of a GP candidate program is to execute it,
commonly on varying input arguments, and observe how well it solves the task at hand
by comparing its behavior with the expected one. To this end, the program can be compiled
just before the execution, generating an intermediate object code, or be directly interpreted
without generating intermediate objects. Both variations have pros and cons. Compiling
introduces overhead, however, it may be advantageous when the evaluation of a program
is highly demanding. On the other hand, interpretation is usually slower, but avoids the
compilation cost for each program. Moreover, interpretation is easy to accomplish and, more
importantly, is much more flexible. Such flexibility allows, for example, to emulate a MIMD
execution model on a SIMD or SPMD architecture [23]. This is possible because what a
data-parallel device actually executes are many instances of the same interpreter. Programs, as
has always been the case with training points, become data or, in other words, arguments for
the interpreter.

A program interpreter is presented in Algorithm Interpreter. It is assumed that the program to
be executed is represented as a prefix linear tree [5], since a linear representation is very efficient
to be operated on, specially on the GPU architecture. An example of such program is:

+ sin x 3.14

which denotes the infix expression sin(x) + 3.14.

The program interpretation operates on a single training data point at a time. The current
point is given by the argument n, and Xn ∈ �d is a d-dimensional array representing the n-th
variables (training point) of the problem.

The command INDEX extracts the class of the current operator (op), which can be a function,
constant or variable. The value of a constant is obtained by the VALUE command; for variables,
this command returns the variable’s index in order to get its corresponding value in Xn.

103Parallel Genetic Programming on Graphics Processing Units

10 Will-be-set-by-IN-TECH

Function Interpreter(program, n)

for op ← programsize − 1 to 0 do
switch INDEX(program[op]) do

case ADD:
PUSH(POP+ POP);

case SUB:
PUSH(POP− POP);

case MUL:
PUSH(POP× POP);

case DIV:
PUSH(POP÷ POP);

case IF-THEN-ELSE:
if POP then

PUSH(POP);
else

POP; PUSH(POP);

...

case CONSTANT:
PUSH(VALUE(program[op]));

otherwise
PUSH(Xn[VALUE(program[op])]);

return POP;

The interpreter is stack-based; whenever an operand shows up, like a constant or variable,
its value is pushed onto the stack via the PUSH command. Conversely, an operator obtains
its operands’ values on the stack by means of the POP command, which removes the most
recently stacked values. Then, the value of the resulting operation on its operands is pushed
back onto the stack so as to make it available to a parent operator.

As will be seen in the subsequent sections, whatever the parallel strategy, the interpreter will
act as a central component of the kernels, doing the hard work. The kernels will basically set
up how the interpreter will be distributed among processing elements and which program
and training point it will operate on at a given time.

4.2. Data-level Parallelism – DP

The idea behind the data-level parallelism (DP) strategy is to distribute the training data
points among the processing elements of a compute device. This is probably the simplest and
most natural way of parallelizing GP’s evaluation phase when the execution of a program on
many independent training points is required.9 Despite its obviousness, DP is an efficient

9 However, sometimes it is not possible to trivially decompose the evaluation phase. For instance, an evaluation may
involve submitting the program through a simulator. In this case one can try to parallelize the simulator itself or,
alternatively, opt to use a program- or population-level kind of parallelism.

104 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 11

strategy, specially when there are a large number of training data points—which is very
common in complex problems. Moreover, given that this strategy leads to a data-parallel
SIMD execution model, it fits well on a wide range of parallel architectures. Figure 2 shows
graphically how the training data points are distributed among the PEs.10

Figure 2. Illustration of the data-level parallelism (DP).

As already mentioned, to precisely define a parallelization strategy in OpenCL, two things
must be set up: the n-dimensional domain, more specifically the global and local sizes, and
the kernel itself. For the data-level parallelism, it is natural to assign the global computation
domain to the training data points domain as a one-to-one correspondence; that is, simply

globalsize = datasetsize, (1)

where dataset size is the number of the training data points. OpenCL lets the programmer to
choose whether he or she wants to explicitly define the local size, i.e. how many work-items
will be put in a work-group. The exact definition of the local size is only really needed when
the corresponding kernel assumes a particular work-group division, which is not the case for
DP. Therefore, no local size is explicitly defined for DP, letting then the OpenCL runtime to
decide on any configuration it thinks is the best.

Algorithm 1 presents in a pseudo-OpenCL language the DP’s kernel. As with any OpenCL
kernel, there will be launched globalsize instances of it on the compute device.11 Hence, there
is one work-item per domain element, with each one identified by its global or local position
through the OpenCL commands get_global_id and get_local_id, respectively. This
enables a work-item to select what portion of the compute domain it will operate on, based
on its absolute or relative position.

For the DP’s kernel, the globalid index is used to choose which training data point will be
processed, in other words, each work-item will be in charge of a specific point. The for
loop iterates sequentially over each program of the population (the function NthProgram
returns the p-th program), that is, every work-item will execute the same program at a given
time. Then, the interpreter (Section 4.1) is called to execute the current program, but each
work-item will provide a different index, which corresponds to the training data point it took

10 To simplify, in Figures 2, 4 and 5 it is presumed that the number of PEs (or CUs) coincides with the number of training
data points (or programs), but in practice this is rarely the case.

11 It is worthy to notice that the actual amount of work-items executed in parallel by the OpenCL runtime will depend
on the device’s capabilities, mainly on the number of processing elements.

105Parallel Genetic Programming on Graphics Processing Units

12 Will-be-set-by-IN-TECH

Algorithm 1: GPU DP’s OpenCL kernel

globalid ← get_global_id();

for p ← 0 to populationsize − 1 do
program ← NthProgram(p);

error ← |Interpreter(program, globalid)− Y[globalid]|;
E[p] ← ErrorReduction(0, . . . , globalsize − 1);

responsibility for. Once interpreted, the output returned by the program is then compared
with the expected one for that point, whose value is stored in array Y. This results in a
prediction error; however, the overall error is what is meaningful to estimate the fitness of
a program.

Note however that the errors are spread among the work-items, because each work-item has
processed a single point and has computed its own error independently. This calls for what
is known in the parallel computing literature as the reduction operation [22]. The naive way
of doing that is to sequentially cycle over each element and accumulate their values; in our
case it would iterate from work-item indexed by 0 to globalsize − 1 and put the total value in
E[p], the final error relative to the p-th program. There is however a clever and parallel way of
doing reduction, as exemplified in Figure 3, which decreases the complexity of this step from
O(N) to just O(log2N) and still assures a nice coalesced memory access suited for the GPU
architecture [1, 32].12

Figure 3. O(log2 N) parallel reduction with sequential addressing.

4.3. Program-level Parallelism – PP

One serious drawback of the data-level parallelism strategy is that when there are few training
data points the compute device may probably be underutilized. Today’s high-end GPUs have
thousands of processing elements, and this number has increased at each new hardware
generation. In addition, to achieve optimal performance on GPUs, multiple work-items
should be launched for each processing element. This helps, for instance, to hide memory

12 This chapter aims at just conveying the idea of the parallel reduction, and so it will not get into the algorithmic details
on how reduction is actually implemented. The reader is referred to the given references for details.

106 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 13

access latencies while reading from or writing to the device’s global memory [1, 32]. Therefore,
to optimally utilize a high-end GPU under the DP strategy, one should prefer those problems
having tens of thousands of training data points. Unfortunately, there are many real-world
problems out there for which no such amount of data is available.

Another limitation of the DP strategy is that sometimes there is no easy way to decompose
the evaluation of a program into independent entities, like data points. Many program
evaluations that need a simulator, for example, fall into this category, where a parallel
implementation of the simulator is not feasible to accomplish.

An attempt to overcome the DP limitations, particularly what concerns the desire of a
substantially large amount of training data points, is schematically shown in Figure 4. This
parallelization strategy is here referred to as program-level parallelism (PP), meaning that
programs are executed in parallel, each program per PE [4, 35]. Assuming that there are
enough programs to be evaluated, even a few training data points should keep the GPU fully
occupied.

Figure 4. Illustration of the program-level parallelism (PP).

In PP, while programs are interpreted in parallel, the training data points within each PE
are processed sequentially. This suggests a computation domain based on the number of
programs, in other words, the global size can be defined as:

globalsize = populationsize (2)

As with DP, PP does not need to have control of the number of work-items within a
work-group, thus the local size can be left untouched.

A pseudo-OpenCL code for the PP kernel is given in Algorithm 2. It resembles the DP’s
algorithm, but in PP what is being parallelized are the programs instead of the training data
points. Hence, each work-item takes a different program and interpret it iteratively over all
points. A positive side effect of this inverse logic is that, since the whole evaluation of a
program is now done in a single work-item, all the partial prediction errors are promptly
available locally. Put differently, in PP a final reduction step is not required.

4.4. Program- and Data-level Parallelism – PDP

Unfortunately, PP solves the DP’s necessity of large training datasets but introduces two other
problems: (i) to avoid underutilization of the GPU a large population of programs should now

107Parallel Genetic Programming on Graphics Processing Units

14 Will-be-set-by-IN-TECH

Algorithm 2: GPU PP’s OpenCL kernel

globalid ← get_global_id();
program ← NthProgram(globalid);

error ← 0.0;
for n ← 0 to datasetsize − 1 do

error ← error + |Interpreter(program, n)− Y[n]|;
E[globalid] ← error;

be employed; and, more critically, (ii) the PP’s execution model is not suited for an inherently
data-parallel architecture like GPUs.

While (i) can be dealt with by simply specifying a large population as a parameter choice of
a genetic programming algorithm, the issue pointed out in (ii) cannot be solved for the PP
strategy.

The problem lies on the fact that, as mentioned in Section 2, GPUs are mostly a SIMD
architecture, specially among processing elements within a compute unit. Roughly speaking,
whenever two (or more) different instructions try to be executed at the same time, a hardware
conflict occurs and then these instructions are performed sequentially, one at a time. In
the related literature, this phenomenon is often referred to as divergence. Since in PP each
PE interprets a different program, the degree of divergence is the highest possible: at a
given moment each work-item’s interpreter is potentially interpreting a different primitive.
Therefore, in practice, the programs within a CU will most of the time be evaluated
sequentially, seriously degrading the performance.

However, observing the fact that modern GPUs are capable of simultaneously executing
different instructions at the level of compute units, i.e. the SPMD execution model, one could
devise a parallelization strategy that would take advantage of this fact. Such strategy exists,
and it is known here as program- and data-level parallelism, or simply PDP [4, 35]. Its general
idea is illustrated in Figure 5. In PDP, a single program is evaluated per compute unit—this

Figure 5. Illustration of the program- and data-level parallelism (PDP).

prevents the just mentioned problem of divergence—but within each CU all the training data
points are processed in parallel. Therefore, there are two levels of parallelism: a program-level
parallelism among the compute units, and a data-level parallelism on the processing elements.

108 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 15

Indeed, PDP can be seen as a mixture of the DP and PP strategies. But curiously, PDP avoids
all the drawbacks associated with the other two strategies: (i) once there are enough data
to saturate just a single CU, smaller datasets can be used at no performance loss; (ii) large
populations are not required either, since the number of CUs on current high-end GPUs is in
the order of tens; and (iii) there is no divergence with respect to program interpretation.13

In order to achieve both levels of parallelism, a fine-tuned control over the computation
domain is required; more precisely, both local and global sizes must be properly defined.

Since a work-group should process all training data points for a single program and there is a
population of programs to be evaluated, one would imagine that setting localsize as datasetsize
and globalsize as populationsize × datasetsize would suffice. This is conceptually correct, but an
important detail makes the implementation not as straightforward as one would expect. The
OpenCL specification allows any compute device to declare an upper bound regarding the
number of work-items within a work-group. This is not arbitrary. The existence of a limit on
the number of work-items per work-group is justified by the fact that there exists a relation
between the maximum number of work-items and the device’s capabilities, with the latter
restricting the former. Put differently, an unlimited number of work-items per work-group
would not be viable, therefore a limit, which is provided by the hardware vendor, must be
taken into account.

With the aforementioned in mind, the local size can finally be set to

localsize =

{
datasetsize if datasetsize < localmax_size

localmax_size otherwise
, (3)

which limits the number of work-items per work-group to the maximum supported, given by
the variable localmax_size, when the number of training data points exceeds it. This implies that
when such a limit takes place, a single work-item will be in charge of more than one training
data point, that is, the work granularity is increased. As for the global size, it can be easily
defined as

globalsize = populationsize × localsize, (4)

meaning that the set of work-items defined above should be replicated as many times as the
number of programs to be evaluated.

Finally, algorithm 3 shows the OpenCL kernel for the PDP strategy. Compared to the other
two kernels (Algorithms 1 and 2), it comes as no surprise its greater complexity, as this kernel
is a combination of the other two and still has to cope with the fact that a single instance,
i.e. a work-item, can process an arbitrary number of training data points. The command
get_group_id, which returns the work-group’s index of the current work-item, has the
purpose of indexing the program that is going to be evaluated by the entire group. The for
loop is closely related to the local size (Equation 3), and acts as a way of iterating over multiple
training data points if the work-item (indexed locally by localid) is in charge of many of them;
when the dataset size is less or equal to the local size, only one iteration will be performed.
Then, an index calculation is done in order to get the index (n) of the current training data

13 Notice, though, that divergence might still occur if two (or more) training data points can cause the interpreter to take
different paths for the same program. For instance, if the conditional if-then-else primitive is used, a data point could
cause an interpreter’s instance to take the then path while other data could make another instance to take the else path.

109Parallel Genetic Programming on Graphics Processing Units

16 Will-be-set-by-IN-TECH

Algorithm 3: GPU PDP’s OpenCL kernel

localid ← get_local_id();
groupid ← get_group_id();
program ← NthProgram(groupid);

error ← 0.0;
for i ← 0 to �datasetsize/localsize� − 1 do

n ← i × localsize + localid;
if n < datasetsize then

error ← error + |Interpreter(program, n)− Y[n]|;

E[groupid] ← ErrorReduction(0, . . . , localsize − 1);

point to be processed.14 Due to the fact that the dataset size may not be evenly divisible
by the local size, a range check is performed to guarantee that no out-of-range access will
occur. Finally, since the prediction errors for a given program will be spread among the local
work-items at the end of the execution, an error reduction operation takes place.

5. Conclusions
This chapter has presented different strategies to accelerate the execution of a genetic
programming algorithm by parallelizing its costly evaluation phase on the GPU architecture,
a high-performance processor which is also energy efficient and affordable.

Out of the three studied strategies, two of them are particularly well-suited to be implemented
on the GPU architecture, namely: (i) data-level parallelism (DP), which is very simple and
remarkably efficient for large datasets; and (ii) program- and data-level parallelism (PDP),
which is not as simple as DP, but exhibits the same degree of efficiency for large datasets and
has the advantage of being efficient for small datasets as well.

Up to date, only a few large and real-world problems have been solved by GP with the help of
the massive parallelism of GPUs. This suggests that the potential of GP is yet under-explored,
indicating that the next big step concerning GP on GPUs may be its application to those
challenging problems. In several domains, such as in bio-informatics, the amount of data
is growing quickly, making it progressively difficult for specialists to manually infer models
and the like. Heterogeneous computing, combining the computational power of different
devices, as well as the possibility of programming uniformly for any architecture and vendor,
is also an interesting research direction to boost the performance of GP. Although offering
both advantages, OpenCL is still fairly unexplored in the field of evolutionary computation.

Finally, although optimization techniques have not been thoroughly discussed in this chapter,
this is certainly an important subject. Thus, the reader is invited to consult the related material
found in [4], and also general GPU optimizations techniques from the respective literature.

Acknowledgements
The authors would like to thank the support provided by CNPq (grants 308317/2009-2 and
300192/2012-6) and FAPERJ (grant E-26/102.025/2009).

14 The careful reader will note that this index calculation leads to an efficient coalesced memory access pattern [1, 32].

110 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 17

Author details

Douglas A. Augusto and Heder S. Bernardino
Laboratório Nacional de Computação Científica (LNCC/MCTI), Rio de Janeiro, Brazil

Helio J. C. Barbosa
Laboratório Nacional de Computação Científica (LNCC/MCTI), Rio de Janeiro, Brazil
Federal University of Juiz de Fora (UFJF), Computer Science Dept., Minas Gerais, Brazil

6. References

[1] Advanced Micro Devices [2010]. AMD Accelerated Parallel Processing Programming Guide
- OpenCL.

[2] Ando, J. & Nagao, T. [2007]. Fast evolutionary image processing using multi-gpus, Proc.
of the International Conference on Systems, Man and Cybernetics, pp. 2927 –2932.

[3] Arenas, M. G., Mora, A. M., Romero, G. & Castillo, P. A. [2011]. Gpu computation in
bioinspired algorithms: a review, Proc. of the international conference on Artificial neural
networks conference on Advances in computational intelligence, Springer-Verlag, pp. 433–440.

[4] Augusto, D. A. & Barbosa, H. J. [2012]. Accelerated parallel genetic programming tree
evaluation with opencl, Journal of Parallel and Distributed Computing (0): –.
URL: http://www.sciencedirect.com/science/article/pii/S074373151200024X

[5] Augusto, D. A. & Barbosa, H. J. C. [2000]. Symbolic regression via genetic programming,
Proceedings of the VI Brazilian Symposium on Neural Networks, IEEE Computer Society, Los
Alamitos, CA, USA, pp. 173–178.

[6] Banzhaf, W., Harding, S., Langdon, W. B. & Wilson, G. [2009]. Accelerating genetic
programming through graphics processing units., Genetic Programming Theory and
Practice VI, pp. 1–19.
URL: http://dx.doi.org/10.1007/978-0-387-87623-8_15

[7] Cano, A., Zafra, A. & Ventura, S. [2010]. Solving classification problems using genetic
programming algorithms on gpus, Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6077 LNAI(PART
2): 17–26.

[8] Cano, A., Zafra, A. & Ventura, S. [2012]. Speeding up the evaluation phase of gp
classification algorithms on gpus, Soft Computing 16(2): 187–202.

[9] Chitty, D. M. [2007]. A data parallel approach to genetic programming using
programmable graphics hardware, in D. Thierens, H.-G. Beyer, J. Bongard, J. Branke,
J. A. Clark, D. Cliff, C. B. Congdon, K. Deb, B. Doerr, T. Kovacs, S. Kumar, J. F. Miller,
J. Moore, F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O. Stanley, T. Stutzle, R. A.
Watson & I. Wegener (eds), GECCO ’07: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, Vol. 2, ACM Press, London, pp. 1566–1573.
URL: http://www.cs.bham.ac.uk/ wbl/biblio/gecco2007/docs/p1566.pdf

[10] Ebner, M. [2009]. A real-time evolutionary object recognition system, Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 5481 LNCS: 268–279. cited By (since 1996) 1.
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-67650697120&partnerID=
40&md5=1a9de902eb5649a01e3e87c222a79ee3

111Parallel Genetic Programming on Graphics Processing Units

18 Will-be-set-by-IN-TECH

[11] Ebner, M., Reinhardt, M. & Albert, J. [2005]. Evolution of vertex and pixel shaders,
Proceedings of the European Conference on Genetic Programming Genetic Programming –
EuroGP, Vol. 3447 of LNCS, Springer Berlin / Heidelberg, pp. 142–142.

[12] Ferreira, C. [2006]. Gene Expression Programming: Mathematical Modeling by an Artificial
Intelligence, 2 edn, Springer.

[13] Franco, M. A., Krasnogor, N. & Bacardit, J. [2010]. Speeding up the evaluation of
evolutionary learning systems using gpgpus, Proceedings of the 12th annual conference
on Genetic and evolutionary computation, GECCO ’10, ACM, New York, NY, USA,
pp. 1039–1046.
URL: http://doi.acm.org/10.1145/1830483.1830672

[14] Garland, M. & Kirk, D. B. [2010]. Understanding throughput-oriented architectures,
Commun. ACM 53: 58–66.

[15] Gaster, B., Kaeli, D., Howes, L., Mistry, P. & Schaa, D. [2011]. Heterogeneous Computing
With OpenCL, Elsevier Science.
URL: http://books.google.com.br/books?id=qUJVU8RH3jEC

[16] Harding, S. [2008]. Evolution of image filters on graphics processor units using cartesian
genetic programming, pp. 1921–1928. cited By (since 1996) 3.
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-55749093400&partnerID=40&md5
=fddf39574ff1025ad80adf204ccb451f

[17] Harding, S. & Banzhaf, W. [2007a]. Fast genetic programming and artificial
developmental systems on gpus, Proc. of the International Symposium on High Performance
Computing Systems and Applications, p. 2.

[18] Harding, S. & Banzhaf, W. [2007b]. Fast genetic programming on GPUs, Proc. of the
European Conference on Genetic Programming – EuroGP, Vol. 4445 of LNCS, Springer,
Valencia, Spain, pp. 90–101.

[19] Harding, S. & Banzhaf, W. [2011]. Implementing cartesian genetic programming
classifiers on graphics processing units using gpu.net, Proceedings of the Conference
Companion on Genetic and evolutionary computation – GECCO, ACM, pp. 463–470.

[20] Harding, S. L. & Banzhaf, W. [2009]. Distributed genetic programming on GPUs
using CUDA, Workshop on Parallel Architectures and Bioinspired Algorithms, Universidad
Complutense de Madrid, Raleigh, NC, USA, pp. 1–10.

[21] Hennessy, J. & Patterson, D. [2011]. Computer Architecture: A Quantitative Approach, The
Morgan Kaufmann Series in Computer Architecture and Design, Elsevier Science.
URL: http://books.google.com.br/books?id=v3-1hVwHnHwC

[22] Hillis, W. D. & Steele, Jr., G. L. [1986]. Data parallel algorithms, Commun. ACM
29: 1170–1183.

[23] Juille, H. & Pollack, J. B. [1996]. Massively parallel genetic programming, in P. J. Angeline
& K. E. Kinnear, Jr. (eds), Advances in Genetic Programming 2, MIT Press, Cambridge, MA,
USA, chapter 17, pp. 339–358.

[24] Kaul, K. & Bohn, C.-A. [2006]. A genetic texture packing algorithm on a graphical
processing unit, Proceedings of the International Conference on Computer Graphics and
Artificial Intelligence.

[25] Khronos OpenCL Working Group [2011]. The OpenCL Specification, version 1.2.
URL: http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

112 Genetic Programming – New Approaches and Successful Applications

Parallel Genetic Programming on Graphics Processing Units 19

[26] Kirk, D. & Hwu, W. [2010]. Programming Massively Parallel Processors: A Hands-On
Approach, Applications of GPU Computing Series, Morgan Kaufmann Publishers.
URL: http://books.google.com.br/books?id=qW1mncii_6EC

[27] Langdon, W. [2008]. Evolving genechip correlation predictors on parallel graphics
hardware, pp. 4151–4156. cited By (since 1996) 0.
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-55749103342&partnerID=40&md5
=028c81cb3bb1b8380f2f816b8e50b1f4

[28] Langdon, W. & Banzhaf, W. [2008]. A SIMD interpreter for genetic programming on GPU
graphics cards, Genetic Programming, pp. 73–85.

[29] Langdon, W. & Harrison, A. [2008]. Gp on spmd parallel graphics hardware for mega
bioinformatics data mining, Soft Computing 12(12): 1169–1183. cited By (since 1996) 13.
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-49049115131&partnerID=
40&md5=4d332814a77dc0233bed7ff3184a6ccb

[30] Luo, Z. & Liu, H. [2006]. Cellular genetic algorithms and local search for 3-sat problem
on graphic hardware, Proc. of the Congress on Evolutionary Computation – CEC, pp. 2988
–2992.

[31] NVIDIA Corporation [2007]. NVIDIA CUDA Compute Unified Device Architecture -
Programming Guide.
URL: http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming
_Guide_1.0.pdf

[32] NVIDIA Corporation [2010]. OpenCL Best Practices Guide.
[33] Pospichal, P., Murphy, E., O’Neill, M., Schwarz, J. & Jaros, J. [2011]. Acceleration of

grammatical evolution using graphics processing units: Computational intelligence on
consumer games and graphics hardware, pp. 431–438. cited By (since 1996) 0.
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-80051950282&partnerID=40&md5
=46bb1910d0121a948a804f8aa62308eb

[34] Robilliard, D., Marion-Poty, V. & Fonlupt, C. [2008]. Population parallel gp on the g80
gpu, Artificial Intelligence and Lecture Notes in Bioinformatics 4971: 98–109.

[35] Robilliard, D., Marion, V. & Fonlupt, C. [2009]. High performance genetic programming
on gpu, Proceedings of the 2009 workshop on Bio-inspired algorithms for distributed systems,
BADS ’09, ACM, New York, NY, USA, pp. 85–94.

[36] Wilson, G. & Banzhaf, W. [2008]. Linear genetic programming gpgpu on microsoft’s
xbox 360, 2008 IEEE Congress on Evolutionary Computation, CEC 2008, pp. 378–385. cited
By (since 1996) 4.
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-55749108355&partnerID=40&md5
=304d6784cd00eac6e253229092ba7788

[37] Wilson, G. & Banzhaf, W. [2009]. Deployment of cpu and gpu-based genetic
programming on heterogeneous devices, Proceedings of the Conference Companion
on Genetic and Evolutionary Computation Conference, Late Breaking Papers, ACM,
pp. 2531–2538.

[38] Wilson, G. & Banzhaf, W. [2010]. Deployment of parallel linear genetic programming
using gpus on pc and video game console platforms, Genetic Programming and Evolvable
Machines 11(2): 147–184. cited By (since 1996) 2.
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-77954814128&partnerID=40&md5
=8e8091dedc7d49dfccc20e0f569af0ce

113Parallel Genetic Programming on Graphics Processing Units

20 Will-be-set-by-IN-TECH

[39] Wong, M.-L. & Wong, T.-T. [2006]. Parallel hybrid genetic algorithms on consumer-level
graphics hardware, Proc. of the Congress on Evolutionary Computation, pp. 2973 –2980.

[40] Wong, M., Wong, T. & Fok, K. [2005]. Parallel evolutionary algorithms on graphics
processing unit, Evolutionary Computation, 2005. The 2005 IEEE Congress on, Vol. 3,
pp. 2286–2293 Vol. 3.

[41] Yu, Q., Chen, C. & Pan, Z. [2005]. Parallel genetic algorithms on programmable
graphics hardware, Proc. of the international conference on Advances in Natural Computation,
Springer-Verlag Berlin, pp. 1051–1059.

114 Genetic Programming – New Approaches and Successful Applications

Section 2

Successful Applications

Chapter 6

© 2012 Casula and Mazzarella, licensee InTech. This is an open access chapter distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Structure-Based Evolutionary Design Applied
to Wire Antennas

Giovanni Andrea Casula and Giuseppe Mazzarella

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48249

1. Introduction

Antennas are 3D structures, so, at variance of other MW subsystems like filters and
couplers, their design has been a matter of intuition and brute-force computations from the
beginning (Silver, 1949; Elliott, 1981 just to remember a few). Therefore, an antenna design
has been faced at different levels, from simple formulas (Collin, 1985) to sophisticated
synthesis techniques (Orchard et al., 1985; Bucci et al., 1994), and from simple heuristic
models (Carrel, 1961) to modern global random optimizations, such as GA (Linden &
Altshuler, 1996, 1997; Jones & Joines, 1997) and PSO (Baskar et al., 2005), with their heavy
computational loads.

Moreover, an antenna design problem is typically divided into two phases, namely an
external problem (the evaluation of the antenna currents from the field requirements) and
an internal problem (the design of the feed structure needed to achieve those currents, and
the input match) (Bucci et al., 1994). In many cases these two phases are almost independent,
but for some mutual constraints, as in reflector (Collin, 1985) and slot (Costanzo et al., 2009;
Montisci, 2006) or patch (Montisci et al., 2003) array synthesis, since in these cases there is a
clear boundary separating the feeding and radiating part of the antenna. In other problems,
as in wire antennas design (Johnson & Jasik, 1984), such phases are strictly interconnected,
since no clear-cut divides the two parts. For parasitic wire antennas, the interconnection is
even stronger, since every element acts as feeding and radiating part at the same time.

The traditional approach to the design of wire antennas starts by choosing a well-defined
structure, whose parameters are then optimized. However, a good design requires also a
continuous human monitoring, mainly to trim the initial structure to better fit the antenna
specifications. A trimming which requires both a deep knowledge and experience in order
to effectively change the structure under design. As a matter of fact, such traditional
approach is quite expensive, and therefore design techniques without human interaction are

Genetic Programming – New Approaches and Successful Applications 118

of interest, as long as they provide equal, or better, results. This can be achieved only when
no initial structure is assumed, since this choice (by necessity fixed in a fully automated
procedure) can constrain too strongly the final solution.

The present work proposes such an alternative technique which allows to automate the
whole project (and not only its repetitive parts), and provide original solutions, not
achievable using standard design techniques. This is obtained by describing the whole
antenna in terms of elementary parts (wire segments, junctions, and so on), and of their
spatial relations (distance, orientation), and searching for high-performance structures by
distributing, in the space, groups of these elementary objects. In this way, the final antenna
is sought for in an enormous search space, with a very large number of degrees of freedom
which leads to better solutions both in terms of performance and overall dimensions. On the
other hand, such solution space must be searched for in an effective, and automatic, way in
order to get the required antenna. Aim of this work is to describe how to effectively perform
an automatic design of wire antennas without an initial choice of the structure, in order to
achieve higher performances than those obtainable by using classical design techniques (eg
Yagi antennas and log-periodic antennas (Johnson & Jasik, 1984)).

This can be achieved using a new design technique, namely the Structure-based
Evolutionary Design (SED), a new global random search method derived by the strategy
first proposed by Koza (Koza, 1992). Many optimization techniques recently proposed, such
as GA, share the same inspiration, though natural selection is definitely not an optimization
process. As a matter of fact, Darwin stated that “the natural system is founded on the
descent with modification” (Darwin, 1859), since what is commonly named natural selection
is a process leading to biological units better matched to local changing environments.
Therefore, from a conceptual point of view, design approaches based on natural selection
should be formulated as a search for antennas fulfilling a set of antenna specifications (the
local changing environment) rather than as optimization of a given performance index. As we
will show later, SED allows following this paradigm and in a way closer to how natural
selection works. Natural selection has, in fact, a number of peculiar characteristics. First, if
we look at it in a functional, or effective, way it works at the organ level. Moreover, it allows
an enormous variability, which is limited only by some broad-sense constraints.

Each individual in the SED approach is a “computer program”, i.e., a sequential set of
unambiguous instructions completely (and uniquely) describing the realization (almost in
engineering terms) of the physical structure of an admissible individual. This is a marked
difference with GA, where an individual is only a set of physical dimensions and other
parameters. In the practical implementation of SED, populations of thousands of
individuals, which are traditionally stored as tree structures, are genetically bred using the
Darwinian principle of survival and reproduction of the fittest, along with recombination
operations appropriate for mating computer programs. Tree structures can be easily
evaluated in a recursive manner; every tree node has an operator function and every
terminal node has an operand, making mathematical expressions easy to evolve and to be
evaluated.

Structure-Based Evolutionary Design Applied to Wire Antennas 119

The performance, in the particular problem environment, of each individual computer
program in the population is measured by its “fitness”. The nature of the fitness measure
depends on the problem at hand. Different fitness functions, built from different
requirements, can lead to completely different results, each one best fitted to the
corresponding original requirements.

The only information which the design process requires to advance in its search within the
space of possible solutions are the current population and the fitness of all its individuals. A
new population is then generated, by applying simple rules inspired by natural evolution.

The main (meta)-operators used in SED are reproduction, crossover and mutation.

• The reproduction simply reproduces in the new population, without any change, a
predetermined number of individuals among those who obtained the best fitness.

• Crossover is applied on an individual by simply switching one of its nodes with
another node from another individual in the population. With a tree-based
representation, replacing a node means the replacement of the whole branch. This adds
greater effectiveness to the crossover operation, since it exchanges two actual sub-
individuals with different dimensions. The expressions resulting from a single
crossover can be either quite close or very different from their initial parents. The
sudden jump from an individual to a very different one is a powerful trap-escaping
mechanism.

• Mutation affects an individual in the population, replacing a whole node in the selected
individual, or just the node's information. To maintain integrity, operations must be
fail-safe, i.e. the type of information the node holds must be taken into account.

Since each individual in the SED approach is a set of unambiguous instructions describing
the realization of a generic physical structure, the presented procedure can be extended, in
principle, to any 3D structure.

Before entering into the SED description, some considerations on the name chosen (Casula et
al., 2011a) are in order. Koza, in his 1992 paper, coined the name “genetic programming” for
his approach. Actually, this name resembles too closely another optimization approach, but
with marked differences with the Koza approach, namely the genetic algorithms (GA). We
decided to use a different name, better linked to the approach we use, to avoid any ambiguity
between very different approaches. In order to better grasp the differences between SED and
GA, we can say that GA works on the “nucleotide” (i.e. bit) level, in the sense that the
structure is completely defined from the beginning, and only a handful of parameters remain
to be optimized. On the other hand, the approach used in SED assumes no “a priori”
structure, and it builds up the structure of the individuals as the procedure evolves.
Therefore it operates at the “organ” (i.e. physical structure) level, a far more powerful level: it
acts on subparts of the whole structure, thus allowing an effective exploration of a far more
vast solution space than other design techniques. SED is able to determine both the structure
shape and dimensions as an outcome of the procedure, and is therefore a powerful tool for
the designer. As a consequence, its solution space has the power of the continuum, while the
GA solution space is a discrete one, so it is a very small subspace of the former. Moreover, the

Genetic Programming – New Approaches and Successful Applications 120

typical evolution operators work on actual physical structures, rather than on sequences of
bits with no intuitive link to the structure shape. The enormous power of SED fully allows the
exploration of more general shapes for the structure. The main drawback is the ill-posedness
of the SED, which calls for a regularization procedure.

The rest of this chapter is organised as follows:

• Section 2 starts with a general description of the Structure-based Evolutionary Design,
and of the main steps of the evolutionary process.

• SED is then specifically applied to the design of broadband parasitic wire arrays
(Sections 2.1-2.3): a suitable tree representation of wire antennas is devised, appropriate
antenna requirements are set, a suitable fitness is derived and the evaluation procedure
for each individual is described.

• In Section 3 several examples are presented: for each set of requirements, a suitable
fitness function must be derived, and some suggestions are given to choose the best
fitness for the problem at hand.

• The results obtained with SED are finally compared with other algorithms like Particle
Swarm Optimization and Differential Evolution, showing that the performances
obtained by SED are significantly higher.

2. Description of the Structure-based Evolutionary Design
SED is a global random search procedure, looking for individuals best fitting a given set of
specifications. These individuals are described as instruction sets, and internally represented
as trees. The main steps of the whole evolutionary design can be summarized in the
flowchart of Fig.1:

Figure 1. Flowchart of the Evolutionary Design.

Structure-Based Evolutionary Design Applied to Wire Antennas 121

After an initial step, where N individuals are picked up at random, an iterative procedure
starts, which includes the evaluation of the fitness (appropriate for the problem at hand) for
each individual, and the building of the next generation of the population. A larger
probability of breeding is assigned to individuals with the highest fitness. The generation of
new populations ends only when opportune stopping rules are met (i.e. when the
individual-antenna fulfils, to a prescribed degree, the stated requirement).

The solution space, i.e., the set of admissible solutions in which the procedure looks for the
optimum, has the power of the continuum. This is the main advantage of SED, since it
allows exploring, and evaluating, general structure configurations, but, on the other hand, it
can lead to a severely ill-conditioned synthesis problem. As a consequence, a naive
implementation usually does not work, since different starting populations lead to
completely different final populations, possibly containing only individuals poorly matched
to the requirements (a phenomenon similar to the occurrence of traps in optimization
procedures).

A suitable stabilization is therefore needed. This role can be accomplished by suitable
structure requirements, or forced by imposing further constraints, not included in the
structure requirements. Whenever possible, the former ones are the better choice, and
should be investigated first.

Typically, a high number N of individuals for a certain number of generations must be
evaluated in order to obtain a good result from the design process. Since each individual can
be evaluated independently from each other, the design process is strongly parallelizable,
and this can significantly reduce the computation time.

2.1. SED applied to the design of wire antennas

The Structure-Based Evolutionary Design, based on evolutionary programming, has been
devised and applied to the design of broadband parasitic wire arrays for VHF-UHF bands.
This requires first to devise a suitable tree representation of wire antennas, well tailored to
the SED meta-operators, and then suitable antenna requirements. We consider only
antennas with a symmetry plane, and with all element centres on a line. Therefore, each
“wire” is actually a symmetric pair of metallic trees, and only one of them must be
described.

In antenna design, the most intuitive fitness function can be built as the ”distance” between
actual and required far-field behaviour (Franceschetti et al., 1988) or, even more simply, as
the antenna gain or SNR (Lo et al., 1966). However, this is not the case for SED. The solution
space, i.e., the set of admissible solution in which the procedure looks for the optimum, is
composed, in our case, of every Parasitic Dipole Array (PDA) antenna with no limit on the
number of wire segments, nor on the size or orientation, represented as real numbers. The
design problem is therefore strongly ill-conditioned and, in order to stabilize it, appropriate
suitable antenna requirements must be set. Far-field requirements are unable to stabilize the
problem, since the far-field degrees of freedom are orders of magnitude less than those of

Genetic Programming – New Approaches and Successful Applications 122

the solution space (Bucci & Franceschetti, 1989), so that a huge number of different antennas
gives the same far field. As a matter of fact, a wire segment whose length is a small fraction
of the wavelength can be added or eliminated without affecting the far field. We must
therefore revert to near-field requirements. Among them, the easiest to implement, and
probably the most important, is a requirement on the input impedance over the required
bandwidth. Since this constraint is a “must-be” in order to get a usable solution, we get the
required stabilization at virtually no additional cost. As a further advantage, a low input
reactance over the bandwidth prevents from superdirective solutions (Collin, 1985) even
when a reduced size is forced as a constraint.

The performances of each individual (antenna) of the population are evaluated by its fitness
function. The details of the fitness function we have chosen for PDA design are widely
described in the next section. However, at this point it must be stressed that the fitness
function depends in an essential way on the electromagnetic behaviour of the individual.

Since we are interested in assessing SED as a viable, and very effective, design tool, we
accurately try to avoid any side-effect stemming out from the electromagnetic analysis of
our individuals. Therefore we rely on known, well-established and widely used antenna
analysis programs. Since our individuals are wire antennas, our choice has fallen on NEC-2
(Burke et al., 1981).

The Numerical Electromagnetics Code (NEC-2) is a MoM-based, user-oriented computer
code for the analysis of the electromagnetic response of wire antennas and other metallic
structures (Lohn et al., 2005). It is built around the numerical solution of the integral
equations for the currents induced on the structure. This approach allows taking well into
account the main second-order effects, such as conductor losses and the effect of lossy
ground on the far field. Therefore we are able to evaluate the actual gain, and not the array
directivity, with a two-fold advantage. First of all, the gain is the far-field parameter of
interest and, second, this prevents from considering superdirective antennas, both during
the evolution and as final solution, which is even worse. NEC has been successfully used to
model a wide range of antennas, with high accuracy (Burke & Poggio, 1976a, 1976b, 1981;
Deadrick et al., 1977) and is now considered as one of the reference electromagnetic software
(Lohn et al., 2005; Linden & Altshuler, 1996, 1997). However, since SED is by no means
linked, or tailored, to NEC, a different, and most effective, EM software could be used, to
reduce the total computational time, further improving the accuracy of the simulation.

2.2. Construction and evaluation of each parasitic dipole array

Each PDA is composed of a driven element and a fixed number of parasitic elements. In
order to get transverse dimensions close to those of Yagi and LPDA, and to ease the
realization, the centers of the elements are arranged on a line, with the driven element at the
second place of the row. In Yagi terminology, we use a single reflector. We actually have
experimented with more reflectors but, exactly as in standard Yagi, without any advantage
over the single-reflector configuration. Each element is symmetric w.r.t its center, and the
upper part is represented, in the algorithm, as a tree.

Structure-Based Evolutionary Design Applied to Wire Antennas 123

Each node of the tree is an operator belonging to one of the following classes:

a. add a wire according to the present directions and length
b. transform the end of the last added wire in a branching point
c. modify the present directions and length
d. stretch (or shrink) the last added wire

This mixed representation largely increases the power of the standard genetic operations
(mutation and cross-over), since each element can evolve independently from the others. Of
course, after each complete PDA is generated, its geometrical coherency is verified, and
incoherent antennas (e.g., an antenna with two elements too close, or even intersecting) are
discarded.

The SED approach has been implemented in Java, while the analysis of each individual has
been implemented in C++ (using the freeware source code Nec2cpp) and checked using the
freeware tool 4nec2. The integration with NEC-2 has mainly been achieved through three
classes:

1. a parser for the conversion of the s-expressions, represented as n-ary trees, in the
equivalent NEC input files;

2. a NecWrapper which writes the NEC listing to a file, launches a NEC2 instance in a
separate process, and parses the output generated by NEC;

3. an Evaluator which calculates the fitness using the output data generated by NEC.

In order to better grasp the representation chosen, the S-expression for the simple Yagi
antenna of Fig.2 follows.

Figure 2. Antenna Structure corresponding to the S-expression of the example

Genetic Programming – New Approaches and Successful Applications 124

S-expression:

Tree 0:

(StretchAlongZ 1.3315124586134857 (Wire 0.42101090906114413 1.0

 (StretchAlongX 0.5525837649288541 (StretchAlongY 1.4819461053740617

 (RotateWithRespectTo_Y 0.3577743384222999 END)))))

Tree 1:

(Wire 0.5581593081319647 1.0 (RotateWithRespectTo_X -0.44260816356142224

 (RotateWithRespectTo_Z 0.08068272691709244 (StretchAlongZ 0.7166185389610261

 (StretchAlongX 1.42989629787443 (StretchAlongZ 1.346598788775623

 END))))))

Tree 2:

(Wire 0.3707701115469606 1.0 (RotateWithRespectTo_X 0.5262591815805174

 (RotateWithRespectTo_Z -0.7423883999218206 (RotateWithRespectTo_Z 0.07210315212202911

 END))))

The corresponding NEC-2 input file is:

GW 1 17 0.00E00 0.00E00 0.00E00 -1.34E-02 1.44E-02 1.33E-01 1.36E-03

GW 2 22 -1.38E-01 0.00E00 0.00E00 -1.25E-01 0.00E00 1.66E-01 1.36E-03

GW 3 15 1.21E-01 0.00E00 0.00E00 1.21E-01 0.00E00 1.18E-01 1.36E-03

GX 4 001

GE

2.3. Fitness function

The fitness function must measure how closely the design meets the desired
requirements. To achieve our design goal, a fitness should be developed, which is to
direct the evolution process on a structure with reduced size, with the highest end-fire
gain, and with an input match as better as possible in the widest frequency range.
Actually, the increase in a parameter (i.e. the gain) usually results in a reduction in the
other ones (i.e. frequency bandwidth and input matching), thus the algorithm must
manage an elaborate trade-off between these conflicting goals. Therefore, the form of
the fitness function can be a critical point, since only a suitable fitness can lead the
design process to significant results. Moreover, depending on the used fitness, the
computation time can be largely reduced (i.e. a good result can be obtained with less
generations).

Structure-Based Evolutionary Design Applied to Wire Antennas 125

After evaluation of different fitness structures, we have chosen a fitness function composed
by three main terms suitably arranged as:

 ()M G SFitness F F F= + ⋅ (1)

The first term (FM) takes into account the input matching of the antenna, the second term
(FG) takes into account the antenna gain including the effect of ohmic losses, and the last
term (FS) takes into account the antenna size.

In (2.1):

 1 ; ; 1MAX REAL MAX
M M G G S S

MAX

G D D
F SWR F F

DG
α α α

−
= − ⋅ = ⋅ = + ⋅ (2)

wherein αM, αG and αS are suitable weights, while SWR and G are the mean values of SWR
and gain over the bandwidth of interest, DREAL represents the real antenna size and DMAX is
the maximum allowed size for the antenna.

The requirement of a given, and low, VSWR all over the design bandwidth is obviously
needed to effectively feed the designed antenna. However it has an equally important role.
The VSWR requirement (a near-field requirement) stabilizes the problem, at virtually no
additional cost.

The evaluation procedure for each individual (i.e. for each antenna) can be described by the
flowchart in Fig.3.

Figure 3. Flowchart of the evaluation procedure for each individual of the population.

Genetic Programming – New Approaches and Successful Applications 126

The process requires, as inputs, the required frequency range of the antenna, the number of
frequency points NF to be evaluated, the metal conductivity and the maximum size of the
antenna. Actually, the generated antenna can overcome the bounding box dimensions, but
with a penalty directly proportional to the excess size.

The proposed fitness functions try to perform a trade-off between contrasting objectives,
through the relative weights.

In this sense, we can say that the selected individuals are the best adapted to the (present)
antenna requirements. However, a different view would be the association of each
(different) requirement to a different fitness, thus leading to a multi-objective design.

In fact, generic evolutionary algorithms, like SED, PSO, DE, GA are a very powerful tool for
solving difficult single objective problems, but they can also be applied to solving many
multi-objective problems. Actually, real-world problems usually include several conflicting
objectives, and a suitable trade-off must be found. An interesting topic is therefore the study
of Multi-Objective optimization methods (Chen, 2009), and in solving such multi-objective
problems the adopted optimization method must provide an approximation of the Pareto
set such that the user can understand the trade-off between overlapped and conflicting
objectives, in order to make the final decision. Usually, a decomposition method is
implemented to convert a multi-objective problem into a set of mono-objective problems,
and an optimal Pareto front is approximated by solving all the sub-problems together
(Carvalho, 2012), and this requires insight not only of the algorithmic domain, but also
knowledge of the application problem domain.

In design methods dealing with a set of individuals, like SED, such point of view could lead
to better ways to explore the solution space, and is a promising direction for future
investigations.

3. Results

The automated design of wire antennas using SED has been applied to several PDAs, with
different maximum sizes, number of elements, and operation frequencies, and with different
requirements both on Gain and input matching, always obtaining very good results.

We present here only a few examples, chosen also to show the flexibility of SED. All
designed antennas have been compared with known antennas. However, since our antennas
are wide-band 3D structures, it has been difficult to device a suitable comparison antenna.
To get a meaningful comparison, we decided to compare our designed antennas with an
antenna of comparable size.

The first presented antenna (Casula et al., 2009), shown in Fig.4a, has been obtained by
constraining the evolution of each individual only in two directions (i.e. horizontally and
vertically). This limitation is a hard limitation, and significantly affects the antenna
performances. This compromise leads anyway to antennas easy to realize, and with good
performances.

Structure-Based Evolutionary Design Applied to Wire Antennas 127

The designed antenna works at the operation frequency of 800 MHz, and the requested
bandwidth is of 70 MHz (i.e. 9%, from 780 MHz to 850 MHz). The best designed antenna is
represented in Fig.1a. The antenna size is 0.58λ0 x 0.67λ0 x 1.2λ0, λ0 being the space
wavelength at the operation frequency of 800 MHz, its gain is above 11.6 dB (see Fig.5) and
its SWR is less than 2 in the whole bandwidth of 70 MHz (see Fig.1b). No additional
matching network is therefore required.

The chosen comparison antenna has been a 4-elements dipole array, with the same H-plane
size of our antenna. This array, shown in Fig.4b, is composed of 4 vertical elements, with a
length of 1.2λ0 and spacing of 0.58λ0 in the H-plane and of 0.67λ0 in the E-plane, and its gain
is within +/- 1 dB with respect to our antenna. The latter, therefore, uses in an effective way
its size. However, it must be stressed that our antenna has a single, and well-matched, feed
point, while the array needs a BFN to produce the correct feeding currents of the array
elements, which have also a quite large Q. The array realization is therefore more complex.

Figure 4. a) SED designed antenna; b) Reference Planar Array with 4 elements and the same size (in the
H-plane).

Figure 5. Gain and SWR of the GP designed antenna compared to the Gain of the reference Planar
Array with 4 elements and the same size (in the H-plane).

Genetic Programming – New Approaches and Successful Applications 128

Note that we have considered the antenna made of perfectly conducting (PEC) wires. The
VSWR constraint has prevented to fall in a super-directive solution, but the robustness of a
designed ideal antenna respect to conductor losses has not been checked.

The second example removes the constraints of right-angle junctions made in the first
example, and will be used also to evaluate the role of the conductor losses on the SED
performances. As a matter of fact, this can be easily done by designing an optimal antenna
assuming PEC (Antenna 2A) and another one, assuming a finite conductivity σ (antenna
2B), in this case equal to that of pure copper (σ=5.8*107 S/m). Then the first antenna is
analysed by including also the finite conductivity of the wires (Casula et al., 2011b).

For the 2A antenna, at the operation frequency of 500 MHz, requiring a bandwidth of 60
MHz (i.e. 12%, from 470 MHz to 530 MHz), SED designs the antenna shown in Fig.6a. The
performances of the antenna 2A are shown in Table 1.

Antenna 2A has been analysed also assigning to the conductors a finite conductivity equal
to the pure copper (σ=5.8*107 S/m). The results show a significant degradation of the antenna
performances, since even using a very good conductor as material, the dissipations due to
the finite conductivity are very large, making the antenna unusable (in fact NEC2 gives
similar values for the SWR, but a very low efficiency). In other words, such antenna is
actually close to a super-directive one.

On the other side, asking SED to design an antenna with the same specifications of antenna
2A, but assuming σ=5.8*107 S/m, we obtain an antenna with similar performances with
respect to the 2A antenna, but with a larger size (Antenna 2B). The designed antenna is
shown in Fig.6b, and, since the losses affect the antenna gain, the finite conductivity effect is
already included in the fitness. The performances of the antenna 2B are shown in Table 1.

This antenna shows similar performances with respect to the antenna shown in Fig.6a, but it
has a larger size (0.1833λ03 with respect to 0.03λ03). Nevertheless, unlike the antenna shown
in Fig.6a, it is feasible.

Antenna
Conductivity

σ (S/m)
Design
Shown

Antenna Size
Bandwidth

(SWR<2)
MAX Directivity Gain

(dBi)
Efficiency

(%)

2A
+∞

(PEC)
Fig.6a

0.33λ0x 0.22λ0 x
0.4λ0

70 MHz
(14%)

26 100

2B
5.8*107
(pure

copper)
Fig.6b

0.47λ0 x 0.3λ0 x
1.3λ0

90 MHz
(18%)

20 90.09

Table 1. Performances of the antennas 2A and 2B.

The frequency responses of both antennas are shown in Fig. 7 and 8. Also from these
responses, we easily deduce that antenna 2A (designed and analysed using PEC) is almost
superdirective.

The presented results show that the introduction of a finite value of metal conductivity
allows to obtain antennas with similar performances with respect to the antennas designed

Structure-Based Evolutionary Design Applied to Wire Antennas 129

with perfect conductors, but with a larger size. On the other hand, antennas designed
assuming perfect conductors are characterized by collected and closer branches and tend to
be super-directive.

Figure 6. a) Antenna 2A, designed using perfect conductors; b) Antenna 2B, designed using finite metal
conductivity.

Figure 7. SWR of the antennas 2A and 2B.

Genetic Programming – New Approaches and Successful Applications 130

Figure 8. Gain of the antennas 2A and 2B.

Material Conductivity σ (S/m) Efficiency (%) Max Directivity Gain (dB)
PEC +∞ 100 20.35

Copper 5.8*107 90.09 20.3
Aluminium 3.77*107 87.71 20.29

Stainless Steel 0.139*107 34.84 20.01

Table 2. Performances of the antenna designed using pure copper (shown in Fig.6b) for different values
of conductivity.

In Table 2, the antenna shown in Fig.6b, designed supposing the metal to be copper, has
been analysed for different values of conductivity. While the maximum directivity is almost
constant with respect to σ, the efficiency rapidly decreases. It is therefore required to take
into account in SED the actual conductivity of the antenna material, but, doing so, the
designed antennas will show similar performances to the antenna designed using copper,
with an acceptable value for the efficiency.

The last presented antenna (Casula et al., 2011a) is a broadband parasitic wire array for
VHF-UHF bands with a significant gain, showing significant improvements over existing
solutions (Yagi and LPDA) for the same frequency bands. In order to fulfil these strict
requirements, we had to devise a quite complicate fitness function, composed by several
secondary objectives overlapped to the main goal; these objectives are expressed by
appropriate weights modelling trade-offs between different goals. These relative weights
have been modelled by linear relations to avoid discontinuities and thus reducing the

Structure-Based Evolutionary Design Applied to Wire Antennas 131

probability of local maxima of the fitness, which trap the evolution process. The robustness
respect to realization errors is also evaluated and taken into account in the fitness.

We choose to maximize gain as the main goal of the fitness. Since we want to maximize the
end-fire gain, the radiation pattern has been divided into 4 regions:

1. The endfire direction:

 θ = 90°; ϕ = 0°

2. The back direction:

 θ = 90°; ϕ = 180°

3. The FRONT region:

 |θ| > 90°+2Δθ; 0° +2Δϕ < ϕ ≤ 90°

 (where Δϑ and Δϕ take into account the desired main lobe amplitude)

4. The REAR region:

 0° ≤ |θ| ≤ 180°; 90° ≤ |ϕ| ≤ 180°;

Our goal is the maximization of the gain in the region 1 while minimizing the gains in the
other 3 regions, with all the gains expressed in dB. Since we want to optimize the antenna in
a certain frequency bandwidth, we start computing a suitable weighted average gain GAW1
on region 1:

 1
1

1 FN

AW i Ei
iF

G w G
N =

= ⋅ (3)

wherein the average is taken over the NF frequency points, spanning the whole bandwidth
of interest. In (3.1) GEi is the endfire gain and wi depends on the input impedance of the
PDA:

0.2

1

i iw α



= 




αi is a weight proportional to the difference between the imaginary part XINA and the real
part RINA of the array input impedance.

The average gains over all other regions, namely GBGR in the back direction, GFGR in the front
region and GRGR in the rear region, are then computed. An “effective” endfire gain GAW is
then obtained properly weighting each gain:

If [(Re (ZIN) < 35 Ω) or (Re (ZIN) > 400 Ω)]

If [(35Ω ≤ Re(ZIN)≤ 400 Ω)] and [(Im(ZIN) >Re (ZIN))]

Genetic Programming – New Approaches and Successful Applications 132

1

BGR BGR

FGR FGR RGR RGR

1=
1 + *

1 1
1 + * 1 + *

AW AWG G
G

G G

α

α α

⋅

⋅ ⋅
 (4)

The weigths αBGR, αFGR and αRGR are chosen through a local tuning in order to get the
maximum gain in the end-fire direction and an acceptable radiation pattern in the rest of the
space. In our case, we obtained the following values: αBGR=0.08, αFGR=0.14 and αRGR=0.02.

In order to design a wideband antenna, we must add some parameters taking into account
the antenna input matching, and therefore we introduced suitable weights connected to the
antenna input impedance. Holding gain weights fixed, the other parameters concerning
input matching are added one by one choosing each weight through a further local tuning.

The GAW is therefore furthermore modified taking into account:

a. The values of RINA, XINA (averaged over the BW), and their normalized variance;

b. The SWR over all the required bandwidth

according to the following guidelines:

1. A step is introduced, with a weight αXR=50 if |XINA|> RINA, and αXR=0 otherwise, to boost
up structures with RINA> |XINA|;

2. A weight αXX=0.03 is introduced, related to |XINA|, forcing the evolution process to
structures with an |XINA| as small as possible;

3. A weight αRX=0.1 is introduced, related to RINA-|XINA|, to advantage structures with a
low Q factor;

4. A weight αRR=0.055 is introduced, related to RINA, to boost up structures with a high real
part of the input impedance (as long as it is lower than 300 Ω);

5. Weights αVR=αVX=0.015 are introduced, inversely related to the normalized variance of
RINA and XINA, to advantage structures with a regular impedance behaviour;

6. A sequence of small steps, related to the SWR (with a weight αSWR between 30 for an
SWR>20 and 0.005 for an SWR<4), is introduced to first boost up and then hold the
evolution in areas of the evolution space with good SWR values.

At this point we have a modified average gain GM, expressed by:

XR XX

1 1=
1 + 1 +

M AW A
IN

G G
Xα α

    ⋅ ⋅        

 (5)

2 2A

SWRVX R VR XIN
RX RR A

IN

1 1 1 1 1
1 + 1 + 1 + R - 300

1 + 1 + *
 R

A A
IN IN

A
IN

R X

R

αα σ α σ
α α

   
   
         
       ⋅ ⋅ ⋅ ⋅ ⋅          ⋅ ⋅−        
   
   

Structure-Based Evolutionary Design Applied to Wire Antennas 133

where σR2 and σX2 are the normalized variance of RINA and of XINA, respectively.

The difference GR-GM (where GR is a suitably high gain, needed only to work with positive
fitness values) is then modulated taking into account both the Q factor (obtained as the
ratio between the imaginary part and the real part of the array input impedance at the
central frequency) and the structure size to get a particular fitness f1. The individual
generated by the genetic process associated to a fitness f1 higher or very close to the best
fitness obtained as yet, are then perturbed (assigning random relocations to array
elements) and analysed to assess their robustness respect to random modification of the
structure. Two different random perturbed antennas are considered for each individual,
and the final fitness f2 is the partial fitness f1 averaged over all the initial and perturbed
configurations. This random relocation allows getting robust structures respect to both
constructive errors and bad weather conditions (for example movements due to wind
effect). On the other hand, this robustness test is quite time-consuming. Therefore it is
performed only on antennas already showing good performances. The final population is
graded according to their f2 value.

The antenna designed using the fitness expressed by (3.3) is a PDA with 20 elements: 1
reflector, 1 driven element and 18 directors. The operation frequency is 500 MHz, and the
requested bandwidth is of 70 MHz (i.e. 14%, from 475 MHz to 545 MHz). The best
antenna is represented in Fig.9, and its shape is typical of all antennas designed using
our SED optimization technique. The antenna size is very small, since it fits in a box
large 1.72 λ0 x 0.03 λ0 x 0.57 λ0, being λ0 the space wavelength at the operation frequency
of 500 MHz. Its SWR is less than 2 in the whole bandwidth of 70 MHz, and its gain is
above 18 dB.

Figure 9. Designed Antenna Structure.

The antenna has been designed using a population size of 1000 individuals, with a crossover
rate set to 60%, and a mutation rate set to 40%. Its convergence plot is shown in Fig.10, and
it appears that 300 generations are enough to reach convergence.

Genetic Programming – New Approaches and Successful Applications 134

Figure 10. Plot of convergence of the designed antenna in Fig.9.

To assess the performances of our designed PDA, we need a comparison antenna. The best
candidate is an existing Yagi but its choice is by no means obvious. Since, for a parasitic
antenna, an increase in the number of elements adds little to the antenna complexity, we
think that the most significant comparison is a gain comparison with a standard Yagi with
the same size of our PDA (about 1.72λ0 in the endfire direction), and a size comparison with
an Yagi with the same number of elements as our PDA. The first standard Yagi is composed
of only 9 elements, and its gain and SWR, compared to our optimized PDA, are shown in
Fig. 11. The standard Yagi bandwidth (SWR<2) is about 35 MHz (7% compared to 14%) with
a gain between 12 and 13 dB, i.e. at least 5 dB less than ours, over the whole bandwidth.

A standard Yagi antenna with the same number of elements than our PDA, i.e., 20 has been
selected for the second comparison. Though this antenna is very large (its size is about 6λ0x
0.5λ0), it has (see Fig.12) a quite narrow bandwidth (its gain is above 15 dB in a bandwidth
smaller than 10%, and even its SWR is less than 2 in a bandwidth of about 9%) if compared
with our PDA.

The PDA antenna of Fig. 11 and 12 has been designed choosing a fitness which pushes
individuals toward higher Gain giving a smaller importance to input matching. As a further
example, it is possible, by suitably choosing the fitness weights, to design a PDA antenna
which favours individuals with better input matching. The performances of such an antenna
are shown in Fig.13. The bandwidth (with SWR<2) has increased to 150 MHZ (30%), and its
gain is only a few dB less than the first optimized PDA antenna. It is important to highlight
that the size of the antenna with a larger input bandwidth is the same of the antenna with a
higher gain.

In Fig. 14 we show also the F/B ratio of both the PDA designed antennas, which is very close
also to standard Yagis’ F/B. This comparison shows that, though the PDA we have designed
appear to be more difficult to realize than a standard Yagi, they allow significantly better
performances in a larger bandwidth, both on input matching, gain and F/B ratio.
Furthermore, it is significantly smaller than standard Yagis.

 1000

 10000

 0 50 100 150 200 250 300

Fi
tn

es
s

Va
lu

e
[L

og
sc

al
e]

Generations

Structure-Based Evolutionary Design Applied to Wire Antennas 135

 a) b)

Figure 11. (a) Gain and (b) SWR comparison between the PDA Designed Antenna and a standard Yagi
with the same size (and 9 elements); (b): SWR comparison between the PDA Designed Antenna and a
standard Yagi with the same size (and 9 elements).

 a) b)
Figure 12. (a) Gain and (b) SWR comparison between the PDA Designed Antenna and a standard Yagi
with the same number of elements, 20, and a far larger size (6 λ0 vs 1.72 λ0).

 a) b)
Figure 13. (a) Gain and (b) SWR of the PDA Designed Antenna with a fitness pushing towards a larger
SWR bandwidth

Genetic Programming – New Approaches and Successful Applications 136

Figure 14. F/B ratio comparison between the PDA Designed Antenna with a fitness pushing towards a
larger Gain bandwidth and one towards a larger SWR bandwidth.

In order to demonstrate that the inclusion of the antenna robustness into the fitness using
our simple device works well, we have tested a hundred random perturbations of the
reference antenna of Fig.9. These have been obtained perturbing the ends of each arm of the
antenna with a random value between -2 and 2 mm. The standard deviations of the SWR
and gain are shown in Fig.15 and are expressed in percentage with respect to the values of
the unperturbed antenna shown in Fig.9. Despite of such huge perturbation, the designed
PDA is so robust that the behaviour of all perturbed antennas is essentially the same of the
unperturbed one. Therefore, despite of its (relative) low computational cost, the approach
we have devised to include robustness in the fitness allows to design antennas which are
very robust respect to realization errors.

Figure 15. Standard Deviation of SWR and Gain of the PDA Designed Antenna in Fig.9, considering
100 randomly perturbed configurations.

Structure-Based Evolutionary Design Applied to Wire Antennas 137

Finally, we consider the computational issue. The computational cost of SED, like that of
many other random optimization techniques, is the computational cost required to evaluate
each individual. Therefore different techniques, such as SED and standard GA, can have
different cost as long as they evaluate a different number of individuals, or more complex
ones.

For the example presented in Fig.10, SED requires 3*105 NEC evaluations of individuals. GA
with comparable antenna size (such as the one described in (Jones & Joines, 1997)) requires a
likely, or even larger, number of NEC evaluations. Since also the number of NEC unknown
is more or less the same for both approaches, depending essentially on the antenna size, we
can conclude that SED has a computational cost comparable, or slightly larger than standard
GA. On the other hand, SED allows to explore a far larger solution space. If we consider as
computational effectiveness of a design approach the size of the solution space explored for
a given computational cost, we can conclude that SED is computationally more effective and
with more performing antennas than GA.

A comparison between SED and other algorithms like Particle Swarm Optimization and
Differential Evolution, shows that both the computational cost and the complexity are of the
same order of magnitude, also in these cases. But, again, the performances obtained by them
are not as good as the ones obtained using SED.

In Table 3, we show the results obtained by our PDA, designed using SED, compared with
the results obtained by:

(Baskar et al., 2005), who used PSO to optimize the element spacing and lengths of a Yagi–
Uda antenna;

(Goudos et al., 2010) who used Generalized Differential Evolution applied to Yagi-Uda
antenna design;

(Li, 2007), who used Differential Evolution to optimize the geometric parameters of Yagi-
Uda antennas;

(Yan et al., 2010), who designed a wide-band Yagi-Uda antenna with X-shape driven
dipoles and parasitic elements using differential evolution algorithm, obtaining a
bandwidth of 20%.

 N°
Elements

Size
Gain at center
frequency (dB)

VSWR at center
frequency

Bandwidth
(VSWR<2)

Baskar 2005
(PSO) 15

0.239x4.115
λ0

16.4 1.05 -

Goudos 2010
(DE) 15

0.239x4.943
λ0

17.58 1.1 -

Yan 2010
(DE) 11

0.527x1.391
λ0

12.5 1.8 20%

Li 2007
(DE) 15

0.459x4.664
λ0

16.59 1.085 -

SED 20 0.57x1.72 λ0 21 1.4 30%

Table 3. Comparison between the performances reached by SED, PSO and DE in the design of a
Parasitic Wire Dipole Array.

Genetic Programming – New Approaches and Successful Applications 138

Both (Baskar et al., 2005), (Goudos et al., 2010) and (Li, 2007) decide to perform the
optimization only at the center frequency, and this is a simpler task and can lead to better
results than an optimization over the whole antenna bandwidth, which is the choice we
made in our SED design. Nonetheless, the results obtained by SED are better than the ones
obtained by PSO and DE even at the center frequency.

In fact we are able to get a wideband antenna with a very high gain, i.e. we both maximize
antenna gain and minimize SWR and antenna size within the whole bandwidth (which is a
wide bandwidth, equal to 30%).

Therefore, SED can lead to better results if compared with PSO and DE, both in terms of
performances and of overall size. This is probably due to the fact that the solution space of
SED is larger than the corresponding solution spaces of PSO and DE, and hence a proper
choice of the fitness function can push the evolution process to more performing
antennas.

4. Conclusion

In this chapter a new design technique, namely the Structure-based Evolutionary Design
(SED) has been described in detail. This is a new global random search method based on
the evolutionary programming concept. The proposed technique has been compared with
the standard genetic algorithms (GA), a widely used design technique, showing the
numerous advantages of our approach with respect to standard ones. Its main advantage is
the ability to explore a far larger solution space than standard optimization algorithms.
Moreover, SED assumes no “a priori” structure, but it builds up the structure of the
individuals as the procedure evolves, being able to determine both the structure shape and
dimensions as an outcome of the procedure. Inclusion of input matching requirements
prevents from ill-posedness, a danger always present when the solution space is so large.
The described procedure has been used to design wire antennas, and several examples are
presented, showing very good results. The goal of the design process is to develop wire
antennas fulfilling the desired requirements for both Gain and VSWR in a frequency band
as wide as possible, and with the smallest size. For each set of requirements, a suitable
fitness function must be derived, and some suggestions are given to choose the best fitness
for the problem at hand. The results obtained with SED are finally compared with other
global search algorithms showing that both the computational cost and the complexity are
of the same order of magnitude, but the performances obtained by SED are significantly
higher.

Author details

Giovanni Andrea Casula and Giuseppe Mazzarella
Università degli Studi di Cagliari/Dipartimento di Ing. Elettrica ed Elettronica, Piazza d’Armi,
Cagliari, Italy

Structure-Based Evolutionary Design Applied to Wire Antennas 139

Acknowledgement

Work supported by Regione Autonoma della Sardegna, under contract number CRP1_511,
with CUP F71J09000810002, titled “Valutazione e utilizzo della Genetic Programming nel progetto
di strutture a radiofrequenza e microonde” .

5. References

Baskar, S.; Alphones, A.; Suganthan, P.N.; Liang, J.J. (2005). Design of Yagi-Uda antennas
using comprehensive learning particle swarm optimization, Microwaves, Antennas and
Propagation, IEE Proceedings, vol. 152, issue 5.

Bucci, O. M.; Franceschetti , G. (1989). On the degrees of freedom of Scattered Fields, IEEE
Transactions on Antennas and Propagation, vol. 37, pp. 918-926.

Bucci, O. M.; D'Elia, G.; Mazzarella, G.; Panariello, G. (1994). Antenna pattern synthesis: a
new general Approach, Proc. IEEE , 82, pp. 358–371.

Burke, G. J. ; Poggio, A. J. (1976a). Computer Analysis of the Twin-Whip, UCRL-52080,
Lawrence Livermore Laboratory, CA.

Burke, G. J. ; Poggio, A. J. (1976b). Computer Analysis of the Bottom-Fed FM Antenna,
UCRL-52109, Lawrence Livermore Laboratory, CA.

Burke, G. J. ; Poggio, A. J. (1981). Numerical Electromagnetics Code -Method of Moments,
Tech. Rep. UCID-18834, Lawrence Livermore National Laboratory.

Carrel, R. (1961). The Design of Log-Periodic Dipole Antennas, IRE International Convention
Record, Vol.9, pp. 61-75.

Carvalho, R.; Saldanha, R. R.; Gomes, B. N.; Lisboa, A.C.; Martins, A. X. (2012). A Multi-
Objective Evolutionary Algorithm Based on Decomposition for Optimal Design of Yagi-
Uda Antennas, IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 2.

Casula, G.A.; Mazzarella, G.; Sirena N. (2009). Genetic Programming design of wire
antennas, Antennas and Propagation Society International Symposium.

Casula, G.A.; Mazzarella, G.; Sirena N. (2011a). Evolutionary Design of Wide-Band Parasitic
Dipole Arrays, IEEE Transactions on Antennas and Propagation, vol. 59; p. 4094-4102.

Casula, G.A.; Mazzarella, G.; Sirena N. (2011b). On the Effect of the Finite Metal
Conductivity in the design of Wire Antennas using Evolutionary Design, Antennas and
Propagation Society International Symposium.

Chen, C.; Chen, Y.; Zhang, Q. (2009). Enhancing MOEA/D with guided mutation and
priority update for multi-objective, CEC MOEA Competition, Trondheim, Norway.

Collin, R.E. (1986). Antennas and radiowave propagation, McGraw-Hill.
Costanzo, S.; Casula, G.A.; Borgia, A.; Montisci, G.; Di Massa, G.; Mazzarella, G. (2009).

Synthesis of Slot Arrays on Integrated Waveguides, IEEE Antennas and Wireless
Propagation Letters, vol. 9; p. 962-965.

Darwin, C. (1859). The Origin of Species, J. Murray, London, Chapter XIII.
Deadrick, J.; Burke, G. J.; Poggio, A. J. (1977). Computer Analysis the Trussed-Whip and

Discone-Cage Antennas, UCRL-52201.
Elliott, R.S. (1981). Antenna theory and design, Prentice-Hall, N.Y.

Genetic Programming – New Approaches and Successful Applications 140

Franceschetti, G.; Mazzarella, G.; Panariello, G. (1988). Array synthesis with
excitation constraints, Proc. IEE, pt.H, Vol.135.

Hansen, R.C. (1990). Superconducting Antennas, IEEE Transactions on Aerospace Aerospace
and Electronics Systems, Vol. 26.

Hansen, R.C. (1991). Antenna Applications of Superconductors, IEEE Transactions on
Microwave Theory and Techniques, Vol. 39.

Goudos, S.K.; Siakavara, K.; Vafiadis, E.E.; Sahalos, J.N. (2010). Pareto optimal Yagi-Uda
antenna design using multi-objective differential evolution, Progress In Electromagnetics
Research, Vol. 105, pp 231-251.

Johnson, R.C.; Jasik, H. (1984). Antenna Engineering Handbook – Second Edition, Mc Graw –
Hill.

Jones, E. A.; Joines, W.T. (1997). Design of Yagi-Uda Antennas Using Genetic Algorithms,
IEEE Trans. On Antennas and Propagation, Vol.45 n°9, pp.1386-1392.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural
Selectio , MIT Press.

Li, J. Y. (2007). Optimizing Design of Antenna Using Differential, Proceedings of Asia-Pacific
Microwave Conference.

Linden, D.; Altshuler, E. (1996). Automating Wire Antenna Design using Genetic
Algorithms, Microwave Journal, vol. 39, no. 3, pp. 74-86.

Linden, D.; Altshuler, E. (1997). Wire-Antenna designs using genetic algorithms, Antennas
and Propagation Magazine, IEEE, vol.39, no.2, pp.33-43.

Lo, Y. T.; Lee, S. W.; Lee, Q. H. (1966). Optimization of directivity and signal-to-noise ratio of
an arbitrary antenna array, Proc. IEEE, vol. 54, pp. 1033–1045.

Lohn, J. D.; Hornby, G. S.; Linden, D. S. (2005). An Evolved Antenna For Deployment on
NASA's Space Technology 5 Mission, in Genetic Programming Theory And Practice II,
Springer.

Montisci, G.; Casula, G.A.; Galia, T.; Mazzarella, G. (2003) Design of series-fed printed
arrays, Journal of Electromagnetic Waves and Applications.

Montisci, G. (2006). Design of circularly polarized waveguide slot linear arrays, IEEE
Transactions on Antennas and Propagation, 54 (10), pp. 3025-3029.

Orchard, H.J.; Elliott, R.S.; Stern, G.J. (1985). Optimising the synthesis of shaped beam
antenna patterns, Microwaves, Antennas and Propagation, IEE Proceedings H, Vol. 132 , pp
63 - 68.

Silver, S. (1949). Microwave Antenna Theory and Design, Mc Graw – Hill.
Yan, Ya-li; Fu Guang; Gong, Shu-xi; Chen, Xi; Li, Dong-chao. (2010). Design of a wide-band

Yagi-Uda antenna using differential evolution algorithm, International Symposium on
Signals Systems and Electronics (ISSSE).

Chapter 7

© 2012 Abdelmalek et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dynamic Hedging Using Generated
Genetic Programming Implied Volatility Models

Fathi Abid, Wafa Abdelmalek and Sana Ben Hamida

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48148

1. Introduction

One challenge posed by financial markets is to correctly forecast the volatility of financial
securities, which is a crucial variable in trading and risk management of derivative
securities. Dynamic hedging is very sensitive to volatility forecast and good hedges require
accurate estimate of volatility. Implied volatilities, generated from option markets, can be
particularly useful in such contents as they are forward-looking measures of the market's
expected volatility during the remaining life of an option [1, 2]. Since there is no explicit
formula available to compute directly the implied volatility, the latter can be obtained by
inverting the option pricing model. On the contrary, the genetic programming offers explicit
formulas which can compute directly the implied volatility. This volatility forecasting
method should be free of strong assumptions regarding underlying price dynamics and
more flexible than parametric methods. This paper proposes a non parametric approach
based on genetic programming to improve the accuracy of the implied volatility forecast
and consequently the dynamic hedging.

Genetic Programming [3] is an optimization technique which extends the basic genetic
algorithms [4] to process non-linear problem structure. In genetic programming, solutions
are represented as tree structures that can vary in size and shape, rather than fixed length
character strings as in genetic algorithms. This means that genetic programming can be used
to perform optimization at a structural level. In the standard genetic programming, the
entire population of function-trees is evaluated against the entire training data set, so the
number of function-tree evaluations carried out per generation is directly proportional to
both the population size and the size of the training set. Genetic programming can
encounter the problem of managing training sets which are too large to fit into the memory
of computers, and then the realization of predictors. In machine learning, the practiced
solution to learn large data set is the application of resampling techniques, such as, bagging

Genetic Programming – New Approaches and Successful Applications 142

[5], boosting [6] and arcing [7]. However, these techniques require that the entire data sets
be stored in the main memory. When applied to large data sets, this approach could be
impractical. In this paper, we proposed to split data into smaller subsets. First, the genetic
programming is run separately on all training sub-samples. Such approach is called static
training-subset selection method [8]; it might provide local solutions not adaptive to the
entire enlarged data set. Alternatively, a dynamic training approach is developed. It allows
genetic programming to learn simultaneously on all training sub-samples and it implies a
new parameter added to the basic genetic programming algorithm which is the number of
generations to change sample. This approach lightens the training task for the genetic
programming and favors the discovery of solutions that are more robust across different
learning data samples and seem to have better generalization ability. Comparison between
generated models using static and dynamic selection methods reveals that, the dynamic
approach improves the forecasting performance of the generated models using genetic
programming. The best forecasting implied volatility models are selected according to total
MSE criterion. They are used to compute hedge factors and implement dynamic hedging
strategies. According to the average hedging errors, the genetic programming presented
accurate hedging performance compared to that of Black-Scholes model.

The rest of the paper is organized as follows: section 2 provides background information
regarding related works in forecasting volatility and dynamic hedging, section 3 describes
research design and methodology used in this paper, section 4 reports experimental results
and finally section 5 concludes.

2. Related works
Traditional parametric methods have limited success in estimating and forecasting volatility
as they are dependent on restrictive assumptions and difficult to estimate. Several machine
learning techniques have been recently used to overcome these difficulties such as artificial
neural networks and evolutionary computation algorithms. In particular, genetic
programming has been successfully applied to forecast financial time series [9,10].

This paper makes an initial attempt to test whether the hedger can benefit more by using
generated genetic programming implied volatilities instead of Black-Scholes implied
volatilities in conducting dynamic hedging strategies.

Changes in asset prices is not the only risk faced by market participants, instantaneous
changes in market implied volatility can also bring a hedging portfolio significantly out of
balance. Extensive research during the last two decades has demonstrated that the volatility
of stocks is not constant over time [11]. The Autoregressive Conditional Heteroskedasticiy
(ARCH) and the Generalized ARCH (GARCH) models are introduced [12,13] to describe
the evolution of the asset price’s volatility in discrete time. Econometric tests of these models
clearly reject the hypothesis of constant volatility and find evidence of volatility clustering
over time. In the financial literature, stochastic volatility models have been proposed to
model these effects in a continuous-time setting [14-17]. Although these models improve
the benchmark Black-Scholes model, they are complex because they require strong

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 143

assumptions and computational effort to estimate parameters and stochastic process. As
mentioned in [18], traditional financial engineering methods based on parametric models
such as the GARCH model family, seem to have difficulty to improve the accuracy in
volatility forecasting due to their rigid as well as linear structure. Using its basic and flexible
tree-structured representation, genetic programming is capable of solving non-linear
problems. In the context of forecasting volatility, most of research papers have focused on
forecasting historical volatility based on past returns in different markets. Using historical
returns of Nikkei 225 and S&P500 indices, Chen and Yeh [19] have applied a recursive
genetic programming approach to estimate volatility by simultaneously detecting and
adapting to structural changes. Results have shown that the recursive genetic programming
is a promising tool for the study of structural changes. Using high frequency foreign
exchange USD-CHF and USD-JPY time series, Zumbach et al. [20] have compared the
genetic programming forecasting accuracy to that of historical volatilities, the GARCH (1,1),
FIGARCH and HARCH models. According to the root-mean squared errors, the generated
genetic programming volatility models did consistently outperform the benchmarks.
Similarly, Neely and Weller [21] have tested the forecasting performance of genetic
programming for USD-DEM and USD-YEN daily exchange rates against that of GARCH
(1,1) model and a related RiskMetrics volatility forecast over different time horizons, using
various accuracy criteria. While the genetic programming rules did not usually match the
GARCH (1,1) or RiskMetrics models' MSE or 2R , its performance on those measures was
generally close. But, the genetic programming did consistently outperform the GARCH
model on mean absolute error (MAE) and model error bias at all horizons. Overall, on some
dimensions the genetic programming has produced significantly superior results. Applying
a combination of theory and techniques such as wavelet transform, time series data mining,
Markov chain based discrete stochastic optimization, and evolutionary algorithms genetic
algorithms and genetic programming, Ma et al. [22,23] have proposed a systematic approach
to address specifically non linearity problems in the forecast of financial indices using
intraday data of S&P100 and S&P500 indices. As a result, accuracy of forecasting has
reached an average of over 75% surpassing other publicly available results on the forecast of
any financial index. Abdelmalek et al. [8] have extended the studies mentioned earlier by
forecasting the implied volatility of Black-Scholes from the S&P500 index call options
instead of historical volatility using a static training of genetic programming. The
performance of generated genetic programming volatility forecasting models is compared
between time series samples and moneyness-time to maturity classes. Using Total and out-
of-sample mean squared errors (MSE) as forecasting performance measures, the time series
model seems to be more accurate in forecasting implied volatility than moneyness-time to
maturity models.

Option contracts prices are affected by new information and changes in expectations as
much as they are by changes in the value of the underlying index. If traders have perfect
foresight on forward volatility, then dynamic hedging would be essentially riskless. In
practice, continuous hedging is impossible, but the convexity of option contract allows for
adjustments in the exposure to higher-order sensitivities of the model, such as gamma, vega,

Genetic Programming – New Approaches and Successful Applications 144

etc. Most of the existing literature on hedging a target contract using other exchange-traded
options focuses on static strategies, motivated at least in part by the desire to avoid the high
costs of frequent trading. The goal of static hedging is to construct a buy-and-hold portfolio
of exchange traded claims that perfectly replicates the payoff of a given over-the-counter
product [24,25]. The static hedging strategy does not require any rebalancing and therefore,
it does not incur significant transaction costs. Unfortunately, the odds of coming up with a
perfect static hedge for a given over-the-counter claim are small, given the limited number
of exchange listed option contracts with sufficient trading volume. In other words, the static
hedge can only be efficient if traded options are available with sufficiently similar maturity
and moneyness as the over-the-counter product that has to be hedged. Under a stochastic
volatility, a perfect hedge can in principle be constructed with a dynamically rebalanced
portfolio consisting of the underlying and one additional option. In practice, the dynamic
replication strategy for European options will only be perfect if all of the assumptions
underlying the Black-Scholes formula hold. For general contingent claims on a stock, under
market frictions, the delta might still be used as first-order approximation to set up a riskless
portfolio. However, if the volatility of the underlying stock varies stochastically, then the
delta hedging method might fail severely. A simple method to limit the volatility risk is to
consider the volatility sensitivity vega of the contract. The portfolio will have to be
rebalanced frequently to ensure delta-vega neutrality. With transaction costs, frequent
rebalancing might result in considerable losses. In practice, investors can rebalance their
portfolios only at discrete intervals of time to reduce transactions costs.

Non parametric hedging strategies as an alternative to the existing parametric model based-
strategies, have been proposed [26,27]. Those studies estimated pricing formulas by
nonparametric or semi-parametric statistical methods such as neural networks and kernel
regression, and they measured their performance in terms of delta-hedging. Few researches
have focused on the dynamic hedging using genetic programming, however. Chen et al. [28]
have applied genetic programming to price and hedge S&P500 index options. By
distinguishing the case in-the-money from the case out-of-the-money, the performance of
genetic programming is compared with the Black-Scholes model in terms of hedging accuracy.
Based on the post-sample performance, it is found that in approximately 20% of the 97 test
paths, genetic programming has lower tracking error than the Black-Scholes formula.

Based on the literature survey, one can conclude that the genetic programming could be
used to efficiently forecast volatility and implement accurate dynamic hedging strategies,
which opens up an alternative path besides other data-based approaches.

3. Research design and methodology

Accurate volatility forecasting is an essential element in conducting good dynamic hedging
strategies. The first thrust of this paper deals with generation of implied volatility from
option markets using static and dynamic training of genetic programming, respectively.
While the static training [8] is characterized by training the genetic programming
independently on a single Sub-sample, the dynamic training allows the genetic

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 145

programming to train on the entire data sub samples simultaneously rather than just a
single subset by changing the training Sub-sample during the run process. This permits to
improve the robustness of genetic programming to generate general models adaptive to all
training samples. The second thrust of this paper is to study the accuracy of the generated
genetic programming implied volatility models in terms of dynamic hedging. Since the true
volatility is unobservable, it is impossible to assess the accuracy of any particular model;
forecasts can only be related to realized volatility. In this paper, we assume that the implied
volatility is a reasonable proxy for realized volatility, to generate forecasting implied
volatility models using genetic programming and then to analyze the implications of this
predictability for hedging purposes.

Figure 1 illustrates the operational procedure to implement the proposed approach.

Figure 1. Description of the proposed approach’s implementation

The operational procedure consists of the following steps: The first step is devoted for the
data division schemes. The second step deals with the implementation of genetic
programming1 (GP), the application of training subset selection methods and the selection of
the best forecasting implied volatility models. The last step is dedicated to dynamic hedging
results.

3.1. Data division schemes

Data used in this study consist of daily prices for the European-style S&P 500 index calls and
puts options traded on the Chicago Board of Options Exchange from 02 January to 29
August 2003. The data base include the time of the quote, the expiration date, the exercise
price and the daily bid and ask quotes for call and put options. Similar information for the
underlying S&P 500 index is also available on a daily basis. S&P500 index options are among
the most actively traded financial derivatives in the world. The minimum tick for series
trading below 3 is 1/16 and for all other series 1/8. Strike price intervals are 5 points, and 25
points for far months. The expiration months are three near term months followed by three
additional months from the March quarterly cycle (March, June, September, and December).
Following a standard practice, we used the average of an option’s bid and ask price as a
stand-in for the market value of the option. The risk free interest rate is approximated by
using 3 month US Treasury bill rates. It is assumed that there are no transaction costs and no
dividend.

1 GP system is built around the Evolving Object library, which is an ANSI-C++ evolutionary computation Framework
(EO library).

Genetic Programming – New Approaches and Successful Applications 146

To reduce the likelihood of errors, data screening procedures are used [29,30]. We apply
four exclusion filters to construct the final option sample. First, as implied volatilities of
short-term options are very sensitive to small errors in the option price and may convey
liquidity-related biases, options with time to maturity less than 10 days are excluded.
Second, options with low quotes are eliminated to mitigate the impact of price discreteness
on option valuation. Third, deep-in-the-money and deep-out-of-the money option prices are
also excluded due to the lack of trading volume. Finally, option prices not satisfying the

arbitrage restriction [31], rC S Ke τ−≥ − , are not included.

The final sample contains 6670 daily option quotes, with at-the-money (ATM), in-the-money
(ITM) and out-of-the money (OTM) options respectively taking up 37%, 34% and 29% of the
total sample.

In this paper, two data division schemes are used. The full sample is sorted first, by time
series (TS) and second by moneyness-time to maturity (MTM). For time series, data are
divided into 10 successive samples (S1, S2…S10), each contains 667 daily observations. The
first nine samples are used as training sub-samples. For moneyness-time to maturity, data
are divided into nine classes with respect to moneyness and time to maturity criteria.
According to moneyness criterion: A call option is said out-of-the money (OTM) if

/ 0.98S K < ; at-the-money (ATM) if / 0.98,1.03S K  ∈   ; and in-the-money (ITM) if
/ 1.03S K ≥ . According to time to maturity criterion: A call option is Short Term (ST) if

60τ < days; Medium Term (MT) if 60,180τ  ∈   days; and Long Term (LT) if 180τ > days.
Each class Ci is divided on training set CiL and test set CiT, which produces respectively nine
training and nine test MTM sub-classes. Figure 2 illustrates the two division schemes.

Figure 2. Data division schemes

3.2. Implied volatility forecasting using genetic programming:

This subsection describes the design of genetic programming and the experiments
accomplished using the genetic programming method to forecast implied volatility. In the
first experiment, the genetic programming is trained using static training-subset selection

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 147

method; in the second one, we used dynamic training-subset selection methods. We
describe training and test samples used in these experiments.

3.2.1. The design of genetic programming:

Our genetic programming software is referred to as symbolic regression written in C++
language. It is designed to find a function that relates a set of inputs to an output without
making any assumptions about the structure of that function. Symbolic regression was one
of the earliest applications of genetic programming [3], and has continued to be widely
studied [32-35]. The following pseudo code describes the genetic programming's algorithm
structure used in this paper.

Initialize population
While (termination condition not satisfied) do
Begin

Evaluate the performance of each individual according to the fitness criterion
Until the offspring population is fully populated do

 - Select individuals in the population using the selection algorithm
 - Perform crossover and mutation operations on the selected individuals
 - Insert new individuals in the offspring population

 Replace the existing population by the new population
End while
Report the best solution found
End

Algorithm 1 Pseudo code of genetic programming

The genetic programming’s algorithm structure consists of the following steps: nodes
definition, initialization, fitness evaluation, selection, genetic operators (crossover and
mutation) and termination condition.

Nodes Definition: The nodes in the tree structure of genetic programming can be classified
into terminal (leaf) nodes and function (non-terminal) nodes. The terminal and function sets
used are described in Table 1.

The terminal set includes the inputs variables, notably, the option price divided by strike

price (C
K

for calls and P
K

for puts), the index price divided by strike price S
K

and time to

maturityτ . The function set includes unary and binary nodes. Unary nodes consist of
mathematical functions, notably, cosinus function (cos), sinus function (sin), log function
(ln), exponential function (exp), square root function () and the normal cumulative
distribution function (Φ). Binary nodes consist of the four basic mathematical operators,
notably, addition (+), subtraction (-), multiplication (×) and division (0

0). The basic
division operation is protected against division by zero and the log and square root
functions are protected against negative arguments.

Genetic Programming – New Approaches and Successful Applications 148

Expression Definition

Terminal Set C/K Call price / Strike price

S/K Index price / Strike price

τ Time to maturity

Function Set + (plus) Addition

- (minus) Subtraction

* (multiply) Multiplication

0
0 (divide) Protected division: x 0

0 y = 1 if y=0; x 0
0 y = x 0

0 y otherwise

ln Protected natural log: () ()ln lnx x=

Exp Exponential function: ()exp xx e=

Sqrt Protected square root: x x=

Ncdf Normal cumulative distribution function Φ

Table 1. Terminal set and function set

Individuals are encoded as LISP S-expressions which can also be depicted as a parse tree.
The search space for genetic programming is the space of all possible parse trees that can be
recursively created from the terminal and function sets.

Figure 3. Example of a tree structure for GP and the corresponding functions

Initialization: The generated genetic programming volatility models are performed using a
ramped half and half as initialization method [3]. This method involves generating an equal
number of trees using a maximum initial depth that ranges from 2 to 6, as specified in Table
2. For each level of depth, 50% of the initial trees are generated via the full method and the

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 149

other 50% are generated via the grow method. In the full method, the initial trees have the
property that every path from root to endpoint is of maximum depth. In the grow method,
initial trees can be of various depths, subject to the constraint that they do not exceed the
maximum depth.

Fitness function: The fitness function assigned to a particular individual in the population
must reflect how closely the output of an individual program comes to the target function.

In this paper, the Black-Scholes implied volatility BS
tσ is used as target output. It is defined

as the standard deviation which equates the Black-Scholes price BSC 2 to the market option

price *
tC [36]:

()

()() ()*

! , 0,

, , , , ,

BS
t

BS
BS t t t

K T

C S K K T C K T

σ

τ σ

∃

=


 (1)

The generated genetic programming trees provide at each time t the forecast value ˆtσ , and
the fitness function used to measure the accuracy of forecast is the mean squared error

(MSE) between the target (BS
tσ) and forecasted (ˆtσ) output volatility, computed as follows:

 ()
2

1

1 ˆ
N

BS
t t

t
MSE

N
σ σ

=
= − (2)

Where, N is the number of data sample.

Selection: Based on the fitness criterion, the selection of the individuals for reproduction is
done with the tournament selection algorithm. A group of individuals is selected from the
population with a uniform random probability distribution. The fitness values of each
member of this group are compared and the actual best is selected. The size of the group is
given by the tournament size which is equal to 4, as indicated in Table 2.

Genetic operators: Crossover and mutation are the two basic operators which are applied to
the selected individuals in order to generate new individuals for the next generation. As
described in Figure 4, the subtree crossover creates new offspring trees from two selected
parents by exchanging their sub-trees. As indicated in Table 2, the crossover operator is
used to generate about 60% of the individuals in the population. The maximum tree size
(measured by depth) allowed after the crossover is 17. This is a popular number used to
limit the size of tree [3]. It is large enough to accommodate complicated formulas and works
in practice.

2 () ()1 2 ,r
BSC SN d Ke N dτ−= −

()2

1

ln 0.5
,

S
r

Kd
σ τ

σ τ

+ +
=

 
 
 

2 1d d σ τ= − .

Genetic Programming – New Approaches and Successful Applications 150

Figure 4. Example of subtree mutation

The mutation operator randomly changes a tree by randomly altering nodes or sub-trees to
create a new offspring. Often multiple types of mutation are beneficially used
simultaneously [37,38]. In this paper, three mutation operators are used simultaneously,
they are described below:

Branch (or subtree) mutation operator randomly selects an internal node in the tree, and
then it replaces the subtree rooted at that node with a new randomly-generated subtree
[3].

Figure 5. Example of point mutation

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 151

Point mutation operator consists of replacing a single node in a tree with another randomly-
generated node of the same arity [39].

Expansion mutation operator randomly selects a terminal node in the tree, and then replaces
it with a new randomly-generated subtree.

Figure 6. Example of expansion mutation

As indicated in Table 2, Branch mutation is applied with a rate of 20%; Point and Expansion
mutations are applied with a rate of 10%, respectively.

Replacement: The method of replacing parents for the next generation is comma replacement
strategy [40], which selects the best offspring to replace the parents. It assumes that
offspring size is higher than parents' size. If µ is the population size and λ is the number of
the new individuals (which can be larger than µ), the population is constructed using the
best µ out of the λ new individuals.

Termination criterion: The stopping criterion is the maximum number of generations. It is
fixed at 400 and 1000 for static and dynamic training- subset selection, respectively. In the
dynamic training- subset selection approach, the maximum number of generations is
increased to allow the genetic programming to train on the maximum of samples
simultaneously. The number of generations to change sample varied between 20 and 100
generations.

The implementation of genetic programming involves a series of trial and error experiments
to determine the optimal set of genetic parameters which is listed in Table 2. By varying
genetic parameters, each program is run ten times with ten different random seeds. The
choice of the best genetic program is made according to the mean and median of Mean
Squared Errors (MSE) for training and testing sets.

Genetic Programming – New Approaches and Successful Applications 152

Population size:
Offspring size:
Maximum number of generations for static method:
Maximum number of generations for dynamic method:
Generations' number to change sample
Maximum depth of new individual:
Maximum depth of the tree:
Tournament size:
Crossover probability:
Mutation probability:

Branch mutation:
Point mutation:
Expansion mutation:

100
200
400
1000
20-100
6
17
4
60%
40%
20%
10%
10%

Table 2. Summary of genetic programming parameters

3.2.2. Dynamic training-subset selection method

As data are divided in several sub-samples, the genetic programming is trained, first,
independently on each sub-sample relative to each data division scheme (algorithm 1). This
approach is called static training-subset selection method [8]. Second, the genetic
programming is trained simultaneously on the entire data sub-samples relative to each data
division scheme, rather than just a single subset by changing the training sub-sample during
the run process. This approach is called dynamic training-subset selection method. The main
goal of this method is to make genetic programming adaptive to all training samples and
able to generate general models and solutions that are more robust across different learning
data samples. In the context of evolutionary algorithms, there are at least three approaches
for defining the frequency of resampling [41]. The first approach called “individual-wise”
consists of extracting a new sample of data instances from the training set for each
individual of the population. As a result, different individuals will probably be evaluated on
different data samples, which cast some doubts on the fairness of the selection procedure of
the evolutionary algorithm. The second approach called “run-wise” consists of extracting a
single fixed sample of data instances from the training set used to evaluate the fitness of all
individuals throughout the evolutionary run, which will probably reduce significantly the
robustness and predictive accuracy of the evolutionary algorithm. The third approach called
“generation-wise” consists of extracting a single fixed sample of data instances from the
training set at each generation, and all individuals of that generation will have their fitness
evaluated on that data sample. This method avoids the disadvantages of the two previous
approaches, and as such seems more effective. In particular, an individual will only survive
for several generations if it has a good predictive accuracy across different data samples.
The dynamic approach proposed in this study differs from the three previous approaches as
it doesn’t extract a fixed sample of data instances from the training set, but selects it from the

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 153

whole sub-samples data which are already built up and use it to evaluate the fitness of all
individuals when the generations’ number to change sample is reached. In this paper, we
proposed four dynamic training-subset selection methods: Random Subset Selection method
(RSS), Sequential Subset Selection method (SSS), Adaptive-Sequential Subset Selection method
(ASSS) and Adaptive-Random Subset Selection method (ARSS). The RSS and SSS allow the
genetic programming to learn on all training samples in turn (SSS) or randomly (RSS).
However, with these methods, there is no certainty that genetic programming will focus on
the samples which are difficult to learn. Then, the ASSS and the ARSS, which are variants of
the adaptive subset selection (ASS), are introduced to focus the genetic programming’s
attention onto the difficult samples i.e. having the greatest MSE and then to improve the
learning algorithm.

Dynamic subset selection is easily added to the basic GP algorithm with no additional
computational cost according to the static subset selection.

Let S be the set of training samples Si (i=1…k), where k is the total number of samples. A
selection probability P (Si) is allocated to each sample Si from S. The training sample Si is
changed each g generations (g is the number of generations to change sample) according to
this selection probability and the dynamic training-subset selection method used. Once a
new training sample is selected, the best individuals are used as population for the next
training samples. This procedure is repeated until the maximum number of generations is
reached. This permits genetic programming to adapt its generating process to changing data
in response to feedback from the fitness function which is the mean squared error computed
as in static approach. By the end of the evolution, only individuals with the desirable
characteristics that are well adapted to the environmental changes will survive.

a. Random training-Subset Selection method (RSS):

It selects randomly the training samples with replacement. At each g generations, all the
samples from S have the same probability to be selected as the current training sample: P (Si)
=1/k, 1≤ i ≤ k. This method differs from that proposed by Gathercole and Ross [42] as
random selection concerns training samples which are already constructed according to data
division scheme, rather than data instances.

As selection of training samples is random, the performance of the current population
changes with the training sample used for evolving the genetic program. Figure 8 illustrates
an example of the best fitness (MSE) curve along evolution using RSS method. With the
sample change, the MSE may increase, but it is improved during the following generations,
the time that the population adapts itself to the new environment.

Figure 8 shows that some training samples could be duplicated, but some others could be
eliminated.

b. Sequential training-Subset Selection method (SSS)

It selects all the training samples in the order. If, at generation g-1, the current training
sample is Si, then at generation g: P (Sj) = 1, with j= i+1 if i<k, or j=1 if i=k.

Genetic Programming – New Approaches and Successful Applications 154

Figure 7. Example of fitness curve of the best individuals generated by genetic programming using RSS
method for time series samples

Figure 8. Example of curve fitness of the best individuals generated by genetic programming using SSS
method for moneyness-time to maturity classes

As illustrated in Figure 9, all the learning subsets are used during the evolution in an
iterative way.

c. Adaptive training-Subset Selection method (ASS):

Instead of selecting a training subset data in a random or sequential way, one can use an
adaptive approach to dynamically select difficult training subsets data which are frequently
misclassified. This approach is inspired from the dynamic subset selection method proposed
by Gathercole and Ross [42] which is based on the idea of dynamically selecting instances,
not training samples, which are difficult and/or have not been selected for several
generations. Selection is made according to a weight computed proportionally to the
sample's average fitness. Each g generations, the weights are updated as follows:

 ()
()

1 1

*

g M

j
t j

i

f X
W S

M g
= ==


 (3)

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 155

Where, M is the size of Si (j iX S∈), g is the number of generations to change sample, and
()jf X is the MSE of the individual jX .

At each g generations, training samples are re-ordered, so that the most difficult training
samples, which have higher weights, will be moved to the beginning of the ordered training
list, and the easiest training samples, which have smaller weights, will be moved to the end
of the ordered training list.

1. Adaptive-Sequential training-Subset Selection method (ASSS):

It uses the following procedure (step 1 to step 3):

Step 1. Let the first generation t be set to 0. Each training sample is assigned an equal
weight, i.e., W(Si) = 1 for 1≤ i ≤ k.

Step 2. The probability P (Si) that a training sample Si is selected to be included in the
training set and evolve genetic programming is determined using the Roulette wheel
selection scheme.

����� =
�����
∑�����

Where, the summation is over all training samples.

Moreover, the probability P (Si) is positively related to the fitness of the parse tree generated
relative to the corresponding training sample.

����� =
�����
∑�����

Where, ����� is the average fitness of individuals relative to the training sample.

Compute a fitness function which is the mean squared error for each individual in the

training sample and then the average fitness. Update the weights:

()
()

1 1

*

g M

j
t j

i

f X
W S

M g
= ==


Step 3. t=t+g. If t<T (T is the total number of generations), then go to step 2.

As illustrated in Figure 10, selection of training samples is made in the order for the first t
generations using the SSS method. Some training samples could be duplicated to improve
the genetic programming learning. Later, samples are selected for the next run according to
the adaptive approach based on the re-ordering procedure.

2. Adaptive-Random training-Subset Selection method (ARSS):

The ARSS method uses the same procedure as the ASSS method, except that the initial
weights are generated randomly in the start of running, rather than initialized with a
constant: For t=0, () , 0,1 ,1 .i i iW S P P i k = ∈ ≤ ≤ 

  Then, for the few first generations, samples
are selected using RSS method. After, the selection of samples is made using the adaptive
approach based on the re-ordering procedure.

Genetic Programming – New Approaches and Successful Applications 156

Figure 9. Example of curve fitness of the best individuals generated by genetic programming using
ASSS method for time series samples

Figure 10. Example of curve fitness of the best individuals generated by genetic programming using
ARSS method for moneyness-time to maturity classes

3.2.2. Training and test samples

Different forecasting genetic programming volatility models are estimated from the training
set and judged upon their performance on the test set. Table 3 summarizes the training and
test data samples used for static and dynamic training-subset selection methods,
respectively.

In static training-subset selection approach, first, the genetic program is trained separately
on each of the first nine TS sub-samples (S1,…, S9) using ten different seeds and is tested on
the subset data from the immediately following date (S2,…, S10). Second, using the same
genetic parameters and random seeds applied for TS data, the genetic programming is
trained separately on each of the first nine MTM sub-classes (C1L,…, C9L) and is tested on the
second nine MTM sub-classes (C1T,…, C9T).

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 157

Subset Selection Learning data sample Test data sample
Static Subset
Selection

Si ∈ TS samples (S1, …, S9)
(1 subset for a run)

The successive TS sample Sj, j=i+1

CiL ∈ MTM training samples
(C1L, …, C9L)
(1 subset for a run)

The corresponding MTM test samples
CiT

Dynamic Subset
Selection
(RSS/SSS/ASSS/
ARSS)

TS samples S1, …, S9
(9 subsets for a run)

The last subset in TS samples set (S10)

MTM samples C1L, …, C9L
(9 subsets for a run)

The nine MTM test samples
(C1T + C2T …+ C9T)

TS samples + MTM samples
(S1, …, S9 ; C1L, …, C9L)
(18 subsets for a run)

The last TS sample with the nine MTM
test samples (S10 + C1T + C2T …+ C9T)

Table 3. Definition of training and test data samples for static and dynamic training-subset selection
methods

In dynamic training-subset selection approach, first, the genetic program is trained on the
first nine TS sub-samples simultaneously (S1,…, S9) using ten different seeds and it is tested
only on the tenth sub-sample data (S10). Second, the genetic programming is trained on the
first nine MTM sub-classes simultaneously (C1L,…, C9L) and it is tested on the second nine
MTM sub-classes regrouped in one test sample data (C1T + C2T …+ C9T). Third, the genetic
programming is trained on both the nine TS sub-samples and the nine MTM sub-classes
simultaneously (S1, …, S9 ; C1L, …, C9L) and it is tested on one test sample data composed of
the TS and MTM test data (S10 + C1T + C2T …+ C9T).

Based on the training and test MSE, the best generated genetic programming volatility
models relative to static and dynamic training-subset selection methods respectively are
selected. These models are then compared with each other according to the MSE total and
the best ones are used to implement the dynamic hedging strategies as described in the
following section.

3.3. Dynamic hedging

To assess the accuracy of selected generated genetic programming volatility models in
hedging with respect to Black-Scholes model, three dynamic hedging strategies are
employed, notably, delta-neutral, delta-gamma neutral and delta-vega neutral strategies.

For delta hedging, at date zero, a delta hedge portfolio consisting of a short position in one
call (or put) option and a long (short) position in the underlying index is formed. At any
time t, the value of the delta hedge portfolio ()tΡ is given by:

 () () () () ()VP t V t t S t tβ= + Δ + (4)

Where, ()P t , ()V t , ()S t , ()V tΔ and ()tβ denote the values of the portfolio, hedging option
(call or put), underlying, delta hedge factor and bond (money market account) respectively.

Genetic Programming – New Approaches and Successful Applications 158

The portfolio is assumed self-financed, so the initial value of the hedge portfolio at the
beginning of the hedge horizon is zero:

 (0) (0) (0) (0) (0) 0VV S βΡ = + Δ + = (5)

 (0) ((0) (0) (0))VV Sβ = − + Δ (6)

A dynamic trading strategy is performed in underlying and bond to hedge the option during
the hedge horizon. The portfolio rebalancing takes place at intervals of length tδ during the
hedge horizon 0,τ   , o Tτ< ≤ , where T is the maturity of the option. At each rebalancing
time it , the hedge factor ()v itΔ is recomputed and the money market account is adjusted:

 1 1() () ()(() ())r t
i i i V i V it e t S t t tδβ β − −= − Δ − Δ (7)

The delta hedge error is defined as the absolute value of the delta hedge portfolio at the end
of the hedge horizon of the option, ()P τ .

For delta-gamma hedging, a new position in a traded option is required. Then, the delta-
gamma hedge portfolio is formed with:

 1() () () () () () ()P t V t x t S t y t V t B t= + + + (8)

Where, ()1V t is the value of an additional option which depends on the same underlying,
with the same maturity but different strike price than the hedging option ()V t . ()x t and

()y t are the proportions of the underlying and the additional option respectively. They are
chosen such that the portfolio ()tΡ is both delta and gamma neutral:

1

1neutral: () () () () 0
 neutral: () () () 0

V V

V V

Delta t x t y t t
Gamma t y t t
 Δ + + Δ =
 Γ + Γ =

 (9)

()
()

1

1

()

() () () ()

V

V

V V

t
y t

t

x t t y t t

 −Γ
=

Γ 
 = −Δ − Δ

 (10)

Where, the values of ()V tΔ and ()V tΓ are the delta and gamma factors for the option ()V t ;
the values ()

1V tΔ and ()
1V tΓ are the delta and gamma factors for the option ()1V t .

At the beginning of the hedge horizon, the value of the hedge portfolio is zero:

 1(0) (0) (0) (0) (0) (0) (0) 0P V x S y V B= + + + = (11)

 1 (0) ((0) (0) (0) (0) (0))B V x S y V = − + + (12)

At each rebalancing time it , both delta and gamma hedge factors are recomputed and the
money market account is adjusted:

1 1 1 1() () (() ()) () (() ()) ()r t

i i i i i i i iB t e B t x t x t S t y t y t V tδ
− − −= − − − − (13)

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 159

The delta-gamma hedge error is defined as the absolute value of the delta-gamma hedge
portfolio at the end of the hedge horizon of the option, ()P τ .

For delta-vega hedging, a new position in a traded option is required as in the delta-gamma
hedging. The proportions of the underlying ()x t and the additional option ()y t are chosen
such that the portfolio ()tΡ is both delta and vega neutral:

1

1neutral: () () () () 0
ega neutral: () () () 0

V V

V V

Delta t x t y t t
V t y t tϑ ϑ
 Δ + + Δ =
 + =

 (14)

()
()

1

1

()

() () () ()

V

V

V V

t
y t

t

x t t y t t

ϑ
ϑ

 −
=

 
 = −Δ − Δ

 (15)

Where, ()V tϑ and
1
()V tϑ are the vega factors for the options ()V t and ()1V t respectively.

As in delta-gamma hedging, at each rebalancing time it , both delta and vega hedge factors
are recomputed and the money market account is adjusted. The delta-vega hedge error is
defined as the absolute value of the delta-vega hedge portfolio at the end of the hedge
horizon of the option, ()P τ .

35 option contracts are used as hedging options and 35 other contracts which depend on the
same underlying, with the same maturity but different strike prices are used as additional
options. Contracts used to implement the hedging strategies are divided according to
moneyness and time to maturity criteria, which produces nine classes.

The delta, gamma and vega hedge factors are computed using the Black-Scholes formula by
taking the derivative of the option value with respect to index price, the derivative of delta
with respect to index price and the derivative of the option value with respect to volatility
respectively. For the genetic programming models, the hedge ratios are computed using the
same formulas replacing the Black-Scholes implied volatilities with the generated genetic
programming volatilities. Two rebalancing frequencies are considered: 1-day and 7 days
revision.

The average hedging error is used as performance measure. For a particular moneyness-
time to maturity class, the tracking error is given by:

()

()
()

1

0

n

i
i

M

irT
i

n
P

e
N V

ε τ
ε

τ
ε

=

−



 =


 = ×
 ×


 (16)

Where, n is the number of options corresponding to a particular moneyness-time to
maturity class and ()iε τ is the present value of the absolute hedge error of the portfolio

Genetic Programming – New Approaches and Successful Applications 160

()P τ over the observation path N (as a function of rebalancing frequency), divided by the
initial option price ()0V .

4. Result analysis and empirical findings

4.1. Selection of the best genetic programming-implied volatility forecasting
models

Selection of the best generated genetic programming volatility model, relative to each
training set, for TS, MTM, and both TS and MTM classifications, is made according to the
training and test MSE. For static training-subset selection method, nine generated genetic
programming volatility models are selected for TS (M1S1…M9S9) and similarly nine
generated genetic programming volatility models are selected for MTM classification
(M1C1…M9C9). The performance of these models is compared according to the MSE Total,
computed using the same formula as the basic MSE for the enlarged data sample.

Table 4 reports the MSE total and the standard deviation (in parentheses) of the generated
genetic programming volatility models, using static training-subset selection method,
relative to the TS samples and the MTM classes.

TS Models MSE Total MTM Models MSE Total
M1S1 0,002723 (0,004278) M1C1 2,566 (20,606)
M2S2 0,005068 (0,006213) M2C2 0,006921 (0,032209)
M3S3 0,003382 (0,004993) M3C3 0,030349 (0,076196)
M4S4 0,001444 (0,002727) M4C4 0,001710 (0,004624)
M5S5 0,002012 (0,003502) M5C5 1,427142 (33,365115)
M6S6 0,001996 (0,003443) M6C6 0,002357 (0,004096)
M7S7 0,001901 (0,003317) M7C7 0,261867 (0,303256)
M8S8 0,002454 (0,004005) M8C8 0,004318 (0,008479)
M9S9 0,002419 (0,004095) M9C9 0,002940 (0,010490)

Table 4. Performance of the generated genetic programming volatility models using static training-
subset selection method, according to MSE total for the TS samples and the MTM classes

Table 4 shows that, the generated genetic programming volatility models M4S4, M4C4 and
M6C6 present the smallest MSE on the enlarged sample for TS and MTM samples respectively.
Comparison between these models reveals that the TS model M4S4 seems to be more
performing than MTM models M4C4 and M6C6 for the enlarged sample. Furthermore, results
show that the performance of TS models is more uniform than that of MTM models. MTM
models are not able to fit appropriately the entire data sample as well as the TS models as they
have large Total MSE. Indeed, the MSE total exceed 1 with some MTM classes, however it does
not reach 0.006 for all TS samples. Figure 12 describes the evolution's pattern of the squared

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 161

errors given by TS models and MTM models for all observations in the enlarged data sample.
Some extreme MSE values for MTM data are not shown in this figure.

It appears throughout Figure 12 that, the TS models are adaptive not only to training
samples, but also to the enlarged sample. In contrast, the MTM models such as M1C1 are
adaptive to training classes, but not all to the enlarged sample. A first plausible explanation
of these unsatisfied results is an insufficient search intensity inducing difficulty to obtain
general model suitable for the entire benchmark input data. To enhance exploration
intensity during learning and thus improve the genetic programming performance, we
introduced to the evolution procedure the dynamic subset selection, which aims to obtain a
general model that can be adaptive to both TS and MTM classes simultaneously.

Figure 11. Evolution of the squared errors for total sample of the best generated GP volatility models,
using static training-subset selection method, relative to TS samples(a) and MTM classes (b).

Figure 12. Evolution of the squared errors for total sample of the best generated GP volatility models,
using dynamic training-subset selection methods, relative to TS samples (a), MTM classes (b) and both
TS and MTM samples (c).

For dynamic training-subset selection methods (RSS, SSS, ASSS and ARSS), four generated
genetic programming volatility models are selected for TS classification (MSR, MSS, MSAS
and MSAR). Similarly, four generated genetic programming volatility models are selected

(a) MSE pattern for TS samples (b) MSE pattern for MTM classes

(a) MSE pattern for
TS samples

(b) MSE pattern
for MTM classes

(c) MSE pattern for
TS+MTM

Genetic Programming – New Approaches and Successful Applications 162

for MTM classification (MCR, MCS, MCAS and MCAR) and four generated genetic
programming volatility models are selected for global classification, both TS and MTM
classes (MGR, MGS, MGAS and MGAR). Table 5 reports the best generated genetic
programming volatility models, using dynamic training-subset selection, relative to TS
samples, MTM classes and both TS and MTM data.

TS
Models MSE Total MTM

Models MSE Total Global
Models MSE Total

MSR 0.002367 (0.003934) MCR 0.002427 (0.003777) MGR 0.002034 (0.003501)
MSS 0.002076 (0.004044) MCS 0.007315 (0.025811) MGS 0.002492 (0.003013)

MSAS 0.002594 (0.003796) MCAS 0.002831 (0.004662) MGAS 0.001999 (0.003587)
MSAR 0.002232 (0.003782) MCAR 0.001424 (0.003527) MGAR 0.001599 (0.003590)

Table 5. Performance of the generated genetic programming volatility models, using dynamic training-
subset selection method, according to MSE total for the TS samples, the MTM classes and both TS and
MTM samples

Based on the MSE total as performance criterion, the generated genetic programming
volatility models MSS, MCAR and MGAR are selected. They seem to be more accurate in
forecasting implied volatility than the other models because they have the smallest MSE in
enlarged sample. However, the MTM model MCAR and the global model MGAR
outperform the TS model MSS. Figure 13 describes the evolution's pattern of the squared
errors for these generated volatility models.

Figure 13 shows that almost all models relative to each data's group are performing on the
enlarged sample and present forecasting errors which are small and very closed. Forecasting
errors are higher for the MTM classes than for the TS samples and both TS and MTM
samples. Comparison between models generated using static training-subset selection
method (Figure 12) and dynamic training-subset selection methods (Figure 13) respectively,
reveals that the amplitude of forecasting errors relative to TS and MTM classes respectively
is lower for the models generated using dynamic training-subset selection methods than for
the models generated using static training-subset selection method. Actually, the quality of
the generated genetic programming forecasting models has been improved with the
dynamic training, in particular for MTM classes.

The best generated genetic programming volatility models selected, relative to dynamic
training-subset selection method, are compared to the best generated genetic programming
volatility model, relative to static training-subset selection method. Results are reported in
Table 6.

Models MSE total
M4S4 0,001444 (0,002727)
MCAR 0.001424 (0.003527)
MGAR 0.001599 (0.003590)

Table 6. Comparison between best models generated by static and dynamic selection methods for call
options

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 163

Comparison between models reveals that the best models generated respectively by static
(M4S4) and dynamic selection methods (MCAR and MGAR) present total MSE small and
very close. While the generated genetic programming volatility models M4S4 and MCAR
have total MSE smaller than the MGAR model, the latest seems to be more accurate in
forecasting implied volatility than the other models. This can be explained by the fact that, on
one hand, the difference between forecasting errors is small, and on the other hand, the MGAR
model is more general than MCAR and M4S4 models because it is adaptive to all TS and MTM
classes simultaneously. In fact, the MGAR model, generated using ARSS method, is trained on
all TS and MTM classes simultaneously. Whereas, the MCAR model, generated using ARSS
method, is trained only on MTM classes simultaneously; and the M4S4 model, generated using
static training-subset selection method, is trained separately on each subset of TS.

As the adaptive-random training subset selection method is considered the best one to
generate implied volatility model for call options, it is applied to put options. The decoding
of volatility forecasting formulas generated for call and put options as well as their
forecasting errors are reported in Table 7.

A detailed examination of the formulas in Table 7 shows that the implied volatilities
generated by genetic programming are function of all the inputs used, namely the option

price divided by strike price (C
K

 for calls and P
K

for puts), the index price divided by strike

price S
K

 and time to maturityτ . The implied volatilities generated for calls and puts cannot

be negative since they are computed using the square root and the normal cumulative
distribution functions as the root nodes. Furthermore, the performance of models is uniform
as they present near MSE on the enlarged sample.

Option LISP Expression Formula MSE Total
Call sqrt((X0/(multiply(X,(

(multiply(X1,plus(X1,
X2))*X1)*X1))*X1))) 6 5

*
GP

C
K

S S
K K

σ

τ

=

+   
   
   

0.001599

Put ncdf (sin ((cos (sin
(minus (minus (-(cos
(sin(X2))), ln(X0)),
ln(X0))))-exp(X1))))

()()cos sin
sin cos sin exp

2 * lnGP
S

P
K

K

τ
σ

−
= Φ −

−

    
     

                   

0.001539

Table 7. Performance of the best generated genetic programming volatility models for call and put

options and their decoding formulas 0 1 2, ,
C P S

X or X X
K K K

τ= = =
 
 
 

4.2. Dynamic hedging results

The performance of the best genetic programming forecasting models is compared to the
Black-Scholes model in delta, gamma and vega hedging strategies. Table 8 reports the

Genetic Programming – New Approaches and Successful Applications 164

average hedging errors for call options using Black-Scholes (BS) and genetic programming
(GP) models, at the 1-day and 7-days rebalancing frequencies. Values in bold correspond to
the GP hedging errors which are less than the BS ones.

Results in Table 8 show that the delta hedging performance improves for out-of-the money
call options at longer maturities, for at-the-money call options at medium maturities and for
in-the money call options at shorter maturities, regardless of the model used at daily hedge
revision frequency. The best delta hedging performance is achieved using in-the-money
short term call options for all MTM classes, regardless of the option model used.

The delta-gamma hedging performance improves for all moneyness classes of call options at
longer maturities, regardless of the model used at daily hedge frequency (except in-the-
money call options using the genetic programming model). The best delta-gamma hedging
performance is achieved, for BS model, using at-the-money long term call options for all
MTM classes. However, the best delta-gamma hedging performance is achieved, for genetic
programming model, using in-the-money short term call options for all MTM classes.

The delta-vega hedging performance improves for out-of-the money and in-the-money call
options at longer maturities and for at-the-money call options at shorter maturities,
regarding BS model at daily hedge revision frequency. However, the delta-vega hedging
performance improves for out-of-the money call options at shorter maturities, for at-the-
money call options at medium maturities and for in-the money call options at longer

 Rebalancing Frequency
 1-day 7- days

S/K Hedging
strategy

Model <60 60-180 >=180 <60 60-180 >=180

<0.98 Delta hedging BS 0,013119 0,001279 0,000678 0,057546 0,010187 0,005607
 GP 0,009669 0,001081 0,000662 0,053777 0,009585 0,005594
 Gamma hedging BS 0,000596 0,000732 0,000061 0,003026 0,007357 0,000429
 GP 0,000892 0,002040 0,000075 0,003855 0,001359 0,000153
 Vega hedging BS 0,000575 0,000050 0,000039 0,000525 0,000226 0,000099
 GP 0,000473 0,002035 0,004518 0,000617 0,004642 0,040071

0.98-1.03 Delta hedging BS 0,002508 0,000717 0,000730 0,019623 0,005416 0,002283
 GP 0,002506 0,0007 0,001725 0,020 0,0054 0,0022
 Gamma hedging BS 0,000069 0,000018 0,000006 0,000329 0,000169 0,000027
 GP 0,000377 0,000040 0,000029 0,000727 0,000155 0,000059
 Vega hedging BS 0,000066 0,000373 0,003294 0,000527 0,023500 0,031375
 GP 0,000281 0,000013 0,000207 0,001102 0,000147 0,000134

>=1.03 Delta hedging BS 0,000185 0,000906 0,001004 0,001602 0,006340 0,006401
 GP 0,000184 0,000905 0,001 0,000840 0,005789 0,0064
 Gamma hedging BS 0,000323 0,000047 0,000028 0,001546 0,000386 0,000157
 GP 0,000028 0,000057 0,000036 0,000227 0,000429 0,000175
 Vega hedging BS 0,000362 0,000060 0,000052 0,001757 0,002015 0,000247
 GP 0,000067 0,000057 0,00005 0,000831 0,000864 0,000186

Table 8. Average hedge errors of dynamic hedging strategies relative to BS and GP models for call options

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 165

maturities, regarding genetic programming model at daily hedge revision frequency. The
best delta-vega hedging performance is achieved, for BS model, using out-of-the-money
long term call options for all moneyness and time to maturity classes. However, the best
delta-gamma hedging performance is achieved, for genetic programming model, using at-
the-money medium term call options for all MTM classes.

The percentage of cases where the hedging error of the genetic programming model is less
than the BS hedging error is around 59%. In particular, the performance of genetic
programming model is better than the BS model on in-the-money call options class. Further,
the total of hedging errors relative to genetic programming model is about 21 percent
slightly lower than 19 percent relative to BS model. Table 9 displays the average hedge
errors for put options using BS and genetic programming models, at the 1-day and 7-days
rebalancing frequencies. Values in bold correspond to the genetic programming hedging
errors which are less than the BS ones.

Results in Table 9 show that the delta-gamma hedging performance improves for all
moneyness classes of put options (except in-the-money put options) at longer maturities,
regarding BS model at daily hedge frequency. However, the delta-gamma hedging
performance improves for in-the money put options and at-the-money put options at medium
maturities and for out-of-the money put options at longer maturities, regarding genetic
programming model at daily hedge revision frequency. The best delta-gamma hedging
performance is achieved, for BS model, using at-the-money long term put options for all

 Rebalancing Frequency
 1-day 7- days

S/K Hedging strategy Model <60 60-180 >=180 <60 60-180 >=180
<0.98 Delta hedging BS 0,007259 0,002212 0,001189 0,015453 0,013715 0,007740

 GP 0,064397 0,002270 0,001256 0,016872 0,013933 0,007815
 Gamma hedging BS 0,000107 0,000043 0,000705 0,000383 0,000253 0,013169
 GP 0,000177 0,000351 0,000676 0,000990 0,000324 0,009201
 Vega hedging BS 0,000051 0,000715 0,000612 0,000174 0,002995 0,008527
 GP 0,002800 0,000345 0,000625 0,018351 0,000184 0,008979

0.98-1.03 Delta hedging BS 0,007331 0,002267 0,001196 0,170619 0,009875 0,004265
 GP 0,0073 0,002219 0,001185 0,170316 0,009715 0,004260
 Gamma hedging BS 0,003750 0,000049 0,000027 0,032725 0,000119 0,000119
 GP 0,003491 0,000031 0,000024 0,029792 0,000113 0,000103
 Vega hedging BS 0,035183 0,000052 0,000044 0,037082 0,000329 0,000043
 GP 0,004343 0,000038 0,000043 0,037045 0,000190 0,000041

>=1.03 Delta hedging BS 0,007680 0,004469 0,000555 0,037186 0,017322 0,011739
 GP 0,006641 0,004404 0,0005 0,037184 0,017076 0,011733
 Gamma hedging BS 0,000262 0,000204 0,000079 0,001196 0,001319 0,000369
 GP 0,000548 0,000287 0,000166 0,002034 0,001323 0,001059
 Vega hedging BS 0,000232 0,000108 0,000025 0,000488 0,000644 0,000270
 GP 0,000312 0,000080 0,00002 0,001047 0,001186 0,000244

Table 9. Average hedge errors of dynamic hedging strategies relative to BS and GP models for put options

Genetic Programming – New Approaches and Successful Applications 166

MTM classes. However, the best delta-gamma hedging performance is achieved, for genetic
programming model, using out-of-the-money long term put options for all MTM classes.

The delta-vega hedging performance improves for BS using at-the-money and out-of-the-
money put options at longer maturities and in-the-money put options at shorter maturities,
at daily hedge revision frequency. However, the delta-vega hedging performance improves for
all moneyness classes of put options (except in-the-money put options) at longer maturities,
regarding genetic programming model at daily hedge frequency. The best delta-vega hedging
performance is achieved, for BS model, using out-of-the-money long term put options for all
MTM classes. However, the best delta-vega hedging performance is achieved, for genetic
programming model, using at-the-money long term put options for all MTM classes.

The percentage of cases where the hedging error of the genetic programming model is less
than the BS hedging error is around 57%. In particular, the performance of genetic
programming model is better than the BS model on at-the-money put options class. But, the
total of hedging errors relative to genetic programming model is about 50 percent slightly
higher than 46 percent relative to BS model.

In summary, the genetic programming model is more accurate in all hedging strategies than
the BS model, for in-the-money call options and at-the-money put options. The performance
of genetic programming is pronounced essentially in terms of delta hedging for call and put
options. The percentage of cases where the delta hedging error of the genetic programming
model is less than the BS delta hedging error is 100% for out-of-the money and in-the-money
call options as well as for at-the-money and out-of-the-money put options. The percentage
of cases where the delta-vega hedging error of the genetic programming model is less than
the BS delta-vega hedging error is 100% for in-the-money call options as well as for at-the-
money put options. The percentage of cases where the delta-gamma hedging error of the
genetic programming model is less than the BS delta-gamma hedging error is 100% for at-
the-money put options.

Furthermore, results exhibit that as the rebalancing frequency changes from 1-day to 7-days
revision, as the hedging errors increase and vice versa. The option value is a nonlinear function
of the underlying, therefore, hedging is instantaneous and hedging with discrete rebalancing
gives rise to error. Frequent rebalancing can be impractical due to transactions costs. In the
literature, consequences of discrete time hedging have been considered usually in conjunction
with the existence of transaction costs, that’s why hedgers would like to trade at least frequently
as possible. Pioneered by Leland [43], asymptotic approaches are used as well [44-46]. For most
MTM classes, delta-gamma and delta-vega hedging strategies are shown to perform better in
dynamic hedging when compared with delta hedging strategy, regardless of the model used.
The delta-gamma strategy enables the performance of a discrete rebalanced hedging to be
improved. The delta-vega strategy corrects partly for the risk of a randomly changing volatility.

5. Conclusion

This paper is concerned with improving the dynamic hedging accuracy using generated
genetic programming implied volatilities. Firstly, genetic programming is used to predict

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 167

implied volatility from index option prices. Dynamic training-subset selection methods are
applied to improve the robustness of genetic programming to generate general forecasting
implied volatility models relative to static training-subset selection method. Secondly, the
implied volatilities derived are used in dynamic hedging strategies and the performance of
genetic programming is compared to that of Black-Scholes in terms of delta, gamma and
vega hedging.

Results show that the dynamic training of genetic programming yields better results than
those obtained from static training with fixed samples, especially when applied on time
series and moneyness-time to maturity samples simultaneously. Based on the MSE total as
performance criterion, three generated genetic programming volatility models are selected
M4S4, MCAR and MGAR. However, the MGAR seems to be more accurate in forecasting
implied volatility than MCAR and M4S4 models because it is more general and adaptive to
all time series and moneyness-time to maturity classes simultaneously.

The main conclusion concerns the importance of implied volatility forecasting in conducting
hedging strategies. Genetic programming forecasting volatility makes hedge performances
higher than those obtained in the Black-Scholes world. The best genetic programming hedging
performance is achieved for in-the-money call options and at-the-money put options in all
hedging strategies. The percentage of cases where the hedging error of the genetic
programming model is less than the Black-Scholes hedging error is around 59% for calls and
57% for puts. The performance of genetic programming is pronounced essentially in terms of
delta hedging for call and put options. The percentage of cases where the delta hedging error
of the genetic programming model is less than the Black-Scholes delta hedging error is 100%
for out-of-the money and in-the-money call options as well as for at-the-money and out-of-the-
money put options. The percentage of cases where the delta-vega hedging error of the genetic
programming model is less than the Black-Scholes delta-vega hedging error is 100% for in-the-
money call options as well as for at-the-money put options. The percentage of cases where the
delta-gamma hedging error of the genetic programming model is less than the Black-Scholes
delta-gamma hedging error is 100% for at-the-money put options.

Finally, improving the accuracy of implied volatility forecasting using genetic programming
can lead to well hedged options portfolios relative to the conventional parametric models.

Our results suggest some interesting issues for further investigation. First, the genetic
programming can be used to hedge options contracts using implied volatility of other
models than Black-Scholes model, notably stochastic volatility models and models with
jump, as a proxy for genetic programming volatility forecasting. Further, the hedge factors
can be computed numerically not analytically. Second, this work can be reexamined using
data from individual stock options, American style index options, options on futures,
currency and commodity options. Third, as the genetic programming can incorporate
known analytical approximations in the solution method, parametric models such as
GARCH models can be used as a parameter in the genetic programming to build the
forecasting volatility model and the hedging strategies. Finally, the genetic programming
can be extended to allow for dynamic parameter choices including the form and the rates of
genetic operators, the form and pressure of selection mechanism, the form of replacement

Genetic Programming – New Approaches and Successful Applications 168

strategy and the size of population. This dynamic genetic programming method can
improve the performance without extra calculation costs. We believe these extensions are of
interest for application and will be object of our future works.

Author details

Fathi Abid and Wafa Abdelmalek
Research Unit MODESFI, Faculty of Economics and Business, Sfax, Tunisia

Sana Ben Hamida
Research Laboratory SOIE (ISG Tunis), Paris West University, Nanterre, France

6. References

[1] Blair B.J, Poon S, Taylor S.J (2001) Forecasting S&P100 Volatility: The Incremental
Information Content of Implied Volatilities and High Frequency Index Returns. Journal
of Econometrics.105: 5-26.

[2] Busch T, Christensen B.J, Nielsen M.Ø (2007) The Role of Implied Volatility in
Forecasting Future Realized Volatility and Jumps in Foreign Exchange, Stock, and Bond
Markets. CREATES Research Paper 2007-9. Aarhus School of Business, University of
Copenhagen. pp.1-39.

[3] Koza J.R (1992) Genetic programming: on the Programming of Computers by means of
Natural Selection. Cambridge, Massachusetts: the MIT Press. 819 p.

[4] Holland J.H (1975) Adaptation in Natural and Artificial Systems. Ann Arbor: University
of Michigan Press.

[5] Breiman L (1996) Bagging Predictors. Machine Learning. 2:123-140.
[6] Freund Y, Schapire R (1996) Experiments with a New Boosting Algorithm. In

Proceedings of the 13th International Conference on Machine Learning. Morgan
Kauffman Publishers. pp. 148-156.

[7] Breiman L (1998) Arcing Classifiers. Annals of Statistics. 26: 801-849.
[8] Abdelmalek W, Ben Hamida S, Abid F (2009) Selecting the Best Forecasting-Implied

Volatility Model using Genetic programming. Journal of Applied Mathematics and
Decision Sciences (Special Issue: Intelligent Computational Methods for Financial
Engineering). Hindawi Publishing Corporation. Available: http://
www.hindawi.com/journals/jamds/2009/179230.html

[9] Tsang E, Yung P, Li J (2004) EDDIE-Automation, a Decision Support Tool for Financial
Forecasting. Decision Support Systems. 37: 559–565.Available:
http://sci2s.ugr.es/keel/pdf/specific/.../ science2_4.pdf

[10] Kaboudan M (2005) Extended Daily Exchange Rates Forecasts using Wavelet Temporal
Resolutions. New Mathematics and Natural Computing. 1: 79-107. Available:
http://www.mendeley.com/.../extended-daily-... - États-Unis

[11] Bollerslev T, Chou R.Y, Kroner K.F (1992) ARCH Modelling in Finance: a Review of the
Theory and Empirical Evidence. Journal of Econometrics. 52: 55-59.

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 169

[12] Engle R.F (1982) Autoregressive Conditional Heteroscedasticity with Estimates of the
Variance of U.K. Inflation. Econometrica. 50: 987-1008.

[13] Bollerslev T (1986) Generalized Autoregressive Conditional Heteroscedasticity. Journal
of Econometrics. 31: 307-327.

[14] Hull J, White A (1987) The Pricing of Options on Assets with Stochastic Volatilities.
Journal of Finance. 42: 218-300.

[15] Scott L (1987) Option Pricing When the Variance Changes Randomly: Theory,
Estimation and an Application. Journal of Financial and Quantitative Analysis. 22: 419-
438. Available: http:// www.globalriskguard.com/resources/.../der6.pdf

[16] Wiggins J (1987) Option Values under Stochastic Volatility: Theory and Empirical
Evidence. Journal of Financial Economics. 19: 351-372.

[17] Heston S.L (1993) A Closed-Form Solution for Options with Stochastic Volatility.
Review of Financial Studies. 6: 327-344.

[18] Ma I, Wong T, Sankar T, Siu R (2004) Volatility Forecasts of the S&P100 by Evolutionary
Programming in a Modified Time Series Data Mining Framework. In: Jamshidi M,
editor. Proceedings of the World Automation Congress (WAC2004). 17: 567-572.

[19] Chen S.H, Yeh C.H (1997) Using Genetic programming to Model Volatility in Financial
Time Series. In: Koza J.R, Deb K, Dorigo M, Fogel D.B, Garzon M, Iba H, Riolo R.L,
editors. Genetic programming 1997, Proceedings of the Second Annual Conference.
Morgan Kaufmann Publishers. pp. 58-63.

[20] Zumbach G, Pictet O.V, Masutti O (2002) Genetic programming with Syntactic
Restrictions Applied to Financial Volatility Forecasting. In: Kontoghioghes E.J, Rustem
B, Siokos S, editors. Computational Methods in Decision-Making, Economics and
Finance. Kluwer Academic Publishers. pp. 557-581.

[21] Neely C.J, Weller P.A (2002) Using a Genetic Program to Predict Exchange Rate
Volatility. In: Chen S.H, editor. Genetic Algorithms and Genetic programming in
Computational Finance, Chapter 13. Kluwer Academic Publishers. pp. 263-279.

[22] Ma I, Wong T, Sanker T (2006) An Engineering Approach to Forecast Volatility of
Financial Indices. International Journal of Computational Intelligence. 3: 23-35.

[23] Ma I, Wong T, Sanker T (2007) Volatility Forecasting using Time Series Data Mining and
Evolutionary Computation Techniques. In Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation (GECCO 07). ACM New York Press.

[24] Derman E, Ergener D, Kani I (1995) Static Options Replication. The Journal of
Derivatives. 2: 78-95.

[25] Carr P, Ellis K, Gupta V (1998) Static Hedging of Exotic Options. Journal of Finance. 53:
1165-1190.

[26] Hutchinson J.M, Lo A.W, Poggio T (1994) A NonParametric Approach to Pricing and
Hedging Derivative Securities via Learning Network. Journal of Finance. 49: 851-889.

[27] Aït-Sahalia Y, Lo A (1998) Nonparametric Estimation for State-Price Densities Implicit
in Financial Asset Prices. The Journal of Finance. 53: 499-547.

[28] Chen S.H, Lee W.C, Yeh C.H (1999) Hedging Derivative Securities with Genetic
Programming. International Journal of Intelligent Systems in Accounting, Finance and
Management. 4: 237-251.

Genetic Programming – New Approaches and Successful Applications 170

[29] Harvey C.R, Whaley R.E (1991) S&P 100 Index Option Volatility. Journal of Finance. 46:
1551-1561.

[30] Harvey C.R, Whaley R.E (1992) Market Volatility Prediction and the Efficiency of the
S&P100 Index Option Market. Journal of Financial Economics. 31: 43-73.

[31] Merton R.C (1973) Theory of Rational Option Pricing. Bell Journal of Economics and
Management Science. 4: 141-183.

[32] Cai W, Pacheco-Vega A, Sen M, Yang K.T (2006) Heat Transfer Correlations by
Symbolic Regression. International Journal of Heat and Mass Transfer. 49: 4352-4359.

[33] Gustafson S, Burke E.K, Krasnogor N (2005) On Improving Genetic programming for
Symbolic Regression. In Proceedings of the IEEE Congress on Evolutionary
Computation. 1: 912-919.

[34] Keijzer M (2004) Scaled Symbolic Regression. Genetic programming and Evolvable
Machines. 5: 259-269.

[35] Lew T.L, Spencer A.B, Scarpa F, Worden K (2006) Identification of Response Surface
Models Using Genetic programming. Mechanical Systems and Signal Processing. 20:
1819-1831.

[36] Black F, Scholes M. (1973) The Pricing of Options and Corporate Liabilities. Journal of
Political Economy. 81: 637-659.

[37] Kraft D. H, Petry F. E, Buckles W. P, Sadasivan T (1994) The Use of Genetic
Programming to Build Queries for Information Retrieval. In Proceedings of the 1994
IEEE World Congress on Computational Intelligence. IEEE Press. pp. 468–473.

[38] Angeline P. J (1996) An Investigation into the Sensitivity of Genetic Programming to the
Frequency of Leaf Selection during Subtree Crossover. In: Koza J. R et al., editors.
Genetic Programming 1996: Proceedings of the First Annual Conference. MIT Press.
pp. 21–29. Available: www.natural-selection.com/Library/1996/gp96.zip.

[39] McKay B, Willis M.J, Barton G.W (1995) Using a Tree Structural Genetic Algorithm to
Perform Symbolic Regression. In First International Conference on Genetic Algorithms
in Engineering Systems: Innovations and Applications (GALESIA). 414: 487-492.

[40] Schwefel H.P (1995) Numerical Optimization of Computer Models. John Wiley & Sons,
New York.

[41] Cavaretta M.J, Chellapilla K. (1999) Data Mining Using Genetic Programming: The
Implications of Parsimony on Generalization Error. In Proceedings of the 1999 Congress
on Evolutionary Computation (CEC' 99). IEEE Press. pp. 1330-1337.

[42] Gathercole C, Ross P (1994) Dynamic Training Subset Selection for Supervised Learning in
Genetic Programming. Parallel Problem Solving from Nature III. 866 of LNCS: 312-321.

[43] Leland H.E. (1985) Option Pricing and Replication with Transaction Costs. Journal of
Finance. 40: 1283-1301.

[44] Kabanov Y.M, Safarian M.M (1997) On Leland Strategy of Option Pricing with
Transaction Costs. Finance Stochastic. 1: 239-250.

[45] Ahn H, Dalay M, Grannan E, Swindle G (1998) Option Replication with Transactions
Costs: General Diffusion Limits. Ann. Appl. Prob. 8: 676-707.

[46] Grandits P, Schachinger W (2001) Leland’s Approach to Option Pricing: The Evolution
of Discontinuity. Math Finance. 11: 347-355.

Chapter 8

© 2012 Dubrovski and Brezočnik, licensee InTech. This is an open access chapter distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The Usage of Genetic Methods
for Prediction of Fabric Porosity

Polona Dobnik Dubrovski and Miran Brezočnik

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48188

1. Introduction

Advanced fabric production demands developing strategies with regard to new fabric
constructions in which sample-production is reduced to a minimum. It is clear that a new
fabric construction should have the desired end-usage properties pre-specified as project
demands. Achieving such a demand is a complex task based on our knowledge of the
relations between the fabric constructional parameters and the predetermined fabric end-
usage properties that fit the desired quality. Individual fabric properties are difficult to
predict when confronting the various construction parameters, which can be separated into
the following categories: raw materials, fabric structure, design, and manufacturing
parameters.

Many attempts have been made to develop predictive models for fabric properties with
different modelling tools. There are essentially two types of modelling tools: deterministic
(mathematical models, empirical models, computer simulation models) and non-
deterministic (models based on genetic methods, neural network models, models based on
chaos theory and theory of soft logic), and each of them has its advantages and
disadvantages [1].

Deterministic modelling tools present the heart of conventional science and have their basis
in first principles, statistical techniques or computer simulations. Mathematical models offer
a deep understanding of relations between constructional parameters and predetermined
fabric property, but due some simplifying assumptions large prediction errors occur.
Empirical models based on statistical techniques show a much better agreement with the
real values but the problems with samples preparing, process repeatability, measurements
errors and extrapolation occur. They usually refer to the one type of testing method of
particular fabric property. The advantage of computer simulation models is their ability to
capture the randomness inherent in fabric structure so the predicted values are very near the

Genetic Programming – New Approaches and Successful Applications 172

real ones, but on the other hand they require numerous fabric samples data. The problem
with extrapolation still remains. In general, when deterministic modelling is used, the
obtained models are the results of strict mathematical rules and/or the models are set in
advance. In this case the goal is to discover merely a set of numerical coefficients for a model
whose form has been pre-specified. However, nowadays more and more processes and
systems are modelled and optimized by the use of non-deterministic approaches. This is due
to the high degree of complexity of the systems, and consequently, inability to study them
successfully by the use of conventional methods only. In non-deterministic modelling of
systems, no precise and strict mathematical rules are used [2, 3, 4, 5, 6, 7]. For example, in
genetic programming, no assumptions about the form, size, and complexity of models are
made in advance. They are left to the stochastic, self-organized, intelligent, and non-
centralized evolutionary processes [1, 8].

Fabrics are porous materials having different porous structures as the consequence of
different manufacturing techniques needed to interlace the fundamental structural elements,
e.g. fibres, yarns or layers, into fibrous assembly. Fabric porosity strongly determines
important physical, mechanical, sorptive, chemical, and thermal properties of the fabrics
such as mechanical strength, thermal resistance, permeability (windproofness,
breathability), absorption and adsorption properties (wicking, wetting), translucence, soiling
propensity, UV light penetration, sound absorption ability, etc. [9, 10]. Knowledge about the
fabric’s porous structure is, therefore, an important step when characterising fabrics, in
order to predict their behaviour under different end-usage conditions regarding a product.
Hence, if porosity is estimated or predicted then when developing a new product the
desired porosity parameters can be set in advance on the basis of selecting those fabric
constructional factors that have an effect on porosity and, in this way sample production
trials could be reduced.

This chapter gives some basic information about the porosity, porosity parameters of woven
and nonwoven fabrics, and the results of the studies dealing with the prediction of porosity
parameters of two types of fabrics, e.g. woven fabrics made from the 100% cotton staple
yarns and needle-punched nonwovens made from the mixture of viscose/polyester fibres,
using nondeterministic modelling tools, e.g. genetic programming (GP) and genetic
algorithms (GA), respectively.

2. Porosity and porosity parameters

Flat textile materials, e.g. fabrics, are porous materials which allow the transmission of
energy and substances and are therefore interesting materials for different applications. In
general, they are used for clothing, interior and wide range of technical applications. Fabric
as porous barrier between the human body an environment should support heat and water
vapour exchange between the body and environment in order to keep the body temperature
within the homeostasis range. Besides thermo-physiological protection, fabrics also play an
important role by heat protection due to the flames or convection heat, contact heat, radiant
heat as well as due to the sparks and drops of molten metal, hot gases and vapours [11].

The Usage of Genetic Methods for Prediction of Fabric Porosity 173

Fabrics protect users against micro-organisms, pesticides, chemicals, hazardous particles
and radiations (radioactive particles, micro-meteorites, X-rays, micro-waves, UV radiation,
etc.). They act very important role also by environmental protection as filters for air and
water filtrations, sound absorption and isolation materials against noise pollution,
adsorption materials for hazardous gas pollution, etc. [10, 12, 13]. By all mentioned
applications dedicated to absorption, desorption, filtration, drainage, vapours transmission,
etc., the essential constructional parameter that influences fabric efficiency to protect human
or environment is porosity. The fabric in a dry state is a two-phase media which consists of
the fibrous material – solid component and void spaces containing air – gas (void)
component. The porosity of a material is one of the physical properties of the material and
describes the fraction of void space in the material. The porosity (or void volume fraction) is
expressed as coefficient ranging between 0 and 1 or as percentage ranging between 0% and
100% (by multiplying the coefficient by 100). Mathematically, the porosity is defined as the
ratio of the total void space volume to the total (or bulk) body volume [14, 15]:

 vV
V

ε = (1)

where, ε is the porosity expressed as coefficient, Vv is the volume of the total void space in
cm3, and V is the total or bulk body volume in cm3. The total volume of the body consists of
the volumes of the solid and void components as follows:

 v sV V V= + (2)

where, V is the total volume of the body in cm3, Vv is the volume of void component in cm3,
and VS is the volume of solid component in cm3. If the volume of void component is exposed
from the Equation 2, the Equation 1 can be further written as follows:

 1 1v s sV V V V
V V V

ε β
−

= = = − = − (3)

 sV
V

β = (4)

where, β is the fulfilment (or solid volume fraction) which describes the fraction of solid
component volume in the material expressed as coefficient ranging between 0 and 1 or as
percentage. If we take into account the common equation for material density (Equation 5),
and assume that the mass of the material is actually the mass of solid component (ms=mb),
the Equation 3 could be further written in the form of Equation 6:

 m
V

ρ = (5)

 1 1 1s s b b

s b s

V m
V m

ρ ρ
ε

ρ ρ
= − = − = − (6)

Genetic Programming – New Approaches and Successful Applications 174

where, ε is the porosity expressed as coefficient, Vs is the volume of solid component in cm3,
V is the volume of the body (or bulk volume) in cm3, ms is the mass of solid component in g,
mb is the mass of the body (or bulk mass) in g, ρb is the bulk density in g/cm3, and ρs is the
density of solid component in g/cm3.

In this way exactly defined porosity of the material is useful parameter, only, when
materials with the same porous structure are compared, and gives an indication which
material possesses more void space in the bulk volume. It does not give any information
about the porous structure of the material, so it is an insufficient parameter for describing
fibre assembly characteristics [16]. Namely, the materials with the same porosity could have
very different porous structure and consequently, in the case of fabrics, different protection,
filtration, sound absorption, etc., properties; so the need to define porous structure and some
other porosity parameters is essential. From the theoretical point of view, the porosity
parameters could be easily determined on the basis of an ideal geometrical model of the
material porous structure. The simpler models consider that all pores, whatever their shape,
are the same and regularly arranged in a fibre assembly [16, 17]. Ideal models are based also
on some other simplifying assumptions depending on the fibre assembly type. Porosity
parameters calculated on the basis of ideal models of porous structures are usually not in a
good correlation with the real porosity parameters. Real porous media generally have rather
complex structures that are relatively difficult to define. But the advantage of ideal geometric
models of porous structures is the possibility to understand the influence of porous structure
on some end-usage properties of the material, which is crucial by a new product planning.

The fundamental building elements of the material porous structure are pores (also
capillaries, channels, holes, free volume) [15, 18]. Pores are void spaces within the material
which are separated between each other, and are classified [19, 20]:

1. according to the position in the material into:
a. inter-pores, e.g. pores which lie between the structural elements of the material,
b. intra-pores, e.g. pores which lie within the structural element of the material;

2. according to the pore width (the shortest pore diameter) into:
a. macropores whose pore-width is greater than 50 nm,
b. mesopores whose pore-width lies in the range between 2 and 50 nm, and
c. micropores with the pore-width lower than 2 nm;

3. according to the fluid accessibility into (Figure 1):
a. closed pores being inaccessible for fluid flow or surroundings,
b. blind pores which are accessible for fluid but terminate inside the material and

prevent fluid flow, and
c. open (or through) pores which are open to external surface and permit fluid flow;

Figure 1. Types of pores according to the fluid accessibility

The Usage of Genetic Methods for Prediction of Fabric Porosity 175

4. according to the pore shape into (Figure 2):
a. cylindrical pores,
b. slit-shape pores,
c. cone-shape pores, and
d. ink bottle pores;

Figure 2. Types of pores according to the pore shape [19]

5. according to the geometry of pore-cross section into (Figure 3):
a. pores with geometrically regular cross-sectional shape and
b. pores with geometrically irregular cross-sectional shape,

Figure 3. Different shapes of pore cross-sections [20]

6. according to the uniformity of pore cross-section over the pore length into (Figure 4):
a. pores with a permanent cross-section,
b. pores with a different cross-sections and for which different diameters are defined

(the most constricted, the largest, the mean pore diameters).

Figure 4. Pores with permanent (a) and non-permanent (b) cross-sections over their length

Four groups of pore descriptors, e.g. size, shape, orientation, and placement, are defined as
important parameters [21]. Pores can be mathematically assessed on the basis of known
model of pores geometry and constructional parameters of the material with the following
parameters: the number of pores, pore size, pore volume, pore surface area, pore length, etc.

Genetic Programming – New Approaches and Successful Applications 176

On the basis of an ideal geometrical model of porous structure, the pore size distribution
which is also an important parameter of material porous structure can not assessed while
the pores in geometrical model are usually assumed to be the same sizes. Such situation
rarely occurs in the real fabrics. The further considerations of ideal geometrical models of
material porous structures and porosity parameters will be focused on different types of
fabrics.

Fabrics are flat textile materials which are produced by different manufacturing techniques
using different fibrous forms of input material (or structural element), and consequently
having different porous structures. Following basic types of fabrics are known (Figure 5):

• woven fabrics which are made by interlacing vertical warp and horizontal weft yarns at
right angles to each other,

• knitted fabrics which are made by forming the yarn into loops and their interlacing in
vertical (warp-knitted fabrics) or horizontal (weft-knitted fabrics) direction,

• nonwoven fabrics which are produced from the staple fibres, filaments or yarns by
different web-forming, bonding and finishing techniques.

Figure 5. 2-D schematic presentations of woven-, knitted-, and nonwoven (made from staple fibres)
fabrics

While this chapter is focused on the genetic methods in order to predict porosity of woven
and nonwoven fabrics, only those types of fabrics and their ideal geometric models of
porous structure will be presented.

2.1. Woven fabric’s ideal geometric model of porous structure

When a woven fabric is treated as a three dimensional formation, different types of pores
are detected [22, 23, 24]: 1. inter-pores, e.g. the pores which are situated between warp and
weft yarns (macropores, interyarn pores) and pores which are situated between fibres in the
yarns (mesopores, interfiber/intrayarn pores), 2. intra-pores, e.g. the pores which are
situated in the fibres (micropores, intrafiber pores). The structure and dimensions of the
inter- or intrayarn pores are strongly affected by the yarn structure and the density of yarns
in the woven structure [22]. As fibrous materials, woven fabrics have, with regard to knitted
fabrics or nonwovens, the most exactly determined an ideal geometrical model of a macro-
porous structure in the form of a tube-like system, where each macropore has a cylindrical
shape with a permanent cross-section over all its length (Figure 6) [25]. Because the warp
density is usually greater than the weft density, the elliptical shape of the pore cross-section

The Usage of Genetic Methods for Prediction of Fabric Porosity 177

is used to represent the situation in Figure 6. Macropores are opened to the external surface
and have the same cross-section area. They are separated by warp or weft yarns, and are
uniformly distributed over the woven fabric area.

The primary constructional parameters of woven fabrics which alter the porous structure are:

• yarn fineness, e.g. the mass of 1000 meter of yarn from which the yarn diameter can be
calculated,

• type of weave, e.g. the manner how the yarns are interlaced. It has an effect on the pore
size as well as on the shape of pore cross-section [26],

• the number of yarns in length unit (warp and weft densities), which directly alters the
pore size.

When fibre properties (fibre density, dimension, and shape) are different, two woven fabrics
with similar woven structures and geometrical configurations can have distinctly different
porosity [22].

Figure 6. 2D and 3D presentations of an ideal model of the porous structure of a woven fabric [27, 28]
(d – yarn thickness, p – yarn spacing, MP - macropore; 1, 2 indicates warp and weft yarns, respectively)

To compare woven fabrics with porosity, the following porosity parameters can be
calculated on the basis of the woven fabric primary constructional parameters and the ideal
model of porous structure in the form of a tube-like system:

• (total) porosity by using Equation 6 where the bulk density of the material is actually
the woven fabric density and the density of solid component is the yarn density. If the
fibre volume fraction (yarn packing factor) is exposed from the Equation 7 which
represents the yarn diameter calculation, and then inserted in Equation 8 by assuming
Equation 9 for woven fabric density at the same time, the porosity of woven fabrics can
be then written in the form of Equation 10:

5

4 4
100010 fib fibyarn

T Td
π ρ βπ ρ

= =
⋅ ⋅ ⋅⋅

 (7)

Genetic Programming – New Approaches and Successful Applications 178

 yarn fib fibρ ρ β= ⋅ (8)

1000fab
m

D
ρ =

⋅
 (9)

21001 1 1

4
fabb

s yarn

m d
D T

ρρ πε
ρ ρ

⋅ ⋅ ⋅= − = − = −
⋅ ⋅

 (10)

where, d is the yarn diameter in cm, T is the yarn fineness in tex, ρyarn is the yarn bulk
density in g/cm3, ρfib is the fibre density in g/cm3, βfib is the fibre volume fraction (or yarn
packing factor), ρfab is the woven fabric bulk density in g/cm3, m is the woven fabric mass
per unit area in g/m2, D is the woven fabric thickness in mm, ρb is the body bulk density in
g/cm3, and ρs is the density of solid component in g/cm3. It is worth to mention that in this
way defined porosity refers to all types of pores regarding their position in the woven
fabric, e.g. inter- and intra-pores;

• area of pore cross-section which refers only on macropores in a woven fabric. The ideal
model of woven fabric porous structure is based on the assumption that macropores
have cylindrical shape with circular cross-section. In real woven fabrics, the macropore
cross-section shape is more likely to be irregular rather regular (Figure 7) [26]. The
shape of pore cross-section and consequently the area of pore cross-section depend on
the type of yarns used. Woven fabrics made from filament yarns have pure macropores
with rectangular cross-sections, whilst woven fabrics made from staple yarns have a
small percentage of pure macropores, some of partly latticed macropores as well as
fully latticed macropores (as the consequence of the phenomenon of latticed pores) with
mostly irregular cross-sections. The area of pore cross-section also depends on the
phenomenon of changing the position of warp threads according to the longitudinal
fabric axis and the phenomenon of thread spacing irregularity [28]. For the theoretical
calculations of the macropore cross-section area three types of regular pore cross-
section shapes are taken into account, e.g. circular (Equation 11), rectangular (Equation
12) and elliptical (Equation 13) as follows:

2

2
/ 1 2 1 2 1 2

1 2

10 10()
16 16p circularA p p d d d d

g g
π π  

= + − − = + − −  
 

 (11)

 / tan 1 1 2 2 1 2
1 2

10 10() ()p rec gularA p d p d d d
g g

   
= − ⋅ − = − ⋅ −      

   
 (12)

 / 1 1 2 2 1 2
1 2

10 10() ()
4 4p ellipticalA p d p d d d

g g
π π    

= ⋅ − ⋅ − = − ⋅ −      
   

 (13)

where, Ap is the area of macropore cross-section in mm2, p is the yarn spacing in mm, d is
the yarn diameter in mm, g is the number of yarns per unit length in threads/cm, and
subscripts 1 and 2 indicate warp and weft yarns, respectively;

The Usage of Genetic Methods for Prediction of Fabric Porosity 179

Figure 7. Real and binary images of the pore cross-section shape and the number of pores in real woven
fabrics (magnification of binary images: 20 x, magnification of real images: 80 x, yarn fineness: 36 tex,
fabric relative density: 83 %)

• number of macropores in the area unit (pore density). It can be seen from Figure 7,
that one macropore belongs to one warp yarn and one weft yarn, so the number of
macropores can be calculated on the basis of warp and weft densities using Equation
14:

 1 2pN g g= ⋅ (14)

where, Np is the pore density in pores/cm2, g1 is the warp density in threads/cm, and g2 is the
weft density in threads/cm;

• open porosity (open area) which describes the fraction of macropore cross-section area
in the area unit of woven fabric. If we assume elliptical macropore cross-section area
(Figure 7), the open porosity is calculated as follows:

 1 1 2 2

1 2

() ()
4

p
open

p y

A p d p d
A A p p

π
ε

− ⋅ −
= =

+ ⋅ ⋅
 (15)

where, εopen is the open porosity, Ap is the macropore cross-section area in mm2, Ay is the
projection area of warp and weft yarns, which refers to one macropore in mm2, p is the yarn
spacing in mm, d is the yarn diameter in mm, and subscripts 1 and 2 indicate warp and weft
yarns, respectively. Open porosity can be calculated also on the basis of cover factor
(Equation 16) or pore density (Equation 17) [26, 29]:

plain, 21/16 threads/cm twill, 27/22 threads/cm satin, 30/24 threads/cm

Genetic Programming – New Approaches and Successful Applications 180

1 2 1 2
1 1 2 2 10

1 1
10open

d d g gd g d g
Kε

   
+ −       = − = −  

 
  

 (16)

 open p pN Aε = ⋅ (17)

where, εopen is the open porosity, K is the woven fabric cover factor, d is the yarn diameter in
mm, g is the warp/weft density in threads/cm, Np is the pore density in pores/cm2, Ap is the
area of macropore cross-section in cm2, and subscripts 1 and 2 indicate warp and weft yarns,
respectively;

• equivalent macropore-diameter. If we assume that macropore has cylindrical shape,
then the area of macropore cross-section is equal to the area of circle with radius r
(Equation 18). Equivalent macropore diameter is the diameter of macropore with
circular cross-section whose area is the same as the area of the macropore with irregular
cross-section shape (Equation 19) [30].

2

2

4circle
dA r ππ ⋅= ⋅ = (18)

4 p

e

A
d

π
⋅

= (19)

where, Acircle is the circular cross-section macropore area in mm2, r is the macropore radius in
mm, d is the macropore diameter in mm, de is the equivalent macropore diameter in mm,
and Ap is the macropore cross-section area of macropore with irregular shape in mm2;

• maximal an minimal macropore diameters which refer to the elliptical shape of
macropore cross-section. In the case where warp density is greater than weft density the
maximal diameter is equal to p2-d2, while minimal diameter is equal to p1-d1 (Figure 7);

• macroporosity which describes the portion of macropore volume in volume unit of
woven fabric. In general, it is defined using Equation 20. In the case of the elliptical
macropore cross-section shape, the macroporosity, defined with Equation 21, is the
same as open porosity:

1 2 1 2

p p p
macro

p y

V A D A
V V p p D p p

ε
⋅

= = =
+ ⋅ ⋅ ⋅

 (20)

 1 1 2 2 1 1 2 2

1 2 1 2

() () () ()
4 4

p
macro open

p y

V p d p d D p d p d
V V p p D p p

π π
ε ε

− ⋅ − ⋅ − ⋅ −
= = = =

+ ⋅ ⋅ ⋅ ⋅ ⋅
 (21)

where, εmacro is the macroporosity, Vp is the macropore volume in cm3, Vy is the volume of
warp and weft yarns which refers to one macropore in cm3, p is the yarn spacing in mm, d is

The Usage of Genetic Methods for Prediction of Fabric Porosity 181

the yarn diameter in mm, D is the woven fabric thickness in mm, Ap is the macropore area in
mm2, εopen is the open porosity, and subscripts 1 and 2 indicate warp and weft yarns,
respectively.

2.2. Nonwoven fabric’s ideal geometric model of porous structure

The porous structure of nonwoven fabric is a result of nonwoven construction (the type and
properties of fibres or yarns as input materials, fabric mass, fabric thickness, etc.) as well as
technological phases, e.g. the type of web production, bonding methods and finishing
treatments. According to several different methods to produce non-woven fabrics having
consequently very different porous structure, the ideal geometric model of porous structure
in the form of tube-like system is partially acceptable only by those nonwovens which are
thin and translucence, e.g. light polymer–laid nonwovens and some thin spun-laced or heat-
bonded nonwovens (Figure 8). Such model is based on the assumptions that fibres having
the same diameter are distributed only in the direction of fabric plane and the distance
between fibres and the length of individual fibres is much greater than the fibre diameter.
Xu [21] found out that in most nonwoven fabrics, pore shape is approximately polygonal
and that pores appear more circular when the fabric density increases. Pore orientation to
some extent relates to fibre orientation. If pores are elongated and predominantly oriented
in one direction, fibres are likely to be oriented in that direction. The variation in pore size is
inherently high. Some regions may contain more pores than others or may have larger pores
than those in other regions.

Figure 8. 2D and 3D presentations of an ideal model of the porous structure of a nonwoven fabric (with
detail to define opening diameter of pore by 2D presentation)

The primary constructional parameters of nonwoven fabrics which alter the porous
structure are:

• fibre fineness, e.g. the mass of 1000 meter of fibre, from which the fibre diameter can be
calculated,

• web mass per unit area and
• web thicknesses.

To compare nonwoven fabrics with porosity, the following porosity parameters can be
calculated on the basis of the nonwoven fabric primary constructional parameters and the
ideal model of porous structure in the form of a tube-like system:

Genetic Programming – New Approaches and Successful Applications 182

• (total) porosity by using Equation 6 where the bulk density of the material is actually
the nonwoven fabric density and the density of solid component is the fibre density.
The nonwoven fabric density is calculated on the basis of primary nonwoven
constructional parameters, e.g. fabric mass and thickness using Equation 9 where index
fab in this case refers to the nonwoven fabric. Substituting Equation 9 into Equation 6,
final Equation 22 of nonwoven porosity which refers to inter- (pores between fibres in
nonwovens) and intra-pores (pores inside the fibres) is obtained:

 1 1 1
1000

fab fabb

s fib fab fib

m
D

ρρ
ε

ρ ρ ρ
= − = − = −

⋅ ⋅
 (22)

where, ε is the nonwoven fabric porosity, ρb is the body bulk density in g/cm3, ρs is the
density of solid component in g/cm3, ρfab is the nonwoven fabric density in g/cm3, ρfib is the
fibre density in g/cm3, mfab is the nonwoven fabric mass per unit area in g/m2, and Dfab is the
nonwoven fabric thickness in mm;

• opening diameter which is the diameter of the maximum circle that can fit in a pore
(Figure 8). It is predicted on the basis of nonwoven fabric constructional parameters and
refers to the heat-bonded nonwoven fabrics, as follows [17, 21]:

 1
o fibd d

C L
= −

⋅
 (23)

 fab

fib

D
C

d
= (24)

8 fab

fab fib fib

m
L

D dπ ρ
⋅

=
⋅ ⋅ ⋅

 (25)

where, d0 is the opening diameter in µm, C is the thickness factor, L is the specific total
length of fibres per nonwoven unit area in mm-1, dfib is the fibre diameter in µm, Dfab is the
nonwoven thickness in mm, mfab is the nonwoven fabric mass per unit area in g/m2, and ρfib
is the fibre density in g/cm3;

• average area of pore cross-section which is for un-needled fabrics (e.g. fabrics made of
layers of randomly distributed fibres) predicted using Equation 26 [17]:

2

2(1)
fib

p

d
A

π ε

ε

⋅ ⋅
=

−
 (26)

where, Ap is the average area of pore cross-section in mm2, ε is the porosity, and dfib is the
fibre diameter in µm. On the basis of calculated average area of pore-cross-section, the
equivalent pore diameter is then calculated using Equation 19.

The Usage of Genetic Methods for Prediction of Fabric Porosity 183

Needle-punched nonwoven fabric is a sheet of fibres made by mechanical entanglement,
penetrating barbed needles into a fibrous mat [31]. Needle-punched nonwovens represent
the largest segment of filtration materials used as dust filters [32]. The geometrical model of
three-dimensional needle-punched nonwoven fabric proposed by Mao & Rusell [33], is also
known from the literature, and it is constructed on a two-dimensional fibre orientation
within the fabric plane, with interconnecting fibres oriented in the z-direction (Figure 10).
Such model relies on the following basic assumptions: 1. the fibres in the fabric have the
same diameter, and a fraction of the fibres is distributed horizontally in the two-dimensional
plane, the rest are aligned in the direction of the fabric thickness, 2. fibre distribution in both
the fabric plane and the z-direction is homogeneous and uniform, 3. in each two-
dimensional plane, the number of fibres oriented in each direction is not the same, but obeys
the function of the fibre orientation distribution Ω(α), where α is the fibre orientation angle,
4. the distance between fibres and the length of individual fibres is much greater than the
fibre diameter. The basic porosity parameters which are based on the mentioned
geometrical model of needle-punched nonwoven fabric are still difficult to define due to the
fact that in each fabric planes fibres lie in different direction and in this way produce pores
with different orientations, diameters, connectivity and accessibility to fluid flow (Figure 9).
The only porosity parameters that are calculated from such model are:

Figure 9. Geometrical models of needle-punched nonwoven fabric and porous structure [14, 34]

• total porosity (Equation 22) and
• mean pore diameter which is deduced from the fibre radius and porosity according to

the following relation proposed by White [34]:

1 2

fib
p

d
d ε

ε
= ⋅

−
 (27)

 35.68fib
fib

Td
ρ

= (28)

where, dp is the mean pore diameter in µm, ε is the nonwoven fabric porosity, dfib is the
fibre diameter in µm, T is the fibre linear density in tex, and ρfib is the fibre density in
g/cm3.

Genetic Programming – New Approaches and Successful Applications 184

Three kinds of pores may be present in needle-punched nonwoven fabrics, namely, closed
pores, open pores, and blind pores. The important pore structure characteristics of needle-
punched nonwoven fabrics as filter media are the most constricted open pore diameter
(smallest detected pore diameter), the largest pore diameter (bubble point pore diameter),
and mean pore diameter (mean flow pore diameter) [35].

3. The usage of genetic programming to predict woven fabric porosity
parameters

Porosity parameters based on an ideal geometrical model of porous structure give woven
fabric constructor some useful information about porosity by developing a new product, but
they are not in a good agreement with the experimental values. In order to balance the
difference between the theoretical and experimental values of porosity parameters, genetic
programming was used to develop models for predicting the following macro-porosity
parameters of woven fabric: the area of macro-pore cross-section, macro-pore density, open
porosity, and equivalent macro-pore diameter. The genetic programming is a variant of
evolutionary algorithm methods described in many sources (e.g., [2, 3, 4]). The basic
information on the evolutionary algorithms is given at the beginning of the section 4. We
implemented Koza's variant of genetic programming [2]. In our research, the independent
input variables (the set of terminals) were: yarn fineness T (tex), weave value V, fabric
tightness t (%) and denting D (ends/dent in the reed). The set of terminals also included
random floating-point numbers between –10 and +10. Variegated reed denting was treated
as an average value of treads, dented in the individual reed dent. The dependent output
variables were: area of macro-pore cross-section Ap (10-3 mm2), pore density Np (pores/cm2),
and equivalent macro-pore diameter (µm). For all modelling, the initially set of functions
included the basic mathematical operations of addition, subtraction, multiplication, and
division. In the case of modelling the area of macro-pore cross-section and pore density the
initially set of functions also included a power function, whereas the set of functions for
modelling of equivalent macro-pore diameter included an exponential function. We then
used the genetic programming system to evolve appropriate models consist of above-
mentioned sets of terminals and functions. Open porosity was calculated on the basis of
predicted values of the area of macro-pore cross-section and macro-pore density and
Equation 17. The equivalent macro-pore diameter was calculated on the basis of predicted
values of the area of macro-pore cross-section using Equation 19. The fitness measure for
modelling by genetic programming was exactly the same as defined by Equation 33 in
section 4. The goal of the modelling was to find such a predictive model in a symbolic form,
that Equation 33 would give as low an absolute deviation as possible.

The evolutionary parameters for modelling by genetic programming were: population size
2000, maximum number of generations to be run 400, probability of reproduction 0.1,
probability of crossover 0.8, probability of mutation 0.1, minimum depth for initial random
organisms 2, maximum depth for initial random organisms 6, maximum depth of mutation
fragment 6, and maximum permissible depth of organisms after crossover 17. The

The Usage of Genetic Methods for Prediction of Fabric Porosity 185

generative method for the initial random population was ramped half-and-half. The method of
selection was tournament selection with a group size of 7. For the purpose of this research
100 independent genetic programming runs were executed. Only the results of the best runs
(i.e., the models with the smallest error between the measurements and predictions) are
presented in the paper.

3.1. Materials and porosity measurements

Our experiments involved woven fabrics made from staple yarns with two restrictions: first,
only fabrics made from 100% cotton yarns (made by a combing and carding procedure on a
ring spinning machine) were used in this research; second, fabrics were measured in the
grey state to eliminate the influence of finishing processes. We believe that it is very hard,
perhaps even impossible, to include all woven fabrics types to predict individual macro-
porosity parameters precisely enough, and so we focused our research on unfinished staple
yarn cotton fabrics. We would like to show that genetic programming can be used to
establish the many relations between woven fabric constructional parameters and particular
fabric properties, and that the results are more useful for fabric engineering than ideal
theoretical models. The cotton fabrics varied according to yarn fineness (14 tex, 25 tex, and
36 tex), weave type (weave value), fabric tightness (55% - 65%, 65% - 75%, 75% - 85%), and
denting. The constructional parameters of woven fabric samples are collected in Table 1.
They were woven on a Picanol weaving machine under the same technological conditions.
The weave values of plain (0.904), twill (1.188), and satin (1.379) fabrics, as well as fabric
tightness, were determined according to Kienbaum’s setting theory [36].

We used an optical method to measure porosity parameters of woven fabrics, since it is the
most accurate technique for macro-pores with diameters of more than 10 μm. For each fabric
specimen, we observed between 50 and 100 macro-pores using a Nikon SMZ-2T computer-
aided stereomicroscope with special software. We measured the following macro-porosity
parameters: area of macro-pore cross-section, pore density, and equivalent macro-pore
diameters.

3.2. Predictive models of woven fabric porosity parameters

Equations 29 and 30 present predictive models of the area of macro-pore cross-section Ap
and macro-pore density Np, respectively [37]. Here V is the weave factor, T is the yarn linear
density in tex, t is the fabric tightness in %, and D is the denting in ends per reed dent. The
open porosity and equivalent diameter are calculated using Equations 17 and 19,
respectively, where for Ap and Np the predicted values are taken into account. Because the
model of the area of macro-pore cross-section is more complex, the functions f1, f2,…f10 are not
presented here but are written in the appendix. When calculating the values of models, the
following rules have to be taken into account: the protected division function returns to 1 if
denominator is 0; otherwise, it returns to the normal quotient. The protected power function
raises the absolute value of the first argument to the power specified by its second argument.

Genetic Programming – New Approaches and Successful Applications 186

By a comparison of both GA models (Equations 29 and 30) with the theoretical ones
(Equations 11-13 and 14), the complexity of GA models is obvious and derives from the
factors involved in the models. Namely, factors involved in GA models don’t ignore the
irregularity of macro-pores cross-section area as well as the number of pores, due to the
phenomenon of latticed pores in the case of staple yarns (which depends on the type of
weave – factor V and fabric tightness – factor t) and the phenomenon of thread spacing
irregularity (factor D), as theoretical models do. Theoretical model for the macro-pore cross-
section area assumes that all macro-pores in woven structure have the same cross-section
area regardless the type of used yarns, type of weave, fabric tightness and denting, whilst
the theoretical model for the pore density assumes no reduction of the number of pores.

Ref. Yarn linear density T,
tex

Weave value
V

Fabric tightness t,
%

Denting D,
ends/reed dent

1 14 0.904 62 2
2 14 0.904 70 2
3 14 0.904 84 2
4 14 1.188 62 3
5 14 1.188 70 3
6 14 1.188 80 3
7 14 1.379 59 5
8 14 1.379 69 5
9 14 1.379 79 5
10 25 0.904 62 2
11 25 0.904 73 2
12 25 0.904 83 2
13 25 1.188 63 2
14 25 1.188 73 2
15 25 1.188 84 2
16 25 1.379 60 2+3
17 25 1.379 70 2+3
18 25 1.379 81 2+3
19 36 0.904 62 1
20 36 0.904 71 1
21 36 0.904 83 1
22 36 1.188 63 2
23 36 1.188 72 2
24 36 1.188 83 2
25 36 1.379 58 2+3
26 36 1.379 65 2+3
27 36 1.379 79 2+3

Table 1. The constructional parameters of woven fabric samples

The Usage of Genetic Methods for Prediction of Fabric Porosity 187

 () 5 6
1 8 9 10 4 72 2

2 3

1
()p
f ftA f f f f TV f f

f f t T tV t

    
= + ⋅ + + + +       − +    

 (29)

)05.1(
)(18.556.3

055.1

5.9
)1(
3.605.1

8816.0055.1)(

6.6
995.024.1

93.2

9))((

2

17

TtVV
TD

V

VTD
tT

VD
D
tT

t

tDT
DVD

VD

D

t
V
TV

DVTD

VD
tT

T
tDDVD

D
VttVTtD

T
VT
tttDVD

N

V

T

D

T

p

++
+⋅

+−























+−
++

+

−
+

+
−












+−
−−

−

−





















−
+−+



















+
+

+−
+++++−

+





 +−++

−
+









−
++++

=

−−−

 (30)

Figure 10 presents a comparison of the experimental, predicted, and theoretical values of
macro-porosity parameters. Theoretical values of macro-pore density are calculated on the
basis of an ideal model of porous structure using Equation 14. By calculation of the
theoretical values of the area of macro-pore cross-section, open porosity, and the equivalent
pore diameter, the circular, rectangular, and elliptical shape of macro-pore area are taken
into account.

Theoretical values of woven fabric porosity parameters deviate from experimental ones on
average by 118.3% (min 8.8%, max 452.9%) for the area of the macro-pore with rectangular
cross-section, 111.5% (min 14.5%, max 370.6%) for the area of the macro-pore with circular
cross-section, 72.8% (min 0.2%, max 335.3%) for the area of the macro-pore with elliptical
cross-section, 37.3% (min 0.0%, max 395.0%) for the macro-pore density, 232.6% (min 19.9%,
max 1900.1%) for the open porosity of fabrics with rectangular pore cross-section, 221.0% (min
14.3%, max 1558.0%) for the open porosity of fabrics with circular pore cross-section, 166.3%
(min 5.9%, max 1479.0%) for the open porosity of fabrics with elliptical pore cross-section,
43.7% (min 4.3%, max 135.1%) for the equivalent pore diameter where rectangular pore cross-
section is taken into account, 43.7% (min 7.0%, max 116.9%) for the equivalent pore diameter
where circular cross-section is taken into account, and 28.0% (min 0.1%, max 108.6%) for the
equivalent pore diameter where elliptical pore cross-section is taken into account.

The results of woven fabric porosity parameters determined with models based on genetic
programming show very good agreement with experimental values (Figure 11) and justify
the complexity of GA models. The predicted values deviate from experimental ones on
average by 1.5% (min 0.0%, max 10.2%) for the area of the macro-pore cross-section, 2.0%
(min 0.0%, max 8.0%) for the macro-pore density, 3.2% (min 0.0%, max 10.1%) for the open
porosity, and 0.8% (min 0.0%, max 5.2%) for the equivalent macro-pore diameter. The

Genetic Programming – New Approaches and Successful Applications 188

correlation coefficients between the predicted and experimental values are 0.9999, 0.9989,
0.9941, and 0.9997 for the area of macro-pore cross-section, macro-pore density, open
porosity, and equivalent diameter, respectively.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Area of macropore cross-section (10-3 mm2)

experimental predicted theoretical-rectangular

theoretical-elliptical theoretical-circualr

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Macropore density (pores cm-2)

experimental predicted theoretical

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9

Open Porosity (%)

experimental predicted theoretical-rectangular

theoretical-elliptical theoretical-circular

Figure 10. Results of woven fabric porosity parameters

The models are based on image analysis technique and assumption that woven samples are
transparent. The boundary limits for the validity of the models are as follows: 1. the minimal
values for yarn linear density, weave factor and fabric tightness, are 14 tex, 0.904, and 55%,
respectively, 2. the maximal values for yarn linear density, weave factor and fabric tightness
are 36 tex, 1.379, and 85%, respectively.

The Usage of Genetic Methods for Prediction of Fabric Porosity 189

R² = 0,9999

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

160,0

0 20 40 60 80 100 120 140 160

Pr
ed

ict
ed

 va
lu

es

Experimental values

Area of macropore cross-section (10-6 m)

R² = 0,9989

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

Pr
ed

ict
ed

 va
lu

es

Experimental values

Macropore density (pores cm-2)

R² = 0,9941

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

0 5 10 15 20 25 30 35

Pr
ed

ic
te

d
va

lu
es

Experimental values

Open porosity (%)

R² = 0,9997

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450 500

Pr
ed

ic
te

d
va

lu
es

Experimental values

Equivalent diameter (10-6 m)

Figure 11. Scatter plots of experimental and predicted porosity parameters using GP models

4. The usage of genetic algorithm to predict nonwoven fabric porosity
parameters

In this research, the genetic algorithm was used for definition of predictive models of
nonwoven fabric porosity parameters. Since needle-punched nonwoven fabrics have
completely different porous structure when compared to woven fabrics, it is inappropriate
to focus on open porosity through the prediction of the area of macro-pore cross-section and
macro-pore density. The most valuable porosity parameters for needle-punched nonwoven
porous structure characterisations are total porosity and mean pore diameter, and those
parameters were the subjects of our research. Since the basic steps in evolutionary
computation are well-known, only a brief description follows. Firstly, the initial population
P(t) of the random organisms (solutions) is generated. The variable t represents the
generation time. The next step is the evaluation of population P(t) according to the fitness
measure. Altering the population P(t) by genetic operations follows. The genetic operations
alter one or more parental organism(s); thus, creating their offspring. The evaluation and
alteration of population takes place until the termination criterion has been fulfilled. This
can be the specified maximum number of generations or a sufficient quality of solutions
[38]. More comprehensive information on evolutionary computation can be found in [39].

The independent input variables were fibre fineness - T (dtex), nonwoven fabric area mass - m
(g/m2), and nonwoven fabric thickness - D (mm). The dependent output variables were mean
pore diameter dp (µm) and total porosity ε (%). Since the GA approach is unsuitable for the

Genetic Programming – New Approaches and Successful Applications 190

evolution of prediction models (organisms) in their symbolic forms, it is necessary to define
them in advance [38]. In this study, a quadratic polynominal equation with three variables was
used as a prespecified model for the prediction of porosity parameters as follows:

 2 2 2
1 2 3 4 5 6 7 8 9 10 11Y c c m c D c T c m c D c T c mD c mT c DT c mDT= + + + + + + + + + + (31)

where, Y is the dependent output variable, m is the nonwoven fabric mass per unit area in
g/m2, D is the nonwoven fabric thickness in mm, T is the fibre fineness in dtex, and c1…11 are
constants. The main reasons for this selection were as follows: 1. a polynominal model is
relatively simple, 2. for the problem studied we did not expect harmonic dependence of the
output variables, 3. some preliminary modelling-runs with different types of prespecified
models showed that the quadratic polynominal model provides very good selection in terms
of prediction quality. In our research, the initial random population P(t) consisted of N
prespecified models (Equation 31) where N is the population size. Of course, in our
computer implementation of the GA, the population P(t) consisted only of the N sets of the
real-valued vectors of model constants. The individual vector is equal to:

 c = (c1 , c2 , · · ·, c11) (32)

The absolute deviation D(i,t) of individual model i (organism) in generation time t was
introduced as a fitness measure. It was defined as:

1

(,) () (,)
n

j
D i t E j P i j

=
= − (33)

where, E(j) is the experimental value for measurement j, P(i, j) is the predicted value
returned by the individual model i for measurement j, and n is the maximum number of
measurements. The goal of the optimisation task was to find such a predictive model
(defined by Equation 31), that Equation 33 would give as low an absolute deviation as
possible. Therefore, the aim was to find out appropriate real-valued constants in Equation
32. However, since it was unnecessary that the smallest values of the above equation also
meant the smallest percentage deviation of this model, the average absolute percentage
deviation of all measurements for individual model i was defined as:

 (,)() 100%
| ()|

D i ti
E j n

Δ = ⋅ (34)

The Equation 33 was not used as a fitness measure for evaluating population, but only for
finding the best organism within the population, after completing the run.

The altering of population P(t) was effected by reproduction, crossover, and mutation. For
the crossover operation, two parental vectors, e.g., c1 and c2 were randomly selected. Then
the crossover took place between two randomly-selected parental genes having the same
index. Two offspring genes were created according to the extended intermediate crossover,
as considered by Mühlenbeim and Schlierkamp-Voosen [40]. During the mutation

The Usage of Genetic Methods for Prediction of Fabric Porosity 191

operation, one parental vector c was randomly selected. Then, the mutation took place in
one randomly selected parental gene. During both the crossover and mutation processes, the
numbers of crossover and mutational operations performed on parental vector(s), were
randomly selected. The evolutionary parameters for modelling by genetic algorithms were:
population size 300, maximum number of generations to be run 5000, probability of
reproduction 0.1, probability of crossover 0.8 and probability of mutation 0.1. Tournament
selection with a group size of 5 was used. For the purpose of the research 200 independent
genetic algorithms runs were carried out. Only the best models are presented in the paper.

4.1. Materials and porosity measurements

Bearing in mind the fact that nonwovens have very different structures and, thus, also
porosity parameters due to their sequences when web-forming, bonding, as well as finishing
methods, the nonwoven fabric samples were limited to one type of nonwoven fabrics –
those needle-punched nonwoven fabrics made from a mixture of polyester and viscose
staple fibres. Nonwoven multi-layered webs were first obtained from the same
manufacturing process by subjecting the fibre mixtures to carding and then orienting the
carded webs in a cross-direction by using a cross lapper to achieve web surface mass ranges
of 100-150, 150-200, 250-300, and 300-350 g/m2, and a web volume mass range of 0.019-0.035
g/cm3. The webs were made from a mixture of polyester (PES) and viscose (VIS) staple fibres
of different content, fineness, and lengths, as follows: samples 1–3 from a mixture of 87%
VIS fibres (1.7 dtex linear density, 38 mm length) and 12.5% of PES fibres (4.4 dtex linear
density, 50 mm length), samples 4–7 from a mixture of 60% VIS fibres (1.7 dtex linear
density, 38 mm length) and 40% PES fibres (3.3 dtex linear density, 60 mm length), samples
8–11 from a mixture of 30% VIS fibres (3.3 dtex linear density, 50 mm length), 40% PES
fibres type 1 (6.7 dtex linear density, 60 mm length) and 30% of PES fibres type 2 (4.4 dtex
linear density, 50 mm length), samples 12–15 from a mixture of 70% PES fibres type 1 and
30% PES type 2. Multi-layered carded webs were further subjecting to pre-needling using
needle-punching machine, under the following processing parameters of one-sided pre-
needle punching: stroke frequency 250/min; delivery speed 1.5 m/min; needling density
30/cm, depth of needle penetration 15 mm, and felting needles of 15x18x38x3 M222 G3017.
The processing parameters of further two-sided needle-punching were as follows: stroke
frequency 900/min; delivery speed 5.5 m/min; needling density 60/cm (30/cm upper and
30/cm lower), depth of upper and lower needle penetrations 12 mm, and felting needles of
15x18x32x3 M222 G3017. The webs were further processed through a pair of heated
calendars at under 180 °C with different gaps between the rollers, in order to achieve further
changes in fabric density and, consequently, in the porosity within the range of 80–92 %. The
constructional parameters of the nonwoven fabric samples are collected in Table 2. All the
nonwoven fabric samples were in a grey state to eliminate the influence of finishing
treatments. The constructional parameters of the nonwoven fabric samples, e.g. the
nonwoven fabric mass per unit area and thickness were measured according to ISO 9073-1
(Textiles – Test Methods for nonwovens – Part 1: Determination of mass per unit area) and
ISO 9073-2 (Textiles – Test Methods for nonwovens – Part 2: Determination of thickness).

Genetic Programming – New Approaches and Successful Applications 192

Ref. Average fibre fineness
T, dtex

Fabric mass per unit area
m, g/m2

Fabric thickness
D, mm

1 2.0 143 1.202
2 2.0 142 0.941
3 2.0 142 0.576
4 2.3 173 1.509
5 2.3 201 1.558
6 2.3 171 0.941
7 2.3 200 1.071
8 5.0 259 1.360
9 5.0 259 1.261
10 5.0 279 1.182
11 5.0 274 1.112
12 6.0 298 1.400
13 6.0 304 1.266
14 6.0 352 1.347
15 6.0 343 1.235

Table 2. The constructional parameters of nonwoven fabric samples

The porosity parameters of the nonwoven fabric samples were measured using the Pascal 140
computer aided mercury intrusion porosimeter, which measures pores’ diameters between 3.8 -
120 µm, and operates under low pressure. The mercury intrusion technique is based on the
principle that non-wetting liquid (mercury) coming in contact with a solid porous material can
not be spontaneously absorbed by the pores of the solid itself because of the surface tension, but
can be forced by applying external pressure. The required pressure depends on the pore-size
and this relationship is commonly known as the Washburn equation [9]:

 2 cosP
r

γ θ− ⋅ ⋅= (35)

where, P is the applied pressure, ϒ is the surface tension of mercury, θ is the contact-angle
and r is the capillary radius. The distribution of pore size, as well as the total porosity and
the specific pore volume can be obtained from the relationship between the pressure
necessary for penetration (the pore dimension) and the volume of the penetrated mercury
(pore volume). There are certain main assumptions necessary when applying the Washburn
equation: the pores are assumed to be of cylindrical shape and the sample is pressure stable.

Each nonwoven sample of known weight was placed in the dilatometer, then the air around
the sample was evacuated and finally the dilatometer was filled with mercury by increasing
the pressure up to the reference level. The volume and pressure measurements’ data were
transferred into the computer programme and the following data were detectable or
calculated: the specific pore volume (mm3/g), the average pore diameter (µm) and the total

The Usage of Genetic Methods for Prediction of Fabric Porosity 193

porosity (%). The volume of penetrated mercury is directly the measure of the sample’s pore
volume expressed as a specific pore volume in mm3/g, and is obtained by means of a
capacitive reading system. The average pore diameter is evaluated at 50% of the cumulative
volume of mercury.

4.2. Predictive models of nonwoven fabric porosity parameters

Equations 36 and 37 present predictive models of the total porosity ε and mean pore
diameter dp, respectively. Here T is the fibre fineness in dtex, m is the nonwoven fabric mass
per unit area in g/m2, and D is the nonwoven fabric thickness in mm.

2 2 3 2 2

2

150.1 8.61 10 3.21 10 66.04 1.09 10 28.74

0.89 0.24 0.20 32.16 0.10

m D T m D

T m D m T D T m D T

ε − − −= − ⋅ + ⋅ − ⋅ − ⋅ − ⋅ +

+ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ ⋅
 (36)

3 2 2 2

3

103.12 0.39 6.01 0.73 2.12 10 30.77 3.79

0.46 0.16 1.13 3.79 10
pd m D T m D T

m D m t D T m D T

−

−

= − ⋅ + ⋅ − ⋅ − ⋅ − ⋅ − ⋅ +

+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅
 (37)

Figure 12 presents a comparison of the experimental, predicted and theoretical values of
porosity parameters, e.g. total porosity and mean pore diameter. The theoretical values of
total porosity and mean pore diameters were calculated using Equation 22 and 27-28,
respectively.

60

65

70

75

80

85

90

95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Total porosity (%)

experimental predicted theoretical

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pore diameter (10-6 m)

experimental predicted theoretical

Figure 12. Results of nonwoven fabric porosity parameters

Genetic Programming – New Approaches and Successful Applications 194

In Figure 12, the theoretical values of total porosity and mean pore diameter as well as
predicted values of pore diameter are linked with lines while samples (1-3, 4-7, 8-11, and 12-
15) are arranged regarding their decreased porosity. The results show that nonwovens with
similar porous structure and lower porosity also have lower pore diameter. The
experimental values of total porosity are for some samples not in a good agreement with
theoretical ones, while samples which should have the highest porosity actually have the
lowest (samples No. 1, 8, and 12). The reason may lie in fact, that these samples contain
more closed pores which are not detectable with mercury porosimetry.

The results show that the theoretical values of porosity parameters deviate from
experimental ones on average by 8.0% (min 0.0%, max 15.4%) for total porosity and by
19.7% (min 2.9, max 57.3%) for pore diameter, whilst the predicted values, calculated using
Equations 36-37, are in better agreement with the experimental ones. The mean predicted
error is: 1.1% (from 0.0% to 4.4%) for the total porosity and 1.9% (from 0.0% to 12.4%) for the
average pore diameter. The correlation coefficients between the predicted and experimental
values are 0.9024 and 0.8492 for the total porosity and the average pore diameter,
respectively. Scatter plots of the experimental and predicted values for porosity parameters,
are depicted in Figure 13.

Figure 13. Scatter plots of experimental and predicted porosity parameters using GA models

5. Conclusion
By a new fabric developing, there is a need to know some relationships between the
constructional parameters of fabrics and their predetermined end-usage properties in order
to produce fabrics with desired quality. Fabric constructors develop a new fabric
construction on the basis of their experiences or predictive models using different modelling
tools of which deterministic and nondeterministic are distinguished. In general, the models
obtained by deterministic modelling tools are the results of strict mathematical rules while
in the case of models obtained by nondeterministic modelling tools, there are no precise,
strict mathematical rules. Our study focused on the development of predictive models based
on the genetic methods, e.g. genetic programming and genetic algorithms, in order to
predict some porosity parameters of woven and nonwoven fabrics. Predictive models of the:
1. area of macro-pore cross-section and macro-pore density of woven fabrics based on the
constructional parameters of woven fabrics (yarn linear density, weave factor, fabric

R² = 0,9024

70,0

72,0

74,0

76,0

78,0

80,0

82,0

84,0

86,0

88,0

72 74 76 78 80 82 84 86 88 90

Pr
ed

ic
te

d
va

lu
es

Experimental values

Total porosity (%)

R² = 0,8492

60,0

65,0

70,0

75,0

80,0

85,0

90,0

95,0

60 65 70 75 80 85 90 95

Pr
ed

ic
te

d
va

lu
es

Experimental values

Pore diameter (10-6 m)

The Usage of Genetic Methods for Prediction of Fabric Porosity 195

tightness, denting), image analysis as testing method of porosity measurements, and genetic
programming, and 2. total porosity and mean pore diameter of nonwoven fabrics based on
the constructional parameters of nonwoven fabrics (fibre linear density, fabric mass per unit
area, fabric thickness), mercury intrusion porosimetry as testing method of porosity
measurements, and genetic algorithm, were developed. Open porosity and equivalent pore
diameter of woven fabric were also predicted using values calculated on the basis of
predictive models of the area of macro-pore cross-section and pore density, and known
mathematical relationships. All proposed predictive models were created very precisely and
could serve as guidelines for woven/nonwoven engineering in order to develop fabrics with
the desired porosity parameters.

In general, for prediction of porosity parameters of woven or nonwoven samples both
modelling tools can be used, e.g. GA and GP. Usually, GP method is used for more difficult
problems. Our purpose was to show usability and effectiveness of both methods. By woven
fabric modelling, the range of porosity parameters’ measurements was substantial larger
with more input variables when compared to the nonwoven fabrics (and this means more
difficult problem), so the GP was used as modelling tool. By GP modelling, the models are
developed in their symbolic forms, thus more precise models are developed in regard to the
GA modelling, where only coefficients of prespecified models are defined. At the same time,
for GP modelling more measurements data are desired for better model accuracy, while by
GA modelling good results are achieved by lower number of measurements (in our case 27
measurements were available for woven fabrics and only 15 for nonwoven fabrics). The
advantage of GP modelling is its excellent prediction accuracy, while its disadvantage is the
complexity of the developed models. In general, by GA modelling, the developed models
are simple but less accurate.

Author details

Polona Dobnik Dubrovski
Department of Textile Materials and Design, University of Maribor,
Faculty of Mechanical Engineering, Slovenia

Miran Brezočnik
Department of Mechanical Engineering,University of Maribor,
Faculty of Mechanical Engineering, Slovenia

Appendix

1 2

3

2

6.4312.856 35.3 ,
22

4.74 ()

T Tf x D
V Dt T tD

Vt T T T DD
tt

 
 
 
 

= + + + + 
 + − − + + 
 

Genetic Programming – New Approaches and Successful Applications 196

2 2

2 2
2 0.072712.856 T V tf D T
Vt T

⋅= − − + − +

1

3

0.535.37 ,
28.86 4.1739 4.1739 0.5

tDV tTf T
T V V T T tT t D t

V V T

−
 
 + +
 = + +
 −   − + − + +   

   

2 2

4 2 2
2 2 (28.86 2.37)19.3 0.034 6.43 ,

()7.43 4.1739

T T T tf T
VtV t T DtD T t

Vt

  − −= + + + + −   +  + − + +

2 22

5 6 2

2(35.3) 35.3

2.37 77 4 ,
4.1739 3.3 28.86 0.9828.86

T
D T T

VD
T V ttf T D f T

Tt T Vt TVtT V t
V

− + +
+

= − + + = −
+ −+ − + +

  
  
  

  
    

  
 

2 3

2 2 2

7

2
(2) (2) ,

77 2

T t
Vt T T t D Tt T tf

D Vt

−
+ + − +=
+ −

2
8 2

2

4.173935.3
8.39341.7137 2 ,

6.88 (35.3)35.3

TD tT tf D
V T T T t

V DVt

+ −
−= + + +

++ − +

2

9

28.86 ()(0.29

35.3
4.1739

35.3
28.86 8.35(35.29 2)6.43

T t T Vtt
V V tD

TT tD Vf
T D TV

DV t

 + −+ + 
 + +
 − + += +  + + −
 
 
 
 

2

2

2
10 3 2 2

2 2

(28.86) 4.173928.86 6.43 0.034
0.242 99.2

16.786 8.39341.7137
(2.37 (8.393))

D t T Vt Tt D TV t
T D VT Vt t

TVf
T T VtD

T T t VDVt V t

  − −+ + + − + +  −   − +
=

+ − − +
+ −

The Usage of Genetic Methods for Prediction of Fabric Porosity 197

6. References
[1] M. Brezočnik, The Usage of Genetic Programming in Intelligent Manufacturing

Systems, Maribor: University of Maribor, Faculty of Mechanical Engineering, 2000.
[2] J.R. Koza, Genetic programming II, Massachusetts: The MIT Press, 1994.
[3] J.R. Koza, Genetic programming III, San Francisco: Morgan Kaufmann, CA, 1999.
[4] M. Brezocnik, J. Balic, “Emergence of intelligence in next-generation manufacturing

systems”, Robot. Comput. Integrat. Manufact., Vol. 19, pp. 55-63, 2003.
[5] P. Udhayakumar and S. Kumanan, “Task Scheduling of AGV in FMS Using Non-

Traditional Optimization Techniques”, Int. Journal of Simulation Modelling, Vol. 9, pp. 28-
39, 2010.

[6] N. Chakraborti, R. Sreevathsan, R. Jayakanth and B. Bhattacharya, “Tailor-made
material design: An evolutionary approach using multi-objective genetic algorithms”,
Computational Materials Science , Vol. 45, pp. 1-7, 2009.

[7] S. Mohanty, B. Mahanty and P.K.J. Mohapatra, “Optimization of hot rolled coil widths
using a genetic algorithm”, Materials and Manufacturing Processes , Vol. 18, pp. 447-462,
2003

[8] M. Brezočnik and J. Balič, »A Genetic-based Approach to Simulation of Self-Organizing
Assembly«, Robot. Comput. Integrat. Manufact., Vol. 17, pp. 113-120, 2001.

[9] Porosimeter Pascal Instruction Manual, Milan: Thermo Electron S.p.A, 2004.
[10] K. L. Hatch, Textile Sciences, New York: West Publishing Company, 2000.
[11] P. Bajaj and A. Sengupta, »Protective Clothing«, in Textile Progress, Manchester, The

Textile Institute, 1992, pp. 1-94.
[12] Y. Shoshani and Y. Yakubov, »A Model for Calculating the Noise Absorption Capacity

of Nonwoven Fiber Webs«, Textile Research Journal, Vol. 69, pp. 519-526, 1999.
[13] M. Mohammadi and P. Banks-Lee, »Determing Effective Thermal Conductivity of

Multilayered Nonwoven Fabrics«, Textile Research Journal, Vol. 73, pp. 802-808, 2003.
[14] N. Pan and P. Gibson, Thermal and moisture transport in fibrous materials, Cambridge:

Woodhead Publishing Limited and CRC Press LLC, 2006.
[15] K. Dimitrovski, New Method for Assesment of Porosity in Textiles, Doctoral

Disertation, Ljubljana: University of Ljubljana, Textile Department, 1996.
[16] B. Neckar and S. Ibrahim, »Theoretical Approach for Determing Pore Charachteristics

Between Fibres«, Textile Research Journal, Vol. 73, pp. 611-619, 2003.
[17] G. Lombard, A. Rollin and C. Wolff, »Theoretical and Experimental Opening Sizes of

Heat-Bonded Geotextiles«, Textile Research Journal, Vol. 59, pp. 208-217, 1989.
[18] M. J. Park, S. H. Kim, S. J. Kim, S. H. Jeong and J. Jaung, »Effect of Splitting and

Finishing on Absorption/Adsorption Properties of Split Polyester Microfiber Fabrics«,
Textile Research Journal, Vol. 71, pp. 831-840, 2001.

[19] K. Kaneko, »Determination of pore size and pore size distribution«, Journal of Membrane
Science, Vol. 96, pp. 59-89, 1994.

[20] A. Jena and K. Gupta, »Liquid Extrusion Techniques for Pore Structure Evaluation of
Nonwovens«, International Nonwoven Journal, Vol. 12, pp. 45-53, 2003.

[21] B. Xu, »Measurement of Pore Charachteristics in Nonwoven Fabrics Using Image
Analysis«, Clothing and Textiles Research Journal, Vol. 14, pp. 81-88, 1996.

Genetic Programming – New Approaches and Successful Applications 198

[22] Y. L. Hsieh, »Liquid Transport in Fabric Structures«, Textile Research Journal, Vol. 65, pp.
299-307, 1995.

[23] D. Jakšić and N. Jakšić, »Assessment of Porosity of Flat Textile Fabrics«, Textile Research
Journal, Vol. 77, pp. 105-110, 2007.

[24] V. Nagy and L. M. Vas, »Pore Charachteristic Determination with Mercury Porosimetry
in Polyester Staple Yarns«, Fibres & Textiles in Eastern Europe, Vol. 13, pp. 21-26, 2005.

[25] D. Jakšić, The Development of the New Method to Determine the Pore Size and Pore
Size Distribution in Textile Products, Ljubljana: Faculty of Natural Sciences and
Technology, Departmetn of Textile Technology, 1975.

[26] P. D. Dubrovski, The Influence of Woven Fabric Geometry on Porosity of Biaxial
Fabrics, Doctoral Disertation, Maribor: University of Maribor, Faculty of Mechanical
Engineeeing, 1999.

[27] P. D. Dubrovski, »Volume Porosity of Woven Fabrics«, Textile Research Journal, Vol. 70,
pp. 915-919, 2000.

[28] P. D. Dubrovski, »A Geometrical Method to Predict the Macroporosity of Woven
Fabrics«, Journal of the Textile Institute, Vol. 92, pp. 288-298, 2001.

[29] A. V. Kulichenko and L. Langenhove, »The Resistance to Flow Transmission of Porous
Materials«, Journal of the Textile Institute, Vol. 83, pp. 127-132, 1992.

[30] J. C. Russ, The image Processing Handbook, CRC Press, 1996.
[31] A. T. Purdy, Needle-punching, Manchester: The Textile Institute, 1980, pp. 49.
[32] R. D. Anandjiwala and L. Boguslavsky, »Development of Needle-punched Nonwoven

Fabrics from Flax Fibers for air Filtration Applications«, Textile Research Journal, Vol. 78,
pp. 614-624, 2008.

[33] J. Mao and S. J. Rusell, »Modelling Permeability in Homogeneous Three-Dimensional
Nonwoven Fabrics«, Textile Research Journal, Vol. 73, pp. 939-944, 2003.

[34] X. Chen, F. Vroman, M. Lewandowski and A. Perwuelz, »Study of the Influence of
Fiber Diameter and Fiber Blending on Liquid Absorption Inside Nonwoven
Structures«, Textile Research Journal, Vol. 79, pp. 1364-1370, 2009.

[35] A. Patanaik and R. Anandjiwala, »Some Studies on Water Permeability of Nonwoven
Fabrics«, Textile Research Journal, Vol. 79, pp. 147-153, 2009.

[36] M. Kienbaum, »Gewebegeometrie and Produktenwicklung«, Melliand Textilberichte, Vol.
71, pp. 737-742, 1990.

[37] P. D. Dubrovski and M. Brezočnik, »Using Genetic Programming to predict the
Macroporosity of Woven Cotton Fabrics«, Textile Research Journal, Vol. 72, pp. 187-194,
2002.

[38] M. Brezočnik, M. Kovačič and L. Gusel, »Comparison Between Genetic Algorithm and
Genetic Programming Approach for Modelling the Stress Distribution«, Material and
Manufacturing Processes, Vol. 20, pp. 497-508, 2005.

[39] T. Bäck, D. B. Fogel and Z. Michalewicz, Handbook of evalutionary computation, New
York - Oxford: IOP Publishing and Oxford University Press, 1997.

[40] M. Gen and R. Cheng, Genetic algorithms and engineering design, Canada: John Wiley
& Sons, Inc., 1997.

Chapter 9

© 2012 Londhe and Dixit, licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Genetic Programming: A Novel Computing
Approach in Modeling Water Flows

Shreenivas N. Londhe and Pradnya R. Dixit

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48179

1. Introduction

The use of artificial intelligence in day to day life has increased since late 20th century as seen
in many home appliances such as microwave oven, washing machine, camcorder etc which
can figure out on their own what settings to use to perform their tasks optimally. Such
intelligent machines make use of the soft computing techniques which treat human brain as
their role model and mimic the ability of the human mind to effectively employ modes of
reasoning that are approximate rather than exact. The conventional hard computing
techniques require a precisely stated analytical model and often a lot of computational time.
Premises and guiding principles of Hard Computing are precision, certainty, and rigor [1].
Many contemporary problems do not lend themselves to precise solutions such as
recognition problems (handwriting, speech, objects and images), mobile robot coordination,
forecasting, combinatorial problems etc. This is where soft computing techniques score over
the conventional hard computing approach. Soft computing differs from conventional
(hard) computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty,
partial truth, and approximation. The guiding principle of soft computing is to exploit the
tolerance for imprecision, uncertainty, partial truth, and approximation to achieve
tractability, robustness and low solution cost [1]. The principal constituents, i.e., tools,
techniques of Soft Computing (SC) are Fuzzy Logic (FL), Neural Networks (NN),
Evolutionary Computation (EC), Machine Learning (ML) and Probabilistic Reasoning (PR).
Soft computing many times employs NN, EC, FL etc, in a complementary rather than a
competitive way resulting into hybrid techniques like Adaptive Neuro-Fuzzy Interface
System (ANFIS).

The application of soft computing techniques in the field of Civil Engineering started since
early nineties and since encompassed almost all fields of Civil Engineering namely
Structural Engineering, Construction Engineering and Management, Geotechnical

Genetic Programming – New Approaches and Successful Applications 200

Engineering, Environmental Engineering and lastly Hydraulic Engineering which is the
focus of this chapter. The technique of ANN is now well established in the field of Civil
Engineering to model various random and complex phenomena. Other techniques such as
FL and EL caught attention of many research workers as a complimentary or alternative
technique to ANN, particularly after knowing the drawbacks of ANN [2]. The soft
computing tool of Genetic Programming which is essentially classified as an Evolutionary
Computation (EC) technique has found its foot in the field of Hydraulic Engineering in
general and modeling of water flows in particular since last 12 years or so. Modeling of
water flows is perhaps the most daunting task ever faced by researchers in the field of
Hydraulic Engineering owing to the randomness involved in many natural processes
associated with the water flows. In pursuit of achieving more and more accuracy in
estimation/forecasting of water related variables the researchers have made of use Genetic
Programming for various tasks such as forecasting of runoff with or without rainfall,
forecasting of ocean waves, currents, spatial mapping of waves to name a few. The present
chapter takes a stalk of the applications of GP to model water flows which will enable the
future researchers who want to pursue their research in this field. The chapter is organized
as follows. Next section deals with basics of GP. A review of applications of GP in the field
of Ocean Engineering is presented in the next section followed by review of applications in
the field of hydrology. Few applications in the field of Hydraulics are discussed in the
subsequent section. It may be noted that papers published in reputed international journals
are only considered for review. Two case studies are presented next which are based on
publications of the first author. The concluding remarks and future scope as envisaged by
the authors are discussed at the end.

2. The evolutionary computation

The paradigm of evolutionary processes distinguishes between an organism’s genotype,
which is constructed of genetic material that is inherited from its parent or parents, and the
organism’s phenotype, which is the coming to full physical presence of the organism in a
certain given environment and is represented by a body and its associated collection of
characteristics or phenotypic traits. Within this paradigm, there are three main criteria for an
evolutionary process to occur as per [3] and they are

• Criterion of Heredity: Offspring are similar to their parents: the genotype copying
process maintains a high fidelity.

• Criterion of Variability: Offspring are not exactly the same as their parents: the
genotype copying process is not perfect.

• Criterion of Fecundity: Variants leave different numbers of offspring: specific variations
have an effect on behavior and behavior has an effect on reproductive success.

The evolutionary techniques can be differentiated into four main streams of Evolutionary
Algorithm (EA) development [4] namely Evolution Strategies (ES), Evolutionary
Programming (EP), Genetic Algorithms (GA) and Genetic Programming (GP) [5]. However,
all evolutionary algorithms share the common property of applying evolutionary processes

Genetic Programming: A Novel Computing Approach in Modeling Water Flows 201

in the form of selection, mutation and reproduction on a population of individual structures
that undergo evolution. The criterion of heredity is assured through the application of a
crossover operator, whereas the criterion of variability is maintained through the
application of a mutation operator. A selection mechanism then ‘favours’ the more fit
entities so that they reproduce more often, providing the fecundity requirement necessary
for an evolutionary process to proceed.

3. Genetic programming:

Like genetic algorithm (GA) the concept of Genetic Programming (GP) follows the principle
of ‘survival of the fittest’ borrowed from the process of evolution occurring in nature. But
unlike GA its solution is a computer program or an equation as against a set of numbers in
the GA and hence it is convenient to use the same as a regression tool rather than an
optimization one like the GA. GP operates on parse trees rather than on bit strings as in a
GA, to approximate the equation (in symbolic form) or computer program that best
describes how the output relates to the input variables. A good explanation of various
concepts related to GP can be found in [5] Koza (1992). GP starts with a population of
randomly generated computer programs on which computerized evolution process
operates. Then a ‘tournament’ or competition is conducted by randomly selecting four
programs from the population. GP measures how each program performs the user
designated task. The two programs that perform the task best ‘win’ the tournament. GP
algorithm then copies the two winner programs and transforms these copies into two new
programs via crossover and mutation operators i.e. winners now have the ‘children.’ These
two new child programs are then inserted into the population of programs, replacing the
two loser programs from the tournament. Crossover is inspired by the exchange of genetic
material occurring in sexual reproduction in biology. The creation of offspring’s continues
(in an iterative manner) till a specified number of offspring’s in a generation are produced
and further till another specified number of generations are created. The resulting offspring
at the end of all this process (an equation or a computer program) is the solution of the
problem. The GP thus transforms one population of individuals into another one in an
iterative manner by following the natural genetic operations like reproduction, mutation
and cross-over. Figure 1 shows general flowchart of GP as given by [5].

The tree based GP corresponds to the expressions (syntax trees) from a ‘functional
programming language’ [5]. In this type, Functions are located at the inner nodes; while
leaves of the tree hold input values and constants. A population of random trees
representing the programs is initially constructed and genetic operations are performed on
these trees to generate individuals with the help of two distinct sets; the terminal set T and
the function set F.

Population: These are the programs initially constructed from the data sets in the form of
trees to perform genetic operations using Terminal set and Function set. The function set for
a run is comprised of operators to be used in evolving programs eg. addition, subtraction,
absolute value, logarithm, square root etc. The terminal set for a run is made up of the

Genetic Programming – New Approaches and Successful Applications 202

values on which the function set operates. There can be four types of terminals namely
inputs, constant, temporary variables, conditional flags. The population size is the number
of programs in the population to be evolved. Larger population can solve more complicated
problem. The maximum size of population depends upon RAM of the computer and length
of programs in the population.

4. Genetic operations
Cross over: Two individuals (programs) are chosen as per the fitness called parents. Two
random nodes are selected from inside such program (parents) and thereafter the resultant
sub-trees are swapped, generating two new programs. The resulting individuals are
inserted into the new population. Individuals are increased by 2. The parents may be
identical or different. The allowable range of cross over frequency parameter is 0 to 100%

Mutation: One individual is selected as per the fitness. A sub-tree is replaced by another one
randomly. The mutant is inserted into the new population. Individuals are increased by 1.
The allowable range of mutation frequency parameter is 0 to 100%

Reproduction: The best program is copied as it is as per the fitness criterion and included in
the new population. Individuals are increased by 1. Reproduction rate = 100 – mutation rate
– (crossover rate * [1 – mutation rate])

Figure 1. Flowchart of Genetic programming (Ref: [5])

Genetic Programming: A Novel Computing Approach in Modeling Water Flows 203

The second variant of GP is Linear genetic Programming (LGP) which uses a specific
linear representation of computer programs. The name ‘linear’ refers to the structure of
the (imperative) program representation only and does not stand for functional genetic
programs that are restricted to a linear list of nodes only. On the contrary, it usually
represents highly nonlinear solutions. Each individual (Program) in LGP is represented
by a variable-length sequence of simple C language instructions, which operate on the
registers or constants from predefined sets. The function set of the system can be
composed of arithmetic operations (+, - , X, /), conditional branches, and function calls (f
{x, xn, sqrt, ex ,sin, cos, tan, log, ln }). Each function implicitly includes an assignment to a
variable which facilitates use of multiple program outputs in LGP. LGP utilizes two-
point string cross-over. A segment of random position and random length of an
instruction is selected from each parents and exchanged. If one of the resulting children
exceeds the maximum length, this cross-over is abandoned and restarted by exchanging
equalized segments. An operand or operator of an instruction is changed by mutation
into another symbol over the same set. The readers are referred to [7] and [8] for further
details.

Gene-Expression Programming (GEP) is an extension of GP, developed by [5]. The
genome is encoded as linear chromosomes of fixed length, as in Genetic Algorithm
(GA); however, in GEP the genes are then expressed as a phenotype in the form of
expression trees. GEP combines the advantages of both its predecessors, GA and GP,
and removes their limitations. GEP is a full fledged genotype/phenotype system in
which both are dealt with separately, whereas GP is a simple replicator system. As a
consequence of this difference, the complete genotype/phenotype GEP system surpasses
the older GP system by a factor of 100 to 60,000. In GEP, just like in other evolutionary
methods, the process starts with the random generation of an initial population
consisting of individual chromosomes of fixed length. The chromosomes may contain
one or more than one genes. Each individual chromosome in the initial population is
then expressed and its fitness is evaluated using one of the fitness function equations
available in the literature. These chromosomes are then selected based on their fitness
values using a roulette wheel selection process. Fitter chromosomes have greater
chances of selection for passage to the next generation. After selection, these are
reproduced with some modifications performed by the genetic operators. In Gene
Expression Programming, genetic operators such as mutation, inversion, transposition
and recombination are used for these modifications. Mutation is the most efficient
genetic operator, and it is sometime used as the only means of modification. The new
individuals are then subjected to the same process of modification, and the process
continues until the maximum number of generations is reached or the required
accuracy is achieved.

5. Why use GP in modeling water flows?

It is a known fact that many variables in the domain of Hydraulic Engineering are of
random nature having a complex underlying phenomenon. For example the generation

Genetic Programming – New Approaches and Successful Applications 204

of ocean waves which are primarily functions of wind forcing is a very complex
procedure. Forecasting of the ocean waves is an essential prerequisite for many ocean-
coastal related activities. Traditionally this is done using numerical models like WAM
and SWAN. These models are extremely complex in development and application
besides being highly computation-intensive. Further they are more useful for forecasting
over a large spatial and temporal domain. The accuracy levels of wave forecasts
obtained through such numerical models again leaves scope for exploration of
alternative schemes. These numerical models suffer from disadvantages like requirement
of exogenous data, complex modeling procedure, rounding off errors and large
requirement of computer memory and time and there is no guarantee that the results
will be accurate. Particularly when point forecasts were required the researchers
therefore used the data driven techniques namely ARMA, ARIMA and since last two
decades or so the soft computing technique of Neural Networks. A comprehensive
review of applications of ANN in Ocean Engineering is done by [9]. Although wave
forecasting models were developed using Artificial Neural Networks by many research
workers their was scope for use of another data driven techniques in that the ANN based
models generally were unable to forecast extreme events with reasonable accuracy and
the accuracy of forecasts decreases with increase in lead time as reported in many
research papers. This became an ideal situation for the entry of another soft computing
tool of GP which functions in a completely different way than ANN in that it does not
involve any transfer function and evolves generations and generations of ‘offspring’
based on the ‘fitness criteria’ and genetic operations as explained in the earlier section
the researchers thought, may be useful to capture the underlying trends better than ANN
technique and can be used as a regressive tool. Same can be said about another
important variable in hydraulic engineering “runoff or stream flow”.

The rainfall -runoff modeling is very complex procedure and many numerical schemes are
available as well as a large number of attempts by ANNs are also been made [2, 10, 11].
Thus Genetic Programming entered in rainfall-runoff modeling. It was also found that GP
results were superior to that of M5 Model Trees another data driven modeling technique
[12, 13]. Apart from these two variables the use of GP for modeling for many hydraulic
engineering processes was found necessary for similar reasons. A review of these
applications particularly in Ocean Engineering, Hydrology and Hydraulics (all grouped
under Hydraulic Engineering) will be presented in the next three sections.

6. Applications in ocean engineering

As mentioned earlier papers published in reputed international journals are considered in
this chapter. Primarily the applications of GP in Ocean Engineering were found for
modeling of oceanic parameters like waves, water levels, zero cross wave periods, currents,
wind, sediment transport and circular pile scour. Table 1 shows applications of GP in the
field of Ocean Engineering listed chronologically followed by their review. This will
facilitate the reader to have a glance of the work which would be presented next.

Genetic Programming: A Novel Computing Approach in Modeling Water Flows 205

REF.
NO.

YEAR AUTHOR TITLE OF PAPER JOURNAL/PUBLICATION

14 2007 Kalra R., Deo M.C. Genetic Programming to
retrieve missing
information in wave records
along the west coast of
India

Applied Ocean Research

25 2007 Singh, A. K., Deo
M.C., Sanil Kumar
V.

Combined Neural network
– genetic programming for
sediment transport

Journal of Maritime Engineering, The
Institution of Civil Engineers, Issue
MAO

16 2007 Charhate S. B.,
Deo M. C.,
Sanil Kumar V.

Soft and Hard Computing
Approaches for Real Time
Prediction of Currents in a
Tide Dominated Coastal
Area

Journal of Engineering for the Maritime
Environment. Proceedings of the
Institution of Mechanical Engineers,
London, M4

15 2008 Ustoorikar K.S., Deo,
M. C.

Filling up Gaps in wave
data with Genetic
Programming

Marine Structures

18 2008 Jain., P., Deo M. C. Artificial intelligence tools
to forecast ocean waves in
real time

The Open Ocean Engineering Journal

22 2008 Charhate, S. B., Deo,
M. C., Londhe S. N.

Inverse modeling to derive
wind parameters from
wave measurements

Applied Ocean Research

17 2008 Gaur, S., and Deo,
M. C.

Real time wave forecasting
using genetic programming

Ocean Engineering

06 2008 Londhe S. N. Soft computing approach
for real-time estimation of
missing wave heights

Ocean Engineering

23 2009 Charhate, S. B., Deo,
M. C., Londhe S. N.

Genetic programming for
real time prediction of
offshore wind

International Journal of Ships and
Offshore Structures

26 2009 Guven, A.,
Azmathulla, H. Md.,
Zakaria, N.A.

Linear genetic
programming for prediction
of circular pile scour

Ocean Engineering

24 2009 Daga, M., Deo, M. C. Alternative data-driven
methods to estimate wind
from waves by inverse
Modeling

Natural Hazards, 49(2), 293-310

08 2009 Guven, A. Linear genetic
programming for time-
series modelling of daily
flow rate

Journal of Earth Syst. Sci., 118(2), 137-
146

Genetic Programming – New Approaches and Successful Applications 206

19 2010 Kambekar, A. R.,
Deo, M. C.

Wave simulation and
forecasting using wind time
history and data driven
Methods

Ships and Offshore Structures

20 2010
a

Ghorbani, M. A. ,
Makarynskyy, O.,
Shiri, J.,
Makarynska, D.

Genetic Programming for
Sea Level Predictions in an
Island Environment

International Journal of Ocean and
Climatic systems

21 2010
b

Ghorbani, M. A.,
Khatibi, R., Aytek,
A., Makarynskyy,
O., Shiri, J.

Sea water level forecasting
using genetic programming
and comparing the
performance with Artificial
Neural Networks

Computers and Geosciences

12 2012 Kambekar, A. R.,
Deo, M. C.

Wave Prediction Using
Genetic Programming And
Model Trees

Journal of Coastal Research, Doi:
10.2112/Jcoastres-D-10-00052.1, 28(1),
43-50

Table 1. Applications of GP in Ocean Engineering

One of the earlier applications was done to retrieve missing information in wave records
along the west coast of India [14]. Such a need arises many times due to malfunctioning of
instrument or drift of wave measuring buoy making it inoperative as a result of which data
is not measured and it is lost forever. Filling up the missing significant wave height (Hs)
values at a given location based on the same being collected at the nearby station(s) was
done using GP. The wave heights were measured at an interval of 3 hours. Data at six
locations around Indian coastline was used in this exercise. Out of the total sample size of
four years the observations for the initial 25 months were used to evaluate the final or
optimum GP program or equation while those for the last 23 months were employed to
validate the performance and achieve gap in-filling with different quanta of missing
information. It was found that both tree based and linear GP models worked in similar
fashion as far as accuracy of estimation was considered. The data was made available by
National Institute of Ocean Technology (NIOT) under the National Data Buoy Programme
implemented by the Department of Ocean Development, Government of India from January
2000 to December 2003 (www.niot.res.in). The initial parameters selected for a GP run were
as follows: initial population size = 500; mutation frequency = 95%; crossover frequency =
50%. The fitness criterion was the mean squared error.

When the similar work was also carried out using ANN it was found that GP produces
results that are marginally more satisfactory than ANN. Another exercise was also carried
out especially to estimate peaks by calibrating a separate model for high wave data which
showed a marginal improvement in prediction of peaks. A similar exercise was carried out
by [15], albeit in altogether different area of Gulf of Mexico near the USA coastline. Gaps in
hourly significant wave height records at one location were filled by using the significant
wave heights at surrounding 3 locations at same time instant and the soft tool of GP and

Genetic Programming: A Novel Computing Approach in Modeling Water Flows 207

ANN. In all data spanning over 4 years was used for the study. The exercise was carried out
for 4 locations in the Gulf of Mexico. The data can be downloaded from
www.ndbc.noaa.gov. The typical value of the population size was 500, number of
generations 15 and number of tournaments 90,00,000. The mutation and the cross-over
frequency also varied for different testing exercises and it ranged from 20% to 80%. The
fitness criterion was the mean squared error between actual observations and corresponding
predictions.

The suitability of this approach was also tried for different gap lengths ranging from 1 day
to 1 month and it was concluded on the basis of 3 error measures that the accuracy of gap
filling decreases with increase in the gap length. The accuracy of the results were also
judged by calculating statistical parameters of the wave records without gaps filled and
with gaps filled using GP model. When the gap lengths did not exceed 1 or 5 days all the
four statistics were faithfully reproduced. Compared to ANN GP produced marginally
better results. In both the cases Linear Genetic Programming technique was employed.

In another earlier works of GP current predictions over a time step of twenty minutes, one
hour, 3 hours, 6 hours, 12 hours and 24 hours at 2 locations in the tidal dominated area of
the Gulf of Khambhat along west coast of India was carried out using two soft techniques of
ANN and GP and 2 hard techniques of traditional harmonic analysis and ARIMA [16]. The
work involved antecedent values of current only to forecast the current for various lead
times at these locations. The fitness function selected was the mean square error, while the
initial population size was 500, mutation frequency was 95%, and the crossover frequency
was kept at 50%. The authors concluded that the model predictions were better for
alongshore currents and small interval of times. For cross shore currents ARIMA performs
better than ANN and GP even at longer prediction intervals. In general the three data
driven techniques performed better than harmonic analysis. The new technique GP
performed at par with ANN if not better. Perhaps the only drawback of the work was that
the data (spanning over 7 months) is less than a year indicating that all possible variations in
data set were not presented while calibrating the model making it susceptible when it is
used at operational level.

Online wave forecasts over lead times of 3, 6, 12 and 24 hours were carried out at two
locations in the gulf of Mexico using past values of wave heights (3 in number) and the soft
computing technique of GP [17]. The data measured from 1999 to 2004 was available for free
download on the web site of National Buoy Centre (http://www.ndbc.noaa.gov). The data
belonged to the hourly wave heights measured over a period of 15 years with an extensive
testing period of about 5 years which is the most in the papers reported till this time (with
ANN as modeling tool). The locations chosen were differing to a large extent in that one was
a deep water buoy and the other was a coastal buoy. The work was different from others in
one aspect that monthly models were developed instead of routine yearly models. However
any peculiar effect of this either good or bad on forecasting accuracy was not evident from
the 3 error measures calculated. Though the results of GP were promising (high correlation
coefficients for 3 and 6 hr forecast) the forecasting accuracy decreased for longer lead times

Genetic Programming – New Approaches and Successful Applications 208

of 12 hr and 24 hr. It was found that the results of GP were superior to ANN. For GP model
the initial population size was 500 while the number of generations was 300. The mutation
frequency was 90 percent while the cross over frequency was 50 percent. Values of these

control parameters were selected initially and thereafter varied in trials till the best fitness
measures were produced. The fitness criterion was the mean squared error between the
actual and the predicted value of the significant wave height. Another exercise on real time
forecasting of waves for warning times up to 72 hours at three locations along the Indian
coastline using alternative techniques of ANN, GP and MT was carried out by [18]. The data
was measured from 1998 to 2004 by the national data buoy program (www.niot.res.in).
Forecasting waves up to 72hr and that too with reasonable accuracy is itself a specialty of
this work. The data had many missing values which were filled by using temporal as well as
spatial correlation approaches. Both MT and GP results were competitive with that of the
ANN forecasts and hence the choice of a model should depend on the convenience of the
user. The selected tools were able to forecast satisfactorily even up to a high lead time of 72
hrs. The authors have rightly stated that this accuracy was possible in the moderate ocean
environment around Indian coastline where the target waves were less than around 6 m and
2.5 m for the offshore and coastal stations respectively. The paper does not provide any
information about the initial parameters chosen for implementing GP. The significant wave
height and average wave period at the current and subsequent 24 hr lead time were
predicted from continuous and past 24-hourly measurements of wind speeds and directions
as well as two soft computing techniques of GP and MT [19]. The data collected at 8
locations in Arabian Sea and Indian Ocean (www.niot.res.in) was used to develop both
hind-casting and forecasting models. Both the methods, GP and MT, performed
satisfactorily in the given task of wind wave simulation as reflected in high values of the
error statistics of R, R2, CE and low values of MAE, RMSE and SI. This is noteworthy since
MT is not purely non-linear like GP. Although the magnitudes of these statistics did not
indicate a significant difference in the relative performance of GP and MT, qualitative scatter
diagrams and time histories showed the tendency of MT to better estimate the higher waves.
Forecasting at higher lead times were fairly accurate compared to the same at lower ones. In
general the performance of wave period was less satisfactory than that of wave height and
this can be expected in view of a highly varying nature of wave period values. For details
regarding the initial GP parameters involved in calibration readers are referred to the
original paper where an exhaustive list of parameters is given. Lately [12], extended their
earlier work by forecasting Significant wave height and zero cross wave period over time
intervals of 1 to 4 days using the current and previous values of wind velocity and wind
direction at 2 locations around the Indian coastline. It was found out that best results were
possible when the length of the input sequence matched with that of the output lead time.
As observed earlier here also it was found that the accuracy of prediction decreases with
increase in lead time. However the results were satisfactory for 4 days ahead predictions
also. In general it was observed that results of MT were slightly inferior to that of GP.
Separate models were also developed to account for the monsoon (rainfall season in India)
which showed a considerable improvement over yearly models. The models calibrated at
one location when applied for another nearby locations also shown satisfactory performance

Genetic Programming: A Novel Computing Approach in Modeling Water Flows 209

provided both sites have spatial homogeneity in terms of openness, long offshore distances
and deep water conditions. This work used tree based GP where as earlier mentioned three
works used Linear Genetic Programming.

GP was used to forecast sea levels averaged over 12 h and 24 h time intervals for time
periods from 12 to 120 h ahead at the Cocos (Keeling) Islands in the Indian Ocean [20]. The
model produced high quality predictions over all considered time periods. The presented
results demonstrates the suitability of GP for learning the non-linear behavior of sea level
variations in terms of the R2 (with values no lower than 0.968), MSE (with values generally
smaller than 431) and MARE (no larger than 1.94%). This differs from earlier applications
particularly for wave forecasting in that for forecasting of waves it was difficult to achieve
higher order accuracy in terms of r, rmse and other error measures for as far as 24 hour
forecast. Perhaps the recurring nature of sea water levels (the deterministic tidal component
which is inherent in water level, is the reason behind this high level accuracy. In order to
assess the ability of GP model relative to that of the ANN technique, a comparison was
performed in terms of the above mentioned statistics. The developed GP model was found
to perform better than the used ANNs. In the current work, the linear genetic programming
approach was employed. The water level at Hillary’s Boat Harbor, Australia was predicted
three time steps ahead using time series averaged over 12hr, 24hr, 5 day and 10 day time
interval and the soft tool of GP [21]. The results are compared with ANN. Total 12 years of
data was used out of which 3 years of data is used for model validation. Tree based GP was
used. The results of 12 hr averaged input data were found to be better than 24 hr averaged
input data and in general the accuracy of prediction reduced for higher lead times. For both
the cases GP results were better than ANN. For 5 day averaged inputs performance of GP
was inferior to that of ANN though it improved for 10 day averaged inputs. It may be noted
that the input data is averaged over 12hr, 24hr, 5days and 10 days which means there is
possibility of loss of information which can be major draw back of this work. For both the
above works the hourly sea-level records from a SEA-level Fine Resolutions Acoustic
Measuring Equipment (SEA-FRAME) station were used. The information about initial
parameters of GP is however not mentioned in both the works.

Estimation of wind speed and wind direction using the significant wave height, zero cross
wave period, average wave period and the soft tools of ANN and GP was carried out at 5
locations around Indian coastline [22]. The paper has three folds in that in the first attempt
both ANN and GP were tried for estimating the wind speed in which GP was found better
and therefore in the second fold GP was only used to determine both wind speed and
direction by calibrating the model by splitting of wind vector into two components. Two
variants of GP, one based on Tree based approach and the other on Linear Genetic
Programming were also tried though the accuracy of estimation for both the approaches
was at par. In the third fold a network of wave buoys were formed and wind direction and
wind speed at one location was estimated using the same at other locations. This was also
done by combining data of all locations and making a regional model. All the attempts
yielded highly satisfactory results as far as accuracy of estimation is considered. It was also
confirmed that for estimation of only wind speed the non-splitting of wind velocity gives

Genetic Programming – New Approaches and Successful Applications 210

better results. Similarly wind speed and its directions were predicted for intervals of 3hr,
6hr, 9hr, 12hr and 24 hr at locations along the west coast of India using two soft computing
techniques of ANN and GP and previous values of the same [23]. It was found that GP
rivaled ANN predictions at all the cases and even bettered it particularly for open sea
location. The results for prediction of wind speed and wind direction together were better
when training of GP and ANN models was done on the basis of splitting of wind vector into
two components along orthogonal directions although a separate model for wind speed
alone was better (as shown by [22]). In general long interval predictions were less accurate
compared to short interval predictions for both the techniques. Data for one location was for
about 1.5 years while for the other location it was for 3 years. A discussion on appropriate
use of statistical measures to assess the model accuracy was also presented. A similar work
was carried out to estimate the wind speed at 5 locations around the Indian coastline using
the wave parameters and 3 data driven techniques namely GP (program based- tree type),
MT and another data driven tool of Locally weighted projection regression (LWPR) by [24].
All models showed tendency to underestimate higher values in given records. When all of
the eight error statistics employed were viewed together, no single method appeared
distinctly superior to others, but the use of an average evaluation index EI which they have
suggested in this work gave equal weightage to each measure showed that the GP was more
acceptable than other methods in carrying out the intended inverse modeling. Separate GP
models were developed to estimate higher wind speeds that may be encountered in stormy
conditions. At all the locations, these models indicated satisfactory performance of GP
although with a fall in accuracy with increase in randomness. For all the above works the
data was measured by national data buoy program of India (www.niot.res.in) however no
mention is made about the initial parameters chosen for GP implementation.

The estimation of longshore sediment transport rate at an Indian location was carried out using
GP and combined GP-ANN models [25]. The data was actually measured by one of the authors
in his field study. The inputs were significant wave height, zero cross wave period, breaking
wave height, breaking wave angle and surf zone width. The limitation of the work was the
amount of data (81) used for training and testing of the models. The choice of control
parameters was as follows: initial population size = 500; mutation frequency = 95%; crossover
frequency = 50%. The initial trial with GP yielded reasonable results (r = 0.87). However by first
training the ANN with same inputs and using the output as input for GP model yielded better
results (r = 0.92). Thus the paper shows that combined ANN-GP model is more attractive than
single GP model. It may be noted this is a kind of work done in the domain of Ocean
Engineering wherein a different parameter (sediment transport rate) is modeled rather than the
usual parameters of waves, periods etc. Another different work was carried out by [26], for
prediction of scour depth due to ocean/lake waves around a pile/pier in medium dense silt and
sand bed using Linear Genetic Programming and Adaptive Neuro-Fuzzy Inference system and
measured laboratory data. For initial GP parameters readers are referred to actual paper where
in an exhaustive list of parameters is provided. The study was carried out in both dimensional
and non-dimensional form in which non-dimensional form yielded better results. The relative
importance of input parameters on scour process was also investigated by first using all the

Genetic Programming: A Novel Computing Approach in Modeling Water Flows 211

influential parameters as inputs and then removing them one by one and observing the results.
The drawback of the work is perhaps the small number of data used in model making (total 38
data, 28 of which is used for training the model) which may be impediment in operational use
of this model. The results were found to be superior to ANFIS results.

In all the above cases where GP is compared with another data driven technique like ANN,
MT or LWPR it was found that GP is superior to all of them in terms of accuracy of results.
However it can be said that GP needs to be explored further particularly for prediction of
extreme events like water levels, wave heights during hurricanes. A detailed study on effect
of variation of GP control parameters like initial population, mutation, crossover percentage
etc. on model accuracy is now need of the day. Similarly the critic on other approaches
about decreasing forecasting accuracy with increase in the lead time seems to be true for GP
as well. This needs more attention if GP is here to stay.

7. Applications in hydrology

Table 2 exhibits the applications of GP in Hydrology chronologically which are reviewed in
this paper. The table also indicates that the applications of GP to the field of Hydrology
started much earlier as compared to Ocean Engineering.

Genetic Programming is used in Hydrology (science of water) for various purposes such as
modeling of phenomena like rainfall-runoff process, evapo-transpiration, flood routing,
stage-discharge curve. The GP approach was applied to the flow prediction of the Kirkton
catchment in Scotland (U.K.) [27]. The results obtained were compared to those attained
using optimally calibrated conceptual models and an ANN. The data sets selected for the
modeling process were rainfall, streamflow and Penman open water evaporation. The data
used for calibration was of 610 days while that of validation was of 1705 days. The models
were developed with preceding values of rainfall, evaporation and stream flow for
predicting stream flow one time step ahead. Two conceptual models as well as ANN were
employed for developing the stream flow forecasting model. It was observed that the
rainfall data was the most influencing factor on the output. All models performed well in
terms of forecasting accuracy with GP performing better. The paper does not give any
details about the values of the parameters used for calibration of GP model. In another work
one day ahead forecasting of runoff knowing the rainfall and runoff of the previous days
and the soft computing tool of Linear Genetic Programming was carried out in Lindenborg
catchment of Denmark by [28]. The models were developed for forecasting runoff as well as
variation of runoff by using previous values of variation of discharge as input as well as
previous values of discharge as input along with rainfall information. It was found that it was
necessary to include information of discharge rather than variation of discharge. The model
predicting discharge gave wrong local peaks in the low regime where as models predicting
variation of discharge gave less wrong peaks in the low flow. Both the models had difficulty
in predicting high peaks. The models were also developed using ANN. The author concluded
that GP is more efficient in peak flow prediction where as ANNs were better in dealing with
the noise. The author suggested specialized model for each type of flow to improve the

Genetic Programming – New Approaches and Successful Applications 212

REF.
NO.

YEAR AUTHOR TITLE OF PAPER JOURNAL/PUBLICATION

27 1999 Savic A.D., Walters, G.
A., Davidson J.W

A genetic Programming
approach to rainfall-runoff
modeling

 Water Resources Management

28 1999 Drecourt J

Application of Neural
Networks and Genetic
Programming to Rainfall
Runoff Modeling.

Danish Hydraulic Institute
(Hydro-Informatics
Techonologies - HIT)

29 2001 Whigham, P. A.,
Crapper, P. F.

Modeling rainfall runoff
using Genetic Programming

Mathematical and Computer
Modelling,

30 2001 Khu, S. T., Liong, S. U.,
Babovic, V., Madsen, H.,
Muttil, N.

Genetic Programming And Its
Application In Real-Time
Runoff Forecasting

 Journal of American Water
Resources Association

31 2002 Babovic, V., Keijzer, M. Rainfall runoff modeling
Based on Genetic
programming

Nordic Hydrology

32 2007 Sivapragasam,C.,
Maheswaran, R.,
Venkatesh, V.

Genetic programming
approach for flood routing in
natural channels

Hydrological processes

33 2007 Parasuraman, K.,
Elshorbagy, A., Carey, S.
K.

Modelling the dynamics of
the evapotranspiration
process using genetic
Programming

Hydrological Sciences

34 2010 El. Baroudy, I.,
Elshorbagy, A., Carey, S.
K., Giustolisi., O., Savic,
D

Comparison of three data-
driven techniques in
modeling the
evapotranspiration process

Journal of Hydroinformatics

13 2010 Londhe, S. N. and
Charhate S. B.

Comparison of data driven
modeling techniques for river
flow forecasting

Hydrological sciences

35 2011 Azmathullah, MD.,
Ghani, A. AB., Leow, C.
S., Chang., C. K., Zakaria,
N. A.

Gene-Expression
Programming for the
Development of a Stage-
Discharge Curve of the
Pahang River

Water Resource Management

Table 2. Applications of GP in Hydrology

accuracy at peak prediction. He also suggested coupling of black box models with gray
models. No specific information is provided about the initial values of GP parameters. The
rainfall-runoff relationship in two different catchments was discovered by [29] using GP.
The results obtained with a deterministic lumped parameter model, based on the unit
hydrograph approach were compared with those obtained using a stochastic machine

Genetic Programming: A Novel Computing Approach in Modeling Water Flows 213

learning model of GP. For the Welsh catchment in UK, the results between the two models
were similar. Since rainfall and runoff were highly correlated, the deterministic assumption
underlying the IHACRES model (deterministic) was satisfied. Therefore, IHACREX could
achieve a satisfactory correlation between calibration and simulation data. The GP approach
which did not require any causal relationships achieved similar results. The behavior of the
studied Australian catchment is very different from the Welsh catchment. The runoff ratio
was very low (7%), and hence, the a priori assumptions of IHACRES (and other
deterministic models) were a poor representation of the real world. This was demonstrated
by the inability of IHACREJS to use more than one season’s data for calibration purposes
and only able to use data from a high rainfall period. Since the GP approach did not make
any assumptions about the underlying physical processes, calibration periods over more
than one season could be used. These led to significantly improved generalizations for the
modeled behavior of the catchment. In summary, either approach worked satisfactorily
when rainfall and runoff were correlated. However, when this correlation was poor, the
CFG-GP had some advantages because it did not assume any underlying relationships. This
is particularly important when considering the modeling of environmental problems, where
typically the relationships are nonlinear, and are often measured at a scale which does not
match with conceptual or deterministic modeling assumptions. Readers are referred to
original paper for details of parameters setting for evolving the rainfall-runoff model. In
their work of GP in hydrology, [30] first used a simple example of the Bernoulli equation to
illustrate how GP symbolically regresses or infers the relationship between the input and
output variables. An important conclusion from this study was that non-dimensionalizing
the variables prior to symbolic regression process significantly enhance the success of GSR
(Genetic Symbolic Regression). GP was then applied to the problem of real-time runoff
forecasting for the Orgeval catchment in France. GP functions as an error updating
procedure complementing the rainfall-runoff model, MIKE11/ NAM. Ten storm events were
used to infer the relationship between the NAM simulated runoff and the corresponding
prediction error. That relationship was subsequently used for real-time forecasting of six
storm events. The results indicated that the proposed methodology was able to forecast
different storm events with great accuracy for different updating intervals. The forecast
hydrograph performs well even for a long forecast horizon of up to nine hours. However, it
was found that for practical applications in real-time runoff forecasting, the updating
interval should be less than or equal to the time of concentration of the catchment. The
results were also compared with two known updating methods such as the auto-regression
and Kalman filter. Comparisons showed that the proposed scheme, NAM-GSR, is
comparable to these methods for real time runoff forecasting. Readers are referred to
original paper for details of initial values of various parameters used in calibrating the GP
model. The rainfall-runoff models were created on the basis of data alone as well as in
combination with conceptual models and Genetic Programming [31]. The study was carried
out in Orgeval catchment of France having an area about 104 km2 using hourly rainfall
runoff data of 10 storms for calibration and 6 storms for testing the models. The models

Genetic Programming – New Approaches and Successful Applications 214

were calibrated to forecast the temporal difference between the current and future discharge
rather than absolute value of discharge for the lead times of 1 to 12 hours. In fact the paper
discusses the phase lag associated with temporal time series forecasting models and
removal of it by forecasting the temporal difference. The results were superior to conceptual
numerical model. The model was then calibrated using a hybrid method in that the surface
runoff value was first forecasted by using a conceptual forecasting model and then using the
simulation error and GP to forecast the stream flow. The hybrid models provided a many
fold improvement over the raw GP models. The paper in our opinion serves as a basic paper
in the field of application of GP in Hydrology and readers may read the paper in original for
all details about the GP models developed. The details are not produced here to save the
space. Linear Genetic Programming technique was used to predict daily river discharge one
day ahead using previous values of the same at Schuylkill River at Berne, PA, USA [8].
Additionally the models were developed using multilayer perceprton as well as Generalized
Regression Neural Networks (GRNN). The statistical ARMA method was also used to
develop the stream flow forecasting model. The results showed that both LGP and NN
techniques predicted the daily time series of discharge with quite good agreement as
indicated by high value of coefficient of determination and low values of error measures
with the observed data. LGP models generally predicted the maximum and minimum
discharge values better than the NN models though LGP results were also far from accurate.
The robustness of the developed models was tested by using applied data which was
neither used in training or testing and the results were judged using Akaike Information
Criterion (AIC). For LGP parameters readers are requested to refer the comprehensive list
presented in the paper.

The potential of the GP-based model for flood routing between two river gauging stations
on river Walla in USA was explored for single peaked as well as multi-peaked flood
hydrographs by [32]. The accuracy of GP models was far superior than modified
Muskingum method which is a traditional physics based hydrologic flood routing model
which also showed time lag in predictions. The inputs were current and antecedent
discharge at upstream station and antecedent discharge at downstream station while the
output was current discharge at the downstream station. The LGP was employed for the
flood routing exercise. The optimal GP parameters used in this study were: crossover rate,
0.9; mutation rate, 0.5; population size, 200; number of generations, 500; and functional set,
i.e. simple arithmetic functions (plus, minus, multiply, divide).

The utility of genetic programming in modeling the eddy-covariance (EC) measured evapo-
transpiration flux was investigated by [33]. The performance of the GP technique was
compared with artificial neural network and Penman-Monteith model estimates. EC
measured evapo-transpiration fluxes from two distinct case-studies with different climatic
and topographic conditions were considered for the analysis and latent heat is modeled as a
function of net radiation, ground temperature, air temperature, wind speed and relative
humidity. Results from the study indicated that both data-driven models (ANN and GP)
performed better than the Penman-Monteith method. However, the performance of the GP

Genetic Programming: A Novel Computing Approach in Modeling Water Flows 215

model is comparable with that of ANN models. One of the important advantages of
employing GP to model evapo-transpiration process is that, unlike the ANN model, GP
resulted in an explicit model structure that can be easily comprehended and adopted.
Another advantage of GP over ANN was found that unlike ANN, GP can evolve its own
model structure with relevant inputs reducing the tedious task of identifying optimal input
combinations. This work was extended by [34] where in an additional data driven tool of
Evolutionary Polynomial Regression was used to model the evapo-transpiration process.
Additionally the effect of previous states of input variable (lags) on modeling the EC
measured AET (actual evapo-transpiration) is investigated. The evapo-transpiration is
estimated using the environmental variables such as net radiation (NR), ground
temperature (GT), air temperature (AT), wind speed (WS) and relative humidity (RH). It has
been found out that random search and evolutionary-based techniques, such as GP and EPR
techniques, do not guarantee consistent performance in all case studies e.g. good and/or bad
performance for modelling AET. The authors further stated that this may be due to the
practical impossibility of conducting exhaustive search, i.e. searching the entire solution
space, to reach the optimal model. The results of ANN, GP and EPR were mostly at par with
each other though EPR models were easier to understand. Readers may refer the original
papers for above two works for the values of GP parameters.

Recently the stage –discharge relationship for the Pahang River in Malaysia was modeled
using Genetic Programming (GP) and Gene Expression Programming (GEP) by [35]. The
data was provided by Malaysian Department of Irrigation and Drainage (DID). Gene
Expression Programming is an extension of GP. GEP is a full-fledged genotype/phenotype
system in which both are dealt with separately, whereas GP is a simple replicator system.
Stage and discharge data from 2 years were used to compare the performance of the GP and
GEP models against that of the more conventional (stage-rating curve) SRC and
(Regression) REG approaches. The GEP model was found to be considerably better than the
conventional SRC, REG and GP models. GEP was also relatively more successful than GP,
especially in estimating large discharge values during flood events. For details of initial GP
parameters the original paper may be referred. The paper elaborates the details of the Gene-
expression programming, the new variant of GP.

Like applications in Ocean Engineering it can be said that there is a lot of scope for use of GP
in the field of Hydrologic Engineering and more and more applications needs to be tried
out.

8. Applications in hydraulics

A few applications of GP in Hydraulic Engineering are also reported in reputed journals which
are from open channel hydraulics. Various GP models were developed by [36] to predict
velocities across a compound channel with vegetated floodplains. The velocity data was
collected in a laboratory flume with steady flow and deep channel and relatively shallow
vegetated floodplain on either side. The GP model was developed with all 12 variables in
dimensional form depicted accurate results though the evolved equation was complex. The GP

Genetic Programming – New Approaches and Successful Applications 216

models were developed with dimensionless variables and separate for main channel and
floodplain. Both the velocity prediction on flood plain and main channels showed good
correlations with measured values. However the resulting expressions were complex. A
dimensionally aware GP was then used to predict the velocity separately in main channel and
flood plains. The performance of the symbolic expressions induced by the dimensionless GP for
the floodplain and main channel was marginally better than those for the dimensionally aware
GP. However, the expressions were more complex and not particularly useful for knowledge
induction. The dimensionally aware GP was shown to hold more scientific information, as units
of measurement were included, although it was also shown to be open ended in that it does not
strictly adhere to the dimensional analysis framework, thereby allowing improved goodness-of-
fit whilst yielding on goodness-of-dimension. The paper provides no information about the
initial values of GP parameters used in evolving the GP model. GP was applied to the
determination of the Chezy’s roughness coefficient for corrugated channels in wake-
interference flow, i.e. hyper-turbulent flow by [37]. The GP models were calibrated using the
experimental data devised by carrying out experiments for 3 plastic corrugated pipes with
variations of discharge and slope. GP quite easily and quickly supplied at least two good
formulae that fit the experimental data better and are more parsimonious than the monomial
formula (mathematical). Moreover, GP has supplied six parsimonious expressions (one or two
constants compared to four for the monomial formula) for the Chezy’s resistance coefficient, all
confirming the dependencies on hydraulic radius, slope and roughness index. It can be said that
the two new formulae for the Chezys resistance coefficient, derived from these GP formulae by
means of ‘mathematical/physical post-refinement’, are suitable for explaining the effect of the
macro-roughness elements, with respect to the behavior of the rough commercial channels and
their traditional expressions for resistance coefficients. The work indicated that this approach,
which combines data-mining techniques together with a theoretical understanding, provides
very good results. It was also commented that strictly speaking, GP is a data-driven technique,
but prior knowledge during the setting up of the evolutionary search and final physical post-
refinement of the hypothesis should make it very close to a white box technique, especially
when GP is used in scientific discovery problems. The initial model parameters can be found in
the original paper. To save space the list is not provided here.

An alternative approach of GP was proposed in the estimation of relative scour depth using
field data by [38]. The comparison between the GP model with ANN found that the GP
model has good ability of forecasting the scour depth. The discharge intensity and height of
fall were used as inputs to estimate scour depth below tail water. The predictive ability of
this approach is however clouded by use of very small number of data (total 91 data sets)
used for calibration and testing of the model. The values of initial model parameters can be
referred from the original paper.

9. Case study I: Soft computing approach for real-time estimation of
missing wave heights

The work dealt with application of GP to retrieve the missing/ lost wave data at a particular
location using the wave heights at other locations in the region. Six regional networks (with

Genetic Programming: A Novel Computing Approach in Modeling Water Flows 217

buoys 42001, 42003, 42007, 42036, 42039,42040) were developed in the Gulf Of Mexico
(Figure 2) around USA coastline to estimate the wave heights at a location using wave
heights at other five locations in the network. The required data from these six buoys was
measured by National Data Buoy Center (NDBC, http://www.ndbc.noaa.gov) of National
Oceanic and Atmospheric administration of USA (NOAA, http://www.noaa.gov). The
common wave data at all the above six locations for the years 2002-2004 was used in the
present work. The networks were developed by having one station as target location at a
time and remaining five locations as inputs turn by turn. Approximately 70% of the total
values were used to calibrate the model and the remaining was kept unseen for testing.
While doing this a particular event which occurred during Hurricane Ivan in 2004 at buoy
42040 which involved a Significant Wave Height of 15.96 m was focused for studying the
performance of developed models during extreme events. It is to be noted that the exercise
was of estimation and not of forecasting for which both the tools did not performed well as
noted in the section on applications of GP in Ocean Engineering.

Thus a network was developed with wave buoy 42040 as the target and buoys 42001, 42003,
42007, 42036, 42039 as inputs. Along with 42040 the other locations namely 42003, 42007,
42039 also experienced largest ever wave heights of 11.04, 9.09, 12.05 making the entire
event a truly extra ordinary event having a return period of over 5000 years [39]. The initial
parameters selected for a GP run were as follows: initial population size 500, mutation
frequency 95%, and crossover frequency 50%. The fitness criterion was the mean squared
error.

Additionally a three layer Feed Forward Neural Network was also developed for the same
buoy network. The results were also compared with a large-scale continuous wave
modeling /forecasting systems (NOAA’s WAVEWATCH III model) which follows the
approach of physics-based model. Though WAVEWATCH III is a continuous running
forecasting model it was the only source of information for wave environment at a location
and therefore in absence of any reliable observed data, these results were used for
comparison. The GP model estimated a wave height of 13.67m as against 15.96 m as
compared to 9.05m that of ANN model and 7.82m of WAVEWATCH III, which was an
excellent result as far as GP approach is considered. Figure 3 shows the wave plot at 42040
in testing.

From results of all the models developed by both the approaches (ANN & GP), it was
observed that all models performed reasonably well in testing as evident by wave height
plots, scatter plots along with the correlation coefficient ranging from 0.85 to 0.98, MAE
from 0.13 to 0.28, RMSE from 0.20 to 0.45 m and coefficient of efficiency from 0.67 and 0.96.
When it was tried to remove 42001 from the network as it is away from the prevailing wind
direction by training a separate GP model with 42003, 42007, 42036, and 42039 as ‘input
buoys’ and 42040 as ‘target buoy’, though the value of correlation coefficient was increased,
the peak prediction was not in a fair range of accuracy for extreme event of Hurricane Ivan.
Due to better performance of the network with inclusion of buoy 42001 especially for
extreme event, buoy 42001 was retained in the network. Also it was found that 42039 was a
potential candidate for redeployment in any other suitable position outside the network as

Genetic Programming – New Approaches and Successful Applications 218

Figure 2. Study area and Buoy Locations (Ref: [6])

Figure 3. Wave height comparison at 42040 during Hurricane Ivan (Ref: [6])

the buoy network developed for 42039 , provided the wave heights using wave heights at
other five locations in the network with the best accuracy achieved between all the networks
(r = 0.98). Figure 4(a, b) shows the scatter plots for results of buoy 42039. Table 3 shows
results reproduced from [6] giving the details of developed networks along with correlation
coefficient between the model estimated and observed values for both GP and ANN models.
In general it was shown that GP was superior to other soft tool of ANN and numerical
model WAVEWATCH in retrieving the missing wave heights including the extreme events
and in redeployment of buoy at other location outside the network.

0
2
4
6
8

10
12
14
16
18

1 10 19 28 37 46 55 64 73 82 91 100
Time (hr)

S
W

H
 (m

)

observed GP ANN wavewatch

16/9/2004 21hr

Genetic Programming: A Novel Computing Approach in Modeling Water Flows 219

Figure 4. a. Scatter plot for buoy 42039 (GP approach); b. Scatter plot for buoy 42039 (ANN approach)
(Ref: [6])

network Input buoys Target buoy rANN rGP
BN1 42003, 42007, 42036, 42039, 42040 42001 0.85 0.88
BN2 42001, 42007, 42036, 42039, 42040 42003 0.87 0.91
BN3 42001, 42003, 42036, 42039, 42040 42007 0.90 0.92
BN4 42001, 42003, 42007, 42039, 42040 42036 0.92 0.94
BN5 42001, 42003, 42007, 42036, 42040 42039 0.98 0.98
BN6 42001, 42003, 42007, 42036, 42039 42040 0.94 0.97

Table 3. Results of buoy networks [6]

10. Case study II: Comparison of data-driven modelling techniques for
river flow forecasting

In the case study GP was used for prediction of average daily flow values one day in
advance at two locations, Rajghat and Mandaleshwar, in the Narmada basin, India using the
previous values of measured streamflows at these two locations. The observations of daily
average stream flow values at both these stations for the years 1987–1997 were obtained
from the Central Water Commission, Narmada Division, Bhopal, India. Considering the
variations in daily stream flow values four separate models for the monsoon months of July,
August, September and October were prepared along with the one separate but common
model for the non monsoon months of November–June. Thus five models were developed
in all for each station (total 10 models) to predict discharge at one day in advance. In a view
of fair judgment along with GP, ANN and Model trees approach was also employed to
develop the models. The number of antecedent discharge values which were used for
predicting discharge one day in advance was decided by carrying out the auto-correlation
analysis.

0

5

10

15

0 5 10 15

Observed SWH (m)

G
P

 e
st

im
at

ed
 S

W
H

 (m
)

0

5

10

15

0 5 10 15

Observed SWH (m)
A

N
N

 e
st

im
at

ed
 S

W
H

 (m
)

Genetic Programming – New Approaches and Successful Applications 220

The GP models were developed with major fitness function of mean squared error, initial
population size of (2048), mutation frequency of (95%) and the cross-over frequency of
(53%) with same data division for both ANN and GP models so that their results could be
compared. All the developed forecasting models were tested for unseen inputs and their
qualitative and quantitative performance was judged by means of correlation coefficient (r)
between the observed and forecasted values along with root mean square error (RMSE) and
plotting scatter plots between the same. Hydrographs were also plotted to visualize the
behavior of the forecasting models particularly for extreme events (peaks).

After examining the results it was observed that for the location of Rajghat in the month of
July, ANN model exhibited a reasonable performance in testing with an ‘r’ value of 0.75
between the observed and forecasted discharges whereas GP model had showed a better ‘r’
value of 0.78 with better performance for higher values of stream flow, though over-
predicted in some instances. The MT model gave a lower ‘r’ value of 0.7 and prediction of
MT model for high stream flows was poor as compared to ANN and GP models. The scatter
plot (Fig. 5) between the observed and forecasted discharges confirmed this with a balanced
scatter except at the high values of measured stream flows.

Figure 5. Scatter plot for RajJuly Model

For the months of August and September, models showed similar performance with GP
models performing better than their ANN and MT counterparts (r GP = 0.75,rANN = 0.7, r MT =
0.72 for Raj Aug and r GP = 0.79,rANN = 0.76, r MT = 0.78 for Raj Sept). For the October model,
the predicted discharges in testing were highly in agreement with the observed values for
both the models as shown by the discharge hydrograph (Fig. 6). The results were also
supported by a high value of correlation coefficient (r = 0.92 for ANN and GP and r = 0.87
for MT) for all the three models in testing.

Genetic Programming: A Novel Computing Approach in Modeling Water Flows 221

The Mandaleshwar models behaved in a similar fashion as that of the Rajghat models with
correlation coefficients of r > 0.7 for all ANN, GP and MT models. For the month of August
the performance of all models was reasonable with r values of 0.74, 0.78 and 0.71 for ANN,
GP and MT models respectively. The other monthly models of ANN, GP and MT also
performed well, with high correlation coefficients in testing (r > 0.86). It was again observed
that GP models work better while predicting extreme events. The maximum observed
discharge of 3790 m3/s was predicted as 1742 m3/s by the ANN model, 3342 m3/s by the GP
model and 1718 m3/s by the MT model. Figure 7 shows discharge hydrographs for the
ManNov-June models. The RMSE values also showed a similar trend to that of the
correlation coefficients.

Thus it was seen that the GP technique outperforms both ANN and MT in almost all the
cases in terms of overall accuracy in prediction. The GP approach based on evolutionary
principles has a completely different approach to the ANN technique in that it does not
involve any transfer function, and evolves generations of “offspring” based on the “fitness
criteria” and genetic operations; this seems to capture the underlying trends better than the
ANN technique. Thus it can be said that ANN and MT perform almost equally but GP
performed better than both of them where prediction accuracy in both normal and extreme
events is concerned.

11. Concluding remarks and future scope

Applications of GP for modeling water flows were discussed in the preceding sections of this
chapter. It may be noted that every attempt is made to provide readers the details of GP
techniques and their parameters employed in each work. However in view of keeping the
length of the chapter in stipulated limits sometimes the readers are referred to the original
paper. Details about the data are also provided at appropriate locations. Interested readers
may further enquire the authors or download the data whenever possible from the web sites
to perform the similar exercise. The applications were from three particular areas of water
flows namely Ocean Engineering, Hydrology and Hydraulics. It was shown in all the
applications for that modeling of natural random processes of complex underlying
phenomenon the Genetic Programming can certainly be employed. The results of this
technique were found to be superior than other contemporary soft computing techniques.
However it was also seen that the tool is not explored to its full capacity by the research
community in any of the above fields. The developed GP models also need to be applied at
operational level. For this a partnership between the researchers and practitioners is
necessary. The GP models can certainly work as supplementary tool if not as replacement
techniques. It can be said that the early days of GP modeling are over and the tool needs to be
used more judiciously for the problems worthy of its use. Otherwise a stage will be reached
where in GP will be used because data is available. It’s use is certainly for the phenomena
which are difficult to explain and model. However if the technique is to stay here it needs to
be explored further for more challenging problems like modeling of infiltration, high flood
events, hurricane path, storm surge, tsunami water levels to name a few.

Genetic Programming – New Approaches and Successful Applications 222

Figure 6. RajOct Model results [13]

Figure 7. ManNovJune Model results [13]

Author details

Shreenivas N. Londhe and Pradnya R. Dixit
Vishwakarma Institute of Information Technology, Kondhwa (bk), Pune, India
shreel69@yahoo.com, prdxt11@gmail.com

12. References

[1] Zadeh L, (1994) Fuzzy Logic, Neural Networks and Soft Computing. Communications of
the ACM 37 (3), 77–84.

0
500

1000
1500
2000
2500

1 16 31 46 61
Days

D
is

ch
ar

ge
 (c

um
/s

)

Observed ANN GP MT

18/10/1994 31/10/1996

0

1000

2000

3000

4000

5000

1 75 149 223 297 371 445 519 593 667 741

Days

D
is

ch
ar

ge
 (c

um
/s

)

Observed ANN GP MT

31/3/1995 31/5/1998

Genetic Programming: A Novel Computing Approach in Modeling Water Flows 223

[2] The ASCE Task Committee, (2000) Artificial neural networks in hydrology. I: preliminary
concepts. J. Hydrol. Engg. ASCE 5(2). 115–123.

[3] Maynard S, (1975) The Theory Of Evolution. Penguin. London.
[4] Babovic V, Keijzer M, (2000) Genetic programming as a model induction engine. Journal

of Hydroinformatics. 2(1) pp. 35 – 61
[5] Koza J, (1992) Genetic Programming: On the Programming of Computers by Means of

Natural Selection. A Bradford Book. MIT Press.
[6] Londhe S, (2008) Soft computing approach for real-time estimation of missing wave

heights. Ocean Engineering. 35. 1080-1089
[7] Brameier M (2004) On linear genetic programming. Ph.D. thesis. University of

Dortmund.
[8] Guven A, (2009) Linear genetic programming for time-series modelling of daily flow

rate. J. Earth Syst. Sci. 118(2). 137-146
[9] Jain P, Deo M, (2006) Neural networks in ocean engineering. Int. Journal of Ships and

Offshore Structures. 1. 25–35.
[10] Maier H, Dandy G, (2000) Neural networks for prediction and forecasting of water

resources variables: a review of modelling issues and applications. Environ. Model.
Soft. 15. 101–124.

[11] Dawson C, Wilby R, (2001) Hydrological modelling using artificial neural networks.
Progr. Phys. Geogr. 25(1). 80–108.

[12] Kambekar A, Deo M, (2012) Wave Prediction Using Genetic Programming And Model
Trees. Journal of Coastal Research. Doi: 28(1). 43-50

[13] Londhe S, Charahate S, (2010) Comparison of data-driven modelling techniques for
river flow Forecasting. Hydrological Sciences. 55(7). 1163-1173

[14] Kalra R, Deo M, (2007) Genetic Programming to retrieve missing information in wave
records along the west coast of India. Applied Ocean Research. 29. 99-111

[15] Ustoorikar K, Deo M, (2008) Filling up Gaps in wave data with Genetic Programming.
Marine Structures. 21. 177-195

[16] Charhate S, Deo M, Sanil Kumar V, (2007) Soft and Hard Computing Approaches for
Real Time Prediction of Coastal Currents in a Tide Dominated Area. Journal of
Engineering for the Maritime Environment. Proceedings of the Institution of
Mechanical Engineers, London, M4, 221:147-163

[17] Gaur S, Deo M, (2008) Real time wave forecasting using genetic programming Ocean
Engineering. 35. 1166-1175

[18] Jain P, Deo M, (2008) Artificial intelligence tools to forecast ocean waves in real time.
The Open Ocean Engineering Journal. 1. 13-21.

[19] Kambekar A, Deo M, (2010) Wave simulation and forecasting using wind time history
and data driven Methods. Ships and Offshore Structures. 5(3). 253-266

[20] Ghorbani M, Khatibi R, Aytek A, Makarynskyy O, Shiri J, (2010a) Sea water level
forecasting using genetic programming and comparing the performance with Artificial
Neural Networks. Computers and Geosciences. 36. 620-627

[21] Ghorbani M, Makarynskyy O, Shiri J, Makarynska D, (2010b) Genetic Programming for
Sea Level Predictions in an Island Environment. International Journal of Ocean and
Climatic systems. 1(1). pp. 27-35,

Genetic Programming – New Approaches and Successful Applications 224

[22] Charhate S, Deo M, Londhe S, (2008) Inverse modeling to derive wind parameters from
wave measurements. Applied Ocean Research. 30. 120-129

[23] Charhate S, Deo M, Londhe S, (2009) Genetic programming for real time prediction of
offshore wind. International Journal of Ships and Offshore Structures. 4(1). 77-88.

[24] Daga, M, Deo M, (2009) Alternative data-driven methods to estimate wind from waves
by inverse Modeling. Natural Hazards. 49(2). 293-310

[25] Singh A, Deo M, Sanil Kumar V, (2007) Combined Neural network – genetic
programming for sediment transport. Journal of Maritime Engineering, The Institution
of Civil Engineers. Issue MAO. 1-7.

[26] Guven A, Azmathulla Md, Zakaria N, (2009) Linear genetic programming for
prediction of circular pile scour. Ocean Engineering. 36. 985-991

[27] Savic D, Walters G, Davidson J, (1999) A genetic Programming approach to rainfall-
runoff modeling. Water Resources Management. 13. 219-231

[28] Drecourt J, (1999) Application of Neural Networks and Genetic Programming to
Rainfall Runoff Modeling. Danish Hydraulic Institute (Hydro-Informatics
Techonologies - HIT) June 1999. D2K-0699-1.

[29] Whigham P, Crapper, P, (2001) Modeling rainfall runoff using Genetic Programming.
Mathematical and Computer Modelling. 33. 707–721

[30] Khu S, Liong S, Babovic V, Madsen H, Muttil N, (2001) Genetic Programming And Its
Application In Real-Time Runoff Forecasting. J of American Water Resources
Association. 37(2). 439-450

[31] Babovic V, Keijzer M, (2002) Rainfall runoff modeling Based on Genetic programming.
Nordic Hydrology. 33(5). 331-346

[32] Sivapragasam C, Maheswaran R, Venkatesh V, (2007) Genetic programming approach
for flood routing in natural channels. Hydrological processes. 22. 623-628

[33] Parasuraman K, Elshorbagy A, Carey K, (2007) Modelling the dynamics of the
evapotranspiration process using genetic Programming. Hydrological Sciences. 52(3).
563-578

[34] El Baroudy I, Elshorbagy A, Carey S, Giustolisi O, Savic D, (2010) Comparison of three
data-driven techniques in modeling the evapotranspiration process. Journal of
Hydroinformatics. 12.4. 365-379

[35] Azmathullah MD, Ghani A, Leow C, Chang C, Zakaria N, (2011) Gene-Expression
Programming for the Development of a Stage-Discharge Curve of the Pahang River.
Water Resource Management. 25. 2901-2916

[36] Harris E, Babovic V, Falconey R, (2003) Velocity Predictions in Compound Channels
with Vegetated Floodplains using Genetic Programming. Int. J. River Basin
Management. 1(2). 117-123

[37] Giustolisi O, (2004) Using genetic programming to determine Chezy’s resistance
coefficient in corrugated channels. Journal of Hydroinformatics. 6.3. 157-173

[38] Azmathullah MD, Ghani A, Zakaria N, Lai S, Chang C, Leow C, (2008) “Genetic
Programming to Predict Ski-Jump bucket Spillway Scour. Journal of Hydrodynamics.
20(4), 477-484

[39] Panchang V, Li D, (2006), Large waves in the Gulf of Mexico Caused by Hurricane Ivan.
Bulletin of the American Meteorological Society. DOI: 10.1175/BAMS-87-4-481, 481-489.

Chapter 10

© 2012 Sreekanth and Datta, licensee InTech. This is an open access chapter distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Genetic Programming: Efficient Modeling Tool
in Hydrology and Groundwater Management

J. Sreekanth and Bithin Datta

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52102

1. Introduction

With the advent of computers a wide range of mathematical and numerical models have
been developed with the intent of predicting or approximating parts of hydrologic cycle.
Prior to the advent of conceptual or process based models, physical hydraulic models,
which are reduced scale representations of large hydraulic systems, were used commonly in
water resources engineering. Fast development in the computational systems and numerical
solutions of complex differential equations enabled development of conceptual models to
represent physical systems in almost all arenas of life including hydrological and water
resources systems. Thus, in the last two decades large number of mathematical models was
developed to represent different processes in the hydrological cycle. Hydrological models
can be broadly classified in to three.

1. Physical models
2. Conceptual models
3. Statistical / Black box models

Physical models are reduced scale representations of the actual hydrological system and the
responses obtained from these models are up-scaled to estimate the responses of the real
system. Conceptual models are based on different individual processes or components of a
hydrological process. For example, in modelling the watershed response to a storm event a
conceptual model make use of different equations to compute different components like
subsurface flow, evapo-transpiration, channel flow, groundwater flow, surface run off etc.
The third type of modelling involves using mathematical and statistical techniques to fit a
model to a data set which then relates the dependent variable to the independent variables.
This type of modelling includes regression models, response matrix, transfer functions,
neural networks, support vector machine etc. The most widely used “black box” type
modelling approach in hydrology and water resources literature is neural networks. Genetic

Genetic Programming – New Approaches and Successful Applications 226

programming is a potential tool to develop simple and efficient functional relationship
between hydrological variables. In spite of the wide range of possible applications in
hydrology and water resources, GP has not been widely reported in the hydrology and
water resources literature. The focus of this chapter is to discuss the potential applicability
of genetic programming to develop simple and computationally efficient hydrological
models, in light of a few studies reported in the recent years. The key points discussed are as
follows;

1. GP’s ability to develop simple models with interpretability to overcome the curse of
“black box” nature of data intensive models.

2. Lesser number of parameters used in GP models as compared to parallel neural
network architectures.

3. GP’s ability to parsimoniously identify the significance of the modelling inputs.

1.1. Genetic programming as a modelling tool

Genetic programming belongs to and is one of the latest members in the family of
evolutionary computation. Evolutionary computation refers to the group of
computational techniques which are inspired by and emulate the natural process of
evolution which resulted in the formation of the entire variety of organisms present on
earth. Just as the way evolution and natural selection has resulted in the formation of
organisms that are competent and best suitable inhabitants to live in any natural
environment, the principle has been applied in computational science to evolve solutions
to complex engineering problems which are subject to random and chaotic environments
similar to the circumstances in which natural evolution has occurred. Evolutionary
computation forms the basic principle behind the evolutionary algorithms like genetic
algorithm (GA), genetic programming (GP), Evolutionary programming, evolution
strategy, differential evolution. Evolutionary algorithms, widely used in mathematical
optimization, are in general based on the application of evolutionary principles like
selection, cross-over and mutation to a “population” of candidate solutions over a
number of generations to find the optimal solutions to an engineering problem. Genetic
algorithm is, for example, a widely used optimization techniques using these principles
as the basic “operators” of the algorithm. Genetic programming [1] is similar to genetic
algorithm in this aspect that it uses these genetic operators selection, cross-over and
mutation in its algorithms. However, the uniqueness of genetic programming is that it
performs these operators over symbolic expression or formulae or programs rather than
over numbers which represent the candidate solutions. Thus, in genetic programming
the candidate solutions are symbolic expressions or formulae. In a modelling framework
these symbolic expressions or formulae or programs are candidate models to simulate a
physical phenomenon. The parse tree notations of two parent and offspring genetic
programs are shown in figure 1. Thus the optimal formula that is evolved by genetic
programming can be used as a best fit model for predicting the physical phenomenon
under consideration.

Genetic Programming: Efficient Modeling Tool in Hydrology and Groundwater Management 227

Figure 1. Symbolic representation of parent and offspring genetic programs

In figure 1, two parent programs to model a physical phenomenon are shown. After testing
these programs for their modelling performance, they are operated by cross-over operator.
That is, parts of the programs are crossed over at the dashed locations to generate the
offspring programs. Also, mutation is illustrated by arbitrarily changing the parameter 2 to
6.

In the last decade a few studies in the broad area of hydrology have utilized genetic
programming based models for making hydrological predictions. The utility of GP in
developing rainfall-runoff models, which are highly non-linear models was addressed in [2]
They combined the use of GP based models with other conceptual models in deriving useful
hydro-climatic models. It was concluded that GP was able to develop more robust models
in that the functional relationships between different model inputs could be easily identified
thus resulting in more transparency of the “black box” type of modelling. Another study [3]
applied genetic programming and artificial neural networks in hydrology to model the
effect of rain on the runoff flow in an urban basin. This study also illustrated the possibility
of including the physical basis of the problem in the GP based model. Another research in
this direction [4] compared three different artificial intelligence techniques viz, neural
networks, adaptive neuro-fuzzy inference system (ANFIS), and genetic programming for
discharge routing of a river in Turkey. The study revealed that GP displayed a better edge
over the other two modelling approaches in all the statistics compared like the mean
absolute error (MAE), mean squared relative error (MSRE) and correlation coefficient. Kisi
et al (2010) [5] developed a wavelet gene expression programming (WGEP) for forecasting
daily precipitation and compared it with wavelet neuro-fuzzy models (WNF). The results

Genetic Programming – New Approaches and Successful Applications 228

showed that WGEP models are effective in forecasting daily precipitation with better
performance over WNF models. Selle [6] utilized genetic programming to systematically
develop alternative model structures with different complexity levels for hydrological
modelling with the objective of testing whether GP can be used to identify the dominant
processes within the hydrological system. Models were developed for predicting the deep
percolation responses under surface irrigated pastures to different soil types, water table
depths and water ponding times during surface irrigation. The dominant process in the
model prediction as determined from the models generated using genetic programming was
found to be comparable to those determined using conceptual models. Thus it was
concluded that Genetic programming can be used to evaluate the structure of hydrological
models. A common aspect of GP based modelling that all these studies reported is the fact
that the GP modelling resulted in fairly simpler models which could be easily interpreted
for the physical significance of the input variables in making a prediction. Jyothiprakash and
Magar (2012) [12] performed a comparative study of reservoir inflow models developed
using ANN, ANFIS and linear GP for lumped and distributed data. The study reported
superior performance of GP models over ANN and ANFIS models.

2. Simple and interpretable hydrological models using genetic
programming

The major drawback of all the data driven modelling approaches is the black box nature of
these models, i.e., the user cannot easily identify what is happening in model which
computes the outputs corresponding to the inputs supplied to the model. One of the key
advantages of genetic programming as a modelling tool is its ability to develop simple
hydrological models. The simplicity of the models is close associated with their
interpretability. The simpler the models are the better they can be interpreted. This in turn
helps in assessing the contributions of different members of the predictor set or inputs in
making a particular prediction. Selle and Muttil (2011) utilized this capability of GP to test
the structure of hydrological models to predict deep percolation response in surface
irrigated pastures. Data obtained using lysimeter experiments were used to develop simple
models using genetic programming. The developed models were simple and interpretable
which helped in identifying the dominant processes involved in the deep percolation
process. Often the developed models could be expressed as simple algebraic equations. The
dominant processes identified compared well with the same as used in conceptual models.
The study also investigated the recurrence of the models developed using GP in multiple
runs and found out that they were consistently coming up with the same model for a given
level of complexity of the model. However, the study also reported that as the level of
complexity increases recurrence of the generated model were affected and the physical
interpretability of the models decreases and hence careful understanding of the complexity
of the system is to be considered before a level of complexity is chosen for the GP models.

This however, illustrates that carefully developed GP models remain mathematically simple
and are readily interpretable to the extent that the dominant processes which influence the

Genetic Programming: Efficient Modeling Tool in Hydrology and Groundwater Management 229

prediction could be readily identified from the model structure. When carefully
implemented models can throw light into and identify the key physical processes
contributing to the phenomenon predicted and hence the development of the model. This is
an important feature lacking from many of the data mining based prediction models
resulting from which these modelling approaches are often earmarked as “black-box”
models. “Black-box” nature of the prediction models often result in the limited use of such
models for practical predictive applications.

2.1. Model complexity of GP and neural networks – Comparative study

The authors had conducted a study [7] to evaluate the complexity of predictive models
developed using Genetic programming in comparison with models developed using
neural networks. The models based on GP and neural network were developed as
potential surrogate models to a complex numerical groundwater flow and transport
model. The saltwater intrusion levels at monitoring locations resulting due to the
excitation of the aquifer by pumping from a number of groundwater pumping wells were
modelled by using GP and neural networks. The pumping rates at these groundwater
well locations for three different stress periods were the inputs or independent variables
for the model. The resulting salinity levels at the monitoring locations were the dependent
variables or outputs.

The GP and ANN based surrogate models were trained based on the training and validation
data generated using a three dimensional coupled flow and transport simulation model
FEMWATER. The GP models were developed using a software Discipulus, which uses a
linear genetic programming algorithm. The ANN surrogate models were developed using a
feed forward back propagation algorithm implemented in the software neuroshell. The
input data considered were the pumping rates at eleven well locations over three different
time periods, constituting 33 input variables. Since pumping at each location can take any
real value between the prescribed minimum and maximum these input variables constitute
a 33 dimensional continuous space, each dimension representative of a pumping rate at a
particular location in a particular stress period. Hence efficient training of the GP and ANN
models required carefully chosen input data which is representative of the entire input
space. Latin hypercube sampling was performed to choose uniformly distributed input
samples from the 33 dimensional input space. An input sample is a vector of 33 values of
pumping rate at 11 well locations during three stress periods. The salinity level at each
observation location is the dependent variable or output. The values of the outputs required
for training the GP and ANN models were generated by running the FEMWATER model.
The numerical simulation model was run numerous times to generate the output data set
corresponding to each input vector. The input-output data set generated following this
procedure was divided into two sets with three quarters of the data in one set and the rest in
the other. The larger set was used for training GP and ANN models and the smaller one was
used for validating the models. The members of the training and validation sets for both GP
and ANN were chosen randomly.

Genetic Programming – New Approaches and Successful Applications 230

The ANN used in the study was trained in the supervised training mode using a back
propagation algorithm. The objective function considered for both the GP and ANN training
was minimization of the total root mean square error (RMSE) of the prediction. The
prediction error was calculated as the difference between the model (GP or ANN) predicted
values and the actual from the numerical model generated data set.

The input-hidden-output layer architecture for the ANN model was optimized by trial and
error. Both GP and ANN models had 33 input variables and 3 outputs. The number of
hidden neurons in the ANN model was determined by adding 1 hidden neuron during
each trial. A sigmoid transfer function and a learning rate of 0.1 were used. In developing
the model the back propagation algorithm modifies the connection weights connecting the
input-hidden and output neurons by an amount proportional to the prediction error in each
iteration and repeats this procedure numerous times till the prediction errors are minimized
to a pre-specified level. Thus for any given model architecture (model structure) the neural
network model optimizes the connection weights to accomplish satisfactory model
predictions. Where as the genetic programming modelling approach is different in that it
evolves the optimal model architecture and their respective parameters in achieving
satisfactory predictions.

The GP models developed used a population size of 500, mutation and cross over
frequencies of respectively 95 and 50 percent. The number of generations were not specified
a priory, instead the evolutionary process was stopped when the fitness function was less
than a critical value. In order to achieve the simplest models, the mathematical operators
where initially kept a minimum and then further operators were added into the functional
set. In this manner, initially addition and subtraction were alone added in this set and later
the operators multiplication, arithmetic and data transfer were added into the set.

The predictive performance of the GP and ANN models on an independent set of data were
found to be satisfactory in terms of the correlation coefficient and minimized RMSE. Figure
2 and 3 respectively shows the ANN and GP predictions of salinity levels at three
monitoring locations corresponding to the their corresponding values from the numerical
simulation model A dissection of the GP and ANN models were performed to evaluate the
model complexity. The modelling framework of the GP models essentially has a functional
set and a terminal set. The functional set comprises of the mathematical operations like
addition, subtraction, division, multiplication, trigonometric functions etc. The terminal set
of GP comprises of the model parameters which are also optimized simultaneously as the
model structure is optimized. In our study the developed GP models used a maximum
terminal set size of 30. i.e., satisfactory model predictions could be achieved with only 30
parameters for the GP model.

The functional operators essentially develop the structure of the GP models by operating on
the input variables. In the GP modelling framework this model structure is not pre-specified
unlike the ANN models. Instead, the model structure is evolved in the course of model
development by testing numerous different model structures. This approach definitely
provides scope for the development of improved model structures as against the ANN

Genetic Programming: Efficient Modeling Tool in Hydrology and Groundwater Management 231

method. In the ANN approach where comparatively only a few models are tested in the trial
and error approach which does not implement an organized search for better model
architectures. The only components that are optimized during the development of the ANN
model are the connection weights. Thus the model structure is rigid and is retained as
determined by the trial and error procedure. This gives lesser flexibility in adapting the
model structure with respect to the process being modelled. In our study it was found that
while GP models required only 30 parameters in developing the model the number of
connection weights in the ANN models was 1224. This is a metric of the simplicity of the GP
models as against the ANN models. From figures 2 and 3 it is observed that despite the
simplicity of the model and much lesser number of parameters used GP predictions are very
similar to the ANN model predictions. For each hidden neuron added into the ANN
architecture the number of connection weights increases by a number equal to the total
number of inputs and outputs. Hence there is a geometric increase in the number of
connection weights with increase in the number of hidden neurons in ANN architecture.

The comparison of the number of parameters in itself testifies the ability of the genetic
programming framework to develop simpler models. The impact of the number of
parameters on the model is on the uncertainty of the predictions made using the model. The
more the number of parameters, the more uncertainty in them and hence this uncertainty
propagates into the predictions made.

3. Parsimonious selection of input variables

Another key feature of the genetic programming based modelling approach is the ability of
genetic programming to identify the relative importance of the independent variables
chosen as the modelling inputs. Many often in hydrological applications it is uncertain
which variables are important to be included as inputs in modelling a physical
phenomenon. Similarly time series models are used quite often in predicting or forecasting
hydrological variables. For example the river stages measured on a few consecutive days
can be used to forecast the river stage for the following days. In doing so the number of past
days’ flow to be included as inputs into the time series model depends on the size and shape
of the catchment and many similar parameters. Most often rigorous statistical tests like auto-
correlation studies are conducted to determine whether an independent variable is
significant to be included in the model development or not. Once included most often it is
not possible to eliminate from most of the modelling frameworks because of the earlier
mentioned rigidity of the model structure. For example, in neural networks an insignificant
model input should be ideally assigned zero connection weights to the output. However,
these connection weights most often don’t assume the zero value but converge to very small
values near zero. This results in the insignificant variable being influencing the predictions
made by a small amount. These results in uncertainties in the predictions made.

The evolutionary process of determining the optimum model structure helps GP to identify
and eliminate insignificant variables from the model development. The authors conducted a
study dissecting the neural network and GP models developed in the same study described

Genetic Programming – New Approaches and Successful Applications 232

above to evaluate the parsimony in the selection of inputs for model development. GP
evolves the best model structure and parameters by testing millions of alternate model
structures. The relative importance of the each independent variable in the model
development was computed by the recurrence of each independent variable in the best 30
models developed by GP. Thus, if an input appears in all the 30 models its impact factor is 1
and if one independent variable appears in none of the best 30 models its impact factor is 0.

Figure 2. Salinity predictions at three locations by the ANN models

To determine the significance of the inputs in the neural network model a connection
weights method was used [7]. In this method the significance of each input is computed as a
function of the connection weights which connects it to the output through the hidden layer.
The formulae used in [7] were used to compute this;

1. First step in this approach was to compute the product of the input-hidden layer and
hidden output layer weights. The, divide this by the sum of products of absolute values
of the input-hidden and hidden output layer weights of all input neurons. This is given
by ihQ in (2)

 , , ,| | | |i h i h h oP W W= × (1)

1

ih
ih ni

ih
i

P
Q

P
=

=


 (2)

Genetic Programming: Efficient Modeling Tool in Hydrology and Groundwater Management 233

2. Divide the sum of the ihQ for each hidden neuron by the sum for each hidden neuron
of the sum for each input neuron of ihQ , for each i. The relative importance of all output
weights attributable to the given input variable is then obtained. The relative
importance is then mapped to a 0-1 scale with the most important variables assuming a
value of 1. A RI value of 0 indicates an insignificant variable.

 1

1 1

nh

ih
h

nh ni

ih
h i

Q
RI

Q

=

= =

=



 (3)

In this manner, the significance of each independent variable (input) to the model was
quantified in a 0-1 range as impact factor and relative importance respectively for GP and
ANN models. These values for GP and ANN models are plotted in figures 4,5 and 6.

Figure 3. Salinity predictions at three locations by the ANN models

Genetic Programming – New Approaches and Successful Applications 234

Figure 4. Impact factors of input variables in predicting Salinity at location 1.

Figure 5. Impact factors of input variables in predicting Salinity at location 2.

From these figures it can be observed that all the variables considered has a non-zero impact
in the developed ANN models. Whereas, GP is able to assign zero impact factor to those
inputs which are not significant and thus able to eliminate them from the model. This helps
in developing simpler models and reducing the predictive uncertainty. In figure 4 it can be
seen that GP identified 13 inputs with zero impact factor. This implies that the pumping
values corresponding to these inputs have negligible effect on the salinity levels at the
observation location. Thus 13 out of the 33 inputs considered are eliminated from the GP
models resulting in much simpler models compared to the ANN models where all the 33
inputs take part in predicting the salinity even though some of them are having very less
impact on the predictions made. The ability of GP to eliminate insignificant variables is
because of the evolutionary nature of model structure optimization. By performing cross-
over, mutation and selection of candidate models over a number of generations GP is able to
derive the optimum model structure with the most important input variables which are

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31

Input No.

Im
pa

ct
 fa

ct
or

GP
ANN

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Input No.

Im
pa

ct
 fa

ct
or

GP
ANN

Genetic Programming: Efficient Modeling Tool in Hydrology and Groundwater Management 235

relevant to the model prediction. This inturn help in developing simpler models with fewer
uncertainties in the model prediction.

Figure 6. Impact factors of input variables in predicting Salinity at location 3.

4. Multiple predictive model structures using GP

The advent of GP as a modelling tool has paved the way for researches exploring the
possibility of multiple optimal models for predicting hydrological processes. Genetic
programming, in its evolutionary approach to derive optimal model structures and
parameters, tests millions of model structures which can mimic the physical process
under consideration. Researches have found that multiple models can be identified using
GP which are considerably different in model structures but able to make consistently
good predictions. Parasuraman and Elshorbagy [8] developed genetic programming
based models for predicting the evapo-transporation. In doing so, multiple optimal GP
models were trained and tested and they were applied to quantify the uncertainty in
those models. Another study by the authors [9] developed ensemble surrogate models for
predicting the aquifer responses to pumping in terms of salinity levels at observation
locations. An ensemble of surrogate models based on GP was developed and the
ensemble was used to get model predictions with improved reliability levels. The variance
of the model predictions were used as the measure of uncertainty in the modelling
process.

5. GP as surrogate model for simulation-optimization

A very important application of data intensive modelling approaches is to develop
surrogate models to computationally complex numerical simulation models. As detailed
elsewhere in this article, the authors have utilized GP in developing potential surrogates to a
complex density dependent groundwater flow and transport simulation model. The
potential utility of the surrogates is to replace the numerical simulation model in simulation-
optimization frameworks. Simulation-optimization models are used to derive optimal
management decisions using optimization algorithms in which a numerical simulation

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31

Input No.

Im
pa

ct
 fa

ct
or

GP
ANN

Genetic Programming – New Approaches and Successful Applications 236

models is run to predict the outcome of implementing the alternative management options.
For example, the authors developed simulation-optimization models to develop optimal
management decisions for coastal aquifers. The optimal pumping from the coastal aquifer
can be decided only by considering the impact of any alternative pumping strategy on
saltwater intrusion. For this the numerical simulation model needs to be integrated with the
optimization algorithm and the impact of each candidate pumping strategy is predicted by
using the simulation model iteratively. This involve a lot of computational burden as
thousands of numerical model runs are required before an optimal pumping strategy is
identified.

GP was used a surrogate model within the optimization algorithm as a substitute of the
numerical simulation model in our study (Sreekanth and Datta, 2010). Previous studies
have used artificial neural networks as surrogate models to replace groundwater
numerical simulation models. Emily et a1 (2005) used genetic programming based
surrogate models for groundwater pollution source identification. In our study (Sreekanth
and Datta, 2010), it was found that genetic programming could be used as a superior
surrogate model in such application with definite advantages. The study intended to
develop optimal pumping strategies for coastal aquifers in which the total pumping could
be maximized and at the same time limiting the saltwater intrusion at pre-specified limits.
In doing so, the effect of pumping on the salinity levels was predicted using trained and
tested GP models. The GP models were externally coupled to a genetic algorithm based
optimization model to derive the optimal management strategies. The results of the GP
based simulation-optimization was then compared to the results obtained using an ANN-
based simulation-optimization model. The ability of GP in parsimoniously identifying the
model inputs helped in reducing the dimension of the decision space in which modelling
and optimization was carried out. The smaller dimension of the modelling space helped
in reducing the training and testing required to develop the surrogate models. The study
identified that GP has potential applicability in developing surrogate models with
potential application in simulation-optimization methodology to solve environmental
management problems.

6. Conclusion

The aim of this chapter is to introduce genetic programming as a potential modelling tool
for hydrology and water resources applications. Genetic programming belongs to the broad
class of evolutionary computational tools developed in recent years. Compared to the vast
number of data mining and artificial intelligence applications in hydrology and water
resources, the application of GP has been limited in spite of its potential applicability in a
wide range of modelling applications. This chapter illustrates a few applications of GP as a
modelling tool in the broad area of water resources modelling and management. The
studies have found GP to be a useful tool for such applications with some advantages over
other artificial intelligence techniques. The major findings reported in this chapter are
enumerated as follows;

Genetic Programming: Efficient Modeling Tool in Hydrology and Groundwater Management 237

1. Genetic programming is able to develop simple models for developing the time series
forecast models. When compared to the complex architecture of neural networks the GP
models are simpler and easy to analyse. This is particularly relevant in developing
transparent models for predicting natural phenomena. Complex neural network
architectures make ANN model more or less “black-box” in nature, where as simpler
GP models makes it easy to analyse the physical significance of each input in the model
development.

2. In GP modeling, the optimum model architecture is evolved by GP after testing, most
often, millions of alternate model structures and parameters as against the trial and
error approach being followed by other artificial intelligence modeling approaches like
neural networks. This helps in converging to global optimal solutions in minimizing the
error criteria used for model development. Thus GP is able to develop global optimum
models for predicting/forecasting hydrological processes and time series.

3. Genetic programming has the capability of parsimoniously selecting the variables for
model development from the potential inputs. This helps to prevent redundancy in
model development in terms of unnecessary inputs and parameters. In course of the
model development GP determines the significance of each input in the model
development in an efficient way so that the totally insignificant inputs are eliminated
from the model. As shown in the results approaches like neural network models are
also able to identify the relative significance of the inputs, they are less efficient in
achieving this because of the rigidity of the model structure and connection weights.

These key advantages of GP modeling are illustrated using realistic example in the broad
area of hydrology and groundwater management for time series model development and
conclusions are drawn which establishes the potential of genetic programming as a
modeling and prediction tool for hydrology and water resources application.

Author details

J. Sreekanth1,2,3 and Bithin Datta1,2
1CSIRO Land and Water, Ecosciences Precinct, Australia
2Discipline of Civil and Environmental Engineering,
School of Engineering and Physical Sciences, James Cook University, Townsville, Australia
3CRC for Contaminant Assessment and Remediation of the Environment, Mawson Lakes, Australia

7. References

[1] Koza, J.R., 1994. Genetic programming as a means for programming computers by
natural selection. Statistics and Computing, 4(2): 87-112.

[2] Babovic, V., Keijzer, M., 2002. Rainfall runoff modelling based on genetic programming.
Nordic Hydrology, 33(5): 331-346.

Genetic Programming – New Approaches and Successful Applications 238

[3] Rabunal, J. R., Puertas, J., Suarez, J., and Rivero, D. (2006) Determination of the unit
hydrograph of a typical urban basin using genetic programming and artificial neural
networks Hydrological Processes, vol. 21, Issue 4, pp.476-485

[4] Rahman Khatibi, Mohammad Ali Ghorbani, Mahsa Hasanpour Kashani and Ozgur Kisi
(2011) Coparison of three artificial intelligence techniques for discharge routing, Jorunal
of Hydrology, 403(3-4), 201-212.

[5] Ozgur Kisi and Jalal Shiri (2010), Precipitation forecasting using wavelet genetic
programming and wavelet neuro fuzzy conjunction models, Water Resources
Management, 25(13), 3135-3152.

[6] Benne Selle, Nithin Muttil (2010), Testing the structure of a hydrological model using
genetic programming, Journal of Hydrology, 397(1-2), 1-9.

[7] Sreekanth, J., and Bithin, Datta., (2011), Comparative evaluation of Genetic
Programming and Neural Networks as potential surrogate models for coastal aquifer
management, Journal of Water Resources Management, 25, 3201 – 3218. (doi:
10.1007/s11269-011-9852-8)

[8] Parasuraman, K., Elshorbagy, A., 2008. Toward improving the reliability of hydrologic
prediction: Model structure uncertainty and its quantification using ensemble-based
genetic programming framework. Water Resources Research, 44(12).

[9] Sreekanth, J., and Bithin, Datta., (2011), Coupled simulation-optimization model for
coastal aquifer management using genetic programming based ensemble surrogate
models and multiple realization optimization, Water Resources Research, 47, W04516, doi:
10.1029/2010WR009683

[10] Sreekanth, J., and Bithin, Datta., (2010), Multi-objective management of saltwater
intrusion in coastal aquifers using genetic programming and modular neural network
based surrogate models, Journal of Hydrology, 393 (3-4), 245-256

[11] Emily, Zechman, Baha, Mirghani, G, Mahinthakumar and S Ranji Ranjithan (2005) A
genetic programming based surrogate model development and its application to a
groundwater source identification problem, ASCE conf. Proc. 173, 341.

[12] Jyothiprakash, V. And Magar, R.B., (2012) Multi-step ahead daily and hourly
intermittent reservoir inflow prediction using artificial intelligence techiniques using
lumped and distributed data, Journal of Hydrology, 450, 293-307.

Chapter 11

© 2012 Arganis et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Comparison Between Equations Obtained by
Means of Multiple Linear Regression and
Genetic Programming to Approach Measured
Climatic Data in a River

M.L. Arganis, R. Val, R. Domínguez, K. Rodríguez, J. Dolz and J.M. Eaton

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50556

1. Introduction

The Ebro River is located in north-eastern Spain. After crossing the Catalan coastal
mountain system, the Ebro reaches the sea. Along the lower part of the river, about 100 km
from the mouth, there is a system of three reservoirs: Mequinenza (1500 hm3), Ribarroja (210
hm3) and Flix (11 hm3). These reservoirs regulate the hydrologic regime of the lower part of
the river until it reaches the sea. The Mequinenza and Ribarroja reservoirs were finished in
the late 1960s (in 1966 and 1969, respectively), while the Flix reservoir was completed in
1945. About 5 km downstream from the Flix reservoir is the Ascó nuclear power plant,
which began its activity in December 1984 [1].

Ascó Nuclear Power Station, located on the Ebro River in Spain (Figure 1), takes river water
for cooling purposes. The temperature of discharged water must be less than 13 ºC, however
five kilometers downstream a water temperature of nearly 14ºC was estimated and such an
anomaly was reported to the nuclear center. A detailed analysis shows the relationship
between water temperature variation and the presence of a cascade dam system upstream of
the Ascó Nuclear Power Station. Water temperature decreases downstream in the outlets of
cascade dam systems [1]. During the winter period there also exists thermal stratification
within the river, whereby water temperatures near deep intake areas are considerably less
than the ambient temperature. Such a situation impacts water taken for cooling purposes by
Ascó Nuclear Power Station.

Throughout the years, the human being has made use of fluvial ecosystems. Some actions
have caused changes in the thermal regimes of rivers (eg. [2 ,3]).

Genetic Programming – New Approaches and Successful Applications 240

Reservoirs and the use of water for cooling are the most important sources of water
temperature modifications caused by humans. The use of water for cooling, usually by
power plants, causes the water to become warmer [4]. This is often called “thermal
pollution”.

Reservoirs can cause various effects, depending on various factors such as the climate, the
size of the impoundment, the residence time, the stability of the thermal stratification and
the depth of the outlet [5]. Due to thermal stratification occurs, the water from deep-release
reservoirs is cooler in the summer and warmer in the winter than it would be without the
reservoir [6,7]. Water diversions can also alter water temperature regimes because they
reduce discharge, which causes water temperature range to increase throughout the year [8].
Irrigation is also known to decrease discharge and increase water temperature [9].

In order to preserve the ecological balance it is very important to have a continuous
inspection of water quality in that portion of the river. Freshwater organisms are mostly
ectotherms and are therefore largely influenced by water temperature. Some of the expected
consequences of a water temperature increase are life-cycle changes [4, 10], and shifts in the
distribution of species with the arrival of allochthonous species [11, 12] and the expansion of
epidemic diseases [13] as a possible result. Also, aquatic flora and fauna depend on
dissolved oxygen to survive and this water quality parameter is a function of water
temperature as well.

Water temperature variation analysis, in a river with a cascade dam, involves several
hydrological and environmental aspects because of the dams impact on aquatic flora and
fauna as shown by [14,15,16,1,17,18,19].

Because temperature is a water quality parameter that affects aquatic flora and fauna, it is
important to have mathematical models which allow one to make estimations of water
temperature behavior. These models are based on climatic data such as solar radiation, net
radiation, relative humidity, air temperature, and wind speed. Accurate water temperature
modeling may help diminish the environmental impact of increased water temperature on
aquatic flora and fauna within the river.

Genetic programming (GP) algorithms have been used to derive equations which estimate
the ten minute average water temperature from known variables such as relative humidity,
air temperature, wind speed, solar radiation, and net radiation [20]. Only air temperature
and relative humidity were associated with water temperature in some of the resulting
equations, even though solar radiation is known to increase water temperature in rivers and
ponds.

A correlation analysis could prove the implicit participation of solar radiation as a variable
in air temperature, even though an explicit solar radiation term does not appears in the
equation. Solar radiation was assumed to be independent with respect to water temperature
resulting from neglecting the lag time between a change in the solar radiation value and the
corresponding change in water temperature, [1] estimated this lag time to be nearly 160
minutes. By inputting data to both the genetic programming algorithm and multiple linear

Comparison Between Equations Obtained by Means of Multiple
Linear Regression and Genetic Programming to Approach Measured Climatic Data in a River 241

regression (MLR) in this study, it was possible to identify the relative significance of each
climatic variable in estimating water temperature.

Tests were made from data collected at the Ribarroja Station, which is located on the Ebro
River in Spain (Figure 1).

Figure 1. Location of reservoirs and climatic stations on the Ebro River in Spain (Val, 2003 and
google.com.mx)

2. Methods

2.1. Genetic programming

Evolutionary Computation (EC) are learning, search and optimization algorithms based on
the theories of natural evolution and genetic. The steps of the basic structure of this kind of
algorithms are shown in Figure. First, an initial population of potential solutions is
randomly created (in the case of a Simple Genetic Algorithm (SGA), the initial population is
composed of binary individuals). Then, the individuals of this population are evaluated
considering the problem to be solved (environment) where a fitness value is assigned to
each individual depending on how close individuals are to the optimum. A new generation
is created by selecting the fitter solutions of previous generation and then, genetic operators
such as crossover and mutation (Alter P(t) of Figure 2) are applied to selected individuals in
order to create a new population (offsprings) which improve their fitness values in
comparison to previous generation. This new population is evaluated and selection,
crossover and mutation are again applied. This process continues until a termination
criterion is reached (this is commonly established as the maximum number of generation).

Genetic Programming – New Approaches and Successful Applications 242

Genetic Programming (GP) is a class of Evolutionary Algorithm (EA) [21,22,23] where
individuals in the population are computer programs, usually expressed as syntax trees or
as corresponding expressions in prefix notation (see Figure 3).

Figure 2. Evolution-based algorithm.

Figure 3. Genetic programming representation: syntax tree, LISP or prefix notation, mathematical
function and MATLAB program

Comparison Between Equations Obtained by Means of Multiple
Linear Regression and Genetic Programming to Approach Measured Climatic Data in a River 243

As seen from Figure 3, individuals are created based on a function and terminal set
according to the problem to be solved. A root node is generally a function selected
randomly from the function set. Then, functions and terminals are chosen in order to form
the syntax tree that represents an individual. It is important to set a maximum depth or
maximum number of nodes, thus the size of the individuals can be control and avoid
bloating. Bloat is the rapid growth of programs produced by genetic programming or
variable coding heuristics.

The fitness value of the population is usually calculated by running each individual with the
problem input data, or testing data, and see how close the output of the program
(individual) is to some desired (reference) output specified by the user.

Each generation, fitter individuals are evolved by means of crossover and mutation.
Crossover is a sexual genetic operator that takes two parent-individuals, randomly selects a
node in each parent and exchanges the associated sub-branch starting from the selected
node between the parents producing two new individuals. Due to GP uses variables
individuals representation, the selected nodes for crossing over two individuals are different
in each parent. Note that if the parents to crossover are identical, the new two offsprings are
generally different to the parents because the node selected for crossing over is different in
each paren. In contrast to Genetic Algorithms, when two identical parents are crossing over,
the offsprings are similar to their parents because the crossing point is the same for both
parents and they have the same length.

Mutation is a asexual genetic operator that takes an individual, randomly selects a node and
replaces the associated branch for a new branch generated based on the primitive set
(functions and terminals sets).

The application of evolutionary computing algorithms has expanded in the last few years to
several engineering applications, particularly in regards to hydraulics and hydrological
engineering. Examples include: studies of hydroinformatics by [24,25]; studies in rainfall
runoff modeling by [26-31] . The unit hydrograph for a typical urban basin was obtained by
means of genetic programming in [32].

A study of Chezy’s roughness coefficient by [33], who also uses an evolutionary polynomial
regression in [34,35].

A deep percolation model using genetic programming was obtained by [36]. Models
related to sediments were obtained with genetic programming by [37].

Evapotranspiration phenomena has been predicted by means of genetic programming [38].
The flood routing problem was analyzed by means of genetic programming by [39] and the
soil moisture too [40].

In this work, a genetic programming algorithm operating in the MATLAB environment [41]
developed at the Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS),
Universidad Nacional Autónoma de México (UNAM) was applied and compared with a
traditional curve adjustment technique, in an attempt to get another useful application of these

Genetic Programming – New Approaches and Successful Applications 244

optimization procedures. Here, a stochastic universal selection method was used [42] (Baker,
1987); crossover operator was used with a probability of 90% (see Table 1). It is important to
mention that two different mutation operators were used. The first one with a probability of
5% randomly selects a branch and then it exchanges this selected branch by a new generated
one. The second mutation operator works by selecting constant values and with a probability
of 5%, these constants are mutated by adding a random value of a defined range.

This climatic data modeling problem is expressed as a symbolic regression, a common
application of genetic programming, where function set consists of arithmetic and
trigonometric functions and terminals set consists of climatological variables which are
described in next section.

2.2. Input data

Water temperature (Tw), solar radiation (rs), net radiation (rn), relative humidity (hr), air
temperature (Ta), and wind speed (Vv) data measured at the Ribarroja Station from January
to June of 1998 were utilized in this study. The ten minute water temperature average was
calculated using all of these variables. Later, the averaged air temperature and relative
humidity (in decimals) were filtered to take into account a seven day relay. Data filtering
was done with the following equation:

1t

t k

i
i t

f

V
Vi

k

−

==
+


 (1)

Where :

Vi is the original independent variable

tf
Vi is the filtered independent variable and

k is the size or widow filter (in this case k=6).

Recorded solar radiation at minute ti has its influence on water temperature at instant ti+160
[1] and such a gap needs to be taken into account for all considered data. For example, the
first data point of the dependent variable, ten minute average water temperature at instant
ti+160, was coupled with the first data point of the independent variable, such as solar
radiation at instant ti. For the independent variables, net radiation (rn) and wind speed (vw)
values of ti+160 were used, while air temperature and relative humidity values were
considered using both seven day filtering and values corresponding to instant ti+160 .

2.3. Objective function

The objective function was to minimize the mean square error between the calculated and
measured data using the following equation:

 21 ˆmin ()nZ Tw Tw
n

= − (2)

Comparison Between Equations Obtained by Means of Multiple
Linear Regression and Genetic Programming to Approach Measured Climatic Data in a River 245

Where:

Z is the function to minimize
Tw is the average of measured temperature each ten minute interval in ºC
T̂w is the calculated temperature with the genetic programming algorithm in ºC, and n is
the data number.

2.4. Parameter setting

Parameters used in the genetic programming algorithm are shown in Table 1.
MaxNumNodes corresponds to the maximum number of nodes an individual can have;
meanwhile MaxNodesMut represents the maximum number of nodes a new created branch
can have for mutation. Terminal set represents the independent variables and Tw
corresponds to the dependent variable to be modeled.

Parameter Value Description

Pcross 0.9 Probability of crossover

Pmut 0.05 Probability of mutation

Pmut_R 0.05 Probability of mutating a node containing a constant

MaxNodesMut 8 Maximum number of nodes for mutation

Nind 200 Number of individuals in the population

MaxNumNodes 30 Maximum number of nodes for each individual

MaxGen 5000 Maximum number of generations (iterations)

Function_Set +,-,*, /,cos Function set

Terminal Set rs, rn, hr, Ta, Vv Climatological variables

Table 1. Parameter settings

The function cosine (cos) was included in the function set due to preliminary tests, where a
reduction in mean quadratic error was obtained, included this cosine function. This fact is
related to one of the two properties that GP individuals must satisfy: sufficiency. This
property says that the set of terminals and the set of functions should be defined in order to
express a solution to the study problem [23]. The second property, closure, specifies that each
of the functions in the function set can be able to accept, as its argument, any value and data
type that may possibly be returned by any function and any value or data type that can be
possibly assumed by any terminal [23]. In this approach, a protected division was
implemented in order to avoid a division by zero. In this situation occurs, a high value is
returned.

By including the cosine function, associated equation also presented a good reproduction of
the periodic behavior of water temperature over time.

Genetic Programming – New Approaches and Successful Applications 246

2.5. Multiple linear regressions

Multiple linear regressions (MLR) relate a dependent variable, y, with two or more
independents variables, x1, x2, x3,…, xn, by means of an equation expressed as:

 1 1 2 2 3 3 n ny a x a x a x a x= + + + + (3)

Coefficients a1,a2,a3,…an, are weighting factors which allow one to see the relative importance
of each variable xi as y is approached. Indirectly the coefficients can indicate if there is a
strong correlation or lack of correlation between xi and y.

This method is often applied for several hydrology problems such as: forecasting equations
for standardized runoff in a region of a country with standardized teleconnection indices,
when El Niño or La Niña phenomenon occur [43] (González et al., 2000), or as an auxiliary
method in estimating intensity-duration-frequency curves. In this research, regressions were
made using the Microsoft Excel data analysis tool.

3. Results and discussion

Measured climatic data of the above variables, corresponding from January to June of 1998,
were fed into both the symbolic regression genetic programming model and the multiple
linear regression model in order to estimate water temperature. The models were then
applied using data from January to June of 1999 in order to approach water temperature
averages. Comparisons for the1998 and 1999 results were then made.

The genetic programming algorithm (equation 4) determined the next mathematical model
which approaches the water temperature (average of each ten minutes).

(cos(cos((cos) * 0.6904149))

cos(cos(1.17748531* cosh)) 1.87808843) * 0.67508628
w a a a

a r

T T T T
T

= + + +
+ + +

 (4)

Using equation (4), the individual with the best performance reported an objective function
value of 0.7922.

Meanwhile, the multiple linear regression model is expressed as follows:

 w s n a v rT 0.00022505r 0.00036289r 0.66464617T 0.02807297V 1.24438982h 3.87792166= + + − − + (5)

Where:

Tw corresponds to the average water temperature each ten minute interval at instant t+160 in
ºC
Ta is the average air temperature each ten minute interval, with seven days filtering,
corresponding to instant t+160, in ºC
hr represents the average relative humidity each ten minutes interval, with seven days
filtering, corresponding to instant t+160 in decimals

Comparison Between Equations Obtained by Means of Multiple
Linear Regression and Genetic Programming to Approach Measured Climatic Data in a River 247

rs is the average solar radiation each ten minutes interval, at instant t, in W/m2

 rn corresponds to the average net radiation each ten minutes interval, corresponding to
instant t+160, in W/m2

and finally,

vv represents the average wind speed each ten minutes interval, corresponding to instant
t+160, in m/s.

The objective function value using equation 5 was 0.8724.

Figure 4 represents both measured and calculated water temperature variation versus time
using both equations (4) and (5). Measured and calculated water temperature values also
appear in Figure 5 with equations (4) and (5) in comparison with the identity function.

Figure 4 indicate similar results for both genetic programming and multiple linear
regression models in comparison with measured data.

In Figures 5 the measured data were compared against the identity function and the best
correlation between these values was found using genetic programming (r=0.9697).

Figure 4. Time variation of measured and calculated water temperature data, Ribarroja Station. January
to June, 1998

0

5

10

15

20

25

0 50000 100000 150000 200000 250000 300000

t (min)

Tw
 ºC

Measured Calculated GP Calculated MLR

Comparison Between Equations Obtained by Means of Multiple
Linear Regression and Genetic Programming to Approach Measured Climatic Data in a River 249

wT mean of Tw, with the same units than Tw (the arithmetic average can be used) and

wTσ standard deviation of Tw, with the same units than Tw

Another possibility to analyze is the splitting of the considered function by taking into
account the different times of year that causes a variation in water temperature behavior.

Figure 6. Residuals and measured water temperature data for the year 1999 at the Ribarroja Station in
Spain

4. Conclusions

Water temperature adjustment curves, in a gauged station on the Ebro River in Spain, were
obtained by means of two procedures: a genetic programming algorithm (equation 4) and a
multiple linear regression (equation 5), using data from 1998. The multiple linear regression
method yielded a function containing the five considered variables (solar radiation, net
radiation, wind speed, air temperature and relative humidity) with each variable weighted.
The genetic programming algorithm yielded a function where water temperature was
obtained only as a function of air temperature and relative humidity. The others variables
were eliminated by the evolution algorithm due to the lack of correlation between water
temperature and the remaining variables although solar radiation is implied inside the air
temperature term.

0.00

5.00

10.00

15.00

20.00

25.00

0 50000 100000 150000 200000 250000 300000

t (min)

Tw
 (º

C
)

-3

-2

-1

0

1

2

3

4

5

6

R
es

id
ua

ls

Measured Residuals MLR eq(5) Residuals GP eq(4)

Residuals
 eq(4) mean =1.04, standard deviation=1.08
 eq(5) mean = 0.43, standard deviation=1.09

Genetic Programming – New Approaches and Successful Applications 250

Comparing measured data with calculated data, for the year 1998, led to only minor errors
in estimating the average water temperature using the genetic programming algorithm.
When equations (4) and (5) were applied to another year, 1999, minor mean quadratic error
in estimating water temperature was obtained using the multiple linear regression equation
(5). The mean quadratic error associated with the multiple linear regression equation (5) for
1999 was 1.375 ºC; whereas with the genetic programming equation (4) was 2.248 ºC. This
error can be considered acceptable if one takes in account the average temperature from
January to June 1998 was 12.54 ºC, whereas the average temperature in 1999 for the same
period was 11.62 ºC. The residuals obtained with equations (4) and (5) using data for the
year 1999 had average values of 1.04 ºC and 0.43 ºC, respectively and with this criteria,
multiple linear regression model can be considered better than the GP. However, reviewing
the standard deviations, both models had almost the same value (1.09 ºC and 1.08 ºC,
respectively).

The described procedures are then useful because equations similar to (4) or (5) can estimate
important water quality characteristics, such as water temperature, using previously
measured climatic data, predicted climatic data, and hydrological parameters for a given
time period.

Engineer’s criteria and common sense must be considered before to apply any model to
simulate physical variables.

Some standardization procedures to the involved data are suggested in order to improve the
results from new models that can be obtained.

The methods here applied are undoubtedly useful in several areas of knowledge, and can
led us to new approaches to physical phenomena by considering measured field data.

Future work is focuses on the use of NARMAX (Non-linear Autorregressive Moving
Average with eXogenous inputs) model combined with genetic programming in order to
model the water temperature providing more accurate equations.

Author details

M.L. Arganis and R. Domínguez
PUMAGUA, Universidad Nacional Autónoma de México, México

R. Val and K. Rodríguez
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Coyoacán, D.F. México

Josep Dolz
Universidad Politécnica de Cataluña, Barcelona, España

J.M. Eaton
Centre for Hydrology, Micrometeorology and Climate Change, Department of Civil and
Environmental Engineering, University College Cork, Cork, Republic of Ireland

Comparison Between Equations Obtained by Means of Multiple
Linear Regression and Genetic Programming to Approach Measured Climatic Data in a River 251

Acknowledgements

Authors gratefully acknowledge the financial support under the project PAPIIT no.
IN109011.

5. References

[1] [1] 23. Val S R (2003) Incidencia de los embalses en el comportamiento térmico del río.
Caso del sistema de embalses Mequinenza-Ribarroja-Flix en el Río Ebro. Tesis Doctoral.
Universidad Politécnica de Catalunya. Barcelona, España.

[2] Alberto F, Arrúe JL (1986) Anomalías térmicas en algunos tramos de la red hidrográfica
del Ebro. Anales de la Estación Experimental Aula Dei 18: 91-113.

[3] Preece RM, Jones HA (2002) The effect of Keepit Dam on the temperature regime of
the Namoi River, Australia. River Research and Applications 18: 397-414. DOI:
10.1002/rra.686

[4] Hellawell JM (1986) Biological indicators of freshwater pollution and environment
management. Elsevier, London. 546 pp.

[5] Lessard JL, Hayes DB (2003) Effects of elevated water temperature on fish and
macroinvertebrate communities below small dams. River Research and Applications 19:
721-732. DOI: 10.1002/rra.713

[6] Ward JV (1985) Thermal characteristics of running waters. Hydrobiologia 125: 31-
46.

[7] Webb BW, Walling DE (1993) Temporal variability in the impact of river regulation
on thermal regime and some biological implications. Freshwater Biology 29: 167-
182.

[8] Meier W, Bonjour C, Wüest A, Reichert P (2003) Modeling the effect of water diversion
on the temperature of mountain streams. Journal of Environmental Engineering 129:
755-764. DOI: 10.1061/(ASCE)0733-9372(2003)129:8(755)

[9] Verma RD (1986) Environmental impacts of irrigation projects. Journal of Irrigation and
Drainage Engineering 112: 322-330.

[10] Winfield, IJ, Nelson JS (1991) Cyprinid fishes. Systematics, biology and exploitation.
Chapman & Hall, London. 667 pp.

[11] Schindler, DW (1997) Widespread effects of climatic warming on freshwater ecosystems
in North America. Hydrological Processes, 11: 1043-1067.

[12] [12] Walther, Gr, Post E, Convey P, Menzel A., Parmesan C, Beebee TJC, Fromentin JM,
Hoegh-Guldberg O,. Bairlein F (2002) Ecological responses to recent climate change.
Nature, 416: 389-395.

[13] Harvell, CD, C. E Mitchell, J. R Ward, S. Altizer, A. P Dobson, R. S. Ostfeld & M. D.
Samuel. 2002. Climate warming and disease risks for terrestrial and marine biota.
Science, 296: 2158-2162.

Genetic Programming – New Approaches and Successful Applications 252

[14] Smalley DH, Novak JK (1978). Natural thermal phenomena associated with reservoirs.
In Environmental Effect of Large Dams. ASCE.

[15] [15]. Cassidy RA (1989). Water temperature, dissolved oxygen and turbidity control in
reservoir releases. In: Alternatives in Regulated River Management.

[16] Mohseni O, Stefan HG (1999). Stream temperature/air temperature relationship: A
physical interpretation. Journal of Hydrology 218: 128–141.

[17] Caissie D, El-Jabi N, Satish MG (2001). Modeling of maximum daily water temperature
in a small stream using air temperature. Journal of Hydrology 251: 14-28.

[18] Batalla RJ, Gómez CM, Kondolf GM (2004). Reservoir-induced hydrological changes in
the Ebro River basin (NE Spain). Journal of Hydrology 290: 117–136.

[19] Morrill JC, Bales RC, Conklin MH (2005). Estimating stream temperature from air
temperature: Implications for future water quality. Journal of Environmental
Engineering.131: 139-146.

[20] 1. Arganis ML, Val SR, Rodríguez VK, Domínguez MR, Dolz R.J (2005). Comparación
de curvas de ajuste a la Temperatura del Agua de un río usando programación
genética. Congreso Mexicano de Computación Evolutiva COMCEV.

[21] Cramer NL (1985). A representation for the adaptive generation of simple sequential
programs. In Proceedings of International Conference on Genetic Algorithms and the
Applications: 183-187.

[22] Koza JR (1989). Hierarchical genetic algorithms operating on populations of computer
programs. In Proceeding of the 11th International Joint Conference on Artificial
Intelligence. 1: 768-774.

[23] Koza JR (1992) Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press.

[24] Babovic V, Keijzer M (2000). Genetic programming as a model induction engine.
Journal of Hydroinformatics 2: 35-60.

[25] [25] Babovic V, Keijzer M, Rodríguez AD, Harrington J (2001). An evolutionary
approach to knowledge induction: Genetic programming in Hydraulic Engineering.
Proceedings of the World Water & Environmental Resources Congress, May 21-24.

[26] Savic DA, Walters GA, Davidson JW (1999). A Genetic Programming Approach to
Rainfall-Runoff Modeling. Water Resources Management 13: 219–231.

[27] Drécourt JP, Madsen H (2001). Role of domain knowledge in data-driven modeling.
4th DHI Software Conference & DHI Software Courses Helsingør, Denmark, June 6-
13.

[28] [28]Whigham PA, Crapper PF (2001). Modeling Rainfall-Runoff using Genetic
Prograaming. Mathematical and Computer Modeling. 33: 707-721.

[29] Khu ST, Keedwell EC, Pollard O (2004). An evolutionary-based real-time updating
technique for an operational rainfall-runoff forecasting model, In: Complexity and
Integrated Resources Management, Trans. In Proceedings of the 2nd Biennial
Meeting of the International Environmental Modelling and Software Society. 1:
141–146.

Comparison Between Equations Obtained by Means of Multiple
Linear Regression and Genetic Programming to Approach Measured Climatic Data in a River 253

[30] Khu ST, Liong SY, Babovic V, Madsen H, Muttil N (2001). Genetic programming and its
application in real time runoff forecasting.Journal of the American Water Resources
Association. 37: 439-451.

[31] Dorado J, Rabuñal JR, Puertas J, Santos A, Rivero D (2002). Prediction and modeling of
the flow of a typical urban basin through genetic programming. Applications of
Evolutionary Computing. 190-201

[32] Rabuñal JR, Puertas J, Suárez J, Rivero D (2007). Determination of the unit hydrograph
of a typical urban basin using genetic programming and artificial neural networks.
Hydrological processes. 21: 476–485.

[33] Giustolisi O (2004). Using genetic programming to determine Chezy resistance
coefficient in corrugated channels. Journal of Hydroinformatics. 6: 157-173.

[34] Giustolisi O, Doglioni A, Savic DA, Webb B (2004). A Multimodel Approach to Analysis
of Environmental Phenomena. Web site: http://www.iemss.org/iemss2004/pdf
/evocomp/giusamul.pdf

[35] Giustolisi O, Doglioni A, Savic DA, Webb B (2007). A multimodel approach to
analysis of environmental phenomena, Environmental Modelling and Software. 22:
674-682.

[36] Selle B, Muttil N (2011). Testing the structure of a hydrological model using Genetic
Programming. Journal of Hydrology. 397: 1–9.

[37] Aytek A, Kisi O (2008). A genetic programming approach to suspended sediment
modelling. Journal of Hydrology. 351: 288– 298.

[38] Izadifar Z, Elshorbagy A (2010). Prediction of hourly actual evapotranspiration using
neural networks, genetic programming, and statistical models. Hydrological processes.
24: 3413–3425.

[39] Sivapragasam C, Maheswaran R, Venkatesh V (2008). Genetic programming approach
for flood routing in natural channels. Hydrological processes. 22: 623–628.

[40] Makkeasorn A, Chang N-B, Beaman M, Wyatt C, Slater C. (2006). Soil moisture
estimation in a semiarid watershed using RADARSAT-1 satellite imagery and genetic
programming. Water Resources Research. 42.

[41] The MathWorks (1992). MATLAB Reference Guide.
[42] Baker, J (1987). Reducing Bias And Inefficiency In The Selection Algorithm, Proc. Of

The Second International Conference On Genetic Algorithms ICGA. Grefenstette,
Ed.: 14-21.

[43] González VRF, Franco V, Fuentes MGE, Arganis JML (2000). Análisis comparativo entre
los escurrimientos pronosticados y registrados en 1999 en las Regiones Pacífico
Noroeste, Norte, Centro, Pacífico Sur y Golfo de la República Mexicana considerando
que estuvo presente el fenómeno “La Niña” y Predicción de escurrimientos en dichas
regiones del país en los periodos primavera-verano y otoño-invierno de 2000. Para
FIRCO. Informe Final.

Genetic Programming – New Approaches and Successful Applications 254

[44] Arganis JML, Val SR, Prats RJ, ,Rodríguez VK, Domínguez MR, Dolz RJ (2009).
"Genetic programming and standardization in water temperature modelling,”
Advances in Civil Engineering. Hindawi Publishing Corporation. 2009: 10.

Chapter 12

© 2012 Khatibi et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Inter-Comparison of an Evolutionary
Programming Model of Suspended Sediment
Time-Series with Other Local Models

M. A. Ghorbani, R. Khatibi, H. Asadi and P. Yousefi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/47801

1. Introduction

The experience of applying evolutionary computing to time series describing local physical
problems has benefited the modelling culture by showing that many different mathematical
formulae can be produced to describe the same problem. This experience brings into the
focus the roles of pluralism in the modelling culture as opposed to searching for the best
model, where physical problems provide relevance and context to the choice of modelling
techniques. Both of these roles are often overlooked and do not directly influence research
agenda. Although the focus of this paper is on evolutionary computing, it also promotes a
pluralistic modelling culture by studying other modelling techniques, as well as by keeping
the role of physical problems in the foreground.

Estimating suspended sediment loads is a problem of practical importance and includes
such problems as changing courses in rivers, loss of fertile soil, filling reservoirs and impacts
on water quality. The study of these problems in the short-run are referred to as sediment
transport and erosion for those in the long-run. Past empirical capabilities remain invaluable
but are not sufficient on their own as management and engineering solutions often require
an insight into the problem. Empirical knowledge has been incorporated into the body of
distributed modelling techniques giving rise to sophisticated modelling software tools but
their applications require a great deal of resources. There remains a category of problems,
often referred to as time series analysis, which uses the sequences of time variations and
predicts the future values. This category of models provides useful information to
management of local problems. For instance, such models may be used to schedule
dredging requirements or other maintenance activities. Time series analysis is developing
into local management tools and it is a focus of this chapter.

Genetic Programming – New Approaches and Successful Applications 256

The aim of this chapter is to predict suspended sediment load of a river into the future.
Besides the traditional empirical Sediment Rating Curve (SRC), there are several strategies
for analysing such time series and evolutionary computing is one of Artificial Intelligence (AI)
approaches, which broadly include capabilities for searching and recognising patterns
among others. This chapter also employs Artificial Neural Network (ANN), which is
another AI approach. Yet another strategy is to regard time series as outcomes of many
random drivers and this assumption is supported by a whole body of probabilistic
approaches, where this chapter uses Multi-Linear Regression (MLR) analysis to model the
same data. Over the past few decades, research has increasingly focused on the application
of deterministic chaos (or chaos theory or dynamic systems) showing that many of
apparently randomly varying system behaviours can be explained by deterministic chaos.
The concept behind this modelling strategy is that the particular data can largely be
explained by deterministic behaviour, where in time the system evolves asymptotically
towards an attractor. Its random-looking variations are assumed to be an internal feature of
the system and depending on its initial conditions, its state under a certain range may
become highly erratic but with a predictable behaviour. Evidently, none of these strategies
are identical and different models rarely produce identical results. This chapter therefore
compares the performance of these modelling strategies for solving an engineering problem.

The study employs 26 years of the Mississippi River data recorded at Tarbert + RR Landings
and involve both flows and suspended sediment load. The river discharges about 200
million metric tons of suspended sediment per year to the Gulf of Mexico, where it ranks
about sixth in the world today.

2. Literature review

Sediment Rating Curve (SRC) is an empirical approach used by practitioners in the
engineering studies of sediment and erosion problems. The log linear rating curve method
has been used widely and Sivakumar and Wallender (2005) outline the many flaws
associated with this technique, including the lack of fit due to missing variables (e.g. Miller,
1951), retransformation bias (e.g. Ferguson, 1986), and non-normality of the error
distribution (e.g. Thomas, 1988). According to Sivakumar and Wallender (2005), the
technique has been modified including, among others, use of separate curves for different
seasons (Miller, 1951), stratifying the data according to the magnitude of flow and applying
a separate curve for each stratum (Glysson, 1987), and use of a single multivariate model
instead of multiple rating curves (Cohn et al., 1992). Sivakumar and Wallender (2005) argue
that there is not a simple (and universal) ‘water discharge-suspended sediment
concentration-suspended sediment load’ relationship. A brief overview of past studies is as
follows.

Kisi, et al (2008) review the application of ANN and neuro-fuzzy techniques to time series
analysis of sediment loads at various timescales, uncertainty in the data. Variations of these
techniques have also been reported by Jain (2001), Tayfur (2002), Cigizoglu (2004), Kisi
(2004), Raghuwanshi et al. (2006), Cigizoglu & Kisi (2006). Other studies on the application

Inter-Comparison of an Evolutionary Programming
Model of Suspended Sediment Time-Series with Other Local Models 257

of ANN to suspended sediment include that by Wang et al (2008), who applied ANN to
derive the coefficients of regression analysis for their SRC model.

Aytek and Kishi (2008) used the GP approach to model suspended sediment for two stations
on the Tongue River in Montana, USA, and indicate that the GP formulation performs quite
well compared to sediment rating curves and multi linear regression models.

Chaotic signals have also been identified in time series of suspended sediment loads by
Sivakumar and Jayawardena (2002, 2003), Farmer and Sidorowich, 1987). The outcomes
revealed the usefulness of these methods towards an effective prediction capability.

Overall, a general understanding of the analysis of suspended sediment load is yet to
emerge and one way to gain an insight into the problem is to carry out inter-comparison
studies of the performance of a host of models applied to diversity of rivers of different
shapes and sizes.

3. Study area and data

3.1. Understanding the problem

Sediment transport is concerned with entrained soil materials carried in water by erosion on
the catchment and within channels. Sediment particles are categorised as follows (i) the
saltation load (not discussed here); (ii) bedload (not discussed here) and (iii) suspended load
including clay (< 62μm in particle diameter), silt and sand. Suspended load (both as “fine-
grained sediment” and “wash load”) is directly a result of the turbulence in water and forms
a large proportion of the transported load, where the turbulence is a measure of the energy
in the water to carry the load.

Sediment discharge is a measure of the mass rate of sediment transport at any point in space
and time and determines whether the load is being transported or deposited. The whole
process comprises soil erosion, sediment transport and sediment yield, where the deposited
load delivered to a point in the catchment is referred to as sediment yield and is expressed
as tons per unit area of the basin per year, measured at a point. Estimation of sediment yield
(and soil erosion) is essential for management but these and mathematical models are used
to gain an insight into the underlying processes. Sediment yield is estimated by (i) direct
measurement, (ii) using local time series models to predict future states; (iii) using
mathematical models to study jointly both erosion and sediment processes.

Suspended sediment forms most of the transported load and can be affected by many
parameters including rainfall, land use pattern, slope, soil characteristics, e.g. soil moisture
content but their considerations lead to distributed models, which are complex. Recorded
suspended sediment derives distributed models by serving them as boundary conditions or
input sources but their inherent information is not tapped on. There is a case for local
models to study the information contained in recorded sediment loads alone in terms of
flow and sediment hydrographs. This chapter is concerned with the study of the suspended
load of a river, as discussed below.

Genetic Programming – New Approaches and Successful Applications 258

Figure 1. Mississippi River Station at Tarbert + RR Landings
(http://pubs.usgs.gov/circ/circ1133/geosetting.html).

3.2. Study area

The flow–sediment time series data of a Mississippi river Station is used in the study, the
location of which is shown in Figure 1. The gauge is situated at Tarbert + RR Landings, LA
(USGS Station no. 07373291, latitude 30°57′40″, longitude 91°39′52″) and it is operated by the
US Geological Survey (USGS) – the location map is shown in Figure 1. The Mississippi River
discharges an average of about 200 million metric tons of suspended sediment per year to
the Gulf of Mexico and to the ocean.

3.3. Review of data records

Daily suspended sediment measurements for the above station have been made available by
the USGS from April 1949. The data used herein span over a period of about 26 years
(amounting to 9496 datapoints) starting on October 1, 1949. Figures 2 show the variation of
the daily suspended sediment and stream flow series observed at the above station.

Of the 26 water-years of the data sample of daily records of flow and suspended sediment
(9496 datapoints), the first 25 water years of data (9131 datapoints) were used to train the
models and the remaining 365 datapoints of daily records were used for testing. The
statistical parameters of stream flow and sediment concentration data are shown in Table 1.
These results show that the overall contribution of the datapoints in the test period is
average; its individual characteristics in terms of kurtosis show the annual hydrographs to
be less peaked and more flat but at the same time, the suspended sediment load during the
year is significantly high. Thus, the minimum values during this year were significantly
above the average but persistent and though less dynamic.

Inter-Comparison of an Evolutionary Programming
Model of Suspended Sediment Time-Series with Other Local Models 259

Figure 2. Variation of Daily Suspended Sediment and Flow Data in the Mississippi River Basin

Genetic Programming – New Approaches and Successful Applications 260

 Training set Testing set All Dataset

Data Type
Suspended
Sediment
(ton/day)

Discharge
(m3/sec)

Suspended
Sediment
(ton/day)

Discharge
(m3/sec)

Suspended
Sediment
(ton/day)

Discharge
(m3/sec)

Datapoints 9131 9131 365 365 9496 9496
Mean 6.37E5 1.27E4 4.52E5 1.58E4 6.30E5 1.28E4
St dev 6.30E5 7.60E3 2.53E5 7.80E3 6.21E5 7.60E3
Max 4.97E6 4.25E4 1.22E6 3.45E4 4.97E6 4.25E4
Min. 4.00E3 2.80E3 6.70E4 5.40E3 4.00E3 2.80E3
CV 1.0 0.60 0.56 0.49 0.99 0.59

Skew 1.78 0.95 0.10 0.51 1.82 0.93
Kurt 3.98 0.34 -0.98 -0.85 4.20 0.27

*Data = Number of Data; Std = Standard Deviation; Max = Maximum Value; Min = Minimum Value; CV = Coefficient
of Variation; Skew = Skewness; Kurt = Kurtosis

Table 1. Statistical Parameters for Dataset from the Mississippi River Basin

3.4. Overview of the models

The sediment rating curve method is the traditional method for converting measured flows
to predict suspended sediment load and this paper aims to test the performance of
evolutionary computing models but uses a host of other techniques for the inter-comparison
purpose. These models are outlined in this section but evolutionary computing is explained
in more detail. Their underlying notion is that past values contain a sufficient amount of
information to predict the future values and a systematic way of representing this notion is
purported in Table 2 in terms of a selection of models. These models, in essence, are
reminiscent of regression analysis but GEP, ANN and MLR models approach the problem in
their own individual ways to unearth the structure of the information inherent in time
series. Notably, the SRC model is expressed by Model 1 and the deterministic chaos model
is expressed by Model 0. These models will all be evaluated by using coefficient of
Correlation (CC), Relative Absolute Errors (RAE) and Root Mean Square Errors (RMSE).

Model Input variables Output variables The Structure
Model 0 St-1, St-2… St Chaos
Model 1 Qt St ANN, SRC
Model 2 Qt , St-1 St GEP, ANN, MLR
Model 3 Qt ,Qt-1 St GEP, ANN, MLR
Model 4 Qt , Qt-1 , St-1 St GEP, ANN, MLR
Model 5 Qt,Qt-1,Qt-2 St GEP, ANN, MLR
Model 6 Qt,Qt-1,Qt-2,St-1 St GEP, ANN, MLR

Where Qt and St represent respectively flow and suspended sediment load at day t.

Table 2. Modelling Structures of the Selected Modelling Techniques

Inter-Comparison of an Evolutionary Programming
Model of Suspended Sediment Time-Series with Other Local Models 261

3.4.1. Sediment rating curve

Sediment rating-curve is a flux-averaged relationship between suspended sediment, S, and
water discharge, Q, expressed as a power law in the form of: = bS aQ , where a and b are
coefficients. Values of a and b for a particular stream are determined from data via a linear
regression between (log S) and (log Q). The SRC model is represented in terms of Model 1 in
Table 2. For more critical views on this model, references may be made Kisi (2005) and
Walling (1977), among others.

3.4.2. Evolutionary computing

Evolutionary computing techniques apply optimisation algorithms as a tool to facilitate the
mimicking of natural selection. A building block approach to generalised evolution driven
by natural selection is yet to be presented, although Khatibi (2011) has outlined a rationale
for it. Traditional understanding of natural selection for biological species is well developed,
according to which the process takes place at the gene level of all individuals of all species
carrying hereditary material for reproduction by inheriting from their parents and by
passing on a range of their characteristics to their offspring. The process of reproduction is
never a perfect copying process, as mutation may occur from time to time in biological
reproductions involving the random process of reshuffling the genes during sexual
reproduction. The paper assumes preliminary knowledge on genes, chromosomes, gene
pool, DNA and RNA, where the environment also has a role to play. The environment for
the production of proteins and sexual reproduction is different than the outer environment
for the performance of the individual entities supported by the proteins or produced by
sexual reproduction. The outer environment is characterised by (i) being limited in
resources, (ii) having no foresight, (iii) organisms tend to produce more offspring than can
be supported, a process that is driven by positive feedback loops, and (iv) there is a process
of competition and selection. Some of these details are normally overlooked or simplified in
evolutionary computing and therefore the paper stresses the point that natural selection
takes place at the gene level and this is not directly applicable to that at the social level.

Facts on natural selection are overwhelming but there are myths as well, e.g. the myth of
“the survival of the fittest” and this term is widely used in evolutionary computing.
Although the fittest has a selective advantage to survive, this is not a guarantee for the
survival in the natural world. An overview of the dynamics of natural selection in an
environment is that (i) the environment can only support a maximum population of certain
size, but there is also a lower size at the critical mass below which a population is at risk of
losing its viability; (ii) there is a process of reproduction, during which natural selection
operates at the gene level, although there are further processes operating at the individual
levels beyond the direct reach of natural selection (e.g. interactions among the individuals
catered for by other mechanisms or each individual is under selection pressure by the
environment); (iii) the process of reproduction is associated with mutation, which gives rise
to the production of gene pools.

Genetic Programming – New Approaches and Successful Applications 262

A great deal of the above overview has been adopted in evolutionary computing, the history
of which goes back to the 1960s when Rechenberg (1973) introduced evolution strategies.
The variants of this approach include genetic algorithm (Holland, 1975), evolutionary
programming (Fogel et al, 1966), genetic programming (Koza, 1992) and Gene Expression
Programming (GEP), Ferreira (2001a). This paper uses the latter approach, which in a simple
term is a variation of GP but each of these techniques have differences with one another.
These techniques have the capability for deriving a set of mathematical expressions to
describe the relationship between the independent and dependent variables using such
functions as mutation, recombination (or crossover) and evolution.

This chapter is concerned with GEP and one of the important preliminary decisions in its
implementations is to establish the models represented in Table 2 (Models 2-6). There is no
prior knowledge of the appropriateness of any of these models and therefore this is normally
fixed in a preliminary modelling task through a trial-and-error procedure. Whichever the
model choice (Model 2 – Model 6 or similar other ones), each implementation of GEP builds
up the model in terms of the values of the coefficients (referred to as terminals) and the
operations (functions) through the procedure broadly outlined in Figure 3.

Figure 3. Simplified Outline of Implementation of Evolutionary Programming Models

The working of a gene expression program depicted in Figure 3 is outlined as follows. A
chromosome in GEP is composed of genes and each gene is composed of (i) terminals and
(ii) functions. The gene structures and chromosomes in GEP are illustrated for the solution
that is obtained for the dataset used in this study (see Section 4.2). The terminals as their
names suggest are composed of constants and variables and the functions comprise
mathematical operations, as shown by (4.a)-(4.f).

Inter-Comparison of an Evolutionary Programming
Model of Suspended Sediment Time-Series with Other Local Models 263

Figure 4. Expression Trees – (a) typical expression tree; (b) the selected GEP model in this study

As the term terminal suggests, it comprises a set of values at the tail-ends of the genes of the
chromosomes and these are made meaningful by the functions making up the other
component of the genes of the chromosomes. In GEP, these are represented by a bilingual
notation called Karva language of (i) genetic codes, which are not deemed necessary for a
description here and (ii) expression trees (or parse trees), as illustrated by Figure 4.a and the
recommended solution is shown in Figure 4.b, which is transcribed by Equation (4) in
Section 4.2. The initial chromosomes of the initial population are no different than the
solution shown in Figure 4.b but their difference is that the composition of each of the initial
chromosomes is selected often in random and then GEP is expected to improve them
through evolution by the strategy of selections, replication and mutation but there are other
facilities that not mentioned facilitating a more robust solution and these include inversion,
transposition and recombination. The improvements are carried out through selection from
one generation to another and this is why this modelling strategy is called evolutionary
computation. The main strength of this approach is that it does not set up any system of
equation to predict the future but it evaluates the fitness of each chromosome and selects
from those a new population with better performance traits.

The GEP employed in this study is based on evolving computer programs of different sizes
and shapes encoded in linear chromosomes of fixed lengths, Ferreira, 2001a; Ferreira,
(2001b). The chromosomes are composed of multiple genes, each gene encoding a smaller
subprogram. Furthermore, the structural and functional organisation of the linear

Genetic Programming – New Approaches and Successful Applications 264

chromosomes allows the unconstrained operation of important genetic functions, such as
mutation, transposition and recombination. It has been reported that GEP is 100-10,000
times more efficient than GP systems (Ferreira, 2001a; Ferreira, 2001b) for a number of
reasons, including: (i) the chromosomes are simple entities: linear, compact, relatively small,
easy to manipulate genetically (replicate, mutate, recombine, etc); (ii) the parse trees or
expression trees are exclusively the expression of their respective chromosomes; they are
entities upon which selection acts, and according to fitness, they are selected to reproduce
with modification.

3.4.3. Artificial Neural Networks (ANNs)

Whilst evolutionary programming emulates the working of Nature, ANNs emulate the
workings of neurons in the brain. Both the brain and ANNs are parallel information
processing systems consisting of a set of neurons or nodes arranged in layers but this is
where the parallel ends. The actual process of information processing in the brain is a topical
research issue but the drivers of ANNs are polynomial algebra and there is no evidence that
the brains of humans, monkeys or any other animals employ algebraic computations such as
optimisation methods. Although there is a great incentive to understand the working of the
brain, it is not imperative to be constrained by it and the use of algebra in ANNs is not
criticised here but awareness is raised as these two processes are not identical.

The ANN theory has been described in many books, including the text by Rumelhart et al.
(1986). The application of ANNs has been the subject of a large number of papers that have
appeared in the recent literature. There are various implementations of ANNs but the type
used in this study is a Multi-Layer feedforward Perceptron (MLP) trained with the use of
back propagation learning algorithm with the following functions: (i) the input layer accepts
the data, (ii) intermediate layer processes them, and (iii) the output layer displays the
resultant outputs. The number of hidden layers is decided in a preliminary modelling
process by finding the most efficient number of layers through a trial-and-error procedure.
Each neuron in a layer is connected to all the neurons of the next layer, and the neurons in
one layer are not connected among themselves. All the nodes within a layer act
synchronously.

This study implements the ANN models in terms of Models 1-6 of Table 2 and Figure 5
shows one of the implementation selected. For each of these models, the data passing
through the connections from one neuron to another are multiplied by weights that control
the strength of a passing signal. When these weights are modified, the data transferred
through the network changes; consequently, the network output also changes. The signal
emanating from the output node(s) is the network's solution to the input problem.

In the back-propagation algorithm, a set of inputs and outputs is selected from the training
set and the network calculates the output based on the inputs. This output is subtracted
from the actual output to find the output-layer error. The error is back propagated through
the network, and the weights are suitably adjusted. This process continues for the number of

Inter-Comparison of an Evolutionary Programming
Model of Suspended Sediment Time-Series with Other Local Models 265

prescribed sweeps or until a prescribed error tolerance is reached. The mean square error
over the training samples is the typical objective function to be minimized. After training is
complete, the ANN performance is validated. Depending on the outcome, either the ANN
has to be retrained or it can be implemented for its intended use.

Figure 5. Implementation of the ANN Models and its Various Layers

3.4.4. Multi Linear Regression (MLR)

An overview of the data presented in Figure 2 invokes the thought that other than the
annual trend within the data, the underlying process is probably random and a more
rational way of explaining the data would be through probabilistic approaches. One such
method applied to the selected data is the Multi-Linear Regression (MLR) model. It fits a
linear combination of the components of a multiple signals x (e.g. recorded flows and
suspended sediment timeseries as defined by the Models 2-6 in Table 2) to a single output
signal y, as defined by (1.a) (e.g. predicted suspended sediment load) and returns the
residual, r, i.e. the difference signal, as defined by (1.b):

=

= +
0

N

i i
i

y b a x (1a)

 = − − − −1 1 2 2 ...r y a x a x b (1b)

Where ix is defined in Table 2 in terms of various models and ia values are called
regression coefficients, which are estimated by using the least square or any other similar
method. In this study, the coefficients of the regressions were determined using the least
square method.

3.4.5. Chaos theory

A cursory view of the suspended sediment record of the Mississippi River in Figure 2
provides no clue to a strategy for its underlying patterns, if any, although annual trend

Genetic Programming – New Approaches and Successful Applications 266

superimposed on random variation may be an immediate reaction of a hydrologist. Another
strategy to explore such possible patterns is through the application of chaos theory, more
specifically through the “phase-space diagram” as shown in Figure 6 for this river data. A
point in the phase-space represents the state of the system at a given time. The narrow dark
band in the figure signifies strong determinism but its scattered band signifies the presence
of noise and therefore there is a possibility to explain this set of data by chaos theory. The
dark band signifies convergence of the trajectories of the phase-space with a fractal
dimension towards the attractor of the data, where the dynamics of the system can be
reduced to a set of deterministic laws to enable the prediction of its future states.

Figure 6. Phase-space Diagram of Daily Suspended Sediment Data in the Mississippi River Basin

Chaos theory is a method of nonlinear time series analysis and involves a host of methods,
essentially based on the phase-space reconstruction of a process, from scalar or multivariate
measurements of physical observables. This method is implemented in terms of Model 0 of
Table 2. It is largely based on the representation of the underlying dynamics through
reconstruction of phase-space, originally given by Takens, 1981. It is implemented in terms
of two parameters of delay time and embedding dimension, according to which given a set
of physical variables and an analytical model describing their interactions, the dynamics of
the system can be represented geometrically by a single point moving on a trajectory, where
each of its points corresponds to a state of the system. The phase-space diagram is
essentially a co-ordinate system, whose coordinates represent the variables necessary to
completely describe the state of the system at any moment.

One difficulty in its construction is that in most practical situations, information on every
variable influencing the system may not be available. However, a time series of a single
variable may be available, which may allow the construction of a (pseudo) phase-space. The
idea behind such a reconstruction is that a non-linear system is characterized by self-

Inter-Comparison of an Evolutionary Programming
Model of Suspended Sediment Time-Series with Other Local Models 267

interaction, and a time series of a single variable can carry the information about the
dynamics of the entire multi-variable system. The trajectories of the phase-space diagram
describe the evolution of the system from some initial state, and hence represent the history
of the system.

This paper applies chaos theory to analyse the suspended sediment load of the Mississippi
River data in a similar fashion to the other modelling strategies described above. It uses the
local prediction method for training and testing, as outlined below, but it is a traditional
practice to apply several methods to build evidence for the existence of chaotic signals in a
particular data. These techniques employ the delay-embedding parameters of τ and m,
which are unknown a-priori. The following methods are used in this chapter:

1. Average Mutual Information (AMI) is used to estimateτ ; and the minimization of the
False Nearest Neighbours to do that of the optimal values for the embedding
dimension, m.
AMI (Fraser and Swinney, 1986) defines how the measurements ()X t at time t are
related, from an information theoretic point of view, to measurements τ+()X t at time

τ+t . The average mutual information is defined as:

τ

ττ τ
τ+

+= +
+

(), ()

((), ())() ((), ())log[]
(()) (())X i X i

P X i X iI P X i X i
P X i P X i

 (2a)

where i is total number of samples. (())P X i and τ+(())P X i are marginal probabilities
for measurements ()X i and τ+()X i , respectively, whereas (())P X i , τ+(())P X i is their
joint probability. The optimal delay time τ minimises the function τ()I for τ=t ,

τ+()X i adds the maximum information on ()X i .
The False Nearest Neighbours procedure (Kennel et al., 1992) is a method to obtain the
optimum embedding dimension for phase-space reconstruction. By checking the
neighbourhood of points embedded in projection manifolds of increasing dimension,
the algorithm eliminates 'false Neighbours': This means that points apparently lying
close together due to projection are separated in higher embedding dimensions. when
the ratio between the number of false neighbours at the dimension m +1 and m is below
a given threshold, generally smaller than 5%, each > +' 1m m is an optimal embedding.
A poor reconstruction of few embedding states with several components is obtained if

'm is too large and the next analyses should not be performed.
2. Correlation Dimension (CD) method: is a nonlinear measure of the correlation

between pairs lying on the attractor. For time series whose underlying dynamics is
chaotic, the correlation dimension gets a finite fractional value, whereas for stochastic
systems it is infinite. For an m -dimensional phase-space, the correlation function ()mC r
is defined as the fraction of states closer than r (Grassberger and Procaccia, 1983;
Theiler, 1986):

→∞ =

= − −
− 

, 1

2() lim ()
(1)

N

i jN i j
C r H r Y Y

N N
 (2b)

Genetic Programming – New Approaches and Successful Applications 268

where H is the Heaviside step function,


iY is the thi state vector, and N is the number of
points on the reconstructed attractor. The number w is called Theiler window and it is
the correction needed to avoid spurious results due to temporal correlations instead of
dynamical ones. For stochastic time series ∝() m

mC r r holds, whereas for chaotic time
series the correlation function scales with r as:

 ∝ 2() D
mC r r (2c)

where D2, correlation exponent, quantifies the degrees of freedom of the process, and
defined by:

→

=2 0

ln ()lim
lnr

C rD
r (2d)

and can be reliably estimated as the slope in the ln ()mC r vs. ln()r plot.
3. Local Prediction Model: The author’s implementation of the local prediction method

for deterministic chaos is details in Khatibi et al (2011) but the overview is that a correct
phase-space reconstruction in a dimension m facilitates an interpretation of the
underlying dynamics in the form of an m-dimensional map, Tf ,according to

 + = ()j T T jY f Y (2e)

where jY and +j TY are vectors of dimension m, describing the state of the system at
times j (i.e. the current state) and +j T (i.e. the future state), respectively. The problem
then is to find an appropriate expression for Tf (i.e. TF). Local approximation entails the
subdivision of the Tf domain into many subsets (neighbourhoods), each of which
identifies some approximations TF ,valid only in that same subset. In other words, the
dynamics of the system is described step-by-step locally in the phase-space. In this m-
dimensional space, prediction is performed by estimating the change of iX with time,
which are observed values of discrete scalar timeseries, with delay coordinates in the m-
dimensional phase space. The relation between the points tX and +t pX (the behaviour
at a future time p on the attractor) is approximated by function F as:

 + ≅ ()t p tX F X (2f)

In this prediction method, the change of tX with time on the attractor is assumed the
same as those of nearby points, =(, 1,2,...,)

hTX h n . Herein, +t pX is determined by the dth
order polynomial ()tF X as follows (Itoh, 1995):

 τ τ τ τ τ τ
−

− − −

+ − − − − − −
= = =

=

=
=

≅ + + + +  1 1 1 2 1 2 1 2 1 2
1 2 1 1

1

2 1
1

1 1 1

0 1 2 ...
0

0 .
.
.

0

... ...
d d

d d

m m m

t p k t k k k t k t k dk k k t k t k t k
k k k k k

k

k k
k

x f f X f X X f X X X (2g)

Inter-Comparison of an Evolutionary Programming
Model of Suspended Sediment Time-Series with Other Local Models 269

Using n of
hTX and

+h pTX for which the values are already known, the coefficients, f, are
determined by solution of the following equation:

 ≅X Af (2h)

where

+ + +

=
1 2

(, ,...,)
p p n pT T TX X X X (2i)

 and − − − −= 0 10 11 1(1) 200 (1)(1)...(1)(, , ,..., , ,...,)m d m m mf f f f f f f (2j)

and A is the × +()! ! !n m d m d Jacobian matrix which in its explicit form is:

τ τ τ

τ τ τ

τ τ τ

− − − − −

− − − − −

− − − − −

 
 
 
 =
 
 
 
 

 

 

   

 

1 1 1 (1) 1 1 (1)

2 2 2 (1) 2 2 (1)

(1) (1)

2

2

2

1

1

1

m m

m m

n n n m n n m

d
T T T T T

d
T T T T T

d
T T T T T

X X X X X

X X X X X
A

X X X X X

 (2k)

In order to obtain a stable solution, the number of rows in the Jacobian matrix A must
satisfy:

 +≥ ()!
! !

m dn
m d

 (2l)

As stated by Porporato and Ridolfi (1997), even though F-values are first degree
polynomials, the prediction is nonlinear, because during the prediction procedure every
point ()x t belongs to a different neighbourhood and is therefore defined by different
expressions for f (Koçak,1997).

4. Setting up models and preliminary results

4.1. Performance of sediment rating curve

The SRC model was implemented by using a simple least squares method leading to

 S=13.2Q1.14 (3)

The performance of this model is summarised in Table 3 and shown in Figure 7. Evidently,
its performance is poor and the concern raised in the literature on this model is confirmed.
This is a sufficient justification to search for reliable models.

Model Input
Training Testing

CC MAE RMSE CC MAE RMSE
Model 1: Qt 0.76 2.62E5 4.11E5 0.82 3.89E5 4.86E5

Table 3. Statistical Performance of the Sediment Rating Curve for the Training and Test Periods

Genetic Programming – New Approaches and Successful Applications 270

Figure 7. Comparison of Observed Suspended Sediment with that Modelled by SRC; (a) hydrograph,
(b) cumulative values

4.2. Implementation of GEP

The preliminary investigation for the construction of a relationship between flows and
suspended sediment in GEP requires: (i) the setting of the functions, as discussed below; (ii)
the fitness function; and (iii) a range of other parameters, but the default values, given in
Table 11, were sufficient in this study. The following functions were investigated:

 {+,-,×} (4a)

Inter-Comparison of an Evolutionary Programming
Model of Suspended Sediment Time-Series with Other Local Models 271

 {+,-,×, x} (4b)

 {+,-,×, x2} (4c)

 {+,-,×, x3} (4d)

 {+,-,×, ex} (4e)

 {+,-,×, ln(x)} (4f)

The performance of each function was investigated in terms of CC, MAE, and RMSE and
the results are shown in Table 4.a for the training periods. The results show that (i) the
model performances are more sensitive to the choice of independent variables than the
function choices; (ii) the models not including suspended sediment time series perform
poorly; and (iii) the model performance is not overly sensitive to the choice of the
function. Appendix I, Table 11 specifies the fitness function to be Root Relative Squared
Errors (RRSE).

Model Qt Qt , St-1 Qt ,Qt-1 Qt , Qt-1 , St-1 Qt,Qt-1,Qt-2 Qt,Qt-1,Qt-2,St-1

4.a):
{+,-,×}

CC 0.77 0.99 0.78 0.99 0.78 0.99

MAE 2.79E5 3.88E4 2.78E5 3.25E4 2.79E5 3.37E4

RMSE 4.13E5 8.43E4 4.07E5 7.74E4 4.05E5 7.98E4

(4.b):
{+,-,×, x}

CC 0.77 0.99 0.77 0.99 0.77 0.99

MAE 2.82E05 3.87E04 2.81E05 3.80E04 2.78E05 3.27E04

RMSE 4.15E05 8.42E04 4.14E05 8.36E04 4.10E05 7.75E04

(4.c):
{+,-,×, x2}

CC 0.77 0.99 0.78 0.99 0.78 0.99

MAE 2.82E05 3.89E04 2.78E05 3.25E04 2.76E05 3.45E04

RMSE 4.15E05 8.43E04 4.08E05 7.74E04 4.05E05 8.02E04

(4.d):
{+,-,×,x3}

CC 0.77 0.99 0.77 0.99 0.77 0.99

MAE 2.43E5 3.89E4 2.76E5 3.21E4 2.76E5 3.41E4

RMSE 4.05E5 8.43E4 4.12E5 7.76E4 4.13E5 8.03E4

(4.e):
{+,-,×,ex}

CC 0.77 0.99 0.77 0.99 0.77 0.99

MAE 2.81E5 3.88E4 2.81E5 3.56E4 2.42E5 3.64E4

RMSE 4.15E5 8.43E4 4.14E5 8.16E4 4.00E5 8.23E4

(4.f):
{+,-,×,ln(x)}

CC 0.76 0.99 0.76 0.99 0.78 0.99

MAE 2.56E5 3.89E4 2.64E5 3.25E4 2.60E5 3.21E4

RMSE 4.09E5 8.42E4 4.10E5 7.72E4 4.02E5 7.72E4

Table 4. a. Statistical Performance of a Selection of Functions for the Training Period

Genetic Programming – New Approaches and Successful Applications 272

The performance of the GEP model is presented in Table 4.b, according to which there is not
much to differences between performances of a number of the alternative models but (4.e) is
selected in this study for the prediction purposes (its expression tree is given in Figure 4)
and given below.

 �� � ���� � 1�.77�� − 1�.77���� − 13.87 (5)

Model Qt Qt , St-1 Qt ,Qt-1 Qt , Qt-1 , St-1 Qt,Qt-1,Qt-2 Qt,Qt-1,Qt-2,St-1

(4.a):
{+,-,×}

CC 0.83 0.99 0.84 0.99 0.84 0.99

MAE 3.99E5 2.34E4 4.01E5 2.32E4 4.08E5 2.08E4

RMSE 4.72E5 3.87E4 4.73E5 4.06E4 4.79E5 3.75E4

(4.b)
{+,-,×,x}

CC 0.83 0.99 0.84 0.99 0.84 0.99

MAE 3.99E05 2.33E04 4.01E05 2.28E04 3.96E05 2.34E04

RMSE 4.69E05 3.87E04 4.70E05 3.08E04 4.65E05 4.04E04

(4.c)
{+,-,×,x2}

CC 0.83 0.99 0.84 0.99 0.84 0.99

MAE 4.00E05 2.35E04 4.01E05 2.32E04 3.79E05 2.31E04

RMSE 4.69E05 3.86E04 4.71E05 4.06E04 4.67E05 3.96E04

(4.d):
{+,-,×,x3}

CC 0.83 0.99 0.83 0.99 0.83 0.99

MAE 3.87E5 2.35E4 4.00E5 2.10E4 3.96E5 2.06E4

RMSE 4.94E5 3.87E4 4.75E5 3.81E4 4.69E5 3.69E4

(4.e):
{+,-,×,ex}

CC 0.83 0.99 0.84 0.99 0.84 0.99

MAE 3.98E5 2.35E4 3.97E5 2.06E4 3.80E5 2.17E4

RMSE 4.67E5 3.86E4 4.66E5 3.64E4 4.84E5 3.73E4

(4.e):
{+,-,×,ln(x)}

CC 0.83 0.99 0.83 0.99 0.83 0.99

MAE 3.90E5 2.35E4 3.90E5 2.40E4 3.81E5 2.29E4

RMSE 4.93E5 3.86E4 4.81E5 4.18E4 4.69E5 4.05E4

Table 4 b. Statistical analysis of the estimated values for the test period

Figure 8 compares modelled suspended sediment against their observed values, according
to which the improvement by GEP is remarkable compared with SRC. Overall, the GEP
modelling results follow observed values rather faithfully both in values and patterns,
although there are still discrepancies in predicted values.

Inter-Comparison of an Evolutionary Programming
Model of Suspended Sediment Time-Series with Other Local Models 273

Figure 8. Comparison of Observed Suspended Sediment with that Modelled by GEP; (a) hydrograph,
(b) cumulative values

4.3. Implementation of ANN

ANN implements another AI approach to the data represented in Figure 2 by another
strategy, as described in Section 3.4.3. A preliminary investigation was carried out to make
decisions on the choice of the models given in Table 2 (Models 1-6) and the ANN structure
in terms of the neuron structure of the various layers. Table 5 presents model structures
investigated. The preliminary modelling task also included a normalisation function for the

Genetic Programming – New Approaches and Successful Applications 274

data. In this study, MATLAB was employed to develop the ANN model and its mapstd
function was selected for the normalisation (further defaults values are given in Table 11).
The investigated ANN model structures are defined in Table 5 and their results for both the
training and testing periods are presented in Table 6.

Model Identifier Model Inputs Training Testing

Model 1 Qt 2-5-1 2-5-1

Model 2 Qt , St-1 3-5-1 3-5-1

Model 3 Qt ,Qt-1 3-7-1 3-7-1

Model 4 Qt , Qt-1 , St-1 4-6-1 4-6-1

Model 5 Qt,Qt-1,Qt-2 4-9-1 4-9-1

Model6 Qt,Qt-1,Qt-2,St-1 5-12-1 5-12-1

Table 5. ANN Structure (number of nodes in layers)

The performances of Models 1-6 are shown in Table 6 in terms of the values of three
statistical indices of CC, MAE and RMSE. The performance of different models in terms of
CC is remarkably high but Model 4 (Qt , Qt-1 , St-1) produce less deviations, which is selected
for the final run.

 Model Training Model Testing

Model Inputs CC MAE RMSE CC MAE RMSE

Qt 0.999 2.32E4 2.70E4 0.999 2.16E4 2.30E4

Qt , St-1 0.999 2.59E4 3.12E4 0.996 2.17E4 2.64E4

Qt ,Qt-1 0.999 2.00E4 2.79E4 0.981 4.19E4 4.84E4

Qt , Qt-1 , St-1 0.999 2.01E4 2.51E4 0.998 1.18E4 1.37E4

Qt,Qt-1,Qt-2 0.991 7.57E4 8.42E4 0.942 8.47E4 8.41E4

Qt,Qt-1,Qt-2,St-1 0.995 5.66E4 6.42E4 0.976 4.63E4 5.47E4

Table 6. Statistical Performance of the Selected Model Structure for the Training and Testing periods

4.4. Implementation of the MLR model

The MLR modelling strategy was implemented using Mathematica to derive regression
coefficients for both periods of model fitting (training in the AI terminology) and testing
using different statistical indices (CC, MAE and RMSE) given in Table 7, which shows that
Model 2 (Qt , St-1) performs relatively better than the others. The regression equation
suggested by this technique is given by:

 �� � ������ � ��� ������	 (6)

Inter-Comparison of an Evolutionary Programming
Model of Suspended Sediment Time-Series with Other Local Models 275

 Model Training Model Testing

Model Inputs CC MAE RMSE CC MAE RMSE

Qt 0.77 2.41E5 4.05E5 0.833 3.85E5 4.96E5

Qt , St-1 0.994 3.90E4 8.40E4 0.988 2.40E4 3.90E4

Qt ,Qt-1 0.78 2.40E5 3.97E5 0.837 3.85E5 4.98E5

Qt , Qt-1 , St-1 0.993 3.30E4 7.60E4 0.987 2.50E4 4.10E4

Qt,Qt-1,Qt-2 0.779 2.40E5 3.95E5 0.840 3.84E5 4.96E5

Qt,Qt-1,Qt-2,St-1 0.993 3.30E4 7.70E4 0.987 2.50E4 4.10E4

Table 7. Statistical analysis of the estimated values for the train and test period

4.5. Implementation of the deterministic chaos model

A visual assessment for the existence of chaotic behaviour in the suspended sediment time
series was presented in Figure 9, although it was not conclusive evidence but just invoked
the possibility of the existence of a low-dimensional chaos. Traditionally, several techniques
are employed to show the existence of low-dimensional chaos and below the results of the
determination of the dimensions of the phase-state diagram are given:

1. Using the AMI method, the delay time, is estimated for the data as the intercept with
the x-axis of the curves by plotting the values of the AMI evaluated by the TISEAN
package (Hegger et al., 1999) against delay times progressively increased from 1 to 100.
The value of delay time is calculated as the first (local) minimum in the variation of
AMI against varying delay time from 1 to 100 day. The results are shown in Figure (9.a),
signifying a well-defined first minimum at delay time of 94 day. The delay time is then
used in the determination of the sufficient embedding dimension using the percentage
of false nearest neighbours for the time series. Figure (9.b) shows the results of the false
nearest neighbours method for embedding dimension m, by allowing it to vary from 1
to 40 and hence its value is 28.

2. The presence of chaotic signals in the data is further confirmed by the correlation
dimension method. Figure (10.a) shows the relationship between correlation function
C(r) and radius r (i.e. lnC(r) versus ln(r)) for increasing m, whereas Figure (10.b) shows
the relationship between the correlation dimension values D2(m) and the embedding
dimension values m. It can be seen from Figure (10.b) that the value of correlation
exponent increases with the embedding dimension up to a certain value and then
saturates beyond it. The saturation of the correlation exponent is an indication of the
existence of deterministic dynamics. The saturated correlation dimension is 3.5,
(D2=3.5). The value of correlation dimension also suggests the possible presence of
chaotic behaviour in the dataset. The nearest integer above the correlation dimension
value (D2=4) is taken as the minimum dimension of the phase space.

Genetic Programming – New Approaches and Successful Applications 276

3. Local prediction algorithm is used to predict suspended sediment time series. The
procedure involves varying the value of the embedding dimension in a range, say 3-8,
and estimating the CC and RMSE. The embedding function with the highest coefficient
of correlation is selected as the solution. These are given in Table 8 for Mississippi River
basin for the dataset with daily time interval, as well as a selection of other time steps. It
shows that the best predictions are achieved when the embedding dimension is m=3
produce the best results.

Figure 9. Analysis of the Phase-Space Diagram of Suspended Sediment Data in the Mississippi River
basin; (9.a): Average Mutual Information; (9.b) Percentage of false nearest neighbours

m CC RMSE

3 0.988 4.00E4
4 0.988 4.10E4
5 0.986 4.30E4
6 0.985 4.60E4
7 0.986 4.40E4
8 0.987 4.20E4

Table 8. Local Prediction Using Different Embedding Dimension for the Mississippi River Dataset

Figure 10. Correlation Dimension Method to Identify the Presence of Chaos Signal in the Dataset;
(10.a): Convergence of logC(r) versus log(r); (10.b): saturation of correlation dimension D2(m) with
embedding dimension m – this signifies chaotic signals in the Dataset

Inter-Comparison of an Evolutionary Programming
Model of Suspended Sediment Time-Series with Other Local Models 277

5. Inter-comparison of the models and discussion of results

Table 9 summarises the performance and main features of each and all of the modelling
strategies. The results presented so far confirms the experience that the traditional SRC
model performs poorly and may only be used for rough-and-ready assessments. However,
the results by the GEP model show that considerable improvements are likely by using it.
This section also analyses the relative performance of the various modelling strategies. An
overall visual comparison of all the results is presented in Figure 11, according to which
GEP, ANN, MLR and local prediction models perform remarkably well and similar to one
another.

Model Performance Model Structure Outcome Comments

SRC Poor Model 1 Eq. (3) For rough-and-ready estimates

GEP Good Model 4 Eq. (4.e)
ANN Good Model 4 → The model is bounded to software
MLR Good Model 2 Eq. (6)

Chaos Good Model 0 → Needs expertise to implement

Table 9. Qualitative Overview of the Performances of Various Modelling Strategies

Figure 11. Model Predictions for Suspended Sediment – Performances of GP, ANN, MLR, Chaos
(closest to observed), and SRC (poor)

Scatter diagrams are also a measure of performance. These are presented in Figures 12,
which provides a quantitative basis that (i) SRC performs poorly and (ii) there is little to
choose between the other models, although the performance of ANN stands out.

Genetic Programming – New Approaches and Successful Applications 278

Figure 12. Scatter between Modelled and Observed Suspended Sediment Load

The relative performances of GEP, ANN, MLR and local prediction models are not still
visible from Figure 12 and therefore attention is focused on the differences between the GEP
and ANN models with respect to their corresponding observed values. Figures 13 shows the
respective results for both the GEP and ANN models and that of ANN is remarkable, as the
differences are nearly zero. It may be reported that those of local prediction model and MLR
are very close to that of GEP.

Figure 13. Performances of the ANN and GEP Models – y-ordinates: observed – modelled values

Due to the importance of the volume of transported sediment, the total predicted values are
also compared with that of the observed values for the testing period and the results are

Inter-Comparison of an Evolutionary Programming
Model of Suspended Sediment Time-Series with Other Local Models 279

presented in Table 10. The table show that the traditional SRC model is in error by as much
as nearly 50% but the other models perform well, among which the error in the performance
of ANN is the lowest. It is also noted that, despite the good performance of ANN models, it
is not transferrable, like the GEP models. The implementation of both ANN and
deterministic chaos models require considerable expertise.

Model Actual Val.
(ton/year)

Estimation Val.
(ton/year) Dif. Val. (%)

SRC 1.65E8 3.06E8 +46 %
GEP 1.65E8 1.65E8 - 0.4 %
ANN 1.65E8 1.64E8 - 0.3 %
MLR 1.65E8 1.66E8 +0.6 %

Chaos 1.65E8 1.66E8 +0.7 %

Table 10. Total Volume of Suspended Sediment Predicted by each of the Models at Gauging Station for
the Mississippi River basin

The chapter presents the performance of the GEP model, as a variation of evolutionary
programming, to forecast suspended sediment load of the Mississippi River, the USA. GEP
is just a modelling strategy, where any other relevant strategy is just as valid if its
performance is satisfactory. The overall results show that the information contained in the
observed data can be treated by the following modelling strategies:

1. Evolutionary computing: this produced a formula to forecast the future values in terms
of recorded values of flows and suspended sediment. The results show that the strategy
can be successful in identifying a number of different formulae.

2. Emulation of the working of the brain: this successfully fitted an inbuilt polynomial to
the data. It performs better than the other tested models but is not readily transferrable
as it resides in particular software applications.

3. Regression analysis: this produced a regression equation, according to which the future
values would regress towards average recorded values, in spite of the presence of noise.

4. Deterministic chaos: this produced future values of suspended sediment load by
identifying an attractor towards which the system performance would converge even
when the internal system behaves erratically.

The only common feature in the above modelling strategies is their use of optimisation
techniques. Otherwise, they are greatly different from one another but remarkably, they
produce models fit for purpose and can explain the data. Undoubtedly, the data can be
explained by many more sets of equations or by other possible strategies. This emphasises
that models are just tools and the modelling task is to test the performance of the various
models to add confidence to the results. Yet the poor performance of the traditional SRC
underlines the fact that a good performance cannot be taken for granted.

A review of the data (in Section 3) shows that the overall contribution of the datapoints in
the test period is average; its individual characteristics in terms of kurtosis shows that the
annual hydrographs are less peaked and more flat but at the same time the suspended
sediment load during the year was significantly high. Thus, the minimum values during this

Genetic Programming – New Approaches and Successful Applications 280

year were significantly above the average but persistent and though less dynamic. However,
all the four modelling strategies coped well with these data peculiarities. If the data during
the test period have a more pronounced feature not very common during the training
period, the various local modelling strategies are likely to perform poorly in their own
unique way and one of the greatest tasks of research in modelling should be investigations
to understand these unique features and not to sweep them under the carpet.

A general view projected by the investigation in this chapter is that the performance of
modelling techniques must not be the only basis of practical applications. Equal attention
must also be paid to the quality of the data used. If the data suffers from inherent
uncertainties, no good model will compensate for the inherent shortfalls.

6. Conclusion

This chapter presents an investigation of the performance of the Gene Expression
Programming (GEP) models of suspended sediment load of the Mississippi River, the USA.
The study employs the Mississippi River data spanning 26 years involving both flows and
suspended sediment load, of which the first 25 years of the data is used for training and the
remaining for the prediction of one year into the future. This investigation concurs with the
past findings that the performance of sediment rating curve, an empirical technique used
widely in practice, can lead to gross errors. This alone underlines the value of other
modelling techniques capable of producing reliable results with less than 1% of errors.

The chapter promotes a pluralist culture of modelling and although presents the GEP model as
the focus, it also presents the application of other techniques to model the same data. The other
models comprise: artificial neural networks, multi-linear regression analysis and deterministic
chaos. The chapter outlines the modelling strategy underlying each of these techniques and the
results show in spite of their differences they produce similar results inflicting less 1% of
errors. The lowest errors are associated with the artificial neural networks for this set of data
but each of these techniques should be considered as reliable. The volume of sediment load is
an important management parameter and the error associated with each model was estimated
for each model. The results show that the traditional SRC model suffers from gross errors by as
much as 50% but the other tested models perform well, among which the error in the
performance of ANN is the lowest. ANN is noted for its good performance but with some
drawback that these models are not transferrable, like the GEP models. It is noted that the
implementation of ANN requires an ANN-platform for further modelling and deterministic
chaos models require considerable expertise.

Author details

M. A. Ghorbani, H. Asadi and P. Yousefi
University of Tabriz, East Azerbaijan, Iran

R. Khatibi
Consultant Mathematical Modeller, Swindon, Wilts., UK

Inter-Comparison of an Evolutionary Programming
Model of Suspended Sediment Time-Series with Other Local Models 281

7. Appendix
Symbols

SRC Sediment Rating Curve
MLR Multi Linear Regression
Qt Discharge Series
St Sediment Series
MLR Xi Term of Various Model
 ai Values Called Regression

Chaos

Τ Delay Time
Cm(r) Fraction of states
H Heaviside Step
N Number of Points
D2 Correlation Exponent
Yj Vectors of Dimension
M Dimensional phase Step
A Jacobean Matrix
x(t) different neighbors
R Radius Spherical
C(r) Correlation Function

Appendix I

Table 11 Defaults Values Employed in Implementing GEP and ANN Models

GP ANN
Training parameters Values Training parameters Values

Crossover rate 0.1 Goal Mean Square Error
Mutation rate 0.044 Epochs 10 - 100

Inversion 0.1 Training algorithm Trainlm
IS Transposition 0.1

RIS Transposition 0.1
1-point Recombination 0.3
2-point Recombination 0.3
Gene Recombination 0.1
Gene Transposition 0.1

Population (Chromosome) size 30
Head Size 7

Number of Genes 3
Linking Function Addition

Random Numerical Constants Yes
Number of generation 1000
Arithmetic functions (4.a)-(4.f)

Fitness Function RRSE: RRSE: Root Relative Squared Errors

Table 11. Default Parameter Values Used by the Model

Genetic Programming – New Approaches and Successful Applications 282

8. References

Aytek, A., and Kisi, O. (2008). A genetic programming approach to suspended sediment
modeling, J. Hydrol., 351, 288-298

Cigizoglu, H.K. & Kisi, O. (2006) Methods to improve the neural network performance in
suspended sediment estimation, J. of Hydrology, 317, 221-238.

Cigizoglu, H.K., (2004) Estimation and forecasting of daily suspended sediment data by
multi layer perceptrons. Advances in Water Resources 27, 185–195.

Cohn TA, Caulder DL, Gilroy EJ, Zynjuk LD, Summers RM. (1992). The validity of a simple
statistical model for estimating fluvial constituent loads: An empirical study involving
nutrient loads entering Chesapeake Bay. Water Resources Research 28(9): 2353–2363.

Farmer, D.J., Sidorowich, J.J., (1987a). Predicting chaotic time series. Phys. Rev. Lett. 59, 845–
848.

Farmer, J.D., Sidorowich, J.J., (1987b). Exploiting chaos to predict the future and reduce
noise. In: Lee, Y.C. (Ed.), Evolution, Learning and Cognition. World Scientific, River
Edge, NJ, pp. 277–330.

Ferguson RI. (1986). River loads underestimated by rating curves. Water Resources Research
22(1): 74–76.

Ferreira C. (2001a). Gene expression programming in problem solving. In: 6th Online World
Conference on Soft computing in Industrial Applications (invited tutorial)

Ferreira C. (2001b). Gene expression programming: a new adaptive algorithm for solving
problems. Complex Syst 13(2):87–129

Fraser, A.M., Swinney, H.L., (1986). Independent coordinates for strange attractors from
mutual information. Physical Review A. 33(2), 1134-1140.

Ghorbani MA, Khatibi R, Aytek A, Makarynskyy O, Shiri J (2010) Sea water level forecasting
using genetic programming and comparing the performance with artificial neural
networks. J Comput Geosci 36(5):620–627

Glysson GD. (1987). Sediment transport curves. US Geological Survey Open File Report 87–
218.

Grassberger, P. and Procaccia, I., (1983). Characterization of strange attractors. Physical
review letters, Vol. 50, No. 5, 346-349.

Hegger, R., Kantz, H., Schreiber, T., (1999). Practical implementation of nonlinear time series
methods: The TISEAN package. Chaos. 9, 413-435.

Itoh, K., (1995). A method for predicting chaotic time-series with outliers. Electron.
Commun. Jpn. 78 (5), 44–53.

Jain, S.K. (2001) Development of integrated sediment rating curves using ANNs. J. Hydraul.
Eng ASCE 127(1), 30–37.

Kennel, M., Brown, R., Abarbanel, H.D.I., (1992). Determining embedding dimension for
phase- space reconstruction using a geometrical construction. Phys Rev A .45, 3403–11.

Khatibi, R., (2011), “Evolutionary Systemic Modelling for Flood Risk Management
Practices,” Journal of Hydrology Vol. 401 Issue 1-2, Pp 36–52

 (http://dx.doi.org/10.1016/j.jhydrol.2011.02.006)

Inter-Comparison of an Evolutionary Programming
Model of Suspended Sediment Time-Series with Other Local Models 283

Kisi, O. (2004b) Multi-layer perceptrons with Levenberg-Marquardt optimization algorithm
for suspended sediment concentration prediction and estimation. Hydrol. Sci. J. 49(6),
1025–1040.

Kisi, O. (2005). "Daily river flow forecasting using artificial neural networks and auto
regressive models", Turkish J. Eng. Env. Sci. vol 29, 9-20.

Kisi, O., (2005b) “Suspended sediment estimation using neuro-fuzzy and neural network
approaches”, Hydrol. Sci. J., 50(4), 683-696.

Koza JR (1992) Genetic programming: on the programming of computers by means of
natural selection. MIT, Cambridge

Miller CR. (1951). Analysis of flow-duration, sediment-rating curve method of computing sediment
yield. US Bureau of Reclamation Report: Denver, Colorado.

Porporato, A, Ridolfi, L., (1997). Nonlinear analysis of river flow time sequences, Water
Resources Research.33(6), 1353-1367.

Rumelhart, D.E. and McClelland, J.L. (Eds.), (1986)."Parallel Distributed Processing".
Explorations in the Microstructure of Cognition, 1. MIT Press, Cambridge

Sivakumar, B., (2002). A phase-space reconstruction approach to prediction of suspended
sediment concentration in rivers, Journal of Hydrology, 258(1-4), 149-162,

Sivakumar, B., and A.W. Jayawardena, (2002). An investigation of the presence of
lowdimensional chaotic behavior in the sediment transport phenomenon, Hydrological
Sciences Journal, 47(3), 405- 416.

Sivakumar, B., and A.W. Jayawardena, (2003). Sediment transport phenomenon in rivers:
An alternative perspective, Environmental Modeling and Software, in press.

Sivakumar, B., Wallender, W.,(2005). Predictability of river flow and suspended sediment
transport in the Mississippi River basin: a non-linear deterministic approach. J. Earth
Surf. Process. Landforms 30, 665–677

Takens, F.,(1981). Detecting strange attractors in turbulence, in Dynamical Systems and
Turbulence, Lecture Notes in Mathematics 898, D. A. Rand and L. S. Young (eds.), 366-381,
Springer-Verlag, Berlin.

Tayfur, G. & Guldal, V. (2006) Artificial neural networks for estimating daily total
suspended sediment in natural streams, Nordic Hydrology, 37, 69-79.

Tayfur, G. (2002) Artificial neural networks for sheet sediment transport. Hydrol. Sci. J. 47(6),
879–892.

Theiler, J., (1986). Spurious dimension from correlation algorithms applied to limited time
series data.Phys Rev A. 34. 2427-2432.

Thomas RB. (1988). Monitoring baseline suspended sediment in forested basins: The effects
of sampling of suspended sediment rating curves. Hydrological Sciences Journal 33(5):
499–514.

Ustoorikar K, Deo MC (2008) Filling up gaps in wave data with genetic programming.
Marine Structures 21:177–195

Wilks DS. (1991). Representing serial correlation of meteorological events and forecasts in
dynamic decision-analytic models. Monthly Weather Rev 119:1640–1662

Genetic Programming – New Approaches and Successful Applications 284

Yu-Min Wang, Seydou Traore and Tienfuan Kerh (2008), “Monitoring Event-Based
Suspended Sediment Concentration by Artificial Neural Network Models” WSEAS
TRANSACTIONS on COMPUTERS, Issue 5, Volume 7, May 2008

Walling, D. E., 1977: Limitations of the rating curve technique for estimating suspended
sediment loads, with particular reference to British rivers. In: Erosion and solid matter
transport in inland waters (Proceedings of the Paris symposium, (July, 1977), IAHS
Publ., 122, 34-38.

	Preface Genetic Programming – New Approaches and Successful Applications
	Section 1
New Approaches
	01 Using Quantitative Genetics and Phenotypic
Traits in Genetic Programming
	02 Continuous Schemes for Program Evolution
	03 Programming with Annotated
Grammar Estimation
	04 Genetically Programmed Regression Linear
Models for Non-Deterministic Estimates
	05 Parallel Genetic Programming on
Graphics Processing Units
	Section 2
Successful Applications
	06 Structure-Based Evolutionary Design Applied
to Wire Antennas
	07 Dynamic Hedging Using Generated
Genetic Programming Implied Volatility Models
	08 The Usage of Genetic Methods
for Prediction of Fabric Porosity
	09 Genetic Programming: A Novel Computing
Approach in Modeling Water Flows
	10 Genetic Programming: Efficient Modeling Tool
in Hydrology and Groundwater Management
	11 Comparison Between Equations Obtained by
Means of Multiple Linear Regression and
Genetic Program
	12 Inter-Comparison of an Evolutionary
Programming Model of Suspended Sediment
Time-Series with Oth

