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Preface

Computer vision uses digital computer techniques to extract, characterize, and interpret
information in visual images of a three-dimensional world. The goal of computer vision is
primarily to enable engineering systems to model and manipulate the environment by using
visual sensing.

The field of computer vision can be characterized as immature and diverse. Even
though earlier work exists, it was not until the late 1970s that a more focused study of the
field started when computers could manage the processing of large data sets such as images.

There are numerous applications of computer vision, including robotic systems that
sense their environment, people detection in surveillance systems, object inspection on an
assembly line, image database organization and medical scans.

Application of computer vision on robotics attempt to identify objects represented in
digitized images provided by video cameras, thus enabling robots to "see". Much work has
been done on stereo vision as an aid to object identification and location within a three-
dimensional field of view. Recognition of objects in real time, as would be needed for active
robots in complex environments, usually requires computing power beyond the capabilities
of present-day technology.

This book presents some research trends on computer vision, especially on application
of robotics, and on advanced approachs for computer vision (such as omnidirectional
vision). Among them, research on RFID technology integrating stereo vision to localize an
indoor mobile robot is included in this book. Besides, this book includes many research on
omnidirectional vision, and the combination of omnidirectional vision with robotics.

This book features representative work on the computer vision, and it puts more focus
on robotics vision and omnidirectioal vision. The intended audience is anyone who wishes
to become familiar with the latest research work on computer vision, especially its
applications on robots. The contents of this book allow the reader to know more technical
aspects and applications of computer vision. Researchers and instructors will benefit from
this book.

Editor

Xiong Zhihui

College of Information System and Management,
National University of Defense Technology,

P.R. China
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Behavior Fusion for Visually-Guided
Service Robots

Mohamed Abdellatif
Ain Shams University, Faculty of Engineering

Egypt

1. Introduction

Mobile service robots are the class of robots that have tools to understand the environments
at home and office. The development of mobile robots is increasing world-wide due to the
availability of moderate price sensing and computing devices. Moreover, there is a strong
belief that the market for service robots is just about to undergo a radical increase in the next
few years.

Despite the huge literature of the mobile robot navigation, the development of intelligent
robots able to navigate in unknown and dynamic environment is still a challenging task
(Walther et al., 2003). Therefore, developing techniques for robust navigation of mobile
robots is both important and needed.

The classical approach for mobile robot control used the "Model, Sense, Plan, Act", MSPA
serial strategy, which proved to be inherently slow and totally fails if one module is out of
order. We may call this approach as a planner-based control approach. The appearance of
behavior-based navigation approach (Arkin, 1998; Brooks, 1986) was a remarkable
evolution, in which the reactive behaviors were designed to run simultaneously in parallel
giving tight interaction between sensors and actuators. The reactive behaviors allow for
incremental improvements and addition of more application-specific behaviors. Building
several behaviors, each concerned with a sole objective, will produce different decisions for
the robot control parameters, and they have to be combined in some way to reach the final
motion decision.

The fusion of independent behaviors is not an easy task and several approaches were
proposed in the literature to solve this problem (Arkin, 1998; Borenstein & Koren, 1991;
Carreras et al., 2001; Saffiotti, 1997). Coordination of behaviors can be classified into two
further approaches, a competitive, as was originally proposed by (Brooks, 1986), and
cooperative strategies (Carreras et al., 2001).

Depending on the environment, the competitive approach may fail and become unstable in
critical situations demanding higher switching frequencies between behaviors. In the
subsumption architecture (Brooks, 1986) behaviors are activated once at a time but this may
be inadequate for a variety of situations requiring several behaviors to be active at the same
time.

In the cooperative approach, all behaviors contribute to the output, rather than a single
behavior dominates after passing an objective criterion. An example of the cooperative
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approach is proposed by (Khatib, 1985) using artificial potential fields to fuse control
decisions from several behaviors. The potential field method suffers from being amenable to
local minima which causes the control system to get stuck and become indecisive. Hybrid
techniques from competitive and cooperative approaches were proposed in (Carreras et al.,
2001). However, they used learning to build up the rule set which consumes a lot of time
and effort.

The use of fuzzy logic for behavior fusion had been reported in (Saffiotti, 1997) where a
hierarchy of behaviors was used for mobile robot guidance. Fuzzy logic approach, since its
inception (Zadeh, 1965), have long been applied to robotics with many successful
applications,(Luo et al., 2001; Saffiotti, 1997 ; Zimmermann, 1996) and regarded as an
intelligent computational technique that enables the proper handling of sensor uncertainties.
Fuzzy rules can be used to design the individual behaviors as well as the way they are
integrated to reach a final decision (Arkin, 1998; Luo et al., 2001).

In this work, we propose a new method to integrate the behavior decisions by using
potential field theory (Khatib, 1985) with fuzzy logic variables. The potential field theory
proved to be very efficient especially for fast robots (Borenstein & Koren, 1991). The theory
relies on the physical concept of force vector summation. Forces are virtual and describe the
attractions and disattraction in the robot field. The potential field theory had been criticized
for being susceptible to local minima and consequently unstable motion. We show that
when the vector field is applied to the output from a single behavior, which is smooth due
to the use of fuzzy logic, it can significantly enhance the performance of the robot navigation
system. The control system is implemented and used to navigate a small indoor service
robot so that it can track and follow an object target in an indoor flat terrain.

The chapter is arranged as follows, the next section presents the model of imaging and
measurements of target location from the color image. In Section 3, we describe the design
of fuzzy logic controller responsible for target tracking behavior, obstacle avoidance
behavior and combining both behaviors. The results of robot control experiments for the
behaviors are presented in Section 4. Conclusions are finally given in Section 5.

2. Measurement model

The RGB color space is the most popular color system since it is directly related to the
acquisition hardware, but the RGB space is not perceptually uniform. The Hue, Saturation
and Intensity, HSI color space is preferred when humans are involved, since it is
perceptually uniform. The cylindrical representation of the HSI system is shown in Fig.1.

Fig. 1. The Hue-Saturation-Intensity ( HSI') color space by cylindrical representation.
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Perceptually Uniform, PU, color spaces are more suitable for color recognition than the RGB
space, since the quality of recognition will always be judged by a human observer (Cheng &
Sun, 2000 ; Kim & Park, 1996 ; Littmann & Ritter, 1997; Tseng & Chang, 1992).

The PU color space of HSI has the advantage that the object color is encoded mainly in the
angle of the hue. This angle representation of color is easier in target color definition and
less sensitive to changes of illumination intensity, but certainly changes when the
illumination color is changed.

Therefore, we can compute the Hue, H and Saturation, S using the following formulae (Kim
& Park, 1996) :

H = arctan {MJ @

(2R-G-B)
I=(R+G+B)/3 2)
G 1_(min(1§,G,B)J 9

The target object color is defined in terms of limiting hue angles and limiting saturation
values describing the boundaries of a color zone in the H-S diagram that can be described by
the following constraints:

Hmin <H< Hmax; and Smin< S< Smax (4)

Where subscript min refers to the minimum limit, and max refers to the maximum limit. The
target is detected in the image by this selection criterion based on whether the pixel color
lies within the boundaries of the H-S zone, known apriori for the target.

The segmented image is written into a monochromatic image, in which the target area color
is written as white pixels and the background is written as dark pixels. The resulting binary
image is then used to compute the area in pixels of the target area by counting the white
pixels. This inherently uses the assumption that pixels are clustered in one group and that
scattered pixels are a small portion in the image. The average horizontal coordinate of the
target region is also computed and forwarded as input to the controller, as shown
schematically in Fig. 2.

}.l A
Image
Vertical _
Coordinate
Target Target
Horizontal Area
Coordinare

Image Horizontal Coordinate

Fig. 2. Schematic representation of target measurement in the gray image showing extracted
target region.
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3. Design of controller

The goal of the controller is to enable the mobile robot to satisfy two objectives namely:
target following and obstacle avoidance simultaneously. The objectives are implemented in
separate behaviors which run independently in parallel and their output should be
combined into a single command as shown in Fig.3. In this section, we describe the design
of each behavior and then show how to combine their decisions.

Target Following

FEinal § teerrng
Bebavior Fusion | Angle

l

Obstacle Avoidance

Fig. 3. Schematic of Robot Behaviors.

3.1 Design of target following behavior

The output of this behavior will decide the steering angle of the robot needed to make the
target image appears continually in the middle of the image.

The sensory information available for the steering command is the average horizontal target
position in the image, shown in Fig.2. The horizontal component of motion is only selected
since the robot and target are both assumed to move on an indoor flat terrain and the
camera orientation relative to the floor is fixed. The steering changes the target image
position and hence, the motion attributes chosen as the input fuzzy linguistic inference
layers for the FLC are selected to be:

1. Target image horizontal displacement

2. Target image horizontal velocity.

The membership functions for these two layers are shown in Fig4. The fuzzy logic
controller used to control the mobile robot employs triangular membership functions to
fuzzify the data measured by the vision system. The input fuzzy variables are divided into
three overlapping fuzzy set functions. In our implementation, the linguistic descriptors for
the image horizontal displacement are defined as : 1) Left (L) , 2) Middle (M), and 3) Right
(R), as shown in Fig.4. a.

The target image horizontal velocity is described by three fuzzy variables defined as : 1)
Getting Left (GL), 2) Getting Middle (GM), and 3) Getting Right (GR), as shown in Fig.4.b.
The shape and relative overlap of the fuzzy variables (that is tuning), are determined based
on the experience gained from experiments with the robot. The shape of the membership
function had been decided after studying the sensitivity of the mean of each membership
function on the robot performance. The mean was changed across 10 % of its shown value
and had been found to be stable over this range. The two fuzzy variables are then used to
derive the output steering state. Three output states are used for steering namely, 1) Steer
Right, SR, 2) go STRaight, STR and 3) Steer Left, SL, as shown in Fig.4.c. For each fuzzy
linguistic interference process we define 3*3 fuzzy rule matrix as shown in Table 1.
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Fig. 4. Membership functions for the input variables of the steering FLC.

GL GM GR
L SLy SL, STR4
M SL3 STR, SRy
R STR3 SR; SR3

Table 1. The Fuzzy Rule Matrix for the Target following FLC. ( The columns show states for
the target horizontal velocity, while the rows show states of target horizontal displacement).
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The motion decision for the tracking behavior is calculated through the fusion of the image
displacement and image velocity in the fuzzy logic inference matrix.

The values of matrix entry is calculated by finding the minimum of the two input variables.
The three output variables are then computed using the root of sum squared of contributing
variables. Finally, the normalized control command are defuzzified according to the center
of gravity method.

3.2 Design of obstacle avoidance behavior

In the obstacle avoidance behavior, the reading of two ultrasonic range sensors are used as
input variables for the FLC, while the output variable is the steering angle.

The flow chart of obstacle avoidance algorithm is shown in Fig.5, where the sensor reading
are first read. Notations S1 and S2 denote signal of obstacle distance measured by left sensor
and right sensor respectively. The sensor readings are then fuzzified (transformed into
fuzzy linguistic variables) into three variables, namely, Near, N, Medium, M and Far, F.

The steering angle has three membership functions, Steer Left, SL, Steer Right, SR and
STRaight, STR. Table 2, shows a list of the possible sensor states and the corresponding
motion decision for avoiding the obstacle.

51/S2 N M F
N Stop SR SR
M SL STR SR
F SL SL STR

Table 2. The Fuzzy Rule Matrix for the Obstacle Avoidance FLC. ( The columns show states
for the right sensor, while the rows show states for the left sensor)

<-- Srarr__j:;-

w

Fead Senzor 51 nnd?/

w

Fuzzify sensor readings into Near,
Aedinom and Far variables.

-

Compute decizion variables
from Table 2.

i

Compute steering angls
baszed on centroid method

L

Write the steering angle
@z an ontpat

T— Reached 7 o

™Nao e
B 3 __q_‘.n’es
T,
'C::_ Stop

Fig. 5. Flow Chart of the Obstacle Avoidance Behavior.
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It should be noted that based on the limit of the obstacle distance corresponding to the "N"
linguistic variable, the robot may escape the obstacle by steering or may have to stop, in case
the distance is very small to enable maneuvering without crash. The minimum distance in
our case is 40 cm, and the robot speed is moderate, therefore we rarely get in the situation
that the robot should stop unless it is besieged completely.

Then using the center of gravity methods, the steering angle is computed based on the
decisions computed from Table 2 and made as a stand alone output signal that will be
handled by the fusion algorithm.

3.3 Fusion of behaviors

We have two decisions for the steering angle computed from the two behavior
implementations as shown before in Fig. 3. The decision is fused through using the potential
field method by vector summation of the two vectors resulting from each behavior. The
velocity vector from goal seeking behavior has a velocity amplitude maximum when
steering is straight and decreases according to a linear model when the steering is off-axis.
Then, using vector mechanics, the combined Euclidean magnitude and direction are
computed and used to steer the vehicle. This method differs from the main potential field
theory in the way the input vectors are generated, in our case it is generated through the
fuzzy logic in each separate behavior in contrary to the direct construction of such vector in
the main theory by linear scaling functions (Khatib, 1985; Saffiotti, 1997).

4. Experiments

4.1 System configuration

The robot had been constructed to have four wheels to move easily on flat terrain as shown
in Fig.6. The two side wheels are driven by two independent servo motors, while the front
and rear wheels are castor wheels and provided only to improve the mechanical stability of
the robot. The robot consists of three layers of strong acrylic sheets supported by four long
pillars. The lower level contains microcontroller circuit for controlling low level motor
motion and reading of ultrasonic sensors and encoder readings. The second level carries the
foursight vision processor and screen for displaying camera image, while the third carries
the two cameras and the main microprocessor.

The robot is equipped with 16-ultrasonic sensors to enable perception of its environment.
The resolution of the sensor measurement is around 1 cm. The robot has two color video
cameras installed onboard. The cameras provide the image that is used by the target
following behavior.

The main microprocessor receives data from the motion control system and the vision
module. Inputs from both the cameras are fed into the Matrox Foursight module to process
the image as a dedicated vision processor. The images received from the cameras are
digitized via a Meteor II frame grabber and stored in the memory of the Foursight computer
for online processing by specially designed software. We implemented algorithms that grab,
calibrate the color image to eliminate the camera offset. The target color is identified to the
system through measurement of it Hue-Saturation zone. The color attributes of the target
are stored in the program for later comparison. Then the motion attributes of the target
extracted area are computed and passed to main microprocessor where the data is needed
for the FLC module. The movement of the vehicle is determined by the main microprocessor



8

Computer Vision

with inputs from different components. All programs are implemented in C++ code and
several video and data processing libraries are used, including Matrox Imaging Library,

MIL and OpenCV.

e Color CCD
cameras

Differential
Drive Wheels

Motion Conirol
Microcontroller

Fig. 6. Photograph of the mobile service robot.

The robot sensors and actuators communicate with the host computer via wired
connections. The DC motor is controlled through a motor interface card utilizing the
popular H-Bridge circuit with a high torque DC motor, of 8 kg.cm nominal torque at rated
voltage of 12 Volts. Test programs were devised to ensure the right operation of the
measurement and control system and to identify the resolution of measurements and

control signal.

The robot main specifications are summarized in Table 3.

Item Description
Size 40 cm diameter and 90 cm height.
Weight 20 kg
Power 12 V battery.
No. of Wheels 4

Steer and drive mode

Differential Drive

Camera type Two Color CCD camera
Frame rate 30 frames per second
Image standard NTSC
Image size 640x480 pixel x pixel
robot speed Maximum 50 cm/s

Table 3. Specification of the mobile robot.

4.2 Results

An experimental program was conducted to explore the effectiveness of the control system
in guiding the robot through the indoor environment according to desired behaviors.
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Experiments were done for separate behaviors and then for the combined behavior. A
sample result showing the extraction of target area is shown in Fig. 7. The left image shows
original captured image and the extracted target area is shown in the right image.

ORIGINAL SEGMENTED

Fig. 7. The segmented image showing the detected target area.

A computer program was devised to construct the Hue-Saturation, H-S histogram shown in
Fig 8. The advantage of this representation is that it enables better extraction of the target
when it had been well identified apriori. We show the histogram for a sample target, which
is a red object in this particular case. The hue range is from 0 to 360 degrees and the
saturation ranges from 0 to 255. It is worth noting that the hue angle is repeated and hence 0
degree vertical line coincides with the 360 degree vertical line, therefore the region shown
can be described in limited bounds. The dark regions in the graph corresponds to a high
number of pixels in the target area having the same H-S point. This defines the color zone
mentioned earlier in this paper and the bounds are extracted from this figure. It is worth
noting that the input image contains the target in several views and distances so that it
almost encapsulates all the possible color reflections of the object in all views. For the target
following experiments, the robot is adjusted at first to view the target inside the color image.

255

Sat.

Fig. 8. The Hue-Saturation diagram showing regions of darker intensity as those
corresponding to higher voting of the target object pixels.
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The robot starts to move as shown in the robot track, Fig. 9 and keeps moving forward.
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Fig. 9. The real track of the robot while following the colored target.
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Fig. 10. The real track of the robot while following the colored target.

During the robot motion, the target continuously approach the image center and
consequently the target area increases in the extracted target image. The robot followed the
target even when it is moving in curved routes, as long as the target is visible in the robot

camera and the target speed is comparable to robot speed.

An experiment for the obstacle avoidance behavior is shown in Fig 10. The dotted line
shows the robot path when working with obstacle avoidance only. The robot evades the
obstacles and move towards free areas based on the sequence of obstacles faced.

The robot stops when the target area in the image exceeds a certain empirical threshold so
that the robot stops at about 25 cm in front of the target, or the sensors detect an obstacle less

than 30 cm close to it.
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The target following behavior is then integrated with the output from obstacle avoidance
behavior using vector summation principle. The heading angle is then executed by the
differential wheels.

An experiment showing the combined effect of both behaviors is shown also in Fig 10. The
solid line shows the robot track when both behaviors are combined, the robot evades the
right target but soon recovers and steer right toward the target.

5. Conclusion

We have implemented a control system that enables a mobile service robot to track and
follow a moving target while avoiding obstacles. The system was experimentally validated
using a real robot equipped with CCD cameras and ultrasonic range sensors. The algorithms
for color image processing and extraction of the target image and measurement of target
features had been developed. Fuzzy logic controllers had been designed to produce two
concurrent behaviors of target following and obstacle avoidance and for combining the
results of two behaviors into one set of commands for robot control. The control system
succeeded in guiding the robot reliably in both tracking of the target and following it while
keeping a reasonable distance between them that ensures the visibility of the target in the
camera view. Fuzzy control provided smooth and reliable navigation that circumvents the
inherent uncertainities and noise in the sensing process, as well as the smooth blending of
behaviors.

Future directions of research include the use of more input information such as that from a
human interface or an external planner. The goal is to create an autonomous service robot
that will be able to navigate based on information from combined information from visual
inputs, sonars and outdoor GPS data that will guide the vehicle in remote target points and
have a user-friendly interface.
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Dynamic Omnidirectional Vision Localization
Using a Beacon Tracker Based on Particle Filter

Zuoliang Cao, Xianqiu Meng and Shiyu Liu
Tianjin University of Technology
P.R. China

1. Introduction

Autonomous navigation is of primary importance in applications involving the usage of
Autonomous Guided Vehicles (AGVs). Vision-based navigation systems provide an
interesting option for both indoor and outdoor navigation as they can also be used in
environments without an external supporting infrastructure for the navigation, which is
unlike GPS, for example. However, the environment has to contain some natural or artificial
features that can be observed with the vision system, and these features have to have some
relationship to spatial locations in the navigation environment (Cao, 2001). The omni-
directional camera system produces a spherical field of view of an environment. This is
particularly useful in vision-based navigation systems as all the images, provided by the
camera system, contain the same information, independent of the rotation of the robot in the
direction of the optical axis of the camera. This makes the computed image features more
suitable for localization and navigation purposes (Hrabar & Sukhatme, 2003; Hampton et
al., 2004). The methods proposed have been developed for vision-based navigation of
Autonomous Ground Vehicles which utilize an omni-directional camera system as the
vision sensor. The complete vision-based navigation system has also been implemented,
including the omni-directional color camera system, image processing algorithms, and the
navigation algorithms. The actual navigation system, including the camera system and the
algorithms, has been developed. The aim is to provide a robust platform that can be utilized
both in indoor and outdoor AGV applications (Cauchois et al., 2005; Sun et al., 2004).

The fisheye lens is one of the most efficient ways to establish an omnidirectional vision
system. The structure of the fisheye lens is relatively dense and well-knit unlike the
structure of reflector lenses which consist of two parts and are fragile. (Li et al., 2006; Ying et
al., 2006). Omnidirectional vision (omni-vision) holds promise of various applications. We
use a fisheye lens upwards with the view angle of 185° to build the omni-directional vision
system. Although fisheye lens takes the advantage of an extremely wide angle of view, there
is an inherent distortion in the fisheye image which must be rectified to recover the original
image. An approach for geometric restoration of omni-vision images has to be considered
since an inherent distortion exists. The mapping between image coordinates and physical
space parameters of the targets can be obtained by means of the imaging principle on the
fisheye lens. Firstly a method for calibrating the omni-vision system is proposed. The
method relies on the utilities of a cylinder on which inner wall including several straight
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lines to calibrate the center, radius and gradient of a fisheye lens. Then we can make use of
these calibration parameters for the correction of distortions. Several imaging rules are
conceived for fisheye lenses. The regulations are discussed respectively and the distortion
correction models are generated. An integral distortion correction approach based on these
models is developed. A support vector machine (SVM) is introduced to regress the
intersection points in order to get the mapping between the fisheye image coordinate and
the real world coordinate. The advantage of using the SVM is that the projection model of
fisheye lens which needs to be acquired from the manufacturer can be ignored.
Omni-directional vision navigation for autonomous guided vehicles (AGVs) appears
definite significant since its advantage of panoramic sight with a single compact visual
scene. This unique guidance technique involves target recognition, vision tracking, object
positioning, path programming. An algorithm for omni-vision based global localization
which utilizes two overhead features as beacon pattern is proposed. The localization of the
robot can be achieved by geometric computation on real-time processing. Dynamic
localization employs a beacon tracker to follow the landmarks in real time during the
arbitrary movement of the vehicle. The coordinate transformation is devised for path
programming based on time sequence images analysis. The beacon recognition and tracking
are a key procedure for an omni-vision guided mobile unit. The conventional image
processing such as shape decomposition, description, matching and other usually employed
technique are not directly applicable in omni-vision. Vision tracking based on various
advanced algorithms has been developed. Particle filter-based methods provide a promising
approach to vision-based navigation as it is computationally efficient, and it can be used to
combine information from various sensors and sensor features. A beacon tracking-based
method for robot localization has already been investigated at the Tianjin University of
Technology, China. The method utilizes the color histogram, provided by a standard color
camera system, in finding the spatial location of a robot with highest probability (Musso &
Oudjane, 2000; Menegatti et al., 2006).

Particle filter (PF) has been shown to be successful for several nonlinear estimation
problems. A beacon tracker based on Particle Filter which offers a probabilistic framework
for dynamic state estimation in visual tracking has been developed. We independently use
two Particle Filters to track double landmarks but a composite algorithm on multiple objects
tracking conducts for vehicle localization. To deal with the mass operations of vision
tracking, a processor with the ability of effective computation and low energy cost is
required. The Digital Signal Processor fits our demands, which is well known for powerful
operation capability and parallel operation of instruction (Qi et al., 2005). It has been widely
used in complicated algorithm calculation such as video/imaging processing, audio signal
analysis and intelligent control. However, there are few cases that DSP is applied in image
tracking as the central process unit. In our AGV platform, DSP has been implemented as a
compatible on-board imaging tracker to execute the Particle Filter algorithm. An integrated
autonomous vehicle navigator based on the configuration with Digital Signal Processor
(DSP) and Filed-programmable Gate Array (FPGA) has been implemented. The tracking
and localization functions have been demonstrated on experimental platform.

2. Calibration for fisheye lens camera

According to the fisheye imaging characteristics (Wang, 2006), the rectification of the fisheye
image consists of two main phases. First the center of fisheye lens need to be calibrated.
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Second, establish the mapping between the physical space coordinate and fisheye images
coordinate.

The approach for geometric restoration of omni-vision images has been considered in some
papers since the fisheye lens was used (Cao et al., 2007). Some parameters are primarily
important in the geometric restoration, such as the center and focal length of the fisheye
lens. The calibration by using distortion models has been discussed in recent papers (Wang
et al., 2006; Li et al., 2006; Brauer-Burchardt. & Voss., 2001). The calibration parameters can
be retrieved by the method of least square and mathematic models. The previous approach
utilizes grids, which are drawn on a plan surface. The grids will distort after grabbed by the
fisheye lens camera (Hartley & Kang, 2007). Here, another method for calibrating the center
of omni-vision images is proposed.

If a straight line in physical space is parallel to the optical axis direction of the fisheye lens,
the line will not distort in the fisheye image. Therefore, a cylinder model is proposed in this
article. To construct the cylinder model, straight lines are drawn on the inner side of the
cylinder, whose axis is parallel to the optical axis of the fisheye camera. Then enclose the
camera lens with this cylinder. The image captured with fisheye camera using cylinder
model is shown in Fig. 1. The intersection of all the lines is the fisheye lens center.

Fig. 1. Radial straight lines in fisheye lens image under cylinder model

To get the conversion relationship between the physical space coordinate and fisheye
images coordinate, the following method is utilized. The lower vertex of the vertical strip
which lies in the middle of the image is on the center of the fisheye optical projection that is
the origin of the fisheye coordinate system as shown in Fig. 2. The horizontal strips have the
same intervals and the intersection points of the vertical and horizontal strips have the equal
radial distance between them in physical space. As a result of fisheye distortion, the distance
between two consecutive intersection points are not equal in the image. But the
corresponding coordinates of intersection points in the fisheye image is achieved.
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Fig. 2. Calibration for omnidirectional vision system

Then we use a support vector machine (SVM) to regress the intersection points in order to
get the mapping between the fisheye image coordinate and the undistorted image
coordinate. The advantage of using the SVM is that the projection model of fisheye lens
which needs to be acquired from the manufacturer can be ignored.

3. Rectification for fisheye lens distortion

3.1 Fisheye Lens Rectification principle

The imaging principle of fisheye lens is different from that of a conventional camera. The
inherent distortion of the fisheye lens is induced when a 2 steradian hemisphere is
projected onto a plane circle. Lens distortion can be expressed as (Wang et al., 2006):

)

u, =u+5, (u,v)
v+ ,

6. (1v)

Where U and V refer to the unobservable distortion-free image coordinates; #,; and Vv, are

v, =

the corresponding image with distortion; O, (#,v)and J,(u,V) are distortion in # and

V direction.

Fisheye lens distortion can be classified into three types: radial distortion, decentering
distortion and thin prism distortion. The first just arise the radial deviation. The other two
produce not only the radial deviation but decentering deviation.

Generally, radial distortion is considered to be predominant, which is mainly caused by the
nonlinear change in radial curvature. As a pixel of the image move along projection, the
further it gets from the center of the lens, the larger the deformation is.

Owing to the different structure of lens, there are two types of deformation; one is that the
proportion becomes greater while the range between the points and the center of radial
distortion becomes bigger. The other is contrary. The mathematical model is as follow
(Wang et al., 2006):
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Where £, ,k,, k, are radial distortion coefficients; r is the distance from point (u, v) to the

center of radial distortion.
The first term is predominant, and the second and third terms are usually negligible, so the
radial distortion formula can usually be reduced as (Wang et al., 2006):

é‘w( s = kl ’
{ u,v) = kur )

S, (u,v) =kvr’

Here, we just consider radial distortion, others are neglected. Let (u,v) be the measurable

coordinates of the distorted image points, (x,y) be the coordinates of the undistorted image
points, and the function f be the conversion relationship, which can be expressed as:

{x = f(u,v)

)

y=f(uv)
Thus, the relationship between the fisheye image coordinate and physical world image
coordinate is obtained.

3.2 Fisheye lens image rectification algorithm

In the conventional method, the approach to get parameters of distortion is complicated and
the calculation is too intensive. Support Vector Machines (SVM) is statistical machine
learning methods which perform well at density estimation, regression and classification
(Zhang et al., 2005). It suits for small size example set. It finds a global minimum of the
actual risk upper bound using structural risk minimization and avoids complex calculation
in high dimension space by kernel function. SVM map the input data into a high-
dimensional feature space and finds an optimal separating hyper plane to maximize the
margin between two classes in this high-dimensional space. Maximizing the margin is a
quadratic programming problem and can be solved by using some optimization algorithms
(Wang et al., 2005). The goal of SVM is to produce model predicts the relationship between
data in the testing set.

To reduce the computation complexity, we employ SVM to train a mapping from fisheye
image coordinate to the undistorted image coordinate. SVM trains an optimal mapping
between input date and output data, based on which the fisheye lens image can be
accurately corrected.

In order to rectify fisheye image we have to get radial distortion on all of distorted image
points. Based on the conversion model and the great ability of regression of SVM, we select
a larger number of distorted image points (x,v) and input them to SVM. SVM can calculate

the radial distortion distance and regress (u,v) to (x, y) (the undistorted image point); so

that the mapping between the distortional images point and the undistorted image point
can be obtained. The whole process of fisheye image restoration is shown in Fig. 3.
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Fig. 3. Flow chart of fisheye image restoration algorithm

A number of experiments for fisheye lens image rectification have been implemented. By
comparison, the results verify the feasibility and validity of the algorithm. The results are

shown in Fig. 4.

Fig. 4. A fisheye image (above) and the corrected result of a fisheye image (below)
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4. Omni-vision tracking and localization based on particle filter

4.1 Beacon recognition

Selecting landmark is vital to the mobile robot localization and the navigation. However, the
natural sign is usually not stable and subject to many external influences, we intend to use
indoor sign as the landmark. According to the localization algorithm, at least two color
landmarks are requested which are projected on the edge of the AGV moving area. We can
easily change the size, color and the position of the landmarks. The height of two landmarks
and the distance between them are measured as the known parameters. At the beginning of
tracking, the tracker has to determine the landmark at first. In our experiment, we use
Hough algorithm to recognize the landmark at the first frame as the prior probability value.
The Hough transform has been widely used to detect patterns, especially those well
parameterized patterns such as lines, circles, and ellipses (Guo et al., 2006). Here we utilize
DSP processor which has high speed than PC to perform the Circular Hough Transform.
The pattern recognition by using CHT (Circular Hough Transform) is shown in Fig. 5.

Fig. 5. A circle object (above) and the result of Circular Hough Transform (below)
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4.2 Tracking based on particle filter

After obtain the initialization value, the two particle filters will track the landmark
continuously. Particle filtering is a Monte Carlo sampling approach to Bayesian filtering.
The main idea of the particle filter is that the posterior density is approximated by a set of
discrete samples with associated weights. These discrete samples are called particles which
describe possible instantiations of the state of the system. As a consequence, the distribution
over the location of the tracking object is represented by the multiple discrete particles (Cho
et al., 2006).

In the Bayes filtering, the posterior distribution is iteratively updated over the current
state X, given all observations Z ={Z,...,Z } up to time t, as follows:

p(X 1Z)=p(Z|X)- J (X | X)) p(X. 1Z)dx, ©)

Xi-1

Where p(Z, | X,)expresses the observation model which specifies the likelihood of an
object being in a specific state and p(X, | X,,) is the transition model which specifies how
objects move between frames. In a particle filter, prior distribution p(X, |Z, )is

approximated recursively as a set of N-weighted samples, which is the weight of a particle.
Based on the Monte Carlo approximation of the integral, we can get:

t-1

N . .
pX, | Z)=kp(Z, | X)X wiip(X, | X} )
i=1

The principal steps in the particle filter algorithm include:
STEP1 Initialization

Generate particle set from the initial distribution p(X,)to obtain {X",w"}" , and set
k=1.

STEP 2 Propagation

For i=1,..,N ,Sample X" according to the transition model p(X\" | X{").

STEP 3 Weighting

Evaluate the importance likelihood

(i)
it i=1,..,N %

N
(/)
W
j=1

() _
=

STEP 4 Normalize the weights
w'=p(Z, |X") i=1.,N ®)

Output a set of particles {X.”,w"}"

.}, that can be used to approximate the posterior

distribution as

PX 1 Z) = 2w 5(X, - X)) ©)
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Where 6(g) is the Dirac delta function.

STEP 5 Resample particles X" with probability w to obtain N independent and identically

t

distributed random particles X"’ approximately distributed according to p(X, | Z,) .
STEP 6 Setk = k +1, and return to STEP 2.

4.3 Omni-vision based AGV localization

In this section, we will discuss how to localize the AGV utilizing the space and image
information of landmarks. As it is shown in Fig. 6, two color beacons which are fixed on the
edge of the AGV moving area as landmarks facilitate navigation. The AGV can localize itself
employing the fisheye lens camera on top of it.

The height of two landmarks and the distance between them are measured as the known
parameters. When the AGV is being navigated two landmarks are tracked by two particle
filters to get the landmarks positions in the image.

Landmarks

Fisheye Lens

O: Elevations

r: Radial Distance

w+6=90° [P0
(&0
. “Ta

Fisheye Lens
90° / | =)
| S0
o | i

|

| [e<——>| | Imaging Plane 50
I 20
Camera 10

Fig. 7. Left figure shows that the relationship between incident angles and radial distances
of fisheye lens. Right figure illustrates the values of corresponding incident angles with
different grey levels in the whole area of fisheye sphere image

=
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According to the Equal Distance Projection Regulation, the angle of view ® corresponds
with the radial distance r between projection point and projection center. As shown in Fig. 7,
the mapping between ® and r can be established. Based on this mapping, the image
coordinate and space angle of the landmark are connected.

Utilizing the depressions obtained from images and demarcated parameters of landmarks,
the physical space position of the AGV is confirmed. We tag the landmarks as A and B. In
order to set up the physical coordinate system, A is chosen as the origin. AB is set as axis X
and the direction from A to B is the positive orientation of axis X. Axis Y is vertical to Axis X.
According to the space geometry relations, we can get:

[cot @, (h, —v)] —[cot b, (h, —v)*]+d’
2d (10)
v =lcot 6, (h —v)* —x*]

where (x,)) is the physical space coordinate of lens, “ 4~ and “ ,” are the height of two

landmarks, “ d ” is the horizontal distance between two landmarks, “v” is the height from

ground to lens, “ 6,

1”7 and “ @,” are the depression angles from landmark A and B to lens.

Here, Yy is nonnegative. Thus the moving path of AGV should keep on one side of the

landmarks, which is half of the space.

5. Navigation system

5.1 Algorithm architecture of navigator

A dynamic omni-vision navigation technique for mobile robots is being developed.
Navigation functions involve positional estimation and surrounding perception. Landmark
guidance is a general method for vision navigation in structural environments. An
improved beacon tracking and positioning approach based on a Particle Filter algorithm has
been utilized. Some typical navigation algorithms have been already implemented such as
the classic PID compensator, neural-fuzzy algorithm and so on. The multi-sensory
information fusion technique has been integrated into the program. The hybrid software
and hardware platform has been developed.

The algorithm architecture of the on-board navigator, as shown in Fig. 8, consists of the
following phases: image collection, image pre-processing, landmark recognition, beacon
tracking, vehicle localization and path guidance. The image distortion correction and
recovery for omni-vision is a critical module in the procedures, which provides coordinate
mapping for position and orientation.

5.2 Hardware configuration of navigator

The design of the navigator for mobile robots depends on considering the integration of the
algorithm and hardware. Real-time performance is directly influenced by the results of
localization and navigation. Most image processing platforms use a PC and x86 CPUs. This
presents some limitations for an on-board navigator for vehicles because of redundancy
resources, energy consuming and room utility.

This article presents a compatible embedded real-time image processor for AGVs by utilizing a
Digital Signal Processor (DSP) and Field-Programmable Gate Array (FPGA) for the image
processing component. The hardware configuration of the navigator is shown in Fig. 9.
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Fig. 8. The algorithm architecture of the navigator
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Fig. 9. Hardware configuration of the unique navigator

The DSP facilitates Enhanced DMA (EDMA) to transfer data between the DSP and external
Navigation Module efficiently. Pipeline and code optimization are also required to move to
sharply increase the speed. An efficient FPGA preprocessing uses binarized images with a
given threshold before starting processing and also provides some necessary trigger signal
functions. With this coprocessor, it is possible to accelerate all navigator processes. The DSP
and FPGA can cooperate with each other to solve the real-time performance problems; the
flexible frame is reasonable and practical.



24 Computer Vision

The navigation module consists of an embedded platform, multi-sensors and an internet
port. The embedded system is employed for a navigation platform, which consists of the
following functions: vehicle localization, line following path error correction, obstacle
avoidance through multi-sensory capability. There are three operation modes: remote
control, Teach/Playback and autonomous. The internet port provides the wireless
communication and human-computer interaction. The motor servo system is utilized for
motion control. With the prototype we have obtained some satisfying experimental results.

6. Experimental result

The final system has been implemented by utilizing a real omni-directional vision AGV in
an indoor environment which has been verified in terms of both the practicability and the
feasibility of the design. The prototype experimental platform is shown in Fig. 10.

Fig. 10. Experimental autonomous guided vehicle platform

We perform the experiments twice to show the result. Two beacons with different colors are
placed on the roof as landmarks. A color histogram was uses as the feature vector in particle
filters. The experimental area we choose is about 30 square meters. The height of Landmarks
A and B are 2.43m and 2.46m, respectively. The distance between them is 1.67m. The height
of lens is 0.88m. At the initialization, the original positions of landmarks in the image are set
for the tracker. The AGV guided by double color landmarks shown in Fig. 11. Driving path
and orientation shown in Fig. 12. We can see the localization results are dispersed on the
both sides of the moving path. The Fig. 12 demonstrates the results of AGV orientation
corresponding to the positions in left figures from each localization cycle. The totally 16
fisheye images that were picked up are shown in Fig. 13 and Fig. 14. The numerical
localization results are listed in the Table 1 and Table 2.
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Fig. 11. Localization of the experimental AGV platform
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Fig. 12. Localization and orientation of autonomous vehicle in experiment 1 (above) and 2
(below) (the units are meter and degree (angle))
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Fig. 13. Results of dynamic beacon tracking based on particle filters in experiment 1

x v, ) 1 2 3 4
Actual Coordinates | (1.31,1.35,45°) | (2.00,1.88, 68°) | (2.46,2.67,74°) | (2.34, 2.93, 144°)
Localization o o o o
Coordinates (1.47,1.33,43°) | (2.32,1.93, 66°) | (2.33,2.69, 79°) | (2.38, 2.96, 148°)
x vy, $) 5 6 7 8
Actual Coordinates | (1.35, 3.45, 162°) |(0.66, 3.00, 271°)| (0.00,1.94, 135°) |(-0.92,1.33, 137°)
Localization o o o o
Coordinates (1.38, 3.47, 160°) |(0.68, 3.06, 276°)|(-0.18, 2.00, 132°)|(-0.88, 1.29, 135°)

Table 1. Localization results of experiment 1(units are meter and degree (angle))
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Fig. 14. Results of dynamic beacon tracking based on particle filters in experiment 2
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%y, b) 1 2 3 4
Actual Coordinates| (2.12, 1.06, 166°) | (2.05,1.21,168°) | (1.53,1.58,173°) | (1.07,1.75, 176°)
Localization o o o o
Coordinates (2.23,1.07,165°) | (2.00,1.18,168°) | (1.55,1.52,171°) | (1.00, 1.78 178°)

%y, P) 5 6 7 8
Actual Coordinates| (0.52,1.93,179°) | (0.06,1.73,188°) | (-0.32,0.51,211°) | (-0.78,1.22,218°)

Localization o o o o
Coordinates (0.50,1.90,180°) | (0.00,1.70,191°) | (-0.35,0.50,210°) | (-0.75,1.20,220°)

Table 2. Localization results of experiment 2(units are meter and degree (angle))

7. Conclusion

We establish omni-directional vision system with fisheye lens and solve the problem of
fisheye image distortion. A method for calibrating the omni-vision system is proposed to
generate the center of a fisheye lens image. A novel fisheye image rectification algorithm
based on SVM, which is different from the conventional method is introduced. Beacon
recognition and tracking are key procedures for an omni-vision guided mobile unit. A
Particle Filter (PF) has been shown to be successful for several nonlinear estimation
problems. A beacon tracker based on a Particle Filter which offers a probabilistic framework
for dynamic state estimation in visual tracking has been developed. Dynamic localization
employs a beacon tracker to follow landmarks in real time during the arbitrary movement of
the vehicle. The coordinate transformation is devised for path programming based on time
sequence images analysis. Conventional image processing such as shape decomposition,
description, matching, and other usually employed techniques are not directly applicable in
omni-vision. We have implemented the tracking and localization system and demonstrated
the relevance of the algorithm. The significance of the proposed research is the evaluation of
a new calibration method, global navigation device and a dynamic omni-directional vision
navigation control module using a beacon tracker which is based on a particle filter through
a probabilistic algorithm on statistical robotics. An on-board omni-vision navigator based on
a compatible DSP configuration is powerful for autonomous vehicle guidance applications.
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1. Introduction

Computer vision provides non-contact measurements of the world, extending the robot
ability to operate in circumstances and environments which can not be accurately
controlled. The use of visual observations to control the motions of robots has been
extensively studied, this approach is referred in literature as visual servoing.

Conventional cameras suffer from a limited field of view. One effective way to increase the
field of view is to use mirrors in combination with conventional cameras. The approach of
combining mirrors with conventional cameras to enhance sensor field of view is referred as
catadioptric image formation.

In order to be able to model the catadioptric sensor geometrically, it must satisfy the
restriction that all the measurements of light intensity pass through only one point in the
space (effective viewpoint). The complete class of mirrors that satisfy such restriction where
analyzed by Baker and Nayar [1]. In [2] the authors deal with the epipolar geometry of two
catadioptric sensors. Later, in [3] a general model for central catadioptric image formation
was given. Also, a representation of this general model using the conformal geometric
algebra was showed in [4].

Visual servoing applications can be benefit from sensors providing large fields of view. This
work will show how a paracatadioptric sensor (parabolic mirror and a camera) can be used
in a visual servoing task for driving a nonholonomic mobile robot.

The work is mainly concerned with the use of projected lines extracted from central
catadioptric images as input of a visual servoing control loop. The paracatadioptric image of
a line is in general a circle but sometimes it could be a line. This is something that should be
taken into account to avoid a singularity in the visual servoing task.

In this work we will give a framework for the representation of image features in parabolic
catadioptric images and their transformations. In particular line images in parabolic
catadioptric images are circles. While of course conics and therefore circles can be
represented in the projective plane we will provide a much more natural representation
utilizing the conformal geometric algebra (CGA).

In CGA the conformal transformations are linearized using the fact that the conformal
group on R is isomorphic to the Lorentz group on R»*l. Hence nonlinear conformal
transformations on R can be linearized by representing them as Lorentz transformations
and thereby further simplified as versor representation. These versors can be applied not
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only to points but also to all the CGA entities (spheres, planes, circles, lines and point-pairs).
In this model a b c represents the circle thought the three points. If one of these points is a
null vector e, representing the point at infinity, then a A b A e, represents the straight line
trough a and b as a circle through infinity. This representation could not be available
without the concept of null vector.

In contrast with other catadioptric sensors the paracatadioptric sensors have certain
properties that make them very interesting. One important property is that paracatadioptric
projection is conformal, this motivate us to use the conformal geometric algebra to represent
it. Thus the paracatadioptric projection can be expressed linearly using versors of CGA. The
advantage of our framework is that the projection can be applied to circles and lines in the
same way as it does for points. That advantage has a tremendous consequence since the
nonlinearity of the paracatadioptric image has been removed. As a result the input features
for the visual servoing control loop can be handled effectively in order to design an efficient
vision-based control scheme.

The rest of this paper is organized as follows: The next section will give a brief introduction
to the conformal geometric algebra. In section 3 we show the equivalence between
inversions on the sphere and the parabolic projections. Then, in section 4 we show the
paracatadioptric image formation using the proposed framework. Later, in section 5 an
application of a paracatadioptric stereo sensor is given. Finally, the conclusions are in
section 6.

2. Conformal geometric algebra

In general, a geometric algebra [5] §" is a n-dimensional vector space V' over the reals R.

The geometric algebra is generated defining the geometric product as an associative and
multilinear product satisfying the contraction rule

e? = eles|?, fore; € (V)" @

where € is -1, 0 or 1 and is called the signature of e, When e; # 0 but its magnitude |¢;| is
equal to zero, ¢;is called null vector.
The geometric product of a geometric algebra G, for two basis e;and ¢;is defined as

1 fori=j€{1,2,...,p}
e — -1 fori=je{p+1,....p+q} ,
R 0 fori=je{p+q+1,...,n} @
eij=e;Nej=—ejANe;fori#j

Thus, given a n-dimensional vector space V" with an orthonormal basis {e1, e, ...eq} its
corresponding geometric algebra is generated using the geometric product. We can see that

for a n-dimensional vector space, there are 2" ways to combine its basis using the geometric
product. Each of this product is called a basis blade. Together they span all the space of the

geometric algebra G,.
We also denote with G, ;a geometric algebra over V¥ where p and g denote the signature of

the algebra. If p # 0 and g = 0 the metric is euclidean G, if non of them are zero the metric is
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pseudoeuclidean. A generic element in G, , is called a multivector. Every multivector M can
be written in the expanded form

M=) (M), 3)
1=0

7

where (M), represents the blade of grade i. The geometric product (denoted juxtaposition)
of vectors is defined with a scalar part called the inner product and an outer product, which
is a non scalar quantity, for example the outer product of a and b is

ab=a-b+aAb, 4

The conformal geometric algebra [5] is the geometric algebra over an homogeneous
conformal space. This framework extends the functionality of projective geometry to include
circles and spheres. Furthermore, the dilations, inversions, rotations and translations in 3D
becomes rotations in the 5D conformal geometric algebra. These transformations can not
only be applied to points or lines, but to all the conformal entities (points, lines, planes,
point pairs, circles and spheres).

In the conformal geometric algebra (CGA) we firstly add two extra vector basis e+ and e- to
our R® Euclidean space {e1, ey, e3, e-, e+}, where ei= 1 and e2 = —1. We denote this algebra

with Gy to show that four basis vectors square to +1 and one basis vector square to —1. In
addition we define
e —ée4

€=—70— and e =e_ +eq, (5)

we note that they are null vectors since €2 = e, = 0.. The vector ey can be interpreted as

the origin of the coordinate system, and the vector e, as the point at infinity. A few useful
properties (easily proved) about this basis are

ez =1 e =—1 el =[] ef =)
eccNeg=FE |egNexw =—FE | e Ne_=F | eccNe_=F
ere_ =F e_e;=—FE |eep=—-14+FE|epe=—-1—F ©)
€)oo =—1| €x-€9g=-—1 e - E=€e¢ | F-ex=—€x
E-eo=e | e-E=—e E?=1 ey -e_=0
Fe=—e¢ el =e¢ Feg = e eol = —eg

Where E = e+ A e-is called the Minkowski plane.

To specify a 3-dimensional Euclidean point in an unique form in this 5-dimensional space,
we require the definition of two constraints. The first constraint is that the representation
must be homogeneous, that is «X and X represent the same point in the Euclidean space.

The second constraint requires that the vector X be a null vector (X* = 0). The equation that
satisfies these constraints is

1
X=x+ §x2600 +eo (7)
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where x € R"and X € A"*!. Note that this is a bijective mapping. From now and in the rest
of the paper the points X are named conformal points and the points x are named Euclidean

points. A conformal point (7) lies on the intersection of the null cone A" and the

hyperplane 7" (e., ¢), that is
N AP (e, e0) = {z € R" 12?2 = 0, me00 = —1} . (8)
A sphere on the CGA can be defined as

1
S=c+ E(cz—rQ)eooJreo. ©9)

To test for incidence of a point X with an entity S expressed in the inner product null space
(IPNS) we use
X-S=0. (10)

A point in the CGA is represented using (9), but setting the radius r = 0 we get (7). Also note
that if x = 0 in (7) we get the point ey of (5) corresponding to the origin of R". One interesting

thing about the conformal points is that their inner product

1 1
Xl . X2 = <X1 + EX?COO == 60) . <X2 -+ 5}(%600 + eO)

1 1 1
=X Xy — §x% - 5){% ==3 (x1 — x2)° (11)

1
=~ % — %

is a directly representation of the Euclidean distance between the two points. Thus, the inner
product has now a geometric meaning due to the concept of null vectors. Therefore, the

square of a conformal point X>= XX = X X +X AX = X -X = 0 represents the Euclidean
distance with itself.
In the CGA two multivectors represent the same object if they differ by just a non zero scalar
factor, that is

M~ ANMy=a My A= AM, fOI')\ERE].HdMEQ;Ll (12)
Thus, multiplying (9) with a scalar A we get

Ly 2 o
AS = Ac+ 5)\((: —71%)ex + Aeg , (13)

if we calculate the inner product of the above equation with respect to the point at infinity e,

1
)\S~eoo=/\c-eoo+§)\(c2—r2)eoo-eoo+/\eo-eoo=0+0+/\eo-eoo=—)\, (14)
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we have recover the scalar factor A. Therefore, if we want to normalize a sphere S (i.e. A = 1)
we apply

S

I—_—
b = S-e’

(15)

The same equation can be applied to points, remember that they are nothing but spheres of
zero radius. For other objects the common normalization is by its magnitude that is

M = |M|=,|> (M) (M), (16)
1=0

where (M), represents the i-vector part of the multivector M.

An important operation that is used in the geometric algebra is called reversion, denoted by
”~" and defined by

<J\7> = (-1)“F <1\7> for M € G, 0<i<n. (17)

2.1 Geometric objects representation
The geometric objects can also be defined with the outer product of points that lie on the
object. For example, with four points we define the sphere

S*=AANBACAE. (18)

The incidence of a point X with the sphere S* expressed in the outer product null space
(OPNS) is

XAS8*=XAN(AANBACAD)=0. (19)

Both representation of the sphere (S and S*) are dual to each other, i.e. orthogonal to each
other in the representative conformal space. Therefore, the representations are equivalent if
we multiply them by the pseudoscalar I. = e; A e2A e3 A e+ A e-, thus

M=M*I7' and MI;'=M*for M € Gy, (20)

If one of the points of the sphere (18) is the point at infinity, then the sphere becomes a plane
(a flat sphere with infinite radius)

IMI*=AANBAC e . 1)

Similarly, the outer product of three points defines a circle C*= A A B A C, and if one of the
points of the circle is at infinity (C* = AAB Ae.,) then the circle becomes a line (a flat circle
with infinite radius), see (Table 1). The line can also be defined as the outer product of two
spheres

L* = Sl VAN Sg N €ss 5 (22)
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which is the line passing through the centers of the spheres S; and S». If instead of two
spheres we take one sphere and a point

L*=5ANXNew , (23)

then the line passes through the center of the sphere S and point X.

A complete list of the entities and their representations are given in (Table 1). The table
shows a geometric object called point-pair, which can be seen as the outer product of two
points

Q*=X1AX>. (24)

The point-pair represents a 1-dimensional sphere, and it can be the result of the intersection
between: a line and a sphere, two circles or three spheres. In addition, if one of the points is
the point at infinity

Q" =X1 e - (25)

then we get a special point-pair which is called flat-point. If the intersection between two
lines exists, then they intersect in one point X and also at the point at infinity. It also can be
the result of the intersection between a line and a plane.

Entity IPNS OPNS
Representation Representation
Sphere  S=c+z(c’—r’Jeccteo S*=AABACAD
Point XZX-}-%XZGOO-F&O X* =81 ASsAS3A S8,
Plane II =n+dexs II"=AANBACAex
Line L=(a—b)lg—ex(aAb)lg L*"=AABAex
Circle Z =581NSs Z*=AANBAC
Point Pair Q=5S1NS2AS3 g* ; ﬁﬁeBoo

Table 1. Entities in conformal geometric algebra

2.2 Conformal transformations
A transformation of geometric objects is said to be conformal if it preserves angles. Liouville

was the first that proved that any conformal transformation on R" can be expressed as a
composite of inversions and reflections in hyperplanes. The CGA Gy 1 allows the computation

of inversions and reflections with the geometric product and a special group of multivectors
called versors.

2.3 Objects rigid motion
In conformal geometric algebra we can perform rotations by means of an entity called rotor
which is defined by

R=-exp <gl> ; (26)
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where 1 is the bivector representing the dual of the rotation axis. To rotate an entity, we
simply multiply it by the rotor R from the left and the reverse of the rotor R from the right,
X'=RXR.

If we want to translate an entity we use a translator which is defined as

et et
= (1 B 5) = exp <7> ; (27)

With this representation the translator can be applied multiplicatively to an entity similarly
to the rotor, by multiplying the entity from the left by the translator and from the right with
the reverse of the translator: X’ = T XT.

Finally, the rigid motion can be expressed using a motor which is the combination of a rotor
and a translator: M= TR, the rigid body motion of an entity is described with X "= MXM.
For more details on the geometric algebra and CGA, the interested reader is referred to view
[5-9].

3. Paracatadioptric projection and inversion

In this section we will see the equivalence between the paracatadioptric projection and the
inversion. The objective of using the inversion is that it can be linearized and represented by
a versor in the conformal geometric algebra. This versor can be applied not only to points
but also to point-pairs, lines, circles, spheres and planes.

The next subsection shows the equivalence between the paracatadioptric projection and the
inversion, later the computation of the inversion using will be shown.

3.1 Paracatadioptric projection

The parabolic projection of a point x = xe; + yes + zez € G3 is defined as the intersection
of the line xf (where f is the parabola’s focus) and the parabolic mirror, followed by an
orthographic projection. The orthographic projection is to a plane perpendicular to the axis
of the mirror.

The equation of a parabola with focal length p, whose focus is at the origin is

2 2
T*+y
—_——p=2=z. 28
P (28)
The projection of the point x to the mirror is
Xp = AX (29)
where 1 is defined as
2p
A= ’ 30
Il = = 0

Finally, the point x, is projected onto a plane perpendicular to the axis of the parabola. The
reason for this is that any ray incident with the focus is reflected such that it is perpendicular
to the image plane.
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3.2 Relationship between inversion and parabolic projection
The inversion of a point x € G3 with respect to sphere centered at the origin, and radius r, is

a point X' € G3 lying on the line defined by the point x and the origin, if x" is the inverse of
the point x then

xx' =72, (31)

When the sphere is centered at the point ¢ € Gs, the inverse of the point x is defined as

/
x' =r?

+c (32)
X—c

As we already mention, the parabolic projection of a point x can be found with (30). Now,

given a sphere centered at the origin with radius p, see Fig. 1. The projection of the point x

on the sphere is simply

X

— =

Fig. 1. Parabolic projection.

Note that there are three similar triangles in Fig. 1, which can be seen clearly in Fig. 2. The three
triangles are : NSQ, NPS and SPQ. Therefore NP : NS = NS : NQ. Thus NP - NQ = NS,
which is the exactly the inversion of a point with respect to a circle centered at N and radius
‘N S. Thus we have that

V(x5 —n)2y/(x. —n)? = (2r)* . (34)

Thus, the parabolic projection of a point x is equivalent to the inversion of a point x4, where
the point lies on a sphere s centered at the focus of the parabola and radius p, with respect to
a sphere sg, centered at n and radius 2p, see Fig. 3. To prove this equivalence we can use the
definitions of the parabolic projection and inversion. With the definition of inversion (31) we
have the following equation

alxs —n|* = (2p)? (35)
where n =pe; € Gs.
__@pw* _ ep*  _ 4x?
a = = (ee— 2 T (36)
xs —n|2  p2x—lx]es) (x — |Ix||es)?

lIxII?
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N

S
Fig. 2. The three similar triangles of the stereographic projection

thus, the projected point is

p
Xe = 0Xg = ¥—X . 37
ST 7
The constant Oéﬁ is equal to
0P 4p|x|? _ % a8)
el 20x]* = 2]z -es)*  [lx] —x-e3 [x]| -2

which is exactly the same value of the scalar A from the parabolic projection (30). Therefore,
we can conclude that the parabolic projection (29) and the inversion (37) of the point x are
equivalent.

Fig. 3. Equivalence between parabolic projection and inversion

3.3 Inversion and the conformal geometric algebra

In the conformal geometric algebra, the conformal transformations are represented as
versors [7]. In particular, the versor of the inversion is a sphere, and it is applied in the same
way as the rotor, or the translator. Given a sphere of radius r centered at ¢ represented by
the vector

1
S=c+ 5(02 —1r?)es + €o (39)

the inversion of a point X with respect to S is
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X' =8X8 (40)

To clarify the above equation, let us analyze the special case when S is a unit sphere,
centered at origin. Then S reduces to

1 | 1
S=——exten=—=(e—+es)+=(e- —er)=—eyt (41)
2 2 2
thus (40) becomes

X' = X8 = (~ex)X(—ex) = (—e4)(x + 5x%eu0 + o) (~e4)

. @)
=eyXeq + §X26+€oo€+ +erepey .
The first term e+xe- is equal to
e4Xey = Teyeiey + yepesey + zerezey = —Te] — Yey — 263 = —X . (43)
The term €+€co€+ is equivalent to
ereocetr =eyle_ +ep)ey =(epe_ +1)ey = —e_+ep = —2e . (44)
Finally, the last term is
1 1 1 1
ereoer =ep-(e— —er)er = (ere— —lley = -(—e- —e4) = —Seéoo (45)
2 2 2 2
Rewriting (42) we have
2
1 1 1/1
X’:_x——eoo—xzeoz——i-— — ] ex te€o. (46)
2 x 2\x
From the above equation we recognize the Euclidean point
1 x x "
x  x2  |x[? (47)

which represents the inversion of the point x. The case of the inversion with respect to an
arbitrary sphere is

X —C

2
oX' = SX& = ( ) ( £ + 5 F (<) + €0> (48)

where f(x) is equal to (37), the inversion in R". The value o represents the scalar factor of the
homogeneuos point.

The interesting thing about the inversion in the conformal geometric algebra is that it can be
applied not only to points but also to any other entity of the CGA. In the following section
we will see how the paracatadioptric image formation can be described in terms of the CGA.
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4. Paracatadioptric image formation and conformal geometric algebra

In the previous section we saw the equivalence between the parabolic projection and the
inversion. We also saw how to compute the inversion in the CGA using a versor, in this case
the versor is simply the sphere where the inversion will be carried out. In this section we
will define the paracatadioptric image formation using the CGA.

Given a parabolic mirror with a focal length p, the projection of a point in the space through
the mirror followed by an orthographic projection can be handled by two spheres. Where
the first sphere is centered at the focus of the mirror, and its radius is p. This sphere can be
defined as

1
S=c+ iczeoo +eg . (49)

The second sphere Sp can be defined in several ways, but we prefer to define it with respect
to a point N on the sphere S (i.e. N - S = 0). If we compare the point equation (7) with the
sphere equation (9), we can observe that the sphere has an extra term — %7’2600, thus if we
extract it to the point N we get a sphere centered at N and with radius r. The sphere Sg is
defined as

| 1
So=N = 5(2p)*ecc =+ 5(n° — dp*)eco + o, (50)

where 2p is the radius of the sphere. With these two spheres the image formation of points,
circles and lines will be showed in the next subsections.

4.1 Point Images
Let X be a point on the space, its projection to the sphere can be found by finding the line
passing through it and the sphere center, that is

L*=8nX Nes ; (51)
then, this line is intersected with the sphere S
Z:=8-I}. (52)
Where Zis a point-pair (Z; = X, A X), the paracatadioptric projection of this point can
be found with
Ze = 5025 - (53)

which is also a point pair (£ = X. A X[) . The paracatadioptric projection of the point
closest to X, can be found with

zZr —|Z¥
X, =2 151
7% . ¢ (54)

S

and then with
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X, = 8pX,50 . (55)

The point X, is the projection of the point X onto the catadioptric image plane, which is
exactly the same point obtained through a parabolic and orthographic projections (Fig. 4).

Fig. 4. Point projection onto the catadioptric image plane

4.2 Back projection of point images
Given a point X, on the catadioptric image (Fig. 4), its projection to the sphere is simply

X, = SoXSo - (56)

Since the point X; and the sphere center lie on the line L7, it can be calculated as
L*=PiNSANex - (57)
The original point X lies also on this line, but since we have a single image the depth can not

be determined and thus the point X can no be calculated.

4.3 Circle images
The circle images can be found in the same way as for points images. To see that, let
X1,X2 X3 be three points on the sphere S, the circle defined by them is

C*"=X1 ANXoN X3, (58)

which can be a great or a small circle. The projection of the circle onto the catadioptric image
is carried out as in (55)

Ci = SoC*Sp . (59)

Where C5 could be a line, but there is no problem since it is represented as a circle with one
point at infinity.

The back projection of a circle (or line) C3 that lie on the catadioptric image plane, can be
found easily with
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C* = 8,C38p - (60)

In Fig. 5 the projection of circles on the sphere to the catadioptric image plane is shown.

Fig. 5. Projection of circles on the sphere.

4.4 Line images
To find the paracatadioptric projection of a line L* in the 3D space (Fig. 59), we first project
the line to the sphere S. The plane defined by the line L* and the sphere S is

I =L*"NS. (61)
then the projection of the line L* onto the sphere is
Cy=8-1I" (62)

where C;is a great circle. Finally the paracatadioptric projection of L* can be found with the
inversion of the circle C;, that is

Cr = 80C: S, - (63)

Fig. 6. Projection of a line in the space

5. Robot control using paracatadioptric lines

The problem to be solved is the line following with a mobile robot. The mobile robot is a
nonholonomic system with a paracatadioptric system. We assume that the camera optical
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axis is superposed with the rotation axis of the mobile robot. Thus, the kinematic screw is
only composed with a linear velocity v along the e; axis and an angular velocity o.

The problem will be solved using paracatadioptric image of lines. One of those lines is the
paracatadioptric image of the desired line C; and the other one is the current
paracatadioptric image of the tracked line C. These lines will be projected to the sphere and
then to a perspective plane I, in this planes the image projection are straight lines. Finally,
with the lines on the perspective plane we will compute the angular and lateral deviations.
Consider the paracatadioptric image C; of the desired 3D line L}, the inverse
paracatadioptric projection of Cqscan be found with

Cr = 8,C38, . (64)
Then the plane where the circle lies is defined as

II; =C; Nex - (65)
Finally, the intersection of the plane I} with the perspective plane I/, is

Ly, =111}, (66)

this line is the projection of the paracatadioptric image line C} into the perspective plane
I} The perspective plane can be defined as

II=1h+decs (67)

where il = n/|n| and

The expression S A She., represents the line passing through the centers of both spheres (S
and Sp). The value of the scalar 6 can be defined arbitrarily.

The current paracatadioptric line C can be projected into the line L in the perspective plane
in similar way using the above equations, see Fig. 7.

Fig. 7. a) Paracatadioptric projection of the desired and current line. b) Projection of the
paracatadioptric lines into the perspective plane.

The lines Ly, and L4, on the perspective plane, define a rotor which can be computed with

R=1+LL (69)

p~'pd
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where Ly Ly, represents the geometric product of the two lines. The angle between the lines
is then

0= (R-e)(R), . (70)

which represents the angular deviation. The lateral deviation can be found with the signed
distance between the lines, the signed distance between the lines is

d= (L* . 61260) = (LZ : 61260) . (71)

The angular and lateral deviations are used in a dynamic controller ,proposed in [10], to
generate the robot’s angular velocity. The dynamic controller is

sin 6
= —kovd — kslv|6 72
w 2V . 3|’U| ) ( )
where the control gains are defined as
ky = o? (73)
ks = 2602 . (74)

The value of a is left free to specify faster or slower systems, and where ¢ is usually set to

1/+/2 . The trajectories of the paracatadioptric images and the current paracatadioptric line
are show in Fig. 8. These trajectories confirm that task is correctly realized. In Fig. 9 the angular
an lateral deviations of the current paracatadioptric image with respect to the desired image
are shown. These figures show that both deviations are well regulated to zero.

desired

initial

a) b)
Fig. 8. a) Tracked line in the paracatadioptric image. b) Trajectory of the projected lines in
the paracatadioptric image.

6. Conclusions

In this work a comprehensive geometric model for paracatadioptric sensors has been
presented. The model is based on the equivalence between paracatadioptric projection and the
inversion. The main reason for using the inversion is that it can be represented by a versor (i.e.
a special group of multivectors) in the CGA. The advantage of this representation is that it can
be applied not only to points but also to point-pairs, lines, circles, spheres and planes.
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The paracatadioptric projection and back-projection of points, point-pairs, circles, and lines is
simplified using the proposed framework. This will allow an easier implementation of
paracatadioptric sensors in more complex applications.
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Fig. 9. a) Angular deviation. b) Lateral Deviation.

The proposed framework has been used to control a nonholonomic robot, with a
paracatadioptric sensor. The input to the control scheme are the paracatadioptric images of
the desired and current lines. With help of the proposed model the paracatadioptric images
are back projected to sphere, and then projected to a perspective plane. Then, the lines on
the perspective plane are used to compute the angular and lateral deviations. Finally, with
these values the angular velocity of the robot can be computed using a dynamic controller.
The application showed that is not necessary to have 3D measurements of the scene to solve
the task, indeed it is possible to solve it from image data only.
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1. Introduction

Visual servoing techniques aim at controlling the robot motion using vision data provided
by a camera to reach a desired goal defined in the image (Chaumette & Hutchinson, 2006).
Therefore, if the considered features are lost because of an occlusion or any other
unexpected event, the desired task cannot be realized anymore. The literature provides
many works dealing with this problem. A first common solution is to use methods allowing
to preserve the visual features visibility during the whole mission. Most of them are
dedicated to manipulator arms, and propose to treat this kind of problem by using
redundancy (Marchand & Hager, 1998, Mansard & Chaumette, 2005), path-planning
(Mezouar & Chaumette, 2002), specific degrees of freedom (DOF) (Corke & Hutchinson,
2001; Kyrki et al., 2004), zoom (Benhimane & Malis, 2003) or even by making a tradeoff with
the nominal vision-based task (Remazeilles et al., 2006). In a mobile robotics context, the
realization of a vision-based navigation task in a given environment requires to preserve not
only the image data visibility, but also the robot safety. In that case, techniques allowing to
avoid simultaneously collisions and visual data losses such as (Folio & Cadenat, 2005a; Folio
& Cadenat, 2005b) appear to be limited, because they are restricted to missions where an
avoidance motion exists without leading to local minima (Folio, 2007). As many robotic
tasks cannot be performed if the visual data loss is not tolerated, a true extension of these
works would be to provide methods that accept that occlusions may effectively occur
without leading to a task failure. A first step towards this objective is to let some of the
features appear and disappear temporarily from the image as done in (Garcia-Aracil et al.,
2005). However, this approach is limited to partial losses and does not entirely solve the
problem. Therefore, in this work, our main goal is to propose a generic framework allowing
to reconstruct the visual data when they suddenly become unavailable during the task
execution (camera or image processing failure, landmark loss, and so on). Thus, this work
relies on the following central assumption: the whole image is considered temporarily entirely
unavailable. This problem can be addressed using different methods such as tracking or
signal processing techniques. However, we have chosen here to develop another approach
for several reasons, which will be detailed in the chapter.

The proposed technique allows to reconstruct the visual features using the history of the
camera motion and the last available features. It relies on the vision-motion link that is on
the relation between the camera motion and the visual data evolution in the image.
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The chapter is organized as follows. We first state the problem and introduce a new general
framework allowing to reconstruct the visual features when they become unavailable. Then,
we apply it to design a controller able to perform a vision-based navigation task despite the
temporary total loss of the landmark during the mission. Finally, we present simulation and
experimental results validating the developed approach. We end the chapter by providing a
comparative analysis of the different proposed methods.

2. Visual data estimation

In this section, we address the problem of estimating (all or some) visual data s whenever
they become unavailable during a vision-based task. Thus, the key-assumption, which
underlies our works, is that the whole image is considered to be temporarily completely
unavailable. Hence, methods which only allow to treat partial losses of the visual features
such as (Garcia-Aracil et al., 2005; Comport et al., 2004) are not suitable here. Following this
reasoning, we have focused on techniques dedicated to image data reconstruction. Different
approaches, such as signal processing techniques or tracking methods (Favaro & Soatto,
2003; Lepetit & Fua, 2006) may be used to deal with this kind of problem. Here, we have
chosen to use a simpler approach for several reasons. First, most of the above techniques
rely on measures from the image which are considered to be totally unavailable in our case.
Second, we suppose that we have few errors on the model and on the measures!. Third, as it
is intended to be used in a visual servoing context, the estimated features must be provided
sufficiently rapidly wrt. the control law sampling period Ts. Another idea is to use a 3D
model of the object together with projective geometry in order to deduce the lacking data.
However, this choice would lead to depend on the considered landmark type and would
require to localize the robot. This was unsuitable for us, as we want to make a minimum
assumption on the landmark model. Thus, we have finally chosen to design a new approach
to reconstruct the image data when they are entirely lost. It relies on the vision/motion link
that relates the variation of the visual features in the image to the camera motion. In the
sequel, we define more precisely this notion and then present our estimation method.

2.1 The vision/motion link

In this part, we focus on the vision/motion link. We consider a camera mounted on a given
robot so that its motion is holonomic (see remark 1). The camera motion can then be
characterized by its kinematic screw v, as follows:

vk .
v. :Lf/“ }Jq )
F./F
where VE,. =(V;,V?,V;) and Qf /E, =(Q;,Q?,Q;) represent the translational and

rotational velocity of the camera frame wrt. the world frame expressed in Fc (see figure 1). J
represents the robot jacobian, which relates v. to the control inputq .

" In case where this assumption is not fulfilled, different techniques such as Kalman filtering
based methods for instance may be used to take into account explicitly the system noises.
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Remark 1: We do not make any hypothesis about the robot on which is embedded the
camera. Two cases may occur: either the robot is holonomic and so is the camera motion; or
the robot is not, and we suppose that the camera is able to move independently from it

(Pissard-Gibollet & Rives, 1995).
P (2,y,2) A/}[)L
Y‘ world

frame

Object of [N =
interest Qi

Perspective f
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| axis

| GpHICR

Image Plane/

Fig. 1. The pinhole camera model.

Now, let us define the vision/motion link. In this work, we only consider fixed landmarks.
We suppose that it can be characterized by a set of visual data s provided by the camera. We
denote by z a vector describing its depth. As previously mentioned, the vision/motion link
relates the variation of the visual signals § to the camera motion. For a fixed landmark, we
get the following general definition (Espiau et al., 1992):

§= Li,yve = L(s,z)]q 2
where L, represents the interaction matrix. This matrix depends mainly on the type of

considered visual data s and on the depth z representation. We suppose in the sequel that
we will only use image features for which L, can be determined analytically. Such
expressions are available for different kinds of features such as points, straight lines, circles
in (Espiau et al., 1992), and for image moments in (Chaumette, 2004).

Our idea is to use the vision/motion link together with a history of the previous measures of
image features and of the camera kinematic screw to reconstruct the visual data s. We have
then to solve the differential system given by equation (2). However, this system depends
not only on the visual features s but also on their depth z. Therefore, relation (2) cannot be
directly solved and must be rewritten to take into account additional information about z.
This information can be introduced in different ways, depending on the considered visual
primitives. Therefore, in the sequel, we will first state the problem for different kinds of
image data before presenting a generic formulation. We will then successively consider the
case of points, of other common visual features and of image moments.

2.1.1 The most simple case: the point

The point is a very simple primitive, which can be easily extracted from the image. It is then
commonly used in the visual servoing area. This is the reason why we first address this case.
Therefore, we consider in this paragraph a visual landmark made of n interest points. Let us
recall that, using the pinhole camera model, a 3D point p; of coordinates (x;, y;, z;) in F,is
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projected into a point P; (X;, Y;) in the image plane (see figure 1). We can then define the
Yn ]T ’ where (Xi/ Yl) are the

coordinates of each projected point. In this case, the interaction matrix

visual signals vector by a 2n-dimensional vectors = [X1 Y, X

n’s

L, = [L(PI,ZI),-~~,L(szn)]T is directly deduced from the optic flow equations. L, ., is given
by (Espiau et al., 1992):

_i 0 ﬁ _XiYi [f*‘ﬁ] Y,
YI
z

s 1]
wa] g S [f+ﬁ] XYy
f f

Z:
where f is the camera focal length. As one can see, L, explicitly requires a model or an

estimation of the depth z; of each considered point P;. Several approaches may be used to
determine it. The most obvious solution is to measure it using dedicated sensors such as
telemeters or stereoscopic systems. However, if the robotic platform is not equipped with
such sensors, other approaches must be considered. For instance, it is possible to use
structure from motion (SFM) techniques (Jerian & Jain, 1991; Chaumette et al., 1996; Soatto
& Perona, 1998; Oliensis, 2002), signal processing methods (Matthies et al., 1989), or even
pose relative estimation (Thrun et al., 2001). Unfortunately, these approaches require to use
measures from the image, and they cannot be applied anymore when it becomes completely
unavailable. This is the reason why we propose another solution consisting in estimating
depth z together with the visual data s (see remark 3). To this aim, we need to express the
analytical relation between the variation of the depth and the camera motion. It can be easily
shown that, for one 3D point p; of coordinates (x;, y;, zi) projected into a point P; (X;, Y;) in
the image plane as shown in figure 1, the depth variation Z; is related to the camera motion
according to: z; =L, v, ,with L, = [0, 0, -1, =, =X ,0]. Finally, the dynamic system to

be solved for one point can be expressed as follows:

Xil L
Y; |= Ly . Ve 4)
z L

(z1)

In the case of a landmark made of n points, introducing y :(Xl,Yl,zl, v Xn Yo, zy )T , we

easily deduce that it suffices to integrate the above system for each considered point.

2.1.2 A more generic case: common geometric visual features

Now, we consider the case of other geometric visual primitives such as lines, ellipses,
spheres, and so on. As previously, our goal is to determine the common dynamic system to
be solved to compute these primitives when they cannot be provided anymore by the
camera. Thus, let O be the observed fixed landmark. We denote by R the projected region of
O in the image plane, as described in figure 1. Assuming that R has a continuous surface and
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closed contour, it can be shown that the depth z; of each point p; of O can be related to the
coordinates (X;, Y;) of each point P; belonging to R by the following relation (Chaumette,
2004):

1o 5 axv ©)
Z;  p=0,4>0
v(X;,Y,)e R

where parameters A,; depend on the nature of object O. For instance, if we consider a planar
object and exclude the degenerate case where the camera optical center belongs to it, the
previous equation can be rewritten as follows:

1

—=AX, +BY; +C (6)

1

z
v(X;,Y;)e R

where A= Ajg, B= Ag; and C= A in this particular case.
Now, let us suppose that it is possible to associate to O a set of 1 visual primitives leading to

s=[z,,--,7,]', and that the depth z can be expressed using equation (5). In such a case,

relation (2) can be rewritten as follows:

71| | Lz a,)

s=| : |= : v =L( c:L(n,Am)Vc @)

n L(/r,,,A )

Pq

where L, , ) is the interaction matrix related to the visual primitives i of s (see remark 2).
g

The interested reader will find in (Espiau et al., 1992) different expressions of the interaction
matrix for numerous kinds of common visual features (lines, cylinders, spheres, etc.). It is
important to note that, here, L, A) depends implicitly on the object depth through the Ay,

3D parameters. In this case, the estimation of the visual features by integrating differential
system (7) will require to determine A,. Different methods may be used. A first natural idea
is to use the 3D model of the object if it is known. If not, another nice solution is provided by
dynamic vision that allows to recover the 3D structure, as in (Chaumette et al. 1996).
Unfortunately, this approach requires to define a particular motion to the camera, which is
not suitable in a visual servoing context. Another solution would be to use a similar

approach to the case of points. The idea is then to first relate A, to the camera kinematic
screw v, and then to estimate Ay, together with s. However, as qu depends on the

considered visual features, it would be difficult to design a comprehensive formulation of
the estimation problem. Therefore, to provide a generic framework, we propose to use (5) to
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identify A, To this aim, we consider a set of [ points P; (X, Y;) belonging to the region R (see
remark 2). The Ay, 3D parameters can then be determined on the base of the coordinates (X,
Yi) using any identification method such as least-squares techniques. Finally, the geometric
visual features will be computed using the four-step algorithm 1.

Algorithm 1: Computation of geometric visual features

1. Considering a set of | points belonging to R, define vector p = (X1, Y1, z1, ..., Xi, Y1, z1)T
as in the previous paragraph 2.1.1.

2. Solve system (4) to compute an estimation ¥ of y, that is an estimation of each triple
(Xi, Yi, zi)

3. Use y to identify the coefficients A, of the surface which fits the best way the !

chosen points using a least-square method for instance.
4.  Knowing parameters Ay, integrate dynamic system (7) and deduce an estimation of

vector s = [7[1,-~-,7rn]T

Remark 2: In some cases, several objects O could be used to design the set of visual
primitives involved in (7). In such a case, a solution is to associate a set of 1 points to each
observed object and to follow algorithm 1 for each of these sets.

2.1.3 The most difficult case: image moments

Although image moments have been widely used in computer vision, they have been
considered only recently in visual servoing (Chaumette, 2004; Tahri & Chaumette 2005).
Indeed, they offer several interesting properties. First, they provide a generic representation
of any simple or complicated object. Moreover, in the specific context of visual servoing, it
can be shown that designing control laws with such features significantly improves the
decoupling between translation and rotation in the camera motion (Tahri & Chaumette
2005). Therefore, we have also treated this specific case.

In this section, we first briefly recall some definitions before proposing a method allowing to
determine these primitives when they cannot be extracted from the image. As previously,
we will consider a fixed object O and will denote by R the projected region of O in the image
plane. We will also assume that R has a continuous surface and a closed contour. However,
as the proposed reasoning can be easily extended to non-planar landmarks, we will consider
here only planar objects for the sake of simplicity. Further details about more complex shapes
and different image moments are available in (Chaumette, 2004; Tahri & Chaumette 2005).
The (i+j)th order image moment m1; of R in the image is classically defined by:

m, = [[ XY’ dxdy @)
R
It can be shown that 11, can be related to the camera kinematic screw by:
mij = L(WIU,A,B,C)VC )

where L, 4 pc)is the corresponding interaction matrix. The 3D parameters A, B, C allow to

define the depth in the case of a planar object as described by equation (6). The analytical
expression of L., 48,c) expresses as follows (Chaumette, 2004):
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Myz = —1 %Amij + B jqt Cmyy )'Amij
My = —j\Amyq 4+ Bmyi+ Cmy;y FBmy
L Cmys = (z+]+3 AmM,j + Bmi,j+1+ Cmi,j Cm,j 10
0 ABC) T\, = (i+]j+3)m; g +jm; (10)
Qx, ] i,j+1 J ij-1
Mey. = (l +]+3)mi+1,j —Um g
Maz, = Mi_qjq = M,

As one can see, the time variation of a (i+j)th order moment depends on moments of higher
orders (up to i+j+1) and on A, B and C. Therefore, as previously, the interaction matrix
L, 5 depends implicitly on the object depth through the A, B and C parameters. Note

that the same results hold for centered and discrete moments (Chaumette, 2004; Folio, 2007).
Now, it remains to express the differential system to be solved to determine the desired
primitives. Defining the visual features vector by a set of image moments, that is:

s=[my,---,m,] ,and using equation (9) leads to:

ml L(m1 ,A,B,C)
: - 1)

s = : = : Ve = L(ml,--«,mn,A,B,C)VC

Ti’l” L(m",A,B,C)

However, as mentioned above, the time derivative si; of a (i+j)t order moment depends on

the moments of higher orders. Therefore, it is impossible to reconstruct the image moments
m;; using the dynamic system (11). To avoid this problem, we propose to estimate a set of
visual primitives from which it is possible to deduce the m; image moments in a second
step. Here, following a similar approach to the previous case, we propose to use I points
belonging to the contour of R to approximate the image moments. We present below the
final chosen algorithm 2:

Algorithm 2: Computation of image moments
1. Considering a set of [ points belonging to the contour of R, define vector y = (X1, Y3,
21, ..., X1, Y1, 21)T as mentioned above.

2. Solve system (4) to compute an estimation  of y, that is an estimation of each triple
(Xi, Yi, zi)
3. Use ¢ to compute the different necessary moments m;; and deduce an estimation of

vector: s = (ml,m,mn )T

Notice that the I points of the contour of R must be carefully chosen. In the particular case of
polygonal shapes, these points may be defined by the vertices of the considered polygon,
and the corresponding image moments can then be determined using the methods
described in (Singer, 1993) or in (Steger, 1996). For more complex shapes, it is usually
possible to approximate the contour by a polygon and obtain an estimate of the image
moments by the same process. Finally, the image moments can be always analytically
determined for simple geometric primitives, such as circles, ellipses and so on.
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2.2 Generic problem statement

In the previous subsections, we have addressed the problem of reconstructing image data
from the vision/motion link. Our goal is now to propose a generic formulation of this
problem. Three cases have been highlighted? :

a. The interaction matrix L ,, requires explicitly the depth and we suppose that z can be

directly related to the camera kinematic screw v.. In that case, we are brought back to
the case of the point and we only have to solve a system similar to the one given by (4).
b. The interaction matrix L, depends implicitly on a model of the depth through the Ay,

coefficients for instance. In such a case, to provide a generic framework, we propose to
apply the results obtained for the points to compute the needed parameters. It is then
possible to determine the desired visual features by solving (7).

c. It is difficult or impossible to characterize some (or all) the elements of the differential
system. In this last case, the estimation problem may be solved by estimating other
more suitable visual features from which we can deduce the desired image data. We
then retrieve the first two cases.

Hence, in order to reconstruct the visual data s, we propose to solve the following generic

dynamic system:

{t/’/ =L, V. =0y, t) 12)

w(t)=w,

where g is the vector to be estimated and y ¢ its initial value. Its expression depends on the
previously mentioned cases:

in case (a), where the depth is explicitely required (e.g. points features): y = (sT, zT) T. In the
simple case of points, y is naturally given by w =[Py, ..., Py, z1, ..., za]T.

in case (b), where the depth is implicitely known, a two steps estimation process is
performed: first, we set p =[Py, ..., P;, z1, ..., z]T to reconstruct the | feature points P;
coordinates which allow to identify the KW parameters; then we fix y =[m, ..., 14, ZM ]T to

estimate the desired set of visual primitives 7 (see algorithm 1).

in case (c), the expression of y is deduced either from case (a) or from case (b), depending in
the primitives chosen to reconstruct the desired image features.

The previous analysis has then shown that the estimation of visual data can be seen as the
resolution of the dynamic system given by expression (12). Recalling that o is the initial
value of y, it is important to note that it can be considered as known. Indeed, as the visual
data is considered to be available at least at the beginning of the robotic task: s¢ is directly
given by the feature extraction processing, while the initial depth zo can be characterized off-
line (see remark 3).

Remark 3: While the image remains available (at least once at the begin), s is directly
obtained from the image features extraction processing. In the case of points, their initial
depth zo can be computed using one of the previously mentioned methods (SFM methods,
signal processing techniques, pose relative estimation approaches, etc). It follows that, for

* Note that the proposed approach can only be applied if an analytical expression of L is
available.
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other primitives, we can assume, without loss of generality, that parameters Ay, are known.
Note also that yo being known, it is possible to determine y by iteratively applying our
estimator from the task beginning. Finally, let us remark that, when the image is lost, y is
provided by our estimator.

Now, let us address the resolution problem. A first idea is to integrate the above system (12)
for any te[to; t] where fo and t are respectively the initial and final instants of the task.
However, in this case, the computation is then quite difficult to carry out. Therefore, we
propose to discretize the problem and to solve system (12) during the time control interval
[t tesa]-

2.3 Resolution

2.3.1 Case of points: Towards an analytical solution

We focus here on specific features: the points. As previously shown, the differential system
to be solved is given by equation (4). We will consider two approaches: in the first one, the
obtained solution is independent from the robot structure on which is embedded the
camera, while in the second one, it is closely related to it.

An analytical solution independent from the mechanical structure of the robot: In this
part, our objective is to propose an analytical solution independent from the mechanical
structure of the robot. It only depends on the type of the considered visual features, here
points. A first idea is to consider that the camera kinematic screw v. is constant during the
control interval [t t+1]. However, it is obvious that this property is not really fulfilled. This
is the reason why we propose to sample this interval into NENr sub-intervals and to
consider that v. is constant during [t;; t.«1] where t, = h+(n—k)Tn, T =% and T is the
control law sampling period. In this way, we take into account (at least a bit!) the variation
of v. during T.

First of all, let us analytically solve system (4) on the sub-interval [t,; t,+1]. Considering that
Ve(ts) is constant during [t,; t:+1] yields to:

X:—LV (t, )+Xt
Y:_zm

3 HY(t Z(t) X (t
z=—vzc(n>—“’f ’Q ( )+ ’f”Q,;Cm

DO 1)+ (20, (1) + V(DR (1)

Vi (k) + ””v ()0, (1) X0 (1) -X(0Q: (1) (13)

We set in the sequel V, =V, (f), V. =V (tn), Vo = V. (tn), Q; =Q; (), Q; =Q, (t:) and

Ze z X
Q. =Q. (tx) for the sake of simplicity. We also introduce the initial condition X,=X(t),

Y,=Y(t,) and z,=z(t,), z =z (t.), and Z ,=Z (t,). It can be shown that (Folio, 2007)3:
1. If Q. #0, Q; #0, Q. #0, hence A17#0, A>#0 and As#0, then:

3 The interested reader will find in (Folio, 2007) a detailed proof of the proposed results.
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B fQ;CC Ay + Q. As
Q; Ajz(t)

Q5 AL -Qy As
Q; Azz(t)

X(t) LY () and

2(t) = —cos(A, (E—t,))+SEsin(A, (= t,))+ G (t—t,) + 7+ 2
with A= %, -Q, V; +2(t)A; and As= fQ, (¢, +V. ).
2. If Q. =0, Q; =0, Q; =0, hence A1=0, A>=0 and A3=0, then:
Xz, = fV; (E-1,) Y.z, = fVy (E-t,)

X0 w0 0

5. If Q. #0, Q; #0, Q. =0, hence A= 1[Q;(Cz + chz , A>=0 and A3=0, then:
Xz, = fV. (t—t,)- fQ; A Yz, - fV, (t—-t,)— fQ; A

X(t) = va( ) ny[ 6,Y(l’)= fvy(( ) fQC 6

z(t) 2(t)

with Ag=— L sin(A; (¢~ 1,)) 2 cos(Ay (E = t,))+ (G- +2,)(E = 1,) + 5 -

nrs

and z(t) =z, -V; (t-t,)

6. If Q. =0, Q; =0, Q; #0, then:
X(t) = €395 cos(QEE (t- tn))+ €40 sin(QE[ (t- tn))_fo/c
Q. 2(t)
- c3ﬁic sin(QzC (t-t, ))+ C4QZC cos(QZC (t-t, ))+ fVic
Q; z(t)

7

Y(t) =

where A1=\/Q;(E2 v, 7407, A, V.0, +V,Q, +V. Q. ), A=(0,2+0,?),

\%

. . A Vie e
C1:Z/C2=Z—A—122/C3=—ann—fg‘—; and ¢, =Y, z, — Fomt
The above expressions of (X(t), Y(t), z(t)) depend on the values of the camera kinematic

screw at each instant ¢,. These values must then be computed. To this aim, as vc =J(q) q (see
equation (1)), it is necessary to evaluate the control input q and J(q)at f,. Now, recalling that
q is hold during the time control interval, that is q(f) =q (k), ViE[ty te], it is
straightforward to show that q (t,)=q (&), V#:E[t; te]. It remains to compute J(q) and

therefore the configuration q at instant #,. To this aim, we propose to simply integrate the
equation q (f)=q (t) between t and #. It yields to:

q(t) = ({t—t)q+q(ty), V<[t titl] (14)

where q(t) represents the robot configuration at instant #. The corresponding values can be
measured using the embedded proprioceptive sensors. Then, on the base of q(f), it is
possible to deduce the jacobian J(q(f))and therefore the camera kinematic screw on the sub-
interval [fy; t.+1]. The latter being constant on this interval, the analytical expressions
detailed above can be used to compute y(t)=(X(t), Y(f), z(t)) at t,+1. The same computations
must be performed at each instant #, to obtain the value of y at fx+;, which leads to
algorithm 3.



Treating Image Loss by using the Vision/Motion Link: A Generic Framework 55

Algorithm 3: Estimation of the points when vc is constant during [t,; t,+1] C [t t+1]
Initialization: Determine y(to) and set tx = to, w(t ) = p(to)
For each control interval [#; fx+1] do
Set t, = t, Y(ta) = (k)
For each integration interval [t,; t,+1] do
Compute q(f,) thanks to relation (14)

Deduce J(q(t)) and vc(t,) = J(q(tn)) q (t)

Evaluate (t+1)
End for
End for

The proposed approach can be seen as a first step towards the introduction of the camera
kinematic screw evolution into the reconstruction procedure. Its main advantage is that its
realization is very simple and that it allows to remain independent from the robot
mechanical structure. Naturally, the value of N must be carefully chosen: a large value
reduces the estimation accuracy, especially if the control law sampling period Ts is large; a
small value increases the computation time, but improves the precision, as it is getting closer
to the true variable kinematic screw case.

Remark 4: Another equivalent idea to reconstruct the visual features in case of points would
be to consider the exponential map approach and the direct measure of the camera velocity.
This approach allows to determine the 3D coordinates of the point p; (x;, v, zi) using the
following relation (Soatto & Perona, 1998):

i ==V - Qo Api (1) < pi (fen)=R(k) pi () +H(1)

where ReSO3)4 and teR3 define respectively the rotation and translation of the moving

E, : F,
E /B and translation V. IE,

motion thanks to an exponential map (Murray et al., 1994), that is:

[IS ij:exp([%]x Vc(;Foj

where [Q]x belongs to the set of 3x3 skew-matrices and is commonly used to describe the
F,
E. /K

camera. Indeed, R and t are related to the camera rotation Q

cross product of Q with a vector in R3. However, this approach can be used only if the

camera kinematic screw v. can be assumed constant during the sampling period Ts, which is
not usually the case. We are then brought back to a similar approach to the one presented
above.

An analytical solution integrating the mechanical structure of the robot: As previously
mentioned, the above analytical solution is restricted to the case where the camera kinematic
screw remains constant during [t,; t.+1]C [t tre1]. However, although it offers a general
result independent from the robot mechanical structure, this assumption is rarely
completely fulfilled in a real context. Indeed, only the control input q can be considered to

be really hold between t; and t+1, whereas the camera motion v. evolves during the same

4S0): special orthogonal group of Transformations of R3.
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period. This is the reason why our objective in this part is to relax the assumption about vc.
To this aim, it is necessary to consider a particular robotic system in order to express the
corresponding jacobian J. We have chosen here the robot Super-Scout II on which we have
always realized our experimental tests up to now. This is a nonholonomic cart-like vehicle
equipped with a camera mounted on a pan-platform (see figure 2). Its mechanical structure
is then simple and the expression of its jacobian is given by (23). In this case, the control
input is defined by q = (v, ®, ®)T, where v and ® are the cart linear and angular velocities,
while © is the pan-platform angular velocity. Our robot will be more precisely described in
the next section dedicated to the application context.

As previously shown, our goal is now to analytically solve the dynamic system given by (4).
Considering the particular mechanical structure of our robot, it is impossible to
Transactionlate the camera along ¥, and rotate it around axes ¥, and z., which leads to

V. =Q, =Q. =0. Taking into account this result into equation (4), the dynamic system to be

solved for one point P(X, Y) expresses as follows:

, X(t X(H)Y(t

X = Z((z‘)) Vs (t)+#9;5 (£) 2

y Y Y

Y ==LV, ()+ 18 Ve () +(F+ T, (1) (15)
z=-v, (-0, (1)

where v, (f), V. (f) and Q. (f) are given by relation (23).

Now, let us determine the analytical solution of the differential (15). We denote by v, oy and
@, the values of the velocities applied to the robot at instant f. For the sake of simplicity, we
also introduce the following notations: Xy = X(fx), Yx = Y(t), zx = z(fx) and finally 8x=9(t)
where 9 represents the pan-platform orientation with respect to the mobile base. After some
computations (a detailed proof is available in (Folio, 2007)), we get the following results for
z(t) depending on the control inputs o and y:

1. If o#—wk and o #0, then:
z(t) =c, sin(A1 (t—t, ))+ Cy cos(A1 (t—t, ))— D, cos(&(t))+ Z)—isin(ﬂ(t))— C,
2. If ox=—wy #0, then:
z(t) = ;”—li (cos(9(t)) - cos(9, ))—;—kk(sin(S(t))— sin(9, )+ z,
3. If k=0, then:
Z(t)=cy sin(wk(t —t, ))+ Cy cos(wk(t —t ))— v (t— tk)cos(S(t))+ i sin(&(t))—CI

2@y

(16)

4. If o=y =0, then:
z(H) =z — vy (t —t )Cos(gk)

with® ¢; =J-cos(9) +D, sin(8) - kazk -C,, ¢y =—7rsin(9)+D; cos(9) +z, +C,,
;= —zv—zgkcos(lgk)+ Y’}Z" -C,, 0= _Z%Sin(&k)+ z; +C, and Ai=(ortox).

5 (Cy, Cy) and Dy are geometric parameters of the robot and of the camera (see figure 2).
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Now, we consider the determination of X(t). From (15) we can write: % = —% . X(#) can
then be computed by integrating this last relation for V t&[fy; ti+1], and we get:
x=22k 17

Finally, Y(t) is easily deduced from (15) as follows: Y(f)=— f %ﬁfz) Using the solution z(t)
given by (16), Y(t) expresses as:
1. If o#—wk and @ #0, then

Y(t) =~ (e; cos(A, (£~ 1)) -, sin(A, (¢ - 1,))- D, wsin(9(H) - C, (0 + @)
2. If ox=—wyk #0, then

Y(t) = ﬁ(v cos(9(t))— cos(9, )+ wkzkYk) a8)

3. If =0, then

Y(t) = s (o) cos(A, (£~ 1))~ e, sin(A, (£~ ,))+ o(t ~£,)sin(9(8)) -5 cos(9(1))+ C, )
4. If o=k =0, then

Y(t)= _%(Uk (£t )sin(%) +2,Y;)

As one can see, the above solution requires the determination of 9(t). This angle can simply
be computed by integrating 9=w between #; and t. Some straightforward calculus leads to
S(t)=wy (t—tr)+9 where 9y is the pan-platform angular value at f;, which is usually provided
by the embedded encoder.

The proposed approach takes fully into account the evolution of the camera kinematic screw
in the reconstruction process of the triple (X(f), Y(t), z(t)) for all te[t; txr1]. Although the
proposed approach is restricted to the considered robotic system and to points, its main
advantage lies in its accuracy. As shown in the next section devoted to applications, the
obtained results are significantly better with this method.

2.3.2 Numerical resolution: a generic framework

As previously mentioned, the analytical solutions are restricted to the case of points and, for
one of them, to the robotic system. The question is now: “What to do if other kinds of image
features are used”? In this part, we address this problem and we aim at designing a generic
framework allowing to solve the dynamic system (12) in a general context. In such case, it
appears to be difficult to keep on proposing an analytical solution to the considered system.
This is the reason why we propose to use numerical methods to solve (12). In order to
increase the accuracy of the different considered schemes, we propose to divide the [fi; t+1]
control law interval into N&EN* sub-intervals [t,; t,+1]C[fx; t+1]. In this way, it is possible to
define the integration step Tn = % = tys1 —tu.

Using numerical techniques to solve (12) requires to characterize i and the different related
interaction matrix (see paragraph2.2.). We suppose in the sequel that such a
characterization is possible. Moreover, the numerical algorithms will not be used in the
same way depending on the camera kinematic screw is considered to be constant or not on
the interval [ti; tx+1]. We can then distinguish the two following cases:
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1. The camera motion vc can be considered as constant during the control law sampling
period Ts. In this case, only one evaluation of vc(t) at time f; is needed to compute ¢(y,
t), YV tE [t tisa]-

2. The camera motion vc varies with time in [#; fx+1]. It is then necessary to calculate it at
each instant f,. Therefore, the computation of ¢(y, t) require an evaluation of vc(t,) for
each time t,. Recalling that only q is hold during T, and thanks to (14) we can then

compute ve(f,) =J(q(t:)) q, (or even using q,, if available).

The literature provides many methods allowing to numerically solve differential equations.
A large overview of such methods is proposed for example in (Butcher, 2008). In this work,
we have compared several common numerical schemes to select the most efficient
technique. Here, we consider the Euler, Runge-Kutta (RK), Adams-Bashforth-Moulton
(ABM) and Backward Differentiation Formulas (BDF) numerical techniques. Hence, we first
recall briefly the description of these schemes.

Euler Scheme: It is the simplest numerical integration method, but usually the less accurate.
As a consequence, it requires a small integration step. The Euler integration method is
classically given by:

Vi =V + 1,0y tr) 19

Runge-Kutta Schemes: The Runge-Kutta methods are an important family of iterative
algorithms dedicated to the approximation of solutions of differential equations. The most
commonly used scheme is the fourth order one, which is often referred as RK4. It expresses
as follows:

?:T"((Wk'tkl/)K YT,)

s : = b +

=y, +1 (K, +2K, +2K, +K, ), with: {22 = nWe At et 20

Vi1 =Wk 5( 1 2 3 4) K3:Tn(‘//k+%K2/tk+%Tn) (20)
K4:Tn(l//k+K3’tk+Tn)

The methods presented above are known as one-step schemes because they are based only
on one previous value to estimate ;. Contrary to this case, techniques using more than
one of the previous values (ie. Wk, Wi, ...-nN) are referred as multi-steps approaches. Two of
them are described below.

Adams Schemes: The Adams based techniques are multistep methods which approximate

the solution of a given differential equations by a polynomial. It usually works as a
predictor/corrector pair called the Adams-Bashforth-Moulton (ABM) schemes. The method

consists in a two-step approach: the value y,,, is first predicted with an Adams-Bashforth
scheme, and then corrected thanks to an Adams-Moulton algorithm to obtain the estimation
W - For instance the fourth order Adams-Bashforth-Moulton (ABM4) is given by:

Wi =Wy +% (55(/)k =590 4 + 379 5 -9, 5 ) Adams-Bashforth predictor
. (21)
Vi =Vi +%(9(p(l//k+1 st )Y 1% -5y L, ) Adams-Moulton corrector

Gear’s Methods: The Gear’s methods, also known as Backward Differentiation Formulas
(BDF), consist in using a polynomial which interpolates the N previous values yx, i.1,...,
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YN to estimate ¥, . They are mainly dedicated to stiff differential equations (see

remark 5). We recall below the fourth order BDF4 scheme which have been used hereafter:

Vi :%I//k _%‘/lk—l +%I//k—2 —%‘//1«3 +%Tn¢(‘/;k+l ) (22)

Remark 5: A problem is stiff if the numerical solution step size is more severely limited by
the stability of the numerical technique than by its accuracy. Frequently, these problems
occur in systems of differential equations involving several components which are varying
at widely different rates. The interested reader will find more details in the survey by
(Shampine & Gear 1979).

Therefore, these numerical methods provide an estimated value ¥,,, after N integration

steps over one control law sampling period T.. The algorithm 4 given below details the
different steps of calculus.

Algorithm 4: Estimation of the visual features using numerical schemes.
Initialization: Determine y(to) and set fx = to, w(t ) = p(to)
For each control interval [#; tk+1] do
1£ multiple step scheme and initialization not over then
Initialization of the necessary previous values of y.

End if
If v, is considered to be constant during [fx; fx+1] then
Evaluate vc only at instant # .
End if
Set t, = t, Y(ts) = (k)
For each integration interval [t,; t,+1] do
If v, varies during [t t+1] then
Evaluate vc at instant ¢, .
End if
Evaluate @(y(t,), t)
Choose a numerical scheme and compute the corresponding value of

lp(ttz+1)
End for
End for

Finally, numerical schemes can be used since an expression of (i, t) and a history of
successive values of  is available. In this way, dynamic system (12) can be solved in a
general context, that is for any kind of image features and any robot mechanical structures.

2.4 Conclusion

In this section, we have proposed a set of methods allowing to reconstruct the visual
features when they cannot be provided anymore by the camera. Most of the works which
address this problem classically rely on information based on the image dynamics. In this
work, we have deliberately chosen to consider the case where the image becomes totally
unavailable. We have then used the vision/motion to link to estimate the lacking data. Our
first contribution lies in the modelling step. Indeed, we have stated the estimation problem
for different kinds of visual features: points, common geometric primitives and image
moments. On the base of this analysis, we have shown that the considered problem can be
expressed as a dynamic system to be solved. Our second contribution consists in the
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development of different techniques allowing to compute analytical and numerical
solutions. The different proposed methods can be easily implemented on a real robot. Note
that a careful choice of the different involved sampling periods is mandatory. Finally, these
methods also require to have the necessary information for the algorithm initialization. This
is particularly true for multi-step numerical methods which need a history of the values of y.
Now, our goal is to validate and compare the different proposed approaches.

3. Applications

The proposed estimation methods can be used in many applications. For example, it has been
recently successfully used to perform vision-based navigation tasks in cluttered environments.
Indeed, in such a case, the visual features loss is mainly due to occlusions which occur when
the obstacles enter the camera field of view. Integrating our reconstruction techniques in the
control law allows to treat efficiently this problem and to realize the task despite the occlusion
(Folio & Cadenat, 2007; Folio & Cadenat, 2008). Another interesting application area is to use
the estimated visual features provided by our algorithms to refresh more frequently the
control law. Indeed, as T; is often smaller than the vision sensor sampling period T., the
control law is computed with the same visual measures during several steps, which decreases
its efficiency. Our work has then be successfully used to predict the visual features between
two image acquisitions so as to improve the closed loop performances (Folio, 2007). Finally, it
is also possible to apply our results to other related fields such as active vision, 3D
reconstruction methods or even fault diagnosis for instance.

In this part, we still consider a visual servoing application but focus on a particular problem
which may occur during the mission execution: the camera or the image processing failure.
Our idea is here to use our estimation technique to recover from this problem so as the task
can still be executed despite it. We first present the robotic system on which we have
implemented our works. Then, we detail the mission to be realized and show how to
introduce our estimation techniques in the classical visual servoing controller. Finally, we
describe both simulation and experimental results which demonstrate the validity and the
efficiency of our approach when a camera failure occurs.

3.1 Robotic system description and modelling

We consider the mobile robot Super-Scout II 7 equipped with a camera mounted on a pan-
platform (see figure2.a). It is a small cylindric cart-like vehicle, dedicated to indoor
navigation. A DFW-VL500 Sony color digital IEEE1394 camera captures pictures in yuv 4:2:2
format with 640%x480 resolution. An image processing module allows to extract the
necessary visual features from the image. The robot is controlled by an on-board laptop
running under Linux on which is installed a specific control architecture called GeroM
(Generator of Module) (Fleury and Herrb, 2001).

Now, let us model our system to express the camera kinematic screw. To this aim,
considering figure 2.b, we define the successive frames: F), (M,J"c Mo YasZam) linked to the

robot, FP(P,?CP,yP,EP) attached to the pan-platform, and FC(C,J?C,]}C,ZC) linked to the

6 On our experimental platform, T;=50ms while T, is between 100 and 150 ms.
7 The mobile robot Super-Scout II is provided by the AIP-PRIMECA of Toulouse.
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camera. Let 9 be the direction of the pan-platform wrt. X,,, P the pan-platform center of

rotation and D, the distance between the robot reference point M and P. The control input is
defined by: q = (v, ®, @)T, where v and ® are the cart linear and angular velocities, and @ is

the pan-platform angular velocity wrt. Fy. For this specific mechanical system, the kinematic
screw V. is related to the control input by the robot jacobian J: v, =Jq . As the camera is

constrained to move horizontally, it is sufficient to consider a reduced kinematic screw:
vi= (Vy_ Vs, Qp )T involving only the controllable DOF. The corresponding reduced jacobian

matrix J expresses as follows:

Pan-platform
Ethernet link H N ! orientation
: = 4 s

wifi 802.11z b > . - ﬁ
\ N -
; . . ; -+ Co A
: . S — o
: AR/

M

Mobile base
orientation

2.a - Nomadic Super-Scout II. 2.b - Cart-like robot with a camera
mounted on a pan-platform.

Fig. 2. The robotic system.

V5. () —sin(9(t ) D, cosé&(t);-r C, C I'v
vi=| Vi (t)|= cos(S(t); D, sin(4(t))-C, -C, [ ] I q (23)
Q; ( 0 -1 -1 \@

where C; and C, are the coordinates of C along axes X, and y, (see figure 2.b). Notice that

J: is a regular matrix as det(J})=D, #0.

3.2 Execution of a vision-based task despite camera failure

Our objective is to perform a vision-based task despite camera failure. We first describe the
considered mission and state the estimation problem for this particular task before
presenting the obtained results.

3.2.1 Vision-based task

Our goal is to position the embedded camera with respect to a visual landmark. To this aim,
we have applied the visual servoing technique given in (Espiau et al., 1992) to mobile robots
as in (Pissard-Gibollet & Rives, 1995). The proposed approach relies on the task function
formalism (Samson et al., 1991) and consists in expressing the visual servoing task by the
following task function to be regulated to zero:

vs :C(S—S*)



62 Computer Vision

where s* represents the desired value of the visual signal, while C is a full-rank combination
matrix allowing to take into account more visual features than available DOFs (Espiau et al.,
1992). A classical controller q( making ey vanish can be designed by imposing an

exponential decrease, that is: ¢, =-1e,,=CL ,Jcq(), Where s is a positive scalar or a

positive definite matrix. Fixing C= L o038 in (Espiau et al., 1992), the visual servoing

z*)

controller q, can be written as follows:

1 N .
q(s) = (CL(s,z)]c) (_ ﬂ“)L(s*,Z“) (S_S ) (24)

3.2.2 Control strategy

As previously mentioned, the goal is to perform a positioning vision-based task with respect
to a landmark, despite visual data loss due to a camera failure. The robot will be controlled
in different ways, depending on the visual data availability. Two cases may occur: either the
camera is able to provide the visual data or not. In the first case, controller (24) can be
directly applied to the robot and the task is executed as usually done. In the second case, we
use our estimation technique to compute an estimation of the visual data vector s . It is then
possible to evaluate controller (24). Hence, during a camera failure, the vehicle is driven by a

new controller: ¢ =(CL(§,Z)]£)_1(— ’I)L(s‘,z‘;(s —s"). Therefore, we propose to use the
following global visual servoing controller:

qQvs = (l - O-)q(s) + Gq(E) (25)

where 0 € [0; 1] is set to 1 when the image is unavailable. This reasoning leads to the control
architecture shown in figure3. Note that, generally, there is no need to smooth
controller (25) when the image features are lost and recovered (if the camera failure is
temporary). Indeed, when the failure occurs, as the last provided information are used to
feed our reconstruction algorithm, the values of s and s are close and so are g, and q @) -

Usually, the same reasoning holds when the visual features are available anew. However,
some smoothing may be useful if the camera motion has been unexpectedly perturbed
during the estimation phase or if the algorithm has been given too inaccurate initial
conditions. In such a case, it will be necessary to smooth the controller by defining o as a
continuous function of time ¢ for instance.

. R
Desired S '®
visual features

Camera motion
measurement

(%ord)

Fig. 3. The chosen control architecture.
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3.3 Results

Our goal is then to position the embedded camera with respect to a given landmark despite
camera failure. We will use controller (25). We propose hereafter some simulation results
together with experimental tests to show the interest and the efficiency of the different
proposed estimation techniques. We first present the obtained results in the two following
subsections. Precise comments together with a detailed comparative analysis are provided
in next part.

3.3.1 Simulation results

To validate our work, we have first realized numerous simulations using Matlab software.
We have considered different kinds of visual features: points, ellipses and image moments.
For each case, we have performed the same robotic task, starting from the same initial
configuration to reach the same goal s* (see Figure 4). In a similar way, the camera failure
occurs after 50 steps and lasts until the end of the mission. In this way, we guarantee that the
multi-step numerical schemes can be correctly initialized6. The control law sampling period
has been chosen equal to T = 50ms, which is close to its value on the robotic platform. The
control interval has been divided in N=10 integration step, that is T,=5m:s.

—_— V (pix)
-— =
- ~ 160 320 480 64
5 e 0
1.5 N
/ x4 N\ N
N 120 ) N \
= 1r — [ 7 N
] " i Z i
= Initial Deﬁlﬁfﬁ B [ ‘, ;
0.5 Situation Situation 5240 ‘\ b ; _i
LA oo
0 Landmark 360 hok Ny f i
: : : Postred s\ # N Initial
-2 -1.5 -1 -0.5 0 0.5 1 1.5 Visual Data Visual Data
x (m) 480
4.a - Robot trajectory. 4.b - Visual Landmark.

Fig. 4. Simulated robotic task.

Our goal is here to perform the vision-based navigation task represented on the figure 4.a. It
consists in positioning the embedded camera with respect to a landmark made of one ellipse
described on figure 4.b. This landmark can be modelled by three different visual primitives:
a set of points belonging to the ellipse, the ellipse features itself, and finally (at least) two
image moments. This example allows us to illustrate the different ways of stating the
estimation problem shown in section 2. We present below the obtained results for each of
these primitives.

Case of points: In this case, we consider 10 points belonging to the ellipse. Thus, the image

features vector is defined by: s=[X,,Y;,--, Xy, Yy |", where (X, Y;) are the coordinates of

each projected point P;. Let us recall that the dynamic system to be solved is given by (4).
The table 1 synthesis the simulation results obtained using the proposed numerical and
analytical methods for points. More precisely, it shows the maximal and the standard

deviation (std) error of the euclidean norm of the set of points (i.e. ||s - E" ) and of their depth

(e |z-Z|).
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Euler error RK4 error ABM4 error
std max std max std max
0.947 1078 2.450.107°%  0.299.10° |1.133.10° |0.136.102 [0.556.107%
z| [1.935.10° (8.949.10° |1.829.10° |7.624.10° [0.379.10° |1.906.107°
BDF4 error Analytic error (v. constant) Analytic error (v, variable)
std max std max std max
0.311.1073 2109.10° [0.199.10°° [0.863.107% [1.779.1072 |31.724.10712
z| (0.892.10°% |7.784.107° [0.968.10° [6.456.107% [8.795.10712 |96.367.10712

Table 1. Point simulation results (| s | in pixel, and |z| in mm).

Case of ellipse: We consider now the ellipse itself described on figure 4.b. Hence, we first
recall that an ellipse can be defined by the following quadric equation:

X2 +E\Y? +E, XY, + E;X; +2E,Y, +E5 =0 (26)

. . T
The visual features vector can expresses as: s= [El,E2,ES,E4,E5,Xl,Y1,~-,X25,Y25] , where

(Xi, Y;) are the coordinates of the points belonging to the ellipse. This set of /=25 points
allows to identify the ellipse Ap; 3D parameters (see algorithm 2). The differential system to
be solved can then be expressed as follows:

L, a,)

L
(Es,Au)
L(P ZM) VC = L(El,EZ,E3,E4,E5,A,,”,X1,Y1,»--,X25,Y23)VC (27)

_L(st 1235) |

where L, . ,is the interaction matrix related to the point P; given by (3) ,and L A) is the
interaction matrix related to the E; ellipse quadric parameters. The L A) expressions are

available in (Espiau et al., 1992). As the points were presented in the previous paragraph, we
focus here on the ellipse. Thus, we focus on the ellipse quadric parameters E; estimation
results, for which only numerical techniques can be applied. Moreover, each estimated point
P; belonging to the ellipse has to fit the relation (26). Therefore, in this case, the estimator
efficiency can be evaluated according to the following relation:

ey = miax(Xiz FEY? +EX,Y, +E,X, +2E,Y, + Es ) 28)

Hence, the table 2 summarizes the estimation error of E; parameters and the e error for
each considered numerical scheme.

Case of moments: The landmark shown on figure 4.b has been characterized by points and
ellipses. It is also possible to use the two following image moments: the area (i.e. mq0), and

the gravity center, and the gravity center ( X, = LG Y, = @) of the ellipse. In this case, the
Moo Moo

visual features vector is set to: s= [m 00X Yo, X0, Yy, X5, Yo ]T . As previously

mentioned the set of [=15 points allows to approximate the image moments features. The

table 3 describes the image moments estimation error.
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Euler error RK4 error ABM4 error BDF4 error

std max std max std max std max

IE1 6.194 .104|6.353 . 10-32.181. 104 |5.469 . 10-3|1.821 . 104|3.846 . 10-3|1.825 . 104|3.477 . 103
1253 4.741.10-5(2.315.104|3.517. 105 {1.233 . 10~4|2.878 . 10-5|1.032 . 10-4|3.092 . 10-5(1.011 . 104
128 4.967 .10-5(2.199 . 1043.995 . 10-5{1.891 . 10~4|3.179 . 10-5|1.299 . 10-4|3.101 . 10-5(1.184 . 104
129 4.569 .104(2.181 . 10-3|3.157 . 10~4{1.177 . 10-32.357 . 10-4|{1.067 . 10-3|2.109 . 10-4|1.019 . 10-3
[Es5 2.328 .1074]6.741 . 104|1.314 . 10~4|5.762 . 10-4|1.087 . 10-4|5.096 . 10-4|1.006 . 10-4|4.934 . 104
€E] 0.2027 0.8398 0.1512 0.7616 0.1284 0.5756 0.1071 0.6056

Table 2. Ellipse features simulation results.

Euler error RK4 error ABMA4 error BDF4 error
std max std max std max std max

mgo |6.1044 19.983 5.8346 18.1033 4.194 16.769 2.4298 10.3209
Xy  |1.768 .10-3 |4.253 .10-3 |1.278 .10-3 |3.526 .10-3 [0.805 .10-3 |2.404 .10-3 [0.449 .10-3 |1.923 .10-3
Y, |4.337.10-3 |13.243 .10-32.371 .10-3 |12.304 .10-91.503 .10-% [10.115 .10-1.345 .10 |6.834 .10-3

Table 3. Image moments features simulation results (area rmgo in pixel2, and (X, Yy) in pixel)

3.3.2 Experimental results
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Fig. 5. Robot trajectory, using numerical schemes.

We have also experimented our approaches on our Super-Scout II. We have considered once
again a vision-based navigation task which consists in positioning the embedded camera in
front of a given landmark made of n=4 points. First of all, we address the validation of the
proposed numerical schemes. For each of them, we have performed the same navigation
task: start from the same configuration using the same s* (see figure 5). At the beginning of
the mission, the robot is driven using the visual features available from the camera and
starts converging towards the target. At the same time, the numerical algorithms are
initialized and launched. After 10 steps, the landmark is artificially occluded to simulate a
camera failure and, if nothing is done, it is impossible to perform the task. The controller is
then evaluated using the computed values provided by our proposed method.

In a second step, we have validated the analytical method which take into account the vc
time variation on our robotic platform (see figure 6). We have followed the same
experimental procedure as for numerical schemes. Indeed, as previously, the visual data are
available at the beginning of the task and the robot is controlled using (24). After a few
steps, the landmark is manually occluded. At this time, the visual signals are computed by
our estimation procedure and the robot is driven using controller. It is then possible to keep
on executing a task which would have aborted otherwise.
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Fig. 6. Robot trajectory, using analytical method (v, variable during [ts; tx+1])

Analytic error
(ve variable)
std max std max std max std max std max
|s| 1.0021 |9.6842 [0.9092 |7.0202 (0.9003 |5.9256 [1.1172 |7.6969 | 0.1275 |0.7657
|z| 0.0883 |0.7233 [0.0721 [0.6385 (0.0572 |0.5064 [0.1016 [0.5989 | 0.0143 |0.0637

Euler error RK4 error ABMA4 error BDF4 error

Table 4. Experimental results (| s | in pixel, and |z| in m).

The table 4 summarizes the whole results obtained in the case of points. These errors remain
small, which means that there are few perturbations on the system and, thanks to our
estimation method, it is possible to reach a neighborhood of the desired goal despite the
camera failure. Once again the analytical method gives the best estimation results.
Moreover, for the proposed task, the ABM4 scheme is the most efficient numerical method,
as it leads to the least standard deviation error (std) and to the smallest maximal error. The
RK4 algorithm gives also correct performances, while Euler method remains the less
accurate scheme as expected. As T; is rather small, the BDF4 technique provides correct
results but has been proven to be much more efficient when there are sudden variations in
the kinematic screw (stiff context).

3.4 Comparative analysis and additional comments

The previous part has been devoted to the validation of the different reconstruction
algorithms in the visual servoing context proposed in section 2. To this aim, we have
focused on a specific problem which may occur during a vision-based task: the loss of the
visual features due to a camera or an image processing failure. The presented simulation
and experimental results have demonstrated the efficiency and the interest of our approach.

Now, on the base of these results, our objective is to compare the different approaches and
to exhibit their advantages and drawbacks. We also aim at giving some elements allowing to
select the most suitable method depending on the context (considered visual features, task
to be realized, and so on). All the tests have shown that the analytical solution integrating
the true variation of the camera kinematic screw is the most accurate approach. This result is
quite consistent because this solution explicitely takes into account the robot mechanical
structure and appears to be the closest to the real system. Thus, the estimation errors appear
to be negligible. In a similar way, the other analytical solution also leads to nice results
(equivalent to the ones obtained with numerical approaches), but is less precise than the
previous one. However, these two approaches are restricted to the case where the
considered image features are points and cannot be used for other kinds of visual
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primitives. Moreover, as previously mentioned, one of them depends strongly on the
mechanical structure of the robot on which is embedded the camera. To relax these
restrictions, it is necessary to treat the problem using numerical schemes. Among them, the
Gear’s method (BDF4) and the Adams-Bashforth-Moulton scheme (ABM4) are the most
accurate. It can be shown that the first one is particularly efficient when the dynamics of the
system to be solved varies rapidly, that is when the problem becomes stiff. For example, this
phenomenon has been observed when the robot has to avoid obstacles to safely perform the
desired vision-based navigation task (Folio & Cadenat, 2007). In other cases (few variations
on the camera kinematic screw), ABM4 scheme appears to provide better results, although it
is sometimes limited by cumulative errors which occur when the visual primitives are
reconstructed following several steps as in algorithms 1 and 2. Finally, the Runge-Kutta
fourth order (RK4) algorithm and Euler schemes are the less accurate because they do not
consider any history of the image features to be estimated. The above table 5 summarizes
this comparative analysis.

Methods Advantages Drawbacks Interest
Analytical solution Solution specific to a Super-
v, variable during High accuracy Scout II-like robotic system |+++

[ty te]
Analytical solution
v, constant during
[tk,' tk+1]

and to points

e Allows to consider
different robotic systems
e Good accuracy

Solution specific to points |+

e The least accurate

Euler Scheme Easy to implement ¢ Require small sampling -
period
RK4 Scheme More accurate than Euler )
scheme
e Reconstruction based on a | ¢ The scheme initialization
predictor/ corrector pair. requires a history of

e The local truncation can values of  obtained at

ABM4 Scheme be estimated. previous instants. +

e Less accurate when
successive approximations
are performed.

The scheme initialization
requires a history of values
of i obtained at previous
instants.

The most efficient approach

BDF4 Scheme C .
when v, significantly varies

Table 5. Comparative table

Only 4th order numerical schemes have been considered in this work. It is important to note
that using greater orders does not necessarily lead to better results. Usually, a more suitable
strategy is to reduce the integration step T,,. However, it must be noticed that in such a case the
approximations are more and more cumulated and that the estimation error does not decrease
anymore with T, as one could have expected. Therefore, the most efficient way allowing to
improve the quality of our algorithms is to reduce the control law sampling period.
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Furthermore, as one could have expected, simulation provides better results than
experimentation. In particular, when testing our algorithm, we have to deal with several
constraints related to our robotic platform. First, the implementation of our algorithms
requires to have the necessary data for initialization and to know precisely the values of T
and T,. These conditions are not necessarily fulfilled on experimental platforms, as it mainly
depends on the operating system running on them. For instance, on the Super-Scout II, T
cannot be precisely obtained. Moreover, our modelling does not take into account the noises
which appear on the image features extraction processing and on the measurement of the
robot velocities q .

Finally, let us recall that our main goal was to provide a generic framework to reconstruct
the visual features whenever they become unavailable. In particular, we have shown that
common visual primitives cannot be computed if the A,; 3D parameters are not previously
estimated. We have then proposed a solution consisting in using points to identify them.
However, our validation work has demonstrated that this solution does not provide a
totally efficient estimation because of the successive approximations induced by the
procedure. Thus, the estimation algorithm could be improved by computing A,; together
with s as done for points. However, in such a case, the result would be restricted to the
considered visual primitives, whereas the proposed solution based on points presents the
advantage of the genericity.

In conclusion, the proposed reconstruction algorithms have been successfully validated in
the vision-based navigation task. The obtained results have demonstrated the efficience and
the relevancy of our approach to treat the specific problem of image features loss during a
visual servoing task. Thanks to our method, as soon as an analytical expression of Lz is
available, it is possible to reconstruct the visual data when needed and to keep on
performing a task which should have been aborted otherwise.

4. Conclusion

In this chapter, we addressed the problem of computing the image features when they
become unavailable during a vision-based task. To this aim, in a first step, we have
elaborated different algorithms able to reconstruct the visual signals when they are lost. The
proposed techniques rely on the camera kinematic screw and on the last measured
perceptual cues. We have then shown that the problem can be expressed as the resolution of
a dynamic system and we have developed different techniques allowing to solve it. We have
proposed both analytical and numerical solutions. The first ones are very accurate, but
appear to be limited to specific image features and dedicated to a particular robot
mechanical structure. The second ones are less precise but present the advantage of
genericity, as they can be applied in a general context (any kind of visual data and of robotic
systems). It is then possible to obtain an estimation of any kind of image features
independently from the robot on which is embedded the camera. In a second step, we have
demonstrated the validity of our algorithm in the visual servoing context, considering the
case of a positioning task during which a camera failure occurs. The obtained simulation
and experimentation results have demonstrated the relevancy of our techniques to keep on
performing the mission despite such a problem. Finally, we have ended our study by
proposing a comparative analysis of the different elaborated algorithms.

These works have opened several interesting issues. First, the designed analytical solutions
are restricted to the case of points and, for one of them, to the considered robotic system.
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Although it is a priori difficult to develop such a solution for the general case, a natural
extension would then to solve this problem for other kinds of robots and of visual
primitives. Moreover, as the analytical solution directly provides an expression of the depth,
it would be interesting to use it together with approaches such as tracking algorithms or
camera pose reconstruction techniques. Finally, our results could also be successfully
applied in other related fields than visual servoing. For example, it would be interesting to
use them in a fault tolerance context to detect and correct errors in image processing
algorithms.
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1. Introduction

There are a lot of applications that are better performed by a multi-robot team than a single
agent. Multi-robot systems may execute tasks in a faster and more efficient way and may
also be more robust to failure than a single robot. There are even some applications that can
not be achieved by only one robot and just by a group of them (Parker, 2003; Cao et al.,
1997). Another known advantage of multi-robot systems is that instead of using one
expensive robot with high processing capacity and many sensors, sometimes one can use a
team of simpler and inexpensive robots to solve the same task.

Some examples of tasks that are well performed by cooperative robots are search and rescue
missions, load pushing, perimeter surveillance or cleaning, surrounding tasks, mapping and
exploring. In these cases, robots may share information in order to complement their data,
preventing double searching at an already visited area or alerting the others to concentrate
their efforts in a specific place. Also the group may get into a desired position or
arrangement to perform the task or join their forces to pull or push loads.

Although multi-robot systems provide additional facilities and functionalities, such systems
bring new challenges. One of these challenges is formation control. Many times, to
successfully perform a task, it is necessary to make robots get to specific positions and
orientations. Within the field of robot formation control, control is typically done either in a
centralized or decentralized way.

In a centralized approach a leader, which can be a robot or an external computer, monitores
and controls the other robots, usually called followers. It coordinates tasks, poses and
actions of the teammates. Most of the time, the leader concentrates all relevant information
and decides for the whole group. The centralized approach represents a good strategy for
small teams of robots, specially when the team is implemented with simple robots, only one
computer and few sensors to control the entire group. In (Carelli et al., 2003) a centralized
control is applied to coordinate the movement of a number of non-holonomic mobile robots
to make them reach a pre-established desired formation that can be fixed or dynamic. There
are also the so called leader-follower formation control as (Oliver & Labrosse, 2007;
Consolini et al., 2007), in which the followers must track and follow the leader robot. The
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approach in (Oliver & Labrosse, 2007) is based on visual information and uses a set of
images of the back of the leader robot that will be tracked by the follower robot. In
(Consolini et al., 2007), a leader-follower formation control is introduced in which follower's
position is not rigidly fixed but varies in suitable cones centered in the leader reference
frame.

On the other hand, when considering a team with a large number of robots under a
centralized control, the complexity significantly rises, demanding a greater computational
capacity besides a larger communication system. In this case, a decentralized approach
would be preferred. Usually in a decentralized control there is no supervisor and each robot
makes its decisions based on its own duties and its relative position to the neighbouring
teammates. Some researchers propose decentralized techniques for controlling robots'
formation (Desai et al., 2001; Do, 2007) or cooperation on tasks such as exploration and
mapping (Franchi et al., 2007; Correl & Martinoli, 2007; Rekleitis et al., 2005). There are also
scalable approaches to control a large robotic group maintaining stability of the whole team
control law (Feddema et al.,, 2002). Moreover some models are based on biologically-
inspired cooperation and behaviour-based schemes using subsumption approach (Kube &
Zhang, 1993; Balch & Arkin, 1998; Fierro et al., 2005). In these behaviour-based cases
stability is often attained because they rely on stable controls at the lower level while
coordination is done at a higher level.

The work presented in this chapter addresses the issue of multi-robot formation control
using a centralized approach. Specifically, the principal concern is how to achieve and
maintain a desired formation of a simple and inexpensive mobile robot team based only on
visual information. There is a leader robot responsible for formation control, equipped with
the necessary computational power and suitable sensor, while the other teammates have
very limited processing capacity with a simple microcontroller and modest sensors such as
wheel encoders for velocity feedback. Therefore, the team is composed of one leader and
some simple, inexpensive followers. This hierarchy naturally requires a centralized control
architecture. The leader runs a nonlinear formation controller designed and proved to be
stable through Lyapunov theory. A nonlinear instead of linear controller was chosen
because it provides a way of dealing with intrinsic nonlinearities of the physical system
besides handling all configurations of the teammates, thus resulting in a more reliable
option. It joins a pose controller with a compensation controller to achieve team formation
and take the leader motion into account, respectively.

To control team formation it is necessary to estimate the poses of the robots that form the
group. Computer vision has been used in many cooperative tasks because it allows
localizing teammates, detecting obstacles as well as getting rich information from the
environment. Besides that, vision systems with wide field of view also become very
attractive for robot cooperation. One way of increasing the field of view is using
omnidirectional images (360° horizontal view) (Nayar, 1997) obtained with catadioptric
systems, which are formed by coupling a convex mirror (parabolic, hyperbolic or elliptic)
and lenses (cameras) (Baker & Nayar, 1999). Such systems can really improve the perception
of the environment, of other agents and objects, making task execution and cooperation
easier.

Interesting works on cooperative robotics using omnidirectional images can be found in
(Das et al., 2002; Vidal et al., 2004) and (Zhu et al., 2000). In (Das et al., 2002), all the robots
have their own catadioptric system, allowing a decentralized strategy and eliminating the
need for communication between the robots. The authors propose a framework in which a
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robot can switch between controllers to follow one or two leaders, depending on the
environment. However, all the processing is done on an external computer and the use of
many omnidirectional systems (one for each robot) makes the team expensive. In (Vidal et
al., 2004), a scenario is developed in which each follower uses optical flow for estimating the
leaders relative positions, allowing the group to visually mantain a desired formation. The
computational cost for optical flow calculations is high and results are shown only through
simulations. The work in (Zhu et al., 2000) proposes a cooperative sensing strategy through
distributed panoramic sensors on teammate robots to synthesize virtual stereo sensors for
human detection and tracking. The main focus is the stereo composing and it does not
address team formation.

Now, in this work, we propose a formation controller based on omnidirectional vision and
nonlinear techniques that runs onboard the leader robot. To drive all followers to a specific
formation, the controller considers the desired formation parameters, the leader's linear and
angular velocities and current followers' poses. The desired parameters and leader velocities
are assumed to be known from a higher level controller that drives the leader robot to an
appropriate trajectory. The followers' poses are estimated to feedback the controller using an
omnidirectional vision system, formed by a hyperbolic mirror combined with a color camera
and mounted on the leader, which allows it to see all followers by acquiring just one image.
It is worth mentioning that although omnidirectional vision was used to estimate followers'
positions and orientations, the proposed controller is independent of which sensor is used to
implement the feedback.

Followers are identified by rectangles of different colors placed on the top of their platforms.
Through a set of image processing techniques such as motion segmentation and color
tracking, followed by Kalman filtering combined with Least Squares and RANSAC
algorithm for optimization, followers' poses are reliably estimated. These poses are then
used by the nonlinear controller to define followers' linear and angular velocities to achieve
and maintain the desired formation. Notice that we focus on team formation during robot
motion, while obstacle avoidance and task coordination are not addressed at this stage.
Simulations and real experiments were carried out with different team formations. Current
results show that the system performs well even with noisy and low resolution images.

The main contribution of this work is that stable formation control is achieved based solely
on visual information totally processed onboard the leader. Also, there is no need for an
absolute reference frame or a limited working area, since the vision system is carried by the
leader and measurements are taken relative to it. Related works usually have an expensive
robot team, use a fixed camera to observe the environment or even make all computations
using an external computer.

This chapter is organized as follows. Section 2 describes the formation controller. Section 3
presents a method for estimating followers' poses based on omnidirectional images. One of
the simulations carried out is presented in Section 4. In Section 5, some experiments with
real robots are shown and the results are discussed. Finally, Section 6 concludes this chapter
and outlines the next steps.

2. The controller

To make a mobile robot team (formed by one leader and n followers) navigate in an
environment keeping a specific formation, a controller to command the follower robots was
designed. The leader robot coordinates group navigation using an omnidirectional system,
localizing each one of the followers on its own reference frame.
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2.1 Definition

A nonlinear instead of linear controller was chosen because it provides a way of dealing
with intrinsic nonlinearities of the physical system besides handling all configurations of the
teammates, thus resulting in a more reliable option. This controller must provide the desired
values for the follower velocities based on their coordinate and orientation errors. It
integrates the functions of a pose controller, that brings the team to a desired formation, and
a second controller, that compensates leader's linear and angular velocities. The generated
velocities are considered as reference velocities for the followers and may be sent to the
robots through different means of communication. Controller stability is proved using the
Lyapunov method.

This controller is similar to that found in (Roberti et al.,2007), but differs in the saturation
functions for the errors, which were adapted to fit our specific problem.

2.2 The pose controller
According to Figure 1, a vector containing the followers' coordinates can be defined as
Equation 1.

X

7 Follower 1

Fig. 1. Followers' pose representation on leader's reference frame.

e=(&, & &) where ¢ = [;i ] - [::::((\\((:))] 1)

where § = (x; yi)T stands for the real world coordinates of the i-th follower. To find a
generic solution, the coordinate vector § can be considered as p(§). This approach is
interesting for the cases in which it is necessary to apply some coordinate transformation
such as for vision systems (e.g. image coordinates) or define parameters associated to the
formation (e.g. geometric parameters, baricenters, etc.). However, it is important to note that
in our case p(§) =&, i. e, p(§) is simply a vector containing the real world positions of the
followers. We decided to keep the p notation for generality. By differentiating p(S) with
respect to time, we obtain Equation 2.

p=1() @)
where J(§) is the Jacobian of &.
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From Equation 2, it is possible to define a formation control law given by Equation 3. The
vector § . represents the desired formation velocities, i. e., the velocities, given at the leader

reference frame, that the follower robots must have for achieving formation.

gfr =] (g)(Pd + fﬁ(ﬁ)) with  p=p;-p 3)
where (5 is the vector of formation errors for the followers (Kelly et al., 2004) , pq is the

vector of desired formation parameters and p is the vector of the current formation
parameters. Function f; (5) is a saturation function for the error and defined as Equation 4.

k(p) |

M%Jp with  k,(p

£ (p) = diag ) =k, + kytanh |5 ) (4)

i

where kg + kp represents the saturation value and the gain for small errors is given by k¢ /a.
This saturation function avoids applying velocities that might saturate the robots' motors.

In Equation 3, J(§) is the inverse Jacobian of £ Computation of inverse matrices is
unattractive from the point of view of efficiency. Here it becomes clear why p(§) was chosen
to be equal to &: the Jacobian of § is simply an identity matrix and so is the inverse Jacobian.
Then ¢ _ is obtained through the direct sum of vectors p and f5 (5) , reducing the

associated computational cost.
The action of the Pose Controller is illustrated in Figure 2, where it can be seen that § . does

not have the orientation it would if the function fﬁ(ﬁ) were not used. It is due to the
saturation of the formation error imposed by f5 (5) which makes the sum p, +0,

represented in Figure 2 by ¢, different from p + £ (p) = &, in both norm and orientation.

However, this deviation does not affect this controller's stability because as the follower
p| — 0 and, therefore, £, —p, .

approximates a desired pose,

Fig. 2. Resulting & .. after applying the Formation Controller.

Hence, the main idea for the Pose Controller is to generate velocity signals for all followers
in order to bring them into formation, but taking the leader coordinate frame as reference,
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which means it does not consider the leader motion. This is done by the Compensation
Controller, which works in parallel with the Pose Controller.

It is known that the leader has its own linear and angular velocities, defined according to an
absolute reference frame. These velocities must be considered when computing the follower
velocities. In Equation 5, § N is added to gmmp, a vector containing the compensations for the

leader velocities. The resulting vector gr provides the follower velocities needed to achieve

at the same time the desired formation and compensate for the leader's motion.
gr = EJfr + gcomp (5)

2.3 The compensation controller
The values of the elements of gmmp are computed to eliminate/overcome the effects caused

by the leader's linear and angular velocities. Figure 3 shows an example in which the leader
moves with linear (vi) and angular (o) velocities and the i-th follower is considered to be
already at the desired position (x; y;)T.

Once vi and @ are known, r and r;, the circles radii described by the leader and the follower,
are given by Equation 6.

1

r=2 and 1, = (r+xi)2 +(yi)2 (6)

,

Fig. 3. Leader's velocities compensation.

Equations 7 - 9 describe the way compensation velocity is calculated for the i-th follower.

o = arctan( Yi J and v, = o, @)
T+ X
Vo=V, (¢, +2] ®
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where vix and viy are the follower compensation velocity components ¢  (vix, Viy) in the

(
mp
leader reference frame. It is also important to mention that when the leader robot has no
angular velocity (w1=0), écomp equals the leader linear velocity with vix=0 and viy = v1.

2.4 Generating commands
After obtaining gr , the linear and angular velocities to be sent to the i-th robot are defined

by Equations 10 and 11.

€. lcos(&,) (10)

V. =

ci

W4 =d,; + fa(ai) + ®, (11
where Hg”H is the desired velocity norm for the i-th follower and ¢ is the change in its

orientation during time. The term ai, defined as ai = ay - ay, is the angular error, with ay

and a; representing the reference angle and the robot current orientation, all represented in
the leader frame, as shown in Figure 4. Notice that, for simplifying Figure 4 in order to help
understanding, we considered the leader angular velocity (w1) equal to zero.

The function £ (ai), as before, is a saturation function for the error given by Equation 12.

£ (ai) = k,ytanh’(k,, ai) (12)

where kg1 represents the saturation value of the orientation error and ks> controls how fast
this function reaches its saturation value. f (ai) has an interesting characteristic: its

derivative tends to zero as the orientation error approaches zero, which means that
transitions between positive and negative values are smooth, as can be seen in Figure 5. In
practice, it avoids oscilations in the followers' trajectories.

Fig. 4. Angles related to the linear and angular velocities sent to the followers.
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Fig. 5. Shape of f_(d,) for ko1 = 0.5 and ka2 = 1.

The objective of f_(&,) is to prevent initial orientation errors causing high angular velocity

commands which would compromise control stability and submit robot motors to abrupt
voltage variations.

2.5 Proof of stability

2.5.1 Proof for the pose controller

Due to their dynamics, the followers are not able to immediately achieve the desired
formation velocities. However, these velocities are asymptotically achieved, represented by
Equation 13, as it will be proved in Section 2.5.2.

% - éfr (13)

where § is the vector of current velocities and § . is the vector containing the reference

velocities for attaining formation. Equation 13 can also be written as Equation 14.
&, =¢+n with |n|—>0 (14)

where 1) is the difference between the desired and current velocities. The control law for the
Pose Controller is given by Equation 15, repeated here for convenience.

£ =1y + £()) (15)

Equation 16 is obtained by the substitution of 14 in 15.

g +1= ]71(§)(pd + fﬁ(ﬁ)) (16)
Multiplying Equation 16 by J(§) results in Equation 17.
JE©)E +m, =pg + fﬁ(ﬁ) where 1, = J(§)n (17)

As known from Equation 2, o = ](§)§ , which leads to Equation 18.

p+1 =pg+ fﬁ(ﬁ) (18)
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The temporal derivative of 5 produces Equation 19.

P=Ps—Pp = Pa=P+P (19)
The substitution of 19 in 18 gives Equation 20.
5 =1, — fﬁ(ﬁ) (20)

Then the following Lyapunov candidate function is proposed:

17~
V= 5 p'p 1)
whose temporal derivative is
V=p"5=p"n -5/ 22)
For V to be definite negative it is necessary that:
k()] |~ ~
o [T @
where |k, (5}‘ is simply
k@) = k(@) =kq + kfztanhmﬁH) (24)
Hence, the following condition must be satisfied:
Bl > afn, | (25)

ki + kptanh([]) - .|

As the followers achieve the desired velocities, |n| — 0; and so || — 0. Then the
condition of Equation 25 will be satisfied for some finite time, which means that

Hﬁ(t)H — O with t — oo,

2.5.2 Proof for the generated commands
The temporal variation of the followers' orientations is expressed by

aAa=w, — o (26)
where the generated angular velocity @, is given by
o, =a, + (@) + o (27)
Putting 27 into 26 results in Equation 28.

a=a, + f,(d) (28)
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Deriving & respect to the time gives
d=da,-da = a=a+a 9)

Then Equation 28 can be rewritten as
a+f(a)=0 (30)

Thus, the following Lyapunov candidate function is proposed

V==3"a (1)

whose temporal derivative is
V=&"a=-3"(a) (32)

As f, (ﬁ) is an odd function, ana (a) >0 for & # 0, which means that V is definite negative

S

7

(V<0). Hence Hﬁ(t)H—)O for t — co. Finally, since cos(d,)—1, we have v —

concluding this proof.

3. Image processing and pose estimation

As said before, the leader robot is equipped with an omnidirectional vision system.
Although omnidirectional images suffer from typical problems like loss of resolution and
distortion, their wide field of view allows the leader to visualize all the region around itself,
which facilitates localizing the teammates, avoiding obstacles and mapping the
environment.

Each follower robot is identified by a colored rectangle placed on its platform. Their poses
are estimated through color segmentation and Kalman filtering. Usually two colors are used
on the top of the robots, so the orientation can be easily calculated (Santos-Victor et al.,
2002). Because of the distortion of omnidirectional images, we decided to use just one color
per robot. If two colors were used, each colored area would be reduced to half of the area
seen on the image. Also image distortion increases as the robot moves away from the leader
and could compromise robot localization if just a small part or none of the color of interest is
seen on the image.

As discussed in the previous section, the leader must know the pose of each cellular robot
belonging to the team in order for the team to navigate in formation. However, at the
beginning, the leader does not know the follower's initial poses and colors. So it then needs
to detect the initial position, color and orientation of each cellular robot. Once that is done
the leader can start moving,.

The image processing can then be divided into three main steps:

e Initial position detection;

e  Tracking for initial orientation detection;

e  Tracking for formation control.

In order to make the controller independent of image measurements (pixels), robot positions
were converted to meters. One way of doing this and also eliminating image distortion is to
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remap those images to bird's eye view (Vassallo et al, 2004; Pereira et al., 2005).
Unfortunately this remapping depends on system calibration and requires more steps on
image processing.

Instead a transform I', composed of a set of polynomial functions, was defined to recover
robot world positions from image coordinates. The process of determining I' is simple: first
the region around the leader is divided into n sectors, each one defining a matching table
relating distances on the image plane (pixels) and the real world (meters). Then each table is
used to interpolate a polynomial function that estimates the follower positions.

Although the number of functions composing I' can be high, it was decided to use just four,
as illustrated in Figure 6, since they are enough for this application. It is important to note
that this approach is much faster than using bird's eye view remapping.

Sector 1

Sector 2 Sector 3

Sector 4

Fig. 6. Sectors used to define the I' transform.

The polynomial functions obtained are plotted in Figure 7.

3.1 Detecting initial positions

Before starting to detect the followers' initial positions, the leader robot must focus its
attention on a working area, the region around it in which all followers should be to be seen
by the leader. That is because the distortion caused by omnidirectional images, which makes
object detection impractical at some distance from the visual system. This region is defined
by the mask exhibited in Figure 8-(a), which is applied to the omnidirectional image
providing the result shown on Figure 8-(b), where a cellular robot is seen close to the leader.
This first step is accomplished by means of movement detection. Then it is not necessary to
use color images, but only their grayscale version. In this work, movement detection is done
based on a robust version of the background subtraction technique: instead of simply
comparing a captured image with a previously constructed background, the leader
compares two backgrounds. This procedure is necessary because of noise and the low
resolution of omnidirectional images.

The leader starts by constructing the first background, called the base background -- Figure 9
-(a), while all robots are standing by. When that is finished, Follower 1 executes a short
forward displacement and as soon as it stops another background is constructed, the
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discriminant background -- Figure 9-(b). Then the leader compares both backgrounds and the
result is thresholded, producing a blob as shown in Figure 9-(c), which represents the
follower displacement and is used for estimating its initial position and color. After that the
rectangle encompassing the blob -- Figure 9-(d) -- must be found because it will be used in
the following steps by a tracking algorithm to estimate robot positions.
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Fig. 7. Shape of each function composing the I' transform.

(@) (b)

Fig. 8. (a) Binary mask applied to omnidirectional image (b) Resulting working area.
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(@) (b) © (d)
Fig. 9. (a) Base background (b) Discriminant background (c) Blob obtained after
thresholding the difference between the constructed backgrounds (d) Resulting
encompassing rectangle.

Often, after executing its displacement, a cellular robot generates more than one blob, as
shown by Figure 10-(a). So a filter algorithm had to be developed: it checks each blob's color;
if it is the same and they are sufficiently close to each other, the encompassing rectangles are
combined into a single encompassing rectangle; if not, only the larger one is retained -
Figure 10-(b).

(@) (b)
Fig. 10. (a) Image with more than one blob (b) Filtered image.

The above procedure is executed to detect the initial position of just one follower. However,
it is not necessary to construct two new backgrounds for the next follower to be detected,
since the discriminant background related to the previous robot can be used as the base
background for the next one. Then, for n followers n+1 backgrounds are constructed, instead
of 2n.

3.2 Detecting initial orientations

Once the color and the initial position of each follower is known, a tracking algorithm can be
used for further estimate of robot positions. The CAMSHIFT (Continuously Adaptive Mean-
SHIFT) algorithm, from OpenCV library, is attractive for this kind of application. Given a
color histogram and an initial search window (both determined in the previous image
processing step) it returns a new search window for the next image based on color
segmentation. Such window is found using the dimensions of the segmented area and its
centroid. This provides a fast and robust online performance for the tracking algorithm.
CAMSHIFT and T transform taken together allow the leader to estimate with adequate
precision all follower positions. Then the procedure for finding the initial orientations is as
follows: at the same time, all cellular robots execute again a forward displacement. While
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they are moving, the leader saves the trajectory described by each follower, as illustrated by
Figure 11. Then the leader has, for each follower, a sequence of points describing a straight
line, with its angular parameter corresponding to the relative orientation ap. However, due
to measurement noises, it is necessary to apply an algorithm like RANSAC (Fischler &
Bolles, 1981) to eliminate outliers. After that, a Least Squares algorithm is used to find each
follower orientation thus completing the initial pose estimation.

¥

Fig. 11. Capturing a follower trajectory in order to determine its initial orientation ayp.

3.3 Tracking for formation control

Once the leader knows all followers' initial poses the logical next step would be to start
moving and drive the team to the desired formation. However, there is a question that must
be answered first: given a desired position, which follower should be driven to there? When
a desired pose is achieved, because of the non-holonomic restriction, the respective follower
must be aligned to the leader, i. e., its relative orientation must be 90°. This means that all
final orientations are already known, but the final position that each follower should have is
not known yet.

To solve this problem, a cost matrix C was defined - Equation 33 - where 7 is the number of
cellular robots, c;j represents the cost for the i-th follower to reach the j-th position. In other
words, the i-th row of C is a vector containing the costs of the i-th follower relative to all
desired positions.

Ci1 Cp Cin
C C C

c=| = 2n (33)
Cnl Cn2 e Cnn

There are many ways of defining how to calculate the costs cj. In this work, it was decided to
use the square of the euclidian distance between current and desired positions. Each possible
followers-desired positions configuration can be viewed as a combination of n costs, taking
each one from a different row and column of C. The associated cost is simply the sum of the n
costs that compose such configuration. An advantage of this approach is that it permits an
analogy with the energy spent by each follower to reach some desired position. Then, it is easy
to see that the ideal configuration is that having the least associated cost.



Nonlinear Stable Formation Control using Omnidirectional Images 85

After defining the ideal configuration, the leader starts to move. To drive the cellular robots
into formation it is necessary to estimate their poses, which is based on the CAMSHIFT
algorithm: robot positions are estimated using the centroids of the detected colored areas
and passed to the Formation Controller. However, due to measurement noises, it is very
difficult to have reliable orientation values if they are estimated on every acquired image.
One way of doing that using just one color per robot is shown in (De La Cruz et al., 2006).
Instead, it was decided to define a simpler method, based on the geometry of the robot
trajectories, as shown in Figure 12. Each follower orientation is calculated after the robot has
moved at least a minimum displacement Asnin, defined in Equation 34 (these values were
chosen empirically), whose objective is to reduce noise influence caused by image low
resolution, mirror distortion and illumination changes.

SP(Xy) T
1 (X5 Y1) T ~»»»_3\0(xdy0>

Fig. 12. Follower trajectory while its pose and velocities are not updated.

As,,,. =0.02 + 0.03tanh(2[p]) (34)

The orientation a is estimated considering that, between two control signal updates, the
robot maintains the previous linear and angular velocities and performs a curve trajectory.
From Figure 12, the straight line s can be defined by Equation 35.

y =myx + 1, with

_Y2~ V1 -
m,==—=—— and |, =y, —-myx,
Xy =%

(35)

The distance d is obtained from the displacement As and the angle 0, using the follower's
angular velocity o and the time interval At spent to move from Pi(x1, y1) to Pa(x2, y2).

d= As where 0 = @At (36)
2tan(9) 2
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Then d, the line s and the circle equation are used to find O(xo, yo), which is used to
calculate the angle a.

a= arctan[_lJ where m, = Y2~ Yo (37)
m, X, — Xpo
A special case is considered when x; = x1: if y1 > y2, a = -11/2, if not, a = 11/2. Then a Kalman

Filter was applied to a, resulting in more stable estimates and reducing the errors for the
next loop control. Kalman filtering was chosen because of its performance and low
computational cost.

Figure 13 shows follower motion detection for the first pose estimation and the further
tracking software running. White outlines involve the colorful rectangles segmented from
an omnidirectional image.

Fig. 13. Robots detection and the tracking software.

From the above equations it is clear that As must be known in order to determine robot
orientations. It is computed while the team is moving and this is done based on a 2D
geometric transformation, which is defined by composing a translation and a rotation, since
the leader has, in general, both linear and angular velocities. The idea is to define two
reference frames: the first corresponds to where the previous image was captured - Sp - and
the second to where the current image has been captured - S; - according to Figure 14, with
dx and dy standing for x and y leader displacements and v its rotation.

Then, knowing xo, yo, dx, dy and y, Equation 38 shows how to obtain x; and yi. It is
important to note that (x; y1)T do not mean the current follower position, but the previous
position represented in the most recent frame S;. As can now be calculated through the
euclidian distance between the current position and (x1 y1)T.

X, cosy —siny 0|1 0 -dx]||x,
y,|=|siny cosy 0|0 1 —dy|y, (8)

1 0 0 1|0 0 1 ||1
Due to the projection geometry of omnidirectional visual systems, robot orientations are not

affected by the translation of the coordinate system, only by its rotation. Figure 15 shows
this effect, where ap and a; stand for a robot orientation on previous and current reference
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frame, respectively. Hence, it is easy to see that a; = ao - y. Every time a follower presents a
As greater than Asn, its pose should be updated and passed to the controller in order to

generate new control signals.

dy

\Y ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, X
Xo X

Fig. 14. Effects of leader's frame translation and rotation on a follower position

representation.

W

Fig. 15. Effect of leader's frame rotation over a follower orientation.
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4. Simulation

Before testing on real robots, some simulations were carried out to evaluate the behavior of
the proposed controller while varying some parameters, although not considering the team
dynamics. Without loss of generality, the initial position of the leader is chosen to be
coincident with the world frame origin. Several simulations were carried out with the same
controller parameters used in the experiments.

The idea of the presented simulation is to reproduce an obstacle avoidance maneuver while
maintaining formation, a common situation in navigation tasks. Figure 16 shows the
trajectories described by the team during this simulation. The leader had a linear velocity of
60 mm/s and an angular velocity according to the function in Equation 39, which is the
same function used in the last experiment shown in this chapter.

f

@l

k,tanh(k, (t, - t)) for 10 <t <100s (39)
(t)= .
0 otherwise

where ky, kz and t; are auxiliary parameters used to control the desired shape of the leader's
trajectory. For this simulation ki = 1.5°/s, k, = 0.2 and t; = 55 s, which means that for 10 <t <
100 s the leader's angular velocity varied from -1.5°/s to 1.5°/s, reaching zero at t =t; =55 s.

The middle blue line indicates the leader's trajectory. The dashed outer lines represent the
desired trajectories for the followers, that must stay on positions p41 = (-0.50 -0.30)T and p4>
= (0.50 -0.30)T relative to the leader. The solid lines indicate the followers' trajectories that
started from initial positions po = (-0.70 -0.80)T and pg2 = (0.30 -0.90)T. The red triangles
indicate how the team gets into formation. Followers' initial orientations were 135° and 120°,
respectively. The followers achieve their desired positions and successfully maintain the
formation, describing the proposed trajectory.

4 T T T T T T

35F bl
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25F i

Absolute positions — y [m]
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Absolute positions — x [m]
Fig. 16. Trajectory described by the team during this simulation.

Figure 17 exhibits the effect of the leader's angular velocity variation on followers' poses, in
which (a) and (b) indicate followers' position errors while (c) shows their orientations. It is
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possible to see that abrupt variations or sign changes of the leader's angular velocity disturb
the system, thus causing perturbations on followers' poses just after they happen. Since such
perturbations are common during robot navigation, the controller must drive all followers
to the desired poses regardless of that, which is shown by Figures 16 and 17.

0. . 07

06
05

05
0.4

= T o4r
= 03F =
S S

= £ osf
5 5
c 02 [ =
S

2 = 02

‘@ 7]
o <}
o oip o

04t

of R o

01 i i i i i i 1 -0 L L . L L y
) 20 40 60 80 100 120 140 160 o 20 0 80 100 120 140 160
Time [s] Time [s]

(@) | o (b)

Orientation [degrees]

L H L ) L L
0 20 40 60 100 120 140 160

Time [s]
©
Fig. 17. Simulation results: position errors for (a) Follower 1 (b) Follower 2. (c) Followers

orientations.

5. Experiments and results

The experiments presented here were performed with a robot team composed of a Pioneer
2DX (Pentium II, 266 MHz, 128 MB RAM) as leader and two cellular robots as followers.
They are shown in Figure 18.

The leader has an omnidirectional system with a perspective color camera and a hyperbolic
mirror. The two cellular robots were assembled in our lab and have about the size of 15 x 25
cm and 10 cm height. They are differential robots equipped with the MSP430F149
microcontroller and H-bridges TPIC0108B from Texas Instruments to drive the motors.
Initially communication between leader and followers was accomplished by cables for serial
communication, substituted later by a radio link.

Several experiments were also carried out. We decided to present three of them because
they show the key features of the proposed controller.
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Fig. 18. Robots used for the expefﬂnents.

5.1 Experiment 1

In this first experiment, the idea was to execute a simple translation in order to show the
controller behaviour in a free corridor, for example. Then the leader has developed a
straight line with 60 mm/s of velocity. Followers' initial positions were estimated at po; = (-
0.50 -0.40)T, po2 = (0.35 -0.50)T, while the desired positions were pq41 = (-0.60 0.30)T, pa2 =
(0.60  0.30)T, that is, an isoceles triangle with followers in front of the leader. Initial
orientations were approximately 135° and 60°, respectively.

Figure 19 shows the position errors for both followers, while Figure 20 gives the behaviour
of their orientations. The error related to the x-coordinate is plotted in blue, while the red
line indicates the error for the y-coordinate. In Figure 20, the calculated values for
orientation are indicated in blue and the resultant values after Kalman Filtering are in red.

Position error [m]
Position error [m]

L L L L L L L L
80 100 120 140 "o 20 40 80 100 120 140

'?'oime [s] '?ime [s]
@) (b)

Fig. 19. Experiment 1: position errors (blue) x and (red) y for (a) Follower 1 (b) Follower 2.

From Figure 20 it is possible to see that after the transient stage, both orientations stay close
to 90°. This result, together with the position errors shown in Figure 19, means that both
followers achieve the desired poses and keep them until the end of the experiment.

The trajectory described by the group is illustrated in Figure 21, in which it is clear that it is
not actually straight. The reason is a disalignment on the leader's left wheel, which affects
encoder readings. As a result, the robot is unable to perform exactly the required linear and
angular velocities. This effect is present in all experiments shown, but becomes more visible
when the trajectory should be a straight line.
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Orientation [degrees]
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Fig. 20. Experiment 1: orientation behaviour (blue) before and (red) after filtering of (a)

Follower 1 (b) Follower 2.
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Fig. 21. Experiment 1: trajectory performed by the group.

5.2 Experiment 2

As has been shown in the first experiment, the leader navigated with fixed orientation. Now,
the idea is to evaluate the controller behaviour when the reference frame is always changing its
orientation. This second experiment was run with this purpose. Once again, leader's linear
velocity was 60 mm/s, but its angular velocity was constant and equal to 1,5 °/s.

The followers were detected at positions given by po1 = (-0.70 0.0)T, poz = (0.0 -0.90)T and
their desired positions were pg1 = (0.0 0.70)T, pa2 = (0.0 -0.70)T, which means that one
follower should stay in front of the leader and the other behind it, as shown by Figure 22.
Initial orientations were both estimated as being 85°.

Figure 22 serves also to see that the radii described by the followers are greater then that
described by the leader and they are related by 1, = y/t* + y,> , with i = 1, 2. The position
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errors obtained are depicted in Figure 23 and Figure 24 shows the evolution of both
followers' orientations.

/ T

Fig. 22. Expected geometry formation for the second experiment.

Here it is worth mentioning the reason for the negative peak relative to the second
follower's x-error (Figure 23-(b)) after about 60 seconds of experiment: this robot got stuck
for a moment and could not follow the leader. But as soon as it could move again, the
controller brought it back to the desired pose. We decided to present this particular
experiment also because it shows the robustness of the controller on dealing with
disturbances.
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Fig. 23. Experiment 2: position errors (blue) x and (red) y for (a) Follower 1 (b) Follower 2.

Another important observation can be done with respect to the orientations presented by
the cellular robots. According to Figure 24 the followers' orientations did not achieve the
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steady state around 90°, but close to 100° and 80° respectively. This fact was already
expected and can be easily explained by Figure 22, where it can be seen that for a
counterclockwise rotation the robot that is going in front of the leader must have an angle
greater than 90° relative to the leader frame, while the other robot must present an
orientation less than 90°. As might be expected, the relation between these angles is inverted
for a clockwise rotation.
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Fig. 24. Experiment 2: orientation behaviour before (blue) and after filtering (red) of (a)
Follower 1 (b) Follower 2.

The resulting trajectory is illustrated in Figure 25 in which the team was moving
counterclockwise, since leader's angular velocity was positive. It should be noted that the
robots rapidly achieved the desired formation and maintained it until closing the circle, as
shown by the triangle representing team formation, almost becoming a straight line.
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Fig. 25. Experiment 2: trajectory performed by the group.
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5.3 Experiment 3

The simulation presented above, although not considering robots' dynamics, illustrates the
controller behaviour in a common situation in which the team needs to get into formation
and avoid an obstacle at the same time. The objective of this last experiment was to evaluate
the controller in the same situation, but using real robots.

Hence, in this experiment the leader navigated with the same velocities it had in the
simulation and followers' initial positions were approximately po; = (-0.40 -0.80)T and po2 =
(0.25 -0.85)T, while their desired positions were pq1 = (-0.50 -0.30)T and pq2 = (0.50 -0.30)T.
Initial orientations were estimated as being 105° and 80°, respectively. Figure 26 gives the
position errors and Figure 27 shows the followers' orientations obtained with this
experiment.
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Fig. 26. Experiment 3: position errors (blue) x and (red) y for (a) Follower 1 (b) Follower 2.
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Fig. 27. Experiment 3: orientation behaviour before (blue) and after filtering (red) of (a)
Follower 1 (b) Follower 2.

As in the simulation, followers' poses suffered from leader's angular velocity variations, but
the controller successfully drove the robots to the desired formation. Figure 28 shows the
performed trajectory, which is not exactly the same of that obtained in the simulation
because of the disalignment on the leader's left wheel.
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Fig. 28. Experiment 3: trajectory performed by the group.

5.4 Remarks

The experiments shown demonstrate that the robot team has achieved the desired formation
and maintained it until the end of the respective experiment, even suffering the influence of
image noise, low resolution of the camera and reduced useful image area. Position errors
were limited to 10 cm in most experiments.

The use of Kalman Filter provided more reasonable orientation values, thus significantly
improving the controller performance through better robot's pose estimation. As a result,
the generated commands are smoother than those obtained without filtering.

6. Conclusion and future work

This chapter has presented a multirobot formation control strategy based on nonlinear
theory and omnidirectional vision. The objective is to drive a team of simple and
inexpensive mobile robots to a desired formation using only visual information. Because of
the limitations of the celular robots they must be led by a leader robot having the necessary
processing capacity and equipped with an adequate sensor. Thus, the formation control is
done using a centralized approach.

Group formation is accomplished by a stable nonlinear controller designed to drive the
followers into formation during navigation regardless of which sensor is used to implement
the feedback. In this work, feedback was implemented using a single omnidirectional vision
system because it allows the leader to localize all followers by acquiring just one image.

An important advantage of our approach is that the working area is not limited since the
vision system is attached to the leader and so is the reference frame, which means all
measurements are taken relative to the leader. Besides that, all computations are carried out
onboard the leader, discarding the use of an external computer.

Through a set of image processing techniques followers' poses are reliably estimated. That
includes motion segmentation, morphological filtering and color tracking, complemented by
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Kalman filtering combined with Least Squares and RANSAC algorithm for optimization.
Followers' positions and orientations are then used by the controller to define desired
velocities for the robots to attain formation.

Simulations and experiments were carried out to evaluate the controller performance and
current results show that the system performs well even with noisy and low resolution
images. As future work, the controller shall be improved and obstacle avoidance will be
included. Optical flow on omnidirectional images might play an important role on obstacle
avoidance, and time to collision can be used to provide a safe team navigation.

Finally, this work may represent a good step towards applications that require using a large
number of robots while keeping costs within reason. Combining centralized and
decentralized strategies could be used to make a large robot group divide itself into smaller
teams each having one leader. Leaders would negociate navigation and task execution
among themselves while controlling the follower teammates. This approach would provide
stable formation control and robustness against the failure of a leader. In this case, other
leaders could adopt the “orphan” followers and the task in charge would be handled with
reduced impact.
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1. Introduction

This chapter presents a stereo vision application to Mobile Robotics. In particular we deal
with the problem of simultaneous localization and mapping (SLAM) (Dissanayake et al.,
2001; Montemerlo et al., 2002) and propose a stereo vision-based technique to solve it (Gil et
al., 2006). The problem of SLAM is of paramount importance in the mobile robotics
community, since it copes with the problem of incrementally building a map of the
environment while simultaneously localizing the robot within this map. Building a map of
the environment is a fundamental task for autonomous mobile robots, since the maps are
required for different higher level tasks, such as path planning or exploration. It is certainly
an ability necessary to achieve a true autonomous operation of the robot. In consequence,
this problem has received significant attention in the past two decades.

The SLAM problem is inherently a hard problem, because noise in the estimate of the robot
pose leads to noise in the estimate of the map and viceversa. The approach presented here is
feature based, since it concentrates on a number of points extracted from images in the
environment which are used as visual landmarks. The map is formed by the 3D position of
these landmarks, referred to a common reference frame. The visual landmarks are extracted
by means of the Scale Invariant Feature Transform (SIFT) (Lowe, 2004). A rejection
technique is applied in order to concentrate on a reduced set of highly distinguishable,
stable features. The SIFT transform detects distinctive points in images by means of a
difference of gaussian function (DoG) applied in scale space. Next, a descriptor is computed
for each detected point, based on local image information at the characteristic scale (Lowe,
2004). We track detected SIFT features along consecutive frames obtained by a stereo camera
and select only those features that appear to be stable from different views. Whenever a
feature is selected, we compute a more representative feature model given the previous
observations. This model allows to improve the Data Association within the landmarks in
the map and, in addition, permits to reduce the number of landmarks that need to be
maintained in the map. The visual SLAM approach is applied within a Rao-Blackwellized
particle filter (Montemerlo et al., 2002; Grisetti et al., 2005).

In this chapter we propose two relevant contributions to the visual SLAM solution. First, we
present a new mechanism to deal with the data association problem for the case of visual
landmarks. Second, our approach actively tracks landmarks prior to its integration in the
map. As a result, we concentrate on a small set of stable landmarks and incorporate them in
the map. With this approach, our map typically consists of a reduced number of landmarks
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compared to those of (Little et al., 2002) and (Sim et al., 2006), for comparable map sizes. In
addition, we have applied effective resampling techniques, as exposed in (Stachniss et al.,
2004). This fact reduces the number of particles needed to construct the map, thus reducing
computational burden.

Our system has been implemented and tested on data gathered with a mobile robot in a
typical office environment. Experiments presented in this chapter demonstrate that our
method improves the data association and in this way leads to more accurate maps.

The remainder of the chapter is structured as follows. Section 2 introduces related work in
the context of visual SLAM. Next, Section 3 defines the concept of visual landmark and their
utility in SLAM. Section 4 explains the basics of the Rao-Blackwellized particle filter
employed in the solution. Next, Section 5 presents our solution to the data association
problem in the context of visual landmarks. In Section 6 we present our experimental
results. Finally, Section 7 sums up the most important conclusions and proposes future
extensions.

2. Related work

Most work on SLAM so far has focussed on building 2D maps of environments using range
sensors such as SONAR or laser (Wijk and Christensen, 2000; Thrun, 2001). Recently, Rao-
Blackwellized particle filters have been used as an effective means to solve the SLAM
problem using occupancy grid maps (Stachniss et al., 2004) or landmark-based maps
(Montemerlo et al., 2002). Fig. 1 shows an example of both kind of maps. Recently, some
authors have been concentrating on building three dimensional maps using visual
information extracted from cameras. Typically, in this scenario, the map is represented by a
set of three dimensional landmarks related to a global reference frame. The reasons that
motivate the use of vision systems in the SLAM problem are: cameras are typically less
expensive than laser sensors, have a lower power consumption and are able to provide 3D
information from the scene.

ol |
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7

Fig. 1. Two typical maps. Fig. 1(a) occupancy-grid map. Fig. 1(b) landmark-based map:
landmarks are indicated with (grey/yellow dots).

In (Little et al., 2001) and (Little et al., 2002) stereo vision is used to track 3D visual
landmarks extracted from the environment. In this work, SIFT features are used as visual
landmarks. During exploration, the robot extracts SIFT features from stereo images and
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computes relative measurements to them. Landmarks are then integrated in the map with
an Extended Kalman Filter associated to it. However, this approach does not manage
correctly the uncertainty associated with robot motion, and only one hypothesis over the
pose of the robot is maintained. Consequently it may fail in the presence of large odometric
errors (e.g. while closing a loop). In (Mir6 et al., 2005) a Kalman filter is used to estimate an
augmented state constituted by the robot pose and N landmark positions (Dissanayake et
al., 2001). SIFT features are used too to manage the data association among visual
landmarks. However, since only one hypothesis is maintained over the robot pose, the
method may fail in the presence of incorrect data associations. In addition, in the presence of
a significant number of landmarks the method would be computationally expensive.

The work presented in (Sim et al., 2006) uses SIFT features as significant points in space and
tracks them over time. It uses a Rao-Blackwellized particle filter to estimate both the map
and the path of the robot.

3. Visual landmarks

In our work, we use visual landmarks as features to build the map. Two main processes can

be distinguished when observing a visual landmark:

o  The detection phase: This involves extracting a point in the space by means of images
captured from the environment. The detection algorithm should be stable to scale and
viewpoint changes, i.e. should be able to extract the same points in space when the
robot observes them from different angles and distances.

e  The description phase: Which aims at describing the appearance of the point based on
local image information. The visual descriptor computed in this phase should also be
invariant to scale and viewpoint changes. Thus, this process enables the same points in
the space to be recognized from different viewpoints, which may occur while the robot
moves around its workplace, thus providing information for the localization process.
The descriptor is employed in the data association problem, described in Section 5.

Nowadays, a great variety of detection and description methods have been proposed in the

context of visual SLAM. In particular, in the work presented here we use SIFT features

(Scale Invariant Feature Transform) which were developed for image feature generation,

and used initially in object recognition applications (Lowe, 2004; Lowe, 1999). The Scale-

Invariant Feature Transform (SIFT) is an algorithm that detects distinctive keypoints from

images and computes a descriptor for them. The interest points extracted are said to be

invariant to image scale, rotation, and partially invariant to changes in viewpoint and
illumination. SIFT features are located at maxima and minima of a difference of Gaussians

(DoG) function applied in scale space. They can be computed by building an image pyramid

with resampling between each level. Next, the descriptors are computed based on

orientation histograms at a 4x4 subregion around the interest point, resulting in a 128

dimensional vector. The features are said to be invariant to image translation, scaling,

rotation, and partially invariant to illumination changes and affine or 3D projection. SIFT
features have been used in robotic applications, showing its suitability for localization and

SLAM tasks (Little et al., 2001; Little et al., 2002; Sim et al., 2006).

Recently, a method called Speeded Up Robust Features (SURF) was presented (Bay et al.,

2006). The detection process is based on the Hessian matrix. SURF descriptors are based on

sums of 2D Haar wavelet responses, calculated in a 4x4 subregion around each interest

point. For example, in (Murillo et al., 2007) a localization method based on SURF features is
presented.
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Finally, in (Davison & Murray, 2002) monocular SLAM is implemented using the Harris
corner detector and the landmarks are described by means of a gray patch centered at the
points.

To sum up, different detectors and descriptors have been used in visual SLAM approaches.
In our opinion, there exists no consensus on this matter and this means that the question of
which interest point detector and descriptor is more suitable for visual SLAM is still open.
However, the evaluation presented by (Mikolajeczyk & Schmid, 2005) proved the great
invariability and discriminant power of the SIFT descriptors. On the other hand, the study
presented in (Ballesta et al.,2007), demonstrated that the points obtained with the DoG
detector where highly unstable. As a consequence, in the work presented here, a tracking of
the points is performed in order to reject unstable points.

4. Rao-Blackwellized SLAM

We estimate the map and the path of the robot using a Rao-Blackwellized particle filter.
Using the most usual nomenclature, we denote as s; the robot pose at time t. On the other
hand, the robot path until time t will be denoted s; ={s;, s5, **+, si}. We assume that at time ¢
the robot obtains an observation z; from a landmark. The set of observations made by the
robot until time t will be denoted zt ={z1, zo, **+, z:} and the set of actions ut ={u1, uz, -+, us}.
The map is composed by a set of different landmarks L ={Iy, I, -, In}. Therefore, the SLAM
problem can be formulated as that of determining the location of all landmarks in the map L
and robot poses s; from a set of measurements z! and robot actions u!. Thus, the SLAM
problem can be posed as the estimation of the probability:

p(L| st 21, us, c1) @)

While exploring the environment, the robot has to determine whether a particular
observation z; corresponds to a previously seen landmark or to a new one. This problem is
known as the Data Association problem and will be further explained in Section 5. Provided
that, at a time f the map consists of N landmarks, the correspondence is represented by c;,
where ¢; 2 [1...N ]. In consequence, at a time t the observation z; corresponds to the
landmark ¢; in the map. When no correspondence is found we denote it as ¢ =N+1,
indicating that a new landmark should be initialized. The conditional independence
property of the SLAM problem implies that the posterior (1) can be factored as (Montemerlo
et al., 2002):

p[s L\z u ct}) (s |z u c) H p(k|st,zt,ut,ct) @

This equation states that the full SLAM posterior is decomposed into two parts: one
estimator over robot paths, and N independent estimators over landmark positions, each
conditioned on the path estimate. This factorization was first presented by Murphy
(Murphy, 1999). We approximate p(s; | z:, us cr) using a set of M particles, each particle
having N independent landmark estimators (implemented as EKFs), one for each landmark
in the map. Each particle is thus defined as:
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where p 1 is the best estimation at time t for the position of landmark based on the path
of the particle m and X /™ its associated covariance matrix. Each landmark is thus described
as: li={ux, Zx, dx }, where dy is the associated SIFT descriptor. The SIFT descriptor allows to
differentiate between landmarks, based on their visual appearance. The set of M particles,
each one with its associated map will be denoted S;={S;!, S¢2, -+, SM}. The particle set S; is
calculated incrementally from the set S.i, computed at time #-1 and the robot control u;.
Thus, each particle is sampled from a proposal distribution p(s; | sw1, u:), which defines the
movement model of the robot. Particles generated by the movement model are distributed
following the probability distribution p(st | z*1ut, ct1), since the last observation of the robot
z; has not been considered. On the contrary, we would like to estimate the posterior: p(st | z,
ut, cf), in which all the information from the odometry u! and observations zt is included.
This difference is corrected by means of a process denoted sample importance resampling
(SIR). Essentially, a weigth is assigned to each particle in the set according to the quality by
which the pose and map of the particle match the current observation z;. Following the
approach of (Montemerlo et al., 2002) we compute the weight assigned to each particle as:

ol = lexp{_ %(Z 2 Yz TG -z, )} )

‘2”Z¢,¢

Where z; is the current measurement and Z, is the predicted measurement for the landmark
¢t based on the pose s/i. The matrix Zy; is the covariance matrix associated with the
innovation v = (z, — Z,) . Note that we implicitly assume that each measurement z; has been

associated to the landmark ¢; of the map. This problem is, in general, hard to solve, since
similar-looking landmarks may exist. In Section 5 we describe our approach to this problem.
In the case that B observations z: ={z:1,z:2, **+, ztp} from different landmarks exist at a time ¢,

we compute a weight for each observation wt[ﬁ’]’ wt[f'z’],...,wt["';] following Equation (4), next

the total weight assigned to the particle as:
B
" = 11 ol ©)
i=l1

The weights are normalized so that ZA: a)[[i] =1, so that they ressemble a probability

function. In order to assess for the difference between the proposal and the target
distribution, each particle is drawn with replacement with probability proportional to this
importance weight. During resampling, particles with a low weight are normally replaced
by others with a higher weight. It is a well known problem that the resampling step may
delete good particles from the set and cause particle depletion. In order to avoid this
problem we follow an approach similar to (Stachniss et al., 2004). Thus we calculate the
number of efficient particles N,y as:

[P ©)
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We resample each time N, drops below a pre-defined threshold (set to M/2 in our
application). By using this approach we have verified that the number of particles needed to
achieve good results is reduced.

5. Data association

While the robot explores the environment it must decide whether the observation z
corresponds to a previously mapped landmark or to a different one. The observation z; is a
relative three-dimensional relative measurement obtained with a stereo camera. Associated
to the observation is a visual SIFT descriptor d;. To find the data association we find a set of
landmark candidates using the current measurement z; and the following Mahalanobis
distance function:

d= (zt - ZAW )T [ZWT] (zt —fw) @)

The landmarks with d below a pre-defined threshold dy are considered as candidates. Next,
we use the associated SIFT descriptor d; to find the correct data association among the
candidates. Each SIFT descriptor is a 128-long vector computed from the image gradient at a
local neighbourhood of the interest point. Experimental results in object recognition
applications have showed that this description is robust against changes in scale, viewpoint
and illumination (Lowe, 2004). In the approaches of (Little et al., 2001), (Little et al., 2002)
and (Sim et al., 2006), data association is based on the squared Euclidean distance between
descriptors. In consequence, given a current SIFT descriptor, associated to the observation z;
and the SIFT descriptor d;, associated to the i landmark in the map, the following distance
function is computed:

E = (d: - d)(d:- di) ®)

Then, the landmark i of the map that minimizes the distance E is chosen. Whenever the
distance E is below a certain threshold, the observation and the landmark are associated. On
the other hand, a new landmark is created whenever the distance E exceeds a pre-defined
threshold. When the same point is viewed from slightly different viewpoints and distances,
the values of its SIFT descriptor remain almost unchanged. However, when the same point
is viewed from significantly different viewpoints (e.g. 30 degrees apart) the difference in the
descriptor is remarkable. In the presence of similar looking landmarks, this approach
produces a remarkable number of incorrect data associations, normally causing an
inconsistent map.

We propose a different method to deal with the data association in the context of visual
SLAM. We address the problem from a pattern classification point of view. We consider the
problem of assigning a pattern d; to a class C;. Each class C; models a landmark. We consider
different views of the same visual landmark as different patterns belonging to the same class
Ci. Whenever a landmark is found in an image, it is tracked along p frames and its
descriptors {di, d»,..., dy} are stored. Then, for each landmark C; we compute a mean value d;
and estimate a covariance matrix S; assuming the elements in the SIFT descriptor
independent. Based on this data we compute the Mahalanobis distance:

D = (d; - d)S(d;- dy) ©)
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We compute the distance D for all the landmarks in the map of each particle and assign the
correspondence to the landmark that minimizes D. If none of the values exceeds a
predefined threshold then we consider it a new landmark. In order to test this distance
function we have recorded a set of images with little variations of viewpoint and distance
(see Figure 2). SIFT landmarks are easily tracked across consecutive frames, since the
variance in the descriptor is low. In addition, we visually judged the correspondence across
images. Based on these data we compute the matrix S; for each SIFT point tracked for more
than 5 frames. Following, we compute the distance to the same class using Equation (8) and
(9). For each observation, we select the class that minimises its distance function and as we
already know the correspondences, we can compute the number of incorrect and correct
matches. Table 1 shows the results based on our experiments. A total of 3000 examples
where used. As can be clearly seen, a raw comparison of two SIFT descriptors using the
Euclidean distance does not provide total separation between landmarks, since the
descriptor can vary significantly from different viewpoints. As can be seen, the number of
false correspondences is reduced by using the Mahalanobis distance. By viewing different
examples of the same landmark we are able to build a more complete model of it and this
permits us to better separate each landmark from others. We consider that this approach
reduces the number of false correspondences and, consequently produces better results in
the estimation of the map and the path of the robot, as will be shown in Section 6.
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Fig. 2. Tracking of points viewed from different angles and distances.
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6. Experimental results

During the experiments we used a B21r robot equipped with a stereo head and a LMS laser
range finder. We manually steered the robot and moved it through the rooms of the
building 79 of the University of Freiburg. A total of 507 stereo images at a resolution of
320x240 were collected. The total traversed distance of the robot is approximately 80m. For
each pair of stereo images a number of correspondences were established and observations
zy={z41, 12, **, z:B} were obtained, each observation accompanied by a SIFT descriptor {d;,
di2, -, dip). After stereo correspondence, each point is tracked for a number of frames. By
this procedure we can assure that the SIFT point is stable and can be viewed from a
significant number of robot poses. In a practical way, when a landmark has been tracked for
more than p=5 frames it is considered a new observation and is integrated in the filter. After
the tracking, a mean value d; is computed using the SIFT descriptors in the p views and a
diagonal covariance matrix is also computed. In consequence, as mentioned in Section 5,
each landmark is now represented by (d;, S;). Along with the images, we captured laser data
using the SICK laser range finder. These data allowed us to estimate the path followed by
the robot using the approach of (Stachniss, 2004). This path has shown to be very precise
and is used as ground truth.
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Correct | Incorrect
matches | matches

Euclidean 83.85 16.15
distance

Mal:nalanobls 94,04 596
distance

Table 1. Comparison of correct and incorrect matches using the Euclidean distance and the
Mahalanobis distance in the data association.

Figure 3 shows the map constructed with 1, 10, and 100 particles. A total number of 1500
landmarks were estimated. With only 1 particle the method fails to compute a coherent
map, since only one hypothesis is maintained over the robot path. It can be seen that, with
only 10 particles, the map is topologically correct. Using only 100 particles the map is very
precise. On every figure we show the path followed by the robot (blue continuous line), the
odometry of the robot (magenta dotted line) and the path estimated using the visual SLAM
approach presented here (red dashed line). As can be seen in the figures, some areas of the
map do not possess any landmark. This is due to the existence of featureless areas in the
environment (i.e. texture-less walls), where no SIFT features can be found.

Figure 4 shows the error in localization for each movement of the robot during exploration
using 200 particles. Again, we compare the estimated position of the robot using our
approach to the estimation using laser data. In addition, we have compared both
approaches to data association as described in Section 5. To do this, we have made a number
of simulations varying the number of particles used in each simulation. The process was
repeated using both data association methods. As can be seen in Figure 5 for the same
number of particles, better localization results are obtained when the Mahalanobis distance
is used (red continuous line), compared to the results obtained using the Euclidean distance
(blue dashed line). Better results in the path estimation imply an in the quality of the
estimated map.

Compared to preceeding approaches our method uses less particles to achieve good results.
For example, in (Sim et al., 2006), a total of 400 particles are needed to compute a
topologically correct map, while correct maps have been built using 50 particles with our
method. In addition, our maps typically consists of about 1500 landmarks, a much more
compact representation than the presented in (Sim et al., 2006), where the map contains
typically around 100.000 landmarks.

7. Conclusion

In this Chapter a solution to SLAM based on a Rao-Blackwellized particle filter has been
presented. This filter uses visual information extracted from cameras. We have used natural
landmarks as features for the construction of the map. The method is able to build 3D maps
of a particular environment using relative measurements extracted from a stereo pair of
cameras. We have also proposed an alternative method to deal with the data association
problem in the context of visual landmarks, addressing the problem from a pattern
classification point of view. When different examples of a particular SIFT descriptor exist
(belonging to the same landmark) we obtain a probabilistic model for it. Also we have
compared the results obtained using the Mahalanobis distance and the Euclidean distance.
By using a Mahalanobis distance the data association is improved, and, consequently better
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results are obtained since most of the false correspondences are avoided. Opposite to maps
created by means of occupancy or certainty grids, the visual map generated by the approach
presented in this paper does not represent directly the occupied or free areas of the
environment. In consequence, some areas totally lack of landmarks, but are not necessary
free areas where the robot may navigate through. For example, featureless areas such as
blank walls provide no information to the robot. In consequence, the map may be used to
effectively localize the robot, but cannot be directly used for navigation. We believe, that this
fact is originated from the nature of the sensors and it is not a failure of the proposed
approach. Other low-cost sensors such as SONAR would definitely help the robot in its
navigation tasks.

As a future work we think that it is of particular interest to further research in exploration
techniques when this representation of the world is used. We would also like to extend the
method to the case where several robots explore an unmodified environment and construct
a visual map of it.
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Fig. 3. Maps built using 1, 10 and 100 particles. A 2d view is showed where landmarks are
indicated with black dots.
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1. Introduction

Consider four flat-surface regions each of which has been placed, with varying positions
and orientations, within the workspace of a robot, as suggested in Figure 1. Assume that the
robot is kinematically able to reach each surface in the sense of delivering a cutting and an
abrading tool to the poses needed in order to remove material from a blank to the point of
recovering each of these surfaces.

Fig. 1. The four flat surfaces which are to be duplicated via robot machining and abrasive
action - precisely in their respective locations.

We pose the task as one of recovering to within a maximum error of 0.1mm, each of the four
surfaces of Fig. 1 using the robot with end-of-arm machining and abrading equipment.
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Rather than using internal-angle-dependent, calibrated, kinematical relationships of Figure
1’s E frame relative to the A frame, as might be used with a CNC machine as the basis for
this recovery of geometry, we instead apply uncalibrated, stationary cameras, in numbers
and locations such that each of the four target surfaces of Fig. 1 is clearly viewed by at least
two cameras. Laser spots are cast onto the four original surfaces, as indicated in Fig. 2, and,
through image differencing, registered and located in the uncalibrated cameras’ image
planes or “camera spaces”. Similar laser spots are cast onto the various intermediate forms
of the fashioned blank as it approaches the prototype geometry of Figure 1.

Fig. 2. Hundreds of laser-spot centers may be “collected” in each participant camera space
by way of image differencing. Individual spots (left) and multiple spots (right) may be cast.
These lead to the unit normal n in a special reference frame: the frame with respect to which
the nominal kinematics model of the robot is locally virtually perfect.

The robot’s degrees of freedom are guided using camera-space manipulation [1]. As such,
there is no need to calibrate the robot kinematics just as there is no need to calibrate the
cameras. The forward kinematics model in terms (say) of Denavit-Hartenberg parameters,
is considered known but not especially accurate globally, as is typical for such industrial
robots. Importantly, knowledge of the location of the base of the robot is not used; the base
may be introduced into the scene in any way that is convenient for the operation at hand.

The proposition of the paper is, first, that extremely high precision can be achieved in this
surface-recovery process provided the cameras remain stationary throughout. The second
point is that more arbitrarily curved surfaces - surfaces that would be of interest in
countless kinds of real-world applications - can also be recovered using variations on the
same strategy. Thus, a new possibility for replacing CNC machining is introduced - a
possibility not predicated on a data base but rather a large number of laser spots incident
upon the prototype surface and registered in the uncalibrated cameras, followed by robot-
based, camera-guided machining and abrading using one or, equally feasible, several
conveniently, arbitrarily positioned robots. Presuming the prototype piece is shaped as
desired (it need not of course be of the same material as the duplicate), the accuracy of the
final form of one end-juncture of the duplicate with respect to an opposite end juncture will
be completely independent of the extent of those two points’” separation, or the number of
base positions of robots engaged to achieve the shape recovery. Put another way, the
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absolute accuracy of the surfaces’ final contour will be the same whether it is a small object
fashioned by a single machine or a huge one (imagine for example the Statue of Liberty)
fashioned using many portable dexterous machines, or a single robot repositioned
arbitrarily throughout the shape-recovery process. Alternative means such as contact probes
for monitoring accuracy are unnecessary. The one requirement is that cameras not shift from
initial spot detection as those spots are reflected off the prototype piece through to
formation of the replica.

2. Laser-assisted robot operation using camera-space manipulation

The high precision of replicating the four surfaces is achieved in a three-stage process. The
first stage entails identification of the surfaces by the process of “spot matching” among
those cameras that have a clear view of any one of the four original surfaces. Matched spots,
then, are used to map a relationship between 2D camera-space junctures of the surface as
they locate in one of the pertinent cameras and camera-space location in each of the other
cameras with visual access to a given surface region.

As indicated in Figure 3, the grayscale differenced image that includes a single laser spot
may be conditioned or smoothed using a mask applied to each differenced image.

SERERERREE
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Fig. 3. Raw grayscale, differenced image of a laser spot (left) followed by application to each
pixel of a smoothing mask (center) produces a smoothed differenced image with a clearer
peak or center location in camera space (right).

Thousands of laser-spot centers may be “collected” in each participant camera space and
mapped among the regionally pertinent cameras by way of image differencing of large
numbers of images, each with the spots directed slightly differently onto any one prototype-
surface plane. As indicated in Fig. 4, it is possible to difference two images with laser spots
“on”, provided the multiple-beam laser pointer is shifted between images. The identity of
the spots with pan/tilt position in such an image is based upon the “up” or “down”
orientation. These samples aggregate leading to the unit normal n, as depicted in Fig. 2, in a
special 3D physical reference frame: the frame with respect to which the nominal kinematics
model of the robot is locally virtually perfect. This does not imply “calibration” in the usual
sense, as it is never known - from region to region of the robot’s workspace within which
operation occurs - exactly how this special reference frame is positioned and oriented.
Rather, the philosophy of “camera-space manipulation” is used to identify the “camera-
space kinematics” in each locally pertinent camera.
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Fig. 4. By differencing two images with pan/tilt-shifted laser spots, it is possible to separate
those peaks which pertain to the first image’s blast from those of the second image’s “blast”
by noting the “up” or “down” orientation.

As discussed below, this approach allows for three-dimensional locating of each matched
spot’s center in a 3D reference frame that “drifts” as action is applied across the various
regions of operation.

The identification of components of n in the drifting3D frame in which the kinematics are
locally virtually perfect, is achieved through judicious camera-space sampling of the circular
cues of Figure 1 - together with corresponding robot internal joint rotations - as the end
member approaches for subsequent machining, in accordance with camera-space
manipulation [2]-[5]. Provided circular end-member cues are densely sampled in the very
small robot-joint region where machining would occur, the benefit of having these
relationships in hand is that local movement of the internal degrees of freedom can then be
commanded in such a way as to recreate the surface whose unit normal is this same n.

The next step entails calculation, via nominal kinematics, of the 3D coordinates of each
matched spot relative to the aforementioned 3D reference frame. From these many spots the
best fit of n and the location along n of the plane are determined. The second stage of the
process involves calculation from the nominal forward kinematics of the robot, and
execution, of passes of the arm that will approach the final surface but not quite reach it, and
that will have the same surface normal n previously calculated. Intermediate sets of passes
leading up to this near-terminal plane are based upon reflections of laser spots off of
intermediate stages of the forming body and reflected into the controlling cameras. We have
the ability to calculate these passes and execute them in such a way as to create with
extreme precision a new surface that is parallel to and slightly extended beyond the
prototype surface in physical space.

The third and final step in the process entails replacement of the cutting tool with an
abrasion tool and sanding down to realize a polished final surface in the exact location as
the original surface. This transition is indicated in the left image of Fig. 5. Part of the reason
for the change in tool is that many real-world applications benefit from the last bit of
material removal occurring in a polishing mode. The other part has to do with final-surface
accuracy: The camera-space kinematics on the basis of which the surface calculation is made
are as good as the apriori rigid-body specification of circular-cue and tip locations. While
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this relationship can be extremely good, tool wear is likely to make it somewhat imperfect.
Fortunately, there is the prospect of a more-frequent application of the large number of laser
spots in the final phases of material removal. Extreme sub-pixel, sub-millimeter precision is
afforded by frequently alternating sanding passes with laser-spot application.

Fig. 5. The image on the left indicates the outline of the initially machined surface of
orientation n, and the contained target surface with the same orientation. Vagaries of the
sanding process used to recover the latter from the former can produce gradual, unwanted
valleys and peaks in the intermediate surfaces as indicated on the right. New laser spots
incident upon these intermediate surfaces can be used to adjust slightly the CSM-based
sanding motion in order compensate or level the surface as movement proceeds.

Vagaries of the sanding process used to recover the final plane can produce gradual,
unwanted valleys and peaks in the intermediate surfaces as indicated in Fig 5’s right image.
(Although experimental evidence indicates that even without measures explicitly taken to
counter this variation, less than a tenth of a tenth of a mm of variation over a 20 mm?2 area
attends a 1.5mm depth of material removal by sanding [3].) New laser spots incident upon
these intermediate surfaces can be used to adjust slightly the CSM-based sanding motion in
order to compensate or level the surface as movement proceeds. Several possible strategies
may be combined to achieve such leveling, including a proportional increase over the course
of the normal sanding passes of interference across those regions which are determined
from intermediate-surface laser spots to be relative - if extremely gradual - peaks.
“Interference” in this context is the extent of intrusion of the sanding surface beneath the
current surface that would occur absent the current surface’s actual, resisting, physical
presence.

With this ability - using discrete, flat surfaces - the question remains: Can a similar
procedure be made useful for more general surfaces which are not comprised of perfectly
flat surface subdomains? We make a case below that it can.

The first part of the case returns to the argument for the four surfaces but looks at the
reduction in replication accuracy as surface size diminishes. The second part considers ways
in which such reduction in accuracy - both of n and location of the surface along n - will be
mitigated with knowledge of adjacent-surface slope and position continuity. Finally, the
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argument moves to ways in which a CAD representation of the nominal shape of the body
could be used to facilitate this process of exploiting continuity near the region of interest.
Importantly, this is the only place in the process (apart from fabrication of the prototype
piece itself, which could be achieved using a softer or otherwise more easy-to-form material)
where use of any CAD data come into play; and the actual enforcement of final form is not
directly based upon this information even if it is used, but rather on the laser-spot
characterization of the prototype body in the images of the participant, uncalibrated
cameras.

Fig. 6. Approximations n; and n» to closely spaced unit normals is established using laser
spots reflected off the prototype surface. Using interpolation the outer surface is machined
to approximate with upper line of the lower image the actual surface. Abrasion is finally
used to remove material using relatively more interference across regions where the
remaining layer is thicker.

As the sizes of the individual surfaces of Fig. 1 diminish, the separation of laser spots
incident upon the prototype flats likewise diminish. This reduces the accuracy of n, and the
points along n where the surfaces are located (in the aforementioned “special” 3D
coordinate system). Consideration of a continuously curving, but otherwise general, surface
can be thought of as a limiting process of this flat-surface size reduction. Establishment of n,
however, can be achieved across a larger finite region provided, at each point, the surface’s
third spatial derivatives are small compared to the second, i.e. locally the surface is
symmetric. Surface location along n will require the reduced number of more-local spots.
The initial step, indicated in Fig. 6, of approximating n; and n, can, due to local symmetry
about any given surface point, be achieved using spots that fall upon the larger surface
subdomain. The machining event can compensate for less accuracy of position of original-
surface junctures by leaving a greater tolerance to be sanded as indicated in the lowermost
of the images of Figure 6. Interpolation of approximations n; and n» to closely spaced unit
normals is established using laser spots reflected off the prototype surface. Using
interpolation among the closely spaced junctures would result in a variable, but similarly
generous, margin across the outer surface. This is indicated with the upper line of the lower
image of Fig. 6. Abrasion is finally used to remove material using relatively more
interference across regions where the remaining layer is thicker.
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The latter process would be limited in precision in accordance with the curvature of the
prototype/replica surface at the points of interest were it not for the availability of the CAD
data. To the extent that these data allow for identification of the prototype with the design
information, a functional form for the region may be used to fit laser spot reflections of both
original (prototype-surface) and evolving replica surfaces across a larger finite region,
increasing the accuracy of the final product.

3. Experimental verification

As discussed above, laser-assisted characterization of the geometry of the object surface is
based on 3D-coordinate data of the surface points. A fundamental experiment aimed at
verifying shape formation would be the surface-reduction-gauging testing. In this
experiment, laser-spot-assisted, 3D image analysis is applied to gauge thickness changes of a
surface. The physical thickness change after removal of a flat, thin layer of material is
measured by caliper and compared with the thickness change estimated using laser-spot
measurement.

The robot-vision system that was set up for the surface-reduction-gauging experiment
consists of a Kawasaki JS5 six DOF robot, a personal computer, three off-the-shelf CCD,
monochrome, analog, industrial video cameras (JAI model CV-M50) and one single-dot
laser pointer and one laser-grid pointer mounted on a pan/tilt unit. The cameras are
connected to a frame grabber board (Data Translation model DT-3152), which is installed in
the computer. The laser pointers cast laser spots onto the object surface. On/off of the laser
pointers is controlled with a digital I/O board (CyberResearch model CYDIO-24) installed
in the computer. The pan/tilt unit is a computer controlled 2-DOF mechanism. It carries the
two laser pointers to illuminate the object surface and accumulates enough density of laser
spots on the surface by shifting the projected laser grid.

Fig. 7. System setup
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The system configuration is shown in Fig. 7. Three static cameras are mounted on the
ceiling, about 3 meters away from the work space. This is contained within a volume of a
cube of approximately 1 m3. The pixel resolution of the camera is 640 by 480 pixels. Each
pixel represents about 2mm projected from physical space.

Two pieces of square aluminum plates were stacked on the top of each other and placed
inside the workspace volume. The thickness of the top plate was measured both by calipers
and laser spots. In order to test the precision of the laser-spot measurement, the variations
that exist in the plate surfaces should be very small. Two 50 by 50 mm square pieces of
aluminum were used in the experiment. The pieces were cut and then machined to have less
than 0.01 mm surface variation. The thickness of the plate is 3.20 mm +0.01mm.

The experiment procedure for assessing the accuracy of this approach for gauging surface
reduction is briefly described here. As shown in Figure 8, the two flat plates of aluminum
described above, are placed in the workspace.

Fig. 8. Metal plates

The procedure is as follows,

Step 1: Laser spots are cast down onto the top surface of the top plate. Using image
differencing, detection and matching process described above, the 2D coordinates of the
laser-spot centers on the top surface of the top plate are identified in three CSM cameras.

Fig. 9. Laser spots cast on the top surface of top plate

Step 2: The top plate is removed as illustrated in Fig. 10. Therefore, the thickness change of
the surface is the thickness of the top plate. Laser spots are cast onto the top surface of the
lower plate. The 2D coordinates of the laser-spot centers on the top surface of the lower
plate are identified in the same three CSM cameras.
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Fig. 10. Laser spots cast on the top surface of lower plate

Step 3: After the two sets of laser-spot 2D-coordinate data are stored in computer memory,
cue-bearing plates mounted on the robot are introduced into the same physical region as the
two stacked plates, as shown in Fig.11.

|

Fig. 11. Cue-bearing plates approach workpiece

Step 4: Newly sampled cues and the joint coordinates of the robot in corresponding poses
were used to update, locally, the camera-space kinematics. Then, with the new local
mapping model and the two sets of laser-spot 2D-coordinate data in each camera space, the
3D coordinates of surface spots were estimated relative to the nominal world frame.

Step 5: The surface points on the top plate are fit to a plane using least squares. The distance
from the plane to the surface points on the lower plate are calculated. The average distance
is the estimate of the thickness of the removed plate. In step 1 and step 2 the number of laser
spots cast on the top surface is varied from 100 to 2000 in various tests. The laser-spot-array
direction can be shifted slightly using the pan/tilt unit to cast down new surface spots,
allowing for accumulation of a virtually unlimited density of points on the surface regions
of interest. A different test consisted of placing multiple paper cues on the top surface of the
lower plate, instead of the laser spots, as illustrated in Fig. 12.



120 Computer Vision

Fig. 12. Multiple paper cues on surface

The paper cues placed on the surface are the same circular geometry as those borne on the
plate mounted on the robot end effector. The 2D coordinates of the cues were identified in
three CSM cameras and nominal 3D coordinates of the cues were estimated as the surface-
point data, which was applied in same process as step 5, in order to calculate the thickness
of the removed plate

4. Experiment result and discussion

The known thickness of the metal plate is 3.20 mm+0.0lmm. The calculated average
thickness using about 100 spots (accumulated from multiple images) for estimation is listed
in Table 1.

Test Number Thickness measured (mm) by Thickness measured (mm)
100 laser spots vs. 100 laser spots | by 100 laser spots vs. 100 cues
1 3.27 3.28
2 3.15 3.18
3 3.21 3.18
4 3.16 3.25
5 3.17 3.10

Table 1. Experiment result

The precision of thickness gauging is consistently within one tenth of a millimeter. It is one
order of magnitude higher than image resolution. This sub-pixel level of accuracy was
consistent throughout the robot’s workspace, and for a range of plate orientations.

Why is the laser-spot-assisted, 3D image analysis able to estimate the CSM target shift with
sub-pixel accuracy despite the large random error from the coarse pixel quantization of
camera space together with error associated with the 3D-coordinate estimation of laser spots
in CSM nominal world frame? An error consists of two parts, deterministic error and
random error. The deterministic error was cancelled because the thickness assessment is
from the difference of two sets of laser spots, which have the same deterministic offset due
to the proximity in distance and continuous mapping of surfaces points in camera space to
the same body’s position and orientation. Therefore, only the random error was left in
thickness gauging results and the each laser spot’s position assessment is virtually zero-mean.
With the advantage of the effect of averaging to filter out the image-discretization and other
noise, a large number of laser spots could achieve high certainty and precision. The above
experimental result is the proof. The histogram summary of 10 trials is shown in Fig. 13. The
data clearly show that the error of thickness gauging is random with normal distribution.
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Fig. 13. Histogram of surface points vs. thickness

The normal distribution of the random error brings up the issue of level of certainty. The
practical question pertaining to this certainty issue is what a sufficient number of laser spots
cast on the surface of an object needs to be in order to guarantee each individual assessment
is within a certain prescribed precision. In another words, what is a sufficient density of
laser spots cast on the surface, in spots per unit area on a flat surface in order to characterize
the geometry of the surface with designated accuracy? The variation of the error is
measured by standard deviation (STD o) in statistics. It allows one to deduce the
relationship between the number of laser spots (samples) and the certainty of the individual
assessment (mean 1) for answering the question. Table 2 shows STD o of the individual
assessments of plate thickness for the five tests.

T Mean (p) of thickness (mm) STD (o) of 1nd1Y1dua1
est Number . assessment of thickness
with 100 samples (mm) with 100 samples

1 3.27 0.772

2 3.11 0.7653

3 3.21 0.7383

4 3.12 0.7347

5 3.14 0.7732
STD of the mean of the 5 0.068

tests

Table 2. Standard deviation of the individual assessments of plate thickness

As illustrated in Fig. 14, the individual thickness assessments have about a 68% probability
of falling within the range between mean (p)—STD (o) and mean (p)+STD(0), as expected
with a normal distribution.
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As presented in [6], consider a random process with standard deviation 0. A second
random process can derived from the first one by taking out m samples (m>1) from the first
process and average their values to be a sample for the second process. The samples from
the second random process have a standard deviation of om. The relationship between the
Om and oy is:

Om?2 = 012/m

| &

N

\
e

Fig. 14. Normal distribution of individual thickness assessment

In the present case, the predicted (0100), STD of 100 samples” mean in the thickness-gauging
experiment result, is about 0.07 according to this statistical analysis. The actual STD of the
mean of the 5 tests with 100 samples is 0.068, which agrees with the statistical analysis. This
relationship was also proven using 2000 spots tests.

In the experiment results of Table 2, the third column shows that the same high precision of
thickness gauging occurred in the test of placing multiple paper cues on the surface of the
lower plate instead of casting laser spots after the top plate was removed. This result proves
that there is no significant detection bias between the laser-spot detection and cue detection
in camera space. In other words, there is no bias between 2D position of the detected center
of cue and laser spot in camera space if they occupy same physical location. (The “physical
location” of the laser-spot center is not, strictly speaking, actually defined. What the tests
indicate is that, on average, the software places each camera’s camera-space center of a
given laser spot in such a way as to represent the same surface juncture in all three cameras.)
This seems unsurprising, but thinking how different are the appearances of the cue and
laser spot in physical space, there are enough reasons to doubt this no-bias result to warrant
physical proof. Among the reasons for a possible bias is the fact that laser spots are incident
on the surface from a particular angle, and this angle will vary with any shift in the
workpiece or laser-pointer base.

The CSM targets established by laser-spot-assisted, 3D image analysis are ultimately for the
robot to position the point of interest on a robot’s end effector with high precision. CSM’s
high precision is fundamentally based on the premise that a point or juncture attached on
the robot end effector collocates the target point in 3D physical space when these two
junctures collocate in at least two cameras’ camera spaces. So the non-bias detection of
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position between cue and laser spot is a critical premise to extend the CSM high-precision
positioning where laser spots are used to establish camera-space targets.

In step 3 of the thickness-reduction experiment, cue-bearing plates mounted on the robot
were introduced into the same physical region as the two stacked plates. The newly
sampled cues and the joint coordinates of the robot in corresponding poses were applied to
update local mapping between the camera space object is 2D coordinates and robot joint
coordinates. Then, with the new local mapping and the two sets of laser-spot 2D camera-
space coordinates stored in computer memory, the 3D coordinates of surface spots were
estimated relative to nominal world frame. Though, in the thickness-gauging experiment,
the robot doesn’t need to position its end effector to the target with high precision, in real
world applications the CSM targets established by laser-spot-assisted 3D image analysis are
used for robot positioning. So the experimental studies of step 3 were performed in same
situation as real applications.

5. Summary and conclusion

The surface-reduction-gauging experiment proves the ability of laser-spot assisted, 3D
image analysis to characterize the geometry of the surface and provide the CSM target with
high precision. It also discloses the extent of measurement precision of surface-reduction
gauging and reveals the relationship between the density of laser spots cast on the surface,
in spots per unit area, to the accuracy of the characterized geometry of surface.

The experimental results also prove the following three premises of the surface extent
application of laser spots using CSM-based 3D nominal World-frame-coordinate estimation:
Though the nominal optical model and nominal robot kinematics model in the CSM system
are globally imperfect, the premise is that as long as the laser spots are close enough to each
other within the asymptotic-limit region or volume the relative error between them is close
to zero-mean. Therefore, any error on the CSM side does not propagate into the
measurement of surface reduction relative to an as-located original surface. The experiment
repeatedly proves the premise for a range of surface positions and orientations.

Another premise is that error in thickness assessment with laser-spot data is unbiased and
random. This means that, provided they are matched, a laser-spot center detected in each
camera corresponds to one single physical juncture on the object’s surface. In other words,
only error in thickness assessment with laser-spot data can be averaged out by applying a
large amount of laser-spot data on the surfaces. The results of the above experiment
repeatedly verify this premise.

There is no bias between 2D position of the detected center of a circular cue and that of a
laser spot in camera space if they occupy same physical location. (The “physical location” of
the laser-spot center is not, strictly speaking, actually defined. What the tests indicate is that,
on average, the software places each camera’s camera-space center of a given laser spot in
such a way as to represent the same surface juncture in all three cameras.)

High-precision surface-change gauging extends the vision-guided-robot system based on
CSM into a more potent surface-operating system, one that in practice only can be done by
humans, and this in an imprecise, non-uniform, and often ineffective way. A number of
surface-finishing tasks entail application of force or pressure combined with in-plane motion
in order to achieve a scrubbing, polishing or sanding effect. Such tasks often make use of
human dexterity and effort, which can result in repetitive-motion injury and incomplete or
uneven treatment of the surface. But with high-precision surface reduction gauging and
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CSM, our vision-guided robot system can accomplish these tasks efficiently and uniformly.
Material removal can be monitored and surface reduction gauged and controlled to within
approximately one tenth of a millimeter.
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1. Introduction

Recently, there are many research on harmonized human robot interaction in the real
environment (Honda; Suzuki et al., 2002). Speech recognition is useful for human-robot
communication, and there are many robots that have such interface (Asoh et al., 2001)
(Matsusaka et al., 2001). Some interface use non-verbal information such as facial expression
and gaze, which are also seen as important for interaction. We have developed a reception
guidance humanoid robot “ASKA”, which can interact with humans using verbal and non-
verbal information such as gaze direction, head pose and lip motion (Ido et al., 2003).

Fig. 1. Humanoid robot HRP-2 interacting with a user using vision and speech information

In this paper, we introduce a humanoid robot system for human-robot communication
research. Fig.1 shows the overview of our humanoid robot HRP-2. This humanoid robot
system with interaction ability was developed at NAIST (Nara Institute of Science and
Technology) under the collaboration of Robotics and Speech Laboratories. It is used as a
research platform to develop an intelligent real-world interface using various information
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technologies studied in our institute. The following functions are implemented for human-
robot interaction:

Speech recognition

Voice synthesizing

Facial information measurement

Portrait drawing

. Gesture recognition

The dialogue system which use a large vocabulary continuous speech recognition, and the eye
contact system, which use a facial information measurement system, are the unique features of
this robot. The rest of this paper is organized as follows: First, the design concepts are
discussed in Section 2. The hardware and software system configuration are described
separately in Section 3. In Section 4, the voice interface implemented in this system is
explained. The interaction modules using visual information are explained in Section 5. In
section 6, are explained the demonstration and the experiment in which a person interacts with
the humanoid. Finally, we summarize our research and future works in Section 7.

G L=

2. Design concept

Our robot system has been designed based on two concepts: (1) as a research platform for
various information technologies, and (2) as an achievement of human-robot interaction.

2.1 Research platform

The main objective in the early stage of its development was to build a research platform for
various information technologies using a robot. The software architecture was designed
based on this concept. Fig4 shows a simple configuration in which each module
communicates its own status and sensory information to the server. Each module runs
independently and can start and stop at an arbitrary timing. This modularity enables rapid
development and easy maintenance of the modules.

2.2 Human-robot interaction

The information utilized for face-to-face communication is classified in two major
categories, “verbal” and “non-verbal” information. Although the primary information in
communication is the former, the latter, such as facial direction, gaze and gesture, is recently
emphasized as a mean of natural human-robot interaction. We focus on face direction and
gesture information in this research and try to achieve more natural interaction by
combining them with speech information. In the next section, we describe how the software
and the hardware of our system are constructed. The typical scenario of the interaction is
also described.

3. System configuration

3.1 Hardware configuration

The system is composed of a humanoid body, stereo cameras, hand-held microphones, a
speaker and several PCs as shown in Fig.2. HRP-2 (KAWADA Industries, Inc.) is used as the
humanoid body. A stereo camera system with four IEEE1394 cameras (Flea, Point Grey
Research Inc.), eight tiny microphones and an 8ch A/D board (TD-BD-8CSUSB, Tokyo
Electron Device Ltd.) are installed in the head of HPR-2. Eight built-in microphones attached
to the head are connected to the on-board vision PC via A/D board, and 8ch speech signals
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can be captured simultaneously. Additionally, a hand-held microphone can be connected to
an external PC for speech recognition. Switching between these two microphone systems is
achieved by software. The use of the hand-held microphone enables the interaction in places
where the background noise is large to such an extent that recognition using the built-in
microphone fails. Two external PCs are used besides the PC built into the robot. One of
them is used for the speech recognition and speech synthesis, and the other is used as the
terminal PC of the robot.

INTERNET

Hand-held
microphone

Speaker
vy

pCc |
Terminal Speech recognition

Voice synthesize

Fig. 2. Hardware configuration

A special chair, as shown in Fig. 3, was built in order for HRP-2 to sit down drawing the
experiment. Regrettably, HRP-2 cannot seat itself because it has to be bolted to the chair for
stability as shown Fig. 3.

Fig. 3. HRP-2 fixed on a chair

3.2 Software configuration

The basic software of this system consists of six modules:
e  Speech Recognition Module

e Speech Synthesizing Module
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e  Face Tracking Module

¢  Gesture Recognition Module

e  Portrait Drawing Module

e  Body Gesture Controller Module

In our system, the Face Tracking Module, the Gesture Recognition Module and the Portrait
Drawing Module are all used as Visual Measurement Modules, and they are connected to
the vision subserver. The speech recognition module has an independent interface called
“adintool” to record, split, send and receive speech data. These interfaces enable to select the
speech input with no influence on the other modules.

These modules run on the distributed PCs and communicate with a server program by
socket communication over TCP/IP protocols as shown in Fig. 4. This is a simple
implementation of the blackboard system (Nii, 1986). The server collects all the information
(sensory information and status of execution) from all the client modules. Each client
module can access the server to obtain any information in order to decide what actions to
take. Each module runs independently and can start and stop at an arbitrary timing. This
modularity enables the rapid development and easy maintenance of the modules.

Speech recognition Vision sub-server Face tracking

hand-mic| | 8ch-mic 1 .
Server Gesture recognition

adintool | | adintool ‘ status . N
-I- Portrait drawing

Control script

Speech synthesis

=== TCP/IP connection

Fig. 4. Software configuration

3.3 Interaction scenario

HRP-2 sitting opposite to a user across a table can detect face and gaze directions of the user

and recognize the question asked by the user. The typical scenario of the interaction

between a user and the humanoid is as follows:

1. The humanoid detects the direction of the user’s face.

2. When the face direction of the user is detected to be facing the humanoid, the user is
regarded as having an intention to talk to the humanoid. The user can then talk with
gestures to humanoid.

3. The humanoid recognizes the question and makes a response with voice and gesture or
carries out an ordered task.

The speech dialogue system of the humanoid can answer the following questions:

e  Office and laboratory locations

¢  Extension telephone numbers of staffs

¢ Locations of university facilities

e Today’s weather report, news and current time

e  Greetings

In addition to these questions, commands such as “pass the objects” or “draw a portrait”

can be recognized and carried out. The training corpus used for speech recognition is

described in the following section.
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The motions comprising the gesture responses are defined beforehand using a dedicated
software, “Motion Creator” (Nakaoka et al., 2004). These responses are linked to its
corresponding sentences manually.

4. Voice interface using speech and noise recognition

The voice interface of our system was developed to contain two parallel sound recognition
methods to be able to have flexible interactions with users. We implemented a spoken
dialogue routine based on a continuous speech recognition technology with a large
vocabulary dictionary for accepting users’ various utterances. We also introduced a
nonstationarynoise recognition program based on likelihood measurements using Gaussian
Mixture Models (GMMs). It realizes not only rejection mechanisms of environmental noises,
but also novel human-robot interaction schemes by discerning unintended user’s voices
such as laughter, coughing, and so on. This section explains about the speech recognition
and the noise recognition.

4.1 Speech recognition

The continuous speech recognition has accomplished remarkable performance. However,

sufficient accuracy when recognizing natural spontaneous utterances has not been attained

yet. To obtain higher accuracy, we needed to organize task-suitable statistical models

beforehand.

Our speech recognition engine, “Julius” (Lee et al., 2001) requires a language model and an

acoustic model as statistical knowledge.

For an acoustic model, we use the speaker-independent PTM (Lee et al., 2000) triphone

HMM (Hidden Markov Model). The model can deal with an appearance probability of

phonemes with considering context dependent co-articulations consisting of the current

phoneme and its left and right phonemes.

An acoustic model for the HRP-2 was trained from the following data using HTK (Hidden

Markov Model Toolkit) (Young et al., 2002):

¢ Dialog Natural users” utterances in using actual dialogue system (24,809 utterances).

¢ JNAS Reading style speech by speakers, extracted from the JNAS (Japanese Newspaper
Article Sentences) (Itou et al., 1999) database (40,086 utterances).

Dialog data are actual human-machine dialogue data extracted from utterance logs

collected by a long-term field test of our spoken dialogue system “Takemaru-kun System”

(Nisimura et al., 2005), which has been deployed in a public city office since November 2002

and operated every business day. We have obtained over 300,000 recorded inputs as of

February 2005. The accuracy improvement of natural utterance recognition can be obtained

efficiently by using these actual conversation data. We can also say that the built model can

obtain better performance for recognition of child voices because the Dialog data contains

many voices uttered by children. See (Nisimura et al., 2004) for details.

The training data of the acoustic model included the JNAS data due to the necessities of

holding a large amount of speech data in building the model.

We adopted a word trigram model as the language model, which is one of the major

statistical methods in modeling appearance probabilities of a sequence of words (Jelinek,

1990). There are two well-known task description approaches in continuous speech

recognition: (1) finite state network grammar, and (2) word trigram language model. Finite

state network grammar is usually adopted for small restricted tasks. By using a statistical
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method instead of a network grammar, some utterances even in out-of-domain task are

correctly recognized. Utterances including various expression styles can also be recognized

more flexibly than with the network grammar based recognition. In order to train the

model, a training corpus consisting of the following texts was prepared:

e Dialog Transcribed utterances collected by the field testing Takemaru-kun system
(15,433 sentences).

¢ Web Texts extracted from web pages (826,278 sentences).

e  Chat Texts extracted from Internet Relay Chat (IRC) logs (2,720,134 sentences).

e TV Texts of request utterances in operating a television through a spoken dialogue
interface (4,256 sentences).

We produced a vocabulary dictionary which includes 41,443 words, each appearing 20 or

more times in the corpus. Then, language model tools provided from IPA Japanese free

dictation program project (Itou et al., 2000) was used to build a baseline model. Finally, a

task-dependent network grammar was adapted to the model. We wrote a finite state

network grammar for the HRP-2 task, which included 350 words. Adaptation was

performed by strengthening the trigram probabilities in the baseline model on the basis of

word-pair constraints in the written grammar. This method enables more accurate

recognition of in-task utterances while keeping the acceptability of statistical model against

unexpected utterances.

Class # of training data
Adult voice 7,497
Child voice 7,503
Laughter 849
Coughing 321
Beating by hand 101
Beating by soft hammer 104
Background noise 5,000
Other noise 6,380
Sampling rate/bit 16 kHz, 16 bit
Window width/shift 25/19 msec
Parameter MFCC (12 dim.), AMFCC, APower
Mixtures of Gaussian 64

Table 1. Training Conditions of GMMs

4.2 Noise recognition

We introduced noise recognition programs to the HRP-2 to realize a novel human-robot
interaction that mediates unintended sound inputs, such as coughing, laughing, and other
impulsive noises. Although noises have been deleted as needless inputs in a general
dialogue system (Lee et al., 2004), the proposed system can continue to dialogue with
humans while recognizing a noise category.

We investigated sound verification to determine whether the inputted voice was intended
by comparison of acoustic likelihood given by GMMs. GMMs have proven to be powerful
for text-independent speech verification technique. Although conventional speech
verification studies have only focused on environmental noises, our previous studies found
that GMM s can also discriminate more utterance-like inputs.

Table 1 shows the training conditions of GMMs, where training data were recorded through
a microphone used when performing a spoken dialogue for the HRP-2. When laughter or
coughing is recognized, the response corresponding to the recognition result is returned to
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the user. To realize the identification of the voice and non-voice, adult and child’s voices
were included in the training data. If the input is identified as voice, the system executes a
normal spoken dialogue routine. “Beating by hand” and “Beating by soft hammer” indicate
impulsive noises when a user beats the head of HRP-2 by hand or by a soft hammer. The
system will use the identification result of beatings for dealing with mischief from users
when the robot is installed in a house.

8-class GMMs with 64 Gaussian mixtures were made from each class training data. As for an
acoustic parameter, we adopted the mel frequency cepstral coefficients (MFCC), which is a
major parameter when analyzing human voices for speech recognitions. The class of GMM that
has the highest acoustic likelihood against parameters of input sound is chosen as an output.

4.3 Dialogue strategy

The spoken dialogue strategy of our system was designed based on a simple principle.
Candidate responses to a user’s question are prepared beforehand. Selection of a suitable
response among the candidates is performed by keyword or key-phrase matching
mechanism. We defined keywords for each candidate. After recording the user’s voice, the
number of keywords matched with recognized text is totaled for all prepared candidates.
The system will choose the most matched candidate as a response. In this procedure, the
N-best output is used as the speech recognition result that complements recognition errors.

5. Interaction system using visual information

Our system obtains gray-scale images from the stereo camera system installed in the head,
and the following three vision based functions were implemented; facial information
measurement, pointing gesture recognition and portrait drawing. These functions are
described in the following sections.

5.1 Facial information measurement

The face and gaze information provides important information showing intentions and
interests of a human. In a previous study, it is shown that humans tend to be conscious of an
object at the time of utterance (Kendon, 1967). Facial module is based on a facial measurement
system (Matsumoto et al., 2000) and sends measured parameters such as the pose and the
position of the head and the gaze direction to the server via network. This module tracks the
face using a 3D facial model of the user, and measures various facial information such as head
position and orientation, gaze direction, blinks and lip motions. Fig. 5 illustrates the 3D facial
model, which consists of template images of facial features and their 3D coordinates. The
position and orientation of the head is calculated by fitting the 3D facial model to the set of 3D
measurements of the facial features based on the following equation:

N-1
E= Z wi(Rx; +t — y)"(Rx; +t — ;)
i=0
where E is the fitting error, N is the number of facial features, x;is the position vector of each
feature in the 3D facial model, y; is the measured 3D position of the corresponding feature
obtained from the current image, and w; is the reliability of the measurements. T and R are
the translation vector and the rotation matrix to be estimated. The problem of achieving the
best fitting boils down to finding a set of T and R which minimizes the fitting error E, and
can be solved by Steepest Descent Method.
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Fig. 5. 3D facial model

How to estimate the gaze direction is illustrated in Fig. 6. As the position and orientation of
the head is estimated, the position and the size of the eyeball in the image can be estimated
assuming that it is located at a fixed position inside the head. If the position of the iris (or the
pupil) can be detected in the image, the relative (vertical and horizontal) position of the iris
and the center of the eyeball in the image produces the 3D direction of the gaze. Fig. 7 shows
how the facial information is measured. In this figure, rectangles indicate feature areas in a
face utilized for tracking, and the two lines indicate gaze direction. The main purpose of this
measurement is to detect valid speech period. The speech input is recognized only after the
user turns his face to HRP-2. Therefore, the robot does not recognize utterances directed to
other people. We regard this function as a simple implementation of “eye contact.”

(1) calculate (2) calculate (3) detect iris (4) calculate 3D ga:
center of eyeball radius of eyeball direction
(topview)
center of center of
eyeball e eyeball
vector 3 » Oe Ob
L
. /
./

corners of eye

Fig. 6. Modeling of gaze

Fig. 7. Facial information measurement
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5.2 Point gesture recognition

The gesture recognition module which recognizes simple pointing gesture is described.

Gestures such as motion of the head help attain clearer communication. Furthermore,

gestures which points to directions are important when considering guiding tasks. If the

robot can recognize only speech it is difficult to make natural communication because

demonstrative pronouns are often used in such a situation. Pointing gesture recognition

module used depth information generated by correlation based on SAD (Sum of Absolute

Difference). Fig. 8 is an example of the disparity map. The process of recognizing the

pointing gesture is as follows:

1. The disparity map is generated after correcting for lens distortion.

2. The pointing direction is detected on the supposition that the closest part of the user to
the robot in the disparity map is the user’s hand.

The recognition of the pointing gesture enables HRP-2 to respond, even if a user gives

questions with demonstrative pronoun. For example, HRP-2 can choose and pass a proper

newspaper to the user when it is asked “Pass me that newspaper” with a pointing gesture.

Fig. 8. Pointing gesture recognition based on depth image

5.3 Portrait drawing

The third module using vision information, the portrait drawing module, is described here.
This module literally provides the functionality of drawing a portrait as shown in Fig. 9.
This function was implemented to show that HRP-2 can perform skillful tasks with its
motion in addition to communicating with a user in the demonstration. From a technical
viewpoint, portrait drawing requires the segmentation of the face region from the
background. The procedures to draw the portrait of a user are as follows:

(b) Pen holder

Fig. 9. HRP-2 drawing portrait of a user
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1. When the module detects using the foregoing facial information that the user has
turned his face to HRP-2, a still image of the user is captured.

A canny edge image, a depth mask image and an ellipsoid mask image are generated.
The face region is extracted from the edge image using the mask data.

The face image is converted to a sequence of points by chain method.

The sequence of points are sorted and thinned.

HRP-2 draws a portrait using the generated data.

When the user requests a portrait to be drawn by HRP-2, it asks the user to pass the pen and to
turn the user’s face toward the robot. Then it captures an image as shown in Fig.10 (A). An
edge image using Canny’s algorithm (Fig. 10 (B)) is generated by the appropriate face image. A
depth mask image (Fig. 10 (C)), and an ellipsoid mask image (Fig. 10 (D)) are generated by two
kinds of data, the stereo image pair and the measurement value of face position. Fig. 10 (E)
shows the facial part extracted from the whole edge image using the masks. The portrait is
drawn on an actual white-board by HRP-2 using the sequence data generated. Inverse
kinematics for eight degrees of freedom is solved under the condition that the pose of the pen
is kept vertical. After the sequence of hand positions is determined, the hand moves
interpolating these points. Fig. 10 (F) shows the resulting image drawn on the whiteboard.
When HRP-2 actually draws a portrait, it uses a felt-tip pen with a holder that was designed to
help it grasp and absorb the position errors of the hand by a built-in spring (Fig. 9 (b)).

o1 W

6. Experiment

6.1 Facial information while talking with the robot

We implemented the dialog system using simple “eye contact.” However, it is not clea
whether a user looks at the robot's face when talking with the humanoid robot. Therefore
we conducted an interaction experiment in a public exhibition to answer this question. To
investigate the facial information of users while talking with the humanoid robot, images
from the camera attached to its head were stored for subsequent analysis. Some examples of
these images are shown in Fig.11. Subjects were fifteen visitors who consist of five men, five
women and five children. After we gave a simplified explanation about the robot, users
talked with the robot freely. In this experiment, the robot sitting opposite to a user across a
table always respond to the user’s utterances without face and gaze information. Users
spoke to the robot for about 14 seconds on average, which included about 10 sentences.
Users sometimes spoke to other people such as staffs or their accompanying persons. The
total time for talking to others beside the robot averages about 4 seconds per person.

We analyzed how often users turned their face and gaze to the robot's face when speaking
to the robot. As a result, users gazed at the robot at a rate of 69% and turn their face to it at
the rate of 95% on average when speaking to the humanoid robot.

This result shows that people tend to look at the face when they talk to a humanoid robot. It
also indicates that our dialog system using eye contact works well regardless of user's age or
gender.

6.2 Interaction experiment with two users

In order to investigate accuracy of our dialogue system using "eye contact", we
experimented on an interaction with two people. Two users sat opposite to the robot across
a table. One of them talked to the other and to the robot based on the scenario given before.
The built-in microphones were used for speech recognition. The number of subjects was 10
pairs. The scenario was composed of 7 "person-to-person" sentences, 4 "person-to-robot"
sentences and 4 responses from the robot.
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Fig.12 shows the ratio of false responses to the conversations between the users. Without
using eye contact, this ratio was 75.7[%] on average, and it dropped down to 4.3 [%] when
the robot utilized eye contact information effectively. This result shows that the utilization
of eye contact information improved the accuracy of response.
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Fig. 12. Ratio of false response

6.3 Demonstration

We verified the usefulness of our system in a real environment through a demonstration in
the Prototype Robot Exhibition at Aichi World EXPO 2005 as shown in Fig.13. The
exhibition area was so noisy, full of audience and with simultaneously held demonstrations
that hand-held microphone was utilized in the demonstration. The nonstationary noise
recognition system was utilized for recognizing users’ coughing to start talking about cold
in the demo scenario. When connected to the Internet, HRP-2 can answer questions on
weather information, news headlines and so on.

The uncontrollable lighting condition was also crucial for image processing. However, since
our method does not relies on skin color detection which is known to be sensitive to lighting
condition, the face measurement and gesture recognition was robust enough in such an
environment. HRP-2 was also able to draw a portrait by extracting the face of the user from
cluttered background. Our demonstration was successfully carried-out for two weeks
without problems.

7. Conclusion

The HRP-2 is a speech-oriented humanoid robot system which realizes natural multi-modal
interaction between human and robot. This system has a vision and a speech dialogue
system to communicate with visitors. The voice interface that has two aspects was
implemented on the HRP-2 to realize flexible interactions with users. One is the spoken
dialogue routine based on a continuous speech recognition technology with a large
vocabulary dictionary, and the other is a non-stationary noise recognition system. We also
implemented the face measurement function in order for the humanoid to realize “eye
contact” with the user. In addition, the pointing gesture recognition function was
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implemented based on depth-map generation. By integrating speech information and
gesture information, HRP-2 can recognize questions that include a demonstrative pronoun.
The feasibility of the system was demonstrated at EXPO 2005. Some issues and demands
have been gradually clarified by the demonstration and the experiment.

Fig. 13. Demonstration in the Aichi EXPO 2005

The future work in vision and speech involve several aspects. Since the current system
doesn’t fully make use of the microphone array, there is a room for improvement in this
regard. For example, the realization of Blind Source Separation (BSS) using multiple
microphones will enable dialogue with multiple users simultaneously. The strengthening of
noise robustness and improvements of the dialogue system will be also necessary. The
improvement of the number of the recognizable gestures is also an important issue for a
more natural interaction.
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1. Introduction

Many service robotic systems have been developed in order to improve care costs and the
quality of the elderly people in the aging population [L. Nagi et al., 2002; Vogl, M.et al.,
2005]. Our Human- Assistance Robotic System Project (HARSP) project has been developing
a network distributed Human-Assistance Robotic System since 2000 [S. Jia et al., 2002, 2004,
2005]. We developed a hardware base, key technologies and implemented several Common
Object Request Broker Architecture (CORBA) application servers to provide some basic
services to aid the aged or disabled. Localization and obstacle recognition in indoor
environments for mobile robots are main topics in order to navigate a mobile robot to
perform a service task at facilities or at home. Many efforts have been made to solve this
problem using sensors such as cameras and laser ranger scanners [A. Davision, 2003; W.
Shen et al., 2005; H. Surmann et al., 2003]. In our previously developed system, the indoor
Global Positioning System (iGPS) has been developed to localize a mobile robot [Y. Hada et
al., 2004]. Recently, some research has used radio frequency identification (RFID) technology
for indoor mobile robot localization as the information written in ID tags can be easily read
out by an RFID reader. Kulyukin et al. used RFID to localize a mobile robot within a coarse
position and decided the next movement based on the information written in ID tags [V.
Kulyukin et al., 2004]. Kim et al. developed an RFID system including three orthogonal
antenna, which determines the direction and distance of a tag by comparing the signal
strength in each direction [M. Kim et al., 2004; W. Lin et al., 2004]. In this paper, a novel
method is proposed for indoor environmental obstacle recognition and localization of a
mobile robot by using an RFID system with a stereo camera as it is inexpensive, flexible and
easy to use in the practical environment. As the information (such as type, colour, shape or
size of the obstacles) can be written in ID tags in advance, the proposed method enables easy
and quick obstacle recognition. The proposed method is also helpful to improve dynamic
obstacle recognition (such as a chair or person) and occlusion problems that are very
difficult to solve. This is because the communication between the ID reader and ID tags uses
RF, and the information written in ID tags can be simultaneously read by an RFID reader.
RF is not so stable, so determining the accurate position of obstacle objects is difficult. In
order to localize the ID tags accurately, the Bayes rule was introduced to calculate the
probability where the ID tag exists after the tag reader detects a tag. Then the stereo camera
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starts to process the Region Of Interest (ROI) determined by the results of the Bayes rule. As
the proposed method does not need to process all input images, and some information
about environment was obtained from the ID tag, this decreases the image processing
computation, and enables us to detect the obstacles easily and quickly. Research on RFID
technology integrating stereo vision to localize an indoor mobile robot has also been
performed. This paper introduces the architecture of the proposed method and gives some
experimental results.

The rest of the paper consists of seven sections. Section 2 describes the structure of the
hardware of the developed system. Section 3 presents the localization of ID tags using RFID
system. Section 4 introduces the proposed method of obstacle localization and detection,
Section 5 details obstacle avoidance with RFID technology and stereo vision. Section 6
explains the principle of the developed indoor mobile robot localization method. The
experimental results are given in Section 7. Section 8 concludes the paper.

2. System description

PC for Stereo Vision

f RFID Reader

Fig. 1. The structure of developed mobile robot platform.

In the previously developed system, an omnidirectional mobile robot was used to perform
service tasks. Owing to the specific structure of its wheel arrangement, it is difficult for a
mobile robot to pass over a bump or enter a room where there is a threshold. Another
important point is to lower costs and decrease the number of motors so that the battery can
supply enough electricity for a mobile robot to run for a longer time. Figure 1 illustrates the
developed mobile robot platform. In our new system, we developed a non-holonomic
mobile robot that was remodeled from a commercially available manual cart. The structure
of the front wheels was changed with a lever balance structure to make the mobile robot
move smoothly and the motors were fixed to the two front wheels. It has low cost and can
easily pass over a bump or gap between the floor and rooms. We selected the Maxon EC
motor and a digital server amplifier 4-Q-EC 50/5 which can be controlled via RS-232C. For
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the controller of the mobile robot, a PC104 CPU module (PCM-3350 Geode GX1-300 based)
is used, on which RT-Linux is running. For communication between the mobile robot and
the mobile robot control server running on the host computer, a wireless LAN (PCMCIA-
WLI-L111) is used.

The Kenwood series was used in the developed system. The tag reader S1500/00
communicates with tags via 2.45-GHz radio waves. Figure 2 illustrates the specification of
RFID system. Since there is a communication area between the ID tag and tag reader (the
communication between the mobile robot controller and tag reader is via RS-232C), if the ID
tag comes into the communication area while mobile robot moves to a close to the ID tag,
the ID tag can be detected and the information written in it can simultaneously be read by
the tag reader mounted on the mobile robot. When the working domain of the mobile robot
is changed or extended, what needs to be done is just putting the new ID tags in a new
environment and registering these ID tags to the database. It is also helpful to improve
dynamic obstacle recognition (such as a chair or person).

Item Specification
Frequency 2.45GHz
Card Memory size T2byte

The maximum

communication distance 4m
Interface RS-485,RS-232C
Power requirement DC24(V) 1.0(A)
Weight (reader) 2Zkg

Dimension (reader) 263x176x53mm (WxLxH)

Fig. 2. The specifications of KENWOOD RFID system.

The Bumblebee (Point Grey Research) stereo camera and MDCS2 (Videre Design) camera
are usually used in the robotics field. In our system, we selected the Bumblebee to integrate
RFID technology to localize the service mobile robot. The Bumblebee two-camera stereo
vision system provides a balance between three dimensional (3-D) data quality, processing
speed, size and price. The camera is ideal for applications such as people tracking, mobile
robotics and other computer vision applications. It has a resolution of 640 x 480 or 1024 x 768
(640 x 480 at 30 FPS or 1024 x 768 at 15 FPS). The size of the camera is approximately 160 x
40 x 50 mm and the weight is about 375 g. It has features such as: two 1/3-inch progressive
scan CCDs to provide significantly better light collection and signal-to-noise ratio; high-
speed IEEE-1394 digital communication allowing powering of the camera and camera
control through a single cable; and accurate precalibration for lens distortions and camera
misalignments and automatic intercamera synchronization, useful for acquiring 3-D data
from multiple points of view. A notebook computer (Intel Pentium 3M 1.00 GHz, memory
SDRAM 512, Windows XP Professional) was used to process images. Figure 3 illustrates the
specifications of Bumblebee stereo camera, and Figure 4 shows the connection of developed
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robot system. Tag reader communicated with PC 104 robot controller via RS-232C, and
Bumblebee stereo camera was connected with a note PC via IEEE1394 bus.

Ttem Specification
Baseline 12 cm
Focal Lengths Gmm with 43°
Frame Rates 48 FPS(640x480)
Interfaces 6-pin TEEE-1394a
Power Consumption 25Watl2Vv
Dimensions 157 x 36 x47.4mm
Mass 342 grams
Signal To Noige Ratio 60dB
Gain Automatic/Manual

Fig. 3. The specification of Bumblebee stereo camera.

The developed Mobile Robot Platform

Robot

Tag Reader ID Tag

PC104 PCM-3350
Controller

1

Radio Wave

El—————  Roon

...........................

e Stereo Vision System
i Bumblebee

.
> m

i IEEE1394

A

Stereo Camera

Fig. 4. Connection of the developed mobile robot system.
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3. Localization of ID tag using RFID system

3.1 RFID probability model

Obstacle recognition; specially, dynamic obstacle recognition such as chair or human person
is a difficult problem. For human being, it is easy to avoid the obstacles such as chairs, tables
to perform a task, but for mobile robot, it is very difficult. We proposed the method of
indoor environmental obstacle recognition for mobile robot using RFID. Because the
information of obstacle such as size, color can be written in ID tags in advance, so the
proposed method enables the obstacle recognition easily and quickly. By considering the
probabilistic uncertainty of RFID, the proposed method introduces Bayes rule to calculate
probability where the obstacle exists when the RFID reader detects a ID tag. In our research,
for the obstacle objects like chairs and tables, we attached the ID tags on them, and the
system can detect them when the mobile robot moves the place where ID tags enters the
communication range of RFID reader. Simultaneously, the data written in the ID tags can
also be read out. But localizing accurately the position of obstacle objects is difficult just
using RFID because the antenna directivity of RFID system is not so good. We introduce
Bayes rule to calculate probability where the ID tag exists after the tag reader detects a tag
[E. Shang et al., 2005].

Bayes’ theorem relates the conditional and marginal probabilities of two events E and O,
where O has a non-vanishing probability.

Py(E|O) x P(O|E)P.—1(E)

In our method, O is phenomenon of the reception of the signal by the tag reader, E is
phenomenon of the existence of the obstacle (ID tag), Py(E | O) is the conditional probability
the tag exists after t times update, P(O | E) is sensor probability model of RFID, and Pi-1(E) is
the prior or marginal probability after the tag exists t-1 times update. To determine the
model for RFID antennas, we attached an RFID tag to a fixed position, and the mobile robot
moves in different paths. We repeated this for different distances and counted for every
point in a discrete gird the frequency of detections of ID tags. In order to overcome the
multipath effect of electric wave, we set ID tags detection buffer for saving latest 10 times
detecting results. ”1” means the ID tag was detected, ”0” means the ID tag was not detected.
If the results of 9 times are ”"1”, we think the ID tag can be detected with 0.9 probability.
Additionally, we use the recursive Bayesian to calculate probability where the ID tag exists,
which can improve multipath effect. According to the experimental results, we can get the
data distribution shown in Figure 5. The points means the RFID tag can be detected (0.9
probability). According to this result, we can simplify the RFID sensor model shown in
Figure 6. The likelihood of the major detection range for each antenna is 0.9 in this area. The
likelihood for the other range is setup as 0.5.

When the user commands a mobile robot to perform a service task, the mobile robot starts to
move in the office, or at home. In order to enable a mobile robot to finish a task
autonomously, it is necessary for mobile robot to have perfomance to detect the obstacles in
indoor environment and avoid them. Many researchers used many sensors to solve this
problem. In our system, we proposed the method using RFID and stereo vision to recognize
the obstacle. RFID reader system was mounted on the mobile robot platform. When the
mobile robot starts to move for performing a task, RFID reader system was started
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simultaneously to detect the ID tags arround the mobile robot. There are communication
area for different RFID system. The Kenwood series used in the developed system has
communication range about 4x1.8m2. When the mobile robot moves to place close to ID tags,
the ID tag can be detected and the information written in ID tag can also be read out
simultaneously. When RFID system detected a obstacle ID tag, a map 4x4m? (cell size
4x4cm?, the public precision in the field of robot navigation) will generated. Figure 7
illustrates the initial probability map after the RFID reader detected a obstacle with ID tag.
In order to know the obstacle is on the left or on the right of mobile robot, and narrow the
area where the obsatcle with ID tag exists, the mobile robot moves along the detection

¥{cm)

400 - - . T
350 | €2 £ I -
Wi it |
250 [ ¥ ; i i l . |
ool R | i I : £ |

*
150 + L.——i-""i‘-r.‘ i H l 1 ]
.o ’ % i |
100 | E i I ! i i ]
ot , } I Ll |
L b L @ i L l | i L
-80  -60 40 =20 0 20 40 6l 20
X{cm)
Fig. 5. The data distribution of the RFID.
400 [ yiom)
35 [T
w F
0.5 05
2 F

Fig. 6. Simplified sensor model for antenna.
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trajectory. Because the relative offset between ID tag and antenna affects on the P(O | E), the
posterior Py(E|O) is different when the robot changes its relative position. Whenever the
reader mounted on the robot detects a ID tag after robot was changing its relative position,
the posterior Py(E|O) of each cell of map is updated according to recursive Bayesian
equation and using sensor model (Figure 6), and a new probability map was generated. The
cell center position of the maximum probability in the latest map after mobile robot finishes
its detection trajectory is considered as the position of obstacle with ID tags. Figure 8
illustrates the detection trajectory when the RFID detects a obstacle with ID tag. We have
done some experimental results for different angle of curve of detection trajectory, and a =
30° was best.
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Fig. 8. Detection trajectory for localizing ID tag.
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3.2 Simulation and experimental results of obstacle detection using RFID

When the ID tag reader detects a obstacle ID tag, system will generate a 4x4m2 map, and do
cell splitting. The cell size is 4x4cm?2, which is regarded as the accepted precision in
navigation research fields. Mobile robot moves alone a trajectory and updates the
probability of each cell at a constant time stamp, then we can calculate the cell which has
maximum probability. Figure 9 shows some simulation results and Figure 10 shows some
experimental results. According to the results shown in Figure 9 and Figure 10, we can
localize the RFID tag within the area about 0.1m2 for simulation results, for experimental
results, it is about 0.26m2. So, the error of experiment results of localization of mobile robot
is bigger than the results of simulation. This is because that the communication between ID
Reader and ID Tags uses Radio Frequency, Radio Frequency is not so stable, and the sensor
model is not so accurate. In order to improve the accuracy of localization of obstacles just
using RFID tag, we will use stereo camera to recognize the obstacle objects further according
to the information of obstacle written in ID tags.
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Fig. 9. Simulation results of localizing ID tag using Bayes rule.
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Fig. 10. Experimental results of localizing ID tag using Bayes rule.
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4. Obstacle localization using RFID and stereo camera

Bayes rule was introduced to calculate the maximum probability where the obstacle exists,

but the precision is not enough for navigating a mobile robot. Thus, we use the results of the

Bayes rule to determine the ROI that stereo vision needs to process in order to get the

posture of the obstacles much more precisely. For obstacles such as chairs, we developed the

processing algorithm as follows:

¢  Open the stereo camera to grab images.

e  Set up the configuration of the camera.

e  Preprocess the images taken by the stereo camera.

¢ Do RGB-HSV conversion, morphologic operation and labeling processing according to
the information about the obstacle written in the ID tag for the ROI of the input image
obtained by the Bayes rule.

e  Calculate the position (x, y) and orientation (0) of the obstacle according to the results of
the imaging process

e  Get the depth of the obstacle by the information of the depth image obtained from
stereo vision.

Human detection is indispensable when the mobile robot performs a service task in an

indoor environment (office, facilities or at home). Detection of the human body is more

complicated than for objects as the human body is highly articulated. Many methods for

human detection have been developed. Papageorgiou and Poggio [C. Papageorgiou et al.,

2000] use Haar-based representation combined with a polynomial support vector machine.

The other leading method uses a parts-based approach [P. Felzenszwalb et al., 2005]. Our

approach first uses the Bayes rule to calculate the probability where the human exists when

the RFID reader detects a human with the ID tag, then the stereo camera starts to perform

image processing for the ROI determined by Bayes rule results. The depth information of

the ROI from the depth image can be obtained from stereo vision and the histogram of

pixels taken for the same distance of the obstacles was built:

w h
Popstacte(m) = Z Z fuli. j1

i=0 j=0

Here, Pobstacte is the number of pixels for the m obstacle having the same depth in the image.
W is the width variable of object, & is the height variable of the object. For each Pobstacte, the
values of pixel aspect ratio are calculated by image processing, and then the most fitting
value to the human model was selected as candidate of human body. Because the human
part from shoulder to face is easy to be recognized and is insensitive to the variations in
environment or illumination, we make the second order model of human. We calculate the
vertical direction projection histogram and horizontal direction projection histogram. The
top point of vertical direction projection histogram can be thought the top of head. The
maximum point in vertical axis around the top of head was thought as the width of head.
According to the human body morphology, the 2.5 to 3 times height of the width of head
can be thought the height of human from face to shoulder. Figure 11, 12, 13 shows one
sample of second order model of human.
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Fig. 13. The second order model of human.

For the obstacle having the same aspect ratio with human body, we introduce Hu moments
invariants as feature parameters to recognize second order human body model further. Hu
moment invariants are recognition method of visual patterns and characters independent of
position, size and orientation. Hu moment defined the two-dimensional (p+q)th order
moments in discrete can be defined as following equation.

."\"

K
Mpq = ZZ F5f(i,7)

i=0 ;=0
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Here, p,q=0,1, 2....
The central moments mupq are defined as

N K
Mt =Y 3 (i — ) ( — §)°1(i.])

i=0 ;=0

Here, f =m10/m00, 37 =mo1/m00.
It is well known that under the translation of coordinates, the central moments do not
change. The (p+q)th order central moments for image £(i, j) can be express as:

N = Hpa/ Koo

Here, r= (p+q+2)/2, p+q>2. For the second and third order moments, we can induce six
absolute orthogonal invariants and one skew orthogonal invariant. Using these seven
invariants moments can accomplish pattern identification not only independently of
position, size and orientation but also independently parallel projection. Using this method
first learned a number of patterns for human and chair, then calculated the seven invariants
moments. According to the results, the seven invariants moments of human are almost the
same in spite of the position of human in image changing, and the seven invariants
moments of chair is different from that of human (Figure 14). The average value of seven
invariants moments of a number of patterns for human was used as character parameters
for human recognition. For the new input ROI image, first calculate the seven invariants
moments of the obstacle, then get the Euclid distance by the equation

Here, Xih is the seven invariants moments of human calculated in advance, and X,i is the seven
invariants moments of the obstacle. If d; <Liis satisfied, the obstacle is recognized as human.

L - Human -

Fig. 14. Hu seven invariants moments of human.
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5. Obstacle avoidance

The Obstacle Avoidance Module calculates the avoidance area and route for the mobile
robot to avoid the obstacle after the obstacle has been detected. After the tag reader detects
the ID tag and localizes the obstacle using the Bayes rule, the mobile robot will determine
how to avoid this obstacle. Figure 15(a) shows the flowchart of obstacle avoidance
algorithm. Figure 15(b) shows the real obstacle-avoiding route that was calculated. First, the
mobile robot will determine the avoidance area (R) to judge if the mobile robot can directly
pass obstacle. The avoidance route will be generated for the mobile robot by the Obstacle
Avoidance Module if the mobile robot cannot pass directly:

R=r+rey

Dhetermmine the posture of

e obstacle by Obstacle

Deteet Module

[nformution of the 0 Y
abstacle wrtlen i 112 >
Calculate the relative position Depeh of ohstacle got Position of the obstacle
{xy,a)of rebot and obstacle {rom steren camera

Pass avoidance directly

Yes

{ Calculate taming angle i) and w iﬂdl]
I for ave I

Avoid the olbstucle

End position of
avoidance

Bowing continuomsly

Start position of
avoidance

Relay point

with the got route

¢r - Angle between the robot and obstacle
3 Tumning Angle for avoiding the obstacle
W . Width for avoiding the obstacle

Avadd the obstiscle St

(a) (b)

Fig. 15. Flowchart and route of obstacle avoidance.

where r is the radius of the circumscribed circle of the obstacle and rer is the error of the
position of the detected obstacle.

6. Robot localization using RFID and stereo camera

The Robot Localization Module localizes the mobile robot when the tag reader detects the
ID tags of localization. We propose the localization method for an indoor mobile robot using
RFID technology combining stereo vision. First, the RFID reader detects the ID tags and
judges whether they are localization tags or not. If ID tags for localization are detected, then
the system starts the stereo camera system to recognize the ID tags, and calculates the pose
of the mobile robot according to the information written in the tags and the results of image
processing. The Bumblebee camera was used and was connected with a notebook computer,
and the image processing calculation was run on a notebook computer. The results of
information about the position and orientation of the mobile robot were sent to the mobile
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robot controller and the mobile robot controller sends the commands to adjust the pose of
the mobile robot to return its desired position to finish a task.

Detect localization No
ID tags

L Yes

-
Distortion revision Starting stereo camera ‘
of input image
p L - l
. . . Get depth image of
Labeling, morphologic operation [ swi_o Camira
for input image

v

Calculate a,B )1

.

To Determining the
Posture of Robot Module

Information written

in 1D tags

e

Fig. 16. Flowchart of localization of the mobile robot.

6.1 Landmark recognition

Landmark Recognition Module is used to take the images of the environment when the ID
tags for localization are detected, perform image processing and localize the ID tags.
Landmark recognition [K. E. Bekris., 2004] for localization of a mobile robot is a popular
method. The image processing computation of the usual landmark recognition methods is
enormous because the vision system needs to recognize all kinds of landmarks in real-time
while the mobile robot moves. As the system can get tag information of the environment
such as their world coordinates when the RFID detects a tag, the proposed method of the
localization method of a mobile robot just does image processing after the RFID system
detects ID tags for localization. It is helpful to decrease the image processing computation
and to improve dynamic obstacle recognition (e.g., a person or chair). Figure 16 illustrates
the flowchart of localization of the mobile robot. The image processing of recognizing the ID
tags for localization includes:

e  Open the stereo camera to grab images.

e  Set up the configuration of the camera.
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e  Preprocess the images taken by the stereo camera.

e Perform RGB binary processing, exclude noise, perform template matching with
threshold.

¢  Get the coordinates of the ID localization tags of the left and right images.

e  Perform stereo processing to get the world coordinates of the ID tags.

e Calculate a and p (see Fig. 17) in order to determine the position and orientation of the
mobile robot.

6.2 Determining the posture of the robot

Determining the Posture of the Robot Module is used to calculate the position and
orientation of the mobile robot using the information of the Landmark Recognition Module
and the information written in the ID tags. Figure 17 illustrates the principle of the proposed
method of localization of the mobile robot. Four ID localization tags are used as one set and

(x sy, )
Stereo camera

Fig. 17. Principle of localization of the mobile robot.

are affixed in the environment. Since the ID tag’s absolute coordinates are written in them in
advance, the RFID reader can read out their information simultaneously when it detects
tags. a and B can be determined by the Landmarks Recognition Module, the position (x, y)
and orientation (¢) of the mobile robot can be calculated by

(Wpath — R cos ) 4+ R?sina® — R?
T T Wy — Racosf— Ricosa)
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)

x
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where Wpan is the width of the passage, L is the distance between tag 1 and tag 2 or tag 3
and tag 4, Ry is the radius of circle 1 and R; is the radius of circle 2. a is the angle between
the center of the camera to tag 1 and the center of the camera to tag 2. p is the angle between
the center of the camera to tag 3 and the center of the camera to tag 4. & is the angle between
the orientation of the camera and the centerof the camera to tag 1.

6.3 Path planning

A Path Planning is necessary and improtant issue for calculating the optimal route for the
mobile robot to move in order to perform a service task autonomously in indoor
environment. Many reseachers give their effrot on path planning for mobile robot to finish a
task costly and efficiently. In our research, we also proposed method of path planning for
our mobile robot system. As we know, each ID localization tag has a unique ID, so each ID
localization node (consisting of four ID localization tags; the center of the four ID
localization tags is defined as the position of the ID localization node) can indicate an
absolute position in the environment. All the nodes make up a topologic map of the indoor
environment in which the mobile robot moves. For example, if the mobile robot moves from
START point A to GOAL point F, the moving path can be described with the node tree
shown in Fig. 18. The system searched the shortest path between the START and GOAL
node (e.g., the shortest path between A and F is A>B— C—D—F) by tracing the branches
between them.

In order to navigate a mobile robot in an indoor environment, building a map is a big
problem. Generally, there are two kinds of map, one is geometric approaches, and the
second is topological map which can be thought of as robot-centric, or representations in
sensor space. In our system, the topological map based on RFID and vision for the mobile
robot was developed. For building a topological map, we use a 6-bit decimal numbe to
represent the connectivity of ID localization nodes and the relative direction angles between
every two adjacent ID nodes.
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Fig. 18. Movement path and its description with nodes.
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7. Experimental results

The experiment of obstacle detection was performed by the proposed method using RFID
technology and stereo vision. ID tags were affixed to the obstacles of the environment.
When the mobile robot mounted on the RFID reader moves close to the chair, the tag reader
can detect the ID tags. When the mobile robot detected an obstacle using the RFID system,
the area of the obstacle existing in high possibility was determined using Bayes rule together
with the information about the obstacle written in the ID tag. Then the ROI value of the
image to be processed can also be determined. Figure 19(a) shows one sample of the
distortion revision of the input image from stereo camera. Figure 19(b) shows the depth
image for the input image from the stereo camera. Figure 19 illustrates one sample of image
processing for a ROI image to recognize the obstacle (chair). We have done some
experiments for comparison of the processing image time using the proposed method. The
experiments were done by image processing from taking raw images (640x480), doing HSV
conversion, morphologic operation, and labelling processing. For the common method, the
average processing image time was about 295ms, and that of the proposed method was
about 125ms.

(© @ O] ® (=

Fig. 19. Obstacle recognition experimental results using the proposed system.

Human detection experiments were also performed in our laboratory. Figure 20 illustrates
the results of detecting a human body using the proposed algorithm. Figure 20(a) is the
input image with distortion revision from the stereo camera and Figure 20(b) is the depth
image. We used the Bayes rule to calculate the probability to narrow the human location
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and then determined the ROI value (Figure 20(c)). Figure 20(d) is the histogram built
according to the depth image. Comparing the human pixel aspect ratio in the image, we can
successfully detect the centre of gravity of the human as shown in Fig. 20(g).

(a) Input image (c) ROI image

N -

0s 10 15 Distnce(m)
(d) Histogram

Fig. 20. Human detection experiment: (a) input image, (b) depth image, (c) ROI image after
narrowing the human using Bayes rule, (d) histogram, (e) binary image, (f) image with
human pixel aspect ratio detected and (g) resulting image with the centroid detected.

The obstacle avoidance experiments have been performed in an indoor environment. When
the position of the obstacle was localized, the avoidance area and route were determined for
the mobile robot to avoid it. Figure 21 shows the experimental results of the mobile robot
avoiding the obstacle (chair) using the proposed method of integrating RFID and stereo
vision. Figure 21(a-e) shows the obstacle on the right of the mobile robot and Figure 21(k-o)
shows the obstacle on the left of the mobile robot. Figure 21(f-j) shows that the mobile robot
was not disturbed by the obstacle and the mobile robot did not need to change its
movement route. According to the experimental results of Figure 21, we know that the
proposed method can detect an obstacle and enable an indoor mobile robot to avoid the
obstacle (chair) successfully in different cases.

We proposed a localization method of an indoor mobile robot using RFID combining stereo
vision to decrease the image processing computation and improve dynamic obstacle
recognition (such as a person or chair). When the RFID system detects ID tags for
localization of a mobile robot, the stereo camera will start to recognize the ID localization
tags as landmarks. Then the position and orientation of the mobile robot can be calculated
according to the information written in the ID tags. This experiment of localization of mobile
robot was performed in a passage (width: 233 cm) in our corridor of our lab, and the tags
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were fixed on the wall at 117 cm intervals. The mobile robot moved from a random position
and orientation and, after localization, it can move back to the centreline of the passage. The
average error of localization of the mobile robot is about 8.5 cm. Figure 22 illustrates some
experimental results of localization of an indoor mobile robot. According to the
experimental results, we know the proposed method of localization for mobile robot using
RFID and stereo vision was effective.

Fig. 22. Experiments of localization of a mobile robot.
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8. Conclusion

This paper presents the proposed method of obstacle recognition and localization of a
mobile robot with RFID technology and stereo vision. We developed hardware and software
such as the Obstacle Detecting Module, Obstacle Avoidance Module, Robot Localization
Module, Landmark Recognition Module, Determine the Posture of Robot Module, Path
Planning Module and Communication Module. In order to improve the accuracy of
localizing the ID tags, Bayes rule was introduced to calculate the probability where the ID
tag exists after the tag reader detects a tag. Experiments with RFID technology integrating
stereo vision for obstacle detection and localization of an indoor mobile robot have been
performed. As the system can obtain tag information of the environment such as obstacle
and the world coordinates when the RFID detects a tag, the proposed method is helpful to
decrease the image processing computation, and improve dynamic obstacles recognition
(such as a person or chair) and occlusion problem. The experimental results verified that the
proposed method was effective. The main topic for future work will be performing home
service tasks by using the proposed method to aid the aged or disabled.
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An Implementation of Humanoid Vision -
Analysis of Eye Movement
and Implementation to Robot

Kunihito Kato, Masayuki Shamoto and Kazuhiko Yamamoto
Gifu University
Japan

1. Introduction

Humanoid robots are becoming like human and imitating human behaviour (HONDA
ASIMO)(NAGARA-3). They usually have cameras (Onishi et al., 2005), and then we
consider that eyes for the humanoid robot have to be “Humanoid Vision” (Mitsugami et al.,
2004).

Humanoid Vision is the vision system which is focused on human actions of the robot, and
emulation of human beings. We considered that the human beings is optimized for human
frameworks, thus the Humanoid Vision will be the best vision system for humanoid robots
which has human like. We used a humanoid robot “YAMATOQO” which is installed two
cameras on his eyes.

We analyzed the human action of tracking an object by the eyes and head. Then, based on
this analysis, we made a model for the humanoid robot, and we implemented the obtained
features which are tracking actions of the human.

From implementation results, the actions of the humanoid robot became natural motion
such like the human beings, and we show the effectiveness of the Humanoid Vision.

2. Humanoid vision

2.1 Introduction of YAMATO

Humanoid robot “YAMATO” is shown in Fig.1 to implement the humanoid vision. Its
height is 117cm, and it has 6 DOF on the arms, and 9 DOF on the head. Table 1 shows the
detail of DOF on the arm and the head (Mitsugami et al., 2004). It can act various
expressions with all 21 DOF.

The humanoid robot has twelve SH2 processors and one SH4 processor. Twelve SH2
processors control motors, and one SH4 processor is main control unit. We can control the
robot by a PC through the RS-232C. Then we send the angle of each joint to make him
posture or motion.

Magellan Pro is used in the lower body. It has sixteen sonar sensors, sixteen IR sensors and
sixteen tactile sensors. Its size is 40.6 cm in diameter and 25.4 cm in height. Linux is installed
on it. It can move forward and backward, and traverse.
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Fig. 1. Humanoid robot “YAMATO”

Degree of

Part Frfedom
Shoulder 3
Arm Elbow 2
Hand 1
Eye 3
Head Neck 4
Mouth 2

Table 1. Title of table, left justified

3. Analysis of eye and head movement

3.1 Camera setting

First, we analyzed how to move eyes and head to track an object. Fig. 2 shows overview of
our camera system setting. In this, we used two screens. The moving marker was projected
by a projector on a screen (screenl). Another screen (screen2) was used to observe the head
movement.

Fig. 3 shows a camera which can take only eyes movement even if his/her face moves. We
call this camera as “Eye coordinate camera”. This camera system consists of a small camera
and a laser pointer which are mounted on a helmet. A laser points on screen2 surface. We
can observe the head coordinate by using this screen as shown in Fig. 4. Lines on this screen
are written every 10 degrees from center of screen. We took the movement of laser by using
another camera. We call this camera as “Head coordinate camera”.

Fig. 5 shows the moving marker that is presented for subjects. This is projected on the
screenl. To capture human movement, moving marker was moved left or right after stop for
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several seconds. Its movement speed was 20, 30 and 40deg/s, and its movement range was
set from +60 degrees to -60 degrees.

5.0m 1.0m 0.5m

| Eye coordinate camera

én./

| Head coordinate camera |

Subject
Screenl Screen 2
(to project the moving marker) (to analyze head
movement)

Fig. 2. Experimental setting

Laser pointer mounted
on the helmet

1

T Center of
i screen?
i

Fig. 3. Eye coordinate camera system (Brange is from +60 degrees to -60 degrees.)

Fig. 4. Screen2 (to analyze head movement)
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Fig. 5. Example of moving marker images

3.2 Analysis of eye and head movement

Fig. 6 shows images that were taken from the head coordinate camera. White point of
images is a point which is illuminated by the laser. From these images, we can measure that
the laser pointer is moved on the screen 2. Fig. 7 shows images that are taken from the eye
coordinate camera as Fig. 3. The face doesn’t move in these images, and these images obtain
only changes of eyes and background. Each image as shown in Fig. 6 is corresponding to
images as shown in Fig. 7.

We analyzed that how to track an object from these images. Facial movement was analyzed
a position that the laser illuminates on the screen2. Eyes movement was analyzed center of
the right iris. Eyes movement is assumed that both eyes are same movement. In this
analysis, we extracted only x-coordinate of left and right movement. X-coordinate is head
angle or eye angle.

Fig. 6. Head coordinate images
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Fig. 7. Eye coordinate images

4. Consideration of eye and head movement

Fig. 8 shows a graph that is observed 20deg/s of moving marker speed. Horizontal axis
shows number of frames, and vertical axis shows the head’s and eye’s x-coordinate in each
frame. Each coordinate of frame 0 is defined as baseline. If values are smaller than the value
of frame 0, it shows that the subject is moved his face to the right. If values are rather than 0,
it shows that he moved his face to the left. In this graph, line of the head is changed after eye
is moved. This shows that the moving marker is tracked by using only head after tracking
by using only eyes. When the moving marker returned to center, it was tracked by using
only eyes again. The moving marker was tracked by using head after eyes returned. From
these results, as the moving marker speed was slow, we understood that eyes were used
preferentially and tracked it. This velocity is understood that smooth pursuit eye movement
is possible.

Fig. 9 shows a graph that is observed 30deg/s of moving marker speed. First, the eyes move
to some extent, and next the head started to move. This movement shows that the moving
marker was tracked by using the head. In this time, the eyes were holding on the left. When
the moving marker returned to the center (after frame 50), eyes moved slightly faster than
head. In the graph, eye is used preferentially to track. From these results, some features are
given corresponding to the moving marker speed.
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Fig. 8. Movement graph of experiment 20deg/s
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Fig. 9. Movement graph of experiment 30deg/s

Fig. 10 shows a graph that is observed 40deg/s of moving marker speed. In this graph, the
eyes move to some extent, and after the head started to move. Between frame 0 and frame
35, change of graphs is similar to Fig. 8 and 9. This shows that the moving marker is tracked
by using only head after tracking by using only eyes. But when the moving marker returned
to center (after frame 35), head and eye values are changed at the same time. It shows the
human uses both face and eyes to track an object (Nakano et al., 1999). Change of eye
movement is smooth because of he used both face and eyes to track an object. From this
result, smooth pursuit eye movement is possible at 40deg/s (Sera, & Sengoku, 2002) (Tabata

et al., 2005).

As the above results, two kind of features of 20~30 deg/s and 30~40 deg/s were obtained.
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Fig. 10. Movement graph of experiment 40deg/s

5. Making of object tracking model

We made a model based on features obtained by analysis of eye and head movement. This
model is shown in Fig. 11. We implemented the humanoid vision with this model to the
humanoid robot YAMATO. In conditions, there is an object in the center of the image, and
smooth pursuit eye movement is possible. YAMATO detects an object and determines its
speed. In the feature of 20~30deg/s, eyes are used first to track an object, and head is used to
do it. When an object is returned, eyes are used again. In the feature of 30~40deg/s, eyes are
used first to track an object, and head is used to do it. When an object is returned, eyes and
head are used to track it in the same time.

30deg/s <i

\4

Select the feature Select the feature
of of
20~30deg/s 30~40deg/s
\ 4 \ 4
Execute movement Execute movement

Fig. 11. Implementation model
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6. Implementation to the robot

We implemented a model introducing at the previous section. We used a red ball as the
target object. A ball was moved sideways, constant speed, and 60 degrees to the left. We
repeated it. The distance from YAMATO to a ball was around 1m. Fig. 12 shows a scene of
an experiment.

Fig. 13 shows images of movement that YAMATO expressed features of 20~30deg/s. In
these images, YAMATO moved his eyes in the first. After he finishes moving his eyes, then
head is moved. When a ball was returned to the front, the head and eyes were moved in the
sideway.

Fig. 14 shows images of movement that YAMATO expressed features of 30~40deg/s. In
these images, YAMATO moved eyes and head. These results show that YAMATO expresses
the implementation model.

Fig. 13. Expression of 20~30deg/s
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Fig. 14 Expression of 30~40deg/s

7. Conclusion

In this research, we considered that “the humanoid robot has to have humanoid functions”,
and eyes for humanoid robot have to be “Humanoid Vision”. Therefore, we analyzed the
human action of tracking an object by the eyes and implemented the obtained features to a
humanoid robot “YAMATO”. From implementation results, we showed the effectiveness of
humanoid vision. Our future works are analysis of longitudinal movement and complicated
movements to movement of a robot.
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1. Introduction

The methods of computed tomography - X-ray computed tomography, magnetic resonance
imaging, single-photon emission computed tomography, positron emission tomography,
ultrasonic reflectivity tomography and others (Webb, 1998) are now widely used in the
practice of medical imaging and their importance increasingly grows. These methods allow
the real time reproduction and visual analysis of the inner spatial structure of tissue on the
display, which on whole helps increase the quality of diagnostics. However, in the context
of problems to be resolved in oncology, the efficiency of currently available commercial
tomography methods remains relatively low. One of the reasons is the lack of methods that
would allow reliable differentiation between malignant and benign tumors on reconstructed
tomograms. The recent clinical studies (Boas et al., 2001; Gibson et al., 2005) show that
rapidly developing diffuse optical tomography (DOT) is very likely to help out. DOT is
unique in its ability to separately reconstruct the spatial distributions of optical parameters
(absorption and scattering coefficients) which helps visualize the spatial pattern of blood
volume and oxygen saturation. As a result, it becomes possible to differentiate and spatially
localize such phenomena as cancerous tissue vascularisation and angiogenesis and hence
detect cancer in the early stage of its development.

DOT implies that tissue is probed by near-infrared radiation from the so-called therapeutic
window (700-900 nm) where absorption by tissue is minimal. Position dependent
measurements are taken, i.e. near-infrared light from an array of sources is observed with an
array of receivers. Then an inverse problem, i.e. the tomographic reconstruction problem is
solved to infer the spatially localized optical properties of tissue. The main problem of DOT
is the low spatial resolution because of the multiple scattering of photons that do not have
regular trajectories and are distributed in the entire volume V being probed. As a result,
each volume element significantly contributes to the detected signal. The basic equation of
DOT is written as

gt = [ FOW@Er.r)dr, 1)
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where g(r ,r;) is the optical projection measured for source position r; and receiver position
ry (usually the relative signal disturbance due to optical inhomogeneities), f (r) is the sought
function of optical inhomogeneity distribution (later on the object function), and W(r,rs,x4) is
a weight function which provides for the contribution of each volume element to the signal
formed between the points r, and r;. Equation (1) and hence the inverse problem of DOT are
strongly nonlinear because of the nonlinear dependence of photon flux on optical
parameters. The local linearization of the inverse problem is performed, as a rule, by using
multistep reconstruction algorithms (Arridge, 1999; Yodh & Chance, 1995) based on the
variational formulation of the equation that describes the radiation transport model. A
classical example of these algorithms is the Newton-Raphson algorithm with the Levenberg-
Marquardt iterative procedure (Arridge, 1999). The multistep algorithms allow gaining
relatively high spatial resolution (0.3~0.5 cm) for diffusion tomograms, but they are not as
fast as required for real time diagnostics. The reason is that the forward problem of DOT, i.e.
the problem of radiation propagation through tissue is solved numerically many times and
at each step of linearization it is necessary to adjust the matrix of the system of algebraic
equations that describe the discrete reconstruction model.

As shown in our earlier papers (Kalintsev et al., 2005; Konovalov et al., 2003; 2006b; 2007a;
2007b; Lyubimov et al., 2002; 2003), there exists a unique opportunity to make the
reconstruction procedure much faster by changing over in equation (1) from volume
integration to integration along an effective trajectory from source to receiver. The photon
average trajectory method (PAT method) we have developed finds such a trajectory using a
probabilistic interpretation of light energy transfer by photons from source to receiver. The
method introduces the density of the conditional probability P[r,r (rs ,0) — (ra,f)] that a
photon migrating from a space-time source point (rs,0) to a space-time receiver point (rs,¢)
reaches a point r €V at time 7 (0 <r < f) . The effective trajectory is a photon average
trajectory (PAT) described by the mass center of the spatial distribution P over a time ¢ . If
we deal with absorbing inhomogeneities, then in the approximation of perturbation theory
by Born or Rytov, integral (1) can be written as the fundamental equation of the PAT
method (Kravtsenyuk & Lyubimov, 2000; Lyubimov et al., 2002; 2003)

g = | v(l){ [ r@Piee| .0 (rd,r>]d3r}dl, @

where L is the PAT from the source point r; to the receiver point r4, | is distance along the
PAT, and o(l) is a factor meaning the inverse relative velocity of the mass center of the
distribution P along the PAT. The volume integral in the braces is the sought object function
f (r) averaged over the spatial distribution of the photons that contribute to the signal
recorded at time ¢ . If denote the averaging operator by <>, we can write (2) in a more
compact form as

g= J;v(l) < f(r)>dl. 3)

Equation (3) is an analog of the Radon transform and can be inverted for the function
< f (r) > with the fast algorithms of projection tomography.

It is well known (Kak & Slanay, 1988; Herman, 1980) that there are two different approaches
to the solution of type (3) integral equations. The first is based on their analytical solution
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and the use of the resulted inversion formulas for finding the object function in discrete
points of space. The second consists in the representation of the integral equation as a
system of linear algebraic equations which is solved for the set of unknowns that define the
discrete values of the object function. Replacing volume integral (1) by trajectory integral (3)
in both the approaches makes it possible to change over from multistep to single-step
reconstruction. For the first approach this means that the integral formulas for inverting
equation (3) are linear and no linearization steps are needed. For the second approach the
single-step reconstruction means that the system of algebraic equations describing the
discrete model is only once inverted and the matrix needs no adjustment.

In our previous papers we provided some examples of 2D reconstruction from data
simulated for the time-domain measurement technique to show that the PAT method can be
implemented with integral algorithms (Konovalov et al., 2003; 2007b; Lyubimov et al., 2003)
as well as with algebraic ones (Konovalov et al.,, 2006b; 2007a; Lyubimov et al., 2002).
Compared with the multistep algorithms, the former give a terrific gain (a factor of about
100) in calculation time, but are too inaccurate in the reconstruction of optical
inhomogeneities near the boundaries of the study object. This is since the implementation of
the integral inversion formulas has to be done through a linear (or rough piecewise-linear)
approximation of PATs that really bend near boundaries because of avalanche photon
migration outside the object. The algebraic algorithms are not so fast, but successfully treat
the bended trajectories partly compensating for this shortcoming. However on the whole
one must admit that the integral and algebraic algorithms inverting equation (3) are severely
behind the multistep algorithms in accuracy because they reproduce the function < f (r) >,
i.e., reconstruct the tomograms that are a priori blurred due to averaging. In fact the
singlestep reconstruction helps localize an inhomogeneity, but it cannot say anything about
its size and shape. In order to compensate for blurring and get useful information for the
successful structure analysis and proper diagnosis in the end, the reconstructed tomograms
must be subject to posprocessing.

This chapter describes two methods of postprocessing that are complementary and used
successively one after another. The first implies iterative restoration with the use of the
spatially variant blurring model by Nagy et al. (2004) which is described by a system of
linear algebraic equations, whose matrix contains information on blurring in different
regions of the image being restored. The system is inverted using iterative algorithms which
solve systems with very sparse matrices. The method was developed for restoring aerospace
photographs and we adapted it to diffuse optical images (Konovalov et al., 2007b) as well as
to X-ray radiograms taken in X-pinch rays (Konovalov et al., 2006c). Section 2 of this chapter
gives a detailed description of the method and gives examples on the restoration of model
diffusion tomograms reconstructed with the PAT method. It is shown that space-varying
restoration helps significantly clear the blurring and offset inhomogeneity shape distortions
present on blurred tomograms. Unfortunately, the method is incapable of the accurate
restoration of step functions and inhomogeneities defined by constant values of optical
parameters are still reproduced with blurred boundaries. The second phase of
postprocessing implies the use of nonlinear color interpretation methods (Mogilenskikh,
2000) developed at the Russian Federal Nuclear Center - Zababakhin Institute of Applied
Physics for the purpose of getting more informative images of hydrodynamic plasma
objects. The methods are based on the generation of nonlinear analytical and statistical
functions of correspondence (hereafter correspondence function - CF) between image
intensity and color space. They are described in Section 3 of this chapter. Nonlinear CFs are
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applied to restored tomograms to segment and identify inhomogeneity boundaries. It is
shown that in case of simple model objects (absorbing macro-inhomogeneities in a
homogeneous scattering medium) it is possible to find a combination of nonlinear CFs
which allows the boundaries of inhomogeneities to be reconstructed completely. Section 4
formulates basic inferences and outlines further research to improve the methods of
diffusion tomogram postprocessing.

2. Space-varying restoration of diffusion tomograms

2.1 Validation of linear spatially variant blurring model
In the theory of linear systems and transforms (Papoulis, 1968) the image blurring caused by
systematic errors of a visualization system is described with a model of a linear filter. Such a
model is successfully used in projection tomography for estimating the accuracy of the
spatial structure reproduction (Konovalov et al., 2006a; Very & Bracewell, 1979). It
introduces into consideration a point spread function (PSF) that is defined as the image of an
infinitesimally small point object and specifies how points in the image are distorted. A
diffuse optical tomograph in general is not a linear filter because of the absence of regular
rectilinear trajectories of photons. However, the PAT method that we use for reconstruction
possesses a number of features which in our opinion warrant the application of a model of a
linear filter in the given particular case of DOT. These features are as follows:
a. Our concept proposes the conditional PATs to be used for reconstruction as regular
trajectories.
b. The PATs are close to straight lines inside the object and bend only near its boundaries.
c. The algorithms where all operations and transformations are linear are used for
reconstruction.
Therefore, the PSF at the first order approximation may be assumed for describing the
blurring due to reconstruction.
Let us consider at once the variance of the PSF against spatial shift. The time integral of the
function P[r,7 (rs ,0) — (r4 ,t)] for each T describes instantaneous distribution of diffuse
photon trajectories. At time moment 7 = ¢ this distribution forms a zone of the most probable
trajectories of photons migrated from (r; ,0) to (rs ,f) . This zone is shaped as a banana
(Lyubimov et al., 2002; Volkonskii et al., 1999) with vertices at the points of source and
receiver localizations on the boundary of the scattering object. The effective width of this
zone estimates the theoretical spatial resolution and is described by the standard rootmean-
square deviation of photon position from the PAT as follows

1/2
A(7) =[ L|r—R(r)|2P[r,r| (r,,0) > (rd,t)]dﬂ , (4)

where R(7 ) is a radius-vector describing the PAT. According to equation (4), as the object
boundary is approached, the theoretical resolution tends to zero. In the center, the resolution
is worst and depends on the object size. Thus, the resolution and, therefore, the PSF
describing the PAT tomogram blurring are strongly variant against the spatial shift. It
means that the spatially variant blurring model may exclusively be assumed for restoration
of the PAT tomograms.

The generic spatially variant blurring would require a point source at every pixel location to
fully describe the blurring operation. Since it is impossible to do this, even for small images,
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some approximations should be made. There are several approaches to the restoration of
images degraded by the spatially variant blurring. One of them is based on a geometrical
coordinate transformation (Sawchuk, 1974) and uses coordinate distortions or known
symmetries to transform the spatially variant PSF into one that is spatially invariant. After
applying a spatially invariant restoration method, the inverse coordinate distortion is used
to obtain the result. This approach does not satisfy us because the coordinate transformation
functions need to be known explicitly. Another approach considered, for example, in (Fish
et al, 1996), is based on the assumption that the blurring is approximately spatially
invariant in small regions of the image domain. Each region is restored using its own
spatially invariant PSF, and the results are then sewn together to obtain the restored image.
This approach is laborious and also gives the blocking artifacts at the region boundaries. To
restore the PAT tomograms, we use the blurring model recently developed by Nagy et. al.
(2004). According to it the blurred image is partitioned into many regions with the spatially
invariant PSFs. However, rather than deblurring the individual regions locally and then
sewing the individual results together, this method interpolates the individual PSFs, and
restores the image globally. It is clear that the accuracy of such method depends on the
number of regions into which the image domain is partitioned. The partitioning where the
size of one region tends to a spatial resolution seems to be sufficient for obtaining a
restoration result of good quality.

2.2 Description of blurring model

Let f be a vector representing the unknown true image of the object function f (r) and let < f
> be a vector representing the reconstructed image < f (r) > blurred due to averaging. The
spatially variant blurring model of Nagy et al. (2004) is described by a system of linear
algebraic equations

<f>=A-f, ®)

where A is a large ill-conditioned matrix that models the blurring operator (blurring
matrix). If the image is partitioned into m regions, the matrix A has the following structure

m
A= ZD jA T (6)
j=1
where A;is a matrix that contains information on the spatially invariant PSF assigned to the
j -th region of the image and Djis a diagonal matrix satisfying the condition

m
20,1, ”)
j=1

where I is the identity matrix. The piecewise constant interpolation implemented implies
that the i-th diagonal entry of D; is one if the i -th pixel is in the j-th region, and zero
otherwise. The matrix A;is uniquely determined by a single column a; that contains all of the

non-zero values in A;. This vector a;is obtained from the invariant PSF PSF; corresponding
to the j -th region as follows

a; = vec(PSFjT), @®)
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where the operator vec(*) transforms matrices into vectors by stacking the columns.

0010 flL 0 f Joe | Jo | Jre
0| /10 fl1r0r ol f | 1
0010 flLr0f S || Jr | Toe

Fig. 1. Standard boundary conditions: (a) zero, (b) periodic, (c) reflexive ( f.is obtained by
the transposition of columns f, f, by the transposition of rows f, f.. by the transposition of
rows and columns)

The blurring matrix A accounts for a priori information on the extrapolation of the restored
image beyond its boundaries, i.e. boundary conditions. This is necessary to compensate for
near-boundary artifacts caused by Gibbs effect. The blurring model implements three type
of “standard” boundary conditions: zero, periodic and reflexive. The zero boundary
conditions correspond to image extension by zeros (Figure 1(a)). The periodic boundary
conditions assume that the image is periodically repeated (extended) in all directions
(Figure 1(b)). Finally, the reflexive boundary conditions mean that the image is specularly
(i.e., normally) reflected at the boundary (Figure 1(c)). The matrix A; is banded block
Toeplitz matrix with banded Toeplitz blocks (Kamm & Nagy, 1998) if the zero boundary
conditions are used, or the banded block circulant matrix with banded circulant blocks
(Andrews & Hunt, 1977) for the periodic boundary conditions, or the sum of banded block
Toeplitz matrix with banded Toeplitz blocks and the banded block Hankel matrix with
banded Hankel blocks (Ng et al., 1999) for the reflexive boundary conditions. The “banding”
of matrix Aj means that the matrix-vector multiplication product D;A ;z , where z is any
vector defined into the image domain, depends on the values of z in the j -th region, as well
as on values in other regions within the width of the borders of the j -th region. The matrix-
vector multiplication procedure is implemented by means of the 2D discrete fast Fourier
transform and is fully described in (Nagy & O’Leary, 1997). Note that the standard
boundary conditions may give the bandpass artifacts, if the image contains complex
structures adjoining to the boundary. In this case a special approach to image extrapolation
is needed (Konovalov et al., 2006c).

To simulate the invariant PSF corresponding to an individual region, first of all we must
choose a characteristic point and specify a point inhomogeneity in it. It is advisable to
choose the center of the region for location of the point inhomogeneity. Then we must
perform two steps as follows:

a. Simulate optical projections from the point inhomogeneity.

b. Reconstruct the tomogram with PSF by the PAT method.

The optical projections from the point inhomogeneity are simulated via the numerical
solution of the time-dependent diffusion equation with the use of the finite element method
(FEM). To guarantee against inaccuracy of calculations, we optimize the finite element mesh
so that it is strongly compressed in the vicinity of the point inhomogeneity location. For
FEM calculations the point inhomogeneity is assigned by three equal values into the nodes
of the little triangle on the center of the compressed vicinity. The example of the mesh for
the circular scattering object 6.8 cm in diameter is given in Figure 2.
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2 0 2

Fig. 2. High-resolution finite element mesh with the compressed vicinity

Fig. 3. The 5x5 array of the invariant PSFs corresponding to individual regions of the image
domain
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CGLS MRNSD
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Fig. 4. The step sequences describing the restoration algorithms

Figure 3 presents the array of the invariant PSFs calculated for the case of image partitioning
into 5x5 regions.

2.3 Restoration algorithms

After constructing the blurring matrix A , an acceptable algorithm should be chosen to solve
system (5) for unknown vector x. Because of the large dimensions of the linear system,
iterative algorithms are typically used to compute approximations of f. They include a
variety of least-squares algorithms (Bjorck, 1996), the steepest descent algorithms (Kaufman,
1993), the expectation-maximization algorithms (Bertero & Boccacci, 1998), and many others.
Since non of the iterative algorithm is optimal for all image restoration problems, the study
of iterative algorithms is an important area of research. In present paper we consider the
conjugate gradient algorithm CGLS (Bjorck, 1996) and the steepest descent algorithm
MRNSD (Kaufman, 1993). These algorithms represent two different approaches: a Krylov
subspace method applied to the normal equations and a simple descent scheme with
enforcing a nonnegativity constraint on solution. The step sequences describing the
algorithms are given in Figure 4. The operator ||| denotes a Euclidian norm, the function

diag(*) produces the diagonal matrix containing the initial vector.

Both CGLS and MRNSD are easy to implement and converge faster than, for example, the
expectation-maximization algorithms. Both the algorithms exhibit a semi-convergence
behavior with respect to the relative error ||f;— f||/|| f ||, where f; is the approximation of f at

the k -th iteration. It means that, as the iterative process goes on, the relative error begins to
decrease and, after some optimal iteration, begins to rise. By stopping the iteration when the
error is low, we obtain a good regularized approximation of the solution. Thus, the iteration
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number plays the role of the regularization parameter. This is very important for us, as the
matrix A is severely ill-conditioned and regularization must be necessarily incorporated. To
estimate the optimal iteration number, we use the following blurring residual that measures
the image quality change after beginning the restoration process:

B = —f||/|< £ > ]| % )

Like the relative error, the blurring residual has a minimum that corresponds to the optimal
iteration number. Note that we do not know the true image (vector f) in clinical applications
of DOT. However, using criterion fy — min , it is possible to calibrate the algorithms in
relation to the optimal iteration number via experiments (including numerical experiments)
with phantoms. In general many different practical cases of optical inhomogeneities can be
considered for calibration. In clinical explorations, the particular case is chosen from a priori
information, which the blurred tomograms contain after reconstruction. Further,
regularization can be enforced in a variety of other ways, including Tikhonov (Groetsch,
1984), iteration truncation (Hanson & O’Leary, 1993), as well as mixed approaches.
Preconditioned iterative regularization by truncating the iterations is an effective approach
to accelerate the rate of convergence (Nagy et al., 2004). In general, preconditioning amounts
to finding a nonsingular matrix C, such that C ~ A and such that C can be easily inverted.
The iterative method is then applied to preconditioned system

C'<f>=C'Af. (10)

The appearance of matrix C is defined by the regularization parameter 1 < 1 that
characterizes a step size at each iteration. In this paper we consider two methods for
calculating A: generalized cross validation (GCV) method (Hanson & O’Leary, 1993) and
method based on criterion of blurring residual minimum. In the first case we assume that a
solution computed on a reduced set of data points should give a good estimate of missing
points. The GCV method finds a function of A that measures the errors in these estimates.
The minimum of this GCV function corresponds to the optimal regularization parameter. In
the second case we calculate blurring residual (9) for different numbers of iterations and
different discrete values of A, taken with the step AA. The minimum of blurring residual
corresponds to optimal number of iterations and the optimal regularization parameter.

The main reason of choosing MRNSD for PAT tomogram restoration is that this algorithm
enforces a nonnegativity constraint on the solution approximation at each iteration. Such
enforcing produces much more accurate approximate solutions in many practical cases of
nonnegative true image (Kaufman, 1993). In DOT (for example, optical mammotomography),
when the tumor structure is detected, one can expect that the disturbances of optical
parameters are not randomly inhomogeneous functions, but they are smooth or step
nonnegative ones standing out against a close-to-zero background and forming the
macroinhomogeneity images. Indeed, the typical values of the absorption coefficient are
between 0.04 and 0.07 cm! for healthy breast tissue, and between 0.07 and 0.1 cm-! for breast
tumor (Yates et al., 2005). Thus, we have the nonnegative true image f (r). This a priori
information gives the right to apply constrained MRNSD and change negative values for
zeros after applying unconstrained CGLS.
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2.4 Restoration results

To demonstrate the effect of blurring reduction on PAT-reconstructed tomograms, a
numerical experiment was conducted, wherein circular and rectangular scattering objects
with absorbing inhomogeneities were reconstructed from model optical projections and
then restored. In this chapter we present processing results for five objects whose
description and parameters are given in Table 1. To simulate the optical projections, we
solved the timedependent diffusion equation with the instantaneous point source for
photon density by the FEM. The signals of the receivers were found as photon fluxes on the
object boundary. Each optical projection was calculated as logarithm of the non-perturbed
signal determined for the homogeneous medium to the signal perturbed due to
inhomogeneities. For all objects from Table 1 we used the measurement ratio 32x32 (32
sources and 32 receivers). The circular objects were reconstructed by the backprojection
algorithm with convolution filtering (Konovalov et al., 2003; 2007b; Lyubimov et al., 2003)
and the rectangular ones with the modified multiplicative algebraic reconstruction
technique (Konovalov et al., 2006b; 2007a). To restore the reconstructed tomograms, in all
cases we partitioned the image domain into 5x5 regions and applied the reflexive boundary
conditions.

Sizes, Optical parameters

i fobj finh D
cm-! cm-! cm

Description Visual model

Circular object with 1 cm-in-
diam inhomogeneity

Circular object with two
1 cm-in-diam
inhomogeneities

6.8 0.066

0.075

Circular object with two
L4 cm-in-diam 0.05 14
inhomogeneities

Rectangular object with two
1 cm-in-diam

inhomogeneities
11x8 0.034
Rectangular object with two .0'075
. (inhom)
1 cm-in-diam 0.06
inhomogeneities and RIC (RIC)

Table 1. Description and parameters of the model scattering objects: %, absorption
coefficient of the object; fi', absorption coefficient of the inhomogeneities; D , diffusion
coefficient; n , refraction index; RIC, randomly inhomogeneous component

Figure 5 shows results of restoration for the circular object with the inhomogeneity 1 cm
inndiameter in comparison with its blurred tomogram. The results are presented as gray
level images. The axes are graduated in centimeters and the palette scale is in inverse
centimeters. The points on the images present the positions of the sources on the boundary
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of the object. The circle on the left image shows the true boundary of the inhomogeneity. It
is seen that restoration allows getting closer to its actual size.

a 0 @2 2 0 2
B 0° B 0 S
0 001 002 0 001 002 003

0 2 4 6 8

Fig. 5. Reconstruction and restoration results for the circular object with the inhomogeneity
1 cm in diameter: blurred tomogram (left) and results of its restoration by CGLS and
MRNSD (center and right)

Figure 6 shows pseudo-3D plots representing the same results for the circular object with
two inhomogeneities that form a periodic structure. Digits on the plots show the values of
the modulation transfer coefficient estimated as the relative depth of the dish between two
peaks. This figure demonstrates that restoration helps significantly increase the modulation
transfer coefficient and hence the spatial resolution of tomograms. For all restorations
presented in Figures 5 and 6 we used the unpreconditioned algorithms (CGLS and
MRNSD). The optimal iteration number obtained by the criterion of blurring residual
minimum is equal to 15 in the case of CGLS and to 9 in the case of MRNSD, respectively.

) [ 1] N—

50{...

0

Fig. 6. Reconstruction and restoration results for the circular object with two
inhomogeneities 1 cm in diameter: blurred tomogram (left) and results of its restoration by
CGLS and MRNSD (center and right)

Figure 7 presents the restoration results obtained with the use of preconditioned MRNSD.
The left image corresponds to the regularization parameter calculated by the GCV method (
A =10.003 ). To obtain the central restoration, we used preconditioner with A = 0.1. This value
of the regularization parameter was found by the criterion of blurring residual minimum.
The right image in Figure 7 shows the result of restoration by unpreconditioned MRNSD for
comparison. The optimal iteration number in the cases of preconditioned algorithm was
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equal to 3. Thus, preconditioners allow the restoration procedure to be accelerated. But, as it
follows from Figure 7, preconditioned algorithms distort the form of inhomogeneities being
restored. We can conjecture that the image partitioning into 5x5 regions is not enough to
obtain good quality of restoration by preconditioned algorithms. As we save computational
time, in future the image partitioning number may be increased.

0.005 0.01 0.015 0.01 0.02 0.03 0.005 0.015 0.025

Fig. 7. Comparison of the restoration results obtained with the use of preconditioned
MRNSD (left and center) and unpreconditioned one (right) for the circular object with two
inhomogeneities 1.4 cm in diameter

Figure 8 demonstrates results obtained in the testing of unpreconditioned MRNSD for noise
immunity. The left image shows the 20%-noised sinogram that is a gray level map of optical
projection distributions over the index ranges of the source and the receiver. The sinogram
abscissa is the receiver index and the sinogram ordinate is the source index. The palette scale
is graduated in relative units. Despite the fact that the reconstructed tomogram (center) is
strongly blurred, the restored image (right) has only low distortion in the shape of
inhomogeneities. Thus, the restoration algorithm demonstrates good immunity to
measurement noise.

10 30

0.01 0.03 0.05 0.004 0.008 0.012 0.01 0.02
Fig. 8. 20%-noised sinogram (left), blurred tomogram (center) and restoration with
unpreconditioned MRNSD (right) for the circular object with two inhomogeneities 1.4 cm in
diameter

Figure 9 compares the spatially variant model by Nagy and a spatially invariant model that
is described by one PSF defined in the center of the tomogram domain. In the latter case the
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centers of inhomogeneities are seen to be abnormally shifted from their true positions
marked with crosses.

0.005 0.015 0.025 0.005 0.015 0.025

Fig. 9. Restoration results for the circular object with two inhomogeneities 1.4 cm in
diameter, obtained with spatially variant (left) and spatially invariant (right) blurring
models

Finally Figure 10 presents reconstruction and restoration results for the rectangular object
with two inhomogeneities 1 cm in diameter (and without RIC). Here unpreconditioned
MRNSD was applied.

0.0053 0.038
0

0
Fig. 10. Reconstruction and restoration results for the rectangular object with two
inhomogeneities 1 cm in diameter: blurred tomogram (left) and the result of its MRNSD
restoration (right)

The results presented thus confirm that blurring of PAT tomograms can be reduced through
iterative restoration. The spatially variant model helps adequately estimate the actual size of
inhomogeneities, but as follows, for instance, from Figure 6, further processing is needed to
reconstruct inhomogeneity boundaries and get reliable information on its shape because
even after restoration inhomogeneity profiles have a “gaussian” form, being far from the
ideal steps typical of true images.

3. Segmentation with nonlinear CFs

3.1 CF generation algorithms

To segment restored diffusion tomograms, i.e. to reconstruct the boundary and shape of
optical inhomogeneities, we use nonlinear color interpretation methods (Konovalov et al.,
2007; Mogilenskikh, 2000) based on the generation of nonlinear analytical and statistical
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functions of correspondence between image intensities (values of the restored object
function) and palette colors. A palette is an ordered set of colors from color space where
each color is assigned a number. If the pallet is linear, then the set of its colors create a
straight trajectory in color space. The curvilinear trajectory corresponds to the nonlinear
palette.
The analytical CFs imply the use of nonlinear color coordinate scales for attaining
correspondence between intensity and color in a cell. Elementary functions and their
algebraic combinations are used for this purpose. What particular combination is taken
depends on the operator and a priori information contained in restored tomogrames.
The nonlinear statistical CFs are generated using statistical information on the distribution
of colors of an initially chosen palette (as a rule, linear) over image cells. The algorithm we
have implemented can be described in brief by the following steps.
a. A linear CF is generated, i.e. a color G ( fi) from the linear palette chosen is assigned to
image intensity fi;in a cell with indexes k and [ .

b. The number of cells Ni™ (fu) of each color from the palette is calculated; then a weight

vector, whose size is equal to the number of colors in the palette, is calculated as

(11)

cells
We(fiu) =N nom{w} ,

N cells

where N, is the number of colors in the palette, Neells is the total number of cells in the
image and norm(") is a normalization operator.

c. The statistical CF is calculated from the collected statistics as a spline. We use the
following simple spline:

G (fi) = [G(fi) = Nogmorm( £i))- W (fir) = Wen () |+ Wo (fia) - (12)

d. The nonlinear CF is generated by summing the statistical CF (12) and the initial linear CF.

Our experience (Konovalov et al., 2007) suggests that combinations of nonlinear analytical
and statistical CFs give best results in the context of the segmentation problem solution.
Indeed, the use of the statistical CF is needed to ultimately get a step palette. And before
that it is advisable to “focus” the boundary of the inhomogeneity, which is clearly
“gaussian” after space-varying restoration, by applying a nonlinear smooth function. Also
inhomogeneity images after restoration exhibit a large percentage of background (zero or
almost zero) values and before applying the statistical CF it is advisable to somewhat “level”
statistics with respect to background values and inhomogeneity intensities.

Note that such a segmentation method based on the generation of nonlinear CFs compares
favorably with the standard threshold filtration where some part of the image is rejected
and replaced by a background value of the object function which may result in the loss of
important details in the reproduction of randomly inhomogeneous structures. Nonlinear
CFs are applied to all pixels in the image and if their parameters are well chosen, we
manage not to lose, but effectively segment the informative details of the image.

3.2 Examples of nonlinear CF application to restored tomograms
For the analytical CF we tried power and exponential functions and found the latter to be
more effective. An exponential function written as G( f) = exp(B1 f) + B2 was parametrized so
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that the coefficients B; and B> were determined from the equality of volumes of the figures
bounded by the object function f (x, y) before and after image transformation that consisted in
the successive application of the analytical and statistical CFs. The statistical CF was
automatically generated with the algorithms described in Section 3.1. For the purpose of
parametrization we had to state and solve the problem of minimizing the difference between
figure volumes. Since image transformation on the whole does not have the analytical
representation, the optimal parameters were found with a simple direct search algorithm
(Lagarias et al., 1998) that does not require the numerical or analytic calculation of gradients.

- 255
0

0

255

0
255
0
255
0

Fig. 11. Examples of nonlinear CF application to the restored tomogram of the rectangular
object with two inhomogeneities 1.0 cm in diameter
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Figure 11 illustrates examples of nonlinear CF application to the restored tomogram of the
rectangular object with two inhomogeneities 1.0 cm in diameter (see the right image of
Figure 10). The left column of images shows the effects of the analytical CFs (top down): the
power function G( f) = f 2, the power function G( f) = f, the exponential function G( f) =
exp( f) and the parametrized exponential function G( f) = exp(B1f) + Bz. The right column
demonstrates what was obtained after applying statistical CFs. Image intensities are
normalized. It follows from Figure 11 that for “simple" models (absorbing macro-
inhomogeneities in a homogeneous scattering medium), it is possible to obtain such a
combination of nonlinear CFs that allows the true structure of inhomogeneities to be
reconstructed almost completely. Indeed, if apply subtraction to the lowest right image of
Figure 11 and the normalized true image of the inhomogeneities, we obtain the three-tone
pattern shown in Figure 12 (coincidence is in grey and difference is in black and white).

Fig. 12. The three-tone pattern characterizing how the result of postprocessing agrees with
the true image

Figure 13 shows an object defined on a finite element mesh, which models a randomly
inhomogeneous medium with macro-inhomogeneities and Figure 14 demonstrates results of
its reconstruction (upper left), restoration (upper right) and nonlinear postprocessing (lower
left and right).

Fig. 13. The rectangular object with two inhomogeneities 1.0 cm in diameter and RIC
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0.035

255

Fig. 14. Reconstruction and postprocessing results for the object of Figure 13

The lower left image resulted from the successive application of the parametrized
exponential and statistical CFs to the restored tomogram and the lower right image was
obtained after applying the statistical CF without preprocessing with analytical functions. It
is seen that our segmentation method in the case of the complex model of Figure 13 give
inhomogeneity shape distortions and artifacts (the upper structure on the lower left image)
which may however be removed on the basis of a priori information contained in restored
tomograms. The lower right image demonstrates an attempt to segment inhomogeneities
with no use of analytical CFs. One must admit that the visual examination of reproduced
results in this case is much more inconvenient.

In conclusion we should note that the two-step postprocessing of one image on Intel PC
with the 1.7-GHz Pentium 4 processor and 256-MB RAM in MATLAB takes less than 30
seconds. The reconstruction of blurred tomograms takes to 5 seconds if integral algorithms
are applied and to 30 seconds if iterative algebraic ones are used. The total time is thus
below 1 minute. The comparative analysis of computational speed presented in (Lyubimov
et al., 2002) suggests that the use of the well-known package TOAST (Temporal Optical
Absorption and Scattering Tomography, Schweiger & Arridge, 2008) which implements the
Newton-Raphson algorithm will make the time of restoration several times longer. It should
also be noted that there are good prospects for making the postprocessing procedure yet
faster by using not MATLAB, but a faster programming environment and optimizing the
measurement ratio. Our investigation (Konovalov et al., 2007a) suggests that the number of
sources can be reduced from 32 to 16 almost with no loss in reproduction quality.

4. Conclusion

In this chapter we have demonstrated the effective application of two-step postprocessing to
the diffuse optical tomograms restored from model optical projections with the photon
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average trajectory method. The first step involves iterative restoration with the spatially
variant blurring model and the second is segmentation with nonlinear palettes and
nonlinear functions of correspondence between image intensities and palette colors. The
first step helps reduce blurring due to averaging over the spatial distribution of diffuse
photons and get information on the actual size of reproduced inhomogeneities. The
boundary and shape of inhomogeneities are segmented at the second step. It is shown that
the true image can almost completely be reconstructed for simple model objects (circular
absorbing macro-inhomogeneities in a homogeneous scattering medium). For complex
models of randomly inhomogeneous media, the proposed method of postprocessing may
give distortions and artifacts. Therefore of certain interest is further investigation into
methods that would help optimize the algorithms of correspondence function generation
and obtain images without artifacts.
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1. Introduction

In the project Autonomous City Explorer (ACE) a mobile robot should autonomously,
efficiently and safely navigate in unstructured urban environments. From the biological
aspect, the robot should not only plan its visual attention to acquire essential information
about the unknown real world but also estimate the ego motion for the navigation based on
vision with definitely fulfilled real-time capability. To achieve this, a multi-camera system is
developed, which contains a multi-focal multi-camera platform, the camera head, for
attentional gaze control and two high-speed cameras mounted towards the grounds for
accurate visual odometry in extreme terrain.

How to apply the human visual attention selection model on a mobile robot has become an
intensively investigated research field. An active vision system should autonomously plan
the robot's view direction not only based on a specific task but also for stimulus-based
exploration of unknown real-world environment to collect more information. Moreover,
psychological experiments also show that the familiarity of the current context also strongly
influences the human attention selection behavior. To solve this context-based attention
selection problem, we propose a view direction planning strategy based on the information
theory. This strategy combines top-down attention selection in 3D space and bottom-up
attention selection on the basis of a 2D saliency map. In both spaces the information content
increases are defined. The optimal view direction is chosen which results in a maximum
information gain after a camera view direction change. The main contribution is that a
concerted information-based scalar is inserted to evaluate the information gains in the both
sides. Moreover, the robot behavior, the choice of attention selection mechanism, can be
adaptive to the current context.

In addition, we implemented the compute-intensive bottom-up attention on Graphics
Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA), which
provides an excellent speed-up of the system, due to the highly parallelizable structure.
Using 4 NVIDIA GeForce 8800 (GTX) graphics cards for the input images at a resolution of
640 x 480, the computational cost is only 3.1ms with a frame rate of 313 fps. The saliency
map generation on GPUs is approximately 8.5 times faster than the standard CPU
implementations.
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Angle-encoders on the wheels of the platform are normally used for the odometry. But if
ACE moves on the ground which is not flat or has sands, it will slide. The encoders can not
provide accurate information any more. Using a high-speed camera with 200 Hz, an
elaborated concept for visual odometry based on optical flow is implemented. Utilizing
Kalman Filter for data fusion, a distinctly local, low-latency approach that facilitates closed-
loop motion control and highly accurate dead reckoning is proposed. It helps ACE determine
the relatively precise position and orientation. Image processing at high frequency can
decrease the time delay of close-loop control and improve the system stability.

The various vision-based modules enable an autonomous view direction planning as well as
visual odometry in real time. The performance is experimentally evaluated.

2. Overview of ACE and its high-speed vision system

The ACE project (Lidoris et al., 2007) (see Fig. 2.1 left) envisions to develop a robot that will
autonomously navigate in an unstructured urban environment and find its way through
interaction with humans. This project combines the research fields of robot localization,
navigation, human-robot interaction etc..

Seen from the biological aspect, the visual information provided by the camera system on
ACE is very essential for attention as well as navigation. Another prerequisite of the vision
system is the image processing efficiency. The real-time requirement should be fulfilled
during the robot locomotion.

The vision system of ACE consists of a multi-focal stereo camera platform (Fig. 2.2 middle)
for the interaction and attention and a high-speed camera (Fig. 2.2 right) for visual
odometry. The camera platform comprises several vision sensors with independent motion
control which strongly differ in fields of view and measurement accuracy. High-speed gaze
shift capabilities and novel intelligent multi-focal gaze coordination concepts provide fast
and optimal situational attention changes of the individual sensors. Thereby, large and
complex dynamically changing environments are perceived flexibly and efficiently. The
detailed description of the camera platform is in (Kithnlenz, 2006a; Kiithnlenz, 2006b).
Currently in our application, only the wide-angle stereo-camera is used to demonstrate the
attentional saccade caused by the saliency in the environment.

de drives +|

brushless
de drives

Fig. 2.1. Autonomous City Explorer (A
speed camera (right)

CE) (left), the camera platform (middle) and the high-

Moreover, a dragonfly® express camera (Point Grey Research Inc.), fitted with a normal
wide-angle lens, is mounted on the mobile platform, facing the ground. This camera can
work at 200 fps with the resolution of 640x480 pixels and be applied for visual odometry.
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3. Information-based visual attention of mobile robots

3.1 Related work

In the robotics domain a variety of approaches to the view direction planning of active
vision systems has been already proposed. The most concepts are based on the predefined
robot tasks and in a top-down way. Above all, robot self-localization using active vision is
well studied. In (Davison, 1998) visual information is used for simultaneous localization and
map-building for a robot operating in an unknown environment. Point features are used as
visual landmarks. The active cameras can re-detect the previously seen features and adjust
their maps. In (Pellkofer & Dickmanns, 2000) an approach to an optimal gaze control system
for autonomous vehicles is proposed in which the perceptive situation and subjective
situation besides the physical situation are also predicted and the viewing behavior is
planned and optimized in advance. For gaze control of humanoid robot the basic idea of
(Seara & Schmidt, 2005) is based on maximization of the predicted visual information
content of a view situation. A task decision strategy is applied to the view direction selection
for individual tasks.

In the last few years, bottom-up saliency based attention selection models also become focus
of robot view direction planning. A saliency map model was firstly proposed in (Itti et al.,
1998). In the saliency map model the salient positions in a static image are selected by low-
level features. The saliency map predicts the bottom-up based visual attention allocation. No
high-level object recognition is required to drive a robot's attention, if bottom-up signals are
also taken into account.

By now, the top-down and the bottom-up attention selections are only combined in the 2D
image-space. In (Ouerhani et al., 2005) a visual attention-based approach is proposed for
robot navigation. The trajectory lengths of the salient scene locations are regarded as a
criterion for a good environment landmark. In (Frintrop, 2006) a biologically motivated
computational attention system VOCUS is introduced, which has two operation modes: the
exploration mode based on strong contrasts and uniqueness of a feature and the search
mode using previously learned information of a target object to bias the saliency
computations with respect to the target. However, the task accomplishment is evaluated in
the image space which can only contain the information which is currently located in the
field of view, although the performance evaluation in robotics domain is usually executed in
the task-space.

Another key factor which has an influence on attention mechanism is the scene context. The
context has already been used to facilitate object detection in the natural scenes by directing
attention or eyes to diagnostic regions (Torralba & Sinha, 2001) and scene recognition (Im &
Cho, 2006). In both cases the scene context is only statically observed. In (Remazeilles &
Chaumette, 2006) vision-based navigation using environment representation is proposed.
An image memory, a database of images acquired during a learning phase, is used to
describe the path which the robot should follow. However, there is no dynamical context-
based behavior adaptation considered.

3.2 Strategy overview

The objective is to plan the robot view direction with visual information from the input
image, considering the competition of the task-based top-down attention and the stimulus-
based bottom-up attention as well as behavior adaptation on the current context. Fig. 3.1
illustrates the view direction planning strategy architecture.
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Fig. 3.1. View direction planning strategy architecture

We define the optimal view direction as the view direction with the estimated maximum
information gain, calculated as the relative entropy/Kullback-Leibler (KL) divergence.

N N A
Q*+1l = arg max(v(s) ’ Itop—duwn (Q) + (l - V(S)) ’ Ibottom—up (Q)) (1)
Q
with
_ J1lifs<S >
YO = 0ifs> s @

Liop-down and Ipottom-up indicate the relative entropies acquired from the top-down and bottom-
up sides with v(s) the context-based weighting factor for the top-down attention. The total

visual attention is 100%. Therefore, the weight of the bottom-up attention is 1-v(s). The
detailed definition of v(s) is described in Section 3.5. Q and Q. stand for the possible view
directions and the optimal view direction of the camera.

3.3 Information-based modeling of the top-down attention
For the top-down attention we model the system state x as 2D Gaussian distributions with

the average value x4 and the covariance matrix R, in the task-space. p and g are the prior

and the predicted posterior probability density functions (pdf) with the continuous variable
x for specific tasks

exp(- (@t - )T RET @ - ) ®)

and
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with the dimension # of the state variable x and with

R =R ( )k+1|k ) (5)

The relative entropy is then computed as follows:

pE)

’

Itop—down = KL(ptop—down I Wtop—down ”P log in [bit] (6)

3.4 Information-based modeling of the bottom-up attention

Besides the task accomplishment, the robot should also have the ability to explore the world,
acquire more information, update the knowledge and also react to the unexpected events in
the environment. In order to achieve this, a bottom-up attention selection is integrated. Here
we consider the static outliers as well as the temporal novelty in the image-space.

For the static outliers we use the saliency map model proposed in (Itti et al., 1998). As
known, human is much more attracted by salient objects than by their neighbourhood. The
bottom-up saliency map is biology-inspired and can predict the position of the salient
regions in a real-scene image.

In Fig. 3.2 the saliency map model is visualized. Firstly, an input image is sub-sampled into
a dyadic Gaussian pyramid in three channels (intensity, orientation for 0°, 45°, 90°, 135°,
opponent colour in red/green and blue/yellow). Then a centre-surround difference is
calculated for the images in the Gaussian pyramid. In this phase feature maps are generated
in which the salient pixels with respect to their neighbourhood are highlighted. Using
across-scale combinations the feature maps are combined and normalized into a conspicuity
map in each channel. The saliency map is the linear combination of the conspicuity maps.
The bright pixels are the salient and interesting pixels predicted by the saliency map model.
For the temporal novelty we applied a similar Bayesian definition like (Itti &Baldi, 2005) for
the information content of an image, but directly on the saliency map. The notion “surprise”
is used here to indicate the unexpected events. Only the positions spatially salient and
temporally surprising are taken to draw the robot's attention. Therefore, we build a surprise
map on two consecutive saliency maps without camera movement to find the unexpected
event.

Firstly, as an example, the saliency maps of images at the resolution of 640 x 480 are rescaled
into 40 x 30 pixels. Thus, each pixel represents the local saliency value of a 16 x 16 region.
Secondly, we model the data D received from the saliency map as Poisson
distribution M(A(x;,y;)). A(x;,y;) stands for the saliency value with x;=1,--40 and

y;=1,--30. Therefore, a prior probability distribution p;(x;,y;) can be defined as a
Gamma probability density (Itti & Baldi, 2005) for the i-th pixel:

ﬂala—le—ﬂl
I'(a)

with the shape & >0, the inverse scale # >0, and I'(-) the Euler Gamma function.

pi(xi,yi) = r(d,a, B) = @)
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Fig. 3.2. The saliency map computation model

The posterior probability distribution p((x;,y;)|D) is obtained from the 2. saliency map
with the new saliency value A'(x;,y;). The parameters o and S are supposed to change

into @' and ', while

a' = ¢la+ A, and
B =&p+1

Then, the surprise map with surprise value 7 is estimated as the KL-divergence as follows:

®)

t(x;,yi) = KL(p; (x;, y;),pi(xi,y; | D)) ©)

The predicted information gain is then quantified as the KL-divergence of the prior and the
predicted estimated posterior probability distributions over all the interesting pixels in the
surprise map.

P and Q are the normalized prior and the predicted posterior probability mass functions
(pmf) with discrete variables: the pixel indexes x;,y; .
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Ibottom—up = KL(Pbottom—up | |Qbottom—up) =

Pxi,yi) . oo (10)
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with the surprise value 7 of the pixel (x;,y;) and the weighting factor d indicating the

distance between the pixel (x;j,y;) and the image centre of the camera lens.

3.5 Context-based combination of top-down and bottom-up attention selections

There are two dominated arts of context recognition approach: the object-based context
recognition and the gist-based context recognition. For the object-based context recognition
the robot recognizes certain objects as the symbols of certain scenes and adapts its behaviour
and tasks to this situation. On the other side, the gist-based context recognition provides the
robot a rough idea about what kind of scene the robot is located. In the case that the robot
has no previous knowledge about the situation, we consider here only the latter one and try
to determine how familiar the current context is and how the robot should adapt its
attention selection to this kind of context.

Firstly, we consider the static environment as familiar environment for the robot and the
dynamic environment as less familiar environment because of the moving objects causing
change and danger. Therefore, we define the context familiarity using motion map
histograms computed by three successive input images.

Each normalized histogram of motion map can be regarded as a discrete distribution.
Because the perception of human is expectation-based, we calculated the relative entropy s
of the histograms of the two consecutive motion maps as the chaos degree of the context. A
threshold S should be experimentally specified and applied to determine the weighting
factor v(s) (see Eq. 2).

3.6 Experiments and results

To evaluate the performance of our view direction planning strategy, the following
experiments were conducted. Firstly, four different scenes are investigated to calculate the
chaos degree threshold S . Then, experiments in a robot locomotion scenario are conducted,
in an environment without surprising event as well as in an environment with a surprising
event.

3.6.1 Experiment setup
The experiments are executed in a corridor using ACE (see Fig. 3.4). Four artificial
landmarks are installed at the same height as the camera optical axis.
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Fig. 3.4. Experiment scenario using ACE and four artificial landmarks

The mobile platform moved straight forward. About every 0.5m a view direction planning is
executed and an optimal view direction will be applied for the next 0.5m. We define the
view direction Q as the angle between the locomotion direction and the camera optical axis
in the horizontal plane. At the start point (0, 1.25)m the camera has an initial view direction
0° towards the locomotion direction.

3.6.2 Context investigation

Firstly, we specified the chaos degree threshold S . We gathered four different scenes, shown
in Fig. 3.5, and calculated their chaos degreess.

e scene 1: a floor with no moving objects present (Fig. 3.5, column 1)

e scene 2: a square with crowded people (Fig. 3.5, column 2)

e scene 3: a floor with people suddenly appearing (Fig. 3.5, column 3)

e scene 4: a street with a vehicle moving very fast (Fig. 3.5, column 4)

The rows show the consecutive time steps k-2, k-1 and k at a frame rate of 30pfs. It is
obvious that the context almost does not change in the first scene. Therefore, the chaos
degree is very small, namely 0.0526. In comparison to the first scene, in the scene 4 the
environment changes very much because of the vehicle movement. Hence, the chaos degree
in this context is very large, namely 1.1761. For the second scene we have obtained a small
chaos degree, namely 0.0473, because the context change is relatively small although there is
motion. This context can be regarded as a familiar context, since no surprise exists. In the
third scene the chaos degree is large, because a person appeared suddenly in the second
image and therefore, the context change is relatively large. For the further experiments we
will set S equal 1.0.

chaos degrae 0.0526 0.0473 01231 01761

Fig. 3.5. The context chaos degrees in four various scenes
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3.6.3 Robot locomotion with and without surprising events

Firstly, the robot moved in a static environment with a constantly low context chaos degree,
accomplishing the self-localization task. The image sequence and the respective optimal
view directions are shown in Fig. 3.6. If there is no surprising event in the environment, the
camera directed its gaze direction to the task-relevant information -- the landmarks (row 1).
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Fig. 3.6. The image sequence and the respective camera view directions in an environment
without surprising event (row 1) and with surprising event (row 2)

Fig. 3.6 (row 2) also illustrates an image sequence with the optimal view directions during
the locomotion in an environment with surprising event. Most of the time the environment
was static with a low context chaos degree (see Fig. 3.5, column 1) and the robot planned its
view direction based on the top-down model for the localization task. At the fifth step a
person appeared suddenly. Because of the high context chaos degree caused by the
surprising event at this moment (see Fig. 3.5, column 3) the camera planned its view
direction based on bottom-up attention, tried to locate the surprising event in the
environment and changed its view direction from 50° to 10°.

4. GPU aided implementation of bottom-up attention

4.1 Related work

Because of the essential real-time capability of the bottom-up attention, various
implementations are proposed. A real-time implementation of the saliency-based model of
visual attention on a low power, one board, and highly parallel Single Instruction Multiple
Data (SIMD) architecture called Protoeye is proposed in (Ouerhani et al., 2002) in 2002. The
implemented attention process runs at a frequency of 14 fps at a resolution of 64 x 64 pixels.
In 2005 another real-time implementation of a selective attention model is proposed (Won et
al,, 2005). In this model intensity features, edge features, red-green opponent features and
blue-yellow opponent features are considered. Their model can perform within 280ms at
Pentium-4 2.8GHz with 512MB RAM on an input image of 160 x 120 pixels.

In the same year a distributed visual attention on a humanoid robot is proposed in (Ude et
al,, 2005). In this system five different modalities including colour, intensity, edges, stereo
and motion are used. The attention processing is distributed on a computer cluster which
contains eight PCs. 4 run Windows 2000, 3 Windows XP and 1 Linux. Five of the PCs are
equipped with 2x2.2 GHz Intel Xeon processors, two with 2x2.8 GHz Intel Xeon processors,
and one with 2 Opteron 250 processors. A frequency of 30 fps with input images with 320 x
240 pixels is achieved.

In 2006 a GPU based saliency map for high-fidelity selective rendering is proposed
(Longhurst et al.,, 2006). This implementation is also based on the saliency map model
proposed in (Itti et al., 1998). In this implementation a motion map and a depth map as well
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as habituation are also integrated. However, they use a Sobel filter instead of the complex
Gabor filter to produce the orientation maps. No iterative normalization is computed. For an
input image at a resolution of 512 x 512 the saliency map generation takes about 34ms using
NVIDIA 6600GT graphics card. No CUDA technology is used.

The most comparable implementation to our implementation is proposed in (Peters & Itti,
2007), because both of them use the same parameter values as those set in (Itti et al., 1998;
Walther & Koch, 2006). For a 640 x 480 colour input image, running in a single-threaded on
a GNU/Linux system (Fedora Core 6) with a 2.8GHz Intel Xeon processor, the CPU time
required to generate a saliency map is 51.34ms at a precision of floating-point arithmetic and
40.28ms at a precision of integer arithmetic. Computed on a cluster of 48 CPUs a 1.5-2 times
better result is achieved. Currently, the fastest computation of saliency map is 37 fps using
multi-threaded mode.

4.2 Graphics processing unit (GPU)

In the last few years, the programmable GPUs have become more and more popular. GPU is
specialized for compute-intensive, highly parallel computation. Moreover, the CUDA, a new
hardware and software architecture issued by NVIDIA in 2007, allows issuing and
managing computations on the GPU as a data-parallel computing device without the need
of mapping them in a graphics API (CUDA, 2007). It is the only C-language development
environment for the GPU.

The saliency map computation consists of compute intensive filtering in different scales,
which is nevertheless highly parallelizable. For real-time application we implemented the
computation of saliency map on GeForce 8800 (GTX) graphics cards of NVIDIA, which
support the CUDA technology. The GeForce 8800 (GTX) consists of 16 multiprocessors
which consists of 8 processors each. All the processors in the same multi-processor always
execute the same instruction, but with different data. This concept enables a high-gradely
parallel computation of a large amount of similar data. The multi-GPU performance is
strongly dependent on an efficient usage of the thread-block concept and the different
memories.

A. Thread Batching

Programming with CUDA, the GPU is called compute device. It contains a large amount of
threads which can execute an instruction set on the device with different data in parallel. A
function which is compiled to those instruction set is called kernel. In comparison with GPU,
the main CPU is called host. The goal is to execute the data-parallel and compute-intensive
portions of applications on the GPU instead of on the CPU.

Fig. 4.1 shows the thread batching model of the GPU. For each kernel function the GPU is
configured with a number of threads and blocks. The respective grid of a kernel consists of
two dimensional blocks. Each block contains up to 512 threads. The input data are divided
into the threads. All the threads in a grid execute the same kernel functions. With the thread
index threadldx and the block index blockldx we know which data will be processed in which
thread. With this structure an easy programming and a good scalability are realized.

B. Memory

The memory access is also a focus for an efficient programming on GPU. There are six
different memories in GPU:
e read-write per-thread registers
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e read-write per-thread local memory
e  read-write per-block shared memory
read-write per-grid global memory
read-only per-grid constant memory
e read-only per-grid texture memory

4 . N
("Host (CPU) ) Device (GPU)
a Grid 1 h
Block(0,0) Block(1,0)
Thread | Thread Thread | Thread
(0,0) (1,0) e (0,0) (1,0
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Thread | Thread
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- : J
(kernel n Grid n
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Fig. 4.1. The thread batching model of GPU

Above all, the shared memory and the texture memory are cached, while the read or write
access in the not cached global memory always takes 400-600 clock cycles. Only the texture
memory and the global memory can be used for a large amount of data. Moreover, the
texture memory is optimized for 2D spatial locality and supports many operations such as
interpolation, clamping, data type conversion etc.. However, the texture is read-only. The
results must be saved in the global memory, which requires data copy between memories.

4.3 Multi-GPU implementation details

In Fig. 42 a data flow diagram of our GPU-implementation is illustrated. After an
initialization, an input image is firstly converted into 32-Bit floating point such that a high
accuracy and a high efficiency will be achieved in the following computation phases. The
Gaussian dyadic pyramid is created in the shared memory together with the generation of
intensity maps (I-maps), opponent red-green (RG-maps) and blue-yellow maps (BY-maps).
We use the Gabor filter to calculate the Orientation-maps (O-maps). The Gabor filter kernel
is firstly calculated in the CPU. To spare computational cost, the convolution of the
subsampled images with Gabor filter in the space domain is displaced by the multiplication
in the frequency domain using Fast Fourier Transform (FFT). Here we conducted a Cuda-
image which contains all the images to be filtered by the in the initialization transformed
Gabor filter such that only one FFT and eight IFFT are needed for the convolution. The
images should be assembled before the transformation and disassembled after the
transformation in the texture memory. After that, 9 I-maps, 18 C-maps and 36 O-maps are
generated.
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Fig. 4.2. Data flow diagram for GPU-implementation of the saliency map computation

Furthermore, to ease the center-surround differences and the cross-scale combinations, the
available maps at different scales are rescaled into the same size. A point-to-point
subtraction followed by an iterative normalization is calculated. On the resulting 42 feature
maps a point-to-point addition and its following normalization are executed. One
conspicuity map in each channel is obtained. At the end, a summation of the conspicuity
maps into the saliency map is completed. The detailed description is as follows:

A. Initialization

Firstly, the GPU should be initialized. For the reason that the memory allocation in GPU
takes very long, the memory is firstly allocated for different images such as the input
images, the images in the Gaussian dyadic pyramids, the feature maps, the conspicuity
maps, the rescaled feature and conspicuity maps at the same size as well as the final saliency
map.



Towards High-Speed Vision for Attention and Navigation of Autonomous City Explorer (ACE) 201

Since the filter kernel will not be changed during the saliency map computation, we also
calculate the Gabor filter in the initialization phase in the CPU and then transform it into the
frequency domain. The implementation of the Gabor filter and the FFT-transformation of
the Gabor filter will be described in Section 4.3-E in detail.

B. Data type conversion

The input image has the resolution of 640 x 480 and three 8-bit channels, namely red, green
and blue. The image data are copied from the CPU into the global memory of the GPU.
Since the global memory is not cached, it is essential to follow the right access pattern to get
maximum memory bandwidth. The data type must be such that sizeof(type) is equal to 4, 8,
or 16 and the variables of type type must be aligned to sizeof(type) bytes (CUDA, 2007). If the
alignment requirement is not fulfilled, the accesses to device memory are very costly. The
image width fulfills the alignment requirement, while the data amount of each pixel is 3 x 8
= 24 Bytes which does not fulfill the alignment requirement. Therefore, we must extend the
pixel width with padding and insert an extra 8-bit channel (see Fig. 4.3).

column 0 column 1

row0|R|G|B|O|R|G|B|0O
rowl1|R|G|B|O|R|G|B|0

Fig. 4.3. Image data padding

After the padding we convert the image data type with uchar4 into float4 to achieve the high
precision for the following computation using the implicit type conversion of the texture.

C. Gaussian dyadic pyramid computation

In (Walther & Koch, 2006) a 6 x 6 separable Gaussian kernel [1 51010 5 1] /32 is used for the
image size reduction. A two-dimensional convolution contains 6 x 6 = 36 multiplications for
each output pixel, while a convolution with separable filters only requires 6 + 6 = 12
multiplications for each output pixel. Therefore, we separate the Gaussian dyadic pyramid
computation into two convolutions: one convolution in the horizontal direction to reduce
the horizontal dimension, and one convolution in the vertical direction, respectively.

Since each access in the uncached global memory takes 400-600 clock cycles, it is necessary
to compute the convolutions in the faster texture memory or shared memory. Bounding the
images to a texture requires the data copy between the global memory and the texture
memory. Moreover, the data are only readable by kernels through texture fetching. It is
more costly than loading the data into the shared memory and compute the convolution
there. Therefore, the convolution is computed in the shared memory.

For the convolution in the horizontal direction, the thread and block number are so specified
that a block consists of as many threads as the number of the output image columns and a
grid has as many blocks as the number of the output image rows. For example, for the
subsampling from an input image at 640 x 480 into an output image at 320 x 480, each block
has 320 threads, while each grid has 480 blocks. Each thread computes only one pixel in the
output image.

Attention must be paid to the threads synchronization, because the convolution in the
thread n is dependent on the pixels loaded by thread n-1 and n+1.

To deal with the convolution on the image border, we use [10 10 5 1]/26 on the left border
and [1 510 10]/26 on the right border.
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After that, a following subsampling in the vertical direction can be similarly solved. The
input image at 640 x 480 is subsampled into 8 other scales: 320 x 240 (scalec =1, 160 x 120
(6=2),..,2x1(c=8).

D. C-maps and I-maps computation

In the saliency map computation the I-, RG- and BY-maps are required (Walther & Koch,
2006). To make the computation more efficient, we integrate the computation of the I-maps
and the C-maps into the Gaussian filter convolution in the vertical direction, because the
image data are already in the shared memory after the convolution. Thus, we can spare the
time for loading the data from the global memory.

E. O-maps computation
1) Gabor filter: To compute the O-maps in different scales, the Gabor filter truncated to 19 x
19 pixels is used (Walther & Koch, 2006). The Gabor filter is formulated as follows:

2 2,12

Gy (x,y,0) = exp(%) cos(2r - +) (13)
With
x' = xcos(f) +ysin(d), y' = -xsin(d)+ ycos(d) (14)

(x, y) is the pixel coordinate in the Gabor filter. The parameter values of our implementation
are according to (Walther & Koch, 2006). y stands for the aspect ratio with the value 1, while
A is the wavelength and has the value of 7 pixels. The standard deviation ¢ is equal 7/3
=

pixels, and y {0, i 6 stands for the orientation angles with 6 e {0°,45°,90°,135°} .

As defined in Eq. 14, a Gabor filter consists of a combination of a 2D Gaussian bell-shaped
curve and a sine (¥ = 7 /2) and cosine function ( = 0). In each direction, the image
should be filtered twice and summed as follows:

Mo (0) = [M;(0)* Go(0)] +[M;(0)* G 2(0)| (15)

with M (o) the I-Maps at scale o .

2) FFT and IFFT: Since a convolution with the 19 x 19 Gabor filter is too costly, we use FFT
and IFFT to accelerate this process significantly. The Gabor filter and the to be convoluted
images should be converted into the frequency domain using FFT at first, and multiplied
with each other. Then, the result is converted from the frequency domain into the space

domain using IFFT. In doing this, the complexity sinks from O(n4) (2D convolution) to

O(n* logn) (2D FFT).

As mentioned in 4.3-A, the FFT of the Gabor filter should be computed in the initialization,
because it will never be modified in the saliency map generation. Using CUFFT library
(CUDA CUFFT, 2007) we compute from the original Gabor filter eight FFTs with four
different orientations and two different forms (sine and cosine).

Due to the fact that the input image (640 x 480) and the subsampled image at scale 1 (320 x
240) are not used for the following saliency map computation, 7 x 4 x 2 = 56 convolutions for
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the O-maps are needed (7 scales, 4 orientations and 2 forms). We assembly the images in 7
scales together into an Cuda-image (see Fig. 4.5, left) such that just 1 FFT and 8 IFFTs instead
of 7 FFT and 56 IFFTs are computed. For an input image with 640 x 480 pixels, an image
with 256 x 256 is big enough to have all the images into itself.

Using the texture a modus named “clamp-to-border” is supported, which makes the image
copy very simple. If a pixel outside the texture border is accessed, this pixel has the same
color as the border. Therefore, instead of copying the pixel from (0, 0) to (n-1, n-1), we copy
the pixel from (-9, -9) to (n+8, n+8) of an image with n x n pixels. In doing this we get the
border extension for the convolutions.

Before we compute the FFT of the Gabor filter, we should resize the Gabor filter kernel (19 x
19) into the same size as the to be convoluted image (256 x 256), because the convolution
using FFT only can be applied on the input data of the same size (Podlozhnyuk, 2007). The
expansion of the Gabor filter kernel to the image size should be executed as shown in Fig.
4.5 right: cyclically shift the original filter kernel such that the kernel center is at (0, 0).

13(14 (15 11(12
18(19(20 16|17
23 (24125 2122
o=2
1(2(3|4]|5
6(7(8]|9](10
11(12[13|14|15|—> 0
- 16(17/18|19/20
o=4 EH 21(22(23[24] 25
o=3
3|45 12
89|10 6|7

Fig. 4.5. The image (left) and the filter kernel (right) prepared for FFT

In the center-surround differences, 6 feature maps in the intensity channel, 12 feature maps
in the color channel and 24 feature maps in the orientation channel are computed between
the selected fine scale maps and the coarse maps. To execute this subtraction, the images
should be enlarged or reduced into the same size and then a point-by-point subtraction is
accomplished. We reduce the images at scale 2 and 3 into scale 4 and enlarge the images at
scale 5, 6, 7, 8 also into scale 4. At the end all the images are at scale 4 and have 40 x 30
pixels. For those enlargements and reductions we use the texture concept again by bounding
them to the textures.

I-maps O-maps
list center ‘ 2 ‘ 2 ‘ 3 ‘ 3 ‘ 4 ‘ 4 ‘ ‘ 2 ‘ 2 ‘ 3 ‘ 3 ‘ 4 ‘ 4 ‘
list surround ‘ 5 ‘ 6 ‘ 6 ‘ 7 ‘ 7 ‘ 8 ‘ ‘ 5 ‘ 6 ‘ 6 ‘ 7 ‘ 7 ‘ 8 ‘
listdifference | 25 | 26 | 36 [ 3.7 |47 [ 48| . | 25[26]36]37]47]4s]

Fig. 4.6. The image lists configuration

Since the images are rescaled into 40 x 30 pixel at this step, we construct three lists to make
the computation as parallelly as possible. Fig. 4.6 shows the configuration of the lists. Each
list contains 6 x 7 = 42 images with different scale number (but in the same size 40 x 30) and
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channels. The threads and blocks are so parametrized that 42 blocks are configured. Each
block is responsible for one image in the list. 42 images are processed in only one kernel
function parallelly. This list-concept is also used for the iterative normalization and the
cross-scale combinations.

G. Iterative normalization

The iterative normalization N(.) is an important component in the whole computation. It
simulates local competition between neighboring salient locations (Itti et al., 1998). Each
iteration contains self-excitation and neighboor-induced inhibition, which can be
implemented using a difference of Gaussian filter (DoG) (Itti & Koch, 1999):

2 _ x2+y2 2 B x? +y2
DOG(X, y) — CEXZ e 2”‘732x _ Cl‘l’l]; e 27[0',%,]1 (16)
2705y 270,

with o,, = 2% and o, = 25% of the input image width, ¢, =05, ¢;, = 1.5 and the
constant inhibitory termC;,,;, = 0.02. At each iteration the given image M is computed as
follows (Itti & Koch, 1999):

M &M +M*DoG = Ciyyl., 17)

The inseparable DoG filter is divided into two separable convolution filters, one Gaussian
filter for excitation with 5 x 5 pixels and one Gaussian filter for inhibition with 29 x 29 pixels
for an input image at 40 x 30. The larger the input image is, the bigger are the filter kernels.
The kernel size can be computed as follows:

Size(exhnh) =2 ﬂ007(0(€x|m}1) W2 In(1/100)) +1 (18)

The 153 iterations on 51 images are very costly. Although the shared memory size is limited,
the images at 40 x 30 and the respective filter kernels (4916 Byte) can fit into it. In doing this,
a 10 times acceleration is obtained, whereas the lists mentioned in 4.3-F are also used.

H. Combination into the saliency map

In the following cross-scale combinations no image rescaling is needed. It is only a question

of point-by-point integration of the feature maps into conspicuity mapsI, C and O . The
saliency map is a linear combination of the normalized conspicuity maps.

1. Multi-GPU utilization

A parallel utilization of multi-GPU enables a significant acceleration of the saliency map
computation. To avoid the intricateness of a multi-process mode, a multi-threaded mode is
used to manage the multi-GPU utilization. In a multi-threaded mode, in addition to a main
thread several threads are utilized. Each thread is responsible for one GPU. Fig. 4.7
illustrates the multi-threaded mode in a petri-net. Two semaphores are used to ensure the
synchronization of the threads. The semaphore 1 sends a signal to the main thread if one or
more GPUs are idle and is initialized with the number of the applied GPUs. The semaphore
2 starts one of the GPU-threads. Interestingly, in the main thread, at o4 a thread is started,
while at fo5 a saliency map is ready to be taken. Using this multi-threaded mode the frame
rate can be significantly increased.
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Fig. 4.7. The petri-net structure for multi-threaded mode

4.4 Results and discussion

We tested our multi-GPU implementation using 1 to 4 NIVDIA GeForce 8800 (GTX)
graphics cards. The computers are equipped with different CPUs and 64-bit linux systems.
The computational time is the average processing time of 1000 input images at a resolution
of 640 x 480 pixels.

Tab. 4.1 shows the detailed processing time protocol. The most costly step is the
initialization which has a computational time of 328ms. The memory allocation happens
only once and needs almost 50MB RAM. The saliency map computation takes only about
10.6ms with a frame rate of 94.3 fps, respectively. In the GFLOPS performance estimation,
only the floating-point operations are considered. The address-pointer-arithmetic, the
starting of the CUDA functions and the memory copy accesses, which are very time-
consuming and have, therefore, a strong influence on the computational time, are not
considered.

Saliency map computation Time FLOP GFLOPS
initialization 328ms

Gaussian pyramid I-, C-maps 2,10ms 6.482.049 3,09
FFT, convolution, IFFT 2,39ms 27.867.923 11,66
image rescaling 0,89ms 294.000 0,33
center-surround differences 0,16ms 151.200 0,95
iterative normalization 4,74ms 34.876.690 7,36
Integration into saliency maps 0,33ms 62.390 0,19

total 10,61ms 69.734.252 6,57

Table 4.1. Computational time registration using 1 GPU
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Fig. 4.8. Comparison of computational time using 1 to 4 GPUs

Fig. 4.8 illustrates the computational time using 1 to 4 GPUs, which shows a very good
scalability of the multi-GPU implementation.

In Tab. 4.2 the performance of the iLab's implementation (Peters & Itti, 2007) and our
implementation is compared. Working on the images with the same resolution and the same
precision, iLab uses the 2.8GHz Intel Xeon processor and achieves a frequency of 19.48 Hz,
while using our implementation a frequency of 313 Hz is obtained. Using multi-threaded
mode, the maximum speed of iLab is 37 fps which is still about 8.5 times slower than our
implementation.

iLab’s implementation our implenentation
resolution 640 x 480 640 x 480
hardware 2.8GHz Intel Xeon processor 4 NVIDIA GeForce 8800 (GTX)
precision floating-point floating-point
computational time 51.34ms 3.196ms
frequency 19.48 Hz 313 Hz

Table 4.2. Comparison between iLab's implementation and our implementation

5. Visual odometry for ACE

The goal of ACE is to navigate in an unpredictable and unstructured urban environment.
For achieving the aim, accurate pose estimation is one of the preconditions. As humans, we
use visual information to estimate the relative motion between ourselves and a reference
object. If we close our eyes, we can still estimate the motion by feeling the foot step. Even if
we move in a car and close our eyes, we can use inertial sensor in the body, such as inner
ear, to tell how our motion is. By now, ACE only has the information from the angle-
encoders on the wheels. If there are sands, cobblestone on the ground, the wheels will slip,
which causes an inaccurate localization. Therefore, we want to use the visual information to
support the localization. We mount a high-speed camera in the front of ACE. The camera
looks straight towards the ground.

In this section a visual odometry system is presented to estimate the current position and
orientation of ACE platform. The existing algorithms of optical flow computation are
analyzed, compared and an improved sum-of-absolute difference (SAD) algorithm with
high-speed performance is selected to estimate the camera ego-motion. The kinematics
model describing the motion of ACE robot is set up and implemented. Finally the whole
odometry system was evaluated within appropriate scenarios.
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5.1 Background

How to locate the position and orientation of a moving object has long been a research focus
of the computer vision community. The probably existing problems could be being robust
against complicated environment, different ground situations and changing brightness.
Most visual odometry methods include three phases: firstly, a suitable optical flow
computation algorithm should be selected to determine the optical flows in a series of
successive images. Then, the translation and rotation of the camera should be estimated
according to these optical flows acquired in the first step. At last, a geometry model
denoting the relation between camera and robot should be established so that the
localization of the robot can be deduced from the position of the camera.

5.1.1 Optical flow techniques

The computation of optical flows has been a key problem discussed in the processing of
image sequences for many years (Barron et al., 1994). Nowadays there are two most popular
techniques: Matching-based method and differential method. Block-based matching is
applied in many aspects of computer vision area. It's also one of the most important
techniques for optical flow computation. Two simple algorithms, sum-of-absolute difference
(SAD) and sum-of-squared difference (SSD), are usually used to find the best match. They
are more efficient than the other techniques. Lucas & Kanade is a typical and classical
differential technique, which is based on the gradient constraint. It has a comparative
robustness and accuracy in the presence of noise and is feasible in reality.

5.1.2 Pose estimation using optical flow information

Pose estimation is the procedure to compute the position and orientation of a camera
relative to the world coordinate. Using image Jacobian matrix, the relationship between
object velocity in 3-D world and its image-plane velocity on the image sensor is described as
follows:
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where T, T

y, T, are translation velocities of the camera in world coordinate in three

directions, @,, @, , @, angular velocities in three directions. % and V are the pixel

velocity along x and y directions in image plane, while # and V are the corresponding pixel
coordinates in image plane. Normally we have more than 3 feature points on the image
plane, so the equation system is redundant.

5.1.3 Related work
Jason Campbell et al. (Campbell et al. 2005) designed a model using monocular camera
mounted at the robot’s front and viewing front and underside of the ground. The flow
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vectors are divided into three parts: a dead zone near the horizon is defined and discarded
in the computational processing; the vectors above the horizon are used to calculate the
robot rotation while the vectors below the horizon are used to estimate the robot translation.
Similar to the model established by Campbell, the monocular camera in Wang’s model
(Wang et al. 2005) focuses only on the locally planar ground, and calculates the translation
and rotation together. Both of the models use Lucas & Kanade method to obtain the optical
flow. Utilizing the Harris corners detection and normalized correlation, Nister presented a
system (Nister et al. 2004) that provides an accurate estimation but works relative slowly. In
Fernadez’s work (Fernadez & Price 2004), utilizing the task-sharing abilities of the operating
system, the problem of synchronization across multiple frame-grabbers can be solved. In
order to have a better efficiency, the SAD algorithm is used here. In Dornhege’s work
(Dornhege & Kleiner, 2006) the salient features are tracked continuously over multiple
images and then the differences between features that denotes the robot’s motion are
computed. An inertial measurement unit (IMU) is employed here to estimate the
orientation.

5.2 Hardware and modeling

5.2.1 Hardware description

Fig. 5.1 illustrates the hardware configuration. A high-speed camera and a 1394b PCI-
express adapter are used in our system to capture and transfer the images to the
computational units. The dragonfly® express camera (Point Grey Research Inc.), fitted with
a normal wide-angle lens, can work at 200 fps with the resolution of 640x480 pixels.
Utilizing the IEEE-1394B (Firewire 800) interface, the camera is connected to our vision
processing computer with an AMD Phenom 9500 @2.2GHz Quad-Core processor and 4 GB
memory.

Fig. 5.1. Hardware configuration

5.2.2 Kinematics modeling

Because ACE will explore the outdoor urban environments, e.g. the city centre of Munich,
and communicate frequently with the humans, so the camera for visual odometry may not
gaze directly forward. For avoiding the disturbance of moving crowd, the camera is
mounted in the front of ACE and the optical axis is perpendicular to the ground.

The camera is firmed on ACE such as represented in Fig. 5.2. The relative position between
the camera and the robot does not change in the whole process. Any actuated motion of the
robot will result in a movement of the camera relative to its original position. Because the
displacement between camera and ground in z-direction is much smaller than the distance
between camera and ground z, we can approximately assume that the ground is a flat plane
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and the ACE-platform displaces without any roll and pitch angle. Based on this assumption
only 3 variables must be considered: the movements in x and y directions and the
orientation around the z axis. We divide the movement of robot in two parts (see Fig. 5.3).
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2|/ o ACE
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Fig. 5.2. Cutaway and planform of the visual odomery configuration

X

Fig. 5.3. Geometry relationship between robot and camera in motion with frames and
variables definition

Firstly, it rotates with an angle of @ without any translation. Then, the robot has movement
of (T, T,). After that, the three variables of camera relative to its original position can be

denoted as:
6.=0,
X =yo—R-sin(B+6,)-T, (20)
Y.=xy—R-cos(f+6,)-T,

where R :ﬂxoz + y02 and ﬂ = arctan(y—o) .

X0
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5.3 Motion estimation

Our long-term objective is to fuse the visual information at 200 Hz and the information
provided by the angle-encoders at 30 Hz to achieve a high accuracy visual odometry.
Currently, we focus on the visual information. The vision processing is as follows: the input
images will be undistorted at first. Then, using SAD the optical flow is computed. The
relationship between optical flow and the camera ego-motion is indicated by image
Jacobian. To reduce the noise and optimize the results of the redundant equations, a Kalman
filter is applied.

5.3.1 Optical flow algorithm — elaborated SAD

Compared with other optical flow computation algorithms, SAD performs more efficiently
and less system resources are required. The size of our images is 640x480 pixels and the
central 400x400 pixels are chosen as interest area. A searching window of 20x20 is defined so
there are totally 400 windows in this interest area. SAD algorithm is used in every window
with a block size of 8x8 pixels. This block is regarded as original block in frame n-1 and
compared with the corresponding neighbour blocks within the searching window in frame
n. The block with the least SAD values in frame n will be taken as the matching block. The
distance between the original block and the matching block is defined as optical flow value
of this searching window. After SAD matching 400 sets of optical flow values have been
acquired and a further elaboration is fulfilled as follows: The searching windows on the
boundary of the interest area are abandoned and the remaining 18x18 windows can be
separated into 36 groups. Each group consists of 3x3 windows as show in Fig. 5.4. In every
group we set a limit to eliminate some windows whose optical flow values seem not to be
ideal enough. The average optical flow values of remaining windows in every group should
be determined and could be seen as a valid optical flow value of this group. Every group
can be considered as a single point and we just calculate the optical flow values of 36 feature
points with a better accuracy.
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Fig. 5.4. Elaborated SAD algorithm

5.3.2 State estimation — Kalman filter
After calculating optical flow values with an elaborated SAD algorithm, we apply Kalman
filter to determine the redundant equations based on image Jabobian matrix. The basic

thought of Kalman filter is to predict the state vector x, according to the measurement
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vector z, . Based on the assumption we have made in kinematics model, only T, , T ) and
w_are required and therefore the state vector is composed of only three elements. The
measurement vector z, comprises the 36 sets of points velocities acquired from optical flow

values of 36 feature points. The measurement matrix is a simplified image Jacobian matrix J,
the redundant equations can be described as follows:
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The basic process of Kalman filter in our experiment is as follows:
X, =X, +w, )

z,=J x,_,+v,

Random variables wi; and vi represent the process noise and measurement noise
respectively. The estimation process can be divided into two parts: predict part and correct
part. At the beginning, the camera velocity vector, which is also the state vector in Kalman
filter, is initialized with null vector, after the predict part, prior camera velocity estimation
and prior error covariance estimation are transferred to the correct part. In correct part the
posterior camera velocity estimation are computed by incorporating current point velocity
vector, which is also the measurement vector. A posterior error covariance is also calculated
in correct part and together with posterior camera velocity estimate transferred as
initialization of the next step. In every step the posterior camera velocity estimation is the
result of the redundant equations.

5.4 Experiments results

In the ACE platform there is an encoder which can estimate the current position of ACE. We
read the data from the encoder at a frequency of 4-5Hz and consider them as ground truth.
The camera mounted on ACE works at a frequency of 200Hz. Our experiment data is
obtained when ACE is moving in the environment of stone sidewalk. The experiment is
divided into two parts. In the first part, ACE ran about 6,7m in a straight line, which is taken
as pure translation. The second part is pure rotation test. ACE only rotated at the starting point
and passes about 460 grads. Two series of images are captured and saved, and then the
experiment is carried out offline. The motion estimation computation works also at 200Hz.

Fig. 5.5 left shows the results of estimating the robot displacements in pure translation. The
red curve indicates the displacement in x-direction measured by encoder, and the blue curve
indicates the displacement in x-direction estimated by visual odometry.

The right part of Fig. 5.5 shows the angular result in pure rotation. The red curve indicates
the ground truth from encoder, and the black curve indicates the estimation result from
visual odometry.



212 Computer Vision

7 500
] %-translation-encoder
— y-translation-encoder 400 z-rotation-encoder
5 ®-translation-vison z-rotaion-vision
’[‘ — y-translation-vision T
= J00
E“ )
c g
2 3 =2
5 '« 200
- =
§° £
= 100
0 0
1 . . L . . " n " n
0 05 1 15 2 25 0 05 1 15 2 25
t [ms]— «10" t[ms]— x10*

Fig. 5.5. Position estimation in pure translation (left) and in pure rotation (right)

The right part of Fig. 5.5 shows the angular result in pure rotation. The red curve indicates
the ground truth from encoder, and the black curve indicates the estimation result from
visual odometry.

6. Conclusions and future work

In this chapter, two high-speed vision systems are introduced, which can acquire and
process visual information in real time and are used for the visual attention and navigation
of the Autonomous City Explorer (ACE).

An information-based view direction planning is proposed to rapidly detect the surprising
event in the environment during accomplishing predefined tasks. This high performance is
facilitated and ensured by high-speed cameras and high-speed processors such as Graphics
Processing Units (GPUs). A frequency of 313 fps on input images at 640 x 480 pixels is
achieved for the bottom-up attention computation, which is about 8.5 times faster than the
standard implementation on CPUs. For the high speed visual odometry, our algorithm
performs well according to the experiments results. The time delay of close-loop control can
be decreased and the system stability can be improved.

Further development based on these two high-performance vision systems is planned to
improve the self-localization and navigation accuracy. Besides, a suitable data fusion
algorithm should be selected to combine data from encoder and visual. The visual attention
system should also be extended for the application of human-robot interaction.
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New Hierarchical Approaches in Real-Time
Robust Image Feature Detection and Matching

M. Langer and K.-D. Kuhnert
University of Siegen
Germany

1. Introduction

The detection of robust image features of high distinctiveness forms a ubiquitous problem in
digital image processing. Robust image features are the first step and the key to reliably
detect patterns or objects in images, which subsequently leads to object classification and
semantic interpretation of the objects in a given image.

The ideal situation for object recognition and classification is to find unambiguous traits of
patterns or objects that are to be processed. For anyone delving into this matter, the subject
presents itself as a challenging task. Besides the often not obvious object traits, there are a lot
of other issues that have to be taken into account. For instance, lighting conditions can vary
as well as the objects’ scales and rotations; image noise or partial occlusion also is likely to
occur. Unless one conducts experiments under laboratory conditions, where some of these
problems might be ruled out, all these issues have to be addressed properly. So the
challenging task is to find image features that are distinct and robust under the varying
conditions just stated before.

An obvious method for detecting objects is to examine their shape and, as an abstraction of
it, their contours. Contour matching usually works well, if the distinct object classes have
strong variations in their shape (like the shape of any automobile is quite different
compared to the shape of a human). The contour can be represented by a classic chain-code
(or its many derivates). For the matching process both contour representations undergo a
transformation to achieve scale and rotation invariance and are then compared to each
other. The comparison can either be done directly on the transformed image coordinates or
on measures deduced from the earlier representation (i.e. the moments, distances,
polygonal, or Fourier descriptors yielded from the contour points).

Besides those methods, one popular approach is to detect certain local interest points at
distinctive locations in the image, such as corners, blobs, or T-junctions. The interest point
detector is supposed to be repeatable under varying viewing conditions (e.g. different
lighting or different viewing angles). Having found distinctive interest points in an image,
the interest points are examined more closely regarding their neighbourhood. Taking the
neighboring pixels into account forms an image feature or image descriptor, which has to fulfill
certain criteria regarding distinctiveness, robustness against noise, detection errors, and
image deformations. These image features can then be matched to features computed from
other images. Matching features indicate a high likeliness of correspondence between the
two images. Hence patterns or objects in one image can be detected in other images
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employing this method. An advantage of this method is that detection of interest points
takes place at one of the first stages of the image processing pipeline: in scale-space. All the
interest point detectors and image descriptors discussed in section 3 will exploit the scale-
space representation of an image. Hence a short review of scale-space computation is
provided in the following section.

2. Structural information and scale-space representation of an image

In this section a short review about scale-space construction on digital images is given. One
of the most thorough and comprehensive researches on the topic of scale-space
representation was done in (Lindeberg, 1994). In his work, Lindeberg first states the
principle problem about detecting the characteristic structure of objects in images regarding
the scale level the image was taken. A good example is the structure of a tree that varies
over different scaling levels. At a very coarse level, the observer may only recognize a green
blob-like structure of the treetop, whereas at finer scales, branches and leaves may be
noticeable. As the scale-space is a continuous and infinite space, this can go as far as the tree
may degenerate to a single unnoticeable green spot or to a level where leaf-fibres can be
examined. Which scale intervals are best suited totally depends on the image processing
task at hand. A method for automatic scale selection for characteristic image features in this
regard is presented in (Lindeberg, 1998).

Scale-space representations span a broad range of applications in image processing (i.e.
feature detection, feature classification, shape computation, or even stereo matching). In this
work, though, we are mainly interested in exploiting scale-space for object recognition. It
will be shown that scale-space representations of images allow for effective extraction of
distinctive image features, which can be matched with features from other images in the
context of object recognition. To compute these distinctive features one has to transform the
image into scale-space first, so that the interest point detectors and image descriptors
introduced in section 3 can build upon this representation. The multi-scale representation of
a digital image is well-known and widely used in image processing in forms of quad-trees,
image pyramids, or (the relatively more recent) wavelets. The scale-space is just a special
type of a multi-scale transformation.

2.1 Scale-space construction of continuous signals

The scale-space of a digital image is directly related to the scale-space in signal processing,
whereas the scale-space representation of a one-dimensional signal is defined by embedding
this signal into a one-parameter family of derived signals computed by convolution with a
one-parameter Gaussian kernel with increasing width (Witkin, 1983). In (Lindeberg, 1994) a
proof is provided that the Gaussian kernel is a unique choice for scale-space processing. The
Gaussian kernel alone fulfills all necessary requirements for scale-space computation like
basical linearity, spatial shift and scale invariance, and preserving the constraint that no new
structures (maxima or minima in the image) will be created. It is also shown that the scale-
space abides by the laws of a mathematical semi-group. The formal mathematical notion for
constructing the scale space is as follows: Let f : R — R stand for the original signal. Then,
the scale space representation L : RY x Ry — R is defined by L(:;0) = f and

L(5t) =g(50) = f 1)
where ¢ € Ry is the scale parameter, and g : RY x R4 \{0} — R is the Gaussian kernel. The
kernel itself is defined by
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o =/t is the standard deviation of kernel g. It is a natural measure of spatial scale in the

smoothed signal at scale ¢.

Another equivalent way to construct the scale-space L is by solving the differential heat

diffusion equation

1 ] B )
_ Lo, 1 )
L= VL 2;aziL
with initial condition L(-;0) = f, which is the well-known physical formula describing how
a heat distribution L evolves over time f in a homogeneous medium with uniform
conductivity, given the initial heat distribution stated above. From Eq. (1)-(3) multi-scale
spatial derivates can be defined by

Lon (1) = Oan L(:51) = gan (-51) x f, )
where g.~» denotes a derivative of some order n.
The main goal of the scale-space construction is that fine scale information (i.e. amplitude
peaks or noise at high frequencies) shall vanish with increasing scale parameter f. Witkin
(Witkin, 1983) noticed that new local extrema cannot be created, if the scale-space is
contructed in the above described manner. Because differentiation and convolution are
commutative,

OunL(+5t) = Oun (g(+5t) % f) = g(5t) % Dun f, @)

this non-creation property holds for any nth degree spatial derivative. This feature enables
detection of significant image structures over scales and is exploited by the algorithms
described in section 3.

An important statement in (Koenderink, 1984) is that without a priori knowledge of specific
image structures, the image has to be processed at all scales simultaneously. In this regard the
images forming the scale-space are strongly coupled and not just a set of unrelated derived
images.

2.2 Scale-space construction of discrete signals

Because digital image processing deals with discrete signals, the equations presented above
need to be adapted. The interesting question here is how this adjustment needs to be
performed so that the scale-space properties are preserved. It turns out that there is only one
way to construct a scale-space for discrete signals. For an in-depth look into the derivation
of the following formula see (Lindeberg, 1994). Given a signal f : Z — R the scale-space
representation L : Z X Ry — R is given by

Lt)= Y Tmt)f(e - n) ©)

n=—oo

where T : Z x Ry — R is a kernel named the “discrete analogue of the Gaussian kernel”,
which is defined in terms of a modified Bessel function given by T'(n;t) = e~*'I,,(at).
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It can be shown that the discrete scale-space family L : ZV x R4 — R of a discrete signal
f:Z" — R must satisfy

&L = o1 ViL @)

L = a1 ViL + aV2:L ®)

in one and two dimensions for constants a1 >0 and a2 > 0. V2 and Viz denote two
discrete approximations of the Laplace operator. They are defined by

(VEf)oo = f-1,0+ fr1,0+ fo—1 + fo+1— 4fo0,

1
(VZ2f)o,0 = 3 (for—1+ for41+ fr1,-1+ fri,41 — 4f0,0)

The function subscripts are the indices at which position in the image an intensity value
shall be taken. With as = 0, the two-dimensional scale-space representation of a digital
image is given by convolution with a one-dimensional Gaussian kernel along each direction.
What remains to say is that the spatial derivatives of the Gaussian kernel can be
approximated by differences of Gaussian (DoG) kernels at different spatial locations.

2.3 Image features from scale-space representations

To exploit scale-space for image feature detection, one has to deal with differential
geometry. Some methods are required for further processing the output of the Gaussian
derivative operators to gain meaningful and distinct image features. It is mandatory to base
the analysis on image descriptors that do not depend on the actual coordinate system of the
spatial and intensity domain, because a single partial derivative contains no useful
geometric information. So it is required that the scale-space representation shall be invariant
with respect to tramslation, rotation, and scale changes. Unfortunately complete affine
invariance (i.e. non-uniform rescaling) is harder to achieve. This issue is also addressed in
(Lindeberg, 1998).

Scale-space representation of an image is especially well-suited to detect sub-pixel edges,
junctions and blob-like structures. For this, it is helpful to define a local orthonormal
coordinate system for any point of interest in the image. A useful definition would be that
for any Point Py, normal (x,y) image coordinates are translated into a (u,v) coordinates with
the v-axis aligned along the gradient direction and the u-axis perpendicular to it (which also
aligns with the tangent orientation). This leads to e, = (sina,—cosa)’and
v = (cos a, sina)” for example, where

el _(cosa)_ 1 <L$> o)
3 ID0 — . _————— .
sin «v 21 L2 L,
\ He Y

In terms of Cartesian coordinates, the local directional operators can be expressed by

Oy, \ [ sina —cosa Oy
< 0, ) B ( cos «v sin av > ( Oy ) (10)

Note that L., = 0, because of e,, being parallel to the tangent at point Pj.
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With these definitions edge detection in scale-space can be computed by a non maximum
suppression in the gradient direction. The following conditions need to be fulfilled:

Ly =0
. 11
{ vav <0 ( )
With Eq.(9) and (10) it is possible to convert these statements back to Cartesian coordinates.
Junction detection is expressed in terms of curvature of level curves in gray level images. In
derivative terms the curvature can be expressed by
L’MU
Ew
The curvature is usually multiplied by the gradient magnitude L., raised to some power k.
This provides stronger responses at edges. In (Brunnstrém, 1992) k=3 is chosen leading to

K= (12)

3

= |L2Lyu| = |L2Lse — 2LpLyLyy + L2Ly,| . (13)
A point Py has to fulfill the following conditions to be considered a junction-point:

0u(R) =0,

81} (N) = 07

H(R) = Fa = FuuRoy — K2, > 0,
sign(R)Ryy < 0.

=

(14)

Blob detection can be performed by calculating the zero-crossings of the Laplacian, where

V2L = By Ly = gy By = 0. (15)

All the introduced feature detectors in section 3 first do a scale-space transformation and
then employ Eq. (11)-(15) to detect interest points. At these points the local image
descriptors are then computed and used for the later matching process.

3. Technology review of interest point detectors and image descriptors

Usually the computation of distinctive image features is split into two phases. First, interest
points are computed at locations that are considered to be promising for the later descriptor
calculation. A reliable (and in this regard reproducible) interest point detector is crucial for
the feature determination. Then, after the locations of the interest points have been
determined, for each such point a local image descriptor is computed by processing the
neighbouring intensity values of the current interest point’s location. This yields a set of
image features that are supposed to be distinctive to the objects in the image. These features
can then be used in object recognition or object tracking by matching features yielded from
one image to those from another.

3.1 Interest point detectors
Classic interest point detectors used simple attributes like edges or corners. Among these,
the probably most widely used, is the Harris corner detector (Harris, 1988). It is based on
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eigenvalues of the second-moment (also called auto-correlation) matrix. Unfortunately, this
detector lacks scale-invariance.

Lindeberg tried to extend the Harris corner detector experimenting with the determinant of
the Hessian matrix as well as the Laplacian to detect blob-like shapes (Lindeberg, 1998). He
also examined methods for automatic scale selection for image feature computation.
(Mikolajczyk & Schmid, 2004) refined this method exploiting a combination of the Harris
detector to determine the location, and the Laplace matrix for scale selection of an image
feature. It is basically a combination of the Harris corner detector with the automatic scale
selection methods proposed by Lindeberg. This yields the desired scale-invariance. Their
image descriptors proved to be highly distinctive, scale invariant, rotation invariant, and
highly tolerant against illumination effects.

(Lowe, 2004) mainly focused on speeding up this computational costly processing by
replacing the Laplacian of Gaussian (LoG) by a Difference of Gaussian filter (DoG). In 2004
he presented his method called SIFT (scale invariant feature transform) to the public. SIFT
features embody the same tolerance to (uniform) changes in scale, rotation, and illumination
effects. This also qualifies SIFT as an ideal candidate for pattern and object recognition.

The main difference between SIFT and the feature detector described in (Mikolajczyk &
Schmid, 2004) is that the former interest point detector aims at blob-like structures and the
latter at corners and highly textured points in images. Thus it can be concluded that the two
interest point detectors generate complementary feature.

One basic problem with these sophisticated interest point detectors is that they are
computationally complex and hence cannot match hard real-time constraints (i.e. analyzing
a video stream of a constant 25fps online). This problem was addressed in (Bay et al., 2006).
The group showed that SIFT could be speeded up further almost without losing any of its
matching quality. Their work is based on certain approximations (and simplifications) of
Lowe’s work and was coined “speeded up robust features” (SURF). For instance, the research
group proved that the approximation of the LoG by a DoG filter can be pushed even further
to a difference of means (DoM) filter. This filter can be implemented very efficiently exploiting
integral images, thus achieving constant runtime behavior. Also the components of the
resulting feature vector are cut in half, which provides faster matching speed between
different feature vectors.

Usually some interpolation steps are applied over scale-space to accurately locate the
interest points before the image descriptor is computed. In (Mikolajczyk & Schmid, 2004) an
iterative approach is taken based on displacement calculations using Eq. (16) by starting at
the initially detected point for affine normalized windows around this point. In (Lowe, 2004)
a 3D quadratic function is fitted to local sample points to interpolate the location of the
maximum. This is employed by using the Taylor expansion introduced in (Brown & Lowe,
2002).

A common drawback to all these interest point detectors is their strong responses at edges
or contours. This can be mitigated to a certain degree by selecting the scale at which the
trace and the determinant of the Hessian matrix assume a local extremum.

3.2 Image descriptors
Image descriptors are computed from the location around the previously detected interest
points.
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(Mikolajczyk & Schmid, 2004) use Gaussian derivates computed in the local neighborhood
of each interest point. They convolve these derivatives on small image patches normalized
with a matrix U of the form

_ -N\Y o,
U 1;[(“ ) U (16)

with ;1 denoting the (scale-space adapted) second moment matrix of the Harris corner
detector and k denoting the step width of this iterative algorithm. U(®) is the initial
concatenation of square roots of the second moment matrices. To gain invariance to rotation,
the derivatives are aligned at the direction of the gradient. The gradient orientation at each
interest point is averaged with the gradient orientations in the neighborhood and goes into
the descriptor.

Fig. 1. SIFT feature matches applied to a self recorded scene. The blue sugar box on the left
side of the image was found in the right complex scene. The SIFT matching software yielded
16 matches (shown as white lines). Note that only 3 matches would have sufficed to
correctly identify an object. Also note the partial occlusion and difficult lighting conditions
under which the images were taken. The digital camera used to record both images was a
Canon Powershot A75 with 3.2 megapixels. The camera was set to automatic mode. The
images also underwent a lossy JPEG compression.

Lowe determined his descriptor components by computing the gradient magnitude and
orientation for each sample point neighboring the interest point. These values are weighted
by a Gaussian window. The samples are then accumulated into orientation histograms,
which summarize the contents of 4x4 subregions around the interest point. Over each such
subregion the 8 predominant gradient orientations are computed. These values make for the
image descriptor. Hence the descriptor consists of 128 components. A visual example of the
image feature matching with our own implementation of the SIFT operator is shown in Fig. 1.

The SURF descriptor is determined by the following steps. First, a square region is
constructed around the interest point and aligned along the dominant orientation obtained
by haar wavelet filter responses at the interest point. The side length of the wavelet is four
times the scale level at which the point was detected. The dominant orientation is estimated
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by calculating the sum of all responses within a sliding window covering an angle of %.

Then, the horizontal and vertical responses over these windows are summed and contribute
to the components of the vector of the estimated orientation. The size of this sliding window
needs to be determined experimentally (see Bay et al., 2006). The square region size around
the interest point is of size 20s (s denoting the scale parameter). The region is split into 4x4
subregions like in (Lowe, 2004). For each such subregion a few simple features (again
employing the directional Haar wavelet responses) at 5x5 regularly spaced sample points
are computed. Finally, the responses are accumulated over the regions and provide a first
set of entries to the image descriptor. Also the sum of the absolute response values is
calculated. This yields a four-dimensional vector for each subregion of the form
v=_0>d:Y dy,> |dz|, > |dy|), with d, denoting the Haar wavelet response in x-direction
and d, respectively. Such vectors form a single descriptor vector for all four subregions.
Hence the resulting descriptor vector is of size 64 - half the size of a SIFT-descriptor.

There are yet some derivations the introduced image descriptors, i.e. (PCA-SIFT, U-SURF,
GLOH etc.) that are not discussed here. These derivates mainly vary in the way how the
final descriptor computation is done aiming at lesser component numbers than the original
version to speed up object matching.

4. Performance evaluation of local image features

This section is contributed to a short overview of the performance of local image features
regarding their object recognition ratio and their computational speed when implemented on
modern computers. Also the issue of exploiting image features for object classification is
addressed at the end of this section.
In (Leibe & Schiele, 2003) a systematic comparison between contour based, shape based, and
appearance based approaches regarding their effectiveness for object recognition is
performed. For their evaluation they constructed an own database of small objects, coined
the ETH-80 database. It consists of 80 objects from 8 self chosen categories (i.e. fruit and
vegetables, animals, human-made small objects, and human-made big objects). For each
category 10 objects are provided that span in-class variations while still clearly belonging to
that category. The test mode is of the form leave-one-object-out-crossvalidation, which
means that the object recognition system is trained with 79 objects (randomly taken out of
the 8 categories) and tested against the one remaining object. The measurements were
performed over object sets taken of each category and the results were averaged.

The algorithms used for testing were

e asimple colour histogram driven approach,

e texture based methods over scale-space (which directly corresponds to the image feature
detectors from section 3.1-3.2); these are split into a rofation variant method (first order
derivatives in x and y direction) and a rotation invariant method (gradient magnitude
and Laplacian over 3 scales - also see (Love, 2004)),

e global shape: PCA-based methods either based on one single global eigenspace for all
categories or separate eigenspaces for each category,

e and local shape using the contours of each object represented by a discrete set of sample
points; these points are later matched with points from other images with a dynamic
programming and a one-to-one point matching (using a greedy strategy) approach.



New Hierarchical Approaches in Real-Time Robust Image Feature Detection and Matching 223

The results found in (Leibe & Schiele, 2003) show that contour-based (local shape) methods
perform best, with an average object recognition ratio of 86.4%. Second place were global-
shape based PCA variation with 83.4% and 82.9% respectively, but with the texture
histograms only slightly behind with 82.2%. As expected, colour histograms performed
worst with just 64.9%. Yet, nothing is stated about the different runtime behaviour of the
different methods, because this paper deals with quantitative evaluation of the recognition
ratio. It can reasonably be assumed that the global and local contour matching algorithms,
besides showing the best recognition ratio are also the most costly ones to compute.

Leibe & Schiele also examined combinations for the above described methods. Cascading
object recognition systems were constructed using different permutations of these
algorithms. They showed that certain combinations could raise the overall object recognition
ratio up to 93%. In section 5.1 we show our own approach for a cascading object recognition
system aimed to fulfil certain real-time constraints, yet preserving high recognition ratios.
(Mikolajczyk et al., 2005a) evaluated interest region descriptors among themselves and how
they perform in different situations; they concentrated especially on all kinds of affine
transformations, blurring, and JPEG compression artefacts. They concerned with all the
image feature detectors described in section 3 and their common variations and also
proposed their own extension to the SIFT operator. In their results section they conclude
that the gradient orientation and location histogram (GLOH) - a variation of the original SIFT
operator - performs best regarding object recognition ratio, closely followed by SIFT. We
also employ SIFT features for our cascading object recognition system (see section 5.1).
Another highly noteworthy contribution is presented in (Mikolajczyk et al., 2005b), where
local image features are examined regarding their applicability on object classification. The
interesting question here is, whether the image features, which perform well in scenarios
like pattern matching and object recognition, contain useful information that can be applied
as features for object classification. They pursue a cluster-driven approach of image features
for classification. They computed the distribution of features in the cluster and defined a
similarity measure between two clusters by
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with N and M denoting the numbers of features in clusters k and [; px and j; represent the
cluster centres; o, and o; denote the variances, and v an experimentally determined
threshold value.

Mikolajczyk ef al., evaluated image feature detectors employing Hessian-Laplace and Salient
region, Harris-Laplace, SIFT, PCA-SIFT, and GLOH detectors. The challenging object
classification task was to detect pedestrians crossing a street in an urban scenario. Again, the
GLOH descriptors exploiting regions around interest points found by Hessian-Laplace
obtained the best results; salient region detectors also performed well. Hence, it can be
concluded that scale-space image feature detectors are also applicable to object classification
beyond their originally intended domain (pattern and object matching).

5. Extending local image features for real-time object recognition

All the previously described image features from section 3 show excellent robustness on
object recognition under real-world conditions. Regarding object recognition by matching
features of different images, the image features prove to be
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e scale-invariant,

e rotational invariant,

e partially affine invariant (non-uniform scale changes are problematic),

¢ highly tolerant against changes in illumination, and

e insensitive to noise (to a certain reasonable degree).

Yet, one important issue has not been fully addressed: the real-time processing of image
features or feature matching respectively. In many scenarios, online computation of image
features for real-time object matching is desirable. In this regard it is common to imply that a
constant video stream needs to be analyzed in real-time, which in this case would mean that
the image feature computation software had to cope with 25fps in camera-like image
resolutions. The high robustness of the scale-invariant image features comes at the prize of
high computation-time, which renders them applicable only partially to these scenarios.
Constructing the scale-space and finding reliable interest points is one of the bottlenecks in
this case; another is the component size of the image descriptors, which have to be used for
the later matching process. Many extensions to the image features have been applied to
address this problem and especially the latest of these, the SURF operator, aims at better
runtime speed. The idea in (Bay ef al., 2006) is to simplify the costly difference of Gaussian
(DoG) filter, which is used during scale-space computation, to a difference of means (DoM)
filter. The DoM is just a simple box filter. Bay et al. showed that this approximation of the
DoG filter is permissible, because the DoG filters, which are supposed to be infinite, are
actually cropped when they are applied to the image. Thus DoG filters are, when it comes to
applying them in discrete digital image processing, an approximation of the theoretical DoG
filters themselves. The DoM filter has the nice property that it can be computed very
efficiently employing integral images. An integral image is defined by

1< j<y

i=0 j=0

After Iy is constructed, it takes just four additions to calculate the DoM filter of any size at
any point. This is a major saving of computation time compared to the full application of a
Gaussian filter at any point.

Bay et al. also reduce the length of the image descriptor to 64 components in contrast to the
128 components of the SIFT operator. This saves time when feature matching is applied,
because during the matching process each image descriptor from one image has to be
compared (usually by employing some common metric, i.e. the Euclidian distance) to each
descriptor of the image that is to be matched.

These measures mitigate the problem of time consuming computations and in fact the SURF
operator with all its optimizations only needs 33% the time of the SIFT operator to perform
its tasks.

5.1 Cascading object recognition approach

Yet, we seek even better run-time performance than the optimized SURF operator. The
SUREF operator still cannot satisfy the hard real-time constraints stated in the last section. So
we came up with a cascading approach for object recognition. The precondition to our
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approach is that a priori knowledge of the objects to be recognized can be assumed, which is
the case in many classic object recognition and classification scenarios. In particular you
need to know with which objects the system is supposed to deal with to construct sensible
training data sets for an initial teaching of the system.

The main idea of our contribution is to employ a two-stage cascading approach: a fast decision-
tree based pre-classifier, which sorts out the objects to recognize with a recognition ratio of
66%-75% accuracy, and a later performed image feature matching exploiting SIFT and SURF
operators. The recognized objects from the first stage need not be processed by the costly
operators anymore. The time savings go directly into equation

to=t,+ (1 —r)ts +tq (19)

with to denoting the overall system processing time, t, the time for pre-computation
(system initialization etc.), ¢, the time for the SIFT/SURF matching process, and t4 the dead-
time of the system (consumed e.g. by memory management and other administrative tasks).
r is the ratio of correctly classified objects from the earlier pre-processing stage. Considering
the fact that ¢, << ¢, applying the pre-computation yields better overall timing.

We use the Coil-100 image database! as a testbed for our algorithms. This library consists of
100 different, small, everyday use objects, which have about the same size. Each object is
rotated around the Y-axis 72 times at a 5° angle each step, thus covering the full 360 degree,
which yields 7,200 object view images in total. Each image has a size of 128x128 pixels. The
methods and results presented in the following sections all refer to this database.

5.2 Decision tree construction

Decision trees are a classic tool rooting in artificial intelligence and are mainly used for data
mining purposes. Decision trees in our work are exploited to classify objects. For an in-
depth look into the structure of general decision trees and methods to generate them the
reader is referred to (Quinlan, 1983), who was the first to introduce decision trees in his
work and (Russel, 2003), who provides a quick and practice oriented overview of decision
trees.

We use a fast classification method in the first stage for our object recognition software
exploiting binary decision trees. Decision trees, once trained, provide means to classify large
amounts of objects (several thousands) in just a few milliseconds. The idea is to recursively
divide the feature space into sets of similar sizes and feed these sets to nodes into the
decision tree. To classify an object, the object features are matched with the class feature sets
each node holds. Each node decides whether an object belongs to one (or none) of its two
class-feature sets. The decision made by the node determines the next sub-tree, which has to
deal with the classification. This process is repeated until a leaf-node is reached. The feature
represented by this leaf node yields the class the object belongs to. Because the tree needs
not necessarily be built up completely, whole class or feature sets can be represented by leaf
nodes.

We pursue a simple colour cluster driven approach to train the decision tree based
classificators. The training data sets are taken out of the Coill00 image database. Although

1 http:/ /wwwl.cs.columbia.edu/ CAVE/software/softlib/ coil-100.php
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yielding high performance, the training of the decision trees proved to be difficult regarding
classification quality, which is at 66% of correctly classified objects on average. This is
mainly due to the simple colour based features we use. To gain the features, we apply Alg. 1.

Algorithm 1: Generating a decision tree
Data: training sets S of images
Result: generated decision tree d
begin
oy
forall I € S (with I Z S) do
G
repeat
A P10
foralli € I do
P U GaussPyr (i}
QUYRGB P(@)‘mam pyramid level
A U avgrap
G U CalcCnGe(A)
until |5 =2
| C U G (Cholds all CoG subsets)
d «—BuildDecisionTree ()

return d
end

Each node divides the center of gravity set (and so the associated class set) into half. This
way we achieve a runtime complexity of O(M log(XN)) with N denoting the number of
classes and M the number of objects to classify.

The problem of low classification quality can be mitigated by moving to decision forests (see
Zhao, 2005). Decision forests integrate more than one decision tree into their decision
process. These trees are trained with varying datasets which may lead to different
classification results. Among all the trees in the forest a quorum is made and the decision
taken which should be correct most likely; usually this is done by proclaiming the largest
subset of trees, which made the same decision, the winning subset using their decision as
the classification result. Applying this method raises the correctly classified objects rate to
75%, but also increases the runtime complexity to O(kM log(N)) with k denoting the
number of trees in the forest.

The rate of correctly classified objects in this stage may seem to be quite low compared to
other more sophisticated classificators found in literature, but it is important to note that we
employ the pre-stage system only to speed up the later main-stage object recognition
process. Every correctly recognized object at the end of this phase means, that no costly
image transformation, and no exhaustive search through an image feature database
comparing all the descriptor vectors with each other needs to be performed. Hence a
classification rate of 66% to 75% means an overall time reduction of the entire system at
almost the same rate. As we will show next, this will get us closer to the desired real-time
behavior of the object recognition system.
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5.3 Performance evaluation

The two-stage image feature matching approach yields a very efficient object recognition
method providing highly accurate results. The pre-processing of the algorithm drastically
reduces the search-space at minimal computational costs of a few milliseconds.

A typical feature match of a Coil-DB image with the SIFT feature database performs at 75ms.
Applying the pre-processing, which yields 75% of correctly classified objects, which is the
average rate for well trained decision forests in our implementation, the processing time
reduces to 21ms. This time reduction is correlated linearly to the rate of correctly classified
objects of the pre-processing phase and follows Eq. (19).

feature distance correct positive false positive
40,000 49.30% 0.00%
60,000 65.38% 0.09%
80,000 85.66% 1.74%
100,000 95.10% 8.85%
120,000 97.55% 31.78%

Tab. 1. Results of the object recognition process employing SIFT image features.

Tab. 1 shows some results regarding the object recognition ratio applying SIFT. It clearly
shows the high accuracy and reliability employing SIFT features. The matching parameter
denotes the threshold that is taken for feature comparison. Features are compared to each
other using the squared Euclidian distance over the 128 dimensional feature vectors. Only
feature distances that are below this threshold are considered to be equal enough to yield a
match. As it can be seen, at a certain value of the threshold (in this particular case 100,000)
we yield a rate of correctly classified objects of 95%. Increasing the threshold value any
further increases the false positive rate of the matched features drastically (from 9% to 32%)
yet improving the correct positive rate at only 2%. We averaged our results over several
objects that were taken out of the Coil-100 database randomly. The images we used were to
be found in a subset of the database that consisted of all objects and object views from an
angle of 60°. Angles between 60° and 90° cannot be reliably matched with the SIFT operator
anymore. Values beyond 90° are impossible to use with SIFT, because the object views now
show their backside of the object whereas the reference object view shows its front side. For
SIFT this is equivalent to a total occlusion of the object. The optimal feature distance for a
concrete image set is determined experimentally and changes according to different
environments.

Exchanging the SIFT with the SURF operator the values from Tab. 1 stay almost the same
(with only slight deviations), except for the even better run-time performance of the system.
We could verify that the SURF operator is indeed almost 3 times faster than SIFT as stated in
(Bay et al., 2006). The overall computation time of 21ms reduces to 10ms, if SIFT is replaced
by SUREF in the main-processing stage.
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We also took our own image sets with standard CMOS cameras at standard sizes of 320x240
pixels. The object recognition system is capable of processing at a rate of 11fps (SIFT) and
16fps (SURF). This gets us closer to the desired real-time behaviour of 25fps, yet exploiting
all the benefits of the SIFT and SURF operators.

6. Conclusion and future work

In this chapter we gave an overview about current object recognition methods exploiting
scale-space transformation and showed an extension to the very reliable and accurate
methods SIFT and SURF. We focused on speeding up these two operators even further
targeting at real-time behaviour (at least 25fps for 320x200 pixel sized images). We used a
pre-processing step exploiting decision trees to sort out as much data as possible in an early
stage, trying to employ the costly SIFT and SURF matching process only at falsely
recognized objects. We showed that this method is capable of further reducing overall
computation time by the formulas given in section 5.1.

We intend to use this hierarchical approach for use in an analysis by synthesis system (Todt,
2008). This system is supposed to reliable detect real-world objects from synthetic three
dimensional scene models, which are generated by a photo-realistic 3D lumigraph renderer
for the synthesis part. The generation of this renderer uses the recently appeared PMD
cameras (see Stommel & Kuhnert, 2006; Kuhnert et al., 2007). Because this is an iterative
computational process approximating, the best synthesis parameters for a given real-world
object, one faces hard real-time constraints. We are confident, that our approach presented
in this paper embodies the potency to fulfil these constraints.

We also plan on implementing this object recognition system on our mobile outdoor robot
AMOR (see Kuhnert & Seemann, 2007; Seemann & Kuhnert, 2007) for passive object
tracking purposes. It is supposed to support the active laser scanner sensors in tracking a
vehicle that drives in front of AMOR. This is done by analyzing a constant video stream
taken from a camera on the front side of the robot. Hard real-time constraints apply here as
well.

There are still many optimizations remaining, e.g. software parallelization exploiting
modern multi-core processors has yet to be implemented. The filter operations in particular
are excellent candidates for this approach, because there are no data dependencies. This also
leads to purely GPU based image filter algorithms (see Staudt, 2008). Modern graphic cards
have shown high potential in processing large streams of independent data. We hope in
implementing these optimizations, the costs for image feature computation can be reduced
even further and that we get closer to the above stated real-time behaviour.
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1. Introduction

Recently, three-dimensional (3-D) vision applications play an important role in industry and
entertainment. Among these applications, interactivity and scene reality are the two key
features affecting the 3-D vision performance. Depending on the nature of the applications,
the interactivity with the users (or the players) can be regarded as an important need, for
example, in the applications of 3-D games and 3-D virtual reality. On the other hand, 3-D
vision scenes can be generated based on physical or virtual models. In order to improve the
scene reality, a new trend in 3-D vision system is to generate the scene based on some
physical or real-world models.

For the 3-D reconstruction, research topics mainly focus on the static cases and/or the
dynamic cases. For the static cases, the reconstructed scenes do not change with the
observed scenes. For the dynamic cases, the reconstructed scenes change with the observed
scenes. For both static and dynamic cases, the 3-D positioning of moving objects in the scene
is the major component of obtaining the object states in the physical coordinate. A typical 3-
D positioning system is shown in Figure 1. Cameras shown in Figure 1 are used to capture
the images of moving objects in the physical coordinate. The image acquisition rate of
Camera X is denoted as Rate X. After one camera captures the images using its designated
acquisition rate, the captured images are stored and analyzed in the computer. After
analyzing the images, the object states, e.g., position and velocity, in the physical coordinate
can be estimated by any 3-D positioning method.

The 3-D positioning plays an important role of obtaining the object states in the physical
coordinate. In general, cameras are designated as the input devices for capturing images.
Fundamental components of 3-D positioning are shown in Figure 2. First of all, images are
captured by the input devices such as cameras. Before the image acquisition, the camera
calibration should be done. Based on the calibration result, the relationship between the
physical coordinate and the image coordinate in the captured images can be obtained. Since
the quality of the captured images may be influenced by noise, some image processes
should be performed to eliminate the noise. After the image processing, the captured images
can be analyzed to extract the object information for further 3-D positioning. Finally, any 3-
D positioning method is used to find the object states such as the position and/or velocity in
the physical coordinate.
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Fig. 1. A general 3-D positioning system

Due to the limitation on computational load, data storage, and communication bandwidth,
the image acquisition rate may not be able to set at the highest rate for each camera. For
example, the computation load of estimating the object trajectory in the physical coordinate
may be too heavy and the data storage of all the captured images for future image analysis
may be huge. Hence, a method of properly controlling the image acquisition rate is required
for the purpose of saving the memory cost and/or reducing the computational load. For
designing a proper method to adaptively control the image acquisition rate, the object states
in the image coordinate (after proper image processing) and/or in the physical coordinate
(after proper image/positioning processing) should be considered in the acquisition rate
control. Therefore, a rate control method as shown in Figure 2 is used to adjust the image
acquisition rate based on the result of image analysis and the estimation of the object states.

Estimation of

Image Acquisition —| Image Processing — Image Analysis [— B o

[y
'
'
'
'
'
'
'

Rate Control

Fig. 2. Fundamental components of 3-D positioning

In this chapter, three methods of controlling the image acquisition rate are designed. With a
suitable method for adjusting the acquisition rate, the ultimate goal is to reduce the
computational load of the 3-D positioning, the memory cost, and the communication
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bandwidth for the captured images. The first method is to adjust the image acquisition rate
by analyzing the object states in the physical coordinate. The second method considers the
adjustment by analyzing the object states in the image coordinate. The third method deals
with the issue of acquisition asynchronization among multiple cameras. The proposed
methodologies have been experimentally tested using a two-camera setup within the
MATLAB programming environment. Performance of using the proposed methods has
been compared with that of using fixed-rate methods. Experimental results show that the
proposed approaches achieve satisfactory performance and reduce computational load and
data storage.

1.1 Outline

The rest of the chapter is organized as follows. Section 2 surveys related research work in
camera control, 3-D positioning, object extraction, esimation of object position, database
analysis, and visualization interface. Section 3 presents the three control methods of
adjusting image acquistion rate based on image and physical coordinates. Section 4
illustrates experimental tests of the proposed image acqusition methods. Finally, Section 5
summarizes this chpater and discusses future tasks.

2. Related research work

In the literature, key 3-D vision applications for controlling the image acquisition rate is the 3-
D positioning of moving balls. Similar methodology can be applied to other objects or
scenarios. A general framework of the 3-D positioning system is shown in Figure 3. The
performance of image acquisition mainly depends on camera control. Different camera control
methods can decide the quantity and quality of the information contained from the captured
images for further image analysis. After the image acquisition, the captured images can be
analyzed by the 3-D positioning methods for extracting the object states contained in these
images. Once the image analysis of the object states is obtained, the analyzed result is stored in
the database and further visualization interface is used to generate a 3-D animation. Related
research works on these issues are summarized in detail in the following.

3-D Object
positioning steps

Camera Control

Image ) Object || Estimationof | | Database | | Visualization

Acquisition Extraction 3-D position Analysis Interface

Fig. 3. General framework of 3-D image reconstruction system

2.1 Camera control

Images captured by cameras are used for further analysis in the 3-D reconstruction of scenes
or the 3-D positioning of objects. Hence, the information obtained from the captured images
is directly related to the issues on the location and the number to allocate these cameras. An
example of the 3-D reconstruction from constrained views by using three cameras placed in
the orthogonal directions is discussed in (Shin & Shin, 1998).
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Generally speaking, the information in the captured images is influenced by the temporal
and spatial factors. Hence, the information can be related to the image acquisition rate of
cameras. If the image acquisition rate is high, more information can be obtained through the
captured images. However, using a high acquisition rate takes much computational time for
data processing and consumes a large amount of memory. Hence, properly controlling the
image acquisition rate is a method that can reduce the computational load.

The amount of information in captured images is related to the image acquisition rate of the
cameras. If the image acquisition rate is high, more information can be obtained through the
captured images. However, a high acquisition rate might take more computation time for
data processing and more storage memory. Therefore, the control method for adjusting
image acquisition rate could help reduce the computational load as well as storage size.
Since this kind of control methods adjust the sampling rate of input devices, they are
classified as the handling of the temporal factors. In general, the inputs of the control
methods for adjusting image acquisition rate are the current status of process system such as
the computational load, or the states of interested object that are obtained by analyzing the
captured images. The criterion for adjusting image acquisition rate might depend on the
percentage of computational load and/or the guaranteed amount of information in the
captured images. For example, in (Hong, 2002), the criterion of the controlling the
acquisition rate is specified as the amount of computational load and defined by the number
of data management operations per unit time.

For the zoom and focus control of cameras, the main goal is to maintain required
information of the captured images in the spatial resolution. The input for the zoom and
focus control method is often regarded as the percentage of the target shown in the image
search region. For example, in (Shah & Morrell, 2004), the camera zoom is adjusted by the
target position shown in the captured images. An adaptive zoom algorithm for tracking
target is used to guarantee that a given percentage of particles can fall onto the camera
image plane.

On the other hand, the pan-tilt motion controls of camera deal with the issue of
guaranteeing enough spatial and temporal resolutions in the captured images. The camera is
commanded to track the target and the target is required to be appeared in a specific region
of the captured images. The inputs for the pan-tilt motion controls are often regarded as the
percentage of target appeared in the search region and the velocity of camera motion to
track the target in order to guarantee real-time performance. In (Wang et al., 2004), a real-
time pan-tilt visual tracking system is designed to control the camera motion where the
target is shown in the center area of the captured images.

2.2 3-D ball extraction methods

Commonly used methods to extract moving balls in the captured images can be classified
based on the color information, geometric features of the balls, and the frame differencing
technique. A comparison of related ball extraction methods is summarized in Table 1.

Ball Extraction Method | References

Color information (Theobalt et al., 2004; Andrade et al., 2005; Ren et al., 2004)
Geometric features (Yu et al., 2004; Yu et al., 2003b; D’Orazio et al., 2002)
Frame differencing (Pingali et al., 2001)

Table 1. Methods of extracting ball movement from captured images
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First of all, a ball detection method based on the color of balls is studied in (Theobalt et al.,
2004). The motion for a variety of baseball pitches is captured in an experimental
environment where the floor and walls are covered with black carpet and cloth. Foreground
object segmentation is facilitated by assigning the background with the same color. In order
to record the rotation and spin of the ball along its trajectory, the entire surface of the ball is
assigned with different markers. Similar idea used to track a ball by its color is also shown
in (Andrade et al., 2005) and (Ren et al., 2004).

Secondly, the ball extraction can also be achieved by related geometric features of the ball. In
(Yu et al., 2004) and (Yu et al., 2003b), several trajectory-based algorithms for ball tracking
are proposed. From recorded image sequences, the candidates of possible ball trajectory are
extracted. These trajectory candidates are detected by matching all the ball features such as
circularity, size, and isolation. In (D’Orazio et al., 2002), a ball detection algorithm based on
the circle hough transform of the geometric circularity is used for soccer image sequences.
Another method proposed in (Pingali et al., 2001) is based on the frame differencing
between current and previous images. Supposing that the balls move fast enough and the
background does not change, the balls in the foreground can be extracted by comparing the
image sequences.

2.3 Estimation of 3-D ball position

Based on the extraction results, the ball states such as position and velocity can be estimated.
Typical 3-D ball positioning methods include triangulation, trajectory fitting by physical
models, and the estimation of the ball position by the Kalman filter. Related methods for the
ball positioning are summarized in Table 2.

Methods for Ball Positioning References
Triangulation (Ren et al., 2004)
Trajectory fitting to physical models (Ohno et al., 2000)
Kalman filter (Yu et al., 2003a)

Table 2. A comparison of different estimation methods for ball positioning

In (Ren et al., 2004), the 3-D positioning of a soccer is achieved by intersecting a set of two
rays through two cameras and the observed ball projection on the ground in the images.
Since these two rays usually have no intersection, a 3-D position of the object is employed as
the point that has a minimum distance to both of these two rays.

In (Ohno et al, 2000), the ball position in a soccer game is estimated by fitting a
mathematical ball model in the physical coordinate. The estimated position in each image
frame depends on the initial position and the initial velocity of the ball in the physical
coordinate. The overall trajectory of the soccer can then be determined by the equation
specified by the gravity, air friction and timing parameters.

In (Yu et al,, 2003a), the ball positions in the 3-D space are predicted by the Kalman filter
which utilizes the information of past measured positions. By iteratively estimating the ball
positions, the whole ball trajectory can be generated.

2.4 Database analysis

Database analysis focuses on calculating ball positions in all captured images or recorded
video. Once all the ball positions are estimated, further analysis on the changes of ball
trajectory can be obtained. For example, from the ball positions in the analyzed images or
the ball trajectories in the physical coordinate, the speed and orientation can be calculated.
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In (Shum & Komura, 2004), the speed and orientation of a baseball between two image
frames are analyzed. The key events in a match can then be observed by reconstructing the
baseball trajectory from the database. In (Yu et al., 2003b), the curves of soccer velocity in a
match are generated for the analysis of special events. When a person touches the soccer, the
trajectory of the soccer generates a local minimum point that changes with time. The local
minimal velocity points in a velocity curve may also be caused by the ball bouncing that
changes the soccer direction. The information of these events can help analyze the game
strategy.

2.5 Visualization interface

The visualization interface is designed for users to watch the reconstructed animation such
as the ball trajectory or the landing positions of a ball. In (Pingali et al., 2000), the authors
show a virtual replay of a tennis game and the landing position. In (Pingali et al., 2001), a
virtual replay environment which can let the users watch a replay at any speed and from
any viewpoint is designed. Since the database stores all the ball information, the users can
decide to visualize any interesting part of the game independently. If a visualization
interface can also take into account of the practical situation in a match, the reality of the
visualization can be improved. For example, an enrichment system of visualization interface
is proposed in (Yan et al., 2004). This system can reconstruct a sport game in 3-D display and
enrich the performance with related music and illustrations. Hence, the users can enjoy a
comfortable viewing experience through a better visualization interface.

In this chapter, the methods for controlling image acquisition rate are designed. In order to
test the control methods, several case studies of the 3-D object positioning are proposed. The
ball extraction methods are based on the color information of the objects. Also, the
triangulation method is used to estimate the position of balls in the physical coordinate. The
visualization interface for the virtual replay of object positions is performed in the MATLAB
programming environment.

3. Methods for controlling image acquisition rate

By selecting an appropriate image acquisition rate, the computational load of the 3-D
positioning as well as the memory cost can be reduced. The proposed methods are based on
the states of moving objects by analyzing the sequence of images obtained from the cameras.
Two categories of information are used for designing the rate control methods. The first one
is based on the object states in the physical coordinate and the second one is based on those
directly in the image coordinate of captured images. Since multiple cameras are used and
may have different acquisition rates, the captured images may not be synchronized. Hence,
two types of reconstruction mechanisms are used for the information obtained in the image
coordinate. Furthermore, a criterion is proposed to judge the performance of different image
acquisition rates

3.1 Control method based on object states in the physical coordinate (case A)

After the 3-D positioning, the object states such as position and velocity in the physical
coordinate can be computed. These object states can then be used as the key information for
deciding the image acquisition rate. For example, when an object moves fast, the image
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acquisition rate should be set as high as possible to capture the object motion clearly. If an
object moves slowly or is only in a stationary status, a high acquisition rate is not required.
Using a high acquisition rate may waste the memory storage and the computational cost in
image processing. On the other hand, using a low acquisition rate may lose the reality of the
object motion. Hence, in order to balance the tradeoff between the computational cost and
the accuracy of the 3-D positioning result, the control method for adjusting different image
acquisition rates should be properly designed.

The proposed procedure is discussed in detail in the following. First of all, images are
captured by multiple cameras. Since the quality of captured images may be influenced by
noise, a spatial Gaussian filter is then used to smooth the captured images within the RGB
color channels. Based on a set of predefined features of the objects in terms of the RGB color
channels, the moving objects can be extracted from the images. After the objects are
extracted, the region occupied by the objects in a captured image is stored in a new gray-
scale image. These gray-scale images can be further transformed into binary images by a
specific threshold value. Some lighting influences on the objects may change the result of
color analysis on the object surfaces. The object surfaces in the binary image might not be
necessarily shown in a regular shape. Hence, the image dilation method can be used to
enlarge the analyzed image area, and to improve the object shapes in these binary images.
Finally, by the triangulation approach on the images, a set of 3-D information about the
objects in the physical coordinate can be computed. Also, since the time of captured images
and the corresponding estimated object position are recorded, the object velocity in the
physical domain can be estimated. By analyzing the position and velocity of the object, the
image acquisition rate for the next frame can then be adjusted based on the computed
information.

In this case (named as Case A), the key feature of controlling the image acquisition rate is to
analyze the object states in the physical coordinate. Assume that there are N levels of image
acquisition rates, and each level only represents a specific range of values for the object
states. Hence, by analyzing these object states, a corresponding image acquisition rate can be
determined. Figure 4 shows an example of the mapping between the ball velocity (i.e., the
object state) and the set of image acquisition rates. Vo, Vi, V2 ,..., Vn, are the values of ball
velocity in the physical coordinate. Rate 1, Rate 2, ..., Rate N, are different levels of image
acquisition rates arranged from the lowest value to the highest value. By analyzing the ball
velocity, the corresponding image acquisition rate can be determined. That is, if the ball
velocity is between Vijand V;, the corresponding image acquisition rate is set as Rate i.

vV, \ Vv, V; Va1 VN )
| | | | | | Ball Velocity
\ I I I I I
Sowes) | J L U e ) e (Fastest)
Rate1 Rate2 Rate3 Rate N

Fig. 4. An example of mapping different image acquisition rates by the ball velocity (object
state)
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The pseudo code of the control algorithm for an example of three levels of acquisition rates
is shown in Figure 5, where related variables used are defined in Table 3. The cases with
more levels of image acquisition rates can be easily extended. Also, all the cameras are
designed to adjust their image acquisition rates at the same time. For generating a complete
replay, the object positions in the physical coordinate that are not calculated in the 3-D
positioning can be predicted by using methods such as interpolation, extrapolation, or data
fitting.

Initialization
(All cameras are set to the high level of image acquisition rate at first.)
for each camera C, (K =1~ n)
FCK « Fy

Adjusting of image acquisition rate

(All cameras adjust their image acquisition rate synchronously.)

for each incoming ¥ (T;)
if ((V(T))!=empty) and (V(T,_;)! = empty) ) then
Get ¥(T;) and ¥ (7,_) from database as bases

Generate Vp(T; +T;) and V (T, + Ty)
end if

for each camera Cp (K =1~ n)
if ((Vg <Vp(T, +T;)<Vp) and (Vg <Vp(T; + Ty) < Vy) ) then
FCK <« Fy
elseif ((Vp(T, +T,) <Vg) and (V (T, +Ty) < V) ) then
FCK <« Fp
else

FCK <« Fy

end if

Fig. 5. Pseudo code of the algorithm in Case A

When the objects are far away from the cameras and move in a similar direction, the objects
shown in the corresponding image coordinate are almost stationary. That is, the objects may
move fast in the physical coordinate, but the information shown in the corresponding image
coordinate does not reveal the fact. Therefore, the 3-D positioning result may not reveal
correct object states in the physical coordinate. The type of failure is due to that little image
information is used for the 3-D positioning. Hence, the control method should be modified
to reflect the richness of image information from each individual camera. The amount of
image information should be regarded as a decision factor for controlling the acquisition
rate. The modified control methods are discussed in the following sections.
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Symbol Definition Unit
Cx index of camera (K =1~ n) none
Fe, the image acquisition rate for the specific index of camera times/sec
the maximum image acquisition rate of the all cameras
max(F ) times/ sec
K C (K=1~n)
F the specific low level of image acquisition rate times/sec
Fy the specific normal level of image acquisition rate times/sec
Fy the specific high level of image acquisition rate times/sec
T, the recorded time of the captured image which is index i sec
the corresponding image acquisition time to the lower level of
U image acquisition rate (7, =1/r)) sec
the corresponding image acquisition time to the normal level of
Ty image acquisition rate (Ty =1/ Fy) sec
P(1) the object velocity in the pixel coordinate domain at time ¢ pixel/sec
the predictive object velocity in the image domain at time ¢ (the
Py (D) . . pixel/sec
K
G subscript C, means the index of camera)
P the threshold value of slow object velocity in the image domain | pixel/sec
Py the threshold value of fast object velocity in the image domain | pixel/sec
V(t) the object velocity in the physical coordinate at time ¢ mm/sec
the predictive object velocity in the physical coordinate at time
Vp (1) P ve object v ty ; phy mm/sec
the threshold value of slow object velocity in the physical
Vs . mm/ sec
coordinate
the threshold value of fast object velocity in the physical
Vi . mm/sec
coordinate

Table 3. The meanings of the symbols in the control algorithm

3.2 Control method based on object states in the image coordinate

(case B and case C)

In Case A, the method for controlling the image acquisition rate is based on the object states
in the physical coordinate. In this section, novel methods to control the image acquisition
rate directly based on the object states in the image coordinate are proposed. The reason of
using the object states in the image coordinate is that the acquisition rates can be effectively
adjusted based on the actual available information instead of the projected information in
the physical coordinate. Based on different synchronization scenarios among the cameras,
two cases for adjusting the image acquisition rates are discussed. In the first case (named as
Case B), each camera adjusts the image acquisition rate independently to other cameras,
while in the second case (named as Case C) all the cameras adjust their image acquisition
rates cooperatively.
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3.2.1 Independently controlling image acquisition rate (case B)

In Case B, each camera is designed to control its image acquisition rate independently based
on the information in the image coordinate. The object states are first analyzed
independently in the image coordinate of each camera and then each camera adjusts the
acquisition rate based on the significance of the analyzed image. The significance can be
used as a function of the mobility or the geometric feature of the object. Since all the cameras
do not capture image simultaneously, the numbers of captured images at each camera are
neither the same nor synchronized. Hence, during the 3-D reconstruction, the images from
some cameras may be missed. To overcome this drawback, an interpolation or extrapolation
method should be applied for those missing images. The advantage of only capturing the
most significant images is to reduce the computational load for reconstructing useless
images in the physical coordinate, and/or the transmission bandwidth. The algorithm for
the adjustment of three-level image acquisition rates is shown in Figure 6. The definition of
the variables in the algorithm is also listed in Table 3. Cases with more levels of image
acquisition rates can be easily extended.

Initialization
(All cameras are set to the high level of image acquisition rate at first.)

for each camera Cy (K =1~ n)
FCK <“«— FH

Adjusting of image acquisition rate
(Each camera adjusts the image acquisition rate by itself.)

for each camera Cy (K =1~ n)
for each incoming Pe (T)
if ( (Fe, (T;)! = empty) and ( e, (T,_))! = empty) ) then
Get R (T) and P (Ty) from database as bases
Generate PPcK (T, +T;) and PPCK (T, + Ty)
end if
if (P < PPcK (T, +T;) < Pp) and (Pg < PPcK (T, +Ty) < Pg))
then FCK « Fy
else if ((P, (7, +T,) < Fy) and (B, (T, +Ty) < Fy))
then FCK « F

else

FCK « Fy

end if

Fig. 6. Pseudo code of the algorithm in Case B

In Case A, all the cameras adjust their image acquisition rates simultaneously, so that the
captured images are always in pairs for further processing. Hence, the object states in the
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physical coordinate can be directly reconstructed. In Case B, since these cameras adjust their
image acquisition rate independently, the acquisition efficiency of each camera could be
improved, but the captured images may not be necessarily in pairs. The missing images can
be recovered by an interpolation or extrapolation estimation based on the captured images.
Therefore, the 3-D reconstruction of the objects in the physical coordinate can also be
performed.

However, in some scenarios, if the reconstruction by interpolation or extrapolation
generates unacceptable errors, it is advised to increase the acquisition rates of some cameras
in a cooperative way. The cooperation increases the acquisition rates of some cameras and
hence improves the reconstruction performance. However, the total number of captured
images is still smaller than that in Case A. Therefore, the computational cost is still reduced.
The cooperation mechanism is discussed in next section.

3.2.2 Cooperatively controlling image acquisition rates (case C)

In this case, the method for controlling image acquisition rate is also based on the
information obtained in the image coordinate. In additions, all cameras try to adjust its
image acquisition rate synchronously. In order to achieve the synchronization, these
acquisition rates should first be compared. The comparison works as follows. Each camera
first predicts an image acquisition rate for the next image frame. The control algorithm then
compares the prediction of each camera and then a designated image acquisition rate is
chosen as the highest of all the predicted image acquisition rates. Finally, all the cameras
adjust to their acquisition rates synchronously. Therefore, the captured images from all the
cameras can be used for the 3-D reconstructions simultaneously.

The algorithm for the case of three levels of image acquisition rates is shown in Figure 7.
The definition of the variables in the algorithm is also listed in Table 3. Cases with more
levels of image acquisition rates can be easily extended. Initially, all the cameras are set to
the higher level of image acquisition rate and, hence, capture some images in the meantime.
Therefore, the set of captured images are in pairs. After that, the image is further analyzed
and, because the image information obtained is different among these cameras, each camera
may adjust its acquisition rate independently. Next, at each camera, the image acquisition
rate for the next image frame is analyzed and predicted based on the captured images. In
order to capture the next image frame synchronously, all the cameras are adjusted to the
highest level of all the predicted image acquisition rates and the image frames can be
guaranteed to be captured at the same time.

By using this algorithm, the cameras can compare their predicted image acquisition rates
and adopt the highest rate for the next image frame. Since the algorithm in Case C adjusts
the image acquisition rate before analyzing the object information in the physical
coordinate, this algorithm could performs more efficiently than that of Case A. A
preliminary comparison of the three control algorithms is listed in Table 4.

In addition to the synchronization effect and reconstruction performance, other factors can
also be considered when selecting a suitable algorithm for controlling the image acquisition
rate. The most important concept is that the adjustment of the acquisition rate should
depend on the image quality captured by each camera. In order to characterize the outcome
of the proposed control methods, a performance criterion is proposed in the next section.
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Initialization
(All cameras are set to the high level of image acquisition rate at first.)

for each camera Cy (K =1~ n)
FCK “«— FH

Adjusting of image acquisition rate
(All cameras adjust their image acquisition rate synchronously.)

for each camera Cy (K =1~ n)
if ( (P, (T,)! = empty) and ( Fo, (T,_))! = empty) ) then
Get PCK(Ti) and PCK(Ti_l) from database as bases
Generate PPcK (T, +T;) and PPcK (T; + Ty)

end if
for each incoming e, (T)

if((PS < PPC (7; +TL)<PF)and(PS < PPC (T; +Ty) < Pp)) then
K K
FCK « Fy
else if ( (PPc (TI.+TL)<PS)and (PPc (T, +Ty) < Fg)) then
K K
FCK « Fp

else FCK « Fy
end if
Find max(FCK)

Set the image acquisition rate of all cameras as max(Fg, )

Fig. 7. Pseudo code of the algorithm in Case C

Case A Case B Case C
The time to carry out the algorithm Long Short Normal
Are captured images always in pairs? Yes No Yes

Table 4. The comparison of control algorithms designed in this study

3.3 Criterion for characterizing image acquisition

These methods proposed for controlling the image acquisition rate could reduce
computational cost and memory space for the captured images. For the 3-D positioning, the
object position, for example, in the physical coordinate can be estimated based on the
information of analyzing the captured images. In order to compare the performance of
different control methods, the following criterion is designed:

R=W xs-W,xd )
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where s denotes the saving percentage of image quantity, d denotes a reference value
representing the percentage of image distortion, and w.w, are two weighting factors.

Specifically, s can be described as follows:
N,

s=1-—L, 2
N, o)

where N; denotes the number of captured images when carrying out the control method and
N> denotes the number of captured images when all the cameras are set at the highest
acquisition rate. For example, if 240 images are captured using the highest acquisition rate,
and only 200 images are recorded by performing one of control methods, then the
percentage of image saving is estimated as follows:

200
s=1-—— =0.167 =16.7%.
240

Furthermore, W, can be regarded as a function of memory saving. For example, the function

can be defined as follows:

W, = a(s), ®)
where &=, /M, and py, denotes the quantity of memory used to record all the captured

images by using the highest acquisition rate, and As, denotes the quantity of memory

assigned by the computer in advance. For example, if it needs 100MB to record all the
captured images and the memory size assigned by the computer is 80MB, & can be

calculated as follows:
100
E=— =1.25.
80
If £>1 , then saving the number of captured images can be considered an important goal.
w, can be regarded as a function of the object states and the image acquisition rate. For

example, w, is described as follows:

W, = B,k), 4)

where v characterizes the object states such as position or velocity, and & is the highest
acquisition rate used in a practical application. If the object states have a large impact on the
image processing (for example, the object speed is large), and the image acquisition rate is
low, it is likely that the outcome of the image processing will be distorted and the value of
w, should be increased. In summary, w, xs can be regarded as the advantage for carrying

out the control method, while , x4 can be regarded as the disadvantage for carrying out

the control method.
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When the value of R is equal to zero, the performance of the control method is just the same
as that without any acquisition rate control because all the images are just captured by the
highest image acquisition rate and occupy all the available memory. Hence, in order to
guarantee the performance of the control method, the value of R should be a positive
number. If several control methods are available for the users to choose, they can be
compared based on the criterion.

4. Experimental results

In this section, the 3-D positioning of solid balls are experimentally tested for the three
methods of controlling image acquisition rates. The test-bed is shown in Figure 8(a). The
image coordinates of the two cameras is shown in Figure 8(b), where the camera centers are
denoted as P; and P, respectively, and sr; and 1, are the image frames of the two camera,
repsectively. Since three balls of different colors are used in these experiments, the
foreground object segmentation can be easily performed. The background of the scene is
only white broads. Also, two cameras are used to capture the images which are stored and
analyzed at one single computer.

F

Camerall

Camera [

@) (b)
Fig. 8. (a) A snapshot of experimental environment for 3-D positioning, (b) the image
coordinates of the two cameras

In this study, assume that the radius of these balls is known in advance. Hence, the goal of
the 3-D positioning is only to identify the center of these balls. In order to locate the ball
centers in the physical coordinate, the ball center shown in each camera should be processed
first by proper image processing operations. Once the position of the ball center in the image
coordinate of each camera is found, the position of ball center in the physical coordinate can
then be computed by the triangulation method used in the 3-D mapping.

4.1 Image processing results

The captured images are stored in the memory of the computer and processed by the image
processing step. First of all, the original captured images loaded from the memory are full-
color images, i.e., with red, green and blue color channels. The spatial Gaussian filter is then
used to process these color channels, independently. In order to distinguish these three balls
shown in the image, each ball is identified from the image by the color analysis. Supposing
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that a ball region is extracted after the color analysis, the region is stored and transformed
into a gray-scale image. The gray-scale image can be further transformed into a binary
image. Finally, the image dilation method is used to further characterize the shape of ball
region shown in the binary image.

In the color analysis step, all pixels in a captured image are processed by a color analysis
method. That is, a pixel shown in the captured images can be judged as either a part of color
ball or a part of background. When a pixel does not belong to the region of the three balls,
the pixel is regarded as a part of background. This color analysis method is designed to
process all pixels in the captured image. Supposing that the balls are not blocked by others,
this color analysis method can identify every ball region. An example of using the color
analysis method to find a ball region is shown in Figure 9.

In Figure 9(a), an original captured image is shown. Next, the extraction result of the green
ball is shown in Figure 9(b), where a binary image is obtained. It is clear that the ball shape
is incorrect after the color analysis. Hence, the image dilation method is used to further
improve the result of ball region extraction. The result after the image dilation is shown in
Figure 9(c), where the ball shape is better than that shown in Figure 9(b).

@)

(b) ©
Fig. 9. The results of ball extraction and image dilation in the captured image. (a) The
original image. (b) After ball extraction. (c) After image dilation

4.2 3-D positioning results
In this study, the target for 3-D positioning are the centers of the balls. In order to find the
positions of ball centers in the physical domain, the ball centroid shown in images are first
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calculated by the image processing step discussed in previous section. Once the positions of
ball centroid shown in images are found, the position of ball center in the physical domain
can be found by the triangulation method. Supposing that a ball center s is the target for 3-
D positioning, an example of the corresponding points of s in the image planes of the two
cameras used in this study is shown in Figure 10.

L os)
+Z, - +Z,

Pixel Coordinate Domain
T, x Pixel Coordinate Domain

Y [N£5% 4 160,120)

Camera Coordinate Domain Camera Coordinate Domain

Fig. 10. An example for describing the corresponding points of a ball center in the image
planes

The centers of the two camera coordinate domains are denoted by P; and P, respectively,
and the image planes are denoted by m; and m, respectively. Assume that the range of the
image plane is 320*240 in pixel and the center of the image coordinate is then denoted as
(160, 120). The focal length is denoted by f. The ball center s is the target of the 3-D
positioning, and the corresponding point of s shown in the two image coordinates are
denated as s; and sy, respectively. Hence, the coordinates of s; and s, in m and m,
respevtively, can be described as follows:

s =(x,1) ©)

s, =(x,¥,) (6)

Supposing that the unit of the focal length f is in terms of pixel, the two 3-D vectors T1 and
T> can be described as follows

T =(x,—160, y, —120, /) ©)

T, = (x, 160, y, —120, f) @)
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where T; denotes the 3-D vector from P; to s; and T> denotes the 3-D vector from P; to s».
After finding the two vectors, the position of s can be calculated by the triangulation method
as shown in Figure 11.

In Figure 11, the coordinate domain is in the physical domain. Line L; in the physical
domain can be determined by the information of Point P; and Vector Ti. Line Ly in the
physical domain can be determined by the information of Point P, and Vector T>. On Line
Ly, s1” is the point closest to Line Ly, and, on Line Ly, sy’ is the point closest to Line L;. Point s
is the target point for 3-D positioning and is calculated by finding the midpoint of s;" and s,".

Fig. 11. An example of finding the position of ball center in the physical domain by the
triangulation method

After all the captured images are processed by the 3-D positioning step, the trajectories of
these balls can be reconstructed in a virtual environment, for example, in the 3-D plotting in
MATLAB. In the virtual environment, these balls can be shown in different viewpoints. An
example of the 3-D positioning for the three balls is shown in Figure 12. The original
placement of the three balls is shown in Figure 12(a), and the 3-D positioning result in the
virtual environment from three different viewpoints are shown in Figure 12(b), (c), and (d),
respectively.

For testing the three cases of rate control, three levels of image acquisition rates are used.
They are characterized as the higher level: 4 frames/sec, the normal level: 2 frames/sec, and
the lower level: 1 frames/sec. In each case, twenty experiments are tested for 60 seconds. In
each test, the ball velocity in the physical coordinate can be calculated based on the 3-D
positioning of the ball center and the sampling time interval. Hence, two threshold values
vy and Ve used in Case A can then be determined based on the analyzed data. In the study,

veand y, are set as 32.47 and 48.46 mm/sec, respectively. Similarly, the threshold values
Pand p. used in Case B and Case C are set as 9.80 and 17.05 pixel/sec, respectively.
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3D Positioning Result
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Fig. 12. An example of the 3-D positioning of the three balls. (a) A snapshot of the original
placement. (b) The 3-D positioning reconstructed in the MATLAB environment. (c) and (d)
The 3-D positioning results shown in the different viewpoints

Furthermore, for the evaluation of the control methods, the root-mean-square-error (RMSE)
of the difference between the tests with and without rate control is calculated. The definition
of RMSE is described as follows:

RMSE =

where n is the number of predicted results, g4 denotes the original image quality, and
g denotes the predicted image quality. When there are no corresponding images, the 3-D
positioning results are estimated by the interpolation, extrapolation, or data fitting to a line
by the least squares approximation.

In this study, the three control methods discussed in Section 3 are performed and compared
by the average value of RMSE. In each case, five similar experiments are performed. The
images in the five experiments are captured first by the higher level of image acquisition
rate. Each experiment lasts for 60 seconds and 240 images are captured in each experiment.
The result of the percentage of image saving is shown in Table 5. Since the original 3-D
positioning results in the five experiments are calculated in advance, the values of RMSE for
different control methods can be calculated. By using the interpolation method to predict
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unknown 3-D positions, the calculated results for RMSE is shown in Table 6. By using the
extrapolation method to predict unknown 3-D positions, the calculated results for RMSE is
shown in Table 7. Finllay, by using the method of least squares approximation to predict
unknown 3-D positions, the calculated results for RMSE is shown in Table 8. Also, the
timing data of the image acquisition by uisng the three control methods and the fixed rate
cases are shown in Figure 13.

When all the images are captured by a fixed, normal image acquisition rate, the percentage
of image saving is the smallest. In Case C, the image acquisition rate is adjusted before
comparing the image processing result of the two cameras. Once one camera determines the
time to capture next image, the other camera also capture the image no matter what its
original decision is. Hence, the percentage of image saving for Case C is smaller than that of
Case A and Case B.

For the prediction performance, since Case C acquires more images than Case A and Case B
do, the RMSE for Case C are smaller than those for Case A and Case B. In Case B, the two
cameras do not utilize identical image acquisition rate synchronously. Hence, the position of
the ball in the image coordinate is then predicted. In Case A and Case B, the image
acquisition rate for the two cameras is adjusted synchronously. Therefore, the RMSE in Case
B is larger than those Case A and Case C.

Percentage of image saving
exgif;;;flts Case A | CaseB | CaseC (niiﬁglrlztveel) (153(;?12:;)
1 71.67% 70.42% 52.08% 50% 75%
2 71.67% 70.21% 54.58% 50% 75%
3 72.50% 70.21% 56.67% 50% 75%
4 72.92% 70.63% 63.75% 50% 75%
5 72.92% 68.13% 52.08% 50% 75%
Average 72.34% 69.92% 55.83% 50% 75%

Table 5. The percentage of image saving in the experiments

RMSE (by the interpolation method) (Unit: mm)
exgif;;;flts CaseA | CaseB | CaseC (niﬁglrlztveel) (151@(: gﬁl)
1 32.122 63.279 25.957 22951 33.863
2 33.417 54.744 33.129 22.347 35.781
3 29.328 47472 26.531 20.588 30.771
4 33.403 68.569 32.773 23.019 34.769
5 31.169 109.168 27.352 21.224 32.368
Average 31.888 68.646 29.142 22.026 33.510

Table 6. The RMSE of prediction performance when all unknown 3-D positioning results are
predicted by the interpolation method
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RMSE (by the extrapolation method) (Unit: mm)
exgleci‘?rtlgrflts Casel Casell | Caselll (niﬁ:lrlitveel) (1?;\(723 lreavtzl)
1 56.811 148.509 57.446 43.265 59.658
2 67.293 103.541 63.782 44111 63.331
3 60.500 109.406 57.555 36.308 55.947
4 59.374 134.716 67.257 41.649 55.583
5 61.874 225.318 58.105 39.891 61.883
Average 61.170 144.298 60.229 41.045 59.280

Table 7. The RMSE of prediction performance when all unknown 3-D positioning results are
predicted by the extrapolation method

RMSE (by the method of data fitting to a line) (Unit: mm)
exI;ecll‘ie;Zflts Case A Case B Case C (ngi")r(s:llii?el) (lf)lv)\if 11;;[:1)
1 56.628 122.772 51.346 39.219 56.959
2 62.361 103.874 63.106 41.516 59.385
3 57.299 102.364 52.468 36.267 53.805
4 59.218 136.043 59.807 38.435 54.829
5 56.965 210.031 53.714 41.380 56.788
Average 58.494 135.017 56.088 39.363 56.353

Table 8. The RMSE of prediction performance when all unknown 3-D positioning results are
predicted by the method of data fitting to a line

Finally, the performance criterion, defined in Section 3.3, of these three cases is summarized
in Table 9. The performance criteria in Case A are larger than those in Case B and Case C.
Hence, the performance of Case A is the best. Also, it is advised to use a control method
with a positive R. Therefore, the performance of Case B is not good enough. Also, the
statistic suggests that the performance of using interpolation to predict the missing data is
better than that of using extrapolation and data fitting.

R
Case A Case B Case C
Interpolation 0.2440 -0.1614 0.1139
Extrapolation -0.1842 -1.0421 -0.3477
Data fitting -0.1520 -0.9354 -0.2723

Table 9. The performance criterion R

In summary, Case A has a better result in the percentage of image saving and the
performance criterion. For Case B, due to the asynchronization in image acquisition, the 3-D
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positioning results cannot be predicted properly and may generate bigger errors than that in
Case A and Case C. Therefore, if the cameras can be placed in an appropriate position to
avoid the problem of obtaining too little object information, Case A should be a better choice
for practical application than Case C.

Compare the control methods with the cases of fixed rate Compare the control methods  with the cases of fixed rate

Index of Different Cases
'

Index of Different Cases

E}
Time (sec) Time (sec)

(a) (b)

Compare the control methods with the cases of fixed rate Compare the control methods with the

Index of Different Cases

Index of Different Cases

% Bl
Time (sec) Time (sec)

© (d)

Compare the control methods with the cases of fixed rate

v
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g 0 = £} i B W
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©
Fig. 13. The timing comparison for different image acquisition mechanisms by using the
three control methods and the fixed rate cases. (a)-(e) The five experiments performed

5. Conclusions and future work

In this study, three methods for controlling image acquisition rate are designed and
analyzed. In order to verify the control methods, the 3-D positioning of balls is used to
compare the performance of the three control methods in terms of the percentage of saving
images and the accuracy of the 3-D positioning results. Experimental results show that the



252 Computer Vision

calculating results for the percentage of saving images in Case C is smaller than that in Case
A and Case B. However, since Case C adopts more images to predict the motion of the balls
in the physical domain, the accuracy of the 3-D positioning result in Case C is better than
that in Case A and Case B. The accuracy for the 3-D positioning result for Case B is worse
than that in Case A and Case C. In order to compare the performance of the three cases, a
performance criterion for judging these control methods is proposed. In practical
applications, cameras should be placed or moved in an appropriate position to avoid the
problem of getting too little object information from the images.

In the future, the following three tasks can be further performed. The first task is to use
advanced mathematical methods for predicting the positions of the interested objects in
the physical domain. The second task is to design more advanced control methods for
better characterize the object states. The third task is to test the scenarios with more
cameras and interested objects for testing the complexity achieved by the proposed
control methods.
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