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Preface

Fault diagnosis technology is a synthetic technology, which relates to several subjects, such as
modern control theory, reliability theory, mathematical statistics, fussy set theory, information
handling, pattern recognition and artificial intelligence.

The United States is the first study to carry out fault diagnosis countries. Since 1961, the
United States at the beginning of the implementation of the Apollo program, has witnessed
a series by equipment failure led to the tragedy, therefore, in April 1967, at NASA’s the idea
of, by the Office of Naval Research (ONR), opened the American Society of Mechanical
Failure Prevention Group (MFPG) the establishment of the General Assembly, began to
systematically fault diagnosis sub-topic for research. In addition to MFPG, the American
Society of Mechanical Engineers (ASME), Johns Mitchel company, Spire Corporation are all
carried out relevant research.

In Europe, the United Kingdom machine health centers in the late’60s began to study the initial
diagnosis. In addition, the Norwegian ship diagnostic techniques, sound detection system in
Denmark, Sweden, SPM’s bearing detection technology are all more advanced. Japan's fault
diagnosis technology in the steel petrochemical sectors such as railways developed rapidly,
and in the international market certain advantages.

In 1971, Massachusetts Institute of Technology Beard in his PhD thesis was first put forward
the concept of fault detection filter, which is to use analytical redundancy instead of hardware
redundancy approach and make the system self-organization through the system closed-loop
stability, through the observer output to be systems.

Fault diagnosis method based on analytical redundancy is to be diagnosed by an object exists
in the analytical redundancy and other priori knowledge analysis and processing, enabling
detection of fault diagnosis, isolation, identification. In the same year, Mehra and Peschon
published relevant papers in Automatica, which marked the beginning of fault diagnosis.
In 1976, Willsky published the first articles on fault detection and diagnosis technology, an
overview of the article.

In 1978, Himmelblau published the first book on the international level fault detection and
diagnosis (FDD) technology in academic works. Since then a lot of academic institutions,
government departments, universities and enterprises are involved in or the fault diagnosis
technology research, and made a large number of results.

Fault diagnosis tasks, from low level to high, can be divided into the following aspects:
1. Failure Modeling: In accordance with a priori information and input-output
relations, build a mathematical model of system failure, as a basis for fault diagnosis.
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2. Failure Detection: From the measured or unmeasured variables estimation, to
determine whether there was a fault diagnosis system. The main task of Fault Detection
system is to determine whether there are failures. In general, any fault detection subsystem
can not detect a variety of failures correctly 100 percent. Therefore, improving the correct
fault detection rate and reduce the failure rate of omission (which occurs without the fault is
detected) and false alarm rate (not failure but police) has been the interesting topic in the area
of fault detection and diagnosis.

3. Fault Isolation: After the fault has been detected, the location of the fault source
should be given. Fault isolation is also known as fault identification or fault location.

4. Fault identification: After a fault has been isolated, determine the time of fault
occurred and time-varying characteristics of the fault.

5. Failure evaluation and decision-making: Determine the severity of fault and
its impact on the diagnosis of the object and trends in the different conditions for different
measures.

After several decades of development, the formation of fault diagnosis technology generally
three types of methods, analytical model-based fault diagnosis method, signal processing-
based fault diagnosis method and knowledge-based fault diagnosis method.

Dynamic system model-based fault diagnosis method developed the earliest and most in-
depth. It needs to establish accurate mathematical model of the object. The advantage of this
method is that it can fully use of the deep knowledge within the system, which will help the
system fault diagnosis.

But in fact a complex engineering system is very difficult to obtain accurate mathematical
model, and the system modeling errors and uncertainties disturbance and measurement
noise is always inevitable.

When diagnosed analytical mathematical model of the object is difficult to be established,
signal processing-based method is very effective. The method uses the signal model directly,
such as the correlation function, higher-order statistics, spectrum, autoregressive moving
average, wavelet techniques to extract the amplitude, phase, spectral characteristics of value,
and analyses these characteristics in order to achieve fault detection. This approach avoided
the difficulties of building an object model. Obviously, this method is not only suitable
for linear system is also suitable for nonlinear systems. This method of mining the system
information contained in the signal and the structure of the system is not concerned.

Knowledge-based fault diagnosis method and signal processing-based fault diagnosis
method is similar. It does not require quantitative mathematical model. The difference is that
it introduces a lot of information of the diagnosis object, in particular, can take advantage of
expert diagnostic knowledge. It is a promising method of fault diagnosis, particularly in the
field of nonlinear systems.

In this book, a number of much innovative fault diagnosis algorithms in recently years are
introduced. These methods can detect failures of various types of system effectively, and with
a relatively high significance.

Editor:
Wei Zhang
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The use of the GLRT for revealing
faults in atomic frequency standards

Emilia Nunzi
University of Perugia
Italy

1. Introduction

Atomic clocks are instruments widely employed in many synchronization systems. When
such measurement instruments are inserted in complex systems as telecommunication net-
works, global satellite navigation systems, tests of fundamental physics of matter, an unex-
pected and anomalous behavior or a degradation of the performance of the clock may give
rise to an error condition in the global system (Galysh et al., 1996); (Vioarsson et al., 2000). In
some cases, as in the GPS system, the anomaly must be identified and a real-time alarm signal
must be transmitted to user. Aerospace systems and navigation support systems used in the
area of personal security, for both military and civil purposes, must satisfy strict requirements
of the parameters relative to the integrity, reliability, availability and accuracy of the signal.
The possible lacking of information concerning one of the above features, may imply a series
of inefficiencies and system bugs for end-users.

Monitoring stability of atomic clock frequency data is important for guaranteeing the correct
behavior of the electronic system where they are inserted. The principal application where
the frequency stability monitoring is a challenging problem is in GNSS systems (like GPS
or Galileo) where the overall system performance critically depends on performance of on-
board clocks. When the clock behaves bad, thus the anomaly has to be detected fast in order
to provide an adequate action for restoring the correct behavior of the clock. In the field of
navigation system “integrity”, most of the studies are related to satellite integrity (Bruce et
al., 2000) and not specifically to that of the embedded clock, while recently a study on GPS
clock integrity showed GPS clock strange behaviors (Weiss et al., 2006), asking for suitable
new statistical tools for its characterization.

The scientific and industrial community has done a lot of efforts for the theoretical characteri-
zation of the behavior of atomic clocks. The purpose is to improve the accuracy and reliability
of these instruments while reducing their size and cost. Since such objectives are often in
contradiction, the scientific and industrial research is investigating innovative techniques to
overcome the limits imposed by the technological development.

A common assumption when analyzing atomic clock data is that clock noise is stationary or
that at least increments in the frequency values are stationary and thus data are examined
by using stability analysis tools such as the Allan variance (IEEEstd, 1999); (D. W. Allan,
1987). The scientific literature has shown how this hypothesis cannot be always verified in
reality, in particular in the application context of the satellite navigation or in experiments of
fundamental physics of matter. If this hypothesis is not satisfied, the accuracy and reliability
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of the classical fault detection techniques, and therefore of the whole system where the devices
are inserted, are compromised (Vioarsson et al., 2000); (Bruce et al., 2000).

In this context, this book chapter collects and summarizes the last years proposals about the
use of Generalized Likelihood Ratio test (GLRT) as a fault detection technique, complemen-
tary to the classical ones, for revealing faults from frequency data (E. Nunzi et al., 2007); (E.
Nunzi et al., 2007); (E. Nunzi et al., 2008); (E. Nunzi & P. Carbone, 2008); (E. Nunzi & D.
D’Ippolito, 2009); (E. Nunzi et al., 2009).

In particular, the GLRT (S. M. Kay, 1998), following the Neyman-Pearson (NP) approach
is presented and its effectiveness is demonstrated when clock frequency data are subjected
to jumps in the mean and/or in the dynamic range. This method is largely employed for
revealing faults in industrial manufacturing processes or for supporting the decision making
problems in many different applications fields.

Although the large number of scientific publications allows a simple interpretation of the
GLRT outcome, the application of the GLRT to frequency data acquired from atomic clocks
still need to be properly customized and metrologically characterized.

It follows that reasons for proposing the GLRT as an alternative method for revealing faults
in atomic frequency can be summarized as it follows:

1. GLRT does not require the stationarity hypothesis on processed data;

2. GLRT gives a reliable outcomes also when the acquired data record is affected by miss-
ing data;

3. GLRT is easy to implement (since it based on the evaluation of the Maximum Likelihood
Estimates (MLEs) of the data model parameters) (S. M. Kay, 1996);

4. GLRT functionalities can be extended for revealing also, in the meantime or separately,
anomalous behavior other than mean and variance changes.

In order to give a comprehensive presentation of the problem and of the theory needed for
applying the GLRT technique to frequency signals acquired from an atomic clock, the next
section recalls the atomic clock frequency sample model adopted for the analysis of the fault
occurrence and suitable for the application of the fault detection theory as indicated in (S.
M. Kay, 1998). The evaluated GLRT detector is applied to both simulated and experimental
data subjected to anomalous behavior in order to validate the presented statistical models and
theory.

2. Mathematical model of frequency data

In this chapter, a single frequency sample, y[-], is modeled as a white Gaussian random vari-
able with unknown mean and standard deviation, indicated with yg and oy, respectively.
When a N-length record of frequency data is collected, all samples are assumed to be in-
dependent and identically distributed (i.i.d.). Moreover, an anomalous behavior of the clock
is defined as a change in the frequency size and/or dynamic range. As a consequence, the
anomaly, when and if it occurs, can be modeled as a change in the mean and/or in the stan-
dard deviation of the statistical model (D. W. Allan, 1987); (E. Nunzi et al., 2007); (E. Nunzi
etal., 2007); (IEEEstd, 1999).

The simple model assumed for atomic clock frequency behavior, allows the description of
the parameters model change by means of two different statistical hypotheses indicated with
Ho and H;. Hp denotes the assumption that the clock behavior respects the given model;
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‘H; represents the assumption that the mean and/or standard deviation have changed to 4
and/or oy. These hypotheses are formally described by the following equations:

Ho @ yln]~ N(po,o0), n=0,.,N—-1; 1)
. N(’/IO,UO), n:O,...,l’lo—l;
Hl ’ y[”]N{ N(}ll,Ul), Tl:I’lo,...,Nfl, (2)

where 19 is the unknown sample number at which the change happens when #, is true, and
N is the number of analyzed data.

Let us indicate with K, and 0y the additive frequency jump and the standard deviation fac-
tor, respectively. When #; is true, i.e. it is true that processed data include some (N — ng)
anomalous samples, thus the following identities are true:

M1 = po+Ky (3)
op = 0y 0pf- (4)

It should be noticed that there are many unknown parameters: g and oy (both under H(y and
H1), u1, 0 and ny when (and if) a fault occurs. On the other hand, N is a parameter of the
data acquisition process.

In order to improve text readability, vectors of the unknown parameters when # and H; are
true are introduced and they are, respectively, 8 o=[po,00] and 0 1=[p0, 00, 1,01, 1)

3. Generalized likelihood ratio Test (GLRT): theory

When there are only two different models, the scope of the detection theory is the determi-
nation of the optimal criterion for identifying which of the models is the most likely to be
underlying the given experimental data and when, in case, the clock model parameters have
changed their values. The commonly employed decision-rule is based on the so called likeli-
hood ratio test (LRT), which maximizes the detection probability (PD) for a given false alarm
probability (PFA). It should be noticed that, in this context, PFA is the probability of deciding
for H1 when H is true, and PD is the probability of deciding for 741 when H is true.

The LRT technique is based on the evaluation of the likelihood ratio, i.e. the ratio between the
likelihood functions calculated when the hypothesis #; is true and when the hypothesis g
is true. On the basis of the Neyman-Pearson (NP) theorem, if this ratio is sufficiently large,
the hypothesis H, is rejected.

From a practical point of view, the NP approach is applied to the set of available data
y = {y[0],...y[N — 1]} and it is based on the evaluation of the likelihood ratio of y,
Lg(y;[0H0,0H1]), defined as the ratio between the likelihood function of y under #;,
p(y;041,M1), and the likelihood ratio of y under Ho, p(y;0n0, Ho)- If Lg(y; [0no,0m1]) is
larger than a given value 7, i.e.:

011, H1)
Le (y: (8510, _ rylmH) 5)
6 (v;[0H0,0m1)) 7 (v:01m0, Ho) Y (
thus, the NP approach decides for 1, otherwise H is assumed to be true. The value of v is
chosen on the basis of the target PFA value, «, that should be guaranteed a—priori and it can
be evaluated by solving the following equation:

PFA = Pr{Lg(y;[0n0,0m1]) > v Ho} <. (6)
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It should be noticed that for evaluating the 7 value that satisfies (6), the statistic of
Lg (y;[0Ho,041]) is needed.

L (y;[010,011]) is calculated by following the statistical model introduced in section 2, i.e.
by considering that each measured value, y[n], is the realization of an independent Gaussian
random variable. It follows that the likelihood functions of the data vector y under # and #;
can be evaluated by multiplying the marginal likelihood function of each data sample, thus
obtaining:

N

g ) %

1 1
p(y:0mo) = 7 exp (z
(2707) %
1
(271(75)710/2 (27r(712)(N7n°)/2

I’lgl (8)
exp( *22 ~ o) —222 )
70

n=0 01 n=ng

p(y;0m) =

Since all values of the parameters vectors 8y and 0y; are unknown and supposed to be
deterministic, a GLRT technique, instead of a LRT, has been applied (S. M. Kay, 1998).
Thus, parameter values in (5) have been replaced by their maximum likelihood estimates
(MLEs), that will be indicated with a hat-sign on the symbol of the corresponding vari-

able name. By indicating with 010 = [F0_H0,00_Ho], the MLE of 8y when H, is true, with
01 = [flo.g1,00_g1, 11.H1,01_H1, 7o) the MLE of 87 when H; is true, it follows that the GLRT
test decides for Hq if Lg (y, [5H0,5H1]> >, ie.:

. p (y:0m0, M1
Lg (y; [9H0,9Hﬂ> = y >y )
p (y}6H1/H0>
where
—~ 1 1 N-1 )
p(y:0m) = ————Hmexp| - (y[n] — fo_Ho) ) (10)
( ) (2752 o) < 3 1o nzf)
~ 1
ply:OH1) = =7 (11)
( ) (205, Hl)no/z (2701 Hl)(N )2

1 np— 1 N 5 1 N—-1 N 5

exp |~ Y. (yln] = fom)” — 27 Y ) —fm)” )
0_H1 n=0 1-H1 n=ny

It can be shown that MLEs of the mean and of the standard deviation are, respectively, the

sample mean and the sample standard deviation and that the MLE of ) is the sample number

that maximizes the NP detector over the whole available data record (S. M. Kay, 1996). Thus,

MLE estimates of the unknown parameters are:
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1 N-1
floHo = + ) yln] (12)
N n=0
1 np—1
o = = y[n] (13)
0 n=0
1 Nil
hm = = y[n] (14)
N — no n—ig
- 1 N=1 o,
Oopo = N Y- (yln] = fio_ro) (15)
n=0
~ 1 ol ~ 2
0o.H1 = 7o (y[n] — Ho_m) (16)
n=0
L ] - )2
Ui = = y[n] —#m (17)
N — o ﬂ*ﬁo
mo = argmax, o n 1{Lc (Y/' [§H0,§H1})}~ (18)

By analyzing and comparing firstly expressions (15) with (10), and thus equations (16)—(17)
with (11), it follows that arguments of the exponential terms in (10) and (11) are both equal to
(—N/2). It follows that the condition to be tested by the GLRT can be simplified as:

p (Y;aHolHl)
p (y;aleHO)
(32 )ﬁo/z (Az )(N*ﬁo)/z

0_H1 1m
e >

Lg (Y; [§H0/5H1]>

(19)
(95

0-HO

By taking into account that the logarithm is a monotonically increasing function, thus in-

equality (19) does not change if the logarithm is taken on both inequality sides. Thus the NP
approach can be further simplified by solving the following equivalent inequality:

T (y; [§H0;§Hl]> log (Lc (y; [§H0r§H1]>) =

N a2 i o2 .
— log (AOHO) — —log (AOHl > >q =logy (20)
2 07 2 0t

This expression shows that the detector is function of the three different MLE variance es-
timators. In order to characterize this NP detector, and to customize the parameters of the
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detection algorithm for revealing specifically faults of atomic clock frequency data, the statis-
tical characterization of T (y; [5H0,§H1}) is needed. However, the three variance estimators
are not mutually independent. In particular, 03 ;,, is a function of 35 ;;; and 67 ;;;, both under
Ho and H;. In fact, by requiring the energy of the sequence {y[0],y[1],....y[N — 1]} to be equal

to the sum of the energies of the two complementary subsequences {y[0],y[1],....y[7ig — 1]}
and {y[fp],y[Ap + 1], ..., y[N — 1]}, the following relationship is always true:

N N N N 2
~ np ~ N—T’lo,\ noN—T’lo ~ ~
0o = N 0 + N Ot + N N (HOHl - P1H1> , (1)

both under Hg and H;.

This mutual relationship between variance estimators under Hy and H; makes difficult task
the evaluation of the probability density function (and thus of the likelihood function) of (20).
It follows that the evaluation of the 7 threshold from (6) is a difficult task.

In order to derive a criterion for evaluating the < value, a further theoretical analysis is per-
formed.

By substituting (21) in (20), the detector expression is formally obtained as function of MLE
estimators of parameters under H1:

N - ~ N2
0110 _ N Mo ‘7ng fig N — g (Florn — Fam1)” | N —1ig
T(y, [eHO’eHﬂ) 2 log(N 5'12H1 " N N 312H1 * N
o~ /\2
n (o
- 7010g “OHL (22)

O1m1

Equation (22) shows that the GLRT detector T(y) depends only on the MLE estimates under
H, by means of a function g(-), i.e. T(y) = g(8p1). By recalling the invariance property
of the MLE (S. M. Kay, 1996), it follows that also T(y) is an MLE estimate of a theoretical
value, Teor which can be evaluated by substituting the MLE estimates of parameters with the
corresponding theoretical values. Thus, in order to evaluate expression of Tt,,r, MLE estimates
in (22), 3§H1, 021, flom, M and 7g, have been replaced by the corresponding theoretical
value, i.e. by (Tg, (712, Mo, H1 and ng, respectively. Moreover, by exploiting relationships (3)
and (4), it can be shown that the theoretical behavior of the GLRT detector is described by the
following equation:

_ N N no 1
Tteor = ? IOgA + (? — ?) 10g ;.zf (23)

where

A =

KZ(an)(l’l -1) nm—1 N-—n
14 0 0 0 0
@ (N-1) (N*1+N71(7§f)‘ (24)

This equation can be used in practical cases for evaluating a-priori the < threshold in the
comparison process, from the knowledge of: the length N of the data sequence, the initial
standard deviation o value, the frequency jump, K;,, the frequency variance change factor,
0'5 Yz and the number of anomalous samples, (N — 1y), before the detection event.
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WORKING
N-length data | T(X) | <y —* 0 "cLock
acquisition system | |  GLRT detector >1 >3 1 FAULTING
CLOCK

Fig. 1. Simplified block diagram of a GLRT scheme. y is the N-length available data sequence.
T(y) is the GLRT detector scalar output. 7 is the threshold value used for assuming true H
or H.

data sample

) 5 100 . 50 200 250

sample number
Fig. 2. Behavior of a normalized frequency data record, normally distributed, simulated by
considering the following parameters: record length M = 250, g =1, op = 1, K, =9 (thus

u1 =10), opf =1 (thus 01 = 0y), ng = 216.

All these parameters values affect the GLRT performance and influence, in particular, the
choice of the threshold value, v, that is strictly dependent on the target PFA and that should
be defined a—priori before the application of the GLRT. From a practical point of view, the
use of the GRT is summarized in Fig.1: the available data sequence is processed by the GRT
detector (20) and the corresponding scalar output is compared to a give 'y’ value in order to
assume Hg or Hq true.

4. Simulation results

In this section simulation results are reported in order to validate theoretical results obtained
in sec. 3. At first, theoretical formula (23) will be validated by means of Monte Carlo simu-
lations and an application example is introduced in order to clarify its practical applicability.
Moreover, the statistical characterization of the GLRT is presented by analyzing the behavior
of PD versus PFA (i.e. the Receiver Operating Characteristics (ROCs)) . ROCs are evaluated
by means of Monte Carlo simulations since the theoretical behavior of the detector is a difficult
task, as already stated in sec.3.

4.1 Validation of (23)

In order to validate theoretical formula (23), Monte Carlo simulations on NREC=10000 records
of simulated data, each of length M=250, have been performed. Each data record has been
generated by considering a M-length sequence of Gaussian distributed data with initial mean
and standard deviation values equal to yp = 1 and oy = 1, respectively, and by setting a fre-
quency jump K, =9 on ng = 216. For clarification purposes, the behavior of one data record
versus the data sample index is shown in Fig.2.

For each data record, the GLRT detector (20) has been applied consecutively NREC times to
N=200 data samples by following a First In First Out (FIFO) data organization. The behavior
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I I I
200 205 210 215 220 225 230
sample number

Fig. 3. Behavior of the averaged GLRT detector (solid black line) versus the index of the last
acquired data sample, obtained by means of Monte—Carlo simulations. The average has been
evaluated on NREC = 10000 GLRTs, each obtained by processing a simulated frequency data
record with characterizing parameters equal to those of record shown in Fig.2 of data. The two
dashed black lines represent the averaged GLRT plus and minus the corresponding sample
standard deviation. Dashed gray line shows the behavior of Ty, given by (23) by using the
same set of parameters values.

of the detector output, averaged over the number of record NREC, versus the index of the last
acquired data sample, is shown in Fig.3 with a solid black line. Moreover, dashed black lines
represent the averaged GLRT plus and minus the corresponding standard deviation evaluated
on the same NREC data records. This figure shows that the GLRT detector is approximately
equal to 0 if data are not affected by anomalies, i.e. until the last processed data sample is
smaller than 216. When processed data include anomalous samples, thus the GLRT value
increases.

For comparison purposes, the theoretical behavior of the detector described by eq.(23) versus
the index of the last acquired data sample is also shown in Fig.3 with a dashed gray line for the
same set of parameters values, i.e. K, =9, 09 =1, 0 F= 1, ny = 216. The theoretical behavior
is close to the averaged GLRT output.

In order to give a quantitative characterization of the theoretical behavior, the relative dis-
placement between the averaged GLRT evaluated by means of Monte Carlo simulations and
the theoretical detector (i.e. between the solid-black and the dashed—gray lines in Fig.3) is
shown in Fig.4(a) and the corresponding relative standard deviation is shown in Fig.4(b).
This figure shows that the error between the theoretical and simulated GLRT reduces as the
number of samples with anomaly, and processed by the detector, increases. In particular, if
(N —mng) > 2 (i.e. sample index > 218), thus the error is smaller than 2% with a corresponding
type A uncertainty, estimated by dividing the relative standard deviation by v NREC = 100,
smaller than 0.1% (GUM, 1997). This result validates the expression of Tyo;.

It follows that the theoretical expression (23) can be used for designing an accurate test pro-
cedure for revealing faults in data affected by frequency jump and/or by standard deviation
variation. In particular, (23) gives the < value to be used in the comparison process for a given
set of: N, target readiness expressed in terms of (N — ng), target Ky and oy .

4.2 An application example of (23)

In order to clarify how to use theoretical expression (23), let us consider an analysis problem
on the simulated data sequence shown in Fig.2. In this case, the GLRT outcome applied to
N = 200 data managed by using a FIFO strategy is shown in Fig.5. If the detector readiness
is considered, in order to reveal a fault by using no more than (N — ny) = 4 samples, by
substituting in (23) values N = 200, oy =1, 19 = 196, oy ;= 1, Ky =9, thus Tpeor = 95.37. By
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(b).

200

150 -

100 -

50

Il Il Il
200 205 210 215 220 225 230
sample number

0

Fig. 5. Behavior of the GLRT detector applied to the data sequence shown in Fig.2 versus the
index of the last acquired data sample.

setting ¥ = Tieor = 95.37, we can see in Fig.5 that the GLRT value is greater than -y for n = 220
and a warning signal should be emitted. This means that an additive frequency jump at least
equal to 9 has occurred no more than 4 samples before the alarm signal emitted on the sample
number 220.

Theoretical expression Tt can be used also for analyzing the detector accuracy versus the
number of employed anomalous samples N — np. In particular, Fig.6 shows the theoretical
behavior of the GLRT with the N — np when a data sequence of length N = 200 affected by a
frequency jump equal to K;; =9 is analyzed. This behavior clearly shows that the frequency
jump is detectable also by using just one anomalous sample. The large value of the GLRT
detector (Tteor = 34) when N — 19 = 1 is mainly due to the large jump size considered in this
application example and to the large N = 200 employed. It should be noticed that a large
N value is due to the hypothesis that initially the clock is working properly and that a fault
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occurs after that the monitoring process starts. A large N value increases the accuracy of the
MLE estimates of yig and oy since they are asymptotic Gaussian with N (S. M. Kay, 1996).

200

N-n0
Fig. 6. Behavior of Tjor versus N — ng given by (23) obtained by setting characterizing param-
eters equal to those of record shown in Fig.2 of data.

4.3 Statistical characterization of the NP detector

In order to illustrate the properties of the NP detector when it is applied to data with parame-
ters values typically employed in frequency standards and, in particular, to relate reasonable
values for the threshold parameter <y to the corresponding PFA value, the test has been char-
acterized by calculating the receiver operating characteristic (ROC), i.e. the behavior of PD
versus PFA, for many 7 and ng values, by means of Monte Carlo simulations (S. M. Kay,
1996); (S. M. Kay, 1998).

In particular, two sets of ROCs are presented here: the first one for analyzing the GLRT
sensitivity (i.e.the detection capability by using no more than a given number of faulty
samples), the other one for evaluating the GLRT readiness (i.e. the number of employed
faulty samples for a given fault).

GLRT SENSITIVITY ANALYSIS

Yincreasing

Fig. 7. ROCs obtained by considering 100 data samples and by setting (N — n0) = 15. (a)
]41 = ]40 and ;l/ll = {1.5(70,2(70,2.5(70,3(70}. (b) ;l/ll = {1.2}10,1.4]40x,1.6]/10,1.8]40} and o1 = 0p.

Fig. 7(a) and (b) shows the ROCs when u; = pg and oy = {1.509,209,2.500,300},
and py = {1.2p0,1.4p0,1.600,1.849} and o7 = 0p, respectively, with py = 2.36 - 10-4,



The use of the GLRT for revealing faults in atomic frequency standards 11

0 001 002 005 004 005 006 007 008 009 01
PFA

Fig. 8. Each line represents a ROC corresponding to a particular value of 7 obtained by
using a Monte Carlo approach based on 5000 pairs of data record each of length N=100 when:
01/ 09=3, 7y varies from 0 to 10. (a): np ranges from 13 to 20. (b): 1y ranges from 20 to 30.

0p =1.046 - 10711, N = 100, and by setting (N — ng) = 15. Circles indicate the 7 value used
for evaluating the corresponding PFA and PD. Fig. 7 can be employed to design a detection
test that can track changes in the mean and in the standard deviation. As an example, one can
see that a PD = 93% is obtained when the change in the mean is at least equal to a factor 1.8,

and that the condition T (y; [ﬁHo,ﬁHl]) > 7 = 10 guarantees a PFA < 8%. The same threshold

value v = 10 can be employed to detect a change in the standard deviation by a factor at least
equal to 3.0, with PD > 97% and PFA < 8%.

GLRT READINESS ANALYSIS

To this purpose, for each value of 1y varying from 13 to 20, 5000 pairs of N-length data records,
normally distributed, have been synthesized. For each record pair, the first sequence has been
created by employing mean and standard deviation values respectively equal to 77, = 2.3650 -
107! and 7y = 1.0462 - 10~ !, that is by assuming Hy true. The second data set presents the
first ny samples equal to those of the first record, while the last N — 1y samples have been
generated as normally distributed with mean 7, and 07 = 30p. Thus, the second data record
meets with H;. Both data records have been employed for calculating the corresponding

value of T (y; [ﬁHo,ﬁHl}) when H is true, i.e. by applying (20) to the first record, and when

H; is true, i.e. by applying (20) to the second record.

Simulation results obtained by assuming N=100 are shown in Figs.8(a) and (b). In particular,
each line in Fig.8(a) is the ROC corresponding to a particular ng value, ranging from 13 to 20,
with  varying from 0 to 15, as indicated by the figure label, when pig = 1 =y and 0y /07 =3
with oy = . Fig.8(b) shows the same ROC reported in Fig.8(a) but detailed for PFA<10%,
PD>90% and 1y ranging from 20 to 30. This figure shows that by processing a set of data of
length N = 100, the fault detection occurs with PFA<5% and PD>95% only for ng larger than
25. Equivalently, under the same assumptions, it is possible to detect a fault within 25 samples
from its occurrence. Moreover, for each 1 value, this figure gives information on the range of
the threshold values o which can be used for revealing a fault.
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Fig. 9. (a): Behavior of normalized frequency data of atomic clock on satellite GPS 22 (down-
loaded by IGS). (b) Zoom of figure (a) on the first 400 experimental data samples.
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Fig. 10. Behavior of the GLRT detector applied to data shown in Fig. 9 (a) with N = 200.
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5. Experimental results

Figure 9(a) shows the behavior of experimental normalized frequency data of GPS satellite
number 22. Data have been obtained by the International GNSS Service (IGS) — Formerly the
International GPS Service (J.M. Dow et al., 2005). The GLRT has been applied to these data
by setting a processing window length N = 200. Thus, data samples have been processed by
following a FIFO strategy and the processing result is shown in Fig.10. In particular, each time
a new data sample is processed, the detector outcome is updated. The GLRT has a a spike on
sample numbered as 236 while presents an increasing behavior after sample index 260. By
requiring a small threshold value, i.e. ¥ = 10, warning signals are emitted on sample indexes
237 and 266. The first one is probably a false alarm, while the second is a true false alarm. If
the <y value is increased (i.e. v = 18), thus the false alarm probability is obviously reduced but
the detection process requires a larger number of faulty samples in order to detect the fault
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occurrence (Fig.10 shows that at least 22 faulty samples are needed since y = 18 implies a fault
detection on sample index 282).

A-posteriori analysis of data parameters confirm the validity of the GLRT technique. In fact,
by zooming the behavior of the experimental frequency data on the first 400 samples (see
Fig.9(b)) it is clear (and confirmed) that the first warning is a false alarm, while the second
warning signal a fault detection signal and that the fault has occurred on sample numbered
as 260 (as argued by a visual inspection of the GLRT behavior). In particular, the fault can be
classified as a mean change. In fact, the arithmetic mean on the first 260 sample is equal to jip =
—2.21-10713 and on samples from 261 to 461 is equal to g = 1.96 - 10~ 13. The corresponding
standard deviation values are almost the same and equal to 0y = 07 = 6 - 10713, Thus, we can
asume Ky =4 - 10~ 13 and Oof = 1.

By substituting these parameters values in the theoretical detector (23) and by requiring the
fault detection within no more than 6 faulty samples, i.e. by using N — ng = 6, thus (23) gives
Tieor = 9.14, which is a threshold value congruent with the analysis of the GLRT outcome
shown in Fig.10.

6. Conclusion and future works

The GLRT detection algorithm for revealing faults from atomic clock frequency data has been
analyzed. It has been shown that the GLRT algorithm efficiently detects anomalies when ap-
plied to atomic clock frequency data (E. Nunzi & P. Carbone, 2008)- (E. Nunzi et al., 2009).
However, the mathematical expression of the detector depends on many parameters char-
acterizing acquired data and previously analysis of the parameters dependencies have been
based on ROCs evaluated by means of Monte—Carlo simulations. It follows that a proper
customization of the GLRT technique to the analysis of data coming from atomic clocks is
necessary and useful for designing the test procedure.

The information given by the GLRT method can be employed to detect the non stationary
change in the clock behavior.

Future works are focused on the theoretical statistical characterization of the GLRT detector
and on the designing of the test procedure for effectively reveals anomaly in real-time (i.e.
while the data acquisition process is going on). Moreover, the MLE estimates used for evalu-
ating the GLRT outcome could be employed for deriving information also on the identification
of the occurred anomaly, although it is known MLE estimators are not optimal when a small
number of faulty samples are employed (as required for this specific application).
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1. Introduction

Nowadays in modern industries, the scale and complexity of process systems are increased
continuously. These systems are subject to low productivity, system faults or even hazards
because of various conditions such as mis-operation, equipment quality change, external
disturbance, and control system failure. In these systems, many elements are interacted, so a
local fault can be propagated and probably spread to a wide range. Thus it is of great
importance to find the possible root causes and consequences according to the current
symptom promptly. Compared with the classic fault detection for local systems, the fault
detection for large-scale complex systems concerns more about the fault propagation in the
overall systems. And this demand is much close to hazard analysis for the system risks,
which is a kind of qualitative analysis in most cases prior to quantitative analysis.

The signed directed graph (SDG) model is a kind of qualitative graphical models to describe
the process variables and their cause-effect relations in continuous systems, denoting the
process variables as nodes while causal relations as directed arcs. The signs of nodes and arc
correspond to variable deviations and causal directions individually. The SDG obtained by
flowsheets, empirical knowledge and mathematical models is an expression of deep
knowledge. Based on the graph search, fault propagation paths can be obtained and thus
certainly be helpful for the analysis of root causes and sequences (Yang & Xiao, 2005a). And
with development of the computer-aided technology, graph theory has been implemented
successfully by some graph editors, some of which, like Graphviz (2009), can transform text
description into graphs easily. Hence the SDG technology can be easily combined with the
other design, analysis and management tools.

The SDG definition and its application in fault diagnosis were firstly presented by Iri et al.
(1979). Ever since then, many scholars have contributed to this area, including modeling,
inference, software development and applications. Many efforts have been particularly
made to implement the methods and to overcome the disadvantages, such as spurious
solutions. Here we recognize some representatives among them. Kramer & Palowitch (1987)
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used rules to describe SDG arcs, which shows that expert systems can be employed as a tool
in this problem. Oyeleye & Kramer (1988) took into account the qualitative simulation for
the SDG inference. Shiozaki et al. (1989) improved the SDG model by adding fault revealing
time. Yu et al. (Chang & Yu, 1990; Yu & Lee, 1991) introduced fuzzy information for arc
signs to describe the steady state gains. Maurya et al. (2003a, 2003b, 2006) described the
modeling method based on differential equations (DEs) and algebraic equations (AEs),
analyzed the initial and final responses based on SDGs, and studied the description and
analysis of control loops. SDG method has been combined with other data-driven methods
to improve the diagnosis accuracy (Vedam & Venkatasubramanian, 1999; Lee et al., 2006).
At first, the inference is based on single fault assumption, but multiple fault cases attract
more and more attention (Vedam & Venkatasubramanian, 1997; Zhang et al. 2005; Chen &
Chang, 2007). Up to now, SDG method has been implemented in some software tools
(Mylaraswamy & Venkatasubramanian, 1997; McCoy et al. 1999; Zhang et al., 2005) and
applied in various industrial systems.

Aiming at SDG applications in the area of fault detection and hazard analysis, the problems
of description and inference are most important. As the system extends, the time
consumption of graph search is heavy, so the single-level SDG model should be transformed
into hierarchical model to improve the search efficiency. The root cause can be searched in
this model level by level according to the initial response of the system. In control systems
and many other cases, cycles exist in the graph, resulting in the truncation or misleading to
the search. Thus the theoretic fundamentals and dynamic features of SDGs should be
studied. We have analyzed the fault propagation principles by operations of corresponding
qualitative matrices and obtained some typical rules of control systems.

Moreover, fault detection is performed based on sensor readings, thus the sensor location
strategy affects the performance of fault detection. Due to the economical or technical
limitations, the number of sensors should be limited while meeting the demands of fault
detection. This can be considered in the SDG framework. We analyze main criteria such as
detectability, identifiability and reliability in the framework of SDGs and presented
algorithms, in order to guarantee that the faults can be detected and identified, and to
optimize the fault detection ability.

This chapter is organized as follows: first, the SDG description is reviewed and hierarchical
model is indicated; then the fault propagation rules and inference approaches are
summarized to lead to the successful application of fault detection and hazard analysis;
some considerations about sensor location are introduced next; finally a generator set
process in a power plant is modeled and analyzed to illustrate the proposed model and
method.

2. Model Description of Signed Directed Graph

2.1 Basic Form of SDG Model

SDGs are established by representing the process variables as graph nodes and representing
causal relations as directed arcs. An arc from node A to node B implies that the deviation of
A may cause the deviation of B. For convenience, “+”, “-” or “0” is assigned to the nodes in
comparison with normal operating value thresholds to denote higher than, lower than or

within the normal region respectively. Positive or negative influence between nodes is
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distinguished by the sign “+” (promotion) or “-” (suppression), assigned to the arc (Iri et al.,
1979). The definition is as follows:

Definition 1: An SDG model y is the composite (G,p) of (1) a digraph G which is the
quadruple (N,4,07,07) of (a) a set of nodes N={v,v,,---,v,} , (b) a set of arcs
A={a,,a,,"--,a,}, (c) a couple of incidence relations *: 4— N and 0 : 4 > N which make
each arc correspond to its initial node 6" a, and its terminal node & g, , respectively; and (2)
a function ¢: 4 — {+,—}, where ¢(a,) (a, € 4) is called the sign of arc a, .

Usually we use a;; to denote the arc from v; to ;.

Definition 2: A pattern on the SDG model y =(G,9) is a function y: N — {+,0,-}. w(v)

(v e N) is called the sign of node v, i.e.
w(v)=0 for

X, —X,|<¢&,

y(v)=+ for x, X, 2>¢,

wy(v)=— for x,—x,>¢,
where x, is the measurement of the variable v, X, is the normal value, and ¢, is the
threshold.
Definition 3: Given a pattern y on a SDG model y =(G,¢), an arc a is said to be consistent
(with ) if w(3 a)p(a)y (0 a)=+ . A path, which is consisted of arcs g,,a,, --,a, linked
successively, is said to be consistent (with y ) if w (0 a,)p(a,)---¢(a,)y (0 a,)=+.

2.2 Modeling Methods of SDGs

2.2.1 SDG modeling by mathematical equations

In general, SDGs can be obtained either from operational data and process knowledge, or
mathematical models. If we have the differential algebraic equations (DAEs), then we can
derive the structur